xref: /dpdk/drivers/net/hns3/hns3_ethdev.c (revision 4aa10e5dc1b0fd6cc5b1b18770ac603e2c33a66c)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2021 HiSilicon Limited.
3  */
4 
5 #include <rte_alarm.h>
6 #include <bus_pci_driver.h>
7 #include <ethdev_pci.h>
8 
9 #include "hns3_common.h"
10 #include "hns3_dump.h"
11 #include "hns3_logs.h"
12 #include "hns3_rxtx.h"
13 #include "hns3_intr.h"
14 #include "hns3_regs.h"
15 #include "hns3_dcb.h"
16 #include "hns3_mp.h"
17 #include "hns3_flow.h"
18 #include "hns3_ethdev.h"
19 
20 #define HNS3_SERVICE_INTERVAL		1000000 /* us */
21 #define HNS3_SERVICE_QUICK_INTERVAL	10
22 #define HNS3_INVALID_PVID		0xFFFF
23 
24 #define HNS3_FILTER_TYPE_VF		0
25 #define HNS3_FILTER_TYPE_PORT		1
26 #define HNS3_FILTER_FE_EGRESS_V1_B	BIT(0)
27 #define HNS3_FILTER_FE_NIC_INGRESS_B	BIT(0)
28 #define HNS3_FILTER_FE_NIC_EGRESS_B	BIT(1)
29 #define HNS3_FILTER_FE_ROCE_INGRESS_B	BIT(2)
30 #define HNS3_FILTER_FE_ROCE_EGRESS_B	BIT(3)
31 #define HNS3_FILTER_FE_EGRESS		(HNS3_FILTER_FE_NIC_EGRESS_B \
32 					| HNS3_FILTER_FE_ROCE_EGRESS_B)
33 #define HNS3_FILTER_FE_INGRESS		(HNS3_FILTER_FE_NIC_INGRESS_B \
34 					| HNS3_FILTER_FE_ROCE_INGRESS_B)
35 
36 /* Reset related Registers */
37 #define HNS3_GLOBAL_RESET_BIT		0
38 #define HNS3_CORE_RESET_BIT		1
39 #define HNS3_IMP_RESET_BIT		2
40 #define HNS3_FUN_RST_ING_B		0
41 
42 #define HNS3_VECTOR0_IMP_RESET_INT_B	1
43 #define HNS3_VECTOR0_IMP_CMDQ_ERR_B	4U
44 #define HNS3_VECTOR0_IMP_RD_POISON_B	5U
45 #define HNS3_VECTOR0_ALL_MSIX_ERR_B	6U
46 
47 #define HNS3_RESET_WAIT_MS	100
48 #define HNS3_RESET_WAIT_CNT	200
49 
50 /* FEC mode order defined in HNS3 hardware */
51 #define HNS3_HW_FEC_MODE_NOFEC  0
52 #define HNS3_HW_FEC_MODE_BASER  1
53 #define HNS3_HW_FEC_MODE_RS     2
54 
55 enum hns3_evt_cause {
56 	HNS3_VECTOR0_EVENT_RST,
57 	HNS3_VECTOR0_EVENT_MBX,
58 	HNS3_VECTOR0_EVENT_ERR,
59 	HNS3_VECTOR0_EVENT_PTP,
60 	HNS3_VECTOR0_EVENT_OTHER,
61 };
62 
63 static const struct rte_eth_fec_capa speed_fec_capa_tbl[] = {
64 	{ RTE_ETH_SPEED_NUM_10G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
65 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
66 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) },
67 
68 	{ RTE_ETH_SPEED_NUM_25G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
69 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
70 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) |
71 			     RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
72 
73 	{ RTE_ETH_SPEED_NUM_40G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
74 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
75 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) },
76 
77 	{ RTE_ETH_SPEED_NUM_50G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
78 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
79 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) |
80 			     RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
81 
82 	{ RTE_ETH_SPEED_NUM_100G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
83 			      RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
84 			      RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
85 
86 	{ RTE_ETH_SPEED_NUM_200G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
87 			      RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
88 			      RTE_ETH_FEC_MODE_CAPA_MASK(RS) }
89 };
90 
91 static enum hns3_reset_level hns3_get_reset_level(struct hns3_adapter *hns,
92 						 uint64_t *levels);
93 static int hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
94 static int hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid,
95 				    int on);
96 static int hns3_update_link_info(struct rte_eth_dev *eth_dev);
97 static bool hns3_update_link_status(struct hns3_hw *hw);
98 
99 static int hns3_add_mc_mac_addr(struct hns3_hw *hw,
100 				struct rte_ether_addr *mac_addr);
101 static int hns3_remove_mc_mac_addr(struct hns3_hw *hw,
102 				   struct rte_ether_addr *mac_addr);
103 static int hns3_restore_fec(struct hns3_hw *hw);
104 static int hns3_query_dev_fec_info(struct hns3_hw *hw);
105 static int hns3_do_stop(struct hns3_adapter *hns);
106 static int hns3_check_port_speed(struct hns3_hw *hw, uint32_t link_speeds);
107 static int hns3_cfg_mac_mode(struct hns3_hw *hw, bool enable);
108 
109 
110 static void
111 hns3_pf_disable_irq0(struct hns3_hw *hw)
112 {
113 	hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
114 }
115 
116 static void
117 hns3_pf_enable_irq0(struct hns3_hw *hw)
118 {
119 	hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
120 }
121 
122 static enum hns3_evt_cause
123 hns3_proc_imp_reset_event(struct hns3_adapter *hns, bool is_delay,
124 			  uint32_t *vec_val)
125 {
126 	struct hns3_hw *hw = &hns->hw;
127 
128 	__atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
129 	hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
130 	*vec_val = BIT(HNS3_VECTOR0_IMPRESET_INT_B);
131 	if (!is_delay) {
132 		hw->reset.stats.imp_cnt++;
133 		hns3_warn(hw, "IMP reset detected, clear reset status");
134 	} else {
135 		hns3_schedule_delayed_reset(hns);
136 		hns3_warn(hw, "IMP reset detected, don't clear reset status");
137 	}
138 
139 	return HNS3_VECTOR0_EVENT_RST;
140 }
141 
142 static enum hns3_evt_cause
143 hns3_proc_global_reset_event(struct hns3_adapter *hns, bool is_delay,
144 			     uint32_t *vec_val)
145 {
146 	struct hns3_hw *hw = &hns->hw;
147 
148 	__atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
149 	hns3_atomic_set_bit(HNS3_GLOBAL_RESET, &hw->reset.pending);
150 	*vec_val = BIT(HNS3_VECTOR0_GLOBALRESET_INT_B);
151 	if (!is_delay) {
152 		hw->reset.stats.global_cnt++;
153 		hns3_warn(hw, "Global reset detected, clear reset status");
154 	} else {
155 		hns3_schedule_delayed_reset(hns);
156 		hns3_warn(hw,
157 			  "Global reset detected, don't clear reset status");
158 	}
159 
160 	return HNS3_VECTOR0_EVENT_RST;
161 }
162 
163 static enum hns3_evt_cause
164 hns3_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
165 {
166 	struct hns3_hw *hw = &hns->hw;
167 	uint32_t vector0_int_stats;
168 	uint32_t cmdq_src_val;
169 	uint32_t hw_err_src_reg;
170 	uint32_t val;
171 	enum hns3_evt_cause ret;
172 	bool is_delay;
173 
174 	/* fetch the events from their corresponding regs */
175 	vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
176 	cmdq_src_val = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
177 	hw_err_src_reg = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG);
178 
179 	is_delay = clearval == NULL ? true : false;
180 	/*
181 	 * Assumption: If by any chance reset and mailbox events are reported
182 	 * together then we will only process reset event and defer the
183 	 * processing of the mailbox events. Since, we would have not cleared
184 	 * RX CMDQ event this time we would receive again another interrupt
185 	 * from H/W just for the mailbox.
186 	 */
187 	if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats) { /* IMP */
188 		ret = hns3_proc_imp_reset_event(hns, is_delay, &val);
189 		goto out;
190 	}
191 
192 	/* Global reset */
193 	if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats) {
194 		ret = hns3_proc_global_reset_event(hns, is_delay, &val);
195 		goto out;
196 	}
197 
198 	/* Check for vector0 1588 event source */
199 	if (BIT(HNS3_VECTOR0_1588_INT_B) & vector0_int_stats) {
200 		val = BIT(HNS3_VECTOR0_1588_INT_B);
201 		ret = HNS3_VECTOR0_EVENT_PTP;
202 		goto out;
203 	}
204 
205 	/* check for vector0 msix event source */
206 	if (vector0_int_stats & HNS3_VECTOR0_REG_MSIX_MASK ||
207 	    hw_err_src_reg & HNS3_RAS_REG_NFE_MASK) {
208 		val = vector0_int_stats | hw_err_src_reg;
209 		ret = HNS3_VECTOR0_EVENT_ERR;
210 		goto out;
211 	}
212 
213 	/* check for vector0 mailbox(=CMDQ RX) event source */
214 	if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_val) {
215 		cmdq_src_val &= ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
216 		val = cmdq_src_val;
217 		ret = HNS3_VECTOR0_EVENT_MBX;
218 		goto out;
219 	}
220 
221 	val = vector0_int_stats;
222 	ret = HNS3_VECTOR0_EVENT_OTHER;
223 out:
224 
225 	if (clearval)
226 		*clearval = val;
227 	return ret;
228 }
229 
230 static void
231 hns3_clear_event_cause(struct hns3_hw *hw, uint32_t event_type, uint32_t regclr)
232 {
233 	if (event_type == HNS3_VECTOR0_EVENT_RST ||
234 	    event_type == HNS3_VECTOR0_EVENT_PTP)
235 		hns3_write_dev(hw, HNS3_MISC_RESET_STS_REG, regclr);
236 	else if (event_type == HNS3_VECTOR0_EVENT_MBX)
237 		hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
238 }
239 
240 static void
241 hns3_clear_all_event_cause(struct hns3_hw *hw)
242 {
243 	uint32_t vector0_int_stats;
244 
245 	vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
246 	if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats)
247 		hns3_warn(hw, "Probe during IMP reset interrupt");
248 
249 	if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats)
250 		hns3_warn(hw, "Probe during Global reset interrupt");
251 
252 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_RST,
253 			       BIT(HNS3_VECTOR0_IMPRESET_INT_B) |
254 			       BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) |
255 			       BIT(HNS3_VECTOR0_CORERESET_INT_B));
256 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_MBX, 0);
257 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_PTP,
258 				BIT(HNS3_VECTOR0_1588_INT_B));
259 }
260 
261 static void
262 hns3_handle_mac_tnl(struct hns3_hw *hw)
263 {
264 	struct hns3_cmd_desc desc;
265 	uint32_t status;
266 	int ret;
267 
268 	/* query and clear mac tnl interrupt */
269 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_MAC_TNL_INT, true);
270 	ret = hns3_cmd_send(hw, &desc, 1);
271 	if (ret) {
272 		hns3_err(hw, "failed to query mac tnl int, ret = %d.", ret);
273 		return;
274 	}
275 
276 	status = rte_le_to_cpu_32(desc.data[0]);
277 	if (status) {
278 		hns3_warn(hw, "mac tnl int occurs, status = 0x%x.", status);
279 		hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_MAC_TNL_INT,
280 					  false);
281 		desc.data[0] = rte_cpu_to_le_32(HNS3_MAC_TNL_INT_CLR);
282 		ret = hns3_cmd_send(hw, &desc, 1);
283 		if (ret)
284 			hns3_err(hw, "failed to clear mac tnl int, ret = %d.",
285 				 ret);
286 	}
287 }
288 
289 static void
290 hns3_interrupt_handler(void *param)
291 {
292 	struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
293 	struct hns3_adapter *hns = dev->data->dev_private;
294 	struct hns3_hw *hw = &hns->hw;
295 	enum hns3_evt_cause event_cause;
296 	uint32_t clearval = 0;
297 	uint32_t vector0_int;
298 	uint32_t ras_int;
299 	uint32_t cmdq_int;
300 
301 	/* Disable interrupt */
302 	hns3_pf_disable_irq0(hw);
303 
304 	event_cause = hns3_check_event_cause(hns, &clearval);
305 	vector0_int = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
306 	ras_int = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG);
307 	cmdq_int = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
308 	hns3_clear_event_cause(hw, event_cause, clearval);
309 	/* vector 0 interrupt is shared with reset and mailbox source events. */
310 	if (event_cause == HNS3_VECTOR0_EVENT_ERR) {
311 		hns3_warn(hw, "received interrupt: vector0_int_stat:0x%x "
312 			  "ras_int_stat:0x%x cmdq_int_stat:0x%x",
313 			  vector0_int, ras_int, cmdq_int);
314 		hns3_handle_mac_tnl(hw);
315 		hns3_handle_error(hns);
316 	} else if (event_cause == HNS3_VECTOR0_EVENT_RST) {
317 		hns3_warn(hw, "received reset interrupt");
318 		hns3_schedule_reset(hns);
319 	} else if (event_cause == HNS3_VECTOR0_EVENT_MBX) {
320 		hns3_dev_handle_mbx_msg(hw);
321 	} else if (event_cause != HNS3_VECTOR0_EVENT_PTP) {
322 		hns3_warn(hw, "received unknown event: vector0_int_stat:0x%x "
323 			  "ras_int_stat:0x%x cmdq_int_stat:0x%x",
324 			  vector0_int, ras_int, cmdq_int);
325 	}
326 
327 	/* Enable interrupt if it is not cause by reset */
328 	hns3_pf_enable_irq0(hw);
329 }
330 
331 static int
332 hns3_set_port_vlan_filter(struct hns3_adapter *hns, uint16_t vlan_id, int on)
333 {
334 #define HNS3_VLAN_ID_OFFSET_STEP	160
335 #define HNS3_VLAN_BYTE_SIZE		8
336 	struct hns3_vlan_filter_pf_cfg_cmd *req;
337 	struct hns3_hw *hw = &hns->hw;
338 	uint8_t vlan_offset_byte_val;
339 	struct hns3_cmd_desc desc;
340 	uint8_t vlan_offset_byte;
341 	uint8_t vlan_offset_base;
342 	int ret;
343 
344 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_PF_CFG, false);
345 
346 	vlan_offset_base = vlan_id / HNS3_VLAN_ID_OFFSET_STEP;
347 	vlan_offset_byte = (vlan_id % HNS3_VLAN_ID_OFFSET_STEP) /
348 			   HNS3_VLAN_BYTE_SIZE;
349 	vlan_offset_byte_val = 1 << (vlan_id % HNS3_VLAN_BYTE_SIZE);
350 
351 	req = (struct hns3_vlan_filter_pf_cfg_cmd *)desc.data;
352 	req->vlan_offset = vlan_offset_base;
353 	req->vlan_cfg = on ? 0 : 1;
354 	req->vlan_offset_bitmap[vlan_offset_byte] = vlan_offset_byte_val;
355 
356 	ret = hns3_cmd_send(hw, &desc, 1);
357 	if (ret)
358 		hns3_err(hw, "set port vlan id failed, vlan_id =%u, ret =%d",
359 			 vlan_id, ret);
360 
361 	return ret;
362 }
363 
364 static void
365 hns3_rm_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id)
366 {
367 	struct hns3_user_vlan_table *vlan_entry;
368 	struct hns3_pf *pf = &hns->pf;
369 
370 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
371 		if (vlan_entry->vlan_id == vlan_id) {
372 			if (vlan_entry->hd_tbl_status)
373 				hns3_set_port_vlan_filter(hns, vlan_id, 0);
374 			LIST_REMOVE(vlan_entry, next);
375 			rte_free(vlan_entry);
376 			break;
377 		}
378 	}
379 }
380 
381 static void
382 hns3_add_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id,
383 			bool writen_to_tbl)
384 {
385 	struct hns3_user_vlan_table *vlan_entry;
386 	struct hns3_hw *hw = &hns->hw;
387 	struct hns3_pf *pf = &hns->pf;
388 
389 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
390 		if (vlan_entry->vlan_id == vlan_id)
391 			return;
392 	}
393 
394 	vlan_entry = rte_zmalloc("hns3_vlan_tbl", sizeof(*vlan_entry), 0);
395 	if (vlan_entry == NULL) {
396 		hns3_err(hw, "Failed to malloc hns3 vlan table");
397 		return;
398 	}
399 
400 	vlan_entry->hd_tbl_status = writen_to_tbl;
401 	vlan_entry->vlan_id = vlan_id;
402 
403 	LIST_INSERT_HEAD(&pf->vlan_list, vlan_entry, next);
404 }
405 
406 static int
407 hns3_restore_vlan_table(struct hns3_adapter *hns)
408 {
409 	struct hns3_user_vlan_table *vlan_entry;
410 	struct hns3_hw *hw = &hns->hw;
411 	struct hns3_pf *pf = &hns->pf;
412 	uint16_t vlan_id;
413 	int ret = 0;
414 
415 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_ENABLE)
416 		return hns3_vlan_pvid_configure(hns,
417 						hw->port_base_vlan_cfg.pvid, 1);
418 
419 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
420 		if (vlan_entry->hd_tbl_status) {
421 			vlan_id = vlan_entry->vlan_id;
422 			ret = hns3_set_port_vlan_filter(hns, vlan_id, 1);
423 			if (ret)
424 				break;
425 		}
426 	}
427 
428 	return ret;
429 }
430 
431 static int
432 hns3_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
433 {
434 	struct hns3_hw *hw = &hns->hw;
435 	bool writen_to_tbl = false;
436 	int ret = 0;
437 
438 	/*
439 	 * When vlan filter is enabled, hardware regards packets without vlan
440 	 * as packets with vlan 0. So, to receive packets without vlan, vlan id
441 	 * 0 is not allowed to be removed by rte_eth_dev_vlan_filter.
442 	 */
443 	if (on == 0 && vlan_id == 0)
444 		return 0;
445 
446 	/*
447 	 * When port base vlan enabled, we use port base vlan as the vlan
448 	 * filter condition. In this case, we don't update vlan filter table
449 	 * when user add new vlan or remove exist vlan, just update the
450 	 * vlan list. The vlan id in vlan list will be written in vlan filter
451 	 * table until port base vlan disabled
452 	 */
453 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
454 		ret = hns3_set_port_vlan_filter(hns, vlan_id, on);
455 		writen_to_tbl = true;
456 	}
457 
458 	if (ret == 0) {
459 		if (on)
460 			hns3_add_dev_vlan_table(hns, vlan_id, writen_to_tbl);
461 		else
462 			hns3_rm_dev_vlan_table(hns, vlan_id);
463 	}
464 	return ret;
465 }
466 
467 static int
468 hns3_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
469 {
470 	struct hns3_adapter *hns = dev->data->dev_private;
471 	struct hns3_hw *hw = &hns->hw;
472 	int ret;
473 
474 	rte_spinlock_lock(&hw->lock);
475 	ret = hns3_vlan_filter_configure(hns, vlan_id, on);
476 	rte_spinlock_unlock(&hw->lock);
477 	return ret;
478 }
479 
480 static int
481 hns3_vlan_tpid_configure(struct hns3_adapter *hns, enum rte_vlan_type vlan_type,
482 			 uint16_t tpid)
483 {
484 	struct hns3_rx_vlan_type_cfg_cmd *rx_req;
485 	struct hns3_tx_vlan_type_cfg_cmd *tx_req;
486 	struct hns3_hw *hw = &hns->hw;
487 	struct hns3_cmd_desc desc;
488 	int ret;
489 
490 	if ((vlan_type != RTE_ETH_VLAN_TYPE_INNER &&
491 	     vlan_type != RTE_ETH_VLAN_TYPE_OUTER)) {
492 		hns3_err(hw, "Unsupported vlan type, vlan_type =%d", vlan_type);
493 		return -EINVAL;
494 	}
495 
496 	if (tpid != RTE_ETHER_TYPE_VLAN) {
497 		hns3_err(hw, "Unsupported vlan tpid, vlan_type =%d", vlan_type);
498 		return -EINVAL;
499 	}
500 
501 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_TYPE_ID, false);
502 	rx_req = (struct hns3_rx_vlan_type_cfg_cmd *)desc.data;
503 
504 	if (vlan_type == RTE_ETH_VLAN_TYPE_OUTER) {
505 		rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
506 		rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
507 	} else if (vlan_type == RTE_ETH_VLAN_TYPE_INNER) {
508 		rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
509 		rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
510 		rx_req->in_fst_vlan_type = rte_cpu_to_le_16(tpid);
511 		rx_req->in_sec_vlan_type = rte_cpu_to_le_16(tpid);
512 	}
513 
514 	ret = hns3_cmd_send(hw, &desc, 1);
515 	if (ret) {
516 		hns3_err(hw, "Send rxvlan protocol type command fail, ret =%d",
517 			 ret);
518 		return ret;
519 	}
520 
521 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_INSERT, false);
522 
523 	tx_req = (struct hns3_tx_vlan_type_cfg_cmd *)desc.data;
524 	tx_req->ot_vlan_type = rte_cpu_to_le_16(tpid);
525 	tx_req->in_vlan_type = rte_cpu_to_le_16(tpid);
526 
527 	ret = hns3_cmd_send(hw, &desc, 1);
528 	if (ret)
529 		hns3_err(hw, "Send txvlan protocol type command fail, ret =%d",
530 			 ret);
531 	return ret;
532 }
533 
534 static int
535 hns3_vlan_tpid_set(struct rte_eth_dev *dev, enum rte_vlan_type vlan_type,
536 		   uint16_t tpid)
537 {
538 	struct hns3_adapter *hns = dev->data->dev_private;
539 	struct hns3_hw *hw = &hns->hw;
540 	int ret;
541 
542 	rte_spinlock_lock(&hw->lock);
543 	ret = hns3_vlan_tpid_configure(hns, vlan_type, tpid);
544 	rte_spinlock_unlock(&hw->lock);
545 	return ret;
546 }
547 
548 static int
549 hns3_set_vlan_rx_offload_cfg(struct hns3_adapter *hns,
550 			     struct hns3_rx_vtag_cfg *vcfg)
551 {
552 	struct hns3_vport_vtag_rx_cfg_cmd *req;
553 	struct hns3_hw *hw = &hns->hw;
554 	struct hns3_cmd_desc desc;
555 	uint16_t vport_id;
556 	uint8_t bitmap;
557 	int ret;
558 
559 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_RX_CFG, false);
560 
561 	req = (struct hns3_vport_vtag_rx_cfg_cmd *)desc.data;
562 	hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG1_EN_B,
563 		     vcfg->strip_tag1_en ? 1 : 0);
564 	hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG2_EN_B,
565 		     vcfg->strip_tag2_en ? 1 : 0);
566 	hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG1_EN_B,
567 		     vcfg->vlan1_vlan_prionly ? 1 : 0);
568 	hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG2_EN_B,
569 		     vcfg->vlan2_vlan_prionly ? 1 : 0);
570 
571 	/* firmware will ignore this configuration for PCI_REVISION_ID_HIP08 */
572 	hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG1_EN_B,
573 		     vcfg->strip_tag1_discard_en ? 1 : 0);
574 	hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG2_EN_B,
575 		     vcfg->strip_tag2_discard_en ? 1 : 0);
576 	/*
577 	 * In current version VF is not supported when PF is driven by DPDK
578 	 * driver, just need to configure parameters for PF vport.
579 	 */
580 	vport_id = HNS3_PF_FUNC_ID;
581 	req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
582 	bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
583 	req->vf_bitmap[req->vf_offset] = bitmap;
584 
585 	ret = hns3_cmd_send(hw, &desc, 1);
586 	if (ret)
587 		hns3_err(hw, "Send port rxvlan cfg command fail, ret =%d", ret);
588 	return ret;
589 }
590 
591 static int
592 hns3_en_hw_strip_rxvtag(struct hns3_adapter *hns, bool enable)
593 {
594 	struct hns3_rx_vtag_cfg rxvlan_cfg;
595 	struct hns3_hw *hw = &hns->hw;
596 	int ret;
597 
598 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
599 		rxvlan_cfg.strip_tag1_en = false;
600 		rxvlan_cfg.strip_tag2_en = enable;
601 		rxvlan_cfg.strip_tag2_discard_en = false;
602 	} else {
603 		rxvlan_cfg.strip_tag1_en = enable;
604 		rxvlan_cfg.strip_tag2_en = true;
605 		rxvlan_cfg.strip_tag2_discard_en = true;
606 	}
607 
608 	rxvlan_cfg.strip_tag1_discard_en = false;
609 	rxvlan_cfg.vlan1_vlan_prionly = false;
610 	rxvlan_cfg.vlan2_vlan_prionly = false;
611 	rxvlan_cfg.rx_vlan_offload_en = enable;
612 
613 	ret = hns3_set_vlan_rx_offload_cfg(hns, &rxvlan_cfg);
614 	if (ret) {
615 		hns3_err(hw, "%s strip rx vtag failed, ret = %d.",
616 				enable ? "enable" : "disable", ret);
617 		return ret;
618 	}
619 
620 	memcpy(&hns->pf.vtag_config.rx_vcfg, &rxvlan_cfg,
621 	       sizeof(struct hns3_rx_vtag_cfg));
622 
623 	return ret;
624 }
625 
626 static int
627 hns3_set_vlan_filter_ctrl(struct hns3_hw *hw, uint8_t vlan_type,
628 			  uint8_t fe_type, bool filter_en, uint8_t vf_id)
629 {
630 	struct hns3_vlan_filter_ctrl_cmd *req;
631 	struct hns3_cmd_desc desc;
632 	int ret;
633 
634 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_CTRL, false);
635 
636 	req = (struct hns3_vlan_filter_ctrl_cmd *)desc.data;
637 	req->vlan_type = vlan_type;
638 	req->vlan_fe = filter_en ? fe_type : 0;
639 	req->vf_id = vf_id;
640 
641 	ret = hns3_cmd_send(hw, &desc, 1);
642 	if (ret)
643 		hns3_err(hw, "set vlan filter fail, ret =%d", ret);
644 
645 	return ret;
646 }
647 
648 static int
649 hns3_vlan_filter_init(struct hns3_adapter *hns)
650 {
651 	struct hns3_hw *hw = &hns->hw;
652 	int ret;
653 
654 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_VF,
655 					HNS3_FILTER_FE_EGRESS, false,
656 					HNS3_PF_FUNC_ID);
657 	if (ret) {
658 		hns3_err(hw, "failed to init vf vlan filter, ret = %d", ret);
659 		return ret;
660 	}
661 
662 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
663 					HNS3_FILTER_FE_INGRESS, false,
664 					HNS3_PF_FUNC_ID);
665 	if (ret)
666 		hns3_err(hw, "failed to init port vlan filter, ret = %d", ret);
667 
668 	return ret;
669 }
670 
671 static int
672 hns3_enable_vlan_filter(struct hns3_adapter *hns, bool enable)
673 {
674 	struct hns3_hw *hw = &hns->hw;
675 	int ret;
676 
677 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
678 					HNS3_FILTER_FE_INGRESS, enable,
679 					HNS3_PF_FUNC_ID);
680 	if (ret)
681 		hns3_err(hw, "failed to %s port vlan filter, ret = %d",
682 			 enable ? "enable" : "disable", ret);
683 
684 	return ret;
685 }
686 
687 static int
688 hns3_vlan_offload_set(struct rte_eth_dev *dev, int mask)
689 {
690 	struct hns3_adapter *hns = dev->data->dev_private;
691 	struct hns3_hw *hw = &hns->hw;
692 	struct rte_eth_rxmode *rxmode;
693 	unsigned int tmp_mask;
694 	bool enable;
695 	int ret = 0;
696 
697 	rte_spinlock_lock(&hw->lock);
698 	rxmode = &dev->data->dev_conf.rxmode;
699 	tmp_mask = (unsigned int)mask;
700 	if (tmp_mask & RTE_ETH_VLAN_FILTER_MASK) {
701 		/* ignore vlan filter configuration during promiscuous mode */
702 		if (!dev->data->promiscuous) {
703 			/* Enable or disable VLAN filter */
704 			enable = rxmode->offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER ?
705 				 true : false;
706 
707 			ret = hns3_enable_vlan_filter(hns, enable);
708 			if (ret) {
709 				rte_spinlock_unlock(&hw->lock);
710 				hns3_err(hw, "failed to %s rx filter, ret = %d",
711 					 enable ? "enable" : "disable", ret);
712 				return ret;
713 			}
714 		}
715 	}
716 
717 	if (tmp_mask & RTE_ETH_VLAN_STRIP_MASK) {
718 		/* Enable or disable VLAN stripping */
719 		enable = rxmode->offloads & RTE_ETH_RX_OFFLOAD_VLAN_STRIP ?
720 		    true : false;
721 
722 		ret = hns3_en_hw_strip_rxvtag(hns, enable);
723 		if (ret) {
724 			rte_spinlock_unlock(&hw->lock);
725 			hns3_err(hw, "failed to %s rx strip, ret = %d",
726 				 enable ? "enable" : "disable", ret);
727 			return ret;
728 		}
729 	}
730 
731 	rte_spinlock_unlock(&hw->lock);
732 
733 	return ret;
734 }
735 
736 static int
737 hns3_set_vlan_tx_offload_cfg(struct hns3_adapter *hns,
738 			     struct hns3_tx_vtag_cfg *vcfg)
739 {
740 	struct hns3_vport_vtag_tx_cfg_cmd *req;
741 	struct hns3_cmd_desc desc;
742 	struct hns3_hw *hw = &hns->hw;
743 	uint16_t vport_id;
744 	uint8_t bitmap;
745 	int ret;
746 
747 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_TX_CFG, false);
748 
749 	req = (struct hns3_vport_vtag_tx_cfg_cmd *)desc.data;
750 	req->def_vlan_tag1 = vcfg->default_tag1;
751 	req->def_vlan_tag2 = vcfg->default_tag2;
752 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG1_B,
753 		     vcfg->accept_tag1 ? 1 : 0);
754 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG1_B,
755 		     vcfg->accept_untag1 ? 1 : 0);
756 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG2_B,
757 		     vcfg->accept_tag2 ? 1 : 0);
758 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG2_B,
759 		     vcfg->accept_untag2 ? 1 : 0);
760 	hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG1_EN_B,
761 		     vcfg->insert_tag1_en ? 1 : 0);
762 	hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG2_EN_B,
763 		     vcfg->insert_tag2_en ? 1 : 0);
764 	hns3_set_bit(req->vport_vlan_cfg, HNS3_CFG_NIC_ROCE_SEL_B, 0);
765 
766 	/* firmware will ignore this configuration for PCI_REVISION_ID_HIP08 */
767 	hns3_set_bit(req->vport_vlan_cfg, HNS3_TAG_SHIFT_MODE_EN_B,
768 		     vcfg->tag_shift_mode_en ? 1 : 0);
769 
770 	/*
771 	 * In current version VF is not supported when PF is driven by DPDK
772 	 * driver, just need to configure parameters for PF vport.
