xref: /dpdk/drivers/net/hns3/hns3_ethdev.c (revision 42a8fc7daa46256d150278fc9a7a846e27945a0c)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2021 HiSilicon Limited.
3  */
4 
5 #include <rte_alarm.h>
6 #include <rte_bus_pci.h>
7 #include <ethdev_pci.h>
8 
9 #include "hns3_ethdev.h"
10 #include "hns3_common.h"
11 #include "hns3_logs.h"
12 #include "hns3_rxtx.h"
13 #include "hns3_intr.h"
14 #include "hns3_regs.h"
15 #include "hns3_dcb.h"
16 #include "hns3_mp.h"
17 #include "hns3_flow.h"
18 
19 #define HNS3_SERVICE_INTERVAL		1000000 /* us */
20 #define HNS3_SERVICE_QUICK_INTERVAL	10
21 #define HNS3_INVALID_PVID		0xFFFF
22 
23 #define HNS3_FILTER_TYPE_VF		0
24 #define HNS3_FILTER_TYPE_PORT		1
25 #define HNS3_FILTER_FE_EGRESS_V1_B	BIT(0)
26 #define HNS3_FILTER_FE_NIC_INGRESS_B	BIT(0)
27 #define HNS3_FILTER_FE_NIC_EGRESS_B	BIT(1)
28 #define HNS3_FILTER_FE_ROCE_INGRESS_B	BIT(2)
29 #define HNS3_FILTER_FE_ROCE_EGRESS_B	BIT(3)
30 #define HNS3_FILTER_FE_EGRESS		(HNS3_FILTER_FE_NIC_EGRESS_B \
31 					| HNS3_FILTER_FE_ROCE_EGRESS_B)
32 #define HNS3_FILTER_FE_INGRESS		(HNS3_FILTER_FE_NIC_INGRESS_B \
33 					| HNS3_FILTER_FE_ROCE_INGRESS_B)
34 
35 /* Reset related Registers */
36 #define HNS3_GLOBAL_RESET_BIT		0
37 #define HNS3_CORE_RESET_BIT		1
38 #define HNS3_IMP_RESET_BIT		2
39 #define HNS3_FUN_RST_ING_B		0
40 
41 #define HNS3_VECTOR0_IMP_RESET_INT_B	1
42 #define HNS3_VECTOR0_IMP_CMDQ_ERR_B	4U
43 #define HNS3_VECTOR0_IMP_RD_POISON_B	5U
44 #define HNS3_VECTOR0_ALL_MSIX_ERR_B	6U
45 
46 #define HNS3_RESET_WAIT_MS	100
47 #define HNS3_RESET_WAIT_CNT	200
48 
49 /* FEC mode order defined in HNS3 hardware */
50 #define HNS3_HW_FEC_MODE_NOFEC  0
51 #define HNS3_HW_FEC_MODE_BASER  1
52 #define HNS3_HW_FEC_MODE_RS     2
53 
54 enum hns3_evt_cause {
55 	HNS3_VECTOR0_EVENT_RST,
56 	HNS3_VECTOR0_EVENT_MBX,
57 	HNS3_VECTOR0_EVENT_ERR,
58 	HNS3_VECTOR0_EVENT_PTP,
59 	HNS3_VECTOR0_EVENT_OTHER,
60 };
61 
62 static const struct rte_eth_fec_capa speed_fec_capa_tbl[] = {
63 	{ RTE_ETH_SPEED_NUM_10G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
64 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
65 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) },
66 
67 	{ RTE_ETH_SPEED_NUM_25G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
68 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
69 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) |
70 			     RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
71 
72 	{ RTE_ETH_SPEED_NUM_40G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
73 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
74 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) },
75 
76 	{ RTE_ETH_SPEED_NUM_50G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
77 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
78 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) |
79 			     RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
80 
81 	{ RTE_ETH_SPEED_NUM_100G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
82 			      RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
83 			      RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
84 
85 	{ RTE_ETH_SPEED_NUM_200G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
86 			      RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
87 			      RTE_ETH_FEC_MODE_CAPA_MASK(RS) }
88 };
89 
90 static enum hns3_reset_level hns3_get_reset_level(struct hns3_adapter *hns,
91 						 uint64_t *levels);
92 static int hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
93 static int hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid,
94 				    int on);
95 static int hns3_update_link_info(struct rte_eth_dev *eth_dev);
96 static bool hns3_update_link_status(struct hns3_hw *hw);
97 
98 static int hns3_add_mc_mac_addr(struct hns3_hw *hw,
99 				struct rte_ether_addr *mac_addr);
100 static int hns3_remove_mc_mac_addr(struct hns3_hw *hw,
101 				   struct rte_ether_addr *mac_addr);
102 static int hns3_restore_fec(struct hns3_hw *hw);
103 static int hns3_query_dev_fec_info(struct hns3_hw *hw);
104 static int hns3_do_stop(struct hns3_adapter *hns);
105 static int hns3_check_port_speed(struct hns3_hw *hw, uint32_t link_speeds);
106 static int hns3_cfg_mac_mode(struct hns3_hw *hw, bool enable);
107 
108 
109 static void
110 hns3_pf_disable_irq0(struct hns3_hw *hw)
111 {
112 	hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
113 }
114 
115 static void
116 hns3_pf_enable_irq0(struct hns3_hw *hw)
117 {
118 	hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
119 }
120 
121 static enum hns3_evt_cause
122 hns3_proc_imp_reset_event(struct hns3_adapter *hns, bool is_delay,
123 			  uint32_t *vec_val)
124 {
125 	struct hns3_hw *hw = &hns->hw;
126 
127 	__atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
128 	hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
129 	*vec_val = BIT(HNS3_VECTOR0_IMPRESET_INT_B);
130 	if (!is_delay) {
131 		hw->reset.stats.imp_cnt++;
132 		hns3_warn(hw, "IMP reset detected, clear reset status");
133 	} else {
134 		hns3_schedule_delayed_reset(hns);
135 		hns3_warn(hw, "IMP reset detected, don't clear reset status");
136 	}
137 
138 	return HNS3_VECTOR0_EVENT_RST;
139 }
140 
141 static enum hns3_evt_cause
142 hns3_proc_global_reset_event(struct hns3_adapter *hns, bool is_delay,
143 			     uint32_t *vec_val)
144 {
145 	struct hns3_hw *hw = &hns->hw;
146 
147 	__atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
148 	hns3_atomic_set_bit(HNS3_GLOBAL_RESET, &hw->reset.pending);
149 	*vec_val = BIT(HNS3_VECTOR0_GLOBALRESET_INT_B);
150 	if (!is_delay) {
151 		hw->reset.stats.global_cnt++;
152 		hns3_warn(hw, "Global reset detected, clear reset status");
153 	} else {
154 		hns3_schedule_delayed_reset(hns);
155 		hns3_warn(hw,
156 			  "Global reset detected, don't clear reset status");
157 	}
158 
159 	return HNS3_VECTOR0_EVENT_RST;
160 }
161 
162 static enum hns3_evt_cause
163 hns3_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
164 {
165 	struct hns3_hw *hw = &hns->hw;
166 	uint32_t vector0_int_stats;
167 	uint32_t cmdq_src_val;
168 	uint32_t hw_err_src_reg;
169 	uint32_t val;
170 	enum hns3_evt_cause ret;
171 	bool is_delay;
172 
173 	/* fetch the events from their corresponding regs */
174 	vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
175 	cmdq_src_val = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
176 	hw_err_src_reg = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG);
177 
178 	is_delay = clearval == NULL ? true : false;
179 	/*
180 	 * Assumption: If by any chance reset and mailbox events are reported
181 	 * together then we will only process reset event and defer the
182 	 * processing of the mailbox events. Since, we would have not cleared
183 	 * RX CMDQ event this time we would receive again another interrupt
184 	 * from H/W just for the mailbox.
185 	 */
186 	if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats) { /* IMP */
187 		ret = hns3_proc_imp_reset_event(hns, is_delay, &val);
188 		goto out;
189 	}
190 
191 	/* Global reset */
192 	if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats) {
193 		ret = hns3_proc_global_reset_event(hns, is_delay, &val);
194 		goto out;
195 	}
196 
197 	/* Check for vector0 1588 event source */
198 	if (BIT(HNS3_VECTOR0_1588_INT_B) & vector0_int_stats) {
199 		val = BIT(HNS3_VECTOR0_1588_INT_B);
200 		ret = HNS3_VECTOR0_EVENT_PTP;
201 		goto out;
202 	}
203 
204 	/* check for vector0 msix event source */
205 	if (vector0_int_stats & HNS3_VECTOR0_REG_MSIX_MASK ||
206 	    hw_err_src_reg & HNS3_RAS_REG_NFE_MASK) {
207 		val = vector0_int_stats | hw_err_src_reg;
208 		ret = HNS3_VECTOR0_EVENT_ERR;
209 		goto out;
210 	}
211 
212 	/* check for vector0 mailbox(=CMDQ RX) event source */
213 	if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_val) {
214 		cmdq_src_val &= ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
215 		val = cmdq_src_val;
216 		ret = HNS3_VECTOR0_EVENT_MBX;
217 		goto out;
218 	}
219 
220 	val = vector0_int_stats;
221 	ret = HNS3_VECTOR0_EVENT_OTHER;
222 out:
223 
224 	if (clearval)
225 		*clearval = val;
226 	return ret;
227 }
228 
229 static void
230 hns3_clear_event_cause(struct hns3_hw *hw, uint32_t event_type, uint32_t regclr)
231 {
232 	if (event_type == HNS3_VECTOR0_EVENT_RST ||
233 	    event_type == HNS3_VECTOR0_EVENT_PTP)
234 		hns3_write_dev(hw, HNS3_MISC_RESET_STS_REG, regclr);
235 	else if (event_type == HNS3_VECTOR0_EVENT_MBX)
236 		hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
237 }
238 
239 static void
240 hns3_clear_all_event_cause(struct hns3_hw *hw)
241 {
242 	uint32_t vector0_int_stats;
243 
244 	vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
245 	if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats)
246 		hns3_warn(hw, "Probe during IMP reset interrupt");
247 
248 	if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats)
249 		hns3_warn(hw, "Probe during Global reset interrupt");
250 
251 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_RST,
252 			       BIT(HNS3_VECTOR0_IMPRESET_INT_B) |
253 			       BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) |
254 			       BIT(HNS3_VECTOR0_CORERESET_INT_B));
255 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_MBX, 0);
256 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_PTP,
257 				BIT(HNS3_VECTOR0_1588_INT_B));
258 }
259 
260 static void
261 hns3_handle_mac_tnl(struct hns3_hw *hw)
262 {
263 	struct hns3_cmd_desc desc;
264 	uint32_t status;
265 	int ret;
266 
267 	/* query and clear mac tnl interrupt */
268 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_MAC_TNL_INT, true);
269 	ret = hns3_cmd_send(hw, &desc, 1);
270 	if (ret) {
271 		hns3_err(hw, "failed to query mac tnl int, ret = %d.", ret);
272 		return;
273 	}
274 
275 	status = rte_le_to_cpu_32(desc.data[0]);
276 	if (status) {
277 		hns3_warn(hw, "mac tnl int occurs, status = 0x%x.", status);
278 		hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_MAC_TNL_INT,
279 					  false);
280 		desc.data[0] = rte_cpu_to_le_32(HNS3_MAC_TNL_INT_CLR);
281 		ret = hns3_cmd_send(hw, &desc, 1);
282 		if (ret)
283 			hns3_err(hw, "failed to clear mac tnl int, ret = %d.",
284 				 ret);
285 	}
286 }
287 
288 static void
289 hns3_interrupt_handler(void *param)
290 {
291 	struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
292 	struct hns3_adapter *hns = dev->data->dev_private;
293 	struct hns3_hw *hw = &hns->hw;
294 	enum hns3_evt_cause event_cause;
295 	uint32_t clearval = 0;
296 	uint32_t vector0_int;
297 	uint32_t ras_int;
298 	uint32_t cmdq_int;
299 
300 	/* Disable interrupt */
301 	hns3_pf_disable_irq0(hw);
302 
303 	event_cause = hns3_check_event_cause(hns, &clearval);
304 	vector0_int = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
305 	ras_int = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG);
306 	cmdq_int = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
307 	hns3_clear_event_cause(hw, event_cause, clearval);
308 	/* vector 0 interrupt is shared with reset and mailbox source events. */
309 	if (event_cause == HNS3_VECTOR0_EVENT_ERR) {
310 		hns3_warn(hw, "received interrupt: vector0_int_stat:0x%x "
311 			  "ras_int_stat:0x%x cmdq_int_stat:0x%x",
312 			  vector0_int, ras_int, cmdq_int);
313 		hns3_handle_mac_tnl(hw);
314 		hns3_handle_error(hns);
315 	} else if (event_cause == HNS3_VECTOR0_EVENT_RST) {
316 		hns3_warn(hw, "received reset interrupt");
317 		hns3_schedule_reset(hns);
318 	} else if (event_cause == HNS3_VECTOR0_EVENT_MBX) {
319 		hns3_dev_handle_mbx_msg(hw);
320 	} else {
321 		hns3_warn(hw, "received unknown event: vector0_int_stat:0x%x "
322 			  "ras_int_stat:0x%x cmdq_int_stat:0x%x",
323 			  vector0_int, ras_int, cmdq_int);
324 	}
325 
326 	/* Enable interrupt if it is not cause by reset */
327 	hns3_pf_enable_irq0(hw);
328 }
329 
330 static int
331 hns3_set_port_vlan_filter(struct hns3_adapter *hns, uint16_t vlan_id, int on)
332 {
333 #define HNS3_VLAN_ID_OFFSET_STEP	160
334 #define HNS3_VLAN_BYTE_SIZE		8
335 	struct hns3_vlan_filter_pf_cfg_cmd *req;
336 	struct hns3_hw *hw = &hns->hw;
337 	uint8_t vlan_offset_byte_val;
338 	struct hns3_cmd_desc desc;
339 	uint8_t vlan_offset_byte;
340 	uint8_t vlan_offset_base;
341 	int ret;
342 
343 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_PF_CFG, false);
344 
345 	vlan_offset_base = vlan_id / HNS3_VLAN_ID_OFFSET_STEP;
346 	vlan_offset_byte = (vlan_id % HNS3_VLAN_ID_OFFSET_STEP) /
347 			   HNS3_VLAN_BYTE_SIZE;
348 	vlan_offset_byte_val = 1 << (vlan_id % HNS3_VLAN_BYTE_SIZE);
349 
350 	req = (struct hns3_vlan_filter_pf_cfg_cmd *)desc.data;
351 	req->vlan_offset = vlan_offset_base;
352 	req->vlan_cfg = on ? 0 : 1;
353 	req->vlan_offset_bitmap[vlan_offset_byte] = vlan_offset_byte_val;
354 
355 	ret = hns3_cmd_send(hw, &desc, 1);
356 	if (ret)
357 		hns3_err(hw, "set port vlan id failed, vlan_id =%u, ret =%d",
358 			 vlan_id, ret);
359 
360 	return ret;
361 }
362 
363 static void
364 hns3_rm_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id)
365 {
366 	struct hns3_user_vlan_table *vlan_entry;
367 	struct hns3_pf *pf = &hns->pf;
368 
369 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
370 		if (vlan_entry->vlan_id == vlan_id) {
371 			if (vlan_entry->hd_tbl_status)
372 				hns3_set_port_vlan_filter(hns, vlan_id, 0);
373 			LIST_REMOVE(vlan_entry, next);
374 			rte_free(vlan_entry);
375 			break;
376 		}
377 	}
378 }
379 
380 static void
381 hns3_add_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id,
382 			bool writen_to_tbl)
383 {
384 	struct hns3_user_vlan_table *vlan_entry;
385 	struct hns3_hw *hw = &hns->hw;
386 	struct hns3_pf *pf = &hns->pf;
387 
388 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
389 		if (vlan_entry->vlan_id == vlan_id)
390 			return;
391 	}
392 
393 	vlan_entry = rte_zmalloc("hns3_vlan_tbl", sizeof(*vlan_entry), 0);
394 	if (vlan_entry == NULL) {
395 		hns3_err(hw, "Failed to malloc hns3 vlan table");
396 		return;
397 	}
398 
399 	vlan_entry->hd_tbl_status = writen_to_tbl;
400 	vlan_entry->vlan_id = vlan_id;
401 
402 	LIST_INSERT_HEAD(&pf->vlan_list, vlan_entry, next);
403 }
404 
405 static int
406 hns3_restore_vlan_table(struct hns3_adapter *hns)
407 {
408 	struct hns3_user_vlan_table *vlan_entry;
409 	struct hns3_hw *hw = &hns->hw;
410 	struct hns3_pf *pf = &hns->pf;
411 	uint16_t vlan_id;
412 	int ret = 0;
413 
414 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_ENABLE)
415 		return hns3_vlan_pvid_configure(hns,
416 						hw->port_base_vlan_cfg.pvid, 1);
417 
418 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
419 		if (vlan_entry->hd_tbl_status) {
420 			vlan_id = vlan_entry->vlan_id;
421 			ret = hns3_set_port_vlan_filter(hns, vlan_id, 1);
422 			if (ret)
423 				break;
424 		}
425 	}
426 
427 	return ret;
428 }
429 
430 static int
431 hns3_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
432 {
433 	struct hns3_hw *hw = &hns->hw;
434 	bool writen_to_tbl = false;
435 	int ret = 0;
436 
437 	/*
438 	 * When vlan filter is enabled, hardware regards packets without vlan
439 	 * as packets with vlan 0. So, to receive packets without vlan, vlan id
440 	 * 0 is not allowed to be removed by rte_eth_dev_vlan_filter.
441 	 */
442 	if (on == 0 && vlan_id == 0)
443 		return 0;
444 
445 	/*
446 	 * When port base vlan enabled, we use port base vlan as the vlan
447 	 * filter condition. In this case, we don't update vlan filter table
448 	 * when user add new vlan or remove exist vlan, just update the
449 	 * vlan list. The vlan id in vlan list will be written in vlan filter
450 	 * table until port base vlan disabled
451 	 */
452 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
453 		ret = hns3_set_port_vlan_filter(hns, vlan_id, on);
454 		writen_to_tbl = true;
455 	}
456 
457 	if (ret == 0) {
458 		if (on)
459 			hns3_add_dev_vlan_table(hns, vlan_id, writen_to_tbl);
460 		else
461 			hns3_rm_dev_vlan_table(hns, vlan_id);
462 	}
463 	return ret;
464 }
465 
466 static int
467 hns3_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
468 {
469 	struct hns3_adapter *hns = dev->data->dev_private;
470 	struct hns3_hw *hw = &hns->hw;
471 	int ret;
472 
473 	rte_spinlock_lock(&hw->lock);
474 	ret = hns3_vlan_filter_configure(hns, vlan_id, on);
475 	rte_spinlock_unlock(&hw->lock);
476 	return ret;
477 }
478 
479 static int
480 hns3_vlan_tpid_configure(struct hns3_adapter *hns, enum rte_vlan_type vlan_type,
481 			 uint16_t tpid)
482 {
483 	struct hns3_rx_vlan_type_cfg_cmd *rx_req;
484 	struct hns3_tx_vlan_type_cfg_cmd *tx_req;
485 	struct hns3_hw *hw = &hns->hw;
486 	struct hns3_cmd_desc desc;
487 	int ret;
488 
489 	if ((vlan_type != RTE_ETH_VLAN_TYPE_INNER &&
490 	     vlan_type != RTE_ETH_VLAN_TYPE_OUTER)) {
491 		hns3_err(hw, "Unsupported vlan type, vlan_type =%d", vlan_type);
492 		return -EINVAL;
493 	}
494 
495 	if (tpid != RTE_ETHER_TYPE_VLAN) {
496 		hns3_err(hw, "Unsupported vlan tpid, vlan_type =%d", vlan_type);
497 		return -EINVAL;
498 	}
499 
500 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_TYPE_ID, false);
501 	rx_req = (struct hns3_rx_vlan_type_cfg_cmd *)desc.data;
502 
503 	if (vlan_type == RTE_ETH_VLAN_TYPE_OUTER) {
504 		rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
505 		rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
506 	} else if (vlan_type == RTE_ETH_VLAN_TYPE_INNER) {
507 		rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
508 		rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
509 		rx_req->in_fst_vlan_type = rte_cpu_to_le_16(tpid);
510 		rx_req->in_sec_vlan_type = rte_cpu_to_le_16(tpid);
511 	}
512 
513 	ret = hns3_cmd_send(hw, &desc, 1);
514 	if (ret) {
515 		hns3_err(hw, "Send rxvlan protocol type command fail, ret =%d",
516 			 ret);
517 		return ret;
518 	}
519 
520 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_INSERT, false);
521 
522 	tx_req = (struct hns3_tx_vlan_type_cfg_cmd *)desc.data;
523 	tx_req->ot_vlan_type = rte_cpu_to_le_16(tpid);
524 	tx_req->in_vlan_type = rte_cpu_to_le_16(tpid);
525 
526 	ret = hns3_cmd_send(hw, &desc, 1);
527 	if (ret)
528 		hns3_err(hw, "Send txvlan protocol type command fail, ret =%d",
529 			 ret);
530 	return ret;
531 }
532 
533 static int
534 hns3_vlan_tpid_set(struct rte_eth_dev *dev, enum rte_vlan_type vlan_type,
535 		   uint16_t tpid)
536 {
537 	struct hns3_adapter *hns = dev->data->dev_private;
538 	struct hns3_hw *hw = &hns->hw;
539 	int ret;
540 
541 	rte_spinlock_lock(&hw->lock);
542 	ret = hns3_vlan_tpid_configure(hns, vlan_type, tpid);
543 	rte_spinlock_unlock(&hw->lock);
544 	return ret;
545 }
546 
547 static int
548 hns3_set_vlan_rx_offload_cfg(struct hns3_adapter *hns,
549 			     struct hns3_rx_vtag_cfg *vcfg)
550 {
551 	struct hns3_vport_vtag_rx_cfg_cmd *req;
552 	struct hns3_hw *hw = &hns->hw;
553 	struct hns3_cmd_desc desc;
554 	uint16_t vport_id;
555 	uint8_t bitmap;
556 	int ret;
557 
558 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_RX_CFG, false);
559 
560 	req = (struct hns3_vport_vtag_rx_cfg_cmd *)desc.data;
561 	hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG1_EN_B,
562 		     vcfg->strip_tag1_en ? 1 : 0);
563 	hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG2_EN_B,
564 		     vcfg->strip_tag2_en ? 1 : 0);
565 	hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG1_EN_B,
566 		     vcfg->vlan1_vlan_prionly ? 1 : 0);
567 	hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG2_EN_B,
568 		     vcfg->vlan2_vlan_prionly ? 1 : 0);
569 
570 	/* firmware will ignore this configuration for PCI_REVISION_ID_HIP08 */
571 	hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG1_EN_B,
572 		     vcfg->strip_tag1_discard_en ? 1 : 0);
573 	hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG2_EN_B,
574 		     vcfg->strip_tag2_discard_en ? 1 : 0);
575 	/*
576 	 * In current version VF is not supported when PF is driven by DPDK
577 	 * driver, just need to configure parameters for PF vport.