773 	 */
774 	vport_id = HNS3_PF_FUNC_ID;
775 	req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
776 	bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
777 	req->vf_bitmap[req->vf_offset] = bitmap;
778 
779 	ret = hns3_cmd_send(hw, &desc, 1);
780 	if (ret)
781 		hns3_err(hw, "Send port txvlan cfg command fail, ret =%d", ret);
782 
783 	return ret;
784 }
785 
786 static int
787 hns3_vlan_txvlan_cfg(struct hns3_adapter *hns, uint16_t port_base_vlan_state,
788 		     uint16_t pvid)
789 {
790 	struct hns3_hw *hw = &hns->hw;
791 	struct hns3_tx_vtag_cfg txvlan_cfg;
792 	int ret;
793 
794 	if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_DISABLE) {
795 		txvlan_cfg.accept_tag1 = true;
796 		txvlan_cfg.insert_tag1_en = false;
797 		txvlan_cfg.default_tag1 = 0;
798 	} else {
799 		txvlan_cfg.accept_tag1 =
800 			hw->vlan_mode == HNS3_HW_SHIFT_AND_DISCARD_MODE;
801 		txvlan_cfg.insert_tag1_en = true;
802 		txvlan_cfg.default_tag1 = pvid;
803 	}
804 
805 	txvlan_cfg.accept_untag1 = true;
806 	txvlan_cfg.accept_tag2 = true;
807 	txvlan_cfg.accept_untag2 = true;
808 	txvlan_cfg.insert_tag2_en = false;
809 	txvlan_cfg.default_tag2 = 0;
810 	txvlan_cfg.tag_shift_mode_en = true;
811 
812 	ret = hns3_set_vlan_tx_offload_cfg(hns, &txvlan_cfg);
813 	if (ret) {
814 		hns3_err(hw, "pf vlan set pvid failed, pvid =%u ,ret =%d", pvid,
815 			 ret);
816 		return ret;
817 	}
818 
819 	memcpy(&hns->pf.vtag_config.tx_vcfg, &txvlan_cfg,
820 	       sizeof(struct hns3_tx_vtag_cfg));
821 
822 	return ret;
823 }
824 
825 
826 static void
827 hns3_rm_all_vlan_table(struct hns3_adapter *hns, bool is_del_list)
828 {
829 	struct hns3_user_vlan_table *vlan_entry;
830 	struct hns3_pf *pf = &hns->pf;
831 
832 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
833 		if (vlan_entry->hd_tbl_status) {
834 			hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 0);
835 			vlan_entry->hd_tbl_status = false;
836 		}
837 	}
838 
839 	if (is_del_list) {
840 		vlan_entry = LIST_FIRST(&pf->vlan_list);
841 		while (vlan_entry) {
842 			LIST_REMOVE(vlan_entry, next);
843 			rte_free(vlan_entry);
844 			vlan_entry = LIST_FIRST(&pf->vlan_list);
845 		}
846 	}
847 }
848 
849 static void
850 hns3_add_all_vlan_table(struct hns3_adapter *hns)
851 {
852 	struct hns3_user_vlan_table *vlan_entry;
853 	struct hns3_pf *pf = &hns->pf;
854 
855 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
856 		if (!vlan_entry->hd_tbl_status) {
857 			hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 1);
858 			vlan_entry->hd_tbl_status = true;
859 		}
860 	}
861 }
862 
863 static void
864 hns3_remove_all_vlan_table(struct hns3_adapter *hns)
865 {
866 	struct hns3_hw *hw = &hns->hw;
867 	int ret;
868 
869 	hns3_rm_all_vlan_table(hns, true);
870 	if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID) {
871 		ret = hns3_set_port_vlan_filter(hns,
872 						hw->port_base_vlan_cfg.pvid, 0);
873 		if (ret) {
874 			hns3_err(hw, "Failed to remove all vlan table, ret =%d",
875 				 ret);
876 			return;
877 		}
878 	}
879 }
880 
881 static int
882 hns3_update_vlan_filter_entries(struct hns3_adapter *hns,
883 			uint16_t port_base_vlan_state, uint16_t new_pvid)
884 {
885 	struct hns3_hw *hw = &hns->hw;
886 	uint16_t old_pvid;
887 	int ret;
888 
889 	if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_ENABLE) {
890 		old_pvid = hw->port_base_vlan_cfg.pvid;
891 		if (old_pvid != HNS3_INVALID_PVID) {
892 			ret = hns3_set_port_vlan_filter(hns, old_pvid, 0);
893 			if (ret) {
894 				hns3_err(hw, "failed to remove old pvid %u, "
895 						"ret = %d", old_pvid, ret);
896 				return ret;
897 			}
898 		}
899 
900 		hns3_rm_all_vlan_table(hns, false);
901 		ret = hns3_set_port_vlan_filter(hns, new_pvid, 1);
902 		if (ret) {
903 			hns3_err(hw, "failed to add new pvid %u, ret = %d",
904 					new_pvid, ret);
905 			return ret;
906 		}
907 	} else {
908 		ret = hns3_set_port_vlan_filter(hns, new_pvid, 0);
909 		if (ret) {
910 			hns3_err(hw, "failed to remove pvid %u, ret = %d",
911 					new_pvid, ret);
912 			return ret;
913 		}
914 
915 		hns3_add_all_vlan_table(hns);
916 	}
917 	return 0;
918 }
919 
920 static int
921 hns3_en_pvid_strip(struct hns3_adapter *hns, int on)
922 {
923 	struct hns3_rx_vtag_cfg *old_cfg = &hns->pf.vtag_config.rx_vcfg;
924 	struct hns3_rx_vtag_cfg rx_vlan_cfg;
925 	bool rx_strip_en;
926 	int ret;
927 
928 	rx_strip_en = old_cfg->rx_vlan_offload_en;
929 	if (on) {
930 		rx_vlan_cfg.strip_tag1_en = rx_strip_en;
931 		rx_vlan_cfg.strip_tag2_en = true;
932 		rx_vlan_cfg.strip_tag2_discard_en = true;
933 	} else {
934 		rx_vlan_cfg.strip_tag1_en = false;
935 		rx_vlan_cfg.strip_tag2_en = rx_strip_en;
936 		rx_vlan_cfg.strip_tag2_discard_en = false;
937 	}
938 	rx_vlan_cfg.strip_tag1_discard_en = false;
939 	rx_vlan_cfg.vlan1_vlan_prionly = false;
940 	rx_vlan_cfg.vlan2_vlan_prionly = false;
941 	rx_vlan_cfg.rx_vlan_offload_en = old_cfg->rx_vlan_offload_en;
942 
943 	ret = hns3_set_vlan_rx_offload_cfg(hns, &rx_vlan_cfg);
944 	if (ret)
945 		return ret;
946 
947 	memcpy(&hns->pf.vtag_config.rx_vcfg, &rx_vlan_cfg,
948 	       sizeof(struct hns3_rx_vtag_cfg));
949 
950 	return ret;
951 }
952 
953 static int
954 hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid, int on)
955 {
956 	struct hns3_hw *hw = &hns->hw;
957 	uint16_t port_base_vlan_state;
958 	int ret, err;
959 
960 	if (on == 0 && pvid != hw->port_base_vlan_cfg.pvid) {
961 		if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID)
962 			hns3_warn(hw, "Invalid operation! As current pvid set "
963 				  "is %u, disable pvid %u is invalid",
964 				  hw->port_base_vlan_cfg.pvid, pvid);
965 		return 0;
966 	}
967 
968 	port_base_vlan_state = on ? HNS3_PORT_BASE_VLAN_ENABLE :
969 				    HNS3_PORT_BASE_VLAN_DISABLE;
970 	ret = hns3_vlan_txvlan_cfg(hns, port_base_vlan_state, pvid);
971 	if (ret) {
972 		hns3_err(hw, "failed to config tx vlan for pvid, ret = %d",
973 			 ret);
974 		return ret;
975 	}
976 
977 	ret = hns3_en_pvid_strip(hns, on);
978 	if (ret) {
979 		hns3_err(hw, "failed to config rx vlan strip for pvid, "
980 			 "ret = %d", ret);
981 		goto pvid_vlan_strip_fail;
982 	}
983 
984 	if (pvid == HNS3_INVALID_PVID)
985 		goto out;
986 	ret = hns3_update_vlan_filter_entries(hns, port_base_vlan_state, pvid);
987 	if (ret) {
988 		hns3_err(hw, "failed to update vlan filter entries, ret = %d",
989 			 ret);
990 		goto vlan_filter_set_fail;
991 	}
992 
993 out:
994 	hw->port_base_vlan_cfg.state = port_base_vlan_state;
995 	hw->port_base_vlan_cfg.pvid = on ? pvid : HNS3_INVALID_PVID;
996 	return ret;
997 
998 vlan_filter_set_fail:
999 	err = hns3_en_pvid_strip(hns, hw->port_base_vlan_cfg.state ==
1000 					HNS3_PORT_BASE_VLAN_ENABLE);
1001 	if (err)
1002 		hns3_err(hw, "fail to rollback pvid strip, ret = %d", err);
1003 
1004 pvid_vlan_strip_fail:
1005 	err = hns3_vlan_txvlan_cfg(hns, hw->port_base_vlan_cfg.state,
1006 					hw->port_base_vlan_cfg.pvid);
1007 	if (err)
1008 		hns3_err(hw, "fail to rollback txvlan status, ret = %d", err);
1009 
1010 	return ret;
1011 }
1012 
1013 static int
1014 hns3_vlan_pvid_set(struct rte_eth_dev *dev, uint16_t pvid, int on)
1015 {
1016 	struct hns3_adapter *hns = dev->data->dev_private;
1017 	struct hns3_hw *hw = &hns->hw;
1018 	bool pvid_en_state_change;
1019 	uint16_t pvid_state;
1020 	int ret;
1021 
1022 	if (pvid > RTE_ETHER_MAX_VLAN_ID) {
1023 		hns3_err(hw, "Invalid vlan_id = %u > %d", pvid,
1024 			 RTE_ETHER_MAX_VLAN_ID);
1025 		return -EINVAL;
1026 	}
1027 
1028 	/*
1029 	 * If PVID configuration state change, should refresh the PVID
1030 	 * configuration state in struct hns3_tx_queue/hns3_rx_queue.
1031 	 */
1032 	pvid_state = hw->port_base_vlan_cfg.state;
1033 	if ((on && pvid_state == HNS3_PORT_BASE_VLAN_ENABLE) ||
1034 	    (!on && pvid_state == HNS3_PORT_BASE_VLAN_DISABLE))
1035 		pvid_en_state_change = false;
1036 	else
1037 		pvid_en_state_change = true;
1038 
1039 	rte_spinlock_lock(&hw->lock);
1040 	ret = hns3_vlan_pvid_configure(hns, pvid, on);
1041 	rte_spinlock_unlock(&hw->lock);
1042 	if (ret)
1043 		return ret;
1044 	/*
1045 	 * Only in HNS3_SW_SHIFT_AND_MODE the PVID related operation in Tx/Rx
1046 	 * need be processed by PMD.
1047 	 */
1048 	if (pvid_en_state_change &&
1049 	    hw->vlan_mode == HNS3_SW_SHIFT_AND_DISCARD_MODE)
1050 		hns3_update_all_queues_pvid_proc_en(hw);
1051 
1052 	return 0;
1053 }
1054 
1055 static int
1056 hns3_default_vlan_config(struct hns3_adapter *hns)
1057 {
1058 	struct hns3_hw *hw = &hns->hw;
1059 	int ret;
1060 
1061 	/*
1062 	 * When vlan filter is enabled, hardware regards packets without vlan
1063 	 * as packets with vlan 0. Therefore, if vlan 0 is not in the vlan
1064 	 * table, packets without vlan won't be received. So, add vlan 0 as
1065 	 * the default vlan.
1066 	 */
1067 	ret = hns3_vlan_filter_configure(hns, 0, 1);
1068 	if (ret)
1069 		hns3_err(hw, "default vlan 0 config failed, ret =%d", ret);
1070 	return ret;
1071 }
1072 
1073 static int
1074 hns3_init_vlan_config(struct hns3_adapter *hns)
1075 {
1076 	struct hns3_hw *hw = &hns->hw;
1077 	int ret;
1078 
1079 	/*
1080 	 * This function can be called in the initialization and reset process,
1081 	 * when in reset process, it means that hardware had been reseted
1082 	 * successfully and we need to restore the hardware configuration to
1083 	 * ensure that the hardware configuration remains unchanged before and
1084 	 * after reset.
1085 	 */
1086 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
1087 		hw->port_base_vlan_cfg.state = HNS3_PORT_BASE_VLAN_DISABLE;
1088 		hw->port_base_vlan_cfg.pvid = HNS3_INVALID_PVID;
1089 	}
1090 
1091 	ret = hns3_vlan_filter_init(hns);
1092 	if (ret) {
1093 		hns3_err(hw, "vlan init fail in pf, ret =%d", ret);
1094 		return ret;
1095 	}
1096 
1097 	ret = hns3_vlan_tpid_configure(hns, RTE_ETH_VLAN_TYPE_INNER,
1098 				       RTE_ETHER_TYPE_VLAN);
1099 	if (ret) {
1100 		hns3_err(hw, "tpid set fail in pf, ret =%d", ret);
1101 		return ret;
1102 	}
1103 
1104 	/*
1105 	 * When in the reinit dev stage of the reset process, the following
1106 	 * vlan-related configurations may differ from those at initialization,
1107 	 * we will restore configurations to hardware in hns3_restore_vlan_table
1108 	 * and hns3_restore_vlan_conf later.
1109 	 */
1110 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
1111 		ret = hns3_vlan_pvid_configure(hns, HNS3_INVALID_PVID, 0);
1112 		if (ret) {
1113 			hns3_err(hw, "pvid set fail in pf, ret =%d", ret);
1114 			return ret;
1115 		}
1116 
1117 		ret = hns3_en_hw_strip_rxvtag(hns, false);
1118 		if (ret) {
1119 			hns3_err(hw, "rx strip configure fail in pf, ret =%d",
1120 				 ret);
1121 			return ret;
1122 		}
1123 	}
1124 
1125 	return hns3_default_vlan_config(hns);
1126 }
1127 
1128 static int
1129 hns3_restore_vlan_conf(struct hns3_adapter *hns)
1130 {
1131 	struct hns3_pf *pf = &hns->pf;
1132 	struct hns3_hw *hw = &hns->hw;
1133 	uint64_t offloads;
1134 	bool enable;
1135 	int ret;
1136 
1137 	if (!hw->data->promiscuous) {
1138 		/* restore vlan filter states */
1139 		offloads = hw->data->dev_conf.rxmode.offloads;
1140 		enable = offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER ? true : false;
1141 		ret = hns3_enable_vlan_filter(hns, enable);
1142 		if (ret) {
1143 			hns3_err(hw, "failed to restore vlan rx filter conf, "
1144 				 "ret = %d", ret);
1145 			return ret;
1146 		}
1147 	}
1148 
1149 	ret = hns3_set_vlan_rx_offload_cfg(hns, &pf->vtag_config.rx_vcfg);
1150 	if (ret) {
1151 		hns3_err(hw, "failed to restore vlan rx conf, ret = %d", ret);
1152 		return ret;
1153 	}
1154 
1155 	ret = hns3_set_vlan_tx_offload_cfg(hns, &pf->vtag_config.tx_vcfg);
1156 	if (ret)
1157 		hns3_err(hw, "failed to restore vlan tx conf, ret = %d", ret);
1158 
1159 	return ret;
1160 }
1161 
1162 static int
1163 hns3_dev_configure_vlan(struct rte_eth_dev *dev)
1164 {
1165 	struct hns3_adapter *hns = dev->data->dev_private;
1166 	struct rte_eth_dev_data *data = dev->data;
1167 	struct rte_eth_txmode *txmode;
1168 	struct hns3_hw *hw = &hns->hw;
1169 	int mask;
1170 	int ret;
1171 
1172 	txmode = &data->dev_conf.txmode;
1173 	if (txmode->hw_vlan_reject_tagged || txmode->hw_vlan_reject_untagged)
1174 		hns3_warn(hw,
1175 			  "hw_vlan_reject_tagged or hw_vlan_reject_untagged "
1176 			  "configuration is not supported! Ignore these two "
1177 			  "parameters: hw_vlan_reject_tagged(%u), "
1178 			  "hw_vlan_reject_untagged(%u)",
1179 			  txmode->hw_vlan_reject_tagged,
1180 			  txmode->hw_vlan_reject_untagged);
1181 
1182 	/* Apply vlan offload setting */
1183 	mask = RTE_ETH_VLAN_STRIP_MASK | RTE_ETH_VLAN_FILTER_MASK;
1184 	ret = hns3_vlan_offload_set(dev, mask);
1185 	if (ret) {
1186 		hns3_err(hw, "dev config rx vlan offload failed, ret = %d",
1187 			 ret);
1188 		return ret;
1189 	}
1190 
1191 	/*
1192 	 * If pvid config is not set in rte_eth_conf, driver needn't to set
1193 	 * VLAN pvid related configuration to hardware.
1194 	 */
1195 	if (txmode->pvid == 0 && txmode->hw_vlan_insert_pvid == 0)
1196 		return 0;
1197 
1198 	/* Apply pvid setting */
1199 	ret = hns3_vlan_pvid_set(dev, txmode->pvid,
1200 				 txmode->hw_vlan_insert_pvid);
1201 	if (ret)
1202 		hns3_err(hw, "dev config vlan pvid(%u) failed, ret = %d",
1203 			 txmode->pvid, ret);
1204 
1205 	return ret;
1206 }
1207 
1208 static int
1209 hns3_config_tso(struct hns3_hw *hw, unsigned int tso_mss_min,
1210 		unsigned int tso_mss_max)
1211 {
1212 	struct hns3_cfg_tso_status_cmd *req;
1213 	struct hns3_cmd_desc desc;
1214 	uint16_t tso_mss;
1215 
1216 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TSO_GENERIC_CONFIG, false);
1217 
1218 	req = (struct hns3_cfg_tso_status_cmd *)desc.data;
1219 
1220 	tso_mss = 0;
1221 	hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1222 		       tso_mss_min);
1223 	req->tso_mss_min = rte_cpu_to_le_16(tso_mss);
1224 
1225 	tso_mss = 0;
1226 	hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1227 		       tso_mss_max);
1228 	req->tso_mss_max = rte_cpu_to_le_16(tso_mss);
1229 
1230 	return hns3_cmd_send(hw, &desc, 1);
1231 }
1232 
1233 static int
1234 hns3_set_umv_space(struct hns3_hw *hw, uint16_t space_size,
1235 		   uint16_t *allocated_size, bool is_alloc)
1236 {
1237 	struct hns3_umv_spc_alc_cmd *req;
1238 	struct hns3_cmd_desc desc;
1239 	int ret;
1240 
1241 	req = (struct hns3_umv_spc_alc_cmd *)desc.data;
1242 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ALLOCATE, false);
1243 	hns3_set_bit(req->allocate, HNS3_UMV_SPC_ALC_B, is_alloc ? 0 : 1);
1244 	req->space_size = rte_cpu_to_le_32(space_size);
1245 
1246 	ret = hns3_cmd_send(hw, &desc, 1);
1247 	if (ret) {
1248 		PMD_INIT_LOG(ERR, "%s umv space failed for cmd_send, ret =%d",
1249 			     is_alloc ? "allocate" : "free", ret);
1250 		return ret;
1251 	}
1252 
1253 	if (is_alloc && allocated_size)
1254 		*allocated_size = rte_le_to_cpu_32(desc.data[1]);
1255 
1256 	return 0;
1257 }
1258 
1259 static int
1260 hns3_init_umv_space(struct hns3_hw *hw)
1261 {
1262 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1263 	struct hns3_pf *pf = &hns->pf;
1264 	uint16_t allocated_size = 0;
1265 	int ret;
1266 
1267 	ret = hns3_set_umv_space(hw, pf->wanted_umv_size, &allocated_size,
1268 				 true);
1269 	if (ret)
1270 		return ret;
1271 
1272 	if (allocated_size < pf->wanted_umv_size)
1273 		PMD_INIT_LOG(WARNING, "Alloc umv space failed, want %u, get %u",
1274 			     pf->wanted_umv_size, allocated_size);
1275 
1276 	pf->max_umv_size = (!!allocated_size) ? allocated_size :
1277 						pf->wanted_umv_size;
1278 	pf->used_umv_size = 0;
1279 	return 0;
1280 }
1281 
1282 static int
1283 hns3_uninit_umv_space(struct hns3_hw *hw)
1284 {
1285 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1286 	struct hns3_pf *pf = &hns->pf;
1287 	int ret;
1288 
1289 	if (pf->max_umv_size == 0)
1290 		return 0;
1291 
1292 	ret = hns3_set_umv_space(hw, pf->max_umv_size, NULL, false);
1293 	if (ret)
1294 		return ret;
1295 
1296 	pf->max_umv_size = 0;
1297 
1298 	return 0;
1299 }
1300 
1301 static bool
1302 hns3_is_umv_space_full(struct hns3_hw *hw)
1303 {
1304 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1305 	struct hns3_pf *pf = &hns->pf;
1306 	bool is_full;
1307 
1308 	is_full = (pf->used_umv_size >= pf->max_umv_size);
1309 
1310 	return is_full;
1311 }
1312 
1313 static void
1314 hns3_update_umv_space(struct hns3_hw *hw, bool is_free)
1315 {
1316 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1317 	struct hns3_pf *pf = &hns->pf;
1318 
1319 	if (is_free) {
1320 		if (pf->used_umv_size > 0)
1321 			pf->used_umv_size--;
1322 	} else
1323 		pf->used_umv_size++;
1324 }
1325 
1326 static void
1327 hns3_prepare_mac_addr(struct hns3_mac_vlan_tbl_entry_cmd *new_req,
1328 		      const uint8_t *addr, bool is_mc)
1329 {
1330 	const unsigned char *mac_addr = addr;
1331 	uint32_t high_val = ((uint32_t)mac_addr[3] << 24) |
1332 			    ((uint32_t)mac_addr[2] << 16) |
1333 			    ((uint32_t)mac_addr[1] << 8) |
1334 			    (uint32_t)mac_addr[0];
1335 	uint32_t low_val = ((uint32_t)mac_addr[5] << 8) | (uint32_t)mac_addr[4];
1336 
1337 	hns3_set_bit(new_req->flags, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1338 	if (is_mc) {
1339 		hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1340 		hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT1_EN_B, 1);
1341 		hns3_set_bit(new_req->mc_mac_en, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1342 	}
1343 
1344 	new_req->mac_addr_hi32 = rte_cpu_to_le_32(high_val);
1345 	new_req->mac_addr_lo16 = rte_cpu_to_le_16(low_val & 0xffff);
1346 }
1347 
1348 static int
1349 hns3_get_mac_vlan_cmd_status(struct hns3_hw *hw, uint16_t cmdq_resp,
1350 			     uint8_t resp_code,
1351 			     enum hns3_mac_vlan_tbl_opcode op)
1352 {
1353 	if (cmdq_resp) {
1354 		hns3_err(hw, "cmdq execute failed for get_mac_vlan_cmd_status,status=%u",
1355 			 cmdq_resp);
1356 		return -EIO;
1357 	}
1358 
1359 	if (op == HNS3_MAC_VLAN_ADD) {
1360 		if (resp_code == 0 || resp_code == 1) {
1361 			return 0;
1362 		} else if (resp_code == HNS3_ADD_UC_OVERFLOW) {
1363 			hns3_err(hw, "add mac addr failed for uc_overflow");
1364 			return -ENOSPC;
1365 		} else if (resp_code == HNS3_ADD_MC_OVERFLOW) {
1366 			hns3_err(hw, "add mac addr failed for mc_overflow");
1367 			return -ENOSPC;
1368 		}
1369 
1370 		hns3_err(hw, "add mac addr failed for undefined, code=%u",
1371 			 resp_code);
1372 		return -EIO;
1373 	} else if (op == HNS3_MAC_VLAN_REMOVE) {
1374 		if (resp_code == 0) {
1375 			return 0;
1376 		} else if (resp_code == 1) {
1377 			hns3_dbg(hw, "remove mac addr failed for miss");
1378 			return -ENOENT;
1379 		}
1380 
1381 		hns3_err(hw, "remove mac addr failed for undefined, code=%u",
1382 			 resp_code);
1383 		return -EIO;
1384 	} else if (op == HNS3_MAC_VLAN_LKUP) {
1385 		if (resp_code == 0) {
1386 			return 0;
1387 		} else if (resp_code == 1) {
1388 			hns3_dbg(hw, "lookup mac addr failed for miss");
1389 			return -ENOENT;
1390 		}
1391 
1392 		hns3_err(hw, "lookup mac addr failed for undefined, code=%u",
1393 			 resp_code);
1394 		return -EIO;
1395 	}
1396 
1397 	hns3_err(hw, "unknown opcode for get_mac_vlan_cmd_status, opcode=%u",
1398 		 op);
1399 
1400 	return -EINVAL;
1401 }
1402 
1403 static int
1404 hns3_lookup_mac_vlan_tbl(struct hns3_hw *hw,
1405 			 struct hns3_mac_vlan_tbl_entry_cmd *req,
1406 			 struct hns3_cmd_desc *desc, uint8_t desc_num)
1407 {
1408 	uint8_t resp_code;
1409 	uint16_t retval;
1410 	int ret;
1411 	int i;
1412 
1413 	if (desc_num == HNS3_MC_MAC_VLAN_OPS_DESC_NUM) {
1414 		for (i = 0; i < desc_num - 1; i++) {
1415 			hns3_cmd_setup_basic_desc(&desc[i],
1416 						  HNS3_OPC_MAC_VLAN_ADD, true);
1417 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1418 			if (i == 0)
1419 				memcpy(desc[i].data, req,
1420 				sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1421 		}
1422 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_MAC_VLAN_ADD,
1423 					  true);
1424 	} else {
1425 		hns3_cmd_setup_basic_desc(&desc[0], HNS3_OPC_MAC_VLAN_ADD,
1426 					  true);
1427 		memcpy(desc[0].data, req,
1428 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1429 	}
1430 	ret = hns3_cmd_send(hw, desc, desc_num);
1431 	if (ret) {
1432 		hns3_err(hw, "lookup mac addr failed for cmd_send, ret =%d.",
1433 			 ret);
1434 		return ret;
1435 	}
1436 	resp_code = (rte_le_to_cpu_32(desc[0].data[0]) >> 8) & 0xff;
1437 	retval = rte_le_to_cpu_16(desc[0].retval);
1438 
1439 	return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1440 					    HNS3_MAC_VLAN_LKUP);
1441 }
1442 
1443 static int
1444 hns3_add_mac_vlan_tbl(struct hns3_hw *hw,
1445 		      struct hns3_mac_vlan_tbl_entry_cmd *req,
1446 		      struct hns3_cmd_desc *desc, uint8_t desc_num)
1447 {
1448 	uint8_t resp_code;
1449 	uint16_t retval;
1450 	int cfg_status;
1451 	int ret;
1452 	int i;
1453 
1454 	if (desc_num == HNS3_UC_MAC_VLAN_OPS_DESC_NUM) {
1455 		hns3_cmd_setup_basic_desc(desc, HNS3_OPC_MAC_VLAN_ADD, false);
1456 		memcpy(desc->data, req,
1457 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1458 		ret = hns3_cmd_send(hw, desc, desc_num);
1459 		resp_code = (rte_le_to_cpu_32(desc->data[0]) >> 8) & 0xff;
1460 		retval = rte_le_to_cpu_16(desc->retval);
1461 
1462 		cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1463 							  HNS3_MAC_VLAN_ADD);
1464 	} else {
1465 		for (i = 0; i < desc_num; i++) {
1466 			hns3_cmd_reuse_desc(&desc[i], false);
1467 			if (i == desc_num - 1)
1468 				desc[i].flag &=
1469 					rte_cpu_to_le_16(~HNS3_CMD_FLAG_NEXT);
1470 			else
1471 				desc[i].flag |=
1472 					rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1473 		}
1474 		memcpy(desc[0].data, req,
1475 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1476 		desc[0].retval = 0;
1477 		ret = hns3_cmd_send(hw, desc, desc_num);
1478 		resp_code = (rte_le_to_cpu_32(desc[0].data[0]) >> 8) & 0xff;
1479 		retval = rte_le_to_cpu_16(desc[0].retval);
1480 
1481 		cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1482 							  HNS3_MAC_VLAN_ADD);
1483 	}
1484 
1485 	if (ret) {
1486 		hns3_err(hw, "add mac addr failed for cmd_send, ret =%d", ret);
1487 		return ret;
1488 	}
1489 
1490 	return cfg_status;
1491 }
1492 
1493 static int
1494 hns3_remove_mac_vlan_tbl(struct hns3_hw *hw,
1495 			 struct hns3_mac_vlan_tbl_entry_cmd *req)
1496 {
1497 	struct hns3_cmd_desc desc;
1498 	uint8_t resp_code;
1499 	uint16_t retval;
1500 	int ret;
1501 
1502 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_REMOVE, false);
1503 
1504 	memcpy(desc.data, req, sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1505 
1506 	ret = hns3_cmd_send(hw, &desc, 1);
1507 	if (ret) {
1508 		hns3_err(hw, "del mac addr failed for cmd_send, ret =%d", ret);
1509 		return ret;
1510 	}
1511 	resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1512 	retval = rte_le_to_cpu_16(desc.retval);
1513 
1514 	return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1515 					    HNS3_MAC_VLAN_REMOVE);
1516 }
1517 
1518 static int
1519 hns3_add_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1520 {
1521 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1522 	struct hns3_mac_vlan_tbl_entry_cmd req;
1523 	struct hns3_pf *pf = &hns->pf;
1524 	struct hns3_cmd_desc desc;
1525 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1526 	uint16_t egress_port = 0;
1527 	uint8_t vf_id;
1528 	int ret;
1529 
1530 	/* check if mac addr is valid */
1531 	if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1532 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1533 				      mac_addr);
1534 		hns3_err(hw, "Add unicast mac addr err! addr(%s) invalid",
1535 			 mac_str);
1536 		return -EINVAL;
1537 	}
1538 
1539 	memset(&req, 0, sizeof(req));
1540 
1541 	/*
1542 	 * In current version VF is not supported when PF is driven by DPDK
1543 	 * driver, just need to configure parameters for PF vport.
1544 	 */
1545 	vf_id = HNS3_PF_FUNC_ID;
1546 	hns3_set_field(egress_port, HNS3_MAC_EPORT_VFID_M,
1547 		       HNS3_MAC_EPORT_VFID_S, vf_id);
1548 
1549 	req.egress_port = rte_cpu_to_le_16(egress_port);
1550 
1551 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1552 
1553 	/*
1554 	 * Lookup the mac address in the mac_vlan table, and add
1555 	 * it if the entry is inexistent. Repeated unicast entry
1556 	 * is not allowed in the mac vlan table.
1557 	 */
1558 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, &desc,
1559 					HNS3_UC_MAC_VLAN_OPS_DESC_NUM);
1560 	if (ret == -ENOENT) {
1561 		if (!hns3_is_umv_space_full(hw)) {
1562 			ret = hns3_add_mac_vlan_tbl(hw, &req, &desc,
1563 						HNS3_UC_MAC_VLAN_OPS_DESC_NUM);
1564 			if (!ret)
1565 				hns3_update_umv_space(hw, false);
1566 			return ret;
1567 		}
1568 
1569 		hns3_err(hw, "UC MAC table full(%u)", pf->used_umv_size);
1570 
1571 		return -ENOSPC;
1572 	}
1573 
1574 	hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, mac_addr);
1575 
1576 	/* check if we just hit the duplicate */
1577 	if (ret == 0) {
1578 		hns3_dbg(hw, "mac addr(%s) has been in the MAC table", mac_str);
1579 		return 0;
1580 	}
1581 
1582 	hns3_err(hw, "PF failed to add unicast entry(%s) in the MAC table",
1583 		 mac_str);
1584 
1585 	return ret;
1586 }
1587 
1588 static int
1589 hns3_remove_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1590 {
1591 	struct hns3_mac_vlan_tbl_entry_cmd req;
1592 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1593 	int ret;
1594 
1595 	/* check if mac addr is valid */
1596 	if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1597 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1598 				      mac_addr);
1599 		hns3_err(hw, "remove unicast mac addr err! addr(%s) invalid",
1600 			 mac_str);
1601 		return -EINVAL;
1602 	}
1603 
1604 	memset(&req, 0, sizeof(req));
1605 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1606 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1607 	ret = hns3_remove_mac_vlan_tbl(hw, &req);
1608 	if (ret == -ENOENT) /* mac addr isn't existent in the mac vlan table. */
1609 		return 0;
1610 	else if (ret == 0)
1611 		hns3_update_umv_space(hw, true);
1612 
1613 	return ret;
1614 }
1615 
1616 static int
1617 hns3_set_default_mac_addr(struct rte_eth_dev *dev,
1618 			  struct rte_ether_addr *mac_addr)
1619 {
1620 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1621 	struct rte_ether_addr *oaddr;
1622 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1623 	int ret, ret_val;
1624 
1625 	rte_spinlock_lock(&hw->lock);
1626 	oaddr = (struct rte_ether_addr *)hw->mac.mac_addr;
1627 	ret = hw->ops.del_uc_mac_addr(hw, oaddr);
1628 	if (ret) {
1629 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1630 				       oaddr);
1631 		hns3_warn(hw, "Remove old uc mac address(%s) fail: %d",
1632 			  mac_str, ret);
1633 
1634 		rte_spinlock_unlock(&hw->lock);
1635 		return ret;
1636 	}
1637 
1638 	ret = hw->ops.add_uc_mac_addr(hw, mac_addr);
1639 	if (ret) {
1640 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1641 				      mac_addr);
1642 		hns3_err(hw, "Failed to set mac addr(%s): %d", mac_str, ret);
1643 		goto err_add_uc_addr;
1644 	}
1645 
1646 	ret = hns3_pause_addr_cfg(hw, mac_addr->addr_bytes);
1647 	if (ret) {
1648 		hns3_err(hw, "Failed to configure mac pause address: %d", ret);
1649 		goto err_pause_addr_cfg;
1650 	}
1651 
1652 	rte_ether_addr_copy(mac_addr,
1653 			    (struct rte_ether_addr *)hw->mac.mac_addr);
1654 	rte_spinlock_unlock(&hw->lock);
1655 
1656 	return 0;
1657 
1658 err_pause_addr_cfg:
1659 	ret_val = hw->ops.del_uc_mac_addr(hw, mac_addr);
1660 	if (ret_val) {
1661 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1662 				       mac_addr);
1663 		hns3_warn(hw,
1664 			  "Failed to roll back to del set mac addr(%s): %d",
1665 			  mac_str, ret_val);
1666 	}
1667 
1668 err_add_uc_addr:
1669 	ret_val = hw->ops.add_uc_mac_addr(hw, oaddr);
1670 	if (ret_val) {
1671 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, oaddr);
1672 		hns3_warn(hw, "Failed to restore old uc mac addr(%s): %d",
1673 			  mac_str, ret_val);
1674 	}
1675 	rte_spinlock_unlock(&hw->lock);
1676 
1677 	return ret;
1678 }
1679 
1680 static void
1681 hns3_update_desc_vfid(struct hns3_cmd_desc *desc, uint8_t vfid, bool clr)
1682 {
1683 #define HNS3_VF_NUM_IN_FIRST_DESC 192
1684 	uint8_t word_num;
1685 	uint8_t bit_num;
1686 
1687 	if (vfid < HNS3_VF_NUM_IN_FIRST_DESC) {
1688 		word_num = vfid / 32;
1689 		bit_num = vfid % 32;
1690 		if (clr)
1691 			desc[1].data[word_num] &=
1692 			    rte_cpu_to_le_32(~(1UL << bit_num));
1693 		else
1694 			desc[1].data[word_num] |=
1695 			    rte_cpu_to_le_32(1UL << bit_num);
1696 	} else {
1697 		word_num = (vfid - HNS3_VF_NUM_IN_FIRST_DESC) / 32;
1698 		bit_num = vfid % 32;
1699 		if (clr)
1700 			desc[2].data[word_num] &=
1701 			    rte_cpu_to_le_32(~(1UL << bit_num));
1702 		else
1703 			desc[2].data[word_num] |=
1704 			    rte_cpu_to_le_32(1UL << bit_num);
1705 	}
1706 }
1707 
1708 static int
1709 hns3_add_mc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1710 {
1711 	struct hns3_cmd_desc desc[HNS3_MC_MAC_VLAN_OPS_DESC_NUM];
1712 	struct hns3_mac_vlan_tbl_entry_cmd req;
1713 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1714 	uint8_t vf_id;
1715 	int ret;
1716 	int idx;
1717 
1718 	/* Check if mac addr is valid */
1719 	if (!rte_is_multicast_ether_addr(mac_addr)) {
1720 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1721 				      mac_addr);
1722 		hns3_err(hw, "failed to add mc mac addr, addr(%s) invalid",
1723 			 mac_str);
1724 		return -EINVAL;
1725 	}
1726 
1727 	memset(&req, 0, sizeof(req));
1728 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1729 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1730 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc,
1731 					HNS3_MC_MAC_VLAN_OPS_DESC_NUM);
1732 	if (ret) {
1733 		/* This mac addr do not exist, add new entry for it */
1734 		for (idx = 0; idx < HNS3_MC_MAC_VLAN_OPS_DESC_NUM; idx++)
1735 			memset(desc[idx].data, 0, sizeof(desc[idx].data));
1736 	}
1737 
1738 	/*
1739 	 * In current version VF is not supported when PF is driven by DPDK
1740 	 * driver, just need to configure parameters for PF vport.
1741 	 */
1742 	vf_id = HNS3_PF_FUNC_ID;
1743 	hns3_update_desc_vfid(desc, vf_id, false);
1744 	ret = hns3_add_mac_vlan_tbl(hw, &req, desc,
1745 					HNS3_MC_MAC_VLAN_OPS_DESC_NUM);
1746 	if (ret) {
1747 		if (ret == -ENOSPC)
1748 			hns3_err(hw, "mc mac vlan table is full");
1749 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1750 				       mac_addr);
1751 		hns3_err(hw, "failed to add mc mac addr(%s): %d", mac_str, ret);
1752 	}
1753 
1754 	return ret;
1755 }
1756 
1757 static int
1758 hns3_remove_mc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1759 {
1760 	struct hns3_mac_vlan_tbl_entry_cmd req;
1761 	struct hns3_cmd_desc desc[3];
1762 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1763 	uint8_t vf_id;
1764 	int ret;
1765 
1766 	/* Check if mac addr is valid */
1767 	if (!rte_is_multicast_ether_addr(mac_addr)) {
1768 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1769 				      mac_addr);
1770 		hns3_err(hw, "Failed to rm mc mac addr, addr(%s) invalid",
1771 			 mac_str);
1772 		return -EINVAL;
1773 	}
1774 
1775 	memset(&req, 0, sizeof(req));
1776 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1777 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1778 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc,
1779 					HNS3_MC_MAC_VLAN_OPS_DESC_NUM);
1780 	if (ret == 0) {
1781 		/*
1782 		 * This mac addr exist, remove this handle's VFID for it.
1783 		 * In current version VF is not supported when PF is driven by
1784 		 * DPDK driver, just need to configure parameters for PF vport.
1785 		 */
1786 		vf_id = HNS3_PF_FUNC_ID;
1787 		hns3_update_desc_vfid(desc, vf_id, true);
1788 
1789 		/* All the vfid is zero, so need to delete this entry */
1790 		ret = hns3_remove_mac_vlan_tbl(hw, &req);
1791 	} else if (ret == -ENOENT) {
1792 		/* This mac addr doesn't exist. */
1793 		return 0;
1794 	}
1795 
1796 	if (ret) {
1797 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1798 				      mac_addr);
1799 		hns3_err(hw, "Failed to rm mc mac addr(%s): %d", mac_str, ret);
1800 	}
1801 
1802 	return ret;
1803 }
1804 
1805 static int
1806 hns3_check_mq_mode(struct rte_eth_dev *dev)
1807 {
1808 	enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
1809 	enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
1810 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1811 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1812 	struct rte_eth_dcb_rx_conf *dcb_rx_conf;
1813 	struct rte_eth_dcb_tx_conf *dcb_tx_conf;
1814 	uint8_t num_tc;
1815 	int max_tc = 0;
1816 	int i;
1817 
1818 	if (((uint32_t)rx_mq_mode & RTE_ETH_MQ_RX_VMDQ_FLAG) ||
1819 	    (tx_mq_mode == RTE_ETH_MQ_TX_VMDQ_DCB ||
1820 	     tx_mq_mode == RTE_ETH_MQ_TX_VMDQ_ONLY)) {
1821 		hns3_err(hw, "VMDQ is not supported, rx_mq_mode = %d, tx_mq_mode = %d.",
1822 			 rx_mq_mode, tx_mq_mode);
1823 		return -EOPNOTSUPP;
1824 	}
1825 
1826 	dcb_rx_conf = &dev->data->dev_conf.rx_adv_conf.dcb_rx_conf;
1827 	dcb_tx_conf = &dev->data->dev_conf.tx_adv_conf.dcb_tx_conf;
1828 	if ((uint32_t)rx_mq_mode & RTE_ETH_MQ_RX_DCB_FLAG) {
1829 		if (dcb_rx_conf->nb_tcs > pf->tc_max) {
1830 			hns3_err(hw, "nb_tcs(%u) > max_tc(%u) driver supported.",
1831 				 dcb_rx_conf->nb_tcs, pf->tc_max);
1832 			return -EINVAL;
1833 		}
1834 
1835 		if (!(dcb_rx_conf->nb_tcs == HNS3_4_TCS ||
1836 		      dcb_rx_conf->nb_tcs == HNS3_8_TCS)) {
1837 			hns3_err(hw, "on RTE_ETH_MQ_RX_DCB_RSS mode, "
1838 				 "nb_tcs(%d) != %d or %d in rx direction.",
1839 				 dcb_rx_conf->nb_tcs, HNS3_4_TCS, HNS3_8_TCS);
1840 			return -EINVAL;
1841 		}
1842 
1843 		if (dcb_rx_conf->nb_tcs != dcb_tx_conf->nb_tcs) {
1844 			hns3_err(hw, "num_tcs(%d) of tx is not equal to rx(%d)",
1845 				 dcb_tx_conf->nb_tcs, dcb_rx_conf->nb_tcs);
1846 			return -EINVAL;
1847 		}
1848 
1849 		for (i = 0; i < HNS3_MAX_USER_PRIO; i++) {
1850 			if (dcb_rx_conf->dcb_tc[i] != dcb_tx_conf->dcb_tc[i]) {
1851 				hns3_err(hw, "dcb_tc[%d] = %u in rx direction, "
1852 					 "is not equal to one in tx direction.",
1853 					 i, dcb_rx_conf->dcb_tc[i]);
1854 				return -EINVAL;
1855 			}
1856 			if (dcb_rx_conf->dcb_tc[i] > max_tc)
1857 				max_tc = dcb_rx_conf->dcb_tc[i];
1858 		}
1859 
1860 		num_tc = max_tc + 1;
1861 		if (num_tc > dcb_rx_conf->nb_tcs) {
1862 			hns3_err(hw, "max num_tc(%u) mapped > nb_tcs(%u)",
1863 				 num_tc, dcb_rx_conf->nb_tcs);
1864 			return -EINVAL;
1865 		}
1866 	}
1867 
1868 	return 0;
1869 }
1870 
1871 static int
1872 hns3_bind_ring_with_vector(struct hns3_hw *hw, uint16_t vector_id, bool en,
1873 			   enum hns3_ring_type queue_type, uint16_t queue_id)
1874 {
1875 	struct hns3_cmd_desc desc;
1876 	struct hns3_ctrl_vector_chain_cmd *req =
1877 		(struct hns3_ctrl_vector_chain_cmd *)desc.data;
1878 	enum hns3_opcode_type op;
1879 	uint16_t tqp_type_and_id = 0;
1880 	uint16_t type;
1881 	uint16_t gl;
1882 	int ret;
1883 
1884 	op = en ? HNS3_OPC_ADD_RING_TO_VECTOR : HNS3_OPC_DEL_RING_TO_VECTOR;
1885 	hns3_cmd_setup_basic_desc(&desc, op, false);
1886 	req->int_vector_id = hns3_get_field(vector_id, HNS3_TQP_INT_ID_L_M,
1887 					      HNS3_TQP_INT_ID_L_S);
1888 	req->int_vector_id_h = hns3_get_field(vector_id, HNS3_TQP_INT_ID_H_M,
1889 					      HNS3_TQP_INT_ID_H_S);
1890 
1891 	if (queue_type == HNS3_RING_TYPE_RX)
1892 		gl = HNS3_RING_GL_RX;
1893 	else
1894 		gl = HNS3_RING_GL_TX;
1895 
1896 	type = queue_type;
1897 
1898 	hns3_set_field(tqp_type_and_id, HNS3_INT_TYPE_M, HNS3_INT_TYPE_S,
1899 		       type);
1900 	hns3_set_field(tqp_type_and_id, HNS3_TQP_ID_M, HNS3_TQP_ID_S, queue_id);
1901 	hns3_set_field(tqp_type_and_id, HNS3_INT_GL_IDX_M, HNS3_INT_GL_IDX_S,
1902 		       gl);
1903 	req->tqp_type_and_id[0] = rte_cpu_to_le_16(tqp_type_and_id);
1904 	req->int_cause_num = 1;
1905 	ret = hns3_cmd_send(hw, &desc, 1);
1906 	if (ret) {
1907 		hns3_err(hw, "%s TQP %u fail, vector_id = %u, ret = %d.",
1908 			 en ? "Map" : "Unmap", queue_id, vector_id, ret);
1909 		return ret;
1910 	}
1911 
1912 	return 0;
1913 }
1914 
1915 static int
1916 hns3_setup_dcb(struct rte_eth_dev *dev)
1917 {
1918 	struct hns3_adapter *hns = dev->data->dev_private;
1919 	struct hns3_hw *hw = &hns->hw;
1920 	int ret;
1921 
1922 	if (!hns3_dev_get_support(hw, DCB)) {
1923 		hns3_err(hw, "this port does not support dcb configurations.");
1924 		return -EOPNOTSUPP;
1925 	}
1926 
1927 	if (hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE) {
1928 		hns3_err(hw, "MAC pause enabled, cannot config dcb info.");
1929 		return -EOPNOTSUPP;
1930 	}
1931 
1932 	ret = hns3_dcb_configure(hns);
1933 	if (ret)
1934 		hns3_err(hw, "failed to config dcb: %d", ret);
1935 
1936 	return ret;
1937 }
1938 
1939 static int
1940 hns3_check_link_speed(struct hns3_hw *hw, uint32_t link_speeds)
1941 {
1942 	int ret;
1943 
1944 	/*
1945 	 * Some hardware doesn't support auto-negotiation, but users may not
1946 	 * configure link_speeds (default 0), which means auto-negotiation.
1947 	 * In this case, it should return success.
1948 	 */
1949 	if (link_speeds == RTE_ETH_LINK_SPEED_AUTONEG &&
1950 	    hw->mac.support_autoneg == 0)
1951 		return 0;
1952 
1953 	if (link_speeds != RTE_ETH_LINK_SPEED_AUTONEG) {
1954 		ret = hns3_check_port_speed(hw, link_speeds);
1955 		if (ret)
1956 			return ret;
1957 	}
1958 
1959 	return 0;
1960 }
1961 
1962 static int
1963 hns3_check_dev_conf(struct rte_eth_dev *dev)
1964 {
1965 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1966 	struct rte_eth_conf *conf = &dev->data->dev_conf;
1967 	int ret;
1968 
1969 	ret = hns3_check_mq_mode(dev);
1970 	if (ret)
1971 		return ret;
1972 
1973 	return hns3_check_link_speed(hw, conf->link_speeds);
1974 }
1975 
1976 static int
1977 hns3_dev_configure(struct rte_eth_dev *dev)
1978 {
1979 	struct hns3_adapter *hns = dev->data->dev_private;
1980 	struct rte_eth_conf *conf = &dev->data->dev_conf;
1981 	enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
1982 	struct hns3_hw *hw = &hns->hw;
1983 	uint16_t nb_rx_q = dev->data->nb_rx_queues;
1984 	uint16_t nb_tx_q = dev->data->nb_tx_queues;
1985 	struct rte_eth_rss_conf rss_conf;
1986 	bool gro_en;
1987 	int ret;
1988 
1989 	hw->cfg_max_queues = RTE_MAX(nb_rx_q, nb_tx_q);
1990 
1991 	/*
1992 	 * Some versions of hardware network engine does not support
1993 	 * individually enable/disable/reset the Tx or Rx queue. These devices
1994 	 * must enable/disable/reset Tx and Rx queues at the same time. When the
1995 	 * numbers of Tx queues allocated by upper applications are not equal to
1996 	 * the numbers of Rx queues, driver needs to setup fake Tx or Rx queues
1997 	 * to adjust numbers of Tx/Rx queues. otherwise, network engine can not
1998 	 * work as usual. But these fake queues are imperceptible, and can not
1999 	 * be used by upper applications.
2000 	 */
2001 	ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
2002 	if (ret) {
2003 		hns3_err(hw, "fail to set Rx/Tx fake queues, ret = %d.", ret);
2004 		hw->cfg_max_queues = 0;
2005 		return ret;
2006 	}
2007 
2008 	hw->adapter_state = HNS3_NIC_CONFIGURING;
2009 	ret = hns3_check_dev_conf(dev);
2010 	if (ret)
2011 		goto cfg_err;
2012 
2013 	if ((uint32_t)mq_mode & RTE_ETH_MQ_RX_DCB_FLAG) {
2014 		ret = hns3_setup_dcb(dev);
2015 		if (ret)
2016 			goto cfg_err;
2017 	}
2018 
2019 	if ((uint32_t)mq_mode & RTE_ETH_MQ_RX_RSS_FLAG) {
2020 		conf->rxmode.offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2021 		rss_conf = conf->rx_adv_conf.rss_conf;
2022 		ret = hns3_dev_rss_hash_update(dev, &rss_conf);
2023 		if (ret)
2024 			goto cfg_err;
2025 	}
2026 
2027 	ret = hns3_dev_mtu_set(dev, conf->rxmode.mtu);
2028 	if (ret != 0)
2029 		goto cfg_err;
2030 
2031 	ret = hns3_mbuf_dyn_rx_timestamp_register(dev, conf);
2032 	if (ret)
2033 		goto cfg_err;
2034 
2035 	ret = hns3_dev_configure_vlan(dev);
2036 	if (ret)
2037 		goto cfg_err;
2038 
2039 	/* config hardware GRO */
2040 	gro_en = conf->rxmode.offloads & RTE_ETH_RX_OFFLOAD_TCP_LRO ? true : false;
2041 	ret = hns3_config_gro(hw, gro_en);
2042 	if (ret)
2043 		goto cfg_err;
2044 
2045 	hns3_init_rx_ptype_tble(dev);
2046 	hw->adapter_state = HNS3_NIC_CONFIGURED;
2047 
2048 	return 0;
2049 
2050 cfg_err:
2051 	hw->cfg_max_queues = 0;
2052 	(void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
2053 	hw->adapter_state = HNS3_NIC_INITIALIZED;
2054 
2055 	return ret;
2056 }
2057 
2058 static int
2059 hns3_set_mac_mtu(struct hns3_hw *hw, uint16_t new_mps)
2060 {
2061 	struct hns3_config_max_frm_size_cmd *req;
2062 	struct hns3_cmd_desc desc;
2063 
2064 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAX_FRM_SIZE, false);
2065 
2066 	req = (struct hns3_config_max_frm_size_cmd *)desc.data;
2067 	req->max_frm_size = rte_cpu_to_le_16(new_mps);
2068 	req->min_frm_size = RTE_ETHER_MIN_LEN;
2069 
2070 	return hns3_cmd_send(hw, &desc, 1);
2071 }
2072 
2073 static int
2074 hns3_config_mtu(struct hns3_hw *hw, uint16_t mps)
2075 {
2076 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2077 	int err;
2078 	int ret;
2079 
2080 	ret = hns3_set_mac_mtu(hw, mps);
2081 	if (ret) {
2082 		hns3_err(hw, "failed to set mtu, ret = %d", ret);
2083 		return ret;
2084 	}
2085 
2086 	ret = hns3_buffer_alloc(hw);
2087 	if (ret) {
2088 		hns3_err(hw, "failed to allocate buffer, ret = %d", ret);
2089 		goto rollback;
2090 	}
2091 
2092 	hns->pf.mps = mps;
2093 
2094 	return 0;
2095 
2096 rollback:
2097 	err = hns3_set_mac_mtu(hw, hns->pf.mps);
2098 	if (err)
2099 		hns3_err(hw, "fail to rollback MTU, err = %d", err);
2100 
2101 	return ret;
2102 }
2103 
2104 static int
2105 hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
2106 {
2107 	struct hns3_adapter *hns = dev->data->dev_private;
2108 	uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
2109 	struct hns3_hw *hw = &hns->hw;
2110 	int ret;
2111 
2112 	if (dev->data->dev_started) {
2113 		hns3_err(hw, "Failed to set mtu, port %u must be stopped "
2114 			 "before configuration", dev->data->port_id);
2115 		return -EBUSY;
2116 	}
2117 
2118 	rte_spinlock_lock(&hw->lock);
2119 	frame_size = RTE_MAX(frame_size, HNS3_DEFAULT_FRAME_LEN);
2120 
2121 	/*
2122 	 * Maximum value of frame_size is HNS3_MAX_FRAME_LEN, so it can safely
2123 	 * assign to "uint16_t" type variable.
2124 	 */
2125 	ret = hns3_config_mtu(hw, (uint16_t)frame_size);
2126 	if (ret) {
2127 		rte_spinlock_unlock(&hw->lock);
2128 		hns3_err(hw, "Failed to set mtu, port %u mtu %u: %d",
2129 			 dev->data->port_id, mtu, ret);
2130 		return ret;
2131 	}
2132 
2133 	rte_spinlock_unlock(&hw->lock);
2134 
2135 	return 0;
2136 }
2137 
2138 static uint32_t
2139 hns3_get_copper_port_speed_capa(uint32_t supported_speed)
2140 {
2141 	uint32_t speed_capa = 0;
2142 
2143 	if (supported_speed & HNS3_PHY_LINK_SPEED_10M_HD_BIT)
2144 		speed_capa |= RTE_ETH_LINK_SPEED_10M_HD;
2145 	if (supported_speed & HNS3_PHY_LINK_SPEED_10M_BIT)
2146 		speed_capa |= RTE_ETH_LINK_SPEED_10M;
2147 	if (supported_speed & HNS3_PHY_LINK_SPEED_100M_HD_BIT)
2148 		speed_capa |= RTE_ETH_LINK_SPEED_100M_HD;
2149 	if (supported_speed & HNS3_PHY_LINK_SPEED_100M_BIT)
2150 		speed_capa |= RTE_ETH_LINK_SPEED_100M;
2151 	if (supported_speed & HNS3_PHY_LINK_SPEED_1000M_BIT)
2152 		speed_capa |= RTE_ETH_LINK_SPEED_1G;
2153 
2154 	return speed_capa;
2155 }
2156 
2157 static uint32_t
2158 hns3_get_firber_port_speed_capa(uint32_t supported_speed)
2159 {
2160 	uint32_t speed_capa = 0;
2161 
2162 	if (supported_speed & HNS3_FIBER_LINK_SPEED_1G_BIT)
2163 		speed_capa |= RTE_ETH_LINK_SPEED_1G;
2164 	if (supported_speed & HNS3_FIBER_LINK_SPEED_10G_BIT)
2165 		speed_capa |= RTE_ETH_LINK_SPEED_10G;
2166 	if (supported_speed & HNS3_FIBER_LINK_SPEED_25G_BIT)
2167 		speed_capa |= RTE_ETH_LINK_SPEED_25G;
2168 	if (supported_speed & HNS3_FIBER_LINK_SPEED_40G_BIT)
2169 		speed_capa |= RTE_ETH_LINK_SPEED_40G;
2170 	if (supported_speed & HNS3_FIBER_LINK_SPEED_50G_BIT)
2171 		speed_capa |= RTE_ETH_LINK_SPEED_50G;
2172 	if (supported_speed & HNS3_FIBER_LINK_SPEED_100G_BIT)
2173 		speed_capa |= RTE_ETH_LINK_SPEED_100G;
2174 	if (supported_speed & HNS3_FIBER_LINK_SPEED_200G_BIT)
2175 		speed_capa |= RTE_ETH_LINK_SPEED_200G;
2176 
2177 	return speed_capa;
2178 }
2179 
2180 uint32_t
2181 hns3_get_speed_capa(struct hns3_hw *hw)
2182 {
2183 	struct hns3_mac *mac = &hw->mac;
2184 	uint32_t speed_capa;
2185 
2186 	if (mac->media_type == HNS3_MEDIA_TYPE_COPPER)
2187 		speed_capa =
2188 			hns3_get_copper_port_speed_capa(mac->supported_speed);
2189 	else
2190 		speed_capa =
2191 			hns3_get_firber_port_speed_capa(mac->supported_speed);
2192 
2193 	if (mac->support_autoneg == 0)
2194 		speed_capa |= RTE_ETH_LINK_SPEED_FIXED;
2195 
2196 	return speed_capa;
2197 }
2198 
2199 static int
2200 hns3_update_port_link_info(struct rte_eth_dev *eth_dev)
2201 {
2202 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2203 	int ret;
2204 
2205 	(void)hns3_update_link_status(hw);
2206 
2207 	ret = hns3_update_link_info(eth_dev);
2208 	if (ret)
2209 		hw->mac.link_status = RTE_ETH_LINK_DOWN;
2210 
2211 	return ret;
2212 }
2213 
2214 static void
2215 hns3_setup_linkstatus(struct rte_eth_dev *eth_dev,
2216 		      struct rte_eth_link *new_link)
2217 {
2218 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2219 	struct hns3_mac *mac = &hw->mac;
2220 
2221 	switch (mac->link_speed) {
2222 	case RTE_ETH_SPEED_NUM_10M:
2223 	case RTE_ETH_SPEED_NUM_100M:
2224 	case RTE_ETH_SPEED_NUM_1G:
2225 	case RTE_ETH_SPEED_NUM_10G:
2226 	case RTE_ETH_SPEED_NUM_25G:
2227 	case RTE_ETH_SPEED_NUM_40G:
2228 	case RTE_ETH_SPEED_NUM_50G:
2229 	case RTE_ETH_SPEED_NUM_100G:
2230 	case RTE_ETH_SPEED_NUM_200G:
2231 		if (mac->link_status)
2232 			new_link->link_speed = mac->link_speed;
2233 		break;
2234 	default:
2235 		if (mac->link_status)
2236 			new_link->link_speed = RTE_ETH_SPEED_NUM_UNKNOWN;
2237 		break;
2238 	}
2239 
2240 	if (!mac->link_status)
2241 		new_link->link_speed = RTE_ETH_SPEED_NUM_NONE;
2242 
2243 	new_link->link_duplex = mac->link_duplex;
2244 	new_link->link_status = mac->link_status ? RTE_ETH_LINK_UP : RTE_ETH_LINK_DOWN;
2245 	new_link->link_autoneg = mac->link_autoneg;
2246 }
2247 
2248 static int
2249 hns3_dev_link_update(struct rte_eth_dev *eth_dev, int wait_to_complete)
2250 {
2251 #define HNS3_LINK_CHECK_INTERVAL 100  /* 100ms */
2252 #define HNS3_MAX_LINK_CHECK_TIMES 20  /* 2s (100 * 20ms) in total */
2253 
2254 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2255 	uint32_t retry_cnt = HNS3_MAX_LINK_CHECK_TIMES;
2256 	struct hns3_mac *mac = &hw->mac;
2257 	struct rte_eth_link new_link;
2258 	int ret;
2259 
2260 	/* When port is stopped, report link down. */
2261 	if (eth_dev->data->dev_started == 0) {
2262 		new_link.link_autoneg = mac->link_autoneg;
2263 		new_link.link_duplex = mac->link_duplex;
2264 		new_link.link_speed = RTE_ETH_SPEED_NUM_NONE;
2265 		new_link.link_status = RTE_ETH_LINK_DOWN;
2266 		goto out;
2267 	}
2268 
2269 	do {
2270 		ret = hns3_update_port_link_info(eth_dev);
2271 		if (ret) {
2272 			hns3_err(hw, "failed to get port link info, ret = %d.",
2273 				 ret);
2274 			break;
2275 		}
2276 
2277 		if (!wait_to_complete || mac->link_status == RTE_ETH_LINK_UP)
2278 			break;
2279 
2280 		rte_delay_ms(HNS3_LINK_CHECK_INTERVAL);
2281 	} while (retry_cnt--);
2282 
2283 	memset(&new_link, 0, sizeof(new_link));
2284 	hns3_setup_linkstatus(eth_dev, &new_link);
2285 
2286 out:
2287 	return rte_eth_linkstatus_set(eth_dev, &new_link);
2288 }
2289 
2290 static int
2291 hns3_dev_set_link_up(struct rte_eth_dev *dev)
2292 {
2293 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2294 	int ret;
2295 
2296 	/*
2297 	 * The "tx_pkt_burst" will be restored. But the secondary process does
2298 	 * not support the mechanism for notifying the primary process.
2299 	 */
2300 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2301 		hns3_err(hw, "secondary process does not support to set link up.");
2302 		return -ENOTSUP;
2303 	}
2304 
2305 	/*
2306 	 * If device isn't started Rx/Tx function is still disabled, setting
2307 	 * link up is not allowed. But it is probably better to return success
2308 	 * to reduce the impact on the upper layer.
2309 	 */
2310 	if (hw->adapter_state != HNS3_NIC_STARTED) {
2311 		hns3_info(hw, "device isn't started, can't set link up.");
2312 		return 0;
2313 	}
2314 
2315 	if (!hw->set_link_down)
2316 		return 0;
2317 
2318 	rte_spinlock_lock(&hw->lock);
2319 	ret = hns3_cfg_mac_mode(hw, true);
2320 	if (ret) {
2321 		rte_spinlock_unlock(&hw->lock);
2322 		hns3_err(hw, "failed to set link up, ret = %d", ret);
2323 		return ret;
2324 	}
2325 
2326 	hw->set_link_down = false;
2327 	hns3_start_tx_datapath(dev);
2328 	rte_spinlock_unlock(&hw->lock);
2329 
2330 	return 0;
2331 }
2332 
2333 static int
2334 hns3_dev_set_link_down(struct rte_eth_dev *dev)
2335 {
2336 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2337 	int ret;
2338 
2339 	/*
2340 	 * The "tx_pkt_burst" will be set to dummy function. But the secondary
2341 	 * process does not support the mechanism for notifying the primary
2342 	 * process.
2343 	 */
2344 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2345 		hns3_err(hw, "secondary process does not support to set link down.");
2346 		return -ENOTSUP;
2347 	}
2348 
2349 	/*
2350 	 * If device isn't started or the API has been called, link status is
2351 	 * down, return success.
2352 	 */
2353 	if (hw->adapter_state != HNS3_NIC_STARTED || hw->set_link_down)
2354 		return 0;
2355 
2356 	rte_spinlock_lock(&hw->lock);
2357 	hns3_stop_tx_datapath(dev);
2358 	ret = hns3_cfg_mac_mode(hw, false);
2359 	if (ret) {
2360 		hns3_start_tx_datapath(dev);
2361 		rte_spinlock_unlock(&hw->lock);
2362 		hns3_err(hw, "failed to set link down, ret = %d", ret);
2363 		return ret;
2364 	}
2365 
2366 	hw->set_link_down = true;
2367 	rte_spinlock_unlock(&hw->lock);
2368 
2369 	return 0;
2370 }
2371 
2372 static int
2373 hns3_parse_func_status(struct hns3_hw *hw, struct hns3_func_status_cmd *status)
2374 {
2375 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2376 	struct hns3_pf *pf = &hns->pf;
2377 
2378 	if (!(status->pf_state & HNS3_PF_STATE_DONE))
2379 		return -EINVAL;
2380 
2381 	pf->is_main_pf = (status->pf_state & HNS3_PF_STATE_MAIN) ? true : false;
2382 
2383 	return 0;
2384 }
2385 
2386 static int
2387 hns3_query_function_status(struct hns3_hw *hw)
2388 {
2389 #define HNS3_QUERY_MAX_CNT		10
2390 #define HNS3_QUERY_SLEEP_MSCOEND	1
2391 	struct hns3_func_status_cmd *req;
2392 	struct hns3_cmd_desc desc;
2393 	int timeout = 0;
2394 	int ret;
2395 
2396 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_FUNC_STATUS, true);
2397 	req = (struct hns3_func_status_cmd *)desc.data;
2398 
2399 	do {
2400 		ret = hns3_cmd_send(hw, &desc, 1);
2401 		if (ret) {
2402 			PMD_INIT_LOG(ERR, "query function status failed %d",
2403 				     ret);
2404 			return ret;
2405 		}
2406 
2407 		/* Check pf reset is done */
2408 		if (req->pf_state)
2409 			break;
2410 
2411 		rte_delay_ms(HNS3_QUERY_SLEEP_MSCOEND);
2412 	} while (timeout++ < HNS3_QUERY_MAX_CNT);
2413 
2414 	return hns3_parse_func_status(hw, req);
2415 }
2416 
2417 static int
2418 hns3_get_pf_max_tqp_num(struct hns3_hw *hw)
2419 {
2420 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2421 	struct hns3_pf *pf = &hns->pf;
2422 
2423 	if (pf->tqp_config_mode == HNS3_FLEX_MAX_TQP_NUM_MODE) {
2424 		/*
2425 		 * The total_tqps_num obtained from firmware is maximum tqp
2426 		 * numbers of this port, which should be used for PF and VFs.
2427 		 * There is no need for pf to have so many tqp numbers in
2428 		 * most cases. RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF,
2429 		 * coming from config file, is assigned to maximum queue number
2430 		 * for the PF of this port by user. So users can modify the
2431 		 * maximum queue number of PF according to their own application
2432 		 * scenarios, which is more flexible to use. In addition, many
2433 		 * memories can be saved due to allocating queue statistics
2434 		 * room according to the actual number of queues required. The
2435 		 * maximum queue number of PF for network engine with
2436 		 * revision_id greater than 0x30 is assigned by config file.
2437 		 */
2438 		if (RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF <= 0) {
2439 			hns3_err(hw, "RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF(%d) "
2440 				 "must be greater than 0.",
2441 				 RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF);
2442 			return -EINVAL;
2443 		}
2444 
2445 		hw->tqps_num = RTE_MIN(RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF,
2446 				       hw->total_tqps_num);
2447 	} else {
2448 		/*
2449 		 * Due to the limitation on the number of PF interrupts
2450 		 * available, the maximum queue number assigned to PF on
2451 		 * the network engine with revision_id 0x21 is 64.