578 	 */
579 	vport_id = HNS3_PF_FUNC_ID;
580 	req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
581 	bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
582 	req->vf_bitmap[req->vf_offset] = bitmap;
583 
584 	ret = hns3_cmd_send(hw, &desc, 1);
585 	if (ret)
586 		hns3_err(hw, "Send port rxvlan cfg command fail, ret =%d", ret);
587 	return ret;
588 }
589 
590 static int
591 hns3_en_hw_strip_rxvtag(struct hns3_adapter *hns, bool enable)
592 {
593 	struct hns3_rx_vtag_cfg rxvlan_cfg;
594 	struct hns3_hw *hw = &hns->hw;
595 	int ret;
596 
597 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
598 		rxvlan_cfg.strip_tag1_en = false;
599 		rxvlan_cfg.strip_tag2_en = enable;
600 		rxvlan_cfg.strip_tag2_discard_en = false;
601 	} else {
602 		rxvlan_cfg.strip_tag1_en = enable;
603 		rxvlan_cfg.strip_tag2_en = true;
604 		rxvlan_cfg.strip_tag2_discard_en = true;
605 	}
606 
607 	rxvlan_cfg.strip_tag1_discard_en = false;
608 	rxvlan_cfg.vlan1_vlan_prionly = false;
609 	rxvlan_cfg.vlan2_vlan_prionly = false;
610 	rxvlan_cfg.rx_vlan_offload_en = enable;
611 
612 	ret = hns3_set_vlan_rx_offload_cfg(hns, &rxvlan_cfg);
613 	if (ret) {
614 		hns3_err(hw, "%s strip rx vtag failed, ret = %d.",
615 				enable ? "enable" : "disable", ret);
616 		return ret;
617 	}
618 
619 	memcpy(&hns->pf.vtag_config.rx_vcfg, &rxvlan_cfg,
620 	       sizeof(struct hns3_rx_vtag_cfg));
621 
622 	return ret;
623 }
624 
625 static int
626 hns3_set_vlan_filter_ctrl(struct hns3_hw *hw, uint8_t vlan_type,
627 			  uint8_t fe_type, bool filter_en, uint8_t vf_id)
628 {
629 	struct hns3_vlan_filter_ctrl_cmd *req;
630 	struct hns3_cmd_desc desc;
631 	int ret;
632 
633 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_CTRL, false);
634 
635 	req = (struct hns3_vlan_filter_ctrl_cmd *)desc.data;
636 	req->vlan_type = vlan_type;
637 	req->vlan_fe = filter_en ? fe_type : 0;
638 	req->vf_id = vf_id;
639 
640 	ret = hns3_cmd_send(hw, &desc, 1);
641 	if (ret)
642 		hns3_err(hw, "set vlan filter fail, ret =%d", ret);
643 
644 	return ret;
645 }
646 
647 static int
648 hns3_vlan_filter_init(struct hns3_adapter *hns)
649 {
650 	struct hns3_hw *hw = &hns->hw;
651 	int ret;
652 
653 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_VF,
654 					HNS3_FILTER_FE_EGRESS, false,
655 					HNS3_PF_FUNC_ID);
656 	if (ret) {
657 		hns3_err(hw, "failed to init vf vlan filter, ret = %d", ret);
658 		return ret;
659 	}
660 
661 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
662 					HNS3_FILTER_FE_INGRESS, false,
663 					HNS3_PF_FUNC_ID);
664 	if (ret)
665 		hns3_err(hw, "failed to init port vlan filter, ret = %d", ret);
666 
667 	return ret;
668 }
669 
670 static int
671 hns3_enable_vlan_filter(struct hns3_adapter *hns, bool enable)
672 {
673 	struct hns3_hw *hw = &hns->hw;
674 	int ret;
675 
676 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
677 					HNS3_FILTER_FE_INGRESS, enable,
678 					HNS3_PF_FUNC_ID);
679 	if (ret)
680 		hns3_err(hw, "failed to %s port vlan filter, ret = %d",
681 			 enable ? "enable" : "disable", ret);
682 
683 	return ret;
684 }
685 
686 static int
687 hns3_vlan_offload_set(struct rte_eth_dev *dev, int mask)
688 {
689 	struct hns3_adapter *hns = dev->data->dev_private;
690 	struct hns3_hw *hw = &hns->hw;
691 	struct rte_eth_rxmode *rxmode;
692 	unsigned int tmp_mask;
693 	bool enable;
694 	int ret = 0;
695 
696 	rte_spinlock_lock(&hw->lock);
697 	rxmode = &dev->data->dev_conf.rxmode;
698 	tmp_mask = (unsigned int)mask;
699 	if (tmp_mask & RTE_ETH_VLAN_FILTER_MASK) {
700 		/* ignore vlan filter configuration during promiscuous mode */
701 		if (!dev->data->promiscuous) {
702 			/* Enable or disable VLAN filter */
703 			enable = rxmode->offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER ?
704 				 true : false;
705 
706 			ret = hns3_enable_vlan_filter(hns, enable);
707 			if (ret) {
708 				rte_spinlock_unlock(&hw->lock);
709 				hns3_err(hw, "failed to %s rx filter, ret = %d",
710 					 enable ? "enable" : "disable", ret);
711 				return ret;
712 			}
713 		}
714 	}
715 
716 	if (tmp_mask & RTE_ETH_VLAN_STRIP_MASK) {
717 		/* Enable or disable VLAN stripping */
718 		enable = rxmode->offloads & RTE_ETH_RX_OFFLOAD_VLAN_STRIP ?
719 		    true : false;
720 
721 		ret = hns3_en_hw_strip_rxvtag(hns, enable);
722 		if (ret) {
723 			rte_spinlock_unlock(&hw->lock);
724 			hns3_err(hw, "failed to %s rx strip, ret = %d",
725 				 enable ? "enable" : "disable", ret);
726 			return ret;
727 		}
728 	}
729 
730 	rte_spinlock_unlock(&hw->lock);
731 
732 	return ret;
733 }
734 
735 static int
736 hns3_set_vlan_tx_offload_cfg(struct hns3_adapter *hns,
737 			     struct hns3_tx_vtag_cfg *vcfg)
738 {
739 	struct hns3_vport_vtag_tx_cfg_cmd *req;
740 	struct hns3_cmd_desc desc;
741 	struct hns3_hw *hw = &hns->hw;
742 	uint16_t vport_id;
743 	uint8_t bitmap;
744 	int ret;
745 
746 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_TX_CFG, false);
747 
748 	req = (struct hns3_vport_vtag_tx_cfg_cmd *)desc.data;
749 	req->def_vlan_tag1 = vcfg->default_tag1;
750 	req->def_vlan_tag2 = vcfg->default_tag2;
751 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG1_B,
752 		     vcfg->accept_tag1 ? 1 : 0);
753 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG1_B,
754 		     vcfg->accept_untag1 ? 1 : 0);
755 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG2_B,
756 		     vcfg->accept_tag2 ? 1 : 0);
757 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG2_B,
758 		     vcfg->accept_untag2 ? 1 : 0);
759 	hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG1_EN_B,
760 		     vcfg->insert_tag1_en ? 1 : 0);
761 	hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG2_EN_B,
762 		     vcfg->insert_tag2_en ? 1 : 0);
763 	hns3_set_bit(req->vport_vlan_cfg, HNS3_CFG_NIC_ROCE_SEL_B, 0);
764 
765 	/* firmware will ignore this configuration for PCI_REVISION_ID_HIP08 */
766 	hns3_set_bit(req->vport_vlan_cfg, HNS3_TAG_SHIFT_MODE_EN_B,
767 		     vcfg->tag_shift_mode_en ? 1 : 0);
768 
769 	/*
770 	 * In current version VF is not supported when PF is driven by DPDK
771 	 * driver, just need to configure parameters for PF vport.
772 	 */
773 	vport_id = HNS3_PF_FUNC_ID;
774 	req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
775 	bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
776 	req->vf_bitmap[req->vf_offset] = bitmap;
777 
778 	ret = hns3_cmd_send(hw, &desc, 1);
779 	if (ret)
780 		hns3_err(hw, "Send port txvlan cfg command fail, ret =%d", ret);
781 
782 	return ret;
783 }
784 
785 static int
786 hns3_vlan_txvlan_cfg(struct hns3_adapter *hns, uint16_t port_base_vlan_state,
787 		     uint16_t pvid)
788 {
789 	struct hns3_hw *hw = &hns->hw;
790 	struct hns3_tx_vtag_cfg txvlan_cfg;
791 	int ret;
792 
793 	if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_DISABLE) {
794 		txvlan_cfg.accept_tag1 = true;
795 		txvlan_cfg.insert_tag1_en = false;
796 		txvlan_cfg.default_tag1 = 0;
797 	} else {
798 		txvlan_cfg.accept_tag1 =
799 			hw->vlan_mode == HNS3_HW_SHIFT_AND_DISCARD_MODE;
800 		txvlan_cfg.insert_tag1_en = true;
801 		txvlan_cfg.default_tag1 = pvid;
802 	}
803 
804 	txvlan_cfg.accept_untag1 = true;
805 	txvlan_cfg.accept_tag2 = true;
806 	txvlan_cfg.accept_untag2 = true;
807 	txvlan_cfg.insert_tag2_en = false;
808 	txvlan_cfg.default_tag2 = 0;
809 	txvlan_cfg.tag_shift_mode_en = true;
810 
811 	ret = hns3_set_vlan_tx_offload_cfg(hns, &txvlan_cfg);
812 	if (ret) {
813 		hns3_err(hw, "pf vlan set pvid failed, pvid =%u ,ret =%d", pvid,
814 			 ret);
815 		return ret;
816 	}
817 
818 	memcpy(&hns->pf.vtag_config.tx_vcfg, &txvlan_cfg,
819 	       sizeof(struct hns3_tx_vtag_cfg));
820 
821 	return ret;
822 }
823 
824 
825 static void
826 hns3_rm_all_vlan_table(struct hns3_adapter *hns, bool is_del_list)
827 {
828 	struct hns3_user_vlan_table *vlan_entry;
829 	struct hns3_pf *pf = &hns->pf;
830 
831 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
832 		if (vlan_entry->hd_tbl_status) {
833 			hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 0);
834 			vlan_entry->hd_tbl_status = false;
835 		}
836 	}
837 
838 	if (is_del_list) {
839 		vlan_entry = LIST_FIRST(&pf->vlan_list);
840 		while (vlan_entry) {
841 			LIST_REMOVE(vlan_entry, next);
842 			rte_free(vlan_entry);
843 			vlan_entry = LIST_FIRST(&pf->vlan_list);
844 		}
845 	}
846 }
847 
848 static void
849 hns3_add_all_vlan_table(struct hns3_adapter *hns)
850 {
851 	struct hns3_user_vlan_table *vlan_entry;
852 	struct hns3_pf *pf = &hns->pf;
853 
854 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
855 		if (!vlan_entry->hd_tbl_status) {
856 			hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 1);
857 			vlan_entry->hd_tbl_status = true;
858 		}
859 	}
860 }
861 
862 static void
863 hns3_remove_all_vlan_table(struct hns3_adapter *hns)
864 {
865 	struct hns3_hw *hw = &hns->hw;
866 	int ret;
867 
868 	hns3_rm_all_vlan_table(hns, true);
869 	if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID) {
870 		ret = hns3_set_port_vlan_filter(hns,
871 						hw->port_base_vlan_cfg.pvid, 0);
872 		if (ret) {
873 			hns3_err(hw, "Failed to remove all vlan table, ret =%d",
874 				 ret);
875 			return;
876 		}
877 	}
878 }
879 
880 static int
881 hns3_update_vlan_filter_entries(struct hns3_adapter *hns,
882 			uint16_t port_base_vlan_state, uint16_t new_pvid)
883 {
884 	struct hns3_hw *hw = &hns->hw;
885 	uint16_t old_pvid;
886 	int ret;
887 
888 	if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_ENABLE) {
889 		old_pvid = hw->port_base_vlan_cfg.pvid;
890 		if (old_pvid != HNS3_INVALID_PVID) {
891 			ret = hns3_set_port_vlan_filter(hns, old_pvid, 0);
892 			if (ret) {
893 				hns3_err(hw, "failed to remove old pvid %u, "
894 						"ret = %d", old_pvid, ret);
895 				return ret;
896 			}
897 		}
898 
899 		hns3_rm_all_vlan_table(hns, false);
900 		ret = hns3_set_port_vlan_filter(hns, new_pvid, 1);
901 		if (ret) {
902 			hns3_err(hw, "failed to add new pvid %u, ret = %d",
903 					new_pvid, ret);
904 			return ret;
905 		}
906 	} else {
907 		ret = hns3_set_port_vlan_filter(hns, new_pvid, 0);
908 		if (ret) {
909 			hns3_err(hw, "failed to remove pvid %u, ret = %d",
910 					new_pvid, ret);
911 			return ret;
912 		}
913 
914 		hns3_add_all_vlan_table(hns);
915 	}
916 	return 0;
917 }
918 
919 static int
920 hns3_en_pvid_strip(struct hns3_adapter *hns, int on)
921 {
922 	struct hns3_rx_vtag_cfg *old_cfg = &hns->pf.vtag_config.rx_vcfg;
923 	struct hns3_rx_vtag_cfg rx_vlan_cfg;
924 	bool rx_strip_en;
925 	int ret;
926 
927 	rx_strip_en = old_cfg->rx_vlan_offload_en;
928 	if (on) {
929 		rx_vlan_cfg.strip_tag1_en = rx_strip_en;
930 		rx_vlan_cfg.strip_tag2_en = true;
931 		rx_vlan_cfg.strip_tag2_discard_en = true;
932 	} else {
933 		rx_vlan_cfg.strip_tag1_en = false;
934 		rx_vlan_cfg.strip_tag2_en = rx_strip_en;
935 		rx_vlan_cfg.strip_tag2_discard_en = false;
936 	}
937 	rx_vlan_cfg.strip_tag1_discard_en = false;
938 	rx_vlan_cfg.vlan1_vlan_prionly = false;
939 	rx_vlan_cfg.vlan2_vlan_prionly = false;
940 	rx_vlan_cfg.rx_vlan_offload_en = old_cfg->rx_vlan_offload_en;
941 
942 	ret = hns3_set_vlan_rx_offload_cfg(hns, &rx_vlan_cfg);
943 	if (ret)
944 		return ret;
945 
946 	memcpy(&hns->pf.vtag_config.rx_vcfg, &rx_vlan_cfg,
947 	       sizeof(struct hns3_rx_vtag_cfg));
948 
949 	return ret;
950 }
951 
952 static int
953 hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid, int on)
954 {
955 	struct hns3_hw *hw = &hns->hw;
956 	uint16_t port_base_vlan_state;
957 	int ret, err;
958 
959 	if (on == 0 && pvid != hw->port_base_vlan_cfg.pvid) {
960 		if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID)
961 			hns3_warn(hw, "Invalid operation! As current pvid set "
962 				  "is %u, disable pvid %u is invalid",
963 				  hw->port_base_vlan_cfg.pvid, pvid);
964 		return 0;
965 	}
966 
967 	port_base_vlan_state = on ? HNS3_PORT_BASE_VLAN_ENABLE :
968 				    HNS3_PORT_BASE_VLAN_DISABLE;
969 	ret = hns3_vlan_txvlan_cfg(hns, port_base_vlan_state, pvid);
970 	if (ret) {
971 		hns3_err(hw, "failed to config tx vlan for pvid, ret = %d",
972 			 ret);
973 		return ret;
974 	}
975 
976 	ret = hns3_en_pvid_strip(hns, on);
977 	if (ret) {
978 		hns3_err(hw, "failed to config rx vlan strip for pvid, "
979 			 "ret = %d", ret);
980 		goto pvid_vlan_strip_fail;
981 	}
982 
983 	if (pvid == HNS3_INVALID_PVID)
984 		goto out;
985 	ret = hns3_update_vlan_filter_entries(hns, port_base_vlan_state, pvid);
986 	if (ret) {
987 		hns3_err(hw, "failed to update vlan filter entries, ret = %d",
988 			 ret);
989 		goto vlan_filter_set_fail;
990 	}
991 
992 out:
993 	hw->port_base_vlan_cfg.state = port_base_vlan_state;
994 	hw->port_base_vlan_cfg.pvid = on ? pvid : HNS3_INVALID_PVID;
995 	return ret;
996 
997 vlan_filter_set_fail:
998 	err = hns3_en_pvid_strip(hns, hw->port_base_vlan_cfg.state ==
999 					HNS3_PORT_BASE_VLAN_ENABLE);
1000 	if (err)
1001 		hns3_err(hw, "fail to rollback pvid strip, ret = %d", err);
1002 
1003 pvid_vlan_strip_fail:
1004 	err = hns3_vlan_txvlan_cfg(hns, hw->port_base_vlan_cfg.state,
1005 					hw->port_base_vlan_cfg.pvid);
1006 	if (err)
1007 		hns3_err(hw, "fail to rollback txvlan status, ret = %d", err);
1008 
1009 	return ret;
1010 }
1011 
1012 static int
1013 hns3_vlan_pvid_set(struct rte_eth_dev *dev, uint16_t pvid, int on)
1014 {
1015 	struct hns3_adapter *hns = dev->data->dev_private;
1016 	struct hns3_hw *hw = &hns->hw;
1017 	bool pvid_en_state_change;
1018 	uint16_t pvid_state;
1019 	int ret;
1020 
1021 	if (pvid > RTE_ETHER_MAX_VLAN_ID) {
1022 		hns3_err(hw, "Invalid vlan_id = %u > %d", pvid,
1023 			 RTE_ETHER_MAX_VLAN_ID);
1024 		return -EINVAL;
1025 	}
1026 
1027 	/*
1028 	 * If PVID configuration state change, should refresh the PVID
1029 	 * configuration state in struct hns3_tx_queue/hns3_rx_queue.
1030 	 */
1031 	pvid_state = hw->port_base_vlan_cfg.state;
1032 	if ((on && pvid_state == HNS3_PORT_BASE_VLAN_ENABLE) ||
1033 	    (!on && pvid_state == HNS3_PORT_BASE_VLAN_DISABLE))
1034 		pvid_en_state_change = false;
1035 	else
1036 		pvid_en_state_change = true;
1037 
1038 	rte_spinlock_lock(&hw->lock);
1039 	ret = hns3_vlan_pvid_configure(hns, pvid, on);
1040 	rte_spinlock_unlock(&hw->lock);
1041 	if (ret)
1042 		return ret;
1043 	/*
1044 	 * Only in HNS3_SW_SHIFT_AND_MODE the PVID related operation in Tx/Rx
1045 	 * need be processed by PMD.
1046 	 */
1047 	if (pvid_en_state_change &&
1048 	    hw->vlan_mode == HNS3_SW_SHIFT_AND_DISCARD_MODE)
1049 		hns3_update_all_queues_pvid_proc_en(hw);
1050 
1051 	return 0;
1052 }
1053 
1054 static int
1055 hns3_default_vlan_config(struct hns3_adapter *hns)
1056 {
1057 	struct hns3_hw *hw = &hns->hw;
1058 	int ret;
1059 
1060 	/*
1061 	 * When vlan filter is enabled, hardware regards packets without vlan
1062 	 * as packets with vlan 0. Therefore, if vlan 0 is not in the vlan
1063 	 * table, packets without vlan won't be received. So, add vlan 0 as
1064 	 * the default vlan.
1065 	 */
1066 	ret = hns3_vlan_filter_configure(hns, 0, 1);
1067 	if (ret)
1068 		hns3_err(hw, "default vlan 0 config failed, ret =%d", ret);
1069 	return ret;
1070 }
1071 
1072 static int
1073 hns3_init_vlan_config(struct hns3_adapter *hns)
1074 {
1075 	struct hns3_hw *hw = &hns->hw;
1076 	int ret;
1077 
1078 	/*
1079 	 * This function can be called in the initialization and reset process,
1080 	 * when in reset process, it means that hardware had been reseted
1081 	 * successfully and we need to restore the hardware configuration to
1082 	 * ensure that the hardware configuration remains unchanged before and
1083 	 * after reset.
1084 	 */
1085 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
1086 		hw->port_base_vlan_cfg.state = HNS3_PORT_BASE_VLAN_DISABLE;
1087 		hw->port_base_vlan_cfg.pvid = HNS3_INVALID_PVID;
1088 	}
1089 
1090 	ret = hns3_vlan_filter_init(hns);
1091 	if (ret) {
1092 		hns3_err(hw, "vlan init fail in pf, ret =%d", ret);
1093 		return ret;
1094 	}
1095 
1096 	ret = hns3_vlan_tpid_configure(hns, RTE_ETH_VLAN_TYPE_INNER,
1097 				       RTE_ETHER_TYPE_VLAN);
1098 	if (ret) {
1099 		hns3_err(hw, "tpid set fail in pf, ret =%d", ret);
1100 		return ret;
1101 	}
1102 
1103 	/*
1104 	 * When in the reinit dev stage of the reset process, the following
1105 	 * vlan-related configurations may differ from those at initialization,
1106 	 * we will restore configurations to hardware in hns3_restore_vlan_table
1107 	 * and hns3_restore_vlan_conf later.
1108 	 */
1109 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
1110 		ret = hns3_vlan_pvid_configure(hns, HNS3_INVALID_PVID, 0);
1111 		if (ret) {
1112 			hns3_err(hw, "pvid set fail in pf, ret =%d", ret);
1113 			return ret;
1114 		}
1115 
1116 		ret = hns3_en_hw_strip_rxvtag(hns, false);
1117 		if (ret) {
1118 			hns3_err(hw, "rx strip configure fail in pf, ret =%d",
1119 				 ret);
1120 			return ret;
1121 		}
1122 	}
1123 
1124 	return hns3_default_vlan_config(hns);
1125 }
1126 
1127 static int
1128 hns3_restore_vlan_conf(struct hns3_adapter *hns)
1129 {
1130 	struct hns3_pf *pf = &hns->pf;
1131 	struct hns3_hw *hw = &hns->hw;
1132 	uint64_t offloads;
1133 	bool enable;
1134 	int ret;
1135 
1136 	if (!hw->data->promiscuous) {
1137 		/* restore vlan filter states */
1138 		offloads = hw->data->dev_conf.rxmode.offloads;
1139 		enable = offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER ? true : false;
1140 		ret = hns3_enable_vlan_filter(hns, enable);
1141 		if (ret) {
1142 			hns3_err(hw, "failed to restore vlan rx filter conf, "
1143 				 "ret = %d", ret);
1144 			return ret;
1145 		}
1146 	}
1147 
1148 	ret = hns3_set_vlan_rx_offload_cfg(hns, &pf->vtag_config.rx_vcfg);
1149 	if (ret) {
1150 		hns3_err(hw, "failed to restore vlan rx conf, ret = %d", ret);
1151 		return ret;
1152 	}
1153 
1154 	ret = hns3_set_vlan_tx_offload_cfg(hns, &pf->vtag_config.tx_vcfg);
1155 	if (ret)
1156 		hns3_err(hw, "failed to restore vlan tx conf, ret = %d", ret);
1157 
1158 	return ret;
1159 }
1160 
1161 static int
1162 hns3_dev_configure_vlan(struct rte_eth_dev *dev)
1163 {
1164 	struct hns3_adapter *hns = dev->data->dev_private;
1165 	struct rte_eth_dev_data *data = dev->data;
1166 	struct rte_eth_txmode *txmode;
1167 	struct hns3_hw *hw = &hns->hw;
1168 	int mask;
1169 	int ret;
1170 
1171 	txmode = &data->dev_conf.txmode;
1172 	if (txmode->hw_vlan_reject_tagged || txmode->hw_vlan_reject_untagged)
1173 		hns3_warn(hw,
1174 			  "hw_vlan_reject_tagged or hw_vlan_reject_untagged "
1175 			  "configuration is not supported! Ignore these two "
1176 			  "parameters: hw_vlan_reject_tagged(%u), "
1177 			  "hw_vlan_reject_untagged(%u)",
1178 			  txmode->hw_vlan_reject_tagged,
1179 			  txmode->hw_vlan_reject_untagged);
1180 
1181 	/* Apply vlan offload setting */
1182 	mask = RTE_ETH_VLAN_STRIP_MASK | RTE_ETH_VLAN_FILTER_MASK;
1183 	ret = hns3_vlan_offload_set(dev, mask);
1184 	if (ret) {
1185 		hns3_err(hw, "dev config rx vlan offload failed, ret = %d",
1186 			 ret);
1187 		return ret;
1188 	}
1189 
1190 	/*
1191 	 * If pvid config is not set in rte_eth_conf, driver needn't to set
1192 	 * VLAN pvid related configuration to hardware.
1193 	 */
1194 	if (txmode->pvid == 0 && txmode->hw_vlan_insert_pvid == 0)
1195 		return 0;
1196 
1197 	/* Apply pvid setting */
1198 	ret = hns3_vlan_pvid_set(dev, txmode->pvid,
1199 				 txmode->hw_vlan_insert_pvid);
1200 	if (ret)
1201 		hns3_err(hw, "dev config vlan pvid(%u) failed, ret = %d",
1202 			 txmode->pvid, ret);
1203 
1204 	return ret;
1205 }
1206 
1207 static int
1208 hns3_config_tso(struct hns3_hw *hw, unsigned int tso_mss_min,
1209 		unsigned int tso_mss_max)
1210 {
1211 	struct hns3_cfg_tso_status_cmd *req;
1212 	struct hns3_cmd_desc desc;
1213 	uint16_t tso_mss;
1214 
1215 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TSO_GENERIC_CONFIG, false);
1216 
1217 	req = (struct hns3_cfg_tso_status_cmd *)desc.data;
1218 
1219 	tso_mss = 0;
1220 	hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1221 		       tso_mss_min);
1222 	req->tso_mss_min = rte_cpu_to_le_16(tso_mss);
1223 
1224 	tso_mss = 0;
1225 	hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1226 		       tso_mss_max);
1227 	req->tso_mss_max = rte_cpu_to_le_16(tso_mss);
1228 
1229 	return hns3_cmd_send(hw, &desc, 1);
1230 }
1231 
1232 static int
1233 hns3_set_umv_space(struct hns3_hw *hw, uint16_t space_size,
1234 		   uint16_t *allocated_size, bool is_alloc)
1235 {
1236 	struct hns3_umv_spc_alc_cmd *req;
1237 	struct hns3_cmd_desc desc;
1238 	int ret;
1239 
1240 	req = (struct hns3_umv_spc_alc_cmd *)desc.data;
1241 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ALLOCATE, false);
1242 	hns3_set_bit(req->allocate, HNS3_UMV_SPC_ALC_B, is_alloc ? 0 : 1);
1243 	req->space_size = rte_cpu_to_le_32(space_size);
1244 
1245 	ret = hns3_cmd_send(hw, &desc, 1);
1246 	if (ret) {
1247 		PMD_INIT_LOG(ERR, "%s umv space failed for cmd_send, ret =%d",
1248 			     is_alloc ? "allocate" : "free", ret);
1249 		return ret;
1250 	}
1251 
1252 	if (is_alloc && allocated_size)
1253 		*allocated_size = rte_le_to_cpu_32(desc.data[1]);
1254 
1255 	return 0;
1256 }
1257 
1258 static int
1259 hns3_init_umv_space(struct hns3_hw *hw)
1260 {
1261 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1262 	struct hns3_pf *pf = &hns->pf;
1263 	uint16_t allocated_size = 0;
1264 	int ret;
1265 
1266 	ret = hns3_set_umv_space(hw, pf->wanted_umv_size, &allocated_size,
1267 				 true);
1268 	if (ret)
1269 		return ret;
1270 
1271 	if (allocated_size < pf->wanted_umv_size)
1272 		PMD_INIT_LOG(WARNING, "Alloc umv space failed, want %u, get %u",
1273 			     pf->wanted_umv_size, allocated_size);
1274 
1275 	pf->max_umv_size = (!!allocated_size) ? allocated_size :
1276 						pf->wanted_umv_size;
1277 	pf->used_umv_size = 0;
1278 	return 0;
1279 }
1280 
1281 static int
1282 hns3_uninit_umv_space(struct hns3_hw *hw)
1283 {
1284 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1285 	struct hns3_pf *pf = &hns->pf;
1286 	int ret;
1287 
1288 	if (pf->max_umv_size == 0)
1289 		return 0;
1290 
1291 	ret = hns3_set_umv_space(hw, pf->max_umv_size, NULL, false);
1292 	if (ret)
1293 		return ret;
1294 
1295 	pf->max_umv_size = 0;
1296 
1297 	return 0;
1298 }
1299 
1300 static bool
1301 hns3_is_umv_space_full(struct hns3_hw *hw)
1302 {
1303 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1304 	struct hns3_pf *pf = &hns->pf;
1305 	bool is_full;
1306 
1307 	is_full = (pf->used_umv_size >= pf->max_umv_size);
1308 
1309 	return is_full;
1310 }
1311 
1312 static void
1313 hns3_update_umv_space(struct hns3_hw *hw, bool is_free)
1314 {
1315 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1316 	struct hns3_pf *pf = &hns->pf;
1317 
1318 	if (is_free) {
1319 		if (pf->used_umv_size > 0)
1320 			pf->used_umv_size--;
1321 	} else
1322 		pf->used_umv_size++;
1323 }
1324 
1325 static void
1326 hns3_prepare_mac_addr(struct hns3_mac_vlan_tbl_entry_cmd *new_req,
1327 		      const uint8_t *addr, bool is_mc)
1328 {
1329 	const unsigned char *mac_addr = addr;
1330 	uint32_t high_val = ((uint32_t)mac_addr[3] << 24) |
1331 			    ((uint32_t)mac_addr[2] << 16) |
1332 			    ((uint32_t)mac_addr[1] << 8) |
1333 			    (uint32_t)mac_addr[0];
1334 	uint32_t low_val = ((uint32_t)mac_addr[5] << 8) | (uint32_t)mac_addr[4];
1335 
1336 	hns3_set_bit(new_req->flags, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1337 	if (is_mc) {
1338 		hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1339 		hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT1_EN_B, 1);
1340 		hns3_set_bit(new_req->mc_mac_en, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1341 	}
1342 
1343 	new_req->mac_addr_hi32 = rte_cpu_to_le_32(high_val);
1344 	new_req->mac_addr_lo16 = rte_cpu_to_le_16(low_val & 0xffff);
1345 }
1346 
1347 static int
1348 hns3_get_mac_vlan_cmd_status(struct hns3_hw *hw, uint16_t cmdq_resp,
1349 			     uint8_t resp_code,
1350 			     enum hns3_mac_vlan_tbl_opcode op)
1351 {
1352 	if (cmdq_resp) {
1353 		hns3_err(hw, "cmdq execute failed for get_mac_vlan_cmd_status,status=%u",
1354 			 cmdq_resp);
1355 		return -EIO;
1356 	}
1357 
1358 	if (op == HNS3_MAC_VLAN_ADD) {
1359 		if (resp_code == 0 || resp_code == 1) {
1360 			return 0;
1361 		} else if (resp_code == HNS3_ADD_UC_OVERFLOW) {
1362 			hns3_err(hw, "add mac addr failed for uc_overflow");
1363 			return -ENOSPC;
1364 		} else if (resp_code == HNS3_ADD_MC_OVERFLOW) {
1365 			hns3_err(hw, "add mac addr failed for mc_overflow");
1366 			return -ENOSPC;
1367 		}
1368 
1369 		hns3_err(hw, "add mac addr failed for undefined, code=%u",
1370 			 resp_code);
1371 		return -EIO;
1372 	} else if (op == HNS3_MAC_VLAN_REMOVE) {
1373 		if (resp_code == 0) {
1374 			return 0;
1375 		} else if (resp_code == 1) {
1376 			hns3_dbg(hw, "remove mac addr failed for miss");
1377 			return -ENOENT;
1378 		}
1379 
1380 		hns3_err(hw, "remove mac addr failed for undefined, code=%u",
1381 			 resp_code);
1382 		return -EIO;
1383 	} else if (op == HNS3_MAC_VLAN_LKUP) {
1384 		if (resp_code == 0) {
1385 			return 0;
1386 		} else if (resp_code == 1) {
1387 			hns3_dbg(hw, "lookup mac addr failed for miss");
1388 			return -ENOENT;
1389 		}
1390 
1391 		hns3_err(hw, "lookup mac addr failed for undefined, code=%u",
1392 			 resp_code);
1393 		return -EIO;
1394 	}
1395 
1396 	hns3_err(hw, "unknown opcode for get_mac_vlan_cmd_status, opcode=%u",
1397 		 op);
1398 
1399 	return -EINVAL;
1400 }
1401 
1402 static int
1403 hns3_lookup_mac_vlan_tbl(struct hns3_hw *hw,
1404 			 struct hns3_mac_vlan_tbl_entry_cmd *req,
1405 			 struct hns3_cmd_desc *desc, uint8_t desc_num)
1406 {
1407 	uint8_t resp_code;
1408 	uint16_t retval;
1409 	int ret;
1410 	int i;
1411 
1412 	if (desc_num == HNS3_MC_MAC_VLAN_OPS_DESC_NUM) {
1413 		for (i = 0; i < desc_num - 1; i++) {
1414 			hns3_cmd_setup_basic_desc(&desc[i],
1415 						  HNS3_OPC_MAC_VLAN_ADD, true);
1416 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1417 			if (i == 0)
1418 				memcpy(desc[i].data, req,
1419 				sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1420 		}
1421 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_MAC_VLAN_ADD,
1422 					  true);
1423 	} else {
1424 		hns3_cmd_setup_basic_desc(&desc[0], HNS3_OPC_MAC_VLAN_ADD,
1425 					  true);
1426 		memcpy(desc[0].data, req,
1427 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1428 	}
1429 	ret = hns3_cmd_send(hw, desc, desc_num);
1430 	if (ret) {
1431 		hns3_err(hw, "lookup mac addr failed for cmd_send, ret =%d.",
1432 			 ret);
1433 		return ret;
1434 	}
1435 	resp_code = (rte_le_to_cpu_32(desc[0].data[0]) >> 8) & 0xff;
1436 	retval = rte_le_to_cpu_16(desc[0].retval);
1437 
1438 	return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1439 					    HNS3_MAC_VLAN_LKUP);
1440 }
1441 
1442 static int
1443 hns3_add_mac_vlan_tbl(struct hns3_hw *hw,
1444 		      struct hns3_mac_vlan_tbl_entry_cmd *req,
1445 		      struct hns3_cmd_desc *desc, uint8_t desc_num)
1446 {
1447 	uint8_t resp_code;
1448 	uint16_t retval;
1449 	int cfg_status;
1450 	int ret;
1451 	int i;
1452 
1453 	if (desc_num == HNS3_UC_MAC_VLAN_OPS_DESC_NUM) {
1454 		hns3_cmd_setup_basic_desc(desc, HNS3_OPC_MAC_VLAN_ADD, false);
1455 		memcpy(desc->data, req,
1456 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1457 		ret = hns3_cmd_send(hw, desc, desc_num);
1458 		resp_code = (rte_le_to_cpu_32(desc->data[0]) >> 8) & 0xff;
1459 		retval = rte_le_to_cpu_16(desc->retval);
1460 
1461 		cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1462 							  HNS3_MAC_VLAN_ADD);
1463 	} else {
1464 		for (i = 0; i < desc_num; i++) {
1465 			hns3_cmd_reuse_desc(&desc[i], false);
1466 			if (i == desc_num - 1)
1467 				desc[i].flag &=
1468 					rte_cpu_to_le_16(~HNS3_CMD_FLAG_NEXT);
1469 			else
1470 				desc[i].flag |=
1471 					rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1472 		}
1473 		memcpy(desc[0].data, req,
1474 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1475 		desc[0].retval = 0;
1476 		ret = hns3_cmd_send(hw, desc, desc_num);
1477 		resp_code = (rte_le_to_cpu_32(desc[0].data[0]) >> 8) & 0xff;
1478 		retval = rte_le_to_cpu_16(desc[0].retval);
1479 
1480 		cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1481 							  HNS3_MAC_VLAN_ADD);
1482 	}
1483 
1484 	if (ret) {
1485 		hns3_err(hw, "add mac addr failed for cmd_send, ret =%d", ret);
1486 		return ret;
1487 	}
1488 
1489 	return cfg_status;
1490 }
1491 
1492 static int
1493 hns3_remove_mac_vlan_tbl(struct hns3_hw *hw,
1494 			 struct hns3_mac_vlan_tbl_entry_cmd *req)
1495 {
1496 	struct hns3_cmd_desc desc;
1497 	uint8_t resp_code;
1498 	uint16_t retval;
1499 	int ret;
1500 
1501 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_REMOVE, false);
1502 
1503 	memcpy(desc.data, req, sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1504 
1505 	ret = hns3_cmd_send(hw, &desc, 1);
1506 	if (ret) {
1507 		hns3_err(hw, "del mac addr failed for cmd_send, ret =%d", ret);
1508 		return ret;
1509 	}
1510 	resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1511 	retval = rte_le_to_cpu_16(desc.retval);
1512 
1513 	return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1514 					    HNS3_MAC_VLAN_REMOVE);
1515 }
1516 
1517 static int
1518 hns3_add_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1519 {
1520 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1521 	struct hns3_mac_vlan_tbl_entry_cmd req;
1522 	struct hns3_pf *pf = &hns->pf;
1523 	struct hns3_cmd_desc desc;
1524 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1525 	uint16_t egress_port = 0;
1526 	uint8_t vf_id;
1527 	int ret;
1528 
1529 	/* check if mac addr is valid */
1530 	if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1531 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1532 				      mac_addr);
1533 		hns3_err(hw, "Add unicast mac addr err! addr(%s) invalid",
1534 			 mac_str);
1535 		return -EINVAL;
1536 	}
1537 
1538 	memset(&req, 0, sizeof(req));
1539 
1540 	/*
1541 	 * In current version VF is not supported when PF is driven by DPDK
1542 	 * driver, just need to configure parameters for PF vport.
1543 	 */
1544 	vf_id = HNS3_PF_FUNC_ID;
1545 	hns3_set_field(egress_port, HNS3_MAC_EPORT_VFID_M,
1546 		       HNS3_MAC_EPORT_VFID_S, vf_id);
1547 
1548 	req.egress_port = rte_cpu_to_le_16(egress_port);
1549 
1550 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1551 
1552 	/*
1553 	 * Lookup the mac address in the mac_vlan table, and add
1554 	 * it if the entry is inexistent. Repeated unicast entry
1555 	 * is not allowed in the mac vlan table.