2452 		 */
2453 		hw->tqps_num = RTE_MIN(hw->total_tqps_num,
2454 				       HNS3_MAX_TQP_NUM_HIP08_PF);
2455 	}
2456 
2457 	return 0;
2458 }
2459 
2460 static int
2461 hns3_query_pf_resource(struct hns3_hw *hw)
2462 {
2463 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2464 	struct hns3_pf *pf = &hns->pf;
2465 	struct hns3_pf_res_cmd *req;
2466 	struct hns3_cmd_desc desc;
2467 	int ret;
2468 
2469 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_PF_RSRC, true);
2470 	ret = hns3_cmd_send(hw, &desc, 1);
2471 	if (ret) {
2472 		PMD_INIT_LOG(ERR, "query pf resource failed %d", ret);
2473 		return ret;
2474 	}
2475 
2476 	req = (struct hns3_pf_res_cmd *)desc.data;
2477 	hw->total_tqps_num = rte_le_to_cpu_16(req->tqp_num) +
2478 			     rte_le_to_cpu_16(req->ext_tqp_num);
2479 	ret = hns3_get_pf_max_tqp_num(hw);
2480 	if (ret)
2481 		return ret;
2482 
2483 	pf->pkt_buf_size = rte_le_to_cpu_16(req->buf_size) << HNS3_BUF_UNIT_S;
2484 	pf->func_num = rte_le_to_cpu_16(req->pf_own_fun_number);
2485 
2486 	if (req->tx_buf_size)
2487 		pf->tx_buf_size =
2488 		    rte_le_to_cpu_16(req->tx_buf_size) << HNS3_BUF_UNIT_S;
2489 	else
2490 		pf->tx_buf_size = HNS3_DEFAULT_TX_BUF;
2491 
2492 	pf->tx_buf_size = roundup(pf->tx_buf_size, HNS3_BUF_SIZE_UNIT);
2493 
2494 	if (req->dv_buf_size)
2495 		pf->dv_buf_size =
2496 		    rte_le_to_cpu_16(req->dv_buf_size) << HNS3_BUF_UNIT_S;
2497 	else
2498 		pf->dv_buf_size = HNS3_DEFAULT_DV;
2499 
2500 	pf->dv_buf_size = roundup(pf->dv_buf_size, HNS3_BUF_SIZE_UNIT);
2501 
2502 	hw->num_msi =
2503 		hns3_get_field(rte_le_to_cpu_16(req->nic_pf_intr_vector_number),
2504 			       HNS3_PF_VEC_NUM_M, HNS3_PF_VEC_NUM_S);
2505 
2506 	return 0;
2507 }
2508 
2509 static void
2510 hns3_parse_cfg(struct hns3_cfg *cfg, struct hns3_cmd_desc *desc)
2511 {
2512 	struct hns3_cfg_param_cmd *req;
2513 	uint64_t mac_addr_tmp_high;
2514 	uint8_t ext_rss_size_max;
2515 	uint64_t mac_addr_tmp;
2516 	uint32_t i;
2517 
2518 	req = (struct hns3_cfg_param_cmd *)desc[0].data;
2519 
2520 	/* get the configuration */
2521 	cfg->tc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2522 				     HNS3_CFG_TC_NUM_M, HNS3_CFG_TC_NUM_S);
2523 
2524 	cfg->phy_addr = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2525 				       HNS3_CFG_PHY_ADDR_M,
2526 				       HNS3_CFG_PHY_ADDR_S);
2527 	cfg->media_type = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2528 					 HNS3_CFG_MEDIA_TP_M,
2529 					 HNS3_CFG_MEDIA_TP_S);
2530 	/* get mac address */
2531 	mac_addr_tmp = rte_le_to_cpu_32(req->param[2]);
2532 	mac_addr_tmp_high = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2533 					   HNS3_CFG_MAC_ADDR_H_M,
2534 					   HNS3_CFG_MAC_ADDR_H_S);
2535 
2536 	mac_addr_tmp |= (mac_addr_tmp_high << 31) << 1;
2537 
2538 	cfg->default_speed = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2539 					    HNS3_CFG_DEFAULT_SPEED_M,
2540 					    HNS3_CFG_DEFAULT_SPEED_S);
2541 	cfg->rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2542 					   HNS3_CFG_RSS_SIZE_M,
2543 					   HNS3_CFG_RSS_SIZE_S);
2544 
2545 	for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
2546 		cfg->mac_addr[i] = (mac_addr_tmp >> (8 * i)) & 0xff;
2547 
2548 	req = (struct hns3_cfg_param_cmd *)desc[1].data;
2549 	cfg->numa_node_map = rte_le_to_cpu_32(req->param[0]);
2550 
2551 	cfg->speed_ability = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2552 					    HNS3_CFG_SPEED_ABILITY_M,
2553 					    HNS3_CFG_SPEED_ABILITY_S);
2554 	cfg->umv_space = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2555 					HNS3_CFG_UMV_TBL_SPACE_M,
2556 					HNS3_CFG_UMV_TBL_SPACE_S);
2557 	if (!cfg->umv_space)
2558 		cfg->umv_space = HNS3_DEFAULT_UMV_SPACE_PER_PF;
2559 
2560 	ext_rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[2]),
2561 					       HNS3_CFG_EXT_RSS_SIZE_M,
2562 					       HNS3_CFG_EXT_RSS_SIZE_S);
2563 	/*
2564 	 * Field ext_rss_size_max obtained from firmware will be more flexible
2565 	 * for future changes and expansions, which is an exponent of 2, instead
2566 	 * of reading out directly. If this field is not zero, hns3 PF PMD
2567 	 * uses it as rss_size_max under one TC. Device, whose revision
2568 	 * id is greater than or equal to PCI_REVISION_ID_HIP09_A, obtains the
2569 	 * maximum number of queues supported under a TC through this field.
2570 	 */
2571 	if (ext_rss_size_max)
2572 		cfg->rss_size_max = 1U << ext_rss_size_max;
2573 }
2574 
2575 /* hns3_get_board_cfg: query the static parameter from NCL_config file in flash
2576  * @hw: pointer to struct hns3_hw
2577  * @hcfg: the config structure to be getted
2578  */
2579 static int
2580 hns3_get_board_cfg(struct hns3_hw *hw, struct hns3_cfg *hcfg)
2581 {
2582 	struct hns3_cmd_desc desc[HNS3_PF_CFG_DESC_NUM];
2583 	struct hns3_cfg_param_cmd *req;
2584 	uint32_t offset;
2585 	uint32_t i;
2586 	int ret;
2587 
2588 	for (i = 0; i < HNS3_PF_CFG_DESC_NUM; i++) {
2589 		offset = 0;
2590 		req = (struct hns3_cfg_param_cmd *)desc[i].data;
2591 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_CFG_PARAM,
2592 					  true);
2593 		hns3_set_field(offset, HNS3_CFG_OFFSET_M, HNS3_CFG_OFFSET_S,
2594 			       i * HNS3_CFG_RD_LEN_BYTES);
2595 		/* Len should be divided by 4 when send to hardware */
2596 		hns3_set_field(offset, HNS3_CFG_RD_LEN_M, HNS3_CFG_RD_LEN_S,
2597 			       HNS3_CFG_RD_LEN_BYTES / HNS3_CFG_RD_LEN_UNIT);
2598 		req->offset = rte_cpu_to_le_32(offset);
2599 	}
2600 
2601 	ret = hns3_cmd_send(hw, desc, HNS3_PF_CFG_DESC_NUM);
2602 	if (ret) {
2603 		PMD_INIT_LOG(ERR, "get config failed %d.", ret);
2604 		return ret;
2605 	}
2606 
2607 	hns3_parse_cfg(hcfg, desc);
2608 
2609 	return 0;
2610 }
2611 
2612 static int
2613 hns3_parse_speed(int speed_cmd, uint32_t *speed)
2614 {
2615 	switch (speed_cmd) {
2616 	case HNS3_CFG_SPEED_10M:
2617 		*speed = RTE_ETH_SPEED_NUM_10M;
2618 		break;
2619 	case HNS3_CFG_SPEED_100M:
2620 		*speed = RTE_ETH_SPEED_NUM_100M;
2621 		break;
2622 	case HNS3_CFG_SPEED_1G:
2623 		*speed = RTE_ETH_SPEED_NUM_1G;
2624 		break;
2625 	case HNS3_CFG_SPEED_10G:
2626 		*speed = RTE_ETH_SPEED_NUM_10G;
2627 		break;
2628 	case HNS3_CFG_SPEED_25G:
2629 		*speed = RTE_ETH_SPEED_NUM_25G;
2630 		break;
2631 	case HNS3_CFG_SPEED_40G:
2632 		*speed = RTE_ETH_SPEED_NUM_40G;
2633 		break;
2634 	case HNS3_CFG_SPEED_50G:
2635 		*speed = RTE_ETH_SPEED_NUM_50G;
2636 		break;
2637 	case HNS3_CFG_SPEED_100G:
2638 		*speed = RTE_ETH_SPEED_NUM_100G;
2639 		break;
2640 	case HNS3_CFG_SPEED_200G:
2641 		*speed = RTE_ETH_SPEED_NUM_200G;
2642 		break;
2643 	default:
2644 		return -EINVAL;
2645 	}
2646 
2647 	return 0;
2648 }
2649 
2650 static int
2651 hns3_get_capability(struct hns3_hw *hw)
2652 {
2653 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2654 	struct rte_pci_device *pci_dev;
2655 	struct hns3_pf *pf = &hns->pf;
2656 	struct rte_eth_dev *eth_dev;
2657 	uint16_t device_id;
2658 	int ret;
2659 
2660 	eth_dev = &rte_eth_devices[hw->data->port_id];
2661 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2662 	device_id = pci_dev->id.device_id;
2663 
2664 	if (device_id == HNS3_DEV_ID_25GE_RDMA ||
2665 	    device_id == HNS3_DEV_ID_50GE_RDMA ||
2666 	    device_id == HNS3_DEV_ID_100G_RDMA_MACSEC ||
2667 	    device_id == HNS3_DEV_ID_200G_RDMA)
2668 		hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_DCB_B, 1);
2669 
2670 	ret = hns3_get_pci_revision_id(hw, &hw->revision);
2671 	if (ret)
2672 		return ret;
2673 
2674 	ret = hns3_query_mac_stats_reg_num(hw);
2675 	if (ret)
2676 		return ret;
2677 
2678 	if (hw->revision < PCI_REVISION_ID_HIP09_A) {
2679 		hns3_set_default_dev_specifications(hw);
2680 		hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
2681 		hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
2682 		hw->tso_mode = HNS3_TSO_SW_CAL_PSEUDO_H_CSUM;
2683 		hw->vlan_mode = HNS3_SW_SHIFT_AND_DISCARD_MODE;
2684 		hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE1;
2685 		hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
2686 		pf->tqp_config_mode = HNS3_FIXED_MAX_TQP_NUM_MODE;
2687 		hw->rss_info.ipv6_sctp_offload_supported = false;
2688 		hw->udp_cksum_mode = HNS3_SPECIAL_PORT_SW_CKSUM_MODE;
2689 		pf->support_multi_tc_pause = false;
2690 		return 0;
2691 	}
2692 
2693 	ret = hns3_query_dev_specifications(hw);
2694 	if (ret) {
2695 		PMD_INIT_LOG(ERR,
2696 			     "failed to query dev specifications, ret = %d",
2697 			     ret);
2698 		return ret;
2699 	}
2700 
2701 	hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
2702 	hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
2703 	hw->tso_mode = HNS3_TSO_HW_CAL_PSEUDO_H_CSUM;
2704 	hw->vlan_mode = HNS3_HW_SHIFT_AND_DISCARD_MODE;
2705 	hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE2;
2706 	pf->tqp_config_mode = HNS3_FLEX_MAX_TQP_NUM_MODE;
2707 	hw->rss_info.ipv6_sctp_offload_supported = true;
2708 	hw->udp_cksum_mode = HNS3_SPECIAL_PORT_HW_CKSUM_MODE;
2709 	pf->support_multi_tc_pause = true;
2710 
2711 	return 0;
2712 }
2713 
2714 static int
2715 hns3_check_media_type(struct hns3_hw *hw, uint8_t media_type)
2716 {
2717 	int ret;
2718 
2719 	switch (media_type) {
2720 	case HNS3_MEDIA_TYPE_COPPER:
2721 		if (!hns3_dev_get_support(hw, COPPER)) {
2722 			PMD_INIT_LOG(ERR,
2723 				     "Media type is copper, not supported.");
2724 			ret = -EOPNOTSUPP;
2725 		} else {
2726 			ret = 0;
2727 		}
2728 		break;
2729 	case HNS3_MEDIA_TYPE_FIBER:
2730 	case HNS3_MEDIA_TYPE_BACKPLANE:
2731 		ret = 0;
2732 		break;
2733 	default:
2734 		PMD_INIT_LOG(ERR, "Unknown media type = %u!", media_type);
2735 		ret = -EINVAL;
2736 		break;
2737 	}
2738 
2739 	return ret;
2740 }
2741 
2742 static int
2743 hns3_get_board_configuration(struct hns3_hw *hw)
2744 {
2745 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2746 	struct hns3_pf *pf = &hns->pf;
2747 	struct hns3_cfg cfg;
2748 	int ret;
2749 
2750 	memset(&cfg, 0, sizeof(cfg));
2751 	ret = hns3_get_board_cfg(hw, &cfg);
2752 	if (ret) {
2753 		PMD_INIT_LOG(ERR, "get board config failed %d", ret);
2754 		return ret;
2755 	}
2756 
2757 	ret = hns3_check_media_type(hw, cfg.media_type);
2758 	if (ret)
2759 		return ret;
2760 
2761 	hw->mac.media_type = cfg.media_type;
2762 	hw->rss_size_max = cfg.rss_size_max;
2763 	memcpy(hw->mac.mac_addr, cfg.mac_addr, RTE_ETHER_ADDR_LEN);
2764 	hw->mac.phy_addr = cfg.phy_addr;
2765 	hw->dcb_info.num_pg = 1;
2766 	hw->dcb_info.hw_pfc_map = 0;
2767 
2768 	ret = hns3_parse_speed(cfg.default_speed, &hw->mac.link_speed);
2769 	if (ret) {
2770 		PMD_INIT_LOG(ERR, "Get wrong speed %u, ret = %d",
2771 			     cfg.default_speed, ret);
2772 		return ret;
2773 	}
2774 
2775 	pf->tc_max = cfg.tc_num;
2776 	if (pf->tc_max > HNS3_MAX_TC_NUM || pf->tc_max < 1) {
2777 		PMD_INIT_LOG(WARNING,
2778 			     "Get TC num(%u) from flash, set TC num to 1",
2779 			     pf->tc_max);
2780 		pf->tc_max = 1;
2781 	}
2782 
2783 	/* Dev does not support DCB */
2784 	if (!hns3_dev_get_support(hw, DCB)) {
2785 		pf->tc_max = 1;
2786 		pf->pfc_max = 0;
2787 	} else
2788 		pf->pfc_max = pf->tc_max;
2789 
2790 	hw->dcb_info.num_tc = 1;
2791 	hw->alloc_rss_size = RTE_MIN(hw->rss_size_max,
2792 				     hw->tqps_num / hw->dcb_info.num_tc);
2793 	hns3_set_bit(hw->hw_tc_map, 0, 1);
2794 	pf->tx_sch_mode = HNS3_FLAG_TC_BASE_SCH_MODE;
2795 
2796 	pf->wanted_umv_size = cfg.umv_space;
2797 
2798 	return ret;
2799 }
2800 
2801 static int
2802 hns3_get_configuration(struct hns3_hw *hw)
2803 {
2804 	int ret;
2805 
2806 	ret = hns3_query_function_status(hw);
2807 	if (ret) {
2808 		PMD_INIT_LOG(ERR, "Failed to query function status: %d.", ret);
2809 		return ret;
2810 	}
2811 
2812 	/* Get device capability */
2813 	ret = hns3_get_capability(hw);
2814 	if (ret) {
2815 		PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
2816 		return ret;
2817 	}
2818 
2819 	/* Get pf resource */
2820 	ret = hns3_query_pf_resource(hw);
2821 	if (ret) {
2822 		PMD_INIT_LOG(ERR, "Failed to query pf resource: %d", ret);
2823 		return ret;
2824 	}
2825 
2826 	ret = hns3_get_board_configuration(hw);
2827 	if (ret) {
2828 		PMD_INIT_LOG(ERR, "failed to get board configuration: %d", ret);
2829 		return ret;
2830 	}
2831 
2832 	ret = hns3_query_dev_fec_info(hw);
2833 	if (ret)
2834 		PMD_INIT_LOG(ERR,
2835 			     "failed to query FEC information, ret = %d", ret);
2836 
2837 	return ret;
2838 }
2839 
2840 static int
2841 hns3_map_tqps_to_func(struct hns3_hw *hw, uint16_t func_id, uint16_t tqp_pid,
2842 		      uint16_t tqp_vid, bool is_pf)
2843 {
2844 	struct hns3_tqp_map_cmd *req;
2845 	struct hns3_cmd_desc desc;
2846 	int ret;
2847 
2848 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SET_TQP_MAP, false);
2849 
2850 	req = (struct hns3_tqp_map_cmd *)desc.data;
2851 	req->tqp_id = rte_cpu_to_le_16(tqp_pid);
2852 	req->tqp_vf = func_id;
2853 	req->tqp_flag = 1 << HNS3_TQP_MAP_EN_B;
2854 	if (!is_pf)
2855 		req->tqp_flag |= (1 << HNS3_TQP_MAP_TYPE_B);
2856 	req->tqp_vid = rte_cpu_to_le_16(tqp_vid);
2857 
2858 	ret = hns3_cmd_send(hw, &desc, 1);
2859 	if (ret)
2860 		PMD_INIT_LOG(ERR, "TQP map failed %d", ret);
2861 
2862 	return ret;
2863 }
2864 
2865 static int
2866 hns3_map_tqp(struct hns3_hw *hw)
2867 {
2868 	uint16_t i;
2869 	int ret;
2870 
2871 	/*
2872 	 * In current version, VF is not supported when PF is driven by DPDK
2873 	 * driver, so we assign total tqps_num tqps allocated to this port
2874 	 * to PF.
2875 	 */
2876 	for (i = 0; i < hw->total_tqps_num; i++) {
2877 		ret = hns3_map_tqps_to_func(hw, HNS3_PF_FUNC_ID, i, i, true);
2878 		if (ret)
2879 			return ret;
2880 	}
2881 
2882 	return 0;
2883 }
2884 
2885 static int
2886 hns3_cfg_mac_speed_dup_hw(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
2887 {
2888 	struct hns3_config_mac_speed_dup_cmd *req;
2889 	struct hns3_cmd_desc desc;
2890 	int ret;
2891 
2892 	req = (struct hns3_config_mac_speed_dup_cmd *)desc.data;
2893 
2894 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_SPEED_DUP, false);
2895 
2896 	hns3_set_bit(req->speed_dup, HNS3_CFG_DUPLEX_B, !!duplex ? 1 : 0);
2897 
2898 	switch (speed) {
2899 	case RTE_ETH_SPEED_NUM_10M:
2900 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2901 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10M);
2902 		break;
2903 	case RTE_ETH_SPEED_NUM_100M:
2904 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2905 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100M);
2906 		break;
2907 	case RTE_ETH_SPEED_NUM_1G:
2908 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2909 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_1G);
2910 		break;
2911 	case RTE_ETH_SPEED_NUM_10G:
2912 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2913 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10G);
2914 		break;
2915 	case RTE_ETH_SPEED_NUM_25G:
2916 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2917 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_25G);
2918 		break;
2919 	case RTE_ETH_SPEED_NUM_40G:
2920 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2921 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_40G);
2922 		break;
2923 	case RTE_ETH_SPEED_NUM_50G:
2924 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2925 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_50G);
2926 		break;
2927 	case RTE_ETH_SPEED_NUM_100G:
2928 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2929 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100G);
2930 		break;
2931 	case RTE_ETH_SPEED_NUM_200G:
2932 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2933 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_200G);
2934 		break;
2935 	default:
2936 		PMD_INIT_LOG(ERR, "invalid speed (%u)", speed);
2937 		return -EINVAL;
2938 	}
2939 
2940 	hns3_set_bit(req->mac_change_fec_en, HNS3_CFG_MAC_SPEED_CHANGE_EN_B, 1);
2941 
2942 	ret = hns3_cmd_send(hw, &desc, 1);
2943 	if (ret)
2944 		PMD_INIT_LOG(ERR, "mac speed/duplex config cmd failed %d", ret);
2945 
2946 	return ret;
2947 }
2948 
2949 static int
2950 hns3_tx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
2951 {
2952 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2953 	struct hns3_pf *pf = &hns->pf;
2954 	struct hns3_priv_buf *priv;
2955 	uint32_t i, total_size;
2956 
2957 	total_size = pf->pkt_buf_size;
2958 
2959 	/* alloc tx buffer for all enabled tc */
2960 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
2961 		priv = &buf_alloc->priv_buf[i];
2962 
2963 		if (hw->hw_tc_map & BIT(i)) {
2964 			if (total_size < pf->tx_buf_size)
2965 				return -ENOMEM;
2966 
2967 			priv->tx_buf_size = pf->tx_buf_size;
2968 		} else
2969 			priv->tx_buf_size = 0;
2970 
2971 		total_size -= priv->tx_buf_size;
2972 	}
2973 
2974 	return 0;
2975 }
2976 
2977 static int
2978 hns3_tx_buffer_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
2979 {
2980 /* TX buffer size is unit by 128 byte */
2981 #define HNS3_BUF_SIZE_UNIT_SHIFT	7
2982 #define HNS3_BUF_SIZE_UPDATE_EN_MSK	BIT(15)
2983 	struct hns3_tx_buff_alloc_cmd *req;
2984 	struct hns3_cmd_desc desc;
2985 	uint32_t buf_size;
2986 	uint32_t i;
2987 	int ret;
2988 
2989 	req = (struct hns3_tx_buff_alloc_cmd *)desc.data;
2990 
2991 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TX_BUFF_ALLOC, 0);
2992 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
2993 		buf_size = buf_alloc->priv_buf[i].tx_buf_size;
2994 
2995 		buf_size = buf_size >> HNS3_BUF_SIZE_UNIT_SHIFT;
2996 		req->tx_pkt_buff[i] = rte_cpu_to_le_16(buf_size |
2997 						HNS3_BUF_SIZE_UPDATE_EN_MSK);
2998 	}
2999 
3000 	ret = hns3_cmd_send(hw, &desc, 1);
3001 	if (ret)
3002 		PMD_INIT_LOG(ERR, "tx buffer alloc cmd failed %d", ret);
3003 
3004 	return ret;
3005 }
3006 
3007 static int
3008 hns3_get_tc_num(struct hns3_hw *hw)
3009 {
3010 	int cnt = 0;
3011 	uint8_t i;
3012 
3013 	for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3014 		if (hw->hw_tc_map & BIT(i))
3015 			cnt++;
3016 	return cnt;
3017 }
3018 
3019 static uint32_t
3020 hns3_get_rx_priv_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3021 {
3022 	struct hns3_priv_buf *priv;
3023 	uint32_t rx_priv = 0;
3024 	int i;
3025 
3026 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3027 		priv = &buf_alloc->priv_buf[i];
3028 		if (priv->enable)
3029 			rx_priv += priv->buf_size;
3030 	}
3031 	return rx_priv;
3032 }
3033 
3034 static uint32_t
3035 hns3_get_tx_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3036 {
3037 	uint32_t total_tx_size = 0;
3038 	uint32_t i;
3039 
3040 	for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3041 		total_tx_size += buf_alloc->priv_buf[i].tx_buf_size;
3042 
3043 	return total_tx_size;
3044 }
3045 
3046 /* Get the number of pfc enabled TCs, which have private buffer */
3047 static int
3048 hns3_get_pfc_priv_num(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3049 {
3050 	struct hns3_priv_buf *priv;
3051 	int cnt = 0;
3052 	uint8_t i;
3053 
3054 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3055 		priv = &buf_alloc->priv_buf[i];
3056 		if ((hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3057 			cnt++;
3058 	}
3059 
3060 	return cnt;
3061 }
3062 
3063 /* Get the number of pfc disabled TCs, which have private buffer */
3064 static int
3065 hns3_get_no_pfc_priv_num(struct hns3_hw *hw,
3066 			 struct hns3_pkt_buf_alloc *buf_alloc)
3067 {
3068 	struct hns3_priv_buf *priv;
3069 	int cnt = 0;
3070 	uint8_t i;
3071 
3072 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3073 		priv = &buf_alloc->priv_buf[i];
3074 		if (hw->hw_tc_map & BIT(i) &&
3075 		    !(hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3076 			cnt++;
3077 	}
3078 
3079 	return cnt;
3080 }
3081 
3082 static bool
3083 hns3_is_rx_buf_ok(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc,
3084 		  uint32_t rx_all)
3085 {
3086 	uint32_t shared_buf_min, shared_buf_tc, shared_std, hi_thrd, lo_thrd;
3087 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3088 	struct hns3_pf *pf = &hns->pf;
3089 	uint32_t shared_buf, aligned_mps;
3090 	uint32_t rx_priv;
3091 	uint8_t tc_num;
3092 	uint8_t i;
3093 
3094 	tc_num = hns3_get_tc_num(hw);
3095 	aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3096 
3097 	if (hns3_dev_get_support(hw, DCB))
3098 		shared_buf_min = HNS3_BUF_MUL_BY * aligned_mps +
3099 					pf->dv_buf_size;
3100 	else
3101 		shared_buf_min = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF
3102 					+ pf->dv_buf_size;
3103 
3104 	shared_buf_tc = tc_num * aligned_mps + aligned_mps;
3105 	shared_std = roundup(RTE_MAX(shared_buf_min, shared_buf_tc),
3106 			     HNS3_BUF_SIZE_UNIT);
3107 
3108 	rx_priv = hns3_get_rx_priv_buff_alloced(buf_alloc);
3109 	if (rx_all < rx_priv + shared_std)
3110 		return false;
3111 
3112 	shared_buf = rounddown(rx_all - rx_priv, HNS3_BUF_SIZE_UNIT);
3113 	buf_alloc->s_buf.buf_size = shared_buf;
3114 	if (hns3_dev_get_support(hw, DCB)) {
3115 		buf_alloc->s_buf.self.high = shared_buf - pf->dv_buf_size;
3116 		buf_alloc->s_buf.self.low = buf_alloc->s_buf.self.high
3117 			- roundup(aligned_mps / HNS3_BUF_DIV_BY,
3118 				  HNS3_BUF_SIZE_UNIT);
3119 	} else {
3120 		buf_alloc->s_buf.self.high =
3121 			aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3122 		buf_alloc->s_buf.self.low = aligned_mps;
3123 	}
3124 
3125 	if (hns3_dev_get_support(hw, DCB)) {
3126 		hi_thrd = shared_buf - pf->dv_buf_size;
3127 
3128 		if (tc_num <= NEED_RESERVE_TC_NUM)
3129 			hi_thrd = hi_thrd * BUF_RESERVE_PERCENT /
3130 				  BUF_MAX_PERCENT;
3131 
3132 		if (tc_num)
3133 			hi_thrd = hi_thrd / tc_num;
3134 
3135 		hi_thrd = RTE_MAX(hi_thrd, HNS3_BUF_MUL_BY * aligned_mps);
3136 		hi_thrd = rounddown(hi_thrd, HNS3_BUF_SIZE_UNIT);
3137 		lo_thrd = hi_thrd - aligned_mps / HNS3_BUF_DIV_BY;
3138 	} else {
3139 		hi_thrd = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3140 		lo_thrd = aligned_mps;
3141 	}
3142 
3143 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3144 		buf_alloc->s_buf.tc_thrd[i].low = lo_thrd;
3145 		buf_alloc->s_buf.tc_thrd[i].high = hi_thrd;
3146 	}
3147 
3148 	return true;
3149 }
3150 
3151 static bool
3152 hns3_rx_buf_calc_all(struct hns3_hw *hw, bool max,
3153 		     struct hns3_pkt_buf_alloc *buf_alloc)
3154 {
3155 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3156 	struct hns3_pf *pf = &hns->pf;
3157 	struct hns3_priv_buf *priv;
3158 	uint32_t aligned_mps;
3159 	uint32_t rx_all;
3160 	uint8_t i;
3161 
3162 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3163 	aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3164 
3165 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3166 		priv = &buf_alloc->priv_buf[i];
3167 
3168 		priv->enable = 0;
3169 		priv->wl.low = 0;
3170 		priv->wl.high = 0;
3171 		priv->buf_size = 0;
3172 
3173 		if (!(hw->hw_tc_map & BIT(i)))
3174 			continue;
3175 
3176 		priv->enable = 1;
3177 		if (hw->dcb_info.hw_pfc_map & BIT(i)) {
3178 			priv->wl.low = max ? aligned_mps : HNS3_BUF_SIZE_UNIT;
3179 			priv->wl.high = roundup(priv->wl.low + aligned_mps,
3180 						HNS3_BUF_SIZE_UNIT);
3181 		} else {
3182 			priv->wl.low = 0;
3183 			priv->wl.high = max ? (aligned_mps * HNS3_BUF_MUL_BY) :
3184 					aligned_mps;
3185 		}
3186 
3187 		priv->buf_size = priv->wl.high + pf->dv_buf_size;
3188 	}
3189 
3190 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3191 }
3192 
3193 static bool
3194 hns3_drop_nopfc_buf_till_fit(struct hns3_hw *hw,
3195 			     struct hns3_pkt_buf_alloc *buf_alloc)
3196 {
3197 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3198 	struct hns3_pf *pf = &hns->pf;
3199 	struct hns3_priv_buf *priv;
3200 	int no_pfc_priv_num;
3201 	uint32_t rx_all;
3202 	uint8_t mask;
3203 	int i;
3204 
3205 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3206 	no_pfc_priv_num = hns3_get_no_pfc_priv_num(hw, buf_alloc);
3207 
3208 	/* let the last to be cleared first */
3209 	for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3210 		priv = &buf_alloc->priv_buf[i];
3211 		mask = BIT((uint8_t)i);
3212 		if (hw->hw_tc_map & mask &&
3213 		    !(hw->dcb_info.hw_pfc_map & mask)) {
3214 			/* Clear the no pfc TC private buffer */
3215 			priv->wl.low = 0;
3216 			priv->wl.high = 0;
3217 			priv->buf_size = 0;
3218 			priv->enable = 0;
3219 			no_pfc_priv_num--;
3220 		}
3221 
3222 		if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3223 		    no_pfc_priv_num == 0)
3224 			break;
3225 	}
3226 
3227 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3228 }
3229 
3230 static bool
3231 hns3_drop_pfc_buf_till_fit(struct hns3_hw *hw,
3232 			   struct hns3_pkt_buf_alloc *buf_alloc)
3233 {
3234 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3235 	struct hns3_pf *pf = &hns->pf;
3236 	struct hns3_priv_buf *priv;
3237 	uint32_t rx_all;
3238 	int pfc_priv_num;
3239 	uint8_t mask;
3240 	int i;
3241 
3242 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3243 	pfc_priv_num = hns3_get_pfc_priv_num(hw, buf_alloc);
3244 
3245 	/* let the last to be cleared first */
3246 	for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3247 		priv = &buf_alloc->priv_buf[i];
3248 		mask = BIT((uint8_t)i);
3249 		if (hw->hw_tc_map & mask && hw->dcb_info.hw_pfc_map & mask) {
3250 			/* Reduce the number of pfc TC with private buffer */
3251 			priv->wl.low = 0;
3252 			priv->enable = 0;
3253 			priv->wl.high = 0;
3254 			priv->buf_size = 0;
3255 			pfc_priv_num--;
3256 		}
3257 		if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3258 		    pfc_priv_num == 0)
3259 			break;
3260 	}
3261 
3262 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3263 }
3264 
3265 static bool
3266 hns3_only_alloc_priv_buff(struct hns3_hw *hw,
3267 			  struct hns3_pkt_buf_alloc *buf_alloc)
3268 {
3269 #define COMPENSATE_BUFFER	0x3C00
3270 #define COMPENSATE_HALF_MPS_NUM	5
3271 #define PRIV_WL_GAP		0x1800
3272 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3273 	struct hns3_pf *pf = &hns->pf;
3274 	uint32_t tc_num = hns3_get_tc_num(hw);
3275 	uint32_t half_mps = pf->mps >> 1;
3276 	struct hns3_priv_buf *priv;
3277 	uint32_t min_rx_priv;
3278 	uint32_t rx_priv;
3279 	uint8_t i;
3280 
3281 	rx_priv = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3282 	if (tc_num)
3283 		rx_priv = rx_priv / tc_num;
3284 
3285 	if (tc_num <= NEED_RESERVE_TC_NUM)
3286 		rx_priv = rx_priv * BUF_RESERVE_PERCENT / BUF_MAX_PERCENT;
3287 
3288 	/*
3289 	 * Minimum value of private buffer in rx direction (min_rx_priv) is
3290 	 * equal to "DV + 2.5 * MPS + 15KB". Driver only allocates rx private
3291 	 * buffer if rx_priv is greater than min_rx_priv.
3292 	 */
3293 	min_rx_priv = pf->dv_buf_size + COMPENSATE_BUFFER +
3294 			COMPENSATE_HALF_MPS_NUM * half_mps;
3295 	min_rx_priv = roundup(min_rx_priv, HNS3_BUF_SIZE_UNIT);
3296 	rx_priv = rounddown(rx_priv, HNS3_BUF_SIZE_UNIT);
3297 	if (rx_priv < min_rx_priv)
3298 		return false;
3299 
3300 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3301 		priv = &buf_alloc->priv_buf[i];
3302 		priv->enable = 0;
3303 		priv->wl.low = 0;
3304 		priv->wl.high = 0;
3305 		priv->buf_size = 0;
3306 
3307 		if (!(hw->hw_tc_map & BIT(i)))
3308 			continue;
3309 
3310 		priv->enable = 1;
3311 		priv->buf_size = rx_priv;
3312 		priv->wl.high = rx_priv - pf->dv_buf_size;
3313 		priv->wl.low = priv->wl.high - PRIV_WL_GAP;
3314 	}
3315 
3316 	buf_alloc->s_buf.buf_size = 0;
3317 
3318 	return true;
3319 }
3320 
3321 /*
3322  * hns3_rx_buffer_calc: calculate the rx private buffer size for all TCs
3323  * @hw: pointer to struct hns3_hw
3324  * @buf_alloc: pointer to buffer calculation data
3325  * @return: 0: calculate successful, negative: fail
3326  */
3327 static int
3328 hns3_rx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3329 {
3330 	/* When DCB is not supported, rx private buffer is not allocated. */
3331 	if (!hns3_dev_get_support(hw, DCB)) {
3332 		struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3333 		struct hns3_pf *pf = &hns->pf;
3334 		uint32_t rx_all = pf->pkt_buf_size;
3335 
3336 		rx_all -= hns3_get_tx_buff_alloced(buf_alloc);
3337 		if (!hns3_is_rx_buf_ok(hw, buf_alloc, rx_all))
3338 			return -ENOMEM;
3339 
3340 		return 0;
3341 	}
3342 
3343 	/*
3344 	 * Try to allocate privated packet buffer for all TCs without share
3345 	 * buffer.
3346 	 */
3347 	if (hns3_only_alloc_priv_buff(hw, buf_alloc))
3348 		return 0;
3349 
3350 	/*
3351 	 * Try to allocate privated packet buffer for all TCs with share
3352 	 * buffer.
3353 	 */
3354 	if (hns3_rx_buf_calc_all(hw, true, buf_alloc))
3355 		return 0;
3356 
3357 	/*
3358 	 * For different application scenes, the enabled port number, TC number
3359 	 * and no_drop TC number are different. In order to obtain the better
3360 	 * performance, software could allocate the buffer size and configure
3361 	 * the waterline by trying to decrease the private buffer size according
3362 	 * to the order, namely, waterline of valid tc, pfc disabled tc, pfc
3363 	 * enabled tc.