1556 	 */
1557 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, &desc,
1558 					HNS3_UC_MAC_VLAN_OPS_DESC_NUM);
1559 	if (ret == -ENOENT) {
1560 		if (!hns3_is_umv_space_full(hw)) {
1561 			ret = hns3_add_mac_vlan_tbl(hw, &req, &desc,
1562 						HNS3_UC_MAC_VLAN_OPS_DESC_NUM);
1563 			if (!ret)
1564 				hns3_update_umv_space(hw, false);
1565 			return ret;
1566 		}
1567 
1568 		hns3_err(hw, "UC MAC table full(%u)", pf->used_umv_size);
1569 
1570 		return -ENOSPC;
1571 	}
1572 
1573 	hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, mac_addr);
1574 
1575 	/* check if we just hit the duplicate */
1576 	if (ret == 0) {
1577 		hns3_dbg(hw, "mac addr(%s) has been in the MAC table", mac_str);
1578 		return 0;
1579 	}
1580 
1581 	hns3_err(hw, "PF failed to add unicast entry(%s) in the MAC table",
1582 		 mac_str);
1583 
1584 	return ret;
1585 }
1586 
1587 static int
1588 hns3_remove_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1589 {
1590 	struct hns3_mac_vlan_tbl_entry_cmd req;
1591 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1592 	int ret;
1593 
1594 	/* check if mac addr is valid */
1595 	if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1596 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1597 				      mac_addr);
1598 		hns3_err(hw, "remove unicast mac addr err! addr(%s) invalid",
1599 			 mac_str);
1600 		return -EINVAL;
1601 	}
1602 
1603 	memset(&req, 0, sizeof(req));
1604 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1605 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1606 	ret = hns3_remove_mac_vlan_tbl(hw, &req);
1607 	if (ret == -ENOENT) /* mac addr isn't existent in the mac vlan table. */
1608 		return 0;
1609 	else if (ret == 0)
1610 		hns3_update_umv_space(hw, true);
1611 
1612 	return ret;
1613 }
1614 
1615 static int
1616 hns3_set_default_mac_addr(struct rte_eth_dev *dev,
1617 			  struct rte_ether_addr *mac_addr)
1618 {
1619 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1620 	struct rte_ether_addr *oaddr;
1621 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1622 	int ret, ret_val;
1623 
1624 	rte_spinlock_lock(&hw->lock);
1625 	oaddr = (struct rte_ether_addr *)hw->mac.mac_addr;
1626 	ret = hw->ops.del_uc_mac_addr(hw, oaddr);
1627 	if (ret) {
1628 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1629 				       oaddr);
1630 		hns3_warn(hw, "Remove old uc mac address(%s) fail: %d",
1631 			  mac_str, ret);
1632 
1633 		rte_spinlock_unlock(&hw->lock);
1634 		return ret;
1635 	}
1636 
1637 	ret = hw->ops.add_uc_mac_addr(hw, mac_addr);
1638 	if (ret) {
1639 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1640 				      mac_addr);
1641 		hns3_err(hw, "Failed to set mac addr(%s): %d", mac_str, ret);
1642 		goto err_add_uc_addr;
1643 	}
1644 
1645 	ret = hns3_pause_addr_cfg(hw, mac_addr->addr_bytes);
1646 	if (ret) {
1647 		hns3_err(hw, "Failed to configure mac pause address: %d", ret);
1648 		goto err_pause_addr_cfg;
1649 	}
1650 
1651 	rte_ether_addr_copy(mac_addr,
1652 			    (struct rte_ether_addr *)hw->mac.mac_addr);
1653 	rte_spinlock_unlock(&hw->lock);
1654 
1655 	return 0;
1656 
1657 err_pause_addr_cfg:
1658 	ret_val = hw->ops.del_uc_mac_addr(hw, mac_addr);
1659 	if (ret_val) {
1660 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1661 				       mac_addr);
1662 		hns3_warn(hw,
1663 			  "Failed to roll back to del setted mac addr(%s): %d",
1664 			  mac_str, ret_val);
1665 	}
1666 
1667 err_add_uc_addr:
1668 	ret_val = hw->ops.add_uc_mac_addr(hw, oaddr);
1669 	if (ret_val) {
1670 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, oaddr);
1671 		hns3_warn(hw, "Failed to restore old uc mac addr(%s): %d",
1672 			  mac_str, ret_val);
1673 	}
1674 	rte_spinlock_unlock(&hw->lock);
1675 
1676 	return ret;
1677 }
1678 
1679 static void
1680 hns3_update_desc_vfid(struct hns3_cmd_desc *desc, uint8_t vfid, bool clr)
1681 {
1682 #define HNS3_VF_NUM_IN_FIRST_DESC 192
1683 	uint8_t word_num;
1684 	uint8_t bit_num;
1685 
1686 	if (vfid < HNS3_VF_NUM_IN_FIRST_DESC) {
1687 		word_num = vfid / 32;
1688 		bit_num = vfid % 32;
1689 		if (clr)
1690 			desc[1].data[word_num] &=
1691 			    rte_cpu_to_le_32(~(1UL << bit_num));
1692 		else
1693 			desc[1].data[word_num] |=
1694 			    rte_cpu_to_le_32(1UL << bit_num);
1695 	} else {
1696 		word_num = (vfid - HNS3_VF_NUM_IN_FIRST_DESC) / 32;
1697 		bit_num = vfid % 32;
1698 		if (clr)
1699 			desc[2].data[word_num] &=
1700 			    rte_cpu_to_le_32(~(1UL << bit_num));
1701 		else
1702 			desc[2].data[word_num] |=
1703 			    rte_cpu_to_le_32(1UL << bit_num);
1704 	}
1705 }
1706 
1707 static int
1708 hns3_add_mc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1709 {
1710 	struct hns3_cmd_desc desc[HNS3_MC_MAC_VLAN_OPS_DESC_NUM];
1711 	struct hns3_mac_vlan_tbl_entry_cmd req;
1712 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1713 	uint8_t vf_id;
1714 	int ret;
1715 
1716 	/* Check if mac addr is valid */
1717 	if (!rte_is_multicast_ether_addr(mac_addr)) {
1718 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1719 				      mac_addr);
1720 		hns3_err(hw, "failed to add mc mac addr, addr(%s) invalid",
1721 			 mac_str);
1722 		return -EINVAL;
1723 	}
1724 
1725 	memset(&req, 0, sizeof(req));
1726 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1727 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1728 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc,
1729 					HNS3_MC_MAC_VLAN_OPS_DESC_NUM);
1730 	if (ret) {
1731 		/* This mac addr do not exist, add new entry for it */
1732 		memset(desc[0].data, 0, sizeof(desc[0].data));
1733 		memset(desc[1].data, 0, sizeof(desc[0].data));
1734 		memset(desc[2].data, 0, sizeof(desc[0].data));
1735 	}
1736 
1737 	/*
1738 	 * In current version VF is not supported when PF is driven by DPDK
1739 	 * driver, just need to configure parameters for PF vport.
1740 	 */
1741 	vf_id = HNS3_PF_FUNC_ID;
1742 	hns3_update_desc_vfid(desc, vf_id, false);
1743 	ret = hns3_add_mac_vlan_tbl(hw, &req, desc,
1744 					HNS3_MC_MAC_VLAN_OPS_DESC_NUM);
1745 	if (ret) {
1746 		if (ret == -ENOSPC)
1747 			hns3_err(hw, "mc mac vlan table is full");
1748 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1749 				       mac_addr);
1750 		hns3_err(hw, "failed to add mc mac addr(%s): %d", mac_str, ret);
1751 	}
1752 
1753 	return ret;
1754 }
1755 
1756 static int
1757 hns3_remove_mc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1758 {
1759 	struct hns3_mac_vlan_tbl_entry_cmd req;
1760 	struct hns3_cmd_desc desc[3];
1761 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1762 	uint8_t vf_id;
1763 	int ret;
1764 
1765 	/* Check if mac addr is valid */
1766 	if (!rte_is_multicast_ether_addr(mac_addr)) {
1767 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1768 				      mac_addr);
1769 		hns3_err(hw, "Failed to rm mc mac addr, addr(%s) invalid",
1770 			 mac_str);
1771 		return -EINVAL;
1772 	}
1773 
1774 	memset(&req, 0, sizeof(req));
1775 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1776 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1777 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc,
1778 					HNS3_MC_MAC_VLAN_OPS_DESC_NUM);
1779 	if (ret == 0) {
1780 		/*
1781 		 * This mac addr exist, remove this handle's VFID for it.
1782 		 * In current version VF is not supported when PF is driven by
1783 		 * DPDK driver, just need to configure parameters for PF vport.
1784 		 */
1785 		vf_id = HNS3_PF_FUNC_ID;
1786 		hns3_update_desc_vfid(desc, vf_id, true);
1787 
1788 		/* All the vfid is zero, so need to delete this entry */
1789 		ret = hns3_remove_mac_vlan_tbl(hw, &req);
1790 	} else if (ret == -ENOENT) {
1791 		/* This mac addr doesn't exist. */
1792 		return 0;
1793 	}
1794 
1795 	if (ret) {
1796 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1797 				      mac_addr);
1798 		hns3_err(hw, "Failed to rm mc mac addr(%s): %d", mac_str, ret);
1799 	}
1800 
1801 	return ret;
1802 }
1803 
1804 static int
1805 hns3_check_mq_mode(struct rte_eth_dev *dev)
1806 {
1807 	enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
1808 	enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
1809 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1810 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1811 	struct rte_eth_dcb_rx_conf *dcb_rx_conf;
1812 	struct rte_eth_dcb_tx_conf *dcb_tx_conf;
1813 	uint8_t num_tc;
1814 	int max_tc = 0;
1815 	int i;
1816 
1817 	if (((uint32_t)rx_mq_mode & RTE_ETH_MQ_RX_VMDQ_FLAG) ||
1818 	    (tx_mq_mode == RTE_ETH_MQ_TX_VMDQ_DCB ||
1819 	     tx_mq_mode == RTE_ETH_MQ_TX_VMDQ_ONLY)) {
1820 		hns3_err(hw, "VMDQ is not supported, rx_mq_mode = %d, tx_mq_mode = %d.",
1821 			 rx_mq_mode, tx_mq_mode);
1822 		return -EOPNOTSUPP;
1823 	}
1824 
1825 	dcb_rx_conf = &dev->data->dev_conf.rx_adv_conf.dcb_rx_conf;
1826 	dcb_tx_conf = &dev->data->dev_conf.tx_adv_conf.dcb_tx_conf;
1827 	if ((uint32_t)rx_mq_mode & RTE_ETH_MQ_RX_DCB_FLAG) {
1828 		if (dcb_rx_conf->nb_tcs > pf->tc_max) {
1829 			hns3_err(hw, "nb_tcs(%u) > max_tc(%u) driver supported.",
1830 				 dcb_rx_conf->nb_tcs, pf->tc_max);
1831 			return -EINVAL;
1832 		}
1833 
1834 		if (!(dcb_rx_conf->nb_tcs == HNS3_4_TCS ||
1835 		      dcb_rx_conf->nb_tcs == HNS3_8_TCS)) {
1836 			hns3_err(hw, "on RTE_ETH_MQ_RX_DCB_RSS mode, "
1837 				 "nb_tcs(%d) != %d or %d in rx direction.",
1838 				 dcb_rx_conf->nb_tcs, HNS3_4_TCS, HNS3_8_TCS);
1839 			return -EINVAL;
1840 		}
1841 
1842 		if (dcb_rx_conf->nb_tcs != dcb_tx_conf->nb_tcs) {
1843 			hns3_err(hw, "num_tcs(%d) of tx is not equal to rx(%d)",
1844 				 dcb_tx_conf->nb_tcs, dcb_rx_conf->nb_tcs);
1845 			return -EINVAL;
1846 		}
1847 
1848 		for (i = 0; i < HNS3_MAX_USER_PRIO; i++) {
1849 			if (dcb_rx_conf->dcb_tc[i] != dcb_tx_conf->dcb_tc[i]) {
1850 				hns3_err(hw, "dcb_tc[%d] = %u in rx direction, "
1851 					 "is not equal to one in tx direction.",
1852 					 i, dcb_rx_conf->dcb_tc[i]);
1853 				return -EINVAL;
1854 			}
1855 			if (dcb_rx_conf->dcb_tc[i] > max_tc)
1856 				max_tc = dcb_rx_conf->dcb_tc[i];
1857 		}
1858 
1859 		num_tc = max_tc + 1;
1860 		if (num_tc > dcb_rx_conf->nb_tcs) {
1861 			hns3_err(hw, "max num_tc(%u) mapped > nb_tcs(%u)",
1862 				 num_tc, dcb_rx_conf->nb_tcs);
1863 			return -EINVAL;
1864 		}
1865 	}
1866 
1867 	return 0;
1868 }
1869 
1870 static int
1871 hns3_bind_ring_with_vector(struct hns3_hw *hw, uint16_t vector_id, bool en,
1872 			   enum hns3_ring_type queue_type, uint16_t queue_id)
1873 {
1874 	struct hns3_cmd_desc desc;
1875 	struct hns3_ctrl_vector_chain_cmd *req =
1876 		(struct hns3_ctrl_vector_chain_cmd *)desc.data;
1877 	enum hns3_opcode_type op;
1878 	uint16_t tqp_type_and_id = 0;
1879 	uint16_t type;
1880 	uint16_t gl;
1881 	int ret;
1882 
1883 	op = en ? HNS3_OPC_ADD_RING_TO_VECTOR : HNS3_OPC_DEL_RING_TO_VECTOR;
1884 	hns3_cmd_setup_basic_desc(&desc, op, false);
1885 	req->int_vector_id = hns3_get_field(vector_id, HNS3_TQP_INT_ID_L_M,
1886 					      HNS3_TQP_INT_ID_L_S);
1887 	req->int_vector_id_h = hns3_get_field(vector_id, HNS3_TQP_INT_ID_H_M,
1888 					      HNS3_TQP_INT_ID_H_S);
1889 
1890 	if (queue_type == HNS3_RING_TYPE_RX)
1891 		gl = HNS3_RING_GL_RX;
1892 	else
1893 		gl = HNS3_RING_GL_TX;
1894 
1895 	type = queue_type;
1896 
1897 	hns3_set_field(tqp_type_and_id, HNS3_INT_TYPE_M, HNS3_INT_TYPE_S,
1898 		       type);
1899 	hns3_set_field(tqp_type_and_id, HNS3_TQP_ID_M, HNS3_TQP_ID_S, queue_id);
1900 	hns3_set_field(tqp_type_and_id, HNS3_INT_GL_IDX_M, HNS3_INT_GL_IDX_S,
1901 		       gl);
1902 	req->tqp_type_and_id[0] = rte_cpu_to_le_16(tqp_type_and_id);
1903 	req->int_cause_num = 1;
1904 	ret = hns3_cmd_send(hw, &desc, 1);
1905 	if (ret) {
1906 		hns3_err(hw, "%s TQP %u fail, vector_id = %u, ret = %d.",
1907 			 en ? "Map" : "Unmap", queue_id, vector_id, ret);
1908 		return ret;
1909 	}
1910 
1911 	return 0;
1912 }
1913 
1914 static int
1915 hns3_setup_dcb(struct rte_eth_dev *dev)
1916 {
1917 	struct hns3_adapter *hns = dev->data->dev_private;
1918 	struct hns3_hw *hw = &hns->hw;
1919 	int ret;
1920 
1921 	if (!hns3_dev_get_support(hw, DCB)) {
1922 		hns3_err(hw, "this port does not support dcb configurations.");
1923 		return -EOPNOTSUPP;
1924 	}
1925 
1926 	if (hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE) {
1927 		hns3_err(hw, "MAC pause enabled, cannot config dcb info.");
1928 		return -EOPNOTSUPP;
1929 	}
1930 
1931 	ret = hns3_dcb_configure(hns);
1932 	if (ret)
1933 		hns3_err(hw, "failed to config dcb: %d", ret);
1934 
1935 	return ret;
1936 }
1937 
1938 static int
1939 hns3_check_link_speed(struct hns3_hw *hw, uint32_t link_speeds)
1940 {
1941 	int ret;
1942 
1943 	/*
1944 	 * Some hardware doesn't support auto-negotiation, but users may not
1945 	 * configure link_speeds (default 0), which means auto-negotiation.
1946 	 * In this case, it should return success.
1947 	 */
1948 	if (link_speeds == RTE_ETH_LINK_SPEED_AUTONEG &&
1949 	    hw->mac.support_autoneg == 0)
1950 		return 0;
1951 
1952 	if (link_speeds != RTE_ETH_LINK_SPEED_AUTONEG) {
1953 		ret = hns3_check_port_speed(hw, link_speeds);
1954 		if (ret)
1955 			return ret;
1956 	}
1957 
1958 	return 0;
1959 }
1960 
1961 static int
1962 hns3_check_dev_conf(struct rte_eth_dev *dev)
1963 {
1964 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1965 	struct rte_eth_conf *conf = &dev->data->dev_conf;
1966 	int ret;
1967 
1968 	ret = hns3_check_mq_mode(dev);
1969 	if (ret)
1970 		return ret;
1971 
1972 	return hns3_check_link_speed(hw, conf->link_speeds);
1973 }
1974 
1975 static int
1976 hns3_dev_configure(struct rte_eth_dev *dev)
1977 {
1978 	struct hns3_adapter *hns = dev->data->dev_private;
1979 	struct rte_eth_conf *conf = &dev->data->dev_conf;
1980 	enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
1981 	struct hns3_hw *hw = &hns->hw;
1982 	uint16_t nb_rx_q = dev->data->nb_rx_queues;
1983 	uint16_t nb_tx_q = dev->data->nb_tx_queues;
1984 	struct rte_eth_rss_conf rss_conf;
1985 	bool gro_en;
1986 	int ret;
1987 
1988 	hw->cfg_max_queues = RTE_MAX(nb_rx_q, nb_tx_q);
1989 
1990 	/*
1991 	 * Some versions of hardware network engine does not support
1992 	 * individually enable/disable/reset the Tx or Rx queue. These devices
1993 	 * must enable/disable/reset Tx and Rx queues at the same time. When the
1994 	 * numbers of Tx queues allocated by upper applications are not equal to
1995 	 * the numbers of Rx queues, driver needs to setup fake Tx or Rx queues
1996 	 * to adjust numbers of Tx/Rx queues. otherwise, network engine can not
1997 	 * work as usual. But these fake queues are imperceptible, and can not
1998 	 * be used by upper applications.
1999 	 */
2000 	ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
2001 	if (ret) {
2002 		hns3_err(hw, "fail to set Rx/Tx fake queues, ret = %d.", ret);
2003 		hw->cfg_max_queues = 0;
2004 		return ret;
2005 	}
2006 
2007 	hw->adapter_state = HNS3_NIC_CONFIGURING;
2008 	ret = hns3_check_dev_conf(dev);
2009 	if (ret)
2010 		goto cfg_err;
2011 
2012 	if ((uint32_t)mq_mode & RTE_ETH_MQ_RX_DCB_FLAG) {
2013 		ret = hns3_setup_dcb(dev);
2014 		if (ret)
2015 			goto cfg_err;
2016 	}
2017 
2018 	if ((uint32_t)mq_mode & RTE_ETH_MQ_RX_RSS_FLAG) {
2019 		conf->rxmode.offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2020 		rss_conf = conf->rx_adv_conf.rss_conf;
2021 		ret = hns3_dev_rss_hash_update(dev, &rss_conf);
2022 		if (ret)
2023 			goto cfg_err;
2024 	}
2025 
2026 	ret = hns3_dev_mtu_set(dev, conf->rxmode.mtu);
2027 	if (ret != 0)
2028 		goto cfg_err;
2029 
2030 	ret = hns3_mbuf_dyn_rx_timestamp_register(dev, conf);
2031 	if (ret)
2032 		goto cfg_err;
2033 
2034 	ret = hns3_dev_configure_vlan(dev);
2035 	if (ret)
2036 		goto cfg_err;
2037 
2038 	/* config hardware GRO */
2039 	gro_en = conf->rxmode.offloads & RTE_ETH_RX_OFFLOAD_TCP_LRO ? true : false;
2040 	ret = hns3_config_gro(hw, gro_en);
2041 	if (ret)
2042 		goto cfg_err;
2043 
2044 	hns3_init_rx_ptype_tble(dev);
2045 	hw->adapter_state = HNS3_NIC_CONFIGURED;
2046 
2047 	return 0;
2048 
2049 cfg_err:
2050 	hw->cfg_max_queues = 0;
2051 	(void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
2052 	hw->adapter_state = HNS3_NIC_INITIALIZED;
2053 
2054 	return ret;
2055 }
2056 
2057 static int
2058 hns3_set_mac_mtu(struct hns3_hw *hw, uint16_t new_mps)
2059 {
2060 	struct hns3_config_max_frm_size_cmd *req;
2061 	struct hns3_cmd_desc desc;
2062 
2063 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAX_FRM_SIZE, false);
2064 
2065 	req = (struct hns3_config_max_frm_size_cmd *)desc.data;
2066 	req->max_frm_size = rte_cpu_to_le_16(new_mps);
2067 	req->min_frm_size = RTE_ETHER_MIN_LEN;
2068 
2069 	return hns3_cmd_send(hw, &desc, 1);
2070 }
2071 
2072 static int
2073 hns3_config_mtu(struct hns3_hw *hw, uint16_t mps)
2074 {
2075 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2076 	int err;
2077 	int ret;
2078 
2079 	ret = hns3_set_mac_mtu(hw, mps);
2080 	if (ret) {
2081 		hns3_err(hw, "failed to set mtu, ret = %d", ret);
2082 		return ret;
2083 	}
2084 
2085 	ret = hns3_buffer_alloc(hw);
2086 	if (ret) {
2087 		hns3_err(hw, "failed to allocate buffer, ret = %d", ret);
2088 		goto rollback;
2089 	}
2090 
2091 	hns->pf.mps = mps;
2092 
2093 	return 0;
2094 
2095 rollback:
2096 	err = hns3_set_mac_mtu(hw, hns->pf.mps);
2097 	if (err)
2098 		hns3_err(hw, "fail to rollback MTU, err = %d", err);
2099 
2100 	return ret;
2101 }
2102 
2103 static int
2104 hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
2105 {
2106 	struct hns3_adapter *hns = dev->data->dev_private;
2107 	uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
2108 	struct hns3_hw *hw = &hns->hw;
2109 	int ret;
2110 
2111 	if (dev->data->dev_started) {
2112 		hns3_err(hw, "Failed to set mtu, port %u must be stopped "
2113 			 "before configuration", dev->data->port_id);
2114 		return -EBUSY;
2115 	}
2116 
2117 	rte_spinlock_lock(&hw->lock);
2118 	frame_size = RTE_MAX(frame_size, HNS3_DEFAULT_FRAME_LEN);
2119 
2120 	/*
2121 	 * Maximum value of frame_size is HNS3_MAX_FRAME_LEN, so it can safely
2122 	 * assign to "uint16_t" type variable.
2123 	 */
2124 	ret = hns3_config_mtu(hw, (uint16_t)frame_size);
2125 	if (ret) {
2126 		rte_spinlock_unlock(&hw->lock);
2127 		hns3_err(hw, "Failed to set mtu, port %u mtu %u: %d",
2128 			 dev->data->port_id, mtu, ret);
2129 		return ret;
2130 	}
2131 
2132 	rte_spinlock_unlock(&hw->lock);
2133 
2134 	return 0;
2135 }
2136 
2137 static uint32_t
2138 hns3_get_copper_port_speed_capa(uint32_t supported_speed)
2139 {
2140 	uint32_t speed_capa = 0;
2141 
2142 	if (supported_speed & HNS3_PHY_LINK_SPEED_10M_HD_BIT)
2143 		speed_capa |= RTE_ETH_LINK_SPEED_10M_HD;
2144 	if (supported_speed & HNS3_PHY_LINK_SPEED_10M_BIT)
2145 		speed_capa |= RTE_ETH_LINK_SPEED_10M;
2146 	if (supported_speed & HNS3_PHY_LINK_SPEED_100M_HD_BIT)
2147 		speed_capa |= RTE_ETH_LINK_SPEED_100M_HD;
2148 	if (supported_speed & HNS3_PHY_LINK_SPEED_100M_BIT)
2149 		speed_capa |= RTE_ETH_LINK_SPEED_100M;
2150 	if (supported_speed & HNS3_PHY_LINK_SPEED_1000M_BIT)
2151 		speed_capa |= RTE_ETH_LINK_SPEED_1G;
2152 
2153 	return speed_capa;
2154 }
2155 
2156 static uint32_t
2157 hns3_get_firber_port_speed_capa(uint32_t supported_speed)
2158 {
2159 	uint32_t speed_capa = 0;
2160 
2161 	if (supported_speed & HNS3_FIBER_LINK_SPEED_1G_BIT)
2162 		speed_capa |= RTE_ETH_LINK_SPEED_1G;
2163 	if (supported_speed & HNS3_FIBER_LINK_SPEED_10G_BIT)
2164 		speed_capa |= RTE_ETH_LINK_SPEED_10G;
2165 	if (supported_speed & HNS3_FIBER_LINK_SPEED_25G_BIT)
2166 		speed_capa |= RTE_ETH_LINK_SPEED_25G;
2167 	if (supported_speed & HNS3_FIBER_LINK_SPEED_40G_BIT)
2168 		speed_capa |= RTE_ETH_LINK_SPEED_40G;
2169 	if (supported_speed & HNS3_FIBER_LINK_SPEED_50G_BIT)
2170 		speed_capa |= RTE_ETH_LINK_SPEED_50G;
2171 	if (supported_speed & HNS3_FIBER_LINK_SPEED_100G_BIT)
2172 		speed_capa |= RTE_ETH_LINK_SPEED_100G;
2173 	if (supported_speed & HNS3_FIBER_LINK_SPEED_200G_BIT)
2174 		speed_capa |= RTE_ETH_LINK_SPEED_200G;
2175 
2176 	return speed_capa;
2177 }
2178 
2179 uint32_t
2180 hns3_get_speed_capa(struct hns3_hw *hw)
2181 {
2182 	struct hns3_mac *mac = &hw->mac;
2183 	uint32_t speed_capa;
2184 
2185 	if (mac->media_type == HNS3_MEDIA_TYPE_COPPER)
2186 		speed_capa =
2187 			hns3_get_copper_port_speed_capa(mac->supported_speed);
2188 	else
2189 		speed_capa =
2190 			hns3_get_firber_port_speed_capa(mac->supported_speed);
2191 
2192 	if (mac->support_autoneg == 0)
2193 		speed_capa |= RTE_ETH_LINK_SPEED_FIXED;
2194 
2195 	return speed_capa;
2196 }
2197 
2198 static int
2199 hns3_update_port_link_info(struct rte_eth_dev *eth_dev)
2200 {
2201 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2202 	int ret;
2203 
2204 	(void)hns3_update_link_status(hw);
2205 
2206 	ret = hns3_update_link_info(eth_dev);
2207 	if (ret)
2208 		hw->mac.link_status = RTE_ETH_LINK_DOWN;
2209 
2210 	return ret;
2211 }
2212 
2213 static void
2214 hns3_setup_linkstatus(struct rte_eth_dev *eth_dev,
2215 		      struct rte_eth_link *new_link)
2216 {
2217 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2218 	struct hns3_mac *mac = &hw->mac;
2219 
2220 	switch (mac->link_speed) {
2221 	case RTE_ETH_SPEED_NUM_10M:
2222 	case RTE_ETH_SPEED_NUM_100M:
2223 	case RTE_ETH_SPEED_NUM_1G:
2224 	case RTE_ETH_SPEED_NUM_10G:
2225 	case RTE_ETH_SPEED_NUM_25G:
2226 	case RTE_ETH_SPEED_NUM_40G:
2227 	case RTE_ETH_SPEED_NUM_50G:
2228 	case RTE_ETH_SPEED_NUM_100G:
2229 	case RTE_ETH_SPEED_NUM_200G:
2230 		if (mac->link_status)
2231 			new_link->link_speed = mac->link_speed;
2232 		break;
2233 	default:
2234 		if (mac->link_status)
2235 			new_link->link_speed = RTE_ETH_SPEED_NUM_UNKNOWN;
2236 		break;
2237 	}
2238 
2239 	if (!mac->link_status)
2240 		new_link->link_speed = RTE_ETH_SPEED_NUM_NONE;
2241 
2242 	new_link->link_duplex = mac->link_duplex;
2243 	new_link->link_status = mac->link_status ? RTE_ETH_LINK_UP : RTE_ETH_LINK_DOWN;
2244 	new_link->link_autoneg = mac->link_autoneg;
2245 }
2246 
2247 static int
2248 hns3_dev_link_update(struct rte_eth_dev *eth_dev, int wait_to_complete)
2249 {
2250 #define HNS3_LINK_CHECK_INTERVAL 100  /* 100ms */
2251 #define HNS3_MAX_LINK_CHECK_TIMES 20  /* 2s (100 * 20ms) in total */
2252 
2253 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2254 	uint32_t retry_cnt = HNS3_MAX_LINK_CHECK_TIMES;
2255 	struct hns3_mac *mac = &hw->mac;
2256 	struct rte_eth_link new_link;
2257 	int ret;
2258 
2259 	/* When port is stopped, report link down. */
2260 	if (eth_dev->data->dev_started == 0) {
2261 		new_link.link_autoneg = mac->link_autoneg;
2262 		new_link.link_duplex = mac->link_duplex;
2263 		new_link.link_speed = RTE_ETH_SPEED_NUM_NONE;
2264 		new_link.link_status = RTE_ETH_LINK_DOWN;
2265 		goto out;
2266 	}
2267 
2268 	do {
2269 		ret = hns3_update_port_link_info(eth_dev);
2270 		if (ret) {
2271 			hns3_err(hw, "failed to get port link info, ret = %d.",
2272 				 ret);
2273 			break;
2274 		}
2275 
2276 		if (!wait_to_complete || mac->link_status == RTE_ETH_LINK_UP)
2277 			break;
2278 
2279 		rte_delay_ms(HNS3_LINK_CHECK_INTERVAL);
2280 	} while (retry_cnt--);
2281 
2282 	memset(&new_link, 0, sizeof(new_link));
2283 	hns3_setup_linkstatus(eth_dev, &new_link);
2284 
2285 out:
2286 	return rte_eth_linkstatus_set(eth_dev, &new_link);
2287 }
2288 
2289 static int
2290 hns3_dev_set_link_up(struct rte_eth_dev *dev)
2291 {
2292 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2293 	int ret;
2294 
2295 	/*
2296 	 * The "tx_pkt_burst" will be restored. But the secondary process does
2297 	 * not support the mechanism for notifying the primary process.
2298 	 */
2299 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2300 		hns3_err(hw, "secondary process does not support to set link up.");
2301 		return -ENOTSUP;
2302 	}
2303 
2304 	/*
2305 	 * If device isn't started Rx/Tx function is still disabled, setting
2306 	 * link up is not allowed. But it is probably better to return success
2307 	 * to reduce the impact on the upper layer.
2308 	 */
2309 	if (hw->adapter_state != HNS3_NIC_STARTED) {
2310 		hns3_info(hw, "device isn't started, can't set link up.");
2311 		return 0;
2312 	}
2313 
2314 	if (!hw->set_link_down)
2315 		return 0;
2316 
2317 	rte_spinlock_lock(&hw->lock);
2318 	ret = hns3_cfg_mac_mode(hw, true);
2319 	if (ret) {
2320 		rte_spinlock_unlock(&hw->lock);
2321 		hns3_err(hw, "failed to set link up, ret = %d", ret);
2322 		return ret;
2323 	}
2324 
2325 	hw->set_link_down = false;
2326 	hns3_start_tx_datapath(dev);
2327 	rte_spinlock_unlock(&hw->lock);
2328 
2329 	return 0;
2330 }
2331 
2332 static int
2333 hns3_dev_set_link_down(struct rte_eth_dev *dev)
2334 {
2335 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2336 	int ret;
2337 
2338 	/*
2339 	 * The "tx_pkt_burst" will be set to dummy function. But the secondary
2340 	 * process does not support the mechanism for notifying the primary
2341 	 * process.
2342 	 */
2343 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2344 		hns3_err(hw, "secondary process does not support to set link down.");
2345 		return -ENOTSUP;
2346 	}
2347 
2348 	/*
2349 	 * If device isn't started or the API has been called, link status is
2350 	 * down, return success.
2351 	 */
2352 	if (hw->adapter_state != HNS3_NIC_STARTED || hw->set_link_down)
2353 		return 0;
2354 
2355 	rte_spinlock_lock(&hw->lock);
2356 	hns3_stop_tx_datapath(dev);
2357 	ret = hns3_cfg_mac_mode(hw, false);
2358 	if (ret) {
2359 		hns3_start_tx_datapath(dev);
2360 		rte_spinlock_unlock(&hw->lock);
2361 		hns3_err(hw, "failed to set link down, ret = %d", ret);
2362 		return ret;
2363 	}
2364 
2365 	hw->set_link_down = true;
2366 	rte_spinlock_unlock(&hw->lock);
2367 
2368 	return 0;
2369 }
2370 
2371 static int
2372 hns3_parse_func_status(struct hns3_hw *hw, struct hns3_func_status_cmd *status)
2373 {
2374 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2375 	struct hns3_pf *pf = &hns->pf;
2376 
2377 	if (!(status->pf_state & HNS3_PF_STATE_DONE))
2378 		return -EINVAL;
2379 
2380 	pf->is_main_pf = (status->pf_state & HNS3_PF_STATE_MAIN) ? true : false;
2381 
2382 	return 0;
2383 }
2384 
2385 static int
2386 hns3_query_function_status(struct hns3_hw *hw)
2387 {
2388 #define HNS3_QUERY_MAX_CNT		10
2389 #define HNS3_QUERY_SLEEP_MSCOEND	1
2390 	struct hns3_func_status_cmd *req;
2391 	struct hns3_cmd_desc desc;
2392 	int timeout = 0;
2393 	int ret;
2394 
2395 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_FUNC_STATUS, true);
2396 	req = (struct hns3_func_status_cmd *)desc.data;
2397 
2398 	do {
2399 		ret = hns3_cmd_send(hw, &desc, 1);
2400 		if (ret) {
2401 			PMD_INIT_LOG(ERR, "query function status failed %d",
2402 				     ret);
2403 			return ret;
2404 		}
2405 
2406 		/* Check pf reset is done */
2407 		if (req->pf_state)
2408 			break;
2409 
2410 		rte_delay_ms(HNS3_QUERY_SLEEP_MSCOEND);
2411 	} while (timeout++ < HNS3_QUERY_MAX_CNT);
2412 
2413 	return hns3_parse_func_status(hw, req);
2414 }
2415 
2416 static int
2417 hns3_get_pf_max_tqp_num(struct hns3_hw *hw)
2418 {
2419 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2420 	struct hns3_pf *pf = &hns->pf;
2421 
2422 	if (pf->tqp_config_mode == HNS3_FLEX_MAX_TQP_NUM_MODE) {
2423 		/*
2424 		 * The total_tqps_num obtained from firmware is maximum tqp
2425 		 * numbers of this port, which should be used for PF and VFs.
2426 		 * There is no need for pf to have so many tqp numbers in
2427 		 * most cases. RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF,
2428 		 * coming from config file, is assigned to maximum queue number
2429 		 * for the PF of this port by user. So users can modify the
2430 		 * maximum queue number of PF according to their own application
2431 		 * scenarios, which is more flexible to use. In addition, many
2432 		 * memories can be saved due to allocating queue statistics
2433 		 * room according to the actual number of queues required. The
2434 		 * maximum queue number of PF for network engine with
2435 		 * revision_id greater than 0x30 is assigned by config file.
2436 		 */
2437 		if (RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF <= 0) {
2438 			hns3_err(hw, "RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF(%d) "
2439 				 "must be greater than 0.",
2440 				 RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF);
2441 			return -EINVAL;
2442 		}
2443 
2444 		hw->tqps_num = RTE_MIN(RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF,
2445 				       hw->total_tqps_num);
2446 	} else {
2447 		/*
2448 		 * Due to the limitation on the number of PF interrupts
2449 		 * available, the maximum queue number assigned to PF on
2450 		 * the network engine with revision_id 0x21 is 64.
2451 		 */
2452 		hw->tqps_num = RTE_MIN(hw->total_tqps_num,
2453 				       HNS3_MAX_TQP_NUM_HIP08_PF);
2454 	}
2455 
2456 	return 0;
2457 }
2458 
2459 static int
2460 hns3_query_pf_resource(struct hns3_hw *hw)
2461 {
2462 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2463 	struct hns3_pf *pf = &hns->pf;
2464 	struct hns3_pf_res_cmd *req;
2465 	struct hns3_cmd_desc desc;
2466 	int ret;
2467 
2468 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_PF_RSRC, true);
2469 	ret = hns3_cmd_send(hw, &desc, 1);
2470 	if (ret) {
2471 		PMD_INIT_LOG(ERR, "query pf resource failed %d", ret);
2472 		return ret;
2473 	}
2474 
2475 	req = (struct hns3_pf_res_cmd *)desc.data;
2476 	hw->total_tqps_num = rte_le_to_cpu_16(req->tqp_num) +
2477 			     rte_le_to_cpu_16(req->ext_tqp_num);
2478 	ret = hns3_get_pf_max_tqp_num(hw);
2479 	if (ret)
2480 		return ret;
2481 
2482 	pf->pkt_buf_size = rte_le_to_cpu_16(req->buf_size) << HNS3_BUF_UNIT_S;
2483 	pf->func_num = rte_le_to_cpu_16(req->pf_own_fun_number);
2484 
2485 	if (req->tx_buf_size)
2486 		pf->tx_buf_size =
2487 		    rte_le_to_cpu_16(req->tx_buf_size) << HNS3_BUF_UNIT_S;
2488 	else
2489 		pf->tx_buf_size = HNS3_DEFAULT_TX_BUF;
2490 
2491 	pf->tx_buf_size = roundup(pf->tx_buf_size, HNS3_BUF_SIZE_UNIT);
2492 
2493 	if (req->dv_buf_size)
2494 		pf->dv_buf_size =
2495 		    rte_le_to_cpu_16(req->dv_buf_size) << HNS3_BUF_UNIT_S;
2496 	else
2497 		pf->dv_buf_size = HNS3_DEFAULT_DV;
2498 
2499 	pf->dv_buf_size = roundup(pf->dv_buf_size, HNS3_BUF_SIZE_UNIT);
2500 
2501 	hw->num_msi =
2502 		hns3_get_field(rte_le_to_cpu_16(req->nic_pf_intr_vector_number),
2503 			       HNS3_PF_VEC_NUM_M, HNS3_PF_VEC_NUM_S);
2504 
2505 	return 0;
2506 }
2507 
2508 static void
2509 hns3_parse_cfg(struct hns3_cfg *cfg, struct hns3_cmd_desc *desc)
2510 {
2511 	struct hns3_cfg_param_cmd *req;
2512 	uint64_t mac_addr_tmp_high;
2513 	uint8_t ext_rss_size_max;
2514 	uint64_t mac_addr_tmp;
2515 	uint32_t i;
2516 
2517 	req = (struct hns3_cfg_param_cmd *)desc[0].data;
2518 
2519 	/* get the configuration */
2520 	cfg->tc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2521 				     HNS3_CFG_TC_NUM_M, HNS3_CFG_TC_NUM_S);
2522 
2523 	cfg->phy_addr = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2524 				       HNS3_CFG_PHY_ADDR_M,
2525 				       HNS3_CFG_PHY_ADDR_S);
2526 	cfg->media_type = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2527 					 HNS3_CFG_MEDIA_TP_M,
2528 					 HNS3_CFG_MEDIA_TP_S);
2529 	/* get mac address */
2530 	mac_addr_tmp = rte_le_to_cpu_32(req->param[2]);
2531 	mac_addr_tmp_high = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2532 					   HNS3_CFG_MAC_ADDR_H_M,
2533 					   HNS3_CFG_MAC_ADDR_H_S);
2534 
2535 	mac_addr_tmp |= (mac_addr_tmp_high << 31) << 1;
2536 
2537 	cfg->default_speed = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2538 					    HNS3_CFG_DEFAULT_SPEED_M,
2539 					    HNS3_CFG_DEFAULT_SPEED_S);
2540 	cfg->rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2541 					   HNS3_CFG_RSS_SIZE_M,
2542 					   HNS3_CFG_RSS_SIZE_S);
2543 
2544 	for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
2545 		cfg->mac_addr[i] = (mac_addr_tmp >> (8 * i)) & 0xff;
2546 
2547 	req = (struct hns3_cfg_param_cmd *)desc[1].data;
2548 	cfg->numa_node_map = rte_le_to_cpu_32(req->param[0]);
2549 
2550 	cfg->speed_ability = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2551 					    HNS3_CFG_SPEED_ABILITY_M,
2552 					    HNS3_CFG_SPEED_ABILITY_S);
2553 	cfg->umv_space = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2554 					HNS3_CFG_UMV_TBL_SPACE_M,
2555 					HNS3_CFG_UMV_TBL_SPACE_S);
2556 	if (!cfg->umv_space)
2557 		cfg->umv_space = HNS3_DEFAULT_UMV_SPACE_PER_PF;
2558 
2559 	ext_rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[2]),
2560 					       HNS3_CFG_EXT_RSS_SIZE_M,
2561 					       HNS3_CFG_EXT_RSS_SIZE_S);
2562 	/*
2563 	 * Field ext_rss_size_max obtained from firmware will be more flexible
2564 	 * for future changes and expansions, which is an exponent of 2, instead
2565 	 * of reading out directly. If this field is not zero, hns3 PF PMD
2566 	 * uses it as rss_size_max under one TC. Device, whose revision
2567 	 * id is greater than or equal to PCI_REVISION_ID_HIP09_A, obtains the
2568 	 * maximum number of queues supported under a TC through this field.