3364 	 */
3365 	if (hns3_rx_buf_calc_all(hw, false, buf_alloc))
3366 		return 0;
3367 
3368 	if (hns3_drop_nopfc_buf_till_fit(hw, buf_alloc))
3369 		return 0;
3370 
3371 	if (hns3_drop_pfc_buf_till_fit(hw, buf_alloc))
3372 		return 0;
3373 
3374 	return -ENOMEM;
3375 }
3376 
3377 static int
3378 hns3_rx_priv_buf_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3379 {
3380 	struct hns3_rx_priv_buff_cmd *req;
3381 	struct hns3_cmd_desc desc;
3382 	uint32_t buf_size;
3383 	int ret;
3384 	int i;
3385 
3386 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_PRIV_BUFF_ALLOC, false);
3387 	req = (struct hns3_rx_priv_buff_cmd *)desc.data;
3388 
3389 	/* Alloc private buffer TCs */
3390 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3391 		struct hns3_priv_buf *priv = &buf_alloc->priv_buf[i];
3392 
3393 		req->buf_num[i] =
3394 			rte_cpu_to_le_16(priv->buf_size >> HNS3_BUF_UNIT_S);
3395 		req->buf_num[i] |= rte_cpu_to_le_16(1 << HNS3_TC0_PRI_BUF_EN_B);
3396 	}
3397 
3398 	buf_size = buf_alloc->s_buf.buf_size;
3399 	req->shared_buf = rte_cpu_to_le_16((buf_size >> HNS3_BUF_UNIT_S) |
3400 					   (1 << HNS3_TC0_PRI_BUF_EN_B));
3401 
3402 	ret = hns3_cmd_send(hw, &desc, 1);
3403 	if (ret)
3404 		PMD_INIT_LOG(ERR, "rx private buffer alloc cmd failed %d", ret);
3405 
3406 	return ret;
3407 }
3408 
3409 static int
3410 hns3_rx_priv_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3411 {
3412 #define HNS3_RX_PRIV_WL_ALLOC_DESC_NUM 2
3413 	struct hns3_rx_priv_wl_buf *req;
3414 	struct hns3_priv_buf *priv;
3415 	struct hns3_cmd_desc desc[HNS3_RX_PRIV_WL_ALLOC_DESC_NUM];
3416 	int i, j;
3417 	int ret;
3418 
3419 	for (i = 0; i < HNS3_RX_PRIV_WL_ALLOC_DESC_NUM; i++) {
3420 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_PRIV_WL_ALLOC,
3421 					  false);
3422 		req = (struct hns3_rx_priv_wl_buf *)desc[i].data;
3423 
3424 		/* The first descriptor set the NEXT bit to 1 */
3425 		if (i == 0)
3426 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3427 		else
3428 			desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3429 
3430 		for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3431 			uint32_t idx = i * HNS3_TC_NUM_ONE_DESC + j;
3432 
3433 			priv = &buf_alloc->priv_buf[idx];
3434 			req->tc_wl[j].high = rte_cpu_to_le_16(priv->wl.high >>
3435 							HNS3_BUF_UNIT_S);
3436 			req->tc_wl[j].high |=
3437 				rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3438 			req->tc_wl[j].low = rte_cpu_to_le_16(priv->wl.low >>
3439 							HNS3_BUF_UNIT_S);
3440 			req->tc_wl[j].low |=
3441 				rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3442 		}
3443 	}
3444 
3445 	/* Send 2 descriptor at one time */
3446 	ret = hns3_cmd_send(hw, desc, HNS3_RX_PRIV_WL_ALLOC_DESC_NUM);
3447 	if (ret)
3448 		PMD_INIT_LOG(ERR, "rx private waterline config cmd failed %d",
3449 			     ret);
3450 	return ret;
3451 }
3452 
3453 static int
3454 hns3_common_thrd_config(struct hns3_hw *hw,
3455 			struct hns3_pkt_buf_alloc *buf_alloc)
3456 {
3457 #define HNS3_RX_COM_THRD_ALLOC_DESC_NUM 2
3458 	struct hns3_shared_buf *s_buf = &buf_alloc->s_buf;
3459 	struct hns3_rx_com_thrd *req;
3460 	struct hns3_cmd_desc desc[HNS3_RX_COM_THRD_ALLOC_DESC_NUM];
3461 	struct hns3_tc_thrd *tc;
3462 	int tc_idx;
3463 	int i, j;
3464 	int ret;
3465 
3466 	for (i = 0; i < HNS3_RX_COM_THRD_ALLOC_DESC_NUM; i++) {
3467 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_COM_THRD_ALLOC,
3468 					  false);
3469 		req = (struct hns3_rx_com_thrd *)&desc[i].data;
3470 
3471 		/* The first descriptor set the NEXT bit to 1 */
3472 		if (i == 0)
3473 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3474 		else
3475 			desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3476 
3477 		for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3478 			tc_idx = i * HNS3_TC_NUM_ONE_DESC + j;
3479 			tc = &s_buf->tc_thrd[tc_idx];
3480 
3481 			req->com_thrd[j].high =
3482 				rte_cpu_to_le_16(tc->high >> HNS3_BUF_UNIT_S);
3483 			req->com_thrd[j].high |=
3484 				 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3485 			req->com_thrd[j].low =
3486 				rte_cpu_to_le_16(tc->low >> HNS3_BUF_UNIT_S);
3487 			req->com_thrd[j].low |=
3488 				 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3489 		}
3490 	}
3491 
3492 	/* Send 2 descriptors at one time */
3493 	ret = hns3_cmd_send(hw, desc, HNS3_RX_COM_THRD_ALLOC_DESC_NUM);
3494 	if (ret)
3495 		PMD_INIT_LOG(ERR, "common threshold config cmd failed %d", ret);
3496 
3497 	return ret;
3498 }
3499 
3500 static int
3501 hns3_common_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3502 {
3503 	struct hns3_shared_buf *buf = &buf_alloc->s_buf;
3504 	struct hns3_rx_com_wl *req;
3505 	struct hns3_cmd_desc desc;
3506 	int ret;
3507 
3508 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_COM_WL_ALLOC, false);
3509 
3510 	req = (struct hns3_rx_com_wl *)desc.data;
3511 	req->com_wl.high = rte_cpu_to_le_16(buf->self.high >> HNS3_BUF_UNIT_S);
3512 	req->com_wl.high |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3513 
3514 	req->com_wl.low = rte_cpu_to_le_16(buf->self.low >> HNS3_BUF_UNIT_S);
3515 	req->com_wl.low |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3516 
3517 	ret = hns3_cmd_send(hw, &desc, 1);
3518 	if (ret)
3519 		PMD_INIT_LOG(ERR, "common waterline config cmd failed %d", ret);
3520 
3521 	return ret;
3522 }
3523 
3524 int
3525 hns3_buffer_alloc(struct hns3_hw *hw)
3526 {
3527 	struct hns3_pkt_buf_alloc pkt_buf;
3528 	int ret;
3529 
3530 	memset(&pkt_buf, 0, sizeof(pkt_buf));
3531 	ret = hns3_tx_buffer_calc(hw, &pkt_buf);
3532 	if (ret) {
3533 		PMD_INIT_LOG(ERR,
3534 			     "could not calc tx buffer size for all TCs %d",
3535 			     ret);
3536 		return ret;
3537 	}
3538 
3539 	ret = hns3_tx_buffer_alloc(hw, &pkt_buf);
3540 	if (ret) {
3541 		PMD_INIT_LOG(ERR, "could not alloc tx buffers %d", ret);
3542 		return ret;
3543 	}
3544 
3545 	ret = hns3_rx_buffer_calc(hw, &pkt_buf);
3546 	if (ret) {
3547 		PMD_INIT_LOG(ERR,
3548 			     "could not calc rx priv buffer size for all TCs %d",
3549 			     ret);
3550 		return ret;
3551 	}
3552 
3553 	ret = hns3_rx_priv_buf_alloc(hw, &pkt_buf);
3554 	if (ret) {
3555 		PMD_INIT_LOG(ERR, "could not alloc rx priv buffer %d", ret);
3556 		return ret;
3557 	}
3558 
3559 	if (hns3_dev_get_support(hw, DCB)) {
3560 		ret = hns3_rx_priv_wl_config(hw, &pkt_buf);
3561 		if (ret) {
3562 			PMD_INIT_LOG(ERR,
3563 				     "could not configure rx private waterline %d",
3564 				     ret);
3565 			return ret;
3566 		}
3567 
3568 		ret = hns3_common_thrd_config(hw, &pkt_buf);
3569 		if (ret) {
3570 			PMD_INIT_LOG(ERR,
3571 				     "could not configure common threshold %d",
3572 				     ret);
3573 			return ret;
3574 		}
3575 	}
3576 
3577 	ret = hns3_common_wl_config(hw, &pkt_buf);
3578 	if (ret)
3579 		PMD_INIT_LOG(ERR, "could not configure common waterline %d",
3580 			     ret);
3581 
3582 	return ret;
3583 }
3584 
3585 static int
3586 hns3_mac_init(struct hns3_hw *hw)
3587 {
3588 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3589 	struct hns3_mac *mac = &hw->mac;
3590 	struct hns3_pf *pf = &hns->pf;
3591 	int ret;
3592 
3593 	pf->support_sfp_query = true;
3594 	mac->link_duplex = RTE_ETH_LINK_FULL_DUPLEX;
3595 	ret = hns3_cfg_mac_speed_dup_hw(hw, mac->link_speed, mac->link_duplex);
3596 	if (ret) {
3597 		PMD_INIT_LOG(ERR, "Config mac speed dup fail ret = %d", ret);
3598 		return ret;
3599 	}
3600 
3601 	mac->link_status = RTE_ETH_LINK_DOWN;
3602 
3603 	return hns3_config_mtu(hw, pf->mps);
3604 }
3605 
3606 static int
3607 hns3_get_mac_ethertype_cmd_status(uint16_t cmdq_resp, uint8_t resp_code)
3608 {
3609 #define HNS3_ETHERTYPE_SUCCESS_ADD		0
3610 #define HNS3_ETHERTYPE_ALREADY_ADD		1
3611 #define HNS3_ETHERTYPE_MGR_TBL_OVERFLOW		2
3612 #define HNS3_ETHERTYPE_KEY_CONFLICT		3
3613 	int return_status;
3614 
3615 	if (cmdq_resp) {
3616 		PMD_INIT_LOG(ERR,
3617 			     "cmdq execute failed for get_mac_ethertype_cmd_status, status=%u.\n",
3618 			     cmdq_resp);
3619 		return -EIO;
3620 	}
3621 
3622 	switch (resp_code) {
3623 	case HNS3_ETHERTYPE_SUCCESS_ADD:
3624 	case HNS3_ETHERTYPE_ALREADY_ADD:
3625 		return_status = 0;
3626 		break;
3627 	case HNS3_ETHERTYPE_MGR_TBL_OVERFLOW:
3628 		PMD_INIT_LOG(ERR,
3629 			     "add mac ethertype failed for manager table overflow.");
3630 		return_status = -EIO;
3631 		break;
3632 	case HNS3_ETHERTYPE_KEY_CONFLICT:
3633 		PMD_INIT_LOG(ERR, "add mac ethertype failed for key conflict.");
3634 		return_status = -EIO;
3635 		break;
3636 	default:
3637 		PMD_INIT_LOG(ERR,
3638 			     "add mac ethertype failed for undefined, code=%u.",
3639 			     resp_code);
3640 		return_status = -EIO;
3641 		break;
3642 	}
3643 
3644 	return return_status;
3645 }
3646 
3647 static int
3648 hns3_add_mgr_tbl(struct hns3_hw *hw,
3649 		 const struct hns3_mac_mgr_tbl_entry_cmd *req)
3650 {
3651 	struct hns3_cmd_desc desc;
3652 	uint8_t resp_code;
3653 	uint16_t retval;
3654 	int ret;
3655 
3656 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_ETHTYPE_ADD, false);
3657 	memcpy(desc.data, req, sizeof(struct hns3_mac_mgr_tbl_entry_cmd));
3658 
3659 	ret = hns3_cmd_send(hw, &desc, 1);
3660 	if (ret) {
3661 		PMD_INIT_LOG(ERR,
3662 			     "add mac ethertype failed for cmd_send, ret =%d.",
3663 			     ret);
3664 		return ret;
3665 	}
3666 
3667 	resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
3668 	retval = rte_le_to_cpu_16(desc.retval);
3669 
3670 	return hns3_get_mac_ethertype_cmd_status(retval, resp_code);
3671 }
3672 
3673 static void
3674 hns3_prepare_mgr_tbl(struct hns3_mac_mgr_tbl_entry_cmd *mgr_table,
3675 		     int *table_item_num)
3676 {
3677 	struct hns3_mac_mgr_tbl_entry_cmd *tbl;
3678 
3679 	/*
3680 	 * In current version, we add one item in management table as below:
3681 	 * 0x0180C200000E -- LLDP MC address
3682 	 */
3683 	tbl = mgr_table;
3684 	tbl->flags = HNS3_MAC_MGR_MASK_VLAN_B;
3685 	tbl->ethter_type = rte_cpu_to_le_16(HNS3_MAC_ETHERTYPE_LLDP);
3686 	tbl->mac_addr_hi32 = rte_cpu_to_le_32(htonl(0x0180C200));
3687 	tbl->mac_addr_lo16 = rte_cpu_to_le_16(htons(0x000E));
3688 	tbl->i_port_bitmap = 0x1;
3689 	*table_item_num = 1;
3690 }
3691 
3692 static int
3693 hns3_init_mgr_tbl(struct hns3_hw *hw)
3694 {
3695 #define HNS_MAC_MGR_TBL_MAX_SIZE	16
3696 	struct hns3_mac_mgr_tbl_entry_cmd mgr_table[HNS_MAC_MGR_TBL_MAX_SIZE];
3697 	int table_item_num;
3698 	int ret;
3699 	int i;
3700 
3701 	memset(mgr_table, 0, sizeof(mgr_table));
3702 	hns3_prepare_mgr_tbl(mgr_table, &table_item_num);
3703 	for (i = 0; i < table_item_num; i++) {
3704 		ret = hns3_add_mgr_tbl(hw, &mgr_table[i]);
3705 		if (ret) {
3706 			PMD_INIT_LOG(ERR, "add mac ethertype failed, ret =%d",
3707 				     ret);
3708 			return ret;
3709 		}
3710 	}
3711 
3712 	return 0;
3713 }
3714 
3715 static void
3716 hns3_promisc_param_init(struct hns3_promisc_param *param, bool en_uc,
3717 			bool en_mc, bool en_bc, int vport_id)
3718 {
3719 	if (!param)
3720 		return;
3721 
3722 	memset(param, 0, sizeof(struct hns3_promisc_param));
3723 	if (en_uc)
3724 		param->enable = HNS3_PROMISC_EN_UC;
3725 	if (en_mc)
3726 		param->enable |= HNS3_PROMISC_EN_MC;
3727 	if (en_bc)
3728 		param->enable |= HNS3_PROMISC_EN_BC;
3729 	param->vf_id = vport_id;
3730 }
3731 
3732 static int
3733 hns3_cmd_set_promisc_mode(struct hns3_hw *hw, struct hns3_promisc_param *param)
3734 {
3735 	struct hns3_promisc_cfg_cmd *req;
3736 	struct hns3_cmd_desc desc;
3737 	int ret;
3738 
3739 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_PROMISC_MODE, false);
3740 
3741 	req = (struct hns3_promisc_cfg_cmd *)desc.data;
3742 	req->vf_id = param->vf_id;
3743 	req->flag = (param->enable << HNS3_PROMISC_EN_B) |
3744 	    HNS3_PROMISC_TX_EN_B | HNS3_PROMISC_RX_EN_B;
3745 
3746 	ret = hns3_cmd_send(hw, &desc, 1);
3747 	if (ret)
3748 		PMD_INIT_LOG(ERR, "Set promisc mode fail, ret = %d", ret);
3749 
3750 	return ret;
3751 }
3752 
3753 static int
3754 hns3_set_promisc_mode(struct hns3_hw *hw, bool en_uc_pmc, bool en_mc_pmc)
3755 {
3756 	struct hns3_promisc_param param;
3757 	bool en_bc_pmc = true;
3758 	uint8_t vf_id;
3759 
3760 	/*
3761 	 * In current version VF is not supported when PF is driven by DPDK
3762 	 * driver, just need to configure parameters for PF vport.
3763 	 */
3764 	vf_id = HNS3_PF_FUNC_ID;
3765 
3766 	hns3_promisc_param_init(&param, en_uc_pmc, en_mc_pmc, en_bc_pmc, vf_id);
3767 	return hns3_cmd_set_promisc_mode(hw, &param);
3768 }
3769 
3770 static int
3771 hns3_promisc_init(struct hns3_hw *hw)
3772 {
3773 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3774 	struct hns3_pf *pf = &hns->pf;
3775 	struct hns3_promisc_param param;
3776 	uint16_t func_id;
3777 	int ret;
3778 
3779 	ret = hns3_set_promisc_mode(hw, false, false);
3780 	if (ret) {
3781 		PMD_INIT_LOG(ERR, "failed to set promisc mode, ret = %d", ret);
3782 		return ret;
3783 	}
3784 
3785 	/*
3786 	 * In current version VFs are not supported when PF is driven by DPDK
3787 	 * driver. After PF has been taken over by DPDK, the original VF will
3788 	 * be invalid. So, there is a possibility of entry residues. It should
3789 	 * clear VFs's promisc mode to avoid unnecessary bandwidth usage
3790 	 * during init.
3791 	 */
3792 	for (func_id = HNS3_1ST_VF_FUNC_ID; func_id < pf->func_num; func_id++) {
3793 		hns3_promisc_param_init(&param, false, false, false, func_id);
3794 		ret = hns3_cmd_set_promisc_mode(hw, &param);
3795 		if (ret) {
3796 			PMD_INIT_LOG(ERR, "failed to clear vf:%u promisc mode,"
3797 					" ret = %d", func_id, ret);
3798 			return ret;
3799 		}
3800 	}
3801 
3802 	return 0;
3803 }
3804 
3805 static void
3806 hns3_promisc_uninit(struct hns3_hw *hw)
3807 {
3808 	struct hns3_promisc_param param;
3809 	uint16_t func_id;
3810 	int ret;
3811 
3812 	func_id = HNS3_PF_FUNC_ID;
3813 
3814 	/*
3815 	 * In current version VFs are not supported when PF is driven by
3816 	 * DPDK driver, and VFs' promisc mode status has been cleared during
3817 	 * init and their status will not change. So just clear PF's promisc
3818 	 * mode status during uninit.
3819 	 */
3820 	hns3_promisc_param_init(&param, false, false, false, func_id);
3821 	ret = hns3_cmd_set_promisc_mode(hw, &param);
3822 	if (ret)
3823 		PMD_INIT_LOG(ERR, "failed to clear promisc status during"
3824 				" uninit, ret = %d", ret);
3825 }
3826 
3827 static int
3828 hns3_dev_promiscuous_enable(struct rte_eth_dev *dev)
3829 {
3830 	bool allmulti = dev->data->all_multicast ? true : false;
3831 	struct hns3_adapter *hns = dev->data->dev_private;
3832 	struct hns3_hw *hw = &hns->hw;
3833 	uint64_t offloads;
3834 	int err;
3835 	int ret;
3836 
3837 	rte_spinlock_lock(&hw->lock);
3838 	ret = hns3_set_promisc_mode(hw, true, true);
3839 	if (ret) {
3840 		rte_spinlock_unlock(&hw->lock);
3841 		hns3_err(hw, "failed to enable promiscuous mode, ret = %d",
3842 			 ret);
3843 		return ret;
3844 	}
3845 
3846 	/*
3847 	 * When promiscuous mode was enabled, disable the vlan filter to let
3848 	 * all packets coming in in the receiving direction.
3849 	 */
3850 	offloads = dev->data->dev_conf.rxmode.offloads;
3851 	if (offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER) {
3852 		ret = hns3_enable_vlan_filter(hns, false);
3853 		if (ret) {
3854 			hns3_err(hw, "failed to enable promiscuous mode due to "
3855 				 "failure to disable vlan filter, ret = %d",
3856 				 ret);
3857 			err = hns3_set_promisc_mode(hw, false, allmulti);
3858 			if (err)
3859 				hns3_err(hw, "failed to restore promiscuous "
3860 					 "status after disable vlan filter "
3861 					 "failed during enabling promiscuous "
3862 					 "mode, ret = %d", ret);
3863 		}
3864 	}
3865 
3866 	rte_spinlock_unlock(&hw->lock);
3867 
3868 	return ret;
3869 }
3870 
3871 static int
3872 hns3_dev_promiscuous_disable(struct rte_eth_dev *dev)
3873 {
3874 	bool allmulti = dev->data->all_multicast ? true : false;
3875 	struct hns3_adapter *hns = dev->data->dev_private;
3876 	struct hns3_hw *hw = &hns->hw;
3877 	uint64_t offloads;
3878 	int err;
3879 	int ret;
3880 
3881 	/* If now in all_multicast mode, must remain in all_multicast mode. */
3882 	rte_spinlock_lock(&hw->lock);
3883 	ret = hns3_set_promisc_mode(hw, false, allmulti);
3884 	if (ret) {
3885 		rte_spinlock_unlock(&hw->lock);
3886 		hns3_err(hw, "failed to disable promiscuous mode, ret = %d",
3887 			 ret);
3888 		return ret;
3889 	}
3890 	/* when promiscuous mode was disabled, restore the vlan filter status */
3891 	offloads = dev->data->dev_conf.rxmode.offloads;
3892 	if (offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER) {
3893 		ret = hns3_enable_vlan_filter(hns, true);
3894 		if (ret) {
3895 			hns3_err(hw, "failed to disable promiscuous mode due to"
3896 				 " failure to restore vlan filter, ret = %d",
3897 				 ret);
3898 			err = hns3_set_promisc_mode(hw, true, true);
3899 			if (err)
3900 				hns3_err(hw, "failed to restore promiscuous "
3901 					 "status after enabling vlan filter "
3902 					 "failed during disabling promiscuous "
3903 					 "mode, ret = %d", ret);
3904 		}
3905 	}
3906 	rte_spinlock_unlock(&hw->lock);
3907 
3908 	return ret;
3909 }
3910 
3911 static int
3912 hns3_dev_allmulticast_enable(struct rte_eth_dev *dev)
3913 {
3914 	struct hns3_adapter *hns = dev->data->dev_private;
3915 	struct hns3_hw *hw = &hns->hw;
3916 	int ret;
3917 
3918 	if (dev->data->promiscuous)
3919 		return 0;
3920 
3921 	rte_spinlock_lock(&hw->lock);
3922 	ret = hns3_set_promisc_mode(hw, false, true);
3923 	rte_spinlock_unlock(&hw->lock);
3924 	if (ret)
3925 		hns3_err(hw, "failed to enable allmulticast mode, ret = %d",
3926 			 ret);
3927 
3928 	return ret;
3929 }
3930 
3931 static int
3932 hns3_dev_allmulticast_disable(struct rte_eth_dev *dev)
3933 {
3934 	struct hns3_adapter *hns = dev->data->dev_private;
3935 	struct hns3_hw *hw = &hns->hw;
3936 	int ret;
3937 
3938 	/* If now in promiscuous mode, must remain in all_multicast mode. */
3939 	if (dev->data->promiscuous)
3940 		return 0;
3941 
3942 	rte_spinlock_lock(&hw->lock);
3943 	ret = hns3_set_promisc_mode(hw, false, false);
3944 	rte_spinlock_unlock(&hw->lock);
3945 	if (ret)
3946 		hns3_err(hw, "failed to disable allmulticast mode, ret = %d",
3947 			 ret);
3948 
3949 	return ret;
3950 }
3951 
3952 static int
3953 hns3_dev_promisc_restore(struct hns3_adapter *hns)
3954 {
3955 	struct hns3_hw *hw = &hns->hw;
3956 	bool allmulti = hw->data->all_multicast ? true : false;
3957 	int ret;
3958 
3959 	if (hw->data->promiscuous) {
3960 		ret = hns3_set_promisc_mode(hw, true, true);
3961 		if (ret)
3962 			hns3_err(hw, "failed to restore promiscuous mode, "
3963 				 "ret = %d", ret);
3964 		return ret;
3965 	}
3966 
3967 	ret = hns3_set_promisc_mode(hw, false, allmulti);
3968 	if (ret)
3969 		hns3_err(hw, "failed to restore allmulticast mode, ret = %d",
3970 			 ret);
3971 	return ret;
3972 }
3973 
3974 static int
3975 hns3_get_sfp_info(struct hns3_hw *hw, struct hns3_mac *mac_info)
3976 {
3977 	struct hns3_sfp_info_cmd *resp;
3978 	struct hns3_cmd_desc desc;
3979 	int ret;
3980 
3981 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GET_SFP_INFO, true);
3982 	resp = (struct hns3_sfp_info_cmd *)desc.data;
3983 	resp->query_type = HNS3_ACTIVE_QUERY;
3984 
3985 	ret = hns3_cmd_send(hw, &desc, 1);
3986 	if (ret == -EOPNOTSUPP) {
3987 		hns3_warn(hw, "firmware does not support get SFP info,"
3988 			  " ret = %d.", ret);
3989 		return ret;
3990 	} else if (ret) {
3991 		hns3_err(hw, "get sfp info failed, ret = %d.", ret);
3992 		return ret;
3993 	}
3994 
3995 	/*
3996 	 * In some case, the speed of MAC obtained from firmware may be 0, it
3997 	 * shouldn't be set to mac->speed.
3998 	 */
3999 	if (!rte_le_to_cpu_32(resp->sfp_speed))
4000 		return 0;
4001 
4002 	mac_info->link_speed = rte_le_to_cpu_32(resp->sfp_speed);
4003 	/*
4004 	 * if resp->supported_speed is 0, it means it's an old version
4005 	 * firmware, do not update these params.
4006 	 */
4007 	if (resp->supported_speed) {
4008 		mac_info->query_type = HNS3_ACTIVE_QUERY;
4009 		mac_info->supported_speed =
4010 					rte_le_to_cpu_32(resp->supported_speed);
4011 		mac_info->support_autoneg = resp->autoneg_ability;
4012 		mac_info->link_autoneg = (resp->autoneg == 0) ? RTE_ETH_LINK_FIXED
4013 					: RTE_ETH_LINK_AUTONEG;
4014 	} else {
4015 		mac_info->query_type = HNS3_DEFAULT_QUERY;
4016 	}
4017 
4018 	return 0;
4019 }
4020 
4021 static uint8_t
4022 hns3_check_speed_dup(uint8_t duplex, uint32_t speed)
4023 {
4024 	if (!(speed == RTE_ETH_SPEED_NUM_10M || speed == RTE_ETH_SPEED_NUM_100M))
4025 		duplex = RTE_ETH_LINK_FULL_DUPLEX;
4026 
4027 	return duplex;
4028 }
4029 
4030 static int
4031 hns3_cfg_mac_speed_dup(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
4032 {
4033 	struct hns3_mac *mac = &hw->mac;
4034 	int ret;
4035 
4036 	duplex = hns3_check_speed_dup(duplex, speed);
4037 	if (mac->link_speed == speed && mac->link_duplex == duplex)
4038 		return 0;
4039 
4040 	ret = hns3_cfg_mac_speed_dup_hw(hw, speed, duplex);
4041 	if (ret)
4042 		return ret;
4043 
4044 	ret = hns3_port_shaper_update(hw, speed);
4045 	if (ret)
4046 		return ret;
4047 
4048 	mac->link_speed = speed;
4049 	mac->link_duplex = duplex;
4050 
4051 	return 0;
4052 }
4053 
4054 static int
4055 hns3_update_fiber_link_info(struct hns3_hw *hw)
4056 {
4057 	struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw);
4058 	struct hns3_mac *mac = &hw->mac;
4059 	struct hns3_mac mac_info;
4060 	int ret;
4061 
4062 	/* If firmware do not support get SFP/qSFP speed, return directly */
4063 	if (!pf->support_sfp_query)
4064 		return 0;
4065 
4066 	memset(&mac_info, 0, sizeof(struct hns3_mac));
4067 	ret = hns3_get_sfp_info(hw, &mac_info);
4068 	if (ret == -EOPNOTSUPP) {
4069 		pf->support_sfp_query = false;
4070 		return ret;
4071 	} else if (ret)
4072 		return ret;
4073 
4074 	/* Do nothing if no SFP */
4075 	if (mac_info.link_speed == RTE_ETH_SPEED_NUM_NONE)
4076 		return 0;
4077 
4078 	/*
4079 	 * If query_type is HNS3_ACTIVE_QUERY, it is no need
4080 	 * to reconfigure the speed of MAC. Otherwise, it indicates
4081 	 * that the current firmware only supports to obtain the
4082 	 * speed of the SFP, and the speed of MAC needs to reconfigure.
4083 	 */
4084 	mac->query_type = mac_info.query_type;
4085 	if (mac->query_type == HNS3_ACTIVE_QUERY) {
4086 		if (mac_info.link_speed != mac->link_speed) {
4087 			ret = hns3_port_shaper_update(hw, mac_info.link_speed);
4088 			if (ret)
4089 				return ret;
4090 		}
4091 
4092 		mac->link_speed = mac_info.link_speed;
4093 		mac->supported_speed = mac_info.supported_speed;
4094 		mac->support_autoneg = mac_info.support_autoneg;
4095 		mac->link_autoneg = mac_info.link_autoneg;
4096 
4097 		return 0;
4098 	}
4099 
4100 	/* Config full duplex for SFP */
4101 	return hns3_cfg_mac_speed_dup(hw, mac_info.link_speed,
4102 				      RTE_ETH_LINK_FULL_DUPLEX);
4103 }
4104 
4105 static void
4106 hns3_parse_copper_phy_params(struct hns3_cmd_desc *desc, struct hns3_mac *mac)
4107 {
4108 #define HNS3_PHY_SUPPORTED_SPEED_MASK   0x2f
4109 
4110 	struct hns3_phy_params_bd0_cmd *req;
4111 	uint32_t supported;
4112 
4113 	req = (struct hns3_phy_params_bd0_cmd *)desc[0].data;
4114 	mac->link_speed = rte_le_to_cpu_32(req->speed);
4115 	mac->link_duplex = hns3_get_bit(req->duplex,
4116 					   HNS3_PHY_DUPLEX_CFG_B);
4117 	mac->link_autoneg = hns3_get_bit(req->autoneg,
4118 					   HNS3_PHY_AUTONEG_CFG_B);
4119 	mac->advertising = rte_le_to_cpu_32(req->advertising);
4120 	mac->lp_advertising = rte_le_to_cpu_32(req->lp_advertising);
4121 	supported = rte_le_to_cpu_32(req->supported);
4122 	mac->supported_speed = supported & HNS3_PHY_SUPPORTED_SPEED_MASK;
4123 	mac->support_autoneg = !!(supported & HNS3_PHY_LINK_MODE_AUTONEG_BIT);
4124 }
4125 
4126 static int
4127 hns3_get_copper_phy_params(struct hns3_hw *hw, struct hns3_mac *mac)
4128 {
4129 	struct hns3_cmd_desc desc[HNS3_PHY_PARAM_CFG_BD_NUM];
4130 	uint16_t i;
4131 	int ret;
4132 
4133 	for (i = 0; i < HNS3_PHY_PARAM_CFG_BD_NUM - 1; i++) {
4134 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG,
4135 					  true);
4136 		desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
4137 	}
4138 	hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG, true);
4139 
4140 	ret = hns3_cmd_send(hw, desc, HNS3_PHY_PARAM_CFG_BD_NUM);
4141 	if (ret) {
4142 		hns3_err(hw, "get phy parameters failed, ret = %d.", ret);
4143 		return ret;
4144 	}
4145 
4146 	hns3_parse_copper_phy_params(desc, mac);
4147 
4148 	return 0;
4149 }
4150 
4151 static int
4152 hns3_update_copper_link_info(struct hns3_hw *hw)
4153 {
4154 	struct hns3_mac *mac = &hw->mac;
4155 	struct hns3_mac mac_info;
4156 	int ret;
4157 
4158 	memset(&mac_info, 0, sizeof(struct hns3_mac));
4159 	ret = hns3_get_copper_phy_params(hw, &mac_info);
4160 	if (ret)
4161 		return ret;
4162 
4163 	if (mac_info.link_speed != mac->link_speed) {
4164 		ret = hns3_port_shaper_update(hw, mac_info.link_speed);
4165 		if (ret)
4166 			return ret;
4167 	}
4168 
4169 	mac->link_speed = mac_info.link_speed;
4170 	mac->link_duplex = mac_info.link_duplex;
4171 	mac->link_autoneg = mac_info.link_autoneg;
4172 	mac->supported_speed = mac_info.supported_speed;
4173 	mac->advertising = mac_info.advertising;
4174 	mac->lp_advertising = mac_info.lp_advertising;
4175 	mac->support_autoneg = mac_info.support_autoneg;
4176 
4177 	return 0;
4178 }
4179 
4180 static int
4181 hns3_update_link_info(struct rte_eth_dev *eth_dev)
4182 {
4183 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4184 	struct hns3_hw *hw = &hns->hw;
4185 
4186 	if (hw->mac.media_type == HNS3_MEDIA_TYPE_COPPER)
4187 		return hns3_update_copper_link_info(hw);
4188 
4189 	return hns3_update_fiber_link_info(hw);
4190 }
4191 
4192 static int
4193 hns3_cfg_mac_mode(struct hns3_hw *hw, bool enable)
4194 {
4195 	struct hns3_config_mac_mode_cmd *req;
4196 	struct hns3_cmd_desc desc;
4197 	uint32_t loop_en = 0;
4198 	uint8_t val = 0;
4199 	int ret;
4200 
4201 	req = (struct hns3_config_mac_mode_cmd *)desc.data;
4202 
4203 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAC_MODE, false);
4204 	if (enable)
4205 		val = 1;
4206 	hns3_set_bit(loop_en, HNS3_MAC_TX_EN_B, val);
4207 	hns3_set_bit(loop_en, HNS3_MAC_RX_EN_B, val);
4208 	hns3_set_bit(loop_en, HNS3_MAC_PAD_TX_B, val);
4209 	hns3_set_bit(loop_en, HNS3_MAC_PAD_RX_B, val);
4210 	hns3_set_bit(loop_en, HNS3_MAC_1588_TX_B, 0);
4211 	hns3_set_bit(loop_en, HNS3_MAC_1588_RX_B, 0);
4212 	hns3_set_bit(loop_en, HNS3_MAC_APP_LP_B, 0);
4213 	hns3_set_bit(loop_en, HNS3_MAC_LINE_LP_B, 0);
4214 	hns3_set_bit(loop_en, HNS3_MAC_FCS_TX_B, val);
4215 	hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_B, val);
4216 
4217 	/*
4218 	 * If RTE_ETH_RX_OFFLOAD_KEEP_CRC offload is set, MAC will not strip CRC
4219 	 * when receiving frames. Otherwise, CRC will be stripped.
4220 	 */
4221 	if (hw->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC)
4222 		hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, 0);
4223 	else
4224 		hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, val);
4225 	hns3_set_bit(loop_en, HNS3_MAC_TX_OVERSIZE_TRUNCATE_B, val);
4226 	hns3_set_bit(loop_en, HNS3_MAC_RX_OVERSIZE_TRUNCATE_B, val);
4227 	hns3_set_bit(loop_en, HNS3_MAC_TX_UNDER_MIN_ERR_B, val);
4228 	req->txrx_pad_fcs_loop_en = rte_cpu_to_le_32(loop_en);
4229 
4230 	ret = hns3_cmd_send(hw, &desc, 1);
4231 	if (ret)
4232 		PMD_INIT_LOG(ERR, "mac enable fail, ret =%d.", ret);
4233 
4234 	return ret;
4235 }
4236 
4237 static int
4238 hns3_get_mac_link_status(struct hns3_hw *hw)
4239 {
4240 	struct hns3_link_status_cmd *req;
4241 	struct hns3_cmd_desc desc;
4242 	int link_status;
4243 	int ret;
4244 
4245 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_LINK_STATUS, true);
4246 	ret = hns3_cmd_send(hw, &desc, 1);
4247 	if (ret) {
4248 		hns3_err(hw, "get link status cmd failed %d", ret);
4249 		return RTE_ETH_LINK_DOWN;
4250 	}
4251 
4252 	req = (struct hns3_link_status_cmd *)desc.data;
4253 	link_status = req->status & HNS3_LINK_STATUS_UP_M;
4254 
4255 	return !!link_status;
4256 }
4257 
4258 static bool
4259 hns3_update_link_status(struct hns3_hw *hw)
4260 {
4261 	int state;
4262 
4263 	state = hns3_get_mac_link_status(hw);
4264 	if (state != hw->mac.link_status) {
4265 		hw->mac.link_status = state;
4266 		hns3_warn(hw, "Link status change to %s!", state ? "up" : "down");
4267 		return true;
4268 	}
4269 
4270 	return false;
4271 }
4272 
4273 void
4274 hns3_update_linkstatus_and_event(struct hns3_hw *hw, bool query)
4275 {
4276 	struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
4277 	struct rte_eth_link new_link;
4278 	int ret;
4279 
4280 	if (query)
4281 		hns3_update_port_link_info(dev);
4282 
4283 	memset(&new_link, 0, sizeof(new_link));
4284 	hns3_setup_linkstatus(dev, &new_link);
4285 
4286 	ret = rte_eth_linkstatus_set(dev, &new_link);
4287 	if (ret == 0 && dev->data->dev_conf.intr_conf.lsc != 0)
4288 		hns3_start_report_lse(dev);
4289 }
4290 
4291 static void
4292 hns3_service_handler(void *param)
4293 {
4294 	struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
4295 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4296 	struct hns3_hw *hw = &hns->hw;
4297 
4298 	if (!hns3_is_reset_pending(hns)) {
4299 		hns3_update_linkstatus_and_event(hw, true);
4300 		hns3_update_hw_stats(hw);
4301 	} else {
4302 		hns3_warn(hw, "Cancel the query when reset is pending");
4303 	}
4304 
4305 	rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, eth_dev);
4306 }
4307 
4308 static int
4309 hns3_init_hardware(struct hns3_adapter *hns)
4310 {
4311 	struct hns3_hw *hw = &hns->hw;
4312 	int ret;
4313 
4314 	/*
4315 	 * All queue-related HW operations must be performed after the TCAM
4316 	 * table is configured.
4317 	 */
4318 	ret = hns3_map_tqp(hw);
4319 	if (ret) {
4320 		PMD_INIT_LOG(ERR, "Failed to map tqp: %d", ret);
4321 		return ret;
4322 	}
4323 
4324 	ret = hns3_init_umv_space(hw);
4325 	if (ret) {
4326 		PMD_INIT_LOG(ERR, "Failed to init umv space: %d", ret);
4327 		return ret;
4328 	}
4329 
4330 	ret = hns3_mac_init(hw);
4331 	if (ret) {
4332 		PMD_INIT_LOG(ERR, "Failed to init MAC: %d", ret);
4333 		goto err_mac_init;
4334 	}
4335 
4336 	ret = hns3_init_mgr_tbl(hw);
4337 	if (ret) {
4338 		PMD_INIT_LOG(ERR, "Failed to init manager table: %d", ret);
4339 		goto err_mac_init;
4340 	}
4341 
4342 	ret = hns3_promisc_init(hw);
4343 	if (ret) {
4344 		PMD_INIT_LOG(ERR, "Failed to init promisc: %d",
4345 			     ret);
4346 		goto err_mac_init;
4347 	}
4348 
4349 	ret = hns3_init_vlan_config(hns);
4350 	if (ret) {
4351 		PMD_INIT_LOG(ERR, "Failed to init vlan: %d", ret);
4352 		goto err_mac_init;
4353 	}
4354 
4355 	ret = hns3_dcb_init(hw);
4356 	if (ret) {
4357 		PMD_INIT_LOG(ERR, "Failed to init dcb: %d", ret);
4358 		goto err_mac_init;
4359 	}
4360 
4361 	ret = hns3_init_fd_config(hns);
4362 	if (ret) {
4363 		PMD_INIT_LOG(ERR, "Failed to init flow director: %d", ret);
4364 		goto err_mac_init;
4365 	}
4366 
4367 	ret = hns3_config_tso(hw, HNS3_TSO_MSS_MIN, HNS3_TSO_MSS_MAX);
4368 	if (ret) {
4369 		PMD_INIT_LOG(ERR, "Failed to config tso: %d", ret);
4370 		goto err_mac_init;
4371 	}
4372 
4373 	ret = hns3_config_gro(hw, false);
4374 	if (ret) {
4375 		PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
4376 		goto err_mac_init;
4377 	}
4378 
4379 	/*
4380 	 * In the initialization clearing the all hardware mapping relationship
4381 	 * configurations between queues and interrupt vectors is needed, so
4382 	 * some error caused by the residual configurations, such as the
4383 	 * unexpected interrupt, can be avoid.
4384 	 */
4385 	ret = hns3_init_ring_with_vector(hw);
4386 	if (ret) {
4387 		PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
4388 		goto err_mac_init;
4389 	}
4390 
4391 	return 0;
4392 
4393 err_mac_init:
4394 	hns3_uninit_umv_space(hw);
4395 	return ret;
4396 }
4397 
4398 static int
4399 hns3_clear_hw(struct hns3_hw *hw)
4400 {
4401 	struct hns3_cmd_desc desc;
4402 	int ret;
4403 
4404 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_HW_STATE, false);
4405 
4406 	ret = hns3_cmd_send(hw, &desc, 1);
4407 	if (ret && ret != -EOPNOTSUPP)
4408 		return ret;
4409 
4410 	return 0;
4411 }
4412 
4413 static void
4414 hns3_config_all_msix_error(struct hns3_hw *hw, bool enable)
4415 {
4416 	uint32_t val;
4417 
4418 	/*
4419 	 * The new firmware support report more hardware error types by
4420 	 * msix mode. These errors are defined as RAS errors in hardware
4421 	 * and belong to a different type from the MSI-x errors processed
4422 	 * by the network driver.
4423 	 *
4424 	 * Network driver should open the new error report on initialization.
4425 	 */
4426 	val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
4427 	hns3_set_bit(val, HNS3_VECTOR0_ALL_MSIX_ERR_B, enable ? 1 : 0);
4428 	hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, val);
4429 }
4430 
4431 static uint32_t
4432 hns3_set_firber_default_support_speed(struct hns3_hw *hw)
4433 {
4434 	struct hns3_mac *mac = &hw->mac;
4435 
4436 	switch (mac->link_speed) {
4437 	case RTE_ETH_SPEED_NUM_1G:
4438 		return HNS3_FIBER_LINK_SPEED_1G_BIT;
4439 	case RTE_ETH_SPEED_NUM_10G:
4440 		return HNS3_FIBER_LINK_SPEED_10G_BIT;
4441 	case RTE_ETH_SPEED_NUM_25G:
4442 		return HNS3_FIBER_LINK_SPEED_25G_BIT;
4443 	case RTE_ETH_SPEED_NUM_40G:
4444 		return HNS3_FIBER_LINK_SPEED_40G_BIT;
4445 	case RTE_ETH_SPEED_NUM_50G:
4446 		return HNS3_FIBER_LINK_SPEED_50G_BIT;
4447 	case RTE_ETH_SPEED_NUM_100G:
4448 		return HNS3_FIBER_LINK_SPEED_100G_BIT;
4449 	case RTE_ETH_SPEED_NUM_200G:
4450 		return HNS3_FIBER_LINK_SPEED_200G_BIT;
4451 	default:
4452 		hns3_warn(hw, "invalid speed %u Mbps.", mac->link_speed);
4453 		return 0;
4454 	}
4455 }
4456 
4457 /*
4458  * Validity of supported_speed for fiber and copper media type can be
4459  * guaranteed by the following policy:
4460  * Copper:
4461  *       Although the initialization of the phy in the firmware may not be
4462  *       completed, the firmware can guarantees that the supported_speed is
4463  *       an valid value.
4464  * Firber:
4465  *       If the version of firmware supports the active query way of the
4466  *       HNS3_OPC_GET_SFP_INFO opcode, the supported_speed can be obtained
4467  *       through it. If unsupported, use the SFP's speed as the value of the
4468  *       supported_speed.
4469  */
4470 static int
4471 hns3_get_port_supported_speed(struct rte_eth_dev *eth_dev)
4472 {
4473 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4474 	struct hns3_hw *hw = &hns->hw;
4475 	struct hns3_mac *mac = &hw->mac;
4476 	int ret;
4477 
4478 	ret = hns3_update_link_info(eth_dev);
4479 	if (ret)
4480 		return ret;
4481 
4482 	if (mac->media_type == HNS3_MEDIA_TYPE_FIBER ||
4483 	    mac->media_type == HNS3_MEDIA_TYPE_BACKPLANE) {
4484 		/*
4485 		 * Some firmware does not support the report of supported_speed,
4486 		 * and only report the effective speed of SFP/backplane. In this
4487 		 * case, it is necessary to use the SFP/backplane's speed as the
4488 		 * supported_speed.
4489 		 */
4490 		if (mac->supported_speed == 0)
4491 			mac->supported_speed =
4492 				hns3_set_firber_default_support_speed(hw);
4493 	}
4494 
4495 	return 0;
4496 }
4497 
4498 static void
4499 hns3_get_fc_autoneg_capability(struct hns3_adapter *hns)
4500 {
4501 	struct hns3_mac *mac = &hns->hw.mac;
4502 
4503 	if (mac->media_type == HNS3_MEDIA_TYPE_COPPER) {
4504 		hns->pf.support_fc_autoneg = true;
4505 		return;
4506 	}
4507 
4508 	/*
4509 	 * Flow control auto-negotiation requires the cooperation of the driver
4510 	 * and firmware. Currently, the optical port does not support flow
4511 	 * control auto-negotiation.
4512 	 */
4513 	hns->pf.support_fc_autoneg = false;
4514 }
4515 
4516 static int
4517 hns3_init_pf(struct rte_eth_dev *eth_dev)
4518 {
4519 	struct rte_device *dev = eth_dev->device;
4520 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
4521 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4522 	struct hns3_hw *hw = &hns->hw;
4523 	int ret;
4524 
4525 	PMD_INIT_FUNC_TRACE();
4526 
4527 	/* Get hardware io base address from pcie BAR2 IO space */
4528 	hw->io_base = pci_dev->mem_resource[2].addr;
4529 
4530 	/* Firmware command queue initialize */
4531 	ret = hns3_cmd_init_queue(hw);
4532 	if (ret) {
4533 		PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
4534 		goto err_cmd_init_queue;
4535 	}
4536 
4537 	hns3_clear_all_event_cause(hw);
4538 
4539 	/* Firmware command initialize */
4540 	ret = hns3_cmd_init(hw);
4541 	if (ret) {
4542 		PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
4543 		goto err_cmd_init;
4544 	}
4545 
4546 	hns3_tx_push_init(eth_dev);
4547 
4548 	/*
4549 	 * To ensure that the hardware environment is clean during
4550 	 * initialization, the driver actively clear the hardware environment
4551 	 * during initialization, including PF and corresponding VFs' vlan, mac,
4552 	 * flow table configurations, etc.
4553 	 */
4554 	ret = hns3_clear_hw(hw);
4555 	if (ret) {
4556 		PMD_INIT_LOG(ERR, "failed to clear hardware: %d", ret);
4557 		goto err_cmd_init;
4558 	}
4559 
4560 	hns3_config_all_msix_error(hw, true);
4561 
4562 	ret = rte_intr_callback_register(pci_dev->intr_handle,
4563 					 hns3_interrupt_handler,
4564 					 eth_dev);
4565 	if (ret) {
4566 		PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
4567 		goto err_intr_callback_register;
4568 	}
4569 
4570 	ret = hns3_ptp_init(hw);
4571 	if (ret)
4572 		goto err_get_config;
4573 
4574 	/* Enable interrupt */
4575 	rte_intr_enable(pci_dev->intr_handle);
4576 	hns3_pf_enable_irq0(hw);
4577 
4578 	/* Get configuration */
4579 	ret = hns3_get_configuration(hw);
4580 	if (ret) {
4581 		PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
4582 		goto err_get_config;
4583 	}
4584 
4585 	ret = hns3_stats_init(hw);
4586 	if (ret)
4587 		goto err_get_config;
4588 
4589 	ret = hns3_init_hardware(hns);
4590 	if (ret) {
4591 		PMD_INIT_LOG(ERR, "Failed to init hardware: %d", ret);
4592 		goto err_init_hw;
4593 	}
4594 
4595 	/* Initialize flow director filter list & hash */
4596 	ret = hns3_fdir_filter_init(hns);
4597 	if (ret) {
4598 		PMD_INIT_LOG(ERR, "Failed to alloc hashmap for fdir: %d", ret);
4599 		goto err_fdir;
4600 	}
4601 
4602 	hns3_rss_set_default_args(hw);
4603 
4604 	ret = hns3_enable_hw_error_intr(hns, true);
4605 	if (ret) {
4606 		PMD_INIT_LOG(ERR, "fail to enable hw error interrupts: %d",
4607 			     ret);
4608 		goto err_enable_intr;
4609 	}
4610 
4611 	ret = hns3_get_port_supported_speed(eth_dev);
4612 	if (ret) {
4613 		PMD_INIT_LOG(ERR, "failed to get speed capabilities supported "
4614 			     "by device, ret = %d.", ret);
4615 		goto err_supported_speed;
4616 	}
4617 
4618 	hns3_get_fc_autoneg_capability(hns);
4619 
4620 	hns3_tm_conf_init(eth_dev);
4621 
4622 	return 0;
4623 
4624 err_supported_speed:
4625 	(void)hns3_enable_hw_error_intr(hns, false);
4626 err_enable_intr:
4627 	hns3_fdir_filter_uninit(hns);
4628 err_fdir:
4629 	hns3_uninit_umv_space(hw);
4630 err_init_hw:
4631 	hns3_stats_uninit(hw);
4632 err_get_config:
4633 	hns3_pf_disable_irq0(hw);
4634 	rte_intr_disable(pci_dev->intr_handle);
4635 	hns3_intr_unregister(pci_dev->intr_handle, hns3_interrupt_handler,
4636 			     eth_dev);
4637 err_intr_callback_register:
4638 err_cmd_init:
4639 	hns3_cmd_uninit(hw);
4640 	hns3_cmd_destroy_queue(hw);
4641 err_cmd_init_queue:
4642 	hw->io_base = NULL;
4643 
4644 	return ret;
4645 }
4646 
4647 static void
4648 hns3_uninit_pf(struct rte_eth_dev *eth_dev)
4649 {
4650 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4651 	struct rte_device *dev = eth_dev->device;
4652 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
4653 	struct hns3_hw *hw = &hns->hw;
4654 
4655 	PMD_INIT_FUNC_TRACE();
4656 
4657 	hns3_tm_conf_uninit(eth_dev);
4658 	hns3_enable_hw_error_intr(hns, false);
4659 	hns3_rss_uninit(hns);
4660 	(void)hns3_config_gro(hw, false);
4661 	hns3_promisc_uninit(hw);
4662 	hns3_flow_uninit(eth_dev);
4663 	hns3_fdir_filter_uninit(hns);
4664 	hns3_uninit_umv_space(hw);
4665 	hns3_stats_uninit(hw);
4666 	hns3_config_mac_tnl_int(hw, false);
4667 	hns3_pf_disable_irq0(hw);
4668 	rte_intr_disable(pci_dev->intr_handle);
4669 	hns3_intr_unregister(pci_dev->intr_handle, hns3_interrupt_handler,
4670 			     eth_dev);
4671 	hns3_config_all_msix_error(hw, false);
4672 	hns3_cmd_uninit(hw);
4673 	hns3_cmd_destroy_queue(hw);
4674 	hw->io_base = NULL;
4675 }
4676 
4677 static uint32_t
4678 hns3_convert_link_speeds2bitmap_copper(uint32_t link_speeds)
4679 {
4680 	uint32_t speed_bit;
4681 
4682 	switch (link_speeds & ~RTE_ETH_LINK_SPEED_FIXED) {
4683 	case RTE_ETH_LINK_SPEED_10M:
4684 		speed_bit = HNS3_PHY_LINK_SPEED_10M_BIT;
4685 		break;
4686 	case RTE_ETH_LINK_SPEED_10M_HD:
4687 		speed_bit = HNS3_PHY_LINK_SPEED_10M_HD_BIT;
4688 		break;
4689 	case RTE_ETH_LINK_SPEED_100M:
4690 		speed_bit = HNS3_PHY_LINK_SPEED_100M_BIT;
4691 		break;
4692 	case RTE_ETH_LINK_SPEED_100M_HD:
4693 		speed_bit = HNS3_PHY_LINK_SPEED_100M_HD_BIT;
4694 		break;
4695 	case RTE_ETH_LINK_SPEED_1G:
4696 		speed_bit = HNS3_PHY_LINK_SPEED_1000M_BIT;
4697 		break;
4698 	default:
4699 		speed_bit = 0;
4700 		break;
4701 	}
4702 
4703 	return speed_bit;
4704 }
4705 
4706 static uint32_t
4707 hns3_convert_link_speeds2bitmap_fiber(uint32_t link_speeds)
4708 {
4709 	uint32_t speed_bit;
4710 
4711 	switch (link_speeds & ~RTE_ETH_LINK_SPEED_FIXED) {
4712 	case RTE_ETH_LINK_SPEED_1G:
4713 		speed_bit = HNS3_FIBER_LINK_SPEED_1G_BIT;
4714 		break;
4715 	case RTE_ETH_LINK_SPEED_10G:
4716 		speed_bit = HNS3_FIBER_LINK_SPEED_10G_BIT;
4717 		break;
4718 	case RTE_ETH_LINK_SPEED_25G:
4719 		speed_bit = HNS3_FIBER_LINK_SPEED_25G_BIT;
4720 		break;
4721 	case RTE_ETH_LINK_SPEED_40G:
4722 		speed_bit = HNS3_FIBER_LINK_SPEED_40G_BIT;
4723 		break;
4724 	case RTE_ETH_LINK_SPEED_50G:
4725 		speed_bit = HNS3_FIBER_LINK_SPEED_50G_BIT;
4726 		break;
4727 	case RTE_ETH_LINK_SPEED_100G:
4728 		speed_bit = HNS3_FIBER_LINK_SPEED_100G_BIT;
4729 		break;
4730 	case RTE_ETH_LINK_SPEED_200G:
4731 		speed_bit = HNS3_FIBER_LINK_SPEED_200G_BIT;
4732 		break;
4733 	default:
4734 		speed_bit = 0;
4735 		break;
4736 	}
4737 
4738 	return speed_bit;
4739 }
4740 
4741 static int
4742 hns3_check_port_speed(struct hns3_hw *hw, uint32_t link_speeds)
4743 {
4744 	struct hns3_mac *mac = &hw->mac;
4745 	uint32_t supported_speed = mac->supported_speed;
4746 	uint32_t speed_bit = 0;
4747 
4748 	if (mac->media_type == HNS3_MEDIA_TYPE_COPPER)
4749 		speed_bit = hns3_convert_link_speeds2bitmap_copper(link_speeds);
4750 	else
4751 		speed_bit = hns3_convert_link_speeds2bitmap_fiber(link_speeds);
4752 
4753 	if (!(speed_bit & supported_speed)) {
4754 		hns3_err(hw, "link_speeds(0x%x) exceeds the supported speed capability or is incorrect.",
4755 			 link_speeds);
4756 		return -EINVAL;
4757 	}
4758 
4759 	return 0;
4760 }
4761 
4762 static uint32_t
4763 hns3_get_link_speed(uint32_t link_speeds)
4764 {
4765 	uint32_t speed = RTE_ETH_SPEED_NUM_NONE;
4766 
4767 	if (link_speeds & RTE_ETH_LINK_SPEED_10M ||
4768 	    link_speeds & RTE_ETH_LINK_SPEED_10M_HD)
4769 		speed = RTE_ETH_SPEED_NUM_10M;
4770 	if (link_speeds & RTE_ETH_LINK_SPEED_100M ||
4771 	    link_speeds & RTE_ETH_LINK_SPEED_100M_HD)
4772 		speed = RTE_ETH_SPEED_NUM_100M;
4773 	if (link_speeds & RTE_ETH_LINK_SPEED_1G)
4774 		speed = RTE_ETH_SPEED_NUM_1G;
4775 	if (link_speeds & RTE_ETH_LINK_SPEED_10G)
4776 		speed = RTE_ETH_SPEED_NUM_10G;
4777 	if (link_speeds & RTE_ETH_LINK_SPEED_25G)
4778 		speed = RTE_ETH_SPEED_NUM_25G;
4779 	if (link_speeds & RTE_ETH_LINK_SPEED_40G)
4780 		speed = RTE_ETH_SPEED_NUM_40G;
4781 	if (link_speeds & RTE_ETH_LINK_SPEED_50G)
4782 		speed = RTE_ETH_SPEED_NUM_50G;
4783 	if (link_speeds & RTE_ETH_LINK_SPEED_100G)
4784 		speed = RTE_ETH_SPEED_NUM_100G;
4785 	if (link_speeds & RTE_ETH_LINK_SPEED_200G)
4786 		speed = RTE_ETH_SPEED_NUM_200G;
4787 
4788 	return speed;
4789 }
4790 
4791 static uint8_t
4792 hns3_get_link_duplex(uint32_t link_speeds)
4793 {
4794 	if ((link_speeds & RTE_ETH_LINK_SPEED_10M_HD) ||
4795 	    (link_speeds & RTE_ETH_LINK_SPEED_100M_HD))
4796 		return RTE_ETH_LINK_HALF_DUPLEX;
4797 	else
4798 		return RTE_ETH_LINK_FULL_DUPLEX;
4799 }
4800 
4801 static int
4802 hns3_set_copper_port_link_speed(struct hns3_hw *hw,
4803 				struct hns3_set_link_speed_cfg *cfg)
4804 {
4805 	struct hns3_cmd_desc desc[HNS3_PHY_PARAM_CFG_BD_NUM];
4806 	struct hns3_phy_params_bd0_cmd *req;
4807 	uint16_t i;
4808 
4809 	for (i = 0; i < HNS3_PHY_PARAM_CFG_BD_NUM - 1; i++) {
4810 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG,
4811 					  false);
4812 		desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
4813 	}
4814 	hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG, false);
4815 	req = (struct hns3_phy_params_bd0_cmd *)desc[0].data;
4816 	req->autoneg = cfg->autoneg;
4817 
4818 	/*
4819 	 * The full speed capability is used to negotiate when
4820 	 * auto-negotiation is enabled.
4821 	 */
4822 	if (cfg->autoneg) {
4823 		req->advertising = HNS3_PHY_LINK_SPEED_10M_BIT |
4824 				    HNS3_PHY_LINK_SPEED_10M_HD_BIT |
4825 				    HNS3_PHY_LINK_SPEED_100M_BIT |
4826 				    HNS3_PHY_LINK_SPEED_100M_HD_BIT |
4827 				    HNS3_PHY_LINK_SPEED_1000M_BIT;
4828 	} else {
4829 		req->speed = cfg->speed;
4830 		req->duplex = cfg->duplex;
4831 	}
4832 
4833 	return hns3_cmd_send(hw, desc, HNS3_PHY_PARAM_CFG_BD_NUM);
4834 }
4835 
4836 static int
4837 hns3_set_autoneg(struct hns3_hw *hw, bool enable)
4838 {
4839 	struct hns3_config_auto_neg_cmd *req;
4840 	struct hns3_cmd_desc desc;
4841 	uint32_t flag = 0;
4842 	int ret;
4843 
4844 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_AN_MODE, false);
4845 
4846 	req = (struct hns3_config_auto_neg_cmd *)desc.data;
4847 	if (enable)
4848 		hns3_set_bit(flag, HNS3_MAC_CFG_AN_EN_B, 1);
4849 	req->cfg_an_cmd_flag = rte_cpu_to_le_32(flag);
4850 
4851 	ret = hns3_cmd_send(hw, &desc, 1);
4852 	if (ret)
4853 		hns3_err(hw, "autoneg set cmd failed, ret = %d.", ret);
4854 
4855 	return ret;
4856 }
4857 
4858 static int
4859 hns3_set_fiber_port_link_speed(struct hns3_hw *hw,
4860 			       struct hns3_set_link_speed_cfg *cfg)
4861 {
4862 	int ret;
4863 
4864 	if (hw->mac.support_autoneg) {
4865 		ret = hns3_set_autoneg(hw, cfg->autoneg);
4866 		if (ret) {
4867 			hns3_err(hw, "failed to configure auto-negotiation.");
4868 			return ret;
4869 		}
4870 
4871 		/*
4872 		 * To enable auto-negotiation, we only need to open the switch
4873 		 * of auto-negotiation, then firmware sets all speed
4874 		 * capabilities.
4875 		 */
4876 		if (cfg->autoneg)
4877 			return 0;
4878 	}
4879 
4880 	/*
4881 	 * Some hardware doesn't support auto-negotiation, but users may not
4882 	 * configure link_speeds (default 0), which means auto-negotiation.
4883 	 * In this case, a warning message need to be printed, instead of
4884 	 * an error.
4885 	 */
4886 	if (cfg->autoneg) {
4887 		hns3_warn(hw, "auto-negotiation is not supported, use default fixed speed!");
4888 		return 0;
4889 	}
4890 
4891 	return hns3_cfg_mac_speed_dup(hw, cfg->speed, cfg->duplex);
4892 }
4893 
4894 static const char *
4895 hns3_get_media_type_name(uint8_t media_type)
4896 {
4897 	if (media_type == HNS3_MEDIA_TYPE_FIBER)
4898 		return "fiber";
4899 	else if (media_type == HNS3_MEDIA_TYPE_COPPER)
4900 		return "copper";
4901 	else if (media_type == HNS3_MEDIA_TYPE_BACKPLANE)
4902 		return "backplane";
4903 	else
4904 		return "unknown";
4905 }
4906 
4907 static int
4908 hns3_set_port_link_speed(struct hns3_hw *hw,
4909 			 struct hns3_set_link_speed_cfg *cfg)
4910 {
4911 	int ret;
4912 
4913 	if (hw->mac.media_type == HNS3_MEDIA_TYPE_COPPER)
4914 		ret = hns3_set_copper_port_link_speed(hw, cfg);
4915 	else
4916 		ret = hns3_set_fiber_port_link_speed(hw, cfg);
4917 
4918 	if (ret) {
4919 		hns3_err(hw, "failed to set %s port link speed, ret = %d.",
4920 			 hns3_get_media_type_name(hw->mac.media_type),
4921 			 ret);
4922 		return ret;
4923 	}
4924 
4925 	return 0;
4926 }
4927 
4928 static int
4929 hns3_apply_link_speed(struct hns3_hw *hw)
4930 {
4931 	struct rte_eth_conf *conf = &hw->data->dev_conf;
4932 	struct hns3_set_link_speed_cfg cfg;
4933 
4934 	memset(&cfg, 0, sizeof(struct hns3_set_link_speed_cfg));
4935 	cfg.autoneg = (conf->link_speeds == RTE_ETH_LINK_SPEED_AUTONEG) ?
4936 			RTE_ETH_LINK_AUTONEG : RTE_ETH_LINK_FIXED;
4937 	if (cfg.autoneg != RTE_ETH_LINK_AUTONEG) {
4938 		cfg.speed = hns3_get_link_speed(conf->link_speeds);
4939 		cfg.duplex = hns3_get_link_duplex(conf->link_speeds);
4940 	}
4941 
4942 	return hns3_set_port_link_speed(hw, &cfg);
4943 }
4944 
4945 static int
4946 hns3_do_start(struct hns3_adapter *hns, bool reset_queue)
4947 {
4948 	struct hns3_hw *hw = &hns->hw;
4949 	bool link_en;
4950 	int ret;
4951 
4952 	ret = hns3_update_queue_map_configure(hns);
4953 	if (ret) {
4954 		hns3_err(hw, "failed to update queue mapping configuration, ret = %d",
4955 			 ret);
4956 		return ret;
4957 	}
4958 
4959 	/* Note: hns3_tm_conf_update must be called after configuring DCB. */
4960 	ret = hns3_tm_conf_update(hw);
4961 	if (ret) {
4962 		PMD_INIT_LOG(ERR, "failed to update tm conf, ret = %d.", ret);
4963 		return ret;
4964 	}
4965 
4966 	hns3_enable_rxd_adv_layout(hw);
4967 
4968 	ret = hns3_init_queues(hns, reset_queue);
4969 	if (ret) {
4970 		PMD_INIT_LOG(ERR, "failed to init queues, ret = %d.", ret);
4971 		return ret;
4972 	}
4973 
4974 	link_en = hw->set_link_down ? false : true;
4975 	ret = hns3_cfg_mac_mode(hw, link_en);
4976 	if (ret) {
4977 		PMD_INIT_LOG(ERR, "failed to enable MAC, ret = %d", ret);
4978 		goto err_config_mac_mode;
4979 	}
4980 
4981 	ret = hns3_apply_link_speed(hw);
4982 	if (ret)
4983 		goto err_set_link_speed;
4984 
4985 	return hns3_restore_filter(hns);
4986 
4987 err_set_link_speed:
4988 	(void)hns3_cfg_mac_mode(hw, false);
4989 
4990 err_config_mac_mode:
4991 	hns3_dev_release_mbufs(hns);
4992 	/*
4993 	 * Here is exception handling, hns3_reset_all_tqps will have the
4994 	 * corresponding error message if it is handled incorrectly, so it is
4995 	 * not necessary to check hns3_reset_all_tqps return value, here keep
4996 	 * ret as the error code causing the exception.
4997 	 */
4998 	(void)hns3_reset_all_tqps(hns);
4999 	return ret;
5000 }
5001 
5002 static int
5003 hns3_dev_start(struct rte_eth_dev *dev)
5004 {
5005 	struct hns3_adapter *hns = dev->data->dev_private;
5006 	struct hns3_hw *hw = &hns->hw;
5007 	bool old_state = hw->set_link_down;
5008 	int ret;
5009 
5010 	PMD_INIT_FUNC_TRACE();
5011 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED))
5012 		return -EBUSY;
5013 
5014 	rte_spinlock_lock(&hw->lock);
5015 	hw->adapter_state = HNS3_NIC_STARTING;
5016 
5017 	/*
5018 	 * If the dev_set_link_down() API has been called, the "set_link_down"
5019 	 * flag can be cleared by dev_start() API. In addition, the flag should
5020 	 * also be cleared before calling hns3_do_start() so that MAC can be
5021 	 * enabled in dev_start stage.
5022 	 */
5023 	hw->set_link_down = false;
5024 	ret = hns3_do_start(hns, true);
5025 	if (ret)
5026 		goto do_start_fail;
5027 
5028 	ret = hns3_map_rx_interrupt(dev);
5029 	if (ret)
5030 		goto map_rx_inter_err;
5031 
5032 	/*
5033 	 * There are three register used to control the status of a TQP
5034 	 * (contains a pair of Tx queue and Rx queue) in the new version network
5035 	 * engine. One is used to control the enabling of Tx queue, the other is
5036 	 * used to control the enabling of Rx queue, and the last is the master
5037 	 * switch used to control the enabling of the tqp. The Tx register and
5038 	 * TQP register must be enabled at the same time to enable a Tx queue.