2569 	 */
2570 	if (ext_rss_size_max)
2571 		cfg->rss_size_max = 1U << ext_rss_size_max;
2572 }
2573 
2574 /* hns3_get_board_cfg: query the static parameter from NCL_config file in flash
2575  * @hw: pointer to struct hns3_hw
2576  * @hcfg: the config structure to be getted
2577  */
2578 static int
2579 hns3_get_board_cfg(struct hns3_hw *hw, struct hns3_cfg *hcfg)
2580 {
2581 	struct hns3_cmd_desc desc[HNS3_PF_CFG_DESC_NUM];
2582 	struct hns3_cfg_param_cmd *req;
2583 	uint32_t offset;
2584 	uint32_t i;
2585 	int ret;
2586 
2587 	for (i = 0; i < HNS3_PF_CFG_DESC_NUM; i++) {
2588 		offset = 0;
2589 		req = (struct hns3_cfg_param_cmd *)desc[i].data;
2590 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_CFG_PARAM,
2591 					  true);
2592 		hns3_set_field(offset, HNS3_CFG_OFFSET_M, HNS3_CFG_OFFSET_S,
2593 			       i * HNS3_CFG_RD_LEN_BYTES);
2594 		/* Len should be divided by 4 when send to hardware */
2595 		hns3_set_field(offset, HNS3_CFG_RD_LEN_M, HNS3_CFG_RD_LEN_S,
2596 			       HNS3_CFG_RD_LEN_BYTES / HNS3_CFG_RD_LEN_UNIT);
2597 		req->offset = rte_cpu_to_le_32(offset);
2598 	}
2599 
2600 	ret = hns3_cmd_send(hw, desc, HNS3_PF_CFG_DESC_NUM);
2601 	if (ret) {
2602 		PMD_INIT_LOG(ERR, "get config failed %d.", ret);
2603 		return ret;
2604 	}
2605 
2606 	hns3_parse_cfg(hcfg, desc);
2607 
2608 	return 0;
2609 }
2610 
2611 static int
2612 hns3_parse_speed(int speed_cmd, uint32_t *speed)
2613 {
2614 	switch (speed_cmd) {
2615 	case HNS3_CFG_SPEED_10M:
2616 		*speed = RTE_ETH_SPEED_NUM_10M;
2617 		break;
2618 	case HNS3_CFG_SPEED_100M:
2619 		*speed = RTE_ETH_SPEED_NUM_100M;
2620 		break;
2621 	case HNS3_CFG_SPEED_1G:
2622 		*speed = RTE_ETH_SPEED_NUM_1G;
2623 		break;
2624 	case HNS3_CFG_SPEED_10G:
2625 		*speed = RTE_ETH_SPEED_NUM_10G;
2626 		break;
2627 	case HNS3_CFG_SPEED_25G:
2628 		*speed = RTE_ETH_SPEED_NUM_25G;
2629 		break;
2630 	case HNS3_CFG_SPEED_40G:
2631 		*speed = RTE_ETH_SPEED_NUM_40G;
2632 		break;
2633 	case HNS3_CFG_SPEED_50G:
2634 		*speed = RTE_ETH_SPEED_NUM_50G;
2635 		break;
2636 	case HNS3_CFG_SPEED_100G:
2637 		*speed = RTE_ETH_SPEED_NUM_100G;
2638 		break;
2639 	case HNS3_CFG_SPEED_200G:
2640 		*speed = RTE_ETH_SPEED_NUM_200G;
2641 		break;
2642 	default:
2643 		return -EINVAL;
2644 	}
2645 
2646 	return 0;
2647 }
2648 
2649 static void
2650 hns3_set_default_dev_specifications(struct hns3_hw *hw)
2651 {
2652 	hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
2653 	hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
2654 	hw->rss_key_size = HNS3_RSS_KEY_SIZE;
2655 	hw->max_tm_rate = HNS3_ETHER_MAX_RATE;
2656 	hw->intr.int_ql_max = HNS3_INTR_QL_NONE;
2657 }
2658 
2659 static void
2660 hns3_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
2661 {
2662 	struct hns3_dev_specs_0_cmd *req0;
2663 
2664 	req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
2665 
2666 	hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
2667 	hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
2668 	hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
2669 	hw->max_tm_rate = rte_le_to_cpu_32(req0->max_tm_rate);
2670 	hw->intr.int_ql_max = rte_le_to_cpu_16(req0->intr_ql_max);
2671 }
2672 
2673 static int
2674 hns3_check_dev_specifications(struct hns3_hw *hw)
2675 {
2676 	if (hw->rss_ind_tbl_size == 0 ||
2677 	    hw->rss_ind_tbl_size > HNS3_RSS_IND_TBL_SIZE_MAX) {
2678 		hns3_err(hw, "the size of hash lookup table configured (%u) exceeds the maximum(%u)",
2679 			 hw->rss_ind_tbl_size, HNS3_RSS_IND_TBL_SIZE_MAX);
2680 		return -EINVAL;
2681 	}
2682 
2683 	return 0;
2684 }
2685 
2686 static int
2687 hns3_query_dev_specifications(struct hns3_hw *hw)
2688 {
2689 	struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
2690 	int ret;
2691 	int i;
2692 
2693 	for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
2694 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
2695 					  true);
2696 		desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
2697 	}
2698 	hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
2699 
2700 	ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
2701 	if (ret)
2702 		return ret;
2703 
2704 	hns3_parse_dev_specifications(hw, desc);
2705 
2706 	return hns3_check_dev_specifications(hw);
2707 }
2708 
2709 static int
2710 hns3_get_capability(struct hns3_hw *hw)
2711 {
2712 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2713 	struct rte_pci_device *pci_dev;
2714 	struct hns3_pf *pf = &hns->pf;
2715 	struct rte_eth_dev *eth_dev;
2716 	uint16_t device_id;
2717 	int ret;
2718 
2719 	eth_dev = &rte_eth_devices[hw->data->port_id];
2720 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2721 	device_id = pci_dev->id.device_id;
2722 
2723 	if (device_id == HNS3_DEV_ID_25GE_RDMA ||
2724 	    device_id == HNS3_DEV_ID_50GE_RDMA ||
2725 	    device_id == HNS3_DEV_ID_100G_RDMA_MACSEC ||
2726 	    device_id == HNS3_DEV_ID_200G_RDMA)
2727 		hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_DCB_B, 1);
2728 
2729 	ret = hns3_get_pci_revision_id(hw, &hw->revision);
2730 	if (ret)
2731 		return ret;
2732 
2733 	ret = hns3_query_mac_stats_reg_num(hw);
2734 	if (ret)
2735 		return ret;
2736 
2737 	if (hw->revision < PCI_REVISION_ID_HIP09_A) {
2738 		hns3_set_default_dev_specifications(hw);
2739 		hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
2740 		hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
2741 		hw->tso_mode = HNS3_TSO_SW_CAL_PSEUDO_H_CSUM;
2742 		hw->vlan_mode = HNS3_SW_SHIFT_AND_DISCARD_MODE;
2743 		hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE1;
2744 		hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
2745 		pf->tqp_config_mode = HNS3_FIXED_MAX_TQP_NUM_MODE;
2746 		hw->rss_info.ipv6_sctp_offload_supported = false;
2747 		hw->udp_cksum_mode = HNS3_SPECIAL_PORT_SW_CKSUM_MODE;
2748 		pf->support_multi_tc_pause = false;
2749 		return 0;
2750 	}
2751 
2752 	ret = hns3_query_dev_specifications(hw);
2753 	if (ret) {
2754 		PMD_INIT_LOG(ERR,
2755 			     "failed to query dev specifications, ret = %d",
2756 			     ret);
2757 		return ret;
2758 	}
2759 
2760 	hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
2761 	hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
2762 	hw->tso_mode = HNS3_TSO_HW_CAL_PSEUDO_H_CSUM;
2763 	hw->vlan_mode = HNS3_HW_SHIFT_AND_DISCARD_MODE;
2764 	hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE2;
2765 	hw->min_tx_pkt_len = HNS3_HIP09_MIN_TX_PKT_LEN;
2766 	pf->tqp_config_mode = HNS3_FLEX_MAX_TQP_NUM_MODE;
2767 	hw->rss_info.ipv6_sctp_offload_supported = true;
2768 	hw->udp_cksum_mode = HNS3_SPECIAL_PORT_HW_CKSUM_MODE;
2769 	pf->support_multi_tc_pause = true;
2770 
2771 	return 0;
2772 }
2773 
2774 static int
2775 hns3_check_media_type(struct hns3_hw *hw, uint8_t media_type)
2776 {
2777 	int ret;
2778 
2779 	switch (media_type) {
2780 	case HNS3_MEDIA_TYPE_COPPER:
2781 		if (!hns3_dev_get_support(hw, COPPER)) {
2782 			PMD_INIT_LOG(ERR,
2783 				     "Media type is copper, not supported.");
2784 			ret = -EOPNOTSUPP;
2785 		} else {
2786 			ret = 0;
2787 		}
2788 		break;
2789 	case HNS3_MEDIA_TYPE_FIBER:
2790 		ret = 0;
2791 		break;
2792 	case HNS3_MEDIA_TYPE_BACKPLANE:
2793 		PMD_INIT_LOG(ERR, "Media type is Backplane, not supported.");
2794 		ret = -EOPNOTSUPP;
2795 		break;
2796 	default:
2797 		PMD_INIT_LOG(ERR, "Unknown media type = %u!", media_type);
2798 		ret = -EINVAL;
2799 		break;
2800 	}
2801 
2802 	return ret;
2803 }
2804 
2805 static int
2806 hns3_get_board_configuration(struct hns3_hw *hw)
2807 {
2808 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2809 	struct hns3_pf *pf = &hns->pf;
2810 	struct hns3_cfg cfg;
2811 	int ret;
2812 
2813 	ret = hns3_get_board_cfg(hw, &cfg);
2814 	if (ret) {
2815 		PMD_INIT_LOG(ERR, "get board config failed %d", ret);
2816 		return ret;
2817 	}
2818 
2819 	ret = hns3_check_media_type(hw, cfg.media_type);
2820 	if (ret)
2821 		return ret;
2822 
2823 	hw->mac.media_type = cfg.media_type;
2824 	hw->rss_size_max = cfg.rss_size_max;
2825 	memcpy(hw->mac.mac_addr, cfg.mac_addr, RTE_ETHER_ADDR_LEN);
2826 	hw->mac.phy_addr = cfg.phy_addr;
2827 	hw->dcb_info.num_pg = 1;
2828 	hw->dcb_info.hw_pfc_map = 0;
2829 
2830 	ret = hns3_parse_speed(cfg.default_speed, &hw->mac.link_speed);
2831 	if (ret) {
2832 		PMD_INIT_LOG(ERR, "Get wrong speed %u, ret = %d",
2833 			     cfg.default_speed, ret);
2834 		return ret;
2835 	}
2836 
2837 	pf->tc_max = cfg.tc_num;
2838 	if (pf->tc_max > HNS3_MAX_TC_NUM || pf->tc_max < 1) {
2839 		PMD_INIT_LOG(WARNING,
2840 			     "Get TC num(%u) from flash, set TC num to 1",
2841 			     pf->tc_max);
2842 		pf->tc_max = 1;
2843 	}
2844 
2845 	/* Dev does not support DCB */
2846 	if (!hns3_dev_get_support(hw, DCB)) {
2847 		pf->tc_max = 1;
2848 		pf->pfc_max = 0;
2849 	} else
2850 		pf->pfc_max = pf->tc_max;
2851 
2852 	hw->dcb_info.num_tc = 1;
2853 	hw->alloc_rss_size = RTE_MIN(hw->rss_size_max,
2854 				     hw->tqps_num / hw->dcb_info.num_tc);
2855 	hns3_set_bit(hw->hw_tc_map, 0, 1);
2856 	pf->tx_sch_mode = HNS3_FLAG_TC_BASE_SCH_MODE;
2857 
2858 	pf->wanted_umv_size = cfg.umv_space;
2859 
2860 	return ret;
2861 }
2862 
2863 static int
2864 hns3_get_configuration(struct hns3_hw *hw)
2865 {
2866 	int ret;
2867 
2868 	ret = hns3_query_function_status(hw);
2869 	if (ret) {
2870 		PMD_INIT_LOG(ERR, "Failed to query function status: %d.", ret);
2871 		return ret;
2872 	}
2873 
2874 	/* Get device capability */
2875 	ret = hns3_get_capability(hw);
2876 	if (ret) {
2877 		PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
2878 		return ret;
2879 	}
2880 
2881 	/* Get pf resource */
2882 	ret = hns3_query_pf_resource(hw);
2883 	if (ret) {
2884 		PMD_INIT_LOG(ERR, "Failed to query pf resource: %d", ret);
2885 		return ret;
2886 	}
2887 
2888 	ret = hns3_get_board_configuration(hw);
2889 	if (ret) {
2890 		PMD_INIT_LOG(ERR, "failed to get board configuration: %d", ret);
2891 		return ret;
2892 	}
2893 
2894 	ret = hns3_query_dev_fec_info(hw);
2895 	if (ret)
2896 		PMD_INIT_LOG(ERR,
2897 			     "failed to query FEC information, ret = %d", ret);
2898 
2899 	return ret;
2900 }
2901 
2902 static int
2903 hns3_map_tqps_to_func(struct hns3_hw *hw, uint16_t func_id, uint16_t tqp_pid,
2904 		      uint16_t tqp_vid, bool is_pf)
2905 {
2906 	struct hns3_tqp_map_cmd *req;
2907 	struct hns3_cmd_desc desc;
2908 	int ret;
2909 
2910 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SET_TQP_MAP, false);
2911 
2912 	req = (struct hns3_tqp_map_cmd *)desc.data;
2913 	req->tqp_id = rte_cpu_to_le_16(tqp_pid);
2914 	req->tqp_vf = func_id;
2915 	req->tqp_flag = 1 << HNS3_TQP_MAP_EN_B;
2916 	if (!is_pf)
2917 		req->tqp_flag |= (1 << HNS3_TQP_MAP_TYPE_B);
2918 	req->tqp_vid = rte_cpu_to_le_16(tqp_vid);
2919 
2920 	ret = hns3_cmd_send(hw, &desc, 1);
2921 	if (ret)
2922 		PMD_INIT_LOG(ERR, "TQP map failed %d", ret);
2923 
2924 	return ret;
2925 }
2926 
2927 static int
2928 hns3_map_tqp(struct hns3_hw *hw)
2929 {
2930 	uint16_t i;
2931 	int ret;
2932 
2933 	/*
2934 	 * In current version, VF is not supported when PF is driven by DPDK
2935 	 * driver, so we assign total tqps_num tqps allocated to this port
2936 	 * to PF.
2937 	 */
2938 	for (i = 0; i < hw->total_tqps_num; i++) {
2939 		ret = hns3_map_tqps_to_func(hw, HNS3_PF_FUNC_ID, i, i, true);
2940 		if (ret)
2941 			return ret;
2942 	}
2943 
2944 	return 0;
2945 }
2946 
2947 static int
2948 hns3_cfg_mac_speed_dup_hw(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
2949 {
2950 	struct hns3_config_mac_speed_dup_cmd *req;
2951 	struct hns3_cmd_desc desc;
2952 	int ret;
2953 
2954 	req = (struct hns3_config_mac_speed_dup_cmd *)desc.data;
2955 
2956 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_SPEED_DUP, false);
2957 
2958 	hns3_set_bit(req->speed_dup, HNS3_CFG_DUPLEX_B, !!duplex ? 1 : 0);
2959 
2960 	switch (speed) {
2961 	case RTE_ETH_SPEED_NUM_10M:
2962 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2963 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10M);
2964 		break;
2965 	case RTE_ETH_SPEED_NUM_100M:
2966 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2967 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100M);
2968 		break;
2969 	case RTE_ETH_SPEED_NUM_1G:
2970 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2971 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_1G);
2972 		break;
2973 	case RTE_ETH_SPEED_NUM_10G:
2974 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2975 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10G);
2976 		break;
2977 	case RTE_ETH_SPEED_NUM_25G:
2978 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2979 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_25G);
2980 		break;
2981 	case RTE_ETH_SPEED_NUM_40G:
2982 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2983 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_40G);
2984 		break;
2985 	case RTE_ETH_SPEED_NUM_50G:
2986 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2987 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_50G);
2988 		break;
2989 	case RTE_ETH_SPEED_NUM_100G:
2990 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2991 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100G);
2992 		break;
2993 	case RTE_ETH_SPEED_NUM_200G:
2994 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2995 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_200G);
2996 		break;
2997 	default:
2998 		PMD_INIT_LOG(ERR, "invalid speed (%u)", speed);
2999 		return -EINVAL;
3000 	}
3001 
3002 	hns3_set_bit(req->mac_change_fec_en, HNS3_CFG_MAC_SPEED_CHANGE_EN_B, 1);
3003 
3004 	ret = hns3_cmd_send(hw, &desc, 1);
3005 	if (ret)
3006 		PMD_INIT_LOG(ERR, "mac speed/duplex config cmd failed %d", ret);
3007 
3008 	return ret;
3009 }
3010 
3011 static int
3012 hns3_tx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3013 {
3014 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3015 	struct hns3_pf *pf = &hns->pf;
3016 	struct hns3_priv_buf *priv;
3017 	uint32_t i, total_size;
3018 
3019 	total_size = pf->pkt_buf_size;
3020 
3021 	/* alloc tx buffer for all enabled tc */
3022 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3023 		priv = &buf_alloc->priv_buf[i];
3024 
3025 		if (hw->hw_tc_map & BIT(i)) {
3026 			if (total_size < pf->tx_buf_size)
3027 				return -ENOMEM;
3028 
3029 			priv->tx_buf_size = pf->tx_buf_size;
3030 		} else
3031 			priv->tx_buf_size = 0;
3032 
3033 		total_size -= priv->tx_buf_size;
3034 	}
3035 
3036 	return 0;
3037 }
3038 
3039 static int
3040 hns3_tx_buffer_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3041 {
3042 /* TX buffer size is unit by 128 byte */
3043 #define HNS3_BUF_SIZE_UNIT_SHIFT	7
3044 #define HNS3_BUF_SIZE_UPDATE_EN_MSK	BIT(15)
3045 	struct hns3_tx_buff_alloc_cmd *req;
3046 	struct hns3_cmd_desc desc;
3047 	uint32_t buf_size;
3048 	uint32_t i;
3049 	int ret;
3050 
3051 	req = (struct hns3_tx_buff_alloc_cmd *)desc.data;
3052 
3053 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TX_BUFF_ALLOC, 0);
3054 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3055 		buf_size = buf_alloc->priv_buf[i].tx_buf_size;
3056 
3057 		buf_size = buf_size >> HNS3_BUF_SIZE_UNIT_SHIFT;
3058 		req->tx_pkt_buff[i] = rte_cpu_to_le_16(buf_size |
3059 						HNS3_BUF_SIZE_UPDATE_EN_MSK);
3060 	}
3061 
3062 	ret = hns3_cmd_send(hw, &desc, 1);
3063 	if (ret)
3064 		PMD_INIT_LOG(ERR, "tx buffer alloc cmd failed %d", ret);
3065 
3066 	return ret;
3067 }
3068 
3069 static int
3070 hns3_get_tc_num(struct hns3_hw *hw)
3071 {
3072 	int cnt = 0;
3073 	uint8_t i;
3074 
3075 	for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3076 		if (hw->hw_tc_map & BIT(i))
3077 			cnt++;
3078 	return cnt;
3079 }
3080 
3081 static uint32_t
3082 hns3_get_rx_priv_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3083 {
3084 	struct hns3_priv_buf *priv;
3085 	uint32_t rx_priv = 0;
3086 	int i;
3087 
3088 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3089 		priv = &buf_alloc->priv_buf[i];
3090 		if (priv->enable)
3091 			rx_priv += priv->buf_size;
3092 	}
3093 	return rx_priv;
3094 }
3095 
3096 static uint32_t
3097 hns3_get_tx_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3098 {
3099 	uint32_t total_tx_size = 0;
3100 	uint32_t i;
3101 
3102 	for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3103 		total_tx_size += buf_alloc->priv_buf[i].tx_buf_size;
3104 
3105 	return total_tx_size;
3106 }
3107 
3108 /* Get the number of pfc enabled TCs, which have private buffer */
3109 static int
3110 hns3_get_pfc_priv_num(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3111 {
3112 	struct hns3_priv_buf *priv;
3113 	int cnt = 0;
3114 	uint8_t i;
3115 
3116 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3117 		priv = &buf_alloc->priv_buf[i];
3118 		if ((hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3119 			cnt++;
3120 	}
3121 
3122 	return cnt;
3123 }
3124 
3125 /* Get the number of pfc disabled TCs, which have private buffer */
3126 static int
3127 hns3_get_no_pfc_priv_num(struct hns3_hw *hw,
3128 			 struct hns3_pkt_buf_alloc *buf_alloc)
3129 {
3130 	struct hns3_priv_buf *priv;
3131 	int cnt = 0;
3132 	uint8_t i;
3133 
3134 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3135 		priv = &buf_alloc->priv_buf[i];
3136 		if (hw->hw_tc_map & BIT(i) &&
3137 		    !(hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3138 			cnt++;
3139 	}
3140 
3141 	return cnt;
3142 }
3143 
3144 static bool
3145 hns3_is_rx_buf_ok(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc,
3146 		  uint32_t rx_all)
3147 {
3148 	uint32_t shared_buf_min, shared_buf_tc, shared_std, hi_thrd, lo_thrd;
3149 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3150 	struct hns3_pf *pf = &hns->pf;
3151 	uint32_t shared_buf, aligned_mps;
3152 	uint32_t rx_priv;
3153 	uint8_t tc_num;
3154 	uint8_t i;
3155 
3156 	tc_num = hns3_get_tc_num(hw);
3157 	aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3158 
3159 	if (hns3_dev_get_support(hw, DCB))
3160 		shared_buf_min = HNS3_BUF_MUL_BY * aligned_mps +
3161 					pf->dv_buf_size;
3162 	else
3163 		shared_buf_min = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF
3164 					+ pf->dv_buf_size;
3165 
3166 	shared_buf_tc = tc_num * aligned_mps + aligned_mps;
3167 	shared_std = roundup(RTE_MAX(shared_buf_min, shared_buf_tc),
3168 			     HNS3_BUF_SIZE_UNIT);
3169 
3170 	rx_priv = hns3_get_rx_priv_buff_alloced(buf_alloc);
3171 	if (rx_all < rx_priv + shared_std)
3172 		return false;
3173 
3174 	shared_buf = rounddown(rx_all - rx_priv, HNS3_BUF_SIZE_UNIT);
3175 	buf_alloc->s_buf.buf_size = shared_buf;
3176 	if (hns3_dev_get_support(hw, DCB)) {
3177 		buf_alloc->s_buf.self.high = shared_buf - pf->dv_buf_size;
3178 		buf_alloc->s_buf.self.low = buf_alloc->s_buf.self.high
3179 			- roundup(aligned_mps / HNS3_BUF_DIV_BY,
3180 				  HNS3_BUF_SIZE_UNIT);
3181 	} else {
3182 		buf_alloc->s_buf.self.high =
3183 			aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3184 		buf_alloc->s_buf.self.low = aligned_mps;
3185 	}
3186 
3187 	if (hns3_dev_get_support(hw, DCB)) {
3188 		hi_thrd = shared_buf - pf->dv_buf_size;
3189 
3190 		if (tc_num <= NEED_RESERVE_TC_NUM)
3191 			hi_thrd = hi_thrd * BUF_RESERVE_PERCENT /
3192 				  BUF_MAX_PERCENT;
3193 
3194 		if (tc_num)
3195 			hi_thrd = hi_thrd / tc_num;
3196 
3197 		hi_thrd = RTE_MAX(hi_thrd, HNS3_BUF_MUL_BY * aligned_mps);
3198 		hi_thrd = rounddown(hi_thrd, HNS3_BUF_SIZE_UNIT);
3199 		lo_thrd = hi_thrd - aligned_mps / HNS3_BUF_DIV_BY;
3200 	} else {
3201 		hi_thrd = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3202 		lo_thrd = aligned_mps;
3203 	}
3204 
3205 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3206 		buf_alloc->s_buf.tc_thrd[i].low = lo_thrd;
3207 		buf_alloc->s_buf.tc_thrd[i].high = hi_thrd;
3208 	}
3209 
3210 	return true;
3211 }
3212 
3213 static bool
3214 hns3_rx_buf_calc_all(struct hns3_hw *hw, bool max,
3215 		     struct hns3_pkt_buf_alloc *buf_alloc)
3216 {
3217 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3218 	struct hns3_pf *pf = &hns->pf;
3219 	struct hns3_priv_buf *priv;
3220 	uint32_t aligned_mps;
3221 	uint32_t rx_all;
3222 	uint8_t i;
3223 
3224 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3225 	aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3226 
3227 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3228 		priv = &buf_alloc->priv_buf[i];
3229 
3230 		priv->enable = 0;
3231 		priv->wl.low = 0;
3232 		priv->wl.high = 0;
3233 		priv->buf_size = 0;
3234 
3235 		if (!(hw->hw_tc_map & BIT(i)))
3236 			continue;
3237 
3238 		priv->enable = 1;
3239 		if (hw->dcb_info.hw_pfc_map & BIT(i)) {
3240 			priv->wl.low = max ? aligned_mps : HNS3_BUF_SIZE_UNIT;
3241 			priv->wl.high = roundup(priv->wl.low + aligned_mps,
3242 						HNS3_BUF_SIZE_UNIT);
3243 		} else {
3244 			priv->wl.low = 0;
3245 			priv->wl.high = max ? (aligned_mps * HNS3_BUF_MUL_BY) :
3246 					aligned_mps;
3247 		}
3248 
3249 		priv->buf_size = priv->wl.high + pf->dv_buf_size;
3250 	}
3251 
3252 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3253 }
3254 
3255 static bool
3256 hns3_drop_nopfc_buf_till_fit(struct hns3_hw *hw,
3257 			     struct hns3_pkt_buf_alloc *buf_alloc)
3258 {
3259 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3260 	struct hns3_pf *pf = &hns->pf;
3261 	struct hns3_priv_buf *priv;
3262 	int no_pfc_priv_num;
3263 	uint32_t rx_all;
3264 	uint8_t mask;
3265 	int i;
3266 
3267 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3268 	no_pfc_priv_num = hns3_get_no_pfc_priv_num(hw, buf_alloc);
3269 
3270 	/* let the last to be cleared first */
3271 	for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3272 		priv = &buf_alloc->priv_buf[i];
3273 		mask = BIT((uint8_t)i);
3274 		if (hw->hw_tc_map & mask &&
3275 		    !(hw->dcb_info.hw_pfc_map & mask)) {
3276 			/* Clear the no pfc TC private buffer */
3277 			priv->wl.low = 0;
3278 			priv->wl.high = 0;
3279 			priv->buf_size = 0;
3280 			priv->enable = 0;
3281 			no_pfc_priv_num--;
3282 		}
3283 
3284 		if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3285 		    no_pfc_priv_num == 0)
3286 			break;
3287 	}
3288 
3289 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3290 }
3291 
3292 static bool
3293 hns3_drop_pfc_buf_till_fit(struct hns3_hw *hw,
3294 			   struct hns3_pkt_buf_alloc *buf_alloc)
3295 {
3296 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3297 	struct hns3_pf *pf = &hns->pf;
3298 	struct hns3_priv_buf *priv;
3299 	uint32_t rx_all;
3300 	int pfc_priv_num;
3301 	uint8_t mask;
3302 	int i;
3303 
3304 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3305 	pfc_priv_num = hns3_get_pfc_priv_num(hw, buf_alloc);
3306 
3307 	/* let the last to be cleared first */
3308 	for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3309 		priv = &buf_alloc->priv_buf[i];
3310 		mask = BIT((uint8_t)i);
3311 		if (hw->hw_tc_map & mask && hw->dcb_info.hw_pfc_map & mask) {
3312 			/* Reduce the number of pfc TC with private buffer */
3313 			priv->wl.low = 0;
3314 			priv->enable = 0;
3315 			priv->wl.high = 0;
3316 			priv->buf_size = 0;
3317 			pfc_priv_num--;
3318 		}
3319 		if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3320 		    pfc_priv_num == 0)
3321 			break;
3322 	}
3323 
3324 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3325 }
3326 
3327 static bool
3328 hns3_only_alloc_priv_buff(struct hns3_hw *hw,
3329 			  struct hns3_pkt_buf_alloc *buf_alloc)
3330 {
3331 #define COMPENSATE_BUFFER	0x3C00
3332 #define COMPENSATE_HALF_MPS_NUM	5
3333 #define PRIV_WL_GAP		0x1800
3334 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3335 	struct hns3_pf *pf = &hns->pf;
3336 	uint32_t tc_num = hns3_get_tc_num(hw);
3337 	uint32_t half_mps = pf->mps >> 1;
3338 	struct hns3_priv_buf *priv;
3339 	uint32_t min_rx_priv;
3340 	uint32_t rx_priv;
3341 	uint8_t i;
3342 
3343 	rx_priv = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3344 	if (tc_num)
3345 		rx_priv = rx_priv / tc_num;
3346 
3347 	if (tc_num <= NEED_RESERVE_TC_NUM)
3348 		rx_priv = rx_priv * BUF_RESERVE_PERCENT / BUF_MAX_PERCENT;
3349 
3350 	/*
3351 	 * Minimum value of private buffer in rx direction (min_rx_priv) is
3352 	 * equal to "DV + 2.5 * MPS + 15KB". Driver only allocates rx private
3353 	 * buffer if rx_priv is greater than min_rx_priv.