5039 	 * The same applies to the Rx queue. For the older network engine, this
5040 	 * function only refresh the enabled flag, and it is used to update the
5041 	 * status of queue in the dpdk framework.
5042 	 */
5043 	ret = hns3_start_all_txqs(dev);
5044 	if (ret)
5045 		goto map_rx_inter_err;
5046 
5047 	ret = hns3_start_all_rxqs(dev);
5048 	if (ret)
5049 		goto start_all_rxqs_fail;
5050 
5051 	hw->adapter_state = HNS3_NIC_STARTED;
5052 	rte_spinlock_unlock(&hw->lock);
5053 
5054 	hns3_rx_scattered_calc(dev);
5055 	hns3_set_rxtx_function(dev);
5056 	hns3_mp_req_start_rxtx(dev);
5057 
5058 	/* Enable interrupt of all rx queues before enabling queues */
5059 	hns3_dev_all_rx_queue_intr_enable(hw, true);
5060 
5061 	/*
5062 	 * After finished the initialization, enable tqps to receive/transmit
5063 	 * packets and refresh all queue status.
5064 	 */
5065 	hns3_start_tqps(hw);
5066 
5067 	hns3_tm_dev_start_proc(hw);
5068 
5069 	if (dev->data->dev_conf.intr_conf.lsc != 0)
5070 		hns3_dev_link_update(dev, 0);
5071 	rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, dev);
5072 
5073 	hns3_info(hw, "hns3 dev start successful!");
5074 
5075 	return 0;
5076 
5077 start_all_rxqs_fail:
5078 	hns3_stop_all_txqs(dev);
5079 map_rx_inter_err:
5080 	(void)hns3_do_stop(hns);
5081 do_start_fail:
5082 	hw->set_link_down = old_state;
5083 	hw->adapter_state = HNS3_NIC_CONFIGURED;
5084 	rte_spinlock_unlock(&hw->lock);
5085 
5086 	return ret;
5087 }
5088 
5089 static int
5090 hns3_do_stop(struct hns3_adapter *hns)
5091 {
5092 	struct hns3_hw *hw = &hns->hw;
5093 	int ret;
5094 
5095 	/*
5096 	 * The "hns3_do_stop" function will also be called by .stop_service to
5097 	 * prepare reset. At the time of global or IMP reset, the command cannot
5098 	 * be sent to stop the tx/rx queues. The mbuf in Tx/Rx queues may be
5099 	 * accessed during the reset process. So the mbuf can not be released
5100 	 * during reset and is required to be released after the reset is
5101 	 * completed.
5102 	 */
5103 	if (__atomic_load_n(&hw->reset.resetting,  __ATOMIC_RELAXED) == 0)
5104 		hns3_dev_release_mbufs(hns);
5105 
5106 	ret = hns3_cfg_mac_mode(hw, false);
5107 	if (ret)
5108 		return ret;
5109 	hw->mac.link_status = RTE_ETH_LINK_DOWN;
5110 
5111 	if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0) {
5112 		hns3_configure_all_mac_addr(hns, true);
5113 		ret = hns3_reset_all_tqps(hns);
5114 		if (ret) {
5115 			hns3_err(hw, "failed to reset all queues ret = %d.",
5116 				 ret);
5117 			return ret;
5118 		}
5119 	}
5120 
5121 	return 0;
5122 }
5123 
5124 static int
5125 hns3_dev_stop(struct rte_eth_dev *dev)
5126 {
5127 	struct hns3_adapter *hns = dev->data->dev_private;
5128 	struct hns3_hw *hw = &hns->hw;
5129 
5130 	PMD_INIT_FUNC_TRACE();
5131 	dev->data->dev_started = 0;
5132 
5133 	hw->adapter_state = HNS3_NIC_STOPPING;
5134 	hns3_set_rxtx_function(dev);
5135 	rte_wmb();
5136 	/* Disable datapath on secondary process. */
5137 	hns3_mp_req_stop_rxtx(dev);
5138 	/* Prevent crashes when queues are still in use. */
5139 	rte_delay_ms(hw->cfg_max_queues);
5140 
5141 	rte_spinlock_lock(&hw->lock);
5142 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
5143 		hns3_tm_dev_stop_proc(hw);
5144 		hns3_config_mac_tnl_int(hw, false);
5145 		hns3_stop_tqps(hw);
5146 		hns3_do_stop(hns);
5147 		hns3_unmap_rx_interrupt(dev);
5148 		hw->adapter_state = HNS3_NIC_CONFIGURED;
5149 	}
5150 	hns3_rx_scattered_reset(dev);
5151 	rte_eal_alarm_cancel(hns3_service_handler, dev);
5152 	hns3_stop_report_lse(dev);
5153 	rte_spinlock_unlock(&hw->lock);
5154 
5155 	return 0;
5156 }
5157 
5158 static int
5159 hns3_dev_close(struct rte_eth_dev *eth_dev)
5160 {
5161 	struct hns3_adapter *hns = eth_dev->data->dev_private;
5162 	struct hns3_hw *hw = &hns->hw;
5163 	int ret = 0;
5164 
5165 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
5166 		hns3_mp_uninit(eth_dev);
5167 		return 0;
5168 	}
5169 
5170 	if (hw->adapter_state == HNS3_NIC_STARTED)
5171 		ret = hns3_dev_stop(eth_dev);
5172 
5173 	hw->adapter_state = HNS3_NIC_CLOSING;
5174 	hns3_reset_abort(hns);
5175 	hw->adapter_state = HNS3_NIC_CLOSED;
5176 
5177 	hns3_configure_all_mc_mac_addr(hns, true);
5178 	hns3_remove_all_vlan_table(hns);
5179 	hns3_vlan_txvlan_cfg(hns, HNS3_PORT_BASE_VLAN_DISABLE, 0);
5180 	hns3_uninit_pf(eth_dev);
5181 	hns3_free_all_queues(eth_dev);
5182 	rte_free(hw->reset.wait_data);
5183 	hns3_mp_uninit(eth_dev);
5184 	hns3_warn(hw, "Close port %u finished", hw->data->port_id);
5185 
5186 	return ret;
5187 }
5188 
5189 static void
5190 hns3_get_autoneg_rxtx_pause_copper(struct hns3_hw *hw, bool *rx_pause,
5191 				   bool *tx_pause)
5192 {
5193 	struct hns3_mac *mac = &hw->mac;
5194 	uint32_t advertising = mac->advertising;
5195 	uint32_t lp_advertising = mac->lp_advertising;
5196 	*rx_pause = false;
5197 	*tx_pause = false;
5198 
5199 	if (advertising & lp_advertising & HNS3_PHY_LINK_MODE_PAUSE_BIT) {
5200 		*rx_pause = true;
5201 		*tx_pause = true;
5202 	} else if (advertising & lp_advertising &
5203 		   HNS3_PHY_LINK_MODE_ASYM_PAUSE_BIT) {
5204 		if (advertising & HNS3_PHY_LINK_MODE_PAUSE_BIT)
5205 			*rx_pause = true;
5206 		else if (lp_advertising & HNS3_PHY_LINK_MODE_PAUSE_BIT)
5207 			*tx_pause = true;
5208 	}
5209 }
5210 
5211 static enum hns3_fc_mode
5212 hns3_get_autoneg_fc_mode(struct hns3_hw *hw)
5213 {
5214 	enum hns3_fc_mode current_mode;
5215 	bool rx_pause = false;
5216 	bool tx_pause = false;
5217 
5218 	switch (hw->mac.media_type) {
5219 	case HNS3_MEDIA_TYPE_COPPER:
5220 		hns3_get_autoneg_rxtx_pause_copper(hw, &rx_pause, &tx_pause);
5221 		break;
5222 
5223 	/*
5224 	 * Flow control auto-negotiation is not supported for fiber and
5225 	 * backplane media type.
5226 	 */
5227 	case HNS3_MEDIA_TYPE_FIBER:
5228 	case HNS3_MEDIA_TYPE_BACKPLANE:
5229 		hns3_err(hw, "autoneg FC mode can't be obtained, but flow control auto-negotiation is enabled.");
5230 		current_mode = hw->requested_fc_mode;
5231 		goto out;
5232 	default:
5233 		hns3_err(hw, "autoneg FC mode can't be obtained for unknown media type(%u).",
5234 			 hw->mac.media_type);
5235 		current_mode = HNS3_FC_NONE;
5236 		goto out;
5237 	}
5238 
5239 	if (rx_pause && tx_pause)
5240 		current_mode = HNS3_FC_FULL;
5241 	else if (rx_pause)
5242 		current_mode = HNS3_FC_RX_PAUSE;
5243 	else if (tx_pause)
5244 		current_mode = HNS3_FC_TX_PAUSE;
5245 	else
5246 		current_mode = HNS3_FC_NONE;
5247 
5248 out:
5249 	return current_mode;
5250 }
5251 
5252 static enum hns3_fc_mode
5253 hns3_get_current_fc_mode(struct rte_eth_dev *dev)
5254 {
5255 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5256 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5257 	struct hns3_mac *mac = &hw->mac;
5258 
5259 	/*
5260 	 * When the flow control mode is obtained, the device may not complete
5261 	 * auto-negotiation. It is necessary to wait for link establishment.
5262 	 */
5263 	(void)hns3_dev_link_update(dev, 1);
5264 
5265 	/*
5266 	 * If the link auto-negotiation of the nic is disabled, or the flow
5267 	 * control auto-negotiation is not supported, the forced flow control
5268 	 * mode is used.
5269 	 */
5270 	if (mac->link_autoneg == 0 || !pf->support_fc_autoneg)
5271 		return hw->requested_fc_mode;
5272 
5273 	return hns3_get_autoneg_fc_mode(hw);
5274 }
5275 
5276 int
5277 hns3_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
5278 {
5279 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5280 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5281 	enum hns3_fc_mode current_mode;
5282 
5283 	current_mode = hns3_get_current_fc_mode(dev);
5284 	switch (current_mode) {
5285 	case HNS3_FC_FULL:
5286 		fc_conf->mode = RTE_ETH_FC_FULL;
5287 		break;
5288 	case HNS3_FC_TX_PAUSE:
5289 		fc_conf->mode = RTE_ETH_FC_TX_PAUSE;
5290 		break;
5291 	case HNS3_FC_RX_PAUSE:
5292 		fc_conf->mode = RTE_ETH_FC_RX_PAUSE;
5293 		break;
5294 	case HNS3_FC_NONE:
5295 	default:
5296 		fc_conf->mode = RTE_ETH_FC_NONE;
5297 		break;
5298 	}
5299 
5300 	fc_conf->pause_time = pf->pause_time;
5301 	fc_conf->autoneg = pf->support_fc_autoneg ? hw->mac.link_autoneg : 0;
5302 
5303 	return 0;
5304 }
5305 
5306 static int
5307 hns3_check_fc_autoneg_valid(struct hns3_hw *hw, uint8_t autoneg)
5308 {
5309 	struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw);
5310 
5311 	if (!pf->support_fc_autoneg) {
5312 		if (autoneg != 0) {
5313 			hns3_err(hw, "unsupported fc auto-negotiation setting.");
5314 			return -EOPNOTSUPP;
5315 		}
5316 
5317 		/*
5318 		 * Flow control auto-negotiation of the NIC is not supported,
5319 		 * but other auto-negotiation features may be supported.
5320 		 */
5321 		if (autoneg != hw->mac.link_autoneg) {
5322 			hns3_err(hw, "please use 'link_speeds' in struct rte_eth_conf to disable autoneg!");
5323 			return -EOPNOTSUPP;
5324 		}
5325 
5326 		return 0;
5327 	}
5328 
5329 	/*
5330 	 * If flow control auto-negotiation of the NIC is supported, all
5331 	 * auto-negotiation features are supported.
5332 	 */
5333 	if (autoneg != hw->mac.link_autoneg) {
5334 		hns3_err(hw, "please use 'link_speeds' in struct rte_eth_conf to change autoneg!");
5335 		return -EOPNOTSUPP;
5336 	}
5337 
5338 	return 0;
5339 }
5340 
5341 static int
5342 hns3_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
5343 {
5344 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5345 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5346 	int ret;
5347 
5348 	if (fc_conf->high_water || fc_conf->low_water ||
5349 	    fc_conf->send_xon || fc_conf->mac_ctrl_frame_fwd) {
5350 		hns3_err(hw, "Unsupported flow control settings specified, "
5351 			 "high_water(%u), low_water(%u), send_xon(%u) and "
5352 			 "mac_ctrl_frame_fwd(%u) must be set to '0'",
5353 			 fc_conf->high_water, fc_conf->low_water,
5354 			 fc_conf->send_xon, fc_conf->mac_ctrl_frame_fwd);
5355 		return -EINVAL;
5356 	}
5357 
5358 	ret = hns3_check_fc_autoneg_valid(hw, fc_conf->autoneg);
5359 	if (ret)
5360 		return ret;
5361 
5362 	if (!fc_conf->pause_time) {
5363 		hns3_err(hw, "Invalid pause time %u setting.",
5364 			 fc_conf->pause_time);
5365 		return -EINVAL;
5366 	}
5367 
5368 	if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
5369 	    hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE)) {
5370 		hns3_err(hw, "PFC is enabled. Cannot set MAC pause. "
5371 			 "current_fc_status = %d", hw->current_fc_status);
5372 		return -EOPNOTSUPP;
5373 	}
5374 
5375 	if (hw->num_tc > 1 && !pf->support_multi_tc_pause) {
5376 		hns3_err(hw, "in multi-TC scenarios, MAC pause is not supported.");
5377 		return -EOPNOTSUPP;
5378 	}
5379 
5380 	rte_spinlock_lock(&hw->lock);
5381 	ret = hns3_fc_enable(dev, fc_conf);
5382 	rte_spinlock_unlock(&hw->lock);
5383 
5384 	return ret;
5385 }
5386 
5387 static int
5388 hns3_priority_flow_ctrl_set(struct rte_eth_dev *dev,
5389 			    struct rte_eth_pfc_conf *pfc_conf)
5390 {
5391 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5392 	int ret;
5393 
5394 	if (!hns3_dev_get_support(hw, DCB)) {
5395 		hns3_err(hw, "This port does not support dcb configurations.");
5396 		return -EOPNOTSUPP;
5397 	}
5398 
5399 	if (pfc_conf->fc.high_water || pfc_conf->fc.low_water ||
5400 	    pfc_conf->fc.send_xon || pfc_conf->fc.mac_ctrl_frame_fwd) {
5401 		hns3_err(hw, "Unsupported flow control settings specified, "
5402 			 "high_water(%u), low_water(%u), send_xon(%u) and "
5403 			 "mac_ctrl_frame_fwd(%u) must be set to '0'",
5404 			 pfc_conf->fc.high_water, pfc_conf->fc.low_water,
5405 			 pfc_conf->fc.send_xon,
5406 			 pfc_conf->fc.mac_ctrl_frame_fwd);
5407 		return -EINVAL;
5408 	}
5409 	if (pfc_conf->fc.autoneg) {
5410 		hns3_err(hw, "Unsupported fc auto-negotiation setting.");
5411 		return -EINVAL;
5412 	}
5413 	if (pfc_conf->fc.pause_time == 0) {
5414 		hns3_err(hw, "Invalid pause time %u setting.",
5415 			 pfc_conf->fc.pause_time);
5416 		return -EINVAL;
5417 	}
5418 
5419 	if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
5420 	    hw->current_fc_status == HNS3_FC_STATUS_PFC)) {
5421 		hns3_err(hw, "MAC pause is enabled. Cannot set PFC."
5422 			     "current_fc_status = %d", hw->current_fc_status);
5423 		return -EOPNOTSUPP;
5424 	}
5425 
5426 	rte_spinlock_lock(&hw->lock);
5427 	ret = hns3_dcb_pfc_enable(dev, pfc_conf);
5428 	rte_spinlock_unlock(&hw->lock);
5429 
5430 	return ret;
5431 }
5432 
5433 static int
5434 hns3_get_dcb_info(struct rte_eth_dev *dev, struct rte_eth_dcb_info *dcb_info)
5435 {
5436 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5437 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5438 	enum rte_eth_rx_mq_mode mq_mode = dev->data->dev_conf.rxmode.mq_mode;
5439 	int i;
5440 
5441 	rte_spinlock_lock(&hw->lock);
5442 	if ((uint32_t)mq_mode & RTE_ETH_MQ_RX_DCB_FLAG)
5443 		dcb_info->nb_tcs = pf->local_max_tc;
5444 	else
5445 		dcb_info->nb_tcs = 1;
5446 
5447 	for (i = 0; i < HNS3_MAX_USER_PRIO; i++)
5448 		dcb_info->prio_tc[i] = hw->dcb_info.prio_tc[i];
5449 	for (i = 0; i < dcb_info->nb_tcs; i++)
5450 		dcb_info->tc_bws[i] = hw->dcb_info.pg_info[0].tc_dwrr[i];
5451 
5452 	for (i = 0; i < hw->num_tc; i++) {
5453 		dcb_info->tc_queue.tc_rxq[0][i].base = hw->alloc_rss_size * i;
5454 		dcb_info->tc_queue.tc_txq[0][i].base =
5455 						hw->tc_queue[i].tqp_offset;
5456 		dcb_info->tc_queue.tc_rxq[0][i].nb_queue = hw->alloc_rss_size;
5457 		dcb_info->tc_queue.tc_txq[0][i].nb_queue =
5458 						hw->tc_queue[i].tqp_count;
5459 	}
5460 	rte_spinlock_unlock(&hw->lock);
5461 
5462 	return 0;
5463 }
5464 
5465 static int
5466 hns3_reinit_dev(struct hns3_adapter *hns)
5467 {
5468 	struct hns3_hw *hw = &hns->hw;
5469 	int ret;
5470 
5471 	ret = hns3_cmd_init(hw);
5472 	if (ret) {
5473 		hns3_err(hw, "Failed to init cmd: %d", ret);
5474 		return ret;
5475 	}
5476 
5477 	ret = hns3_init_hardware(hns);
5478 	if (ret) {
5479 		hns3_err(hw, "Failed to init hardware: %d", ret);
5480 		return ret;
5481 	}
5482 
5483 	ret = hns3_reset_all_tqps(hns);
5484 	if (ret) {
5485 		hns3_err(hw, "Failed to reset all queues: %d", ret);
5486 		return ret;
5487 	}
5488 
5489 	ret = hns3_enable_hw_error_intr(hns, true);
5490 	if (ret) {
5491 		hns3_err(hw, "fail to enable hw error interrupts: %d",
5492 			     ret);
5493 		return ret;
5494 	}
5495 	hns3_info(hw, "Reset done, driver initialization finished.");
5496 
5497 	return 0;
5498 }
5499 
5500 static bool
5501 is_pf_reset_done(struct hns3_hw *hw)
5502 {
5503 	uint32_t val, reg, reg_bit;
5504 
5505 	switch (hw->reset.level) {
5506 	case HNS3_IMP_RESET:
5507 		reg = HNS3_GLOBAL_RESET_REG;
5508 		reg_bit = HNS3_IMP_RESET_BIT;
5509 		break;
5510 	case HNS3_GLOBAL_RESET:
5511 		reg = HNS3_GLOBAL_RESET_REG;
5512 		reg_bit = HNS3_GLOBAL_RESET_BIT;
5513 		break;
5514 	case HNS3_FUNC_RESET:
5515 		reg = HNS3_FUN_RST_ING;
5516 		reg_bit = HNS3_FUN_RST_ING_B;
5517 		break;
5518 	case HNS3_FLR_RESET:
5519 	default:
5520 		hns3_err(hw, "Wait for unsupported reset level: %d",
5521 			 hw->reset.level);
5522 		return true;
5523 	}
5524 	val = hns3_read_dev(hw, reg);
5525 	if (hns3_get_bit(val, reg_bit))
5526 		return false;
5527 	else
5528 		return true;
5529 }
5530 
5531 bool
5532 hns3_is_reset_pending(struct hns3_adapter *hns)
5533 {
5534 	struct hns3_hw *hw = &hns->hw;
5535 	enum hns3_reset_level reset;
5536 
5537 	/*
5538 	 * Check the registers to confirm whether there is reset pending.
5539 	 * Note: This check may lead to schedule reset task, but only primary
5540 	 *       process can process the reset event. Therefore, limit the
5541 	 *       checking under only primary process.
5542 	 */
5543 	if (rte_eal_process_type() == RTE_PROC_PRIMARY)
5544 		hns3_check_event_cause(hns, NULL);
5545 
5546 	reset = hns3_get_reset_level(hns, &hw->reset.pending);
5547 	if (reset != HNS3_NONE_RESET && hw->reset.level != HNS3_NONE_RESET &&
5548 	    hw->reset.level < reset) {
5549 		hns3_warn(hw, "High level reset %d is pending", reset);
5550 		return true;
5551 	}
5552 	reset = hns3_get_reset_level(hns, &hw->reset.request);
5553 	if (reset != HNS3_NONE_RESET && hw->reset.level != HNS3_NONE_RESET &&
5554 	    hw->reset.level < reset) {
5555 		hns3_warn(hw, "High level reset %d is request", reset);
5556 		return true;
5557 	}
5558 	return false;
5559 }
5560 
5561 static int
5562 hns3_wait_hardware_ready(struct hns3_adapter *hns)
5563 {
5564 	struct hns3_hw *hw = &hns->hw;
5565 	struct hns3_wait_data *wait_data = hw->reset.wait_data;
5566 	struct timeval tv;
5567 
5568 	if (wait_data->result == HNS3_WAIT_SUCCESS)
5569 		return 0;
5570 	else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
5571 		hns3_clock_gettime(&tv);
5572 		hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
5573 			  tv.tv_sec, tv.tv_usec);
5574 		return -ETIME;
5575 	} else if (wait_data->result == HNS3_WAIT_REQUEST)
5576 		return -EAGAIN;
5577 
5578 	wait_data->hns = hns;
5579 	wait_data->check_completion = is_pf_reset_done;
5580 	wait_data->end_ms = (uint64_t)HNS3_RESET_WAIT_CNT *
5581 				HNS3_RESET_WAIT_MS + hns3_clock_gettime_ms();
5582 	wait_data->interval = HNS3_RESET_WAIT_MS * USEC_PER_MSEC;
5583 	wait_data->count = HNS3_RESET_WAIT_CNT;
5584 	wait_data->result = HNS3_WAIT_REQUEST;
5585 	rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
5586 	return -EAGAIN;
5587 }
5588 
5589 static int
5590 hns3_func_reset_cmd(struct hns3_hw *hw, int func_id)
5591 {
5592 	struct hns3_cmd_desc desc;
5593 	struct hns3_reset_cmd *req = (struct hns3_reset_cmd *)desc.data;
5594 
5595 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_RST_TRIGGER, false);
5596 	hns3_set_bit(req->mac_func_reset, HNS3_CFG_RESET_FUNC_B, 1);
5597 	req->fun_reset_vfid = func_id;
5598 
5599 	return hns3_cmd_send(hw, &desc, 1);
5600 }
5601 
5602 static int
5603 hns3_imp_reset_cmd(struct hns3_hw *hw)
5604 {
5605 	struct hns3_cmd_desc desc;
5606 
5607 	hns3_cmd_setup_basic_desc(&desc, 0xFFFE, false);
5608 	desc.data[0] = 0xeedd;
5609 
5610 	return hns3_cmd_send(hw, &desc, 1);
5611 }
5612 
5613 static void
5614 hns3_msix_process(struct hns3_adapter *hns, enum hns3_reset_level reset_level)
5615 {
5616 	struct hns3_hw *hw = &hns->hw;
5617 	struct timeval tv;
5618 	uint32_t val;
5619 
5620 	hns3_clock_gettime(&tv);
5621 	if (hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG) ||
5622 	    hns3_read_dev(hw, HNS3_FUN_RST_ING)) {
5623 		hns3_warn(hw, "Don't process msix during resetting time=%ld.%.6ld",
5624 			  tv.tv_sec, tv.tv_usec);
5625 		return;
5626 	}
5627 
5628 	switch (reset_level) {
5629 	case HNS3_IMP_RESET:
5630 		hns3_imp_reset_cmd(hw);
5631 		hns3_warn(hw, "IMP Reset requested time=%ld.%.6ld",
5632 			  tv.tv_sec, tv.tv_usec);
5633 		break;
5634 	case HNS3_GLOBAL_RESET:
5635 		val = hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG);
5636 		hns3_set_bit(val, HNS3_GLOBAL_RESET_BIT, 1);
5637 		hns3_write_dev(hw, HNS3_GLOBAL_RESET_REG, val);
5638 		hns3_warn(hw, "Global Reset requested time=%ld.%.6ld",
5639 			  tv.tv_sec, tv.tv_usec);
5640 		break;
5641 	case HNS3_FUNC_RESET:
5642 		hns3_warn(hw, "PF Reset requested time=%ld.%.6ld",
5643 			  tv.tv_sec, tv.tv_usec);
5644 		/* schedule again to check later */
5645 		hns3_atomic_set_bit(HNS3_FUNC_RESET, &hw->reset.pending);
5646 		hns3_schedule_reset(hns);
5647 		break;
5648 	default:
5649 		hns3_warn(hw, "Unsupported reset level: %d", reset_level);
5650 		return;
5651 	}
5652 	hns3_atomic_clear_bit(reset_level, &hw->reset.request);
5653 }
5654 
5655 static enum hns3_reset_level
5656 hns3_get_reset_level(struct hns3_adapter *hns, uint64_t *levels)
5657 {
5658 	struct hns3_hw *hw = &hns->hw;
5659 	enum hns3_reset_level reset_level = HNS3_NONE_RESET;
5660 
5661 	/* Return the highest priority reset level amongst all */
5662 	if (hns3_atomic_test_bit(HNS3_IMP_RESET, levels))
5663 		reset_level = HNS3_IMP_RESET;
5664 	else if (hns3_atomic_test_bit(HNS3_GLOBAL_RESET, levels))
5665 		reset_level = HNS3_GLOBAL_RESET;
5666 	else if (hns3_atomic_test_bit(HNS3_FUNC_RESET, levels))
5667 		reset_level = HNS3_FUNC_RESET;
5668 	else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
5669 		reset_level = HNS3_FLR_RESET;
5670 
5671 	if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
5672 		return HNS3_NONE_RESET;
5673 
5674 	return reset_level;
5675 }
5676 
5677 static void
5678 hns3_record_imp_error(struct hns3_adapter *hns)
5679 {
5680 	struct hns3_hw *hw = &hns->hw;
5681 	uint32_t reg_val;
5682 
5683 	reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
5684 	if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B)) {
5685 		hns3_warn(hw, "Detected IMP RD poison!");
5686 		hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B, 0);
5687 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
5688 	}
5689 
5690 	if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B)) {
5691 		hns3_warn(hw, "Detected IMP CMDQ error!");
5692 		hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B, 0);
5693 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
5694 	}
5695 }
5696 
5697 static int
5698 hns3_prepare_reset(struct hns3_adapter *hns)
5699 {
5700 	struct hns3_hw *hw = &hns->hw;
5701 	uint32_t reg_val;
5702 	int ret;
5703 
5704 	switch (hw->reset.level) {
5705 	case HNS3_FUNC_RESET:
5706 		ret = hns3_func_reset_cmd(hw, HNS3_PF_FUNC_ID);
5707 		if (ret)
5708 			return ret;
5709 
5710 		/*
5711 		 * After performaning pf reset, it is not necessary to do the
5712 		 * mailbox handling or send any command to firmware, because
5713 		 * any mailbox handling or command to firmware is only valid
5714 		 * after hns3_cmd_init is called.
5715 		 */
5716 		__atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
5717 		hw->reset.stats.request_cnt++;
5718 		break;
5719 	case HNS3_IMP_RESET:
5720 		hns3_record_imp_error(hns);
5721 		reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
5722 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val |
5723 			       BIT(HNS3_VECTOR0_IMP_RESET_INT_B));
5724 		break;
5725 	default:
5726 		break;
5727 	}
5728 	return 0;
5729 }
5730 
5731 static int
5732 hns3_set_rst_done(struct hns3_hw *hw)
5733 {
5734 	struct hns3_pf_rst_done_cmd *req;
5735 	struct hns3_cmd_desc desc;
5736 
5737 	req = (struct hns3_pf_rst_done_cmd *)desc.data;
5738 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_PF_RST_DONE, false);
5739 	req->pf_rst_done |= HNS3_PF_RESET_DONE_BIT;
5740 	return hns3_cmd_send(hw, &desc, 1);
5741 }
5742 
5743 static int
5744 hns3_stop_service(struct hns3_adapter *hns)
5745 {
5746 	struct hns3_hw *hw = &hns->hw;
5747 	struct rte_eth_dev *eth_dev;
5748 
5749 	eth_dev = &rte_eth_devices[hw->data->port_id];
5750 	hw->mac.link_status = RTE_ETH_LINK_DOWN;
5751 	if (hw->adapter_state == HNS3_NIC_STARTED) {
5752 		rte_eal_alarm_cancel(hns3_service_handler, eth_dev);
5753 		hns3_update_linkstatus_and_event(hw, false);
5754 	}
5755 
5756 	hns3_set_rxtx_function(eth_dev);
5757 	rte_wmb();
5758 	/* Disable datapath on secondary process. */
5759 	hns3_mp_req_stop_rxtx(eth_dev);
5760 	rte_delay_ms(hw->cfg_max_queues);
5761 
5762 	rte_spinlock_lock(&hw->lock);
5763 	if (hns->hw.adapter_state == HNS3_NIC_STARTED ||
5764 	    hw->adapter_state == HNS3_NIC_STOPPING) {
5765 		hns3_enable_all_queues(hw, false);
5766 		hns3_do_stop(hns);
5767 		hw->reset.mbuf_deferred_free = true;
5768 	} else
5769 		hw->reset.mbuf_deferred_free = false;
5770 
5771 	/*
5772 	 * It is cumbersome for hardware to pick-and-choose entries for deletion
5773 	 * from table space. Hence, for function reset software intervention is
5774 	 * required to delete the entries
5775 	 */
5776 	if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0)
5777 		hns3_configure_all_mc_mac_addr(hns, true);
5778 	rte_spinlock_unlock(&hw->lock);
5779 
5780 	return 0;
5781 }
5782 
5783 static int
5784 hns3_start_service(struct hns3_adapter *hns)
5785 {
5786 	struct hns3_hw *hw = &hns->hw;
5787 	struct rte_eth_dev *eth_dev;
5788 
5789 	if (hw->reset.level == HNS3_IMP_RESET ||
5790 	    hw->reset.level == HNS3_GLOBAL_RESET)
5791 		hns3_set_rst_done(hw);
5792 	eth_dev = &rte_eth_devices[hw->data->port_id];
5793 	hns3_set_rxtx_function(eth_dev);
5794 	hns3_mp_req_start_rxtx(eth_dev);
5795 	if (hw->adapter_state == HNS3_NIC_STARTED) {
5796 		/*
5797 		 * This API parent function already hold the hns3_hw.lock, the
5798 		 * hns3_service_handler may report lse, in bonding application
5799 		 * it will call driver's ops which may acquire the hns3_hw.lock
5800 		 * again, thus lead to deadlock.
5801 		 * We defer calls hns3_service_handler to avoid the deadlock.
5802 		 */
5803 		rte_eal_alarm_set(HNS3_SERVICE_QUICK_INTERVAL,
5804 				  hns3_service_handler, eth_dev);
5805 
5806 		/* Enable interrupt of all rx queues before enabling queues */
5807 		hns3_dev_all_rx_queue_intr_enable(hw, true);
5808 		/*
5809 		 * Enable state of each rxq and txq will be recovered after
5810 		 * reset, so we need to restore them before enable all tqps;
5811 		 */
5812 		hns3_restore_tqp_enable_state(hw);
5813 		/*
5814 		 * When finished the initialization, enable queues to receive
5815 		 * and transmit packets.
5816 		 */
5817 		hns3_enable_all_queues(hw, true);
5818 	}
5819 
5820 	return 0;
5821 }
5822 
5823 static int
5824 hns3_restore_conf(struct hns3_adapter *hns)
5825 {
5826 	struct hns3_hw *hw = &hns->hw;
5827 	int ret;
5828 
5829 	ret = hns3_configure_all_mac_addr(hns, false);
5830 	if (ret)
5831 		return ret;
5832 
5833 	ret = hns3_configure_all_mc_mac_addr(hns, false);
5834 	if (ret)
5835 		goto err_mc_mac;
5836 
5837 	ret = hns3_dev_promisc_restore(hns);
5838 	if (ret)
5839 		goto err_promisc;
5840 
5841 	ret = hns3_restore_vlan_table(hns);
5842 	if (ret)
5843 		goto err_promisc;
5844 
5845 	ret = hns3_restore_vlan_conf(hns);
5846 	if (ret)
5847 		goto err_promisc;
5848 
5849 	ret = hns3_restore_ptp(hns);
5850 	if (ret)
5851 		goto err_promisc;
5852 
5853 	ret = hns3_restore_rx_interrupt(hw);
5854 	if (ret)
5855 		goto err_promisc;
5856 
5857 	ret = hns3_restore_gro_conf(hw);
5858 	if (ret)
5859 		goto err_promisc;
5860 
5861 	ret = hns3_restore_fec(hw);
5862 	if (ret)
5863 		goto err_promisc;
5864 
5865 	if (hns->hw.adapter_state == HNS3_NIC_STARTED) {
5866 		ret = hns3_do_start(hns, false);
5867 		if (ret)
5868 			goto err_promisc;
5869 		hns3_info(hw, "hns3 dev restart successful!");
5870 	} else if (hw->adapter_state == HNS3_NIC_STOPPING)
5871 		hw->adapter_state = HNS3_NIC_CONFIGURED;
5872 	return 0;
5873 
5874 err_promisc:
5875 	hns3_configure_all_mc_mac_addr(hns, true);
5876 err_mc_mac:
5877 	hns3_configure_all_mac_addr(hns, true);
5878 	return ret;
5879 }
5880 
5881 static void
5882 hns3_reset_service(void *param)
5883 {
5884 	struct hns3_adapter *hns = (struct hns3_adapter *)param;
5885 	struct hns3_hw *hw = &hns->hw;
5886 	enum hns3_reset_level reset_level;
5887 	struct timeval tv_delta;
5888 	struct timeval tv_start;
5889 	struct timeval tv;
5890 	uint64_t msec;
5891 	int ret;
5892 
5893 	/*
5894 	 * The interrupt is not triggered within the delay time.
5895 	 * The interrupt may have been lost. It is necessary to handle
5896 	 * the interrupt to recover from the error.
5897 	 */
5898 	if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
5899 			    SCHEDULE_DEFERRED) {
5900 		__atomic_store_n(&hw->reset.schedule, SCHEDULE_REQUESTED,
5901 				  __ATOMIC_RELAXED);
5902 		hns3_err(hw, "Handling interrupts in delayed tasks");
5903 		hns3_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
5904 		reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
5905 		if (reset_level == HNS3_NONE_RESET) {
5906 			hns3_err(hw, "No reset level is set, try IMP reset");
5907 			hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
5908 		}
5909 	}
5910 	__atomic_store_n(&hw->reset.schedule, SCHEDULE_NONE, __ATOMIC_RELAXED);
5911 
5912 	/*
5913 	 * Check if there is any ongoing reset in the hardware. This status can
5914 	 * be checked from reset_pending. If there is then, we need to wait for
5915 	 * hardware to complete reset.
5916 	 *    a. If we are able to figure out in reasonable time that hardware
5917 	 *       has fully resetted then, we can proceed with driver, client
5918 	 *       reset.
5919 	 *    b. else, we can come back later to check this status so re-sched
5920 	 *       now.
5921 	 */
5922 	reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
5923 	if (reset_level != HNS3_NONE_RESET) {
5924 		hns3_clock_gettime(&tv_start);
5925 		ret = hns3_reset_process(hns, reset_level);
5926 		hns3_clock_gettime(&tv);
5927 		timersub(&tv, &tv_start, &tv_delta);
5928 		msec = hns3_clock_calctime_ms(&tv_delta);
5929 		if (msec > HNS3_RESET_PROCESS_MS)
5930 			hns3_err(hw, "%d handle long time delta %" PRIu64 " ms time=%ld.%.6ld",
5931 				 hw->reset.level, msec,
5932 				 tv.tv_sec, tv.tv_usec);
5933 		if (ret == -EAGAIN)
5934 			return;
5935 	}
5936 
5937 	/* Check if we got any *new* reset requests to be honored */
5938 	reset_level = hns3_get_reset_level(hns, &hw->reset.request);
5939 	if (reset_level != HNS3_NONE_RESET)
5940 		hns3_msix_process(hns, reset_level);
5941 }
5942 
5943 static unsigned int
5944 hns3_get_speed_capa_num(uint16_t device_id)
5945 {
5946 	unsigned int num;
5947 
5948 	switch (device_id) {
5949 	case HNS3_DEV_ID_25GE:
5950 	case HNS3_DEV_ID_25GE_RDMA:
5951 		num = 2;
5952 		break;
5953 	case HNS3_DEV_ID_100G_RDMA_MACSEC:
5954 	case HNS3_DEV_ID_200G_RDMA:
5955 		num = 1;
5956 		break;
5957 	default:
5958 		num = 0;
5959 		break;
5960 	}
5961 
5962 	return num;
5963 }
5964 
5965 static int
5966 hns3_get_speed_fec_capa(struct rte_eth_fec_capa *speed_fec_capa,
5967 			uint16_t device_id)
5968 {
5969 	switch (device_id) {
5970 	case HNS3_DEV_ID_25GE:
5971 	/* fallthrough */
5972 	case HNS3_DEV_ID_25GE_RDMA:
5973 		speed_fec_capa[0].speed = speed_fec_capa_tbl[1].speed;
5974 		speed_fec_capa[0].capa = speed_fec_capa_tbl[1].capa;
5975 
5976 		/* In HNS3 device, the 25G NIC is compatible with 10G rate */
5977 		speed_fec_capa[1].speed = speed_fec_capa_tbl[0].speed;
5978 		speed_fec_capa[1].capa = speed_fec_capa_tbl[0].capa;
5979 		break;
5980 	case HNS3_DEV_ID_100G_RDMA_MACSEC:
5981 		speed_fec_capa[0].speed = speed_fec_capa_tbl[4].speed;
5982 		speed_fec_capa[0].capa = speed_fec_capa_tbl[4].capa;
5983 		break;
5984 	case HNS3_DEV_ID_200G_RDMA:
5985 		speed_fec_capa[0].speed = speed_fec_capa_tbl[5].speed;
5986 		speed_fec_capa[0].capa = speed_fec_capa_tbl[5].capa;
5987 		break;
5988 	default:
5989 		return -ENOTSUP;
5990 	}
5991 
5992 	return 0;
5993 }
5994 
5995 static int
5996 hns3_fec_get_capability(struct rte_eth_dev *dev,
5997 			struct rte_eth_fec_capa *speed_fec_capa,
5998 			unsigned int num)
5999 {
6000 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6001 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
6002 	uint16_t device_id = pci_dev->id.device_id;
6003 	unsigned int capa_num;
6004 	int ret;
6005 
6006 	capa_num = hns3_get_speed_capa_num(device_id);
6007 	if (capa_num == 0) {
6008 		hns3_err(hw, "device(0x%x) is not supported by hns3 PMD",
6009 			 device_id);
6010 		return -ENOTSUP;
6011 	}
6012 
6013 	if (speed_fec_capa == NULL || num < capa_num)
6014 		return capa_num;
6015 
6016 	ret = hns3_get_speed_fec_capa(speed_fec_capa, device_id);
6017 	if (ret)
6018 		return -ENOTSUP;
6019 
6020 	return capa_num;
6021 }
6022 
6023 static int
6024 get_current_fec_auto_state(struct hns3_hw *hw, uint8_t *state)
6025 {
6026 	struct hns3_config_fec_cmd *req;
6027 	struct hns3_cmd_desc desc;
6028 	int ret;
6029 
6030 	/*
6031 	 * CMD(HNS3_OPC_CONFIG_FEC_MODE) read is not supported
6032 	 * in device of link speed
6033 	 * below 10 Gbps.
6034 	 */
6035 	if (hw->mac.link_speed < RTE_ETH_SPEED_NUM_10G) {
6036 		*state = 0;
6037 		return 0;
6038 	}
6039 
6040 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_FEC_MODE, true);
6041 	req = (struct hns3_config_fec_cmd *)desc.data;
6042 	ret = hns3_cmd_send(hw, &desc, 1);
6043 	if (ret) {
6044 		hns3_err(hw, "get current fec auto state failed, ret = %d",
6045 			 ret);
6046 		return ret;
6047 	}
6048 
6049 	*state = req->fec_mode & (1U << HNS3_MAC_CFG_FEC_AUTO_EN_B);
6050 	return 0;
6051 }
6052 
6053 static int
6054 hns3_fec_get_internal(struct hns3_hw *hw, uint32_t *fec_capa)
6055 {
6056 	struct hns3_sfp_info_cmd *resp;
6057 	uint32_t tmp_fec_capa;
6058 	uint8_t auto_state;
6059 	struct hns3_cmd_desc desc;
6060 	int ret;
6061 
6062 	/*
6063 	 * If link is down and AUTO is enabled, AUTO is returned, otherwise,
6064 	 * configured FEC mode is returned.
6065 	 * If link is up, current FEC mode is returned.
6066 	 */
6067 	if (hw->mac.link_status == RTE_ETH_LINK_DOWN) {
6068 		ret = get_current_fec_auto_state(hw, &auto_state);
6069 		if (ret)
6070 			return ret;
6071 
6072 		if (auto_state == 0x1) {
6073 			*fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(AUTO);
6074 			return 0;
6075 		}
6076 	}
6077 
6078 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GET_SFP_INFO, true);
6079 	resp = (struct hns3_sfp_info_cmd *)desc.data;
6080 	resp->query_type = HNS3_ACTIVE_QUERY;
6081 
6082 	ret = hns3_cmd_send(hw, &desc, 1);
6083 	if (ret == -EOPNOTSUPP) {
6084 		hns3_err(hw, "IMP do not support get FEC, ret = %d", ret);
6085 		return ret;
6086 	} else if (ret) {
6087 		hns3_err(hw, "get FEC failed, ret = %d", ret);
6088 		return ret;
6089 	}
6090 
6091 	/*
6092 	 * FEC mode order defined in hns3 hardware is inconsistent with
6093 	 * that defined in the ethdev library. So the sequence needs
6094 	 * to be converted.
6095 	 */
6096 	switch (resp->active_fec) {
6097 	case HNS3_HW_FEC_MODE_NOFEC:
6098 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC);
6099 		break;
6100 	case HNS3_HW_FEC_MODE_BASER:
6101 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(BASER);
6102 		break;
6103 	case HNS3_HW_FEC_MODE_RS:
6104 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(RS);
6105 		break;
6106 	default:
6107 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC);
6108 		break;
6109 	}
6110 
6111 	*fec_capa = tmp_fec_capa;
6112 	return 0;
6113 }
6114 
6115 static int
6116 hns3_fec_get(struct rte_eth_dev *dev, uint32_t *fec_capa)
6117 {
6118 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6119 
6120 	return hns3_fec_get_internal(hw, fec_capa);
6121 }
6122 
6123 static int
6124 hns3_set_fec_hw(struct hns3_hw *hw, uint32_t mode)
6125 {
6126 	struct hns3_config_fec_cmd *req;
6127 	struct hns3_cmd_desc desc;
6128 	int ret;
6129 
6130 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_FEC_MODE, false);
6131 
6132 	req = (struct hns3_config_fec_cmd *)desc.data;
6133 	switch (mode) {
6134 	case RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC):
6135 		hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6136 				HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_OFF);
6137 		break;
6138 	case RTE_ETH_FEC_MODE_CAPA_MASK(BASER):
6139 		hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6140 				HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_BASER);
6141 		break;
6142 	case RTE_ETH_FEC_MODE_CAPA_MASK(RS):
6143 		hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6144 				HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_RS);
6145 		break;
6146 	case RTE_ETH_FEC_MODE_CAPA_MASK(AUTO):
6147 		hns3_set_bit(req->fec_mode, HNS3_MAC_CFG_FEC_AUTO_EN_B, 1);
6148 		break;
6149 	default:
6150 		return 0;
6151 	}
6152 	ret = hns3_cmd_send(hw, &desc, 1);
6153 	if (ret)
6154 		hns3_err(hw, "set fec mode failed, ret = %d", ret);
6155 
6156 	return ret;
6157 }
6158 
6159 static uint32_t
6160 get_current_speed_fec_cap(struct hns3_hw *hw, struct rte_eth_fec_capa *fec_capa)
6161 {
6162 	struct hns3_mac *mac = &hw->mac;
6163 	uint32_t cur_capa;
6164 
6165 	switch (mac->link_speed) {
6166 	case RTE_ETH_SPEED_NUM_10G:
6167 		cur_capa = fec_capa[1].capa;
6168 		break;
6169 	case RTE_ETH_SPEED_NUM_25G:
6170 	case RTE_ETH_SPEED_NUM_100G:
6171 	case RTE_ETH_SPEED_NUM_200G:
6172 		cur_capa = fec_capa[0].capa;
6173 		break;
6174 	default:
6175 		cur_capa = 0;
6176 		break;
6177 	}
6178 
6179 	return cur_capa;
6180 }
6181 
6182 static bool
6183 is_fec_mode_one_bit_set(uint32_t mode)
6184 {
6185 	int cnt = 0;
6186 	uint8_t i;
6187 
6188 	for (i = 0; i < sizeof(mode); i++)
6189 		if (mode >> i & 0x1)
6190 			cnt++;
6191 
6192 	return cnt == 1 ? true : false;
6193 }
6194 
6195 static int
6196 hns3_fec_set(struct rte_eth_dev *dev, uint32_t mode)
6197 {
6198 #define FEC_CAPA_NUM 2
6199 	struct hns3_adapter *hns = dev->data->dev_private;
6200 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
6201 	struct hns3_pf *pf = &hns->pf;
6202 	struct rte_eth_fec_capa fec_capa[FEC_CAPA_NUM];
6203 	uint32_t cur_capa;
6204 	uint32_t num = FEC_CAPA_NUM;
6205 	int ret;
6206 
6207 	ret = hns3_fec_get_capability(dev, fec_capa, num);
6208 	if (ret < 0)
6209 		return ret;
6210 
6211 	/* HNS3 PMD only support one bit set mode, e.g. 0x1, 0x4 */
6212 	if (!is_fec_mode_one_bit_set(mode)) {
6213 		hns3_err(hw, "FEC mode(0x%x) not supported in HNS3 PMD, "
6214 			     "FEC mode should be only one bit set", mode);
6215 		return -EINVAL;
6216 	}
6217 
6218 	/*
6219 	 * Check whether the configured mode is within the FEC capability.
6220 	 * If not, the configured mode will not be supported.
6221 	 */
6222 	cur_capa = get_current_speed_fec_cap(hw, fec_capa);
6223 	if (!(cur_capa & mode)) {
6224 		hns3_err(hw, "unsupported FEC mode = 0x%x", mode);
6225 		return -EINVAL;
6226 	}
6227 
6228 	rte_spinlock_lock(&hw->lock);
6229 	ret = hns3_set_fec_hw(hw, mode);
6230 	if (ret) {
6231 		rte_spinlock_unlock(&hw->lock);
6232 		return ret;
6233 	}
6234 
6235 	pf->fec_mode = mode;
6236 	rte_spinlock_unlock(&hw->lock);
6237 
6238 	return 0;
6239 }
6240 
6241 static int
6242 hns3_restore_fec(struct hns3_hw *hw)
6243 {
6244 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
6245 	struct hns3_pf *pf = &hns->pf;
6246 	uint32_t mode = pf->fec_mode;
6247 	int ret;
6248 
6249 	ret = hns3_set_fec_hw(hw, mode);
6250 	if (ret)
6251 		hns3_err(hw, "restore fec mode(0x%x) failed, ret = %d",
6252 			 mode, ret);
6253 
6254 	return ret;
6255 }
6256 
6257 static int
6258 hns3_query_dev_fec_info(struct hns3_hw *hw)
6259 {
6260 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
6261 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(hns);
6262 	int ret;
6263 
6264 	ret = hns3_fec_get_internal(hw, &pf->fec_mode);
6265 	if (ret)
6266 		hns3_err(hw, "query device FEC info failed, ret = %d", ret);
6267 
6268 	return ret;
6269 }
6270 
6271 static bool
6272 hns3_optical_module_existed(struct hns3_hw *hw)
6273 {
6274 	struct hns3_cmd_desc desc;
6275 	bool existed;
6276 	int ret;
6277 
6278 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GET_SFP_EXIST, true);
6279 	ret = hns3_cmd_send(hw, &desc, 1);
6280 	if (ret) {
6281 		hns3_err(hw,
6282 			 "fail to get optical module exist state, ret = %d.\n",
6283 			 ret);
6284 		return false;
6285 	}
6286 	existed = !!desc.data[0];
6287 
6288 	return existed;
6289 }
6290 
6291 static int
6292 hns3_get_module_eeprom_data(struct hns3_hw *hw, uint32_t offset,
6293 				uint32_t len, uint8_t *data)
6294 {
6295 #define HNS3_SFP_INFO_CMD_NUM 6
6296 #define HNS3_SFP_INFO_MAX_LEN \
6297 	(HNS3_SFP_INFO_BD0_LEN + \
6298 	(HNS3_SFP_INFO_CMD_NUM - 1) * HNS3_SFP_INFO_BDX_LEN)
6299 	struct hns3_cmd_desc desc[HNS3_SFP_INFO_CMD_NUM];
6300 	struct hns3_sfp_info_bd0_cmd *sfp_info_bd0;
6301 	uint16_t read_len;
6302 	uint16_t copy_len;
6303 	int ret;
6304 	int i;
6305 
6306 	for (i = 0; i < HNS3_SFP_INFO_CMD_NUM; i++) {
6307 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_SFP_EEPROM,
6308 					  true);
6309 		if (i < HNS3_SFP_INFO_CMD_NUM - 1)
6310 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
6311 	}
6312 
6313 	sfp_info_bd0 = (struct hns3_sfp_info_bd0_cmd *)desc[0].data;
6314 	sfp_info_bd0->offset = rte_cpu_to_le_16((uint16_t)offset);
6315 	read_len = RTE_MIN(len, HNS3_SFP_INFO_MAX_LEN);
6316 	sfp_info_bd0->read_len = rte_cpu_to_le_16((uint16_t)read_len);
6317 
6318 	ret = hns3_cmd_send(hw, desc, HNS3_SFP_INFO_CMD_NUM);
6319 	if (ret) {
6320 		hns3_err(hw, "fail to get module EEPROM info, ret = %d.\n",
6321 				ret);
6322 		return ret;
6323 	}
6324 
6325 	/* The data format in BD0 is different with the others. */
6326 	copy_len = RTE_MIN(len, HNS3_SFP_INFO_BD0_LEN);
6327 	memcpy(data, sfp_info_bd0->data, copy_len);
6328 	read_len = copy_len;
6329 
6330 	for (i = 1; i < HNS3_SFP_INFO_CMD_NUM; i++) {
6331 		if (read_len >= len)
6332 			break;
6333 
6334 		copy_len = RTE_MIN(len - read_len, HNS3_SFP_INFO_BDX_LEN);
6335 		memcpy(data + read_len, desc[i].data, copy_len);
6336 		read_len += copy_len;
6337 	}
6338 
6339 	return (int)read_len;
6340 }
6341 
6342 static int
6343 hns3_get_module_eeprom(struct rte_eth_dev *dev,
6344 		       struct rte_dev_eeprom_info *info)
6345 {
6346 	struct hns3_adapter *hns = dev->data->dev_private;
6347 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
6348 	uint32_t offset = info->offset;
6349 	uint32_t len = info->length;
6350 	uint8_t *data = info->data;
6351 	uint32_t read_len = 0;
6352 
6353 	if (hw->mac.media_type != HNS3_MEDIA_TYPE_FIBER)
6354 		return -ENOTSUP;
6355 
6356 	if (!hns3_optical_module_existed(hw)) {
6357 		hns3_err(hw, "fail to read module EEPROM: no module is connected.\n");
6358 		return -EIO;
6359 	}
6360 
6361 	while (read_len < len) {
6362 		int ret;
6363 		ret = hns3_get_module_eeprom_data(hw, offset + read_len,
6364 						  len - read_len,
6365 						  data + read_len);
6366 		if (ret < 0)
6367 			return -EIO;
6368 		read_len += ret;
6369 	}
6370 
6371 	return 0;
6372 }
6373 
6374 static int
6375 hns3_get_module_info(struct rte_eth_dev *dev,
6376 		     struct rte_eth_dev_module_info *modinfo)
6377 {
6378 #define HNS3_SFF8024_ID_SFP		0x03
6379 #define HNS3_SFF8024_ID_QSFP_8438	0x0c
6380 #define HNS3_SFF8024_ID_QSFP_8436_8636	0x0d
6381 #define HNS3_SFF8024_ID_QSFP28_8636	0x11
6382 #define HNS3_SFF_8636_V1_3		0x03
6383 	struct hns3_adapter *hns = dev->data->dev_private;
6384 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
6385 	struct rte_dev_eeprom_info info;
6386 	struct hns3_sfp_type sfp_type;
6387 	int ret;
6388 
6389 	memset(&sfp_type, 0, sizeof(sfp_type));
6390 	memset(&info, 0, sizeof(info));
6391 	info.data = (uint8_t *)&sfp_type;
6392 	info.length = sizeof(sfp_type);
6393 	ret = hns3_get_module_eeprom(dev, &info);
6394 	if (ret)
6395 		return ret;
6396 
6397 	switch (sfp_type.type) {
6398 	case HNS3_SFF8024_ID_SFP:
6399 		modinfo->type = RTE_ETH_MODULE_SFF_8472;
6400 		modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8472_LEN;
6401 		break;
6402 	case HNS3_SFF8024_ID_QSFP_8438:
6403 		modinfo->type = RTE_ETH_MODULE_SFF_8436;
6404 		modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8436_MAX_LEN;
6405 		break;
6406 	case HNS3_SFF8024_ID_QSFP_8436_8636:
6407 		if (sfp_type.ext_type < HNS3_SFF_8636_V1_3) {
6408 			modinfo->type = RTE_ETH_MODULE_SFF_8436;
6409 			modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8436_MAX_LEN;
6410 		} else {
6411 			modinfo->type = RTE_ETH_MODULE_SFF_8636;
6412 			modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8636_MAX_LEN;
6413 		}
6414 		break;
6415 	case HNS3_SFF8024_ID_QSFP28_8636:
6416 		modinfo->type = RTE_ETH_MODULE_SFF_8636;
6417 		modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8636_MAX_LEN;
6418 		break;
6419 	default:
6420 		hns3_err(hw, "unknown module, type = %u, extra_type = %u.\n",
6421 			 sfp_type.type, sfp_type.ext_type);
6422 		return -EINVAL;
6423 	}
6424 
6425 	return 0;
6426 }
6427 
6428 static const struct eth_dev_ops hns3_eth_dev_ops = {
6429 	.dev_configure      = hns3_dev_configure,
6430 	.dev_start          = hns3_dev_start,
6431 	.dev_stop           = hns3_dev_stop,
6432 	.dev_close          = hns3_dev_close,
6433 	.promiscuous_enable = hns3_dev_promiscuous_enable,
6434 	.promiscuous_disable = hns3_dev_promiscuous_disable,
6435 	.allmulticast_enable  = hns3_dev_allmulticast_enable,
6436 	.allmulticast_disable = hns3_dev_allmulticast_disable,
6437 	.mtu_set            = hns3_dev_mtu_set,
6438 	.stats_get          = hns3_stats_get,
6439 	.stats_reset        = hns3_stats_reset,
6440 	.xstats_get         = hns3_dev_xstats_get,
6441 	.xstats_get_names   = hns3_dev_xstats_get_names,
6442 	.xstats_reset       = hns3_dev_xstats_reset,
6443 	.xstats_get_by_id   = hns3_dev_xstats_get_by_id,
6444 	.xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
6445 	.dev_infos_get          = hns3_dev_infos_get,
6446 	.fw_version_get         = hns3_fw_version_get,
6447 	.rx_queue_setup         = hns3_rx_queue_setup,
6448 	.tx_queue_setup         = hns3_tx_queue_setup,
6449 	.rx_queue_release       = hns3_dev_rx_queue_release,
6450 	.tx_queue_release       = hns3_dev_tx_queue_release,
6451 	.rx_queue_start         = hns3_dev_rx_queue_start,
6452 	.rx_queue_stop          = hns3_dev_rx_queue_stop,
6453 	.tx_queue_start         = hns3_dev_tx_queue_start,
6454 	.tx_queue_stop          = hns3_dev_tx_queue_stop,
6455 	.rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
6456 	.rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
6457 	.rxq_info_get           = hns3_rxq_info_get,
6458 	.txq_info_get           = hns3_txq_info_get,
6459 	.rx_burst_mode_get      = hns3_rx_burst_mode_get,
6460 	.tx_burst_mode_get      = hns3_tx_burst_mode_get,
6461 	.flow_ctrl_get          = hns3_flow_ctrl_get,
6462 	.flow_ctrl_set          = hns3_flow_ctrl_set,
6463 	.priority_flow_ctrl_set = hns3_priority_flow_ctrl_set,
6464 	.mac_addr_add           = hns3_add_mac_addr,
6465 	.mac_addr_remove        = hns3_remove_mac_addr,
6466 	.mac_addr_set           = hns3_set_default_mac_addr,
6467 	.set_mc_addr_list       = hns3_set_mc_mac_addr_list,
6468 	.link_update            = hns3_dev_link_update,
6469 	.dev_set_link_up        = hns3_dev_set_link_up,
6470 	.dev_set_link_down      = hns3_dev_set_link_down,
6471 	.rss_hash_update        = hns3_dev_rss_hash_update,
6472 	.rss_hash_conf_get      = hns3_dev_rss_hash_conf_get,
6473 	.reta_update            = hns3_dev_rss_reta_update,
6474 	.reta_query             = hns3_dev_rss_reta_query,
6475 	.flow_ops_get           = hns3_dev_flow_ops_get,
6476 	.vlan_filter_set        = hns3_vlan_filter_set,
6477 	.vlan_tpid_set          = hns3_vlan_tpid_set,
6478 	.vlan_offload_set       = hns3_vlan_offload_set,
6479 	.vlan_pvid_set          = hns3_vlan_pvid_set,
6480 	.get_reg                = hns3_get_regs,
6481 	.get_module_info        = hns3_get_module_info,
6482 	.get_module_eeprom      = hns3_get_module_eeprom,
6483 	.get_dcb_info           = hns3_get_dcb_info,
6484 	.dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
6485 	.fec_get_capability     = hns3_fec_get_capability,
6486 	.fec_get                = hns3_fec_get,
6487 	.fec_set                = hns3_fec_set,
6488 	.tm_ops_get             = hns3_tm_ops_get,
6489 	.tx_done_cleanup        = hns3_tx_done_cleanup,
6490 	.timesync_enable            = hns3_timesync_enable,
6491 	.timesync_disable           = hns3_timesync_disable,
6492 	.timesync_read_rx_timestamp = hns3_timesync_read_rx_timestamp,
6493 	.timesync_read_tx_timestamp = hns3_timesync_read_tx_timestamp,
6494 	.timesync_adjust_time       = hns3_timesync_adjust_time,
6495 	.timesync_read_time         = hns3_timesync_read_time,
6496 	.timesync_write_time        = hns3_timesync_write_time,
6497 	.eth_dev_priv_dump          = hns3_eth_dev_priv_dump,
6498 	.eth_rx_descriptor_dump     = hns3_rx_descriptor_dump,
6499 	.eth_tx_descriptor_dump     = hns3_tx_descriptor_dump,
6500 };
6501 
6502 static const struct hns3_reset_ops hns3_reset_ops = {
6503 	.reset_service       = hns3_reset_service,
6504 	.stop_service        = hns3_stop_service,
6505 	.prepare_reset       = hns3_prepare_reset,
6506 	.wait_hardware_ready = hns3_wait_hardware_ready,
6507 	.reinit_dev          = hns3_reinit_dev,
6508 	.restore_conf	     = hns3_restore_conf,
6509 	.start_service       = hns3_start_service,
6510 };
6511 
6512 static void
6513 hns3_init_hw_ops(struct hns3_hw *hw)
6514 {
6515 	hw->ops.add_mc_mac_addr = hns3_add_mc_mac_addr;
6516 	hw->ops.del_mc_mac_addr = hns3_remove_mc_mac_addr;
6517 	hw->ops.add_uc_mac_addr = hns3_add_uc_mac_addr;
6518 	hw->ops.del_uc_mac_addr = hns3_remove_uc_mac_addr;
6519 	hw->ops.bind_ring_with_vector = hns3_bind_ring_with_vector;
6520 }
6521 
6522 static int
6523 hns3_dev_init(struct rte_eth_dev *eth_dev)
6524 {
6525 	struct hns3_adapter *hns = eth_dev->data->dev_private;
6526 	struct hns3_hw *hw = &hns->hw;
6527 	int ret;
6528 
6529 	PMD_INIT_FUNC_TRACE();
6530 
6531 	hns3_flow_init(eth_dev);
6532 
6533 	hns3_set_rxtx_function(eth_dev);
6534 	eth_dev->dev_ops = &hns3_eth_dev_ops;
6535 	eth_dev->rx_queue_count = hns3_rx_queue_count;
6536 	ret = hns3_mp_init(eth_dev);
6537 	if (ret)
6538 		goto err_mp_init;
6539 
6540 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
6541 		hns3_tx_push_init(eth_dev);
6542 		return 0;
6543 	}
6544 
6545 	hw->adapter_state = HNS3_NIC_UNINITIALIZED;
6546 	hns->is_vf = false;
6547 	hw->data = eth_dev->data;
6548 	hns3_parse_devargs(eth_dev);
6549 
6550 	/*
6551 	 * Set default max packet size according to the mtu
6552 	 * default vale in DPDK frame.
6553 	 */
6554 	hns->pf.mps = hw->data->mtu + HNS3_ETH_OVERHEAD;
6555 
6556 	ret = hns3_reset_init(hw);
6557 	if (ret)
6558 		goto err_init_reset;
6559 	hw->reset.ops = &hns3_reset_ops;
6560 
6561 	hns3_init_hw_ops(hw);
6562 	ret = hns3_init_pf(eth_dev);
6563 	if (ret) {
6564 		PMD_INIT_LOG(ERR, "Failed to init pf: %d", ret);
6565 		goto err_init_pf;
6566 	}
6567 
6568 	ret = hns3_init_mac_addrs(eth_dev);
6569 	if (ret != 0)
6570 		goto err_init_mac_addrs;
6571 
6572 	hw->adapter_state = HNS3_NIC_INITIALIZED;
6573 
6574 	if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
6575 			    SCHEDULE_PENDING) {
6576 		hns3_err(hw, "Reschedule reset service after dev_init");
6577 		hns3_schedule_reset(hns);
6578 	} else {
6579 		/* IMP will wait ready flag before reset */
6580 		hns3_notify_reset_ready(hw, false);
6581 	}
6582 
6583 	hns3_info(hw, "hns3 dev initialization successful!");
6584 	return 0;
6585 
6586 err_init_mac_addrs:
6587 	hns3_uninit_pf(eth_dev);
6588 
6589 err_init_pf:
6590 	rte_free(hw->reset.wait_data);
6591 
6592 err_init_reset:
6593 	hns3_mp_uninit(eth_dev);
6594 
6595 err_mp_init:
6596 	eth_dev->dev_ops = NULL;
6597 	eth_dev->rx_pkt_burst = NULL;
6598 	eth_dev->rx_descriptor_status = NULL;
6599 	eth_dev->tx_pkt_burst = NULL;
6600 	eth_dev->tx_pkt_prepare = NULL;
6601 	eth_dev->tx_descriptor_status = NULL;
6602 	return ret;
6603 }
6604 
6605 static int
6606 hns3_dev_uninit(struct rte_eth_dev *eth_dev)
6607 {
6608 	struct hns3_adapter *hns = eth_dev->data->dev_private;
6609 	struct hns3_hw *hw = &hns->hw;
6610 
6611 	PMD_INIT_FUNC_TRACE();
6612 
6613 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
6614 		hns3_mp_uninit(eth_dev);
6615 		return 0;
6616 	}
6617 
6618 	if (hw->adapter_state < HNS3_NIC_CLOSING)
6619 		hns3_dev_close(eth_dev);
6620 
6621 	hw->adapter_state = HNS3_NIC_REMOVED;
6622 	return 0;
6623 }
6624 
6625 static int
6626 eth_hns3_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
6627 		   struct rte_pci_device *pci_dev)
6628 {
6629 	return rte_eth_dev_pci_generic_probe(pci_dev,
6630 					     sizeof(struct hns3_adapter),
6631 					     hns3_dev_init);
6632 }
6633 
6634 static int
6635 eth_hns3_pci_remove(struct rte_pci_device *pci_dev)
6636 {
6637 	return rte_eth_dev_pci_generic_remove(pci_dev, hns3_dev_uninit);
6638 }
6639 
6640 static const struct rte_pci_id pci_id_hns3_map[] = {
6641 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_GE) },
6642 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE) },
6643 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE_RDMA) },
6644 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_50GE_RDMA) },
6645 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_MACSEC) },
6646 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_200G_RDMA) },
6647 	{ .vendor_id = 0, }, /* sentinel */
6648 };
6649 
6650 static struct rte_pci_driver rte_hns3_pmd = {
6651 	.id_table = pci_id_hns3_map,
6652 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
6653 	.probe = eth_hns3_pci_probe,
6654 	.remove = eth_hns3_pci_remove,
6655 };
6656 
6657 RTE_PMD_REGISTER_PCI(net_hns3, rte_hns3_pmd);
6658 RTE_PMD_REGISTER_PCI_TABLE(net_hns3, pci_id_hns3_map);
6659 RTE_PMD_REGISTER_KMOD_DEP(net_hns3, "* igb_uio | vfio-pci");
6660 RTE_PMD_REGISTER_PARAM_STRING(net_hns3,
6661 		HNS3_DEVARG_RX_FUNC_HINT "=vec|sve|simple|common "
6662 		HNS3_DEVARG_TX_FUNC_HINT "=vec|sve|simple|common "
6663 		HNS3_DEVARG_DEV_CAPS_MASK "=<1-65535> "
6664 		HNS3_DEVARG_MBX_TIME_LIMIT_MS "=<uint16> ");
6665 RTE_LOG_REGISTER_SUFFIX(hns3_logtype_init, init, NOTICE);
6666 RTE_LOG_REGISTER_SUFFIX(hns3_logtype_driver, driver, NOTICE);
6667