3354 	 */
3355 	min_rx_priv = pf->dv_buf_size + COMPENSATE_BUFFER +
3356 			COMPENSATE_HALF_MPS_NUM * half_mps;
3357 	min_rx_priv = roundup(min_rx_priv, HNS3_BUF_SIZE_UNIT);
3358 	rx_priv = rounddown(rx_priv, HNS3_BUF_SIZE_UNIT);
3359 	if (rx_priv < min_rx_priv)
3360 		return false;
3361 
3362 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3363 		priv = &buf_alloc->priv_buf[i];
3364 		priv->enable = 0;
3365 		priv->wl.low = 0;
3366 		priv->wl.high = 0;
3367 		priv->buf_size = 0;
3368 
3369 		if (!(hw->hw_tc_map & BIT(i)))
3370 			continue;
3371 
3372 		priv->enable = 1;
3373 		priv->buf_size = rx_priv;
3374 		priv->wl.high = rx_priv - pf->dv_buf_size;
3375 		priv->wl.low = priv->wl.high - PRIV_WL_GAP;
3376 	}
3377 
3378 	buf_alloc->s_buf.buf_size = 0;
3379 
3380 	return true;
3381 }
3382 
3383 /*
3384  * hns3_rx_buffer_calc: calculate the rx private buffer size for all TCs
3385  * @hw: pointer to struct hns3_hw
3386  * @buf_alloc: pointer to buffer calculation data
3387  * @return: 0: calculate successful, negative: fail
3388  */
3389 static int
3390 hns3_rx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3391 {
3392 	/* When DCB is not supported, rx private buffer is not allocated. */
3393 	if (!hns3_dev_get_support(hw, DCB)) {
3394 		struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3395 		struct hns3_pf *pf = &hns->pf;
3396 		uint32_t rx_all = pf->pkt_buf_size;
3397 
3398 		rx_all -= hns3_get_tx_buff_alloced(buf_alloc);
3399 		if (!hns3_is_rx_buf_ok(hw, buf_alloc, rx_all))
3400 			return -ENOMEM;
3401 
3402 		return 0;
3403 	}
3404 
3405 	/*
3406 	 * Try to allocate privated packet buffer for all TCs without share
3407 	 * buffer.
3408 	 */
3409 	if (hns3_only_alloc_priv_buff(hw, buf_alloc))
3410 		return 0;
3411 
3412 	/*
3413 	 * Try to allocate privated packet buffer for all TCs with share
3414 	 * buffer.
3415 	 */
3416 	if (hns3_rx_buf_calc_all(hw, true, buf_alloc))
3417 		return 0;
3418 
3419 	/*
3420 	 * For different application scenes, the enabled port number, TC number
3421 	 * and no_drop TC number are different. In order to obtain the better
3422 	 * performance, software could allocate the buffer size and configure
3423 	 * the waterline by trying to decrease the private buffer size according
3424 	 * to the order, namely, waterline of valid tc, pfc disabled tc, pfc
3425 	 * enabled tc.
3426 	 */
3427 	if (hns3_rx_buf_calc_all(hw, false, buf_alloc))
3428 		return 0;
3429 
3430 	if (hns3_drop_nopfc_buf_till_fit(hw, buf_alloc))
3431 		return 0;
3432 
3433 	if (hns3_drop_pfc_buf_till_fit(hw, buf_alloc))
3434 		return 0;
3435 
3436 	return -ENOMEM;
3437 }
3438 
3439 static int
3440 hns3_rx_priv_buf_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3441 {
3442 	struct hns3_rx_priv_buff_cmd *req;
3443 	struct hns3_cmd_desc desc;
3444 	uint32_t buf_size;
3445 	int ret;
3446 	int i;
3447 
3448 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_PRIV_BUFF_ALLOC, false);
3449 	req = (struct hns3_rx_priv_buff_cmd *)desc.data;
3450 
3451 	/* Alloc private buffer TCs */
3452 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3453 		struct hns3_priv_buf *priv = &buf_alloc->priv_buf[i];
3454 
3455 		req->buf_num[i] =
3456 			rte_cpu_to_le_16(priv->buf_size >> HNS3_BUF_UNIT_S);
3457 		req->buf_num[i] |= rte_cpu_to_le_16(1 << HNS3_TC0_PRI_BUF_EN_B);
3458 	}
3459 
3460 	buf_size = buf_alloc->s_buf.buf_size;
3461 	req->shared_buf = rte_cpu_to_le_16((buf_size >> HNS3_BUF_UNIT_S) |
3462 					   (1 << HNS3_TC0_PRI_BUF_EN_B));
3463 
3464 	ret = hns3_cmd_send(hw, &desc, 1);
3465 	if (ret)
3466 		PMD_INIT_LOG(ERR, "rx private buffer alloc cmd failed %d", ret);
3467 
3468 	return ret;
3469 }
3470 
3471 static int
3472 hns3_rx_priv_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3473 {
3474 #define HNS3_RX_PRIV_WL_ALLOC_DESC_NUM 2
3475 	struct hns3_rx_priv_wl_buf *req;
3476 	struct hns3_priv_buf *priv;
3477 	struct hns3_cmd_desc desc[HNS3_RX_PRIV_WL_ALLOC_DESC_NUM];
3478 	int i, j;
3479 	int ret;
3480 
3481 	for (i = 0; i < HNS3_RX_PRIV_WL_ALLOC_DESC_NUM; i++) {
3482 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_PRIV_WL_ALLOC,
3483 					  false);
3484 		req = (struct hns3_rx_priv_wl_buf *)desc[i].data;
3485 
3486 		/* The first descriptor set the NEXT bit to 1 */
3487 		if (i == 0)
3488 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3489 		else
3490 			desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3491 
3492 		for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3493 			uint32_t idx = i * HNS3_TC_NUM_ONE_DESC + j;
3494 
3495 			priv = &buf_alloc->priv_buf[idx];
3496 			req->tc_wl[j].high = rte_cpu_to_le_16(priv->wl.high >>
3497 							HNS3_BUF_UNIT_S);
3498 			req->tc_wl[j].high |=
3499 				rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3500 			req->tc_wl[j].low = rte_cpu_to_le_16(priv->wl.low >>
3501 							HNS3_BUF_UNIT_S);
3502 			req->tc_wl[j].low |=
3503 				rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3504 		}
3505 	}
3506 
3507 	/* Send 2 descriptor at one time */
3508 	ret = hns3_cmd_send(hw, desc, HNS3_RX_PRIV_WL_ALLOC_DESC_NUM);
3509 	if (ret)
3510 		PMD_INIT_LOG(ERR, "rx private waterline config cmd failed %d",
3511 			     ret);
3512 	return ret;
3513 }
3514 
3515 static int
3516 hns3_common_thrd_config(struct hns3_hw *hw,
3517 			struct hns3_pkt_buf_alloc *buf_alloc)
3518 {
3519 #define HNS3_RX_COM_THRD_ALLOC_DESC_NUM 2
3520 	struct hns3_shared_buf *s_buf = &buf_alloc->s_buf;
3521 	struct hns3_rx_com_thrd *req;
3522 	struct hns3_cmd_desc desc[HNS3_RX_COM_THRD_ALLOC_DESC_NUM];
3523 	struct hns3_tc_thrd *tc;
3524 	int tc_idx;
3525 	int i, j;
3526 	int ret;
3527 
3528 	for (i = 0; i < HNS3_RX_COM_THRD_ALLOC_DESC_NUM; i++) {
3529 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_COM_THRD_ALLOC,
3530 					  false);
3531 		req = (struct hns3_rx_com_thrd *)&desc[i].data;
3532 
3533 		/* The first descriptor set the NEXT bit to 1 */
3534 		if (i == 0)
3535 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3536 		else
3537 			desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3538 
3539 		for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3540 			tc_idx = i * HNS3_TC_NUM_ONE_DESC + j;
3541 			tc = &s_buf->tc_thrd[tc_idx];
3542 
3543 			req->com_thrd[j].high =
3544 				rte_cpu_to_le_16(tc->high >> HNS3_BUF_UNIT_S);
3545 			req->com_thrd[j].high |=
3546 				 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3547 			req->com_thrd[j].low =
3548 				rte_cpu_to_le_16(tc->low >> HNS3_BUF_UNIT_S);
3549 			req->com_thrd[j].low |=
3550 				 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3551 		}
3552 	}
3553 
3554 	/* Send 2 descriptors at one time */
3555 	ret = hns3_cmd_send(hw, desc, HNS3_RX_COM_THRD_ALLOC_DESC_NUM);
3556 	if (ret)
3557 		PMD_INIT_LOG(ERR, "common threshold config cmd failed %d", ret);
3558 
3559 	return ret;
3560 }
3561 
3562 static int
3563 hns3_common_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3564 {
3565 	struct hns3_shared_buf *buf = &buf_alloc->s_buf;
3566 	struct hns3_rx_com_wl *req;
3567 	struct hns3_cmd_desc desc;
3568 	int ret;
3569 
3570 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_COM_WL_ALLOC, false);
3571 
3572 	req = (struct hns3_rx_com_wl *)desc.data;
3573 	req->com_wl.high = rte_cpu_to_le_16(buf->self.high >> HNS3_BUF_UNIT_S);
3574 	req->com_wl.high |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3575 
3576 	req->com_wl.low = rte_cpu_to_le_16(buf->self.low >> HNS3_BUF_UNIT_S);
3577 	req->com_wl.low |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3578 
3579 	ret = hns3_cmd_send(hw, &desc, 1);
3580 	if (ret)
3581 		PMD_INIT_LOG(ERR, "common waterline config cmd failed %d", ret);
3582 
3583 	return ret;
3584 }
3585 
3586 int
3587 hns3_buffer_alloc(struct hns3_hw *hw)
3588 {
3589 	struct hns3_pkt_buf_alloc pkt_buf;
3590 	int ret;
3591 
3592 	memset(&pkt_buf, 0, sizeof(pkt_buf));
3593 	ret = hns3_tx_buffer_calc(hw, &pkt_buf);
3594 	if (ret) {
3595 		PMD_INIT_LOG(ERR,
3596 			     "could not calc tx buffer size for all TCs %d",
3597 			     ret);
3598 		return ret;
3599 	}
3600 
3601 	ret = hns3_tx_buffer_alloc(hw, &pkt_buf);
3602 	if (ret) {
3603 		PMD_INIT_LOG(ERR, "could not alloc tx buffers %d", ret);
3604 		return ret;
3605 	}
3606 
3607 	ret = hns3_rx_buffer_calc(hw, &pkt_buf);
3608 	if (ret) {
3609 		PMD_INIT_LOG(ERR,
3610 			     "could not calc rx priv buffer size for all TCs %d",
3611 			     ret);
3612 		return ret;
3613 	}
3614 
3615 	ret = hns3_rx_priv_buf_alloc(hw, &pkt_buf);
3616 	if (ret) {
3617 		PMD_INIT_LOG(ERR, "could not alloc rx priv buffer %d", ret);
3618 		return ret;
3619 	}
3620 
3621 	if (hns3_dev_get_support(hw, DCB)) {
3622 		ret = hns3_rx_priv_wl_config(hw, &pkt_buf);
3623 		if (ret) {
3624 			PMD_INIT_LOG(ERR,
3625 				     "could not configure rx private waterline %d",
3626 				     ret);
3627 			return ret;
3628 		}
3629 
3630 		ret = hns3_common_thrd_config(hw, &pkt_buf);
3631 		if (ret) {
3632 			PMD_INIT_LOG(ERR,
3633 				     "could not configure common threshold %d",
3634 				     ret);
3635 			return ret;
3636 		}
3637 	}
3638 
3639 	ret = hns3_common_wl_config(hw, &pkt_buf);
3640 	if (ret)
3641 		PMD_INIT_LOG(ERR, "could not configure common waterline %d",
3642 			     ret);
3643 
3644 	return ret;
3645 }
3646 
3647 static int
3648 hns3_mac_init(struct hns3_hw *hw)
3649 {
3650 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3651 	struct hns3_mac *mac = &hw->mac;
3652 	struct hns3_pf *pf = &hns->pf;
3653 	int ret;
3654 
3655 	pf->support_sfp_query = true;
3656 	mac->link_duplex = RTE_ETH_LINK_FULL_DUPLEX;
3657 	ret = hns3_cfg_mac_speed_dup_hw(hw, mac->link_speed, mac->link_duplex);
3658 	if (ret) {
3659 		PMD_INIT_LOG(ERR, "Config mac speed dup fail ret = %d", ret);
3660 		return ret;
3661 	}
3662 
3663 	mac->link_status = RTE_ETH_LINK_DOWN;
3664 
3665 	return hns3_config_mtu(hw, pf->mps);
3666 }
3667 
3668 static int
3669 hns3_get_mac_ethertype_cmd_status(uint16_t cmdq_resp, uint8_t resp_code)
3670 {
3671 #define HNS3_ETHERTYPE_SUCCESS_ADD		0
3672 #define HNS3_ETHERTYPE_ALREADY_ADD		1
3673 #define HNS3_ETHERTYPE_MGR_TBL_OVERFLOW		2
3674 #define HNS3_ETHERTYPE_KEY_CONFLICT		3
3675 	int return_status;
3676 
3677 	if (cmdq_resp) {
3678 		PMD_INIT_LOG(ERR,
3679 			     "cmdq execute failed for get_mac_ethertype_cmd_status, status=%u.\n",
3680 			     cmdq_resp);
3681 		return -EIO;
3682 	}
3683 
3684 	switch (resp_code) {
3685 	case HNS3_ETHERTYPE_SUCCESS_ADD:
3686 	case HNS3_ETHERTYPE_ALREADY_ADD:
3687 		return_status = 0;
3688 		break;
3689 	case HNS3_ETHERTYPE_MGR_TBL_OVERFLOW:
3690 		PMD_INIT_LOG(ERR,
3691 			     "add mac ethertype failed for manager table overflow.");
3692 		return_status = -EIO;
3693 		break;
3694 	case HNS3_ETHERTYPE_KEY_CONFLICT:
3695 		PMD_INIT_LOG(ERR, "add mac ethertype failed for key conflict.");
3696 		return_status = -EIO;
3697 		break;
3698 	default:
3699 		PMD_INIT_LOG(ERR,
3700 			     "add mac ethertype failed for undefined, code=%u.",
3701 			     resp_code);
3702 		return_status = -EIO;
3703 		break;
3704 	}
3705 
3706 	return return_status;
3707 }
3708 
3709 static int
3710 hns3_add_mgr_tbl(struct hns3_hw *hw,
3711 		 const struct hns3_mac_mgr_tbl_entry_cmd *req)
3712 {
3713 	struct hns3_cmd_desc desc;
3714 	uint8_t resp_code;
3715 	uint16_t retval;
3716 	int ret;
3717 
3718 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_ETHTYPE_ADD, false);
3719 	memcpy(desc.data, req, sizeof(struct hns3_mac_mgr_tbl_entry_cmd));
3720 
3721 	ret = hns3_cmd_send(hw, &desc, 1);
3722 	if (ret) {
3723 		PMD_INIT_LOG(ERR,
3724 			     "add mac ethertype failed for cmd_send, ret =%d.",
3725 			     ret);
3726 		return ret;
3727 	}
3728 
3729 	resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
3730 	retval = rte_le_to_cpu_16(desc.retval);
3731 
3732 	return hns3_get_mac_ethertype_cmd_status(retval, resp_code);
3733 }
3734 
3735 static void
3736 hns3_prepare_mgr_tbl(struct hns3_mac_mgr_tbl_entry_cmd *mgr_table,
3737 		     int *table_item_num)
3738 {
3739 	struct hns3_mac_mgr_tbl_entry_cmd *tbl;
3740 
3741 	/*
3742 	 * In current version, we add one item in management table as below:
3743 	 * 0x0180C200000E -- LLDP MC address
3744 	 */
3745 	tbl = mgr_table;
3746 	tbl->flags = HNS3_MAC_MGR_MASK_VLAN_B;
3747 	tbl->ethter_type = rte_cpu_to_le_16(HNS3_MAC_ETHERTYPE_LLDP);
3748 	tbl->mac_addr_hi32 = rte_cpu_to_le_32(htonl(0x0180C200));
3749 	tbl->mac_addr_lo16 = rte_cpu_to_le_16(htons(0x000E));
3750 	tbl->i_port_bitmap = 0x1;
3751 	*table_item_num = 1;
3752 }
3753 
3754 static int
3755 hns3_init_mgr_tbl(struct hns3_hw *hw)
3756 {
3757 #define HNS_MAC_MGR_TBL_MAX_SIZE	16
3758 	struct hns3_mac_mgr_tbl_entry_cmd mgr_table[HNS_MAC_MGR_TBL_MAX_SIZE];
3759 	int table_item_num;
3760 	int ret;
3761 	int i;
3762 
3763 	memset(mgr_table, 0, sizeof(mgr_table));
3764 	hns3_prepare_mgr_tbl(mgr_table, &table_item_num);
3765 	for (i = 0; i < table_item_num; i++) {
3766 		ret = hns3_add_mgr_tbl(hw, &mgr_table[i]);
3767 		if (ret) {
3768 			PMD_INIT_LOG(ERR, "add mac ethertype failed, ret =%d",
3769 				     ret);
3770 			return ret;
3771 		}
3772 	}
3773 
3774 	return 0;
3775 }
3776 
3777 static void
3778 hns3_promisc_param_init(struct hns3_promisc_param *param, bool en_uc,
3779 			bool en_mc, bool en_bc, int vport_id)
3780 {
3781 	if (!param)
3782 		return;
3783 
3784 	memset(param, 0, sizeof(struct hns3_promisc_param));
3785 	if (en_uc)
3786 		param->enable = HNS3_PROMISC_EN_UC;
3787 	if (en_mc)
3788 		param->enable |= HNS3_PROMISC_EN_MC;
3789 	if (en_bc)
3790 		param->enable |= HNS3_PROMISC_EN_BC;
3791 	param->vf_id = vport_id;
3792 }
3793 
3794 static int
3795 hns3_cmd_set_promisc_mode(struct hns3_hw *hw, struct hns3_promisc_param *param)
3796 {
3797 	struct hns3_promisc_cfg_cmd *req;
3798 	struct hns3_cmd_desc desc;
3799 	int ret;
3800 
3801 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_PROMISC_MODE, false);
3802 
3803 	req = (struct hns3_promisc_cfg_cmd *)desc.data;
3804 	req->vf_id = param->vf_id;
3805 	req->flag = (param->enable << HNS3_PROMISC_EN_B) |
3806 	    HNS3_PROMISC_TX_EN_B | HNS3_PROMISC_RX_EN_B;
3807 
3808 	ret = hns3_cmd_send(hw, &desc, 1);
3809 	if (ret)
3810 		PMD_INIT_LOG(ERR, "Set promisc mode fail, ret = %d", ret);
3811 
3812 	return ret;
3813 }
3814 
3815 static int
3816 hns3_set_promisc_mode(struct hns3_hw *hw, bool en_uc_pmc, bool en_mc_pmc)
3817 {
3818 	struct hns3_promisc_param param;
3819 	bool en_bc_pmc = true;
3820 	uint8_t vf_id;
3821 
3822 	/*
3823 	 * In current version VF is not supported when PF is driven by DPDK
3824 	 * driver, just need to configure parameters for PF vport.
3825 	 */
3826 	vf_id = HNS3_PF_FUNC_ID;
3827 
3828 	hns3_promisc_param_init(&param, en_uc_pmc, en_mc_pmc, en_bc_pmc, vf_id);
3829 	return hns3_cmd_set_promisc_mode(hw, &param);
3830 }
3831 
3832 static int
3833 hns3_promisc_init(struct hns3_hw *hw)
3834 {
3835 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3836 	struct hns3_pf *pf = &hns->pf;
3837 	struct hns3_promisc_param param;
3838 	uint16_t func_id;
3839 	int ret;
3840 
3841 	ret = hns3_set_promisc_mode(hw, false, false);
3842 	if (ret) {
3843 		PMD_INIT_LOG(ERR, "failed to set promisc mode, ret = %d", ret);
3844 		return ret;
3845 	}
3846 
3847 	/*
3848 	 * In current version VFs are not supported when PF is driven by DPDK
3849 	 * driver. After PF has been taken over by DPDK, the original VF will
3850 	 * be invalid. So, there is a possibility of entry residues. It should
3851 	 * clear VFs's promisc mode to avoid unnecessary bandwidth usage
3852 	 * during init.
3853 	 */
3854 	for (func_id = HNS3_1ST_VF_FUNC_ID; func_id < pf->func_num; func_id++) {
3855 		hns3_promisc_param_init(&param, false, false, false, func_id);
3856 		ret = hns3_cmd_set_promisc_mode(hw, &param);
3857 		if (ret) {
3858 			PMD_INIT_LOG(ERR, "failed to clear vf:%u promisc mode,"
3859 					" ret = %d", func_id, ret);
3860 			return ret;
3861 		}
3862 	}
3863 
3864 	return 0;
3865 }
3866 
3867 static void
3868 hns3_promisc_uninit(struct hns3_hw *hw)
3869 {
3870 	struct hns3_promisc_param param;
3871 	uint16_t func_id;
3872 	int ret;
3873 
3874 	func_id = HNS3_PF_FUNC_ID;
3875 
3876 	/*
3877 	 * In current version VFs are not supported when PF is driven by
3878 	 * DPDK driver, and VFs' promisc mode status has been cleared during
3879 	 * init and their status will not change. So just clear PF's promisc
3880 	 * mode status during uninit.
3881 	 */
3882 	hns3_promisc_param_init(&param, false, false, false, func_id);
3883 	ret = hns3_cmd_set_promisc_mode(hw, &param);
3884 	if (ret)
3885 		PMD_INIT_LOG(ERR, "failed to clear promisc status during"
3886 				" uninit, ret = %d", ret);
3887 }
3888 
3889 static int
3890 hns3_dev_promiscuous_enable(struct rte_eth_dev *dev)
3891 {
3892 	bool allmulti = dev->data->all_multicast ? true : false;
3893 	struct hns3_adapter *hns = dev->data->dev_private;
3894 	struct hns3_hw *hw = &hns->hw;
3895 	uint64_t offloads;
3896 	int err;
3897 	int ret;
3898 
3899 	rte_spinlock_lock(&hw->lock);
3900 	ret = hns3_set_promisc_mode(hw, true, true);
3901 	if (ret) {
3902 		rte_spinlock_unlock(&hw->lock);
3903 		hns3_err(hw, "failed to enable promiscuous mode, ret = %d",
3904 			 ret);
3905 		return ret;
3906 	}
3907 
3908 	/*
3909 	 * When promiscuous mode was enabled, disable the vlan filter to let
3910 	 * all packets coming in in the receiving direction.
3911 	 */
3912 	offloads = dev->data->dev_conf.rxmode.offloads;
3913 	if (offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER) {
3914 		ret = hns3_enable_vlan_filter(hns, false);
3915 		if (ret) {
3916 			hns3_err(hw, "failed to enable promiscuous mode due to "
3917 				 "failure to disable vlan filter, ret = %d",
3918 				 ret);
3919 			err = hns3_set_promisc_mode(hw, false, allmulti);
3920 			if (err)
3921 				hns3_err(hw, "failed to restore promiscuous "
3922 					 "status after disable vlan filter "
3923 					 "failed during enabling promiscuous "
3924 					 "mode, ret = %d", ret);
3925 		}
3926 	}
3927 
3928 	rte_spinlock_unlock(&hw->lock);
3929 
3930 	return ret;
3931 }
3932 
3933 static int
3934 hns3_dev_promiscuous_disable(struct rte_eth_dev *dev)
3935 {
3936 	bool allmulti = dev->data->all_multicast ? true : false;
3937 	struct hns3_adapter *hns = dev->data->dev_private;
3938 	struct hns3_hw *hw = &hns->hw;
3939 	uint64_t offloads;
3940 	int err;
3941 	int ret;
3942 
3943 	/* If now in all_multicast mode, must remain in all_multicast mode. */
3944 	rte_spinlock_lock(&hw->lock);
3945 	ret = hns3_set_promisc_mode(hw, false, allmulti);
3946 	if (ret) {
3947 		rte_spinlock_unlock(&hw->lock);
3948 		hns3_err(hw, "failed to disable promiscuous mode, ret = %d",
3949 			 ret);
3950 		return ret;
3951 	}
3952 	/* when promiscuous mode was disabled, restore the vlan filter status */
3953 	offloads = dev->data->dev_conf.rxmode.offloads;
3954 	if (offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER) {
3955 		ret = hns3_enable_vlan_filter(hns, true);
3956 		if (ret) {
3957 			hns3_err(hw, "failed to disable promiscuous mode due to"
3958 				 " failure to restore vlan filter, ret = %d",
3959 				 ret);
3960 			err = hns3_set_promisc_mode(hw, true, true);
3961 			if (err)
3962 				hns3_err(hw, "failed to restore promiscuous "
3963 					 "status after enabling vlan filter "
3964 					 "failed during disabling promiscuous "
3965 					 "mode, ret = %d", ret);
3966 		}
3967 	}
3968 	rte_spinlock_unlock(&hw->lock);
3969 
3970 	return ret;
3971 }
3972 
3973 static int
3974 hns3_dev_allmulticast_enable(struct rte_eth_dev *dev)
3975 {
3976 	struct hns3_adapter *hns = dev->data->dev_private;
3977 	struct hns3_hw *hw = &hns->hw;
3978 	int ret;
3979 
3980 	if (dev->data->promiscuous)
3981 		return 0;
3982 
3983 	rte_spinlock_lock(&hw->lock);
3984 	ret = hns3_set_promisc_mode(hw, false, true);
3985 	rte_spinlock_unlock(&hw->lock);
3986 	if (ret)
3987 		hns3_err(hw, "failed to enable allmulticast mode, ret = %d",
3988 			 ret);
3989 
3990 	return ret;
3991 }
3992 
3993 static int
3994 hns3_dev_allmulticast_disable(struct rte_eth_dev *dev)
3995 {
3996 	struct hns3_adapter *hns = dev->data->dev_private;
3997 	struct hns3_hw *hw = &hns->hw;
3998 	int ret;
3999 
4000 	/* If now in promiscuous mode, must remain in all_multicast mode. */
4001 	if (dev->data->promiscuous)
4002 		return 0;
4003 
4004 	rte_spinlock_lock(&hw->lock);
4005 	ret = hns3_set_promisc_mode(hw, false, false);
4006 	rte_spinlock_unlock(&hw->lock);
4007 	if (ret)
4008 		hns3_err(hw, "failed to disable allmulticast mode, ret = %d",
4009 			 ret);
4010 
4011 	return ret;
4012 }
4013 
4014 static int
4015 hns3_dev_promisc_restore(struct hns3_adapter *hns)
4016 {
4017 	struct hns3_hw *hw = &hns->hw;
4018 	bool allmulti = hw->data->all_multicast ? true : false;
4019 	int ret;
4020 
4021 	if (hw->data->promiscuous) {
4022 		ret = hns3_set_promisc_mode(hw, true, true);
4023 		if (ret)
4024 			hns3_err(hw, "failed to restore promiscuous mode, "
4025 				 "ret = %d", ret);
4026 		return ret;
4027 	}
4028 
4029 	ret = hns3_set_promisc_mode(hw, false, allmulti);
4030 	if (ret)
4031 		hns3_err(hw, "failed to restore allmulticast mode, ret = %d",
4032 			 ret);
4033 	return ret;
4034 }
4035 
4036 static int
4037 hns3_get_sfp_info(struct hns3_hw *hw, struct hns3_mac *mac_info)
4038 {
4039 	struct hns3_sfp_info_cmd *resp;
4040 	struct hns3_cmd_desc desc;
4041 	int ret;
4042 
4043 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GET_SFP_INFO, true);
4044 	resp = (struct hns3_sfp_info_cmd *)desc.data;
4045 	resp->query_type = HNS3_ACTIVE_QUERY;
4046 
4047 	ret = hns3_cmd_send(hw, &desc, 1);
4048 	if (ret == -EOPNOTSUPP) {
4049 		hns3_warn(hw, "firmware does not support get SFP info,"
4050 			  " ret = %d.", ret);
4051 		return ret;
4052 	} else if (ret) {
4053 		hns3_err(hw, "get sfp info failed, ret = %d.", ret);
4054 		return ret;
4055 	}
4056 
4057 	/*
4058 	 * In some case, the speed of MAC obtained from firmware may be 0, it
4059 	 * shouldn't be set to mac->speed.
4060 	 */
4061 	if (!rte_le_to_cpu_32(resp->sfp_speed))
4062 		return 0;
4063 
4064 	mac_info->link_speed = rte_le_to_cpu_32(resp->sfp_speed);
4065 	/*
4066 	 * if resp->supported_speed is 0, it means it's an old version
4067 	 * firmware, do not update these params.
4068 	 */
4069 	if (resp->supported_speed) {
4070 		mac_info->query_type = HNS3_ACTIVE_QUERY;
4071 		mac_info->supported_speed =
4072 					rte_le_to_cpu_32(resp->supported_speed);
4073 		mac_info->support_autoneg = resp->autoneg_ability;
4074 		mac_info->link_autoneg = (resp->autoneg == 0) ? RTE_ETH_LINK_FIXED
4075 					: RTE_ETH_LINK_AUTONEG;
4076 	} else {
4077 		mac_info->query_type = HNS3_DEFAULT_QUERY;
4078 	}
4079 
4080 	return 0;
4081 }
4082 
4083 static uint8_t
4084 hns3_check_speed_dup(uint8_t duplex, uint32_t speed)
4085 {
4086 	if (!(speed == RTE_ETH_SPEED_NUM_10M || speed == RTE_ETH_SPEED_NUM_100M))
4087 		duplex = RTE_ETH_LINK_FULL_DUPLEX;
4088 
4089 	return duplex;
4090 }
4091 
4092 static int
4093 hns3_cfg_mac_speed_dup(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
4094 {
4095 	struct hns3_mac *mac = &hw->mac;
4096 	int ret;
4097 
4098 	duplex = hns3_check_speed_dup(duplex, speed);
4099 	if (mac->link_speed == speed && mac->link_duplex == duplex)
4100 		return 0;
4101 
4102 	ret = hns3_cfg_mac_speed_dup_hw(hw, speed, duplex);
4103 	if (ret)
4104 		return ret;
4105 
4106 	ret = hns3_port_shaper_update(hw, speed);
4107 	if (ret)
4108 		return ret;
4109 
4110 	mac->link_speed = speed;
4111 	mac->link_duplex = duplex;
4112 
4113 	return 0;
4114 }
4115 
4116 static int
4117 hns3_update_fiber_link_info(struct hns3_hw *hw)
4118 {
4119 	struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw);
4120 	struct hns3_mac *mac = &hw->mac;
4121 	struct hns3_mac mac_info;
4122 	int ret;
4123 
4124 	/* If firmware do not support get SFP/qSFP speed, return directly */
4125 	if (!pf->support_sfp_query)
4126 		return 0;
4127 
4128 	memset(&mac_info, 0, sizeof(struct hns3_mac));
4129 	ret = hns3_get_sfp_info(hw, &mac_info);
4130 	if (ret == -EOPNOTSUPP) {
4131 		pf->support_sfp_query = false;
4132 		return ret;
4133 	} else if (ret)
4134 		return ret;
4135 
4136 	/* Do nothing if no SFP */
4137 	if (mac_info.link_speed == RTE_ETH_SPEED_NUM_NONE)
4138 		return 0;
4139 
4140 	/*
4141 	 * If query_type is HNS3_ACTIVE_QUERY, it is no need
4142 	 * to reconfigure the speed of MAC. Otherwise, it indicates
4143 	 * that the current firmware only supports to obtain the
4144 	 * speed of the SFP, and the speed of MAC needs to reconfigure.
4145 	 */
4146 	mac->query_type = mac_info.query_type;
4147 	if (mac->query_type == HNS3_ACTIVE_QUERY) {
4148 		if (mac_info.link_speed != mac->link_speed) {
4149 			ret = hns3_port_shaper_update(hw, mac_info.link_speed);
4150 			if (ret)
4151 				return ret;
4152 		}
4153 
4154 		mac->link_speed = mac_info.link_speed;
4155 		mac->supported_speed = mac_info.supported_speed;
4156 		mac->support_autoneg = mac_info.support_autoneg;
4157 		mac->link_autoneg = mac_info.link_autoneg;
4158 
4159 		return 0;
4160 	}
4161 
4162 	/* Config full duplex for SFP */
4163 	return hns3_cfg_mac_speed_dup(hw, mac_info.link_speed,
4164 				      RTE_ETH_LINK_FULL_DUPLEX);
4165 }
4166 
4167 static void
4168 hns3_parse_copper_phy_params(struct hns3_cmd_desc *desc, struct hns3_mac *mac)
4169 {
4170 #define HNS3_PHY_SUPPORTED_SPEED_MASK   0x2f
4171 
4172 	struct hns3_phy_params_bd0_cmd *req;
4173 	uint32_t supported;
4174 
4175 	req = (struct hns3_phy_params_bd0_cmd *)desc[0].data;
4176 	mac->link_speed = rte_le_to_cpu_32(req->speed);
4177 	mac->link_duplex = hns3_get_bit(req->duplex,
4178 					   HNS3_PHY_DUPLEX_CFG_B);
4179 	mac->link_autoneg = hns3_get_bit(req->autoneg,
4180 					   HNS3_PHY_AUTONEG_CFG_B);
4181 	mac->advertising = rte_le_to_cpu_32(req->advertising);
4182 	mac->lp_advertising = rte_le_to_cpu_32(req->lp_advertising);
4183 	supported = rte_le_to_cpu_32(req->supported);
4184 	mac->supported_speed = supported & HNS3_PHY_SUPPORTED_SPEED_MASK;
4185 	mac->support_autoneg = !!(supported & HNS3_PHY_LINK_MODE_AUTONEG_BIT);
4186 }
4187 
4188 static int
4189 hns3_get_copper_phy_params(struct hns3_hw *hw, struct hns3_mac *mac)
4190 {
4191 	struct hns3_cmd_desc desc[HNS3_PHY_PARAM_CFG_BD_NUM];
4192 	uint16_t i;
4193 	int ret;
4194 
4195 	for (i = 0; i < HNS3_PHY_PARAM_CFG_BD_NUM - 1; i++) {
4196 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG,
4197 					  true);
4198 		desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
4199 	}
4200 	hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG, true);
4201 
4202 	ret = hns3_cmd_send(hw, desc, HNS3_PHY_PARAM_CFG_BD_NUM);
4203 	if (ret) {
4204 		hns3_err(hw, "get phy parameters failed, ret = %d.", ret);
4205 		return ret;
4206 	}
4207 
4208 	hns3_parse_copper_phy_params(desc, mac);
4209 
4210 	return 0;
4211 }
4212 
4213 static int
4214 hns3_update_copper_link_info(struct hns3_hw *hw)
4215 {
4216 	struct hns3_mac *mac = &hw->mac;
4217 	struct hns3_mac mac_info;
4218 	int ret;
4219 
4220 	memset(&mac_info, 0, sizeof(struct hns3_mac));
4221 	ret = hns3_get_copper_phy_params(hw, &mac_info);
4222 	if (ret)
4223 		return ret;
4224 
4225 	if (mac_info.link_speed != mac->link_speed) {
4226 		ret = hns3_port_shaper_update(hw, mac_info.link_speed);
4227 		if (ret)
4228 			return ret;
4229 	}
4230 
4231 	mac->link_speed = mac_info.link_speed;
4232 	mac->link_duplex = mac_info.link_duplex;
4233 	mac->link_autoneg = mac_info.link_autoneg;
4234 	mac->supported_speed = mac_info.supported_speed;
4235 	mac->advertising = mac_info.advertising;
4236 	mac->lp_advertising = mac_info.lp_advertising;
4237 	mac->support_autoneg = mac_info.support_autoneg;
4238 
4239 	return 0;
4240 }
4241 
4242 static int
4243 hns3_update_link_info(struct rte_eth_dev *eth_dev)
4244 {
4245 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4246 	struct hns3_hw *hw = &hns->hw;
4247 	int ret = 0;
4248 
4249 	if (hw->mac.media_type == HNS3_MEDIA_TYPE_COPPER)
4250 		ret = hns3_update_copper_link_info(hw);
4251 	else if (hw->mac.media_type == HNS3_MEDIA_TYPE_FIBER)
4252 		ret = hns3_update_fiber_link_info(hw);
4253 
4254 	return ret;
4255 }
4256 
4257 static int
4258 hns3_cfg_mac_mode(struct hns3_hw *hw, bool enable)
4259 {
4260 	struct hns3_config_mac_mode_cmd *req;
4261 	struct hns3_cmd_desc desc;
4262 	uint32_t loop_en = 0;
4263 	uint8_t val = 0;
4264 	int ret;
4265 
4266 	req = (struct hns3_config_mac_mode_cmd *)desc.data;
4267 
4268 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAC_MODE, false);
4269 	if (enable)
4270 		val = 1;
4271 	hns3_set_bit(loop_en, HNS3_MAC_TX_EN_B, val);
4272 	hns3_set_bit(loop_en, HNS3_MAC_RX_EN_B, val);
4273 	hns3_set_bit(loop_en, HNS3_MAC_PAD_TX_B, val);
4274 	hns3_set_bit(loop_en, HNS3_MAC_PAD_RX_B, val);
4275 	hns3_set_bit(loop_en, HNS3_MAC_1588_TX_B, 0);
4276 	hns3_set_bit(loop_en, HNS3_MAC_1588_RX_B, 0);
4277 	hns3_set_bit(loop_en, HNS3_MAC_APP_LP_B, 0);
4278 	hns3_set_bit(loop_en, HNS3_MAC_LINE_LP_B, 0);
4279 	hns3_set_bit(loop_en, HNS3_MAC_FCS_TX_B, val);
4280 	hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_B, val);
4281 
4282 	/*
4283 	 * If RTE_ETH_RX_OFFLOAD_KEEP_CRC offload is set, MAC will not strip CRC
4284 	 * when receiving frames. Otherwise, CRC will be stripped.
4285 	 */
4286 	if (hw->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC)
4287 		hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, 0);
4288 	else
4289 		hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, val);
4290 	hns3_set_bit(loop_en, HNS3_MAC_TX_OVERSIZE_TRUNCATE_B, val);
4291 	hns3_set_bit(loop_en, HNS3_MAC_RX_OVERSIZE_TRUNCATE_B, val);
4292 	hns3_set_bit(loop_en, HNS3_MAC_TX_UNDER_MIN_ERR_B, val);
4293 	req->txrx_pad_fcs_loop_en = rte_cpu_to_le_32(loop_en);
4294 
4295 	ret = hns3_cmd_send(hw, &desc, 1);
4296 	if (ret)
4297 		PMD_INIT_LOG(ERR, "mac enable fail, ret =%d.", ret);
4298 
4299 	return ret;
4300 }
4301 
4302 static int
4303 hns3_get_mac_link_status(struct hns3_hw *hw)
4304 {
4305 	struct hns3_link_status_cmd *req;
4306 	struct hns3_cmd_desc desc;
4307 	int link_status;
4308 	int ret;
4309 
4310 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_LINK_STATUS, true);
4311 	ret = hns3_cmd_send(hw, &desc, 1);
4312 	if (ret) {
4313 		hns3_err(hw, "get link status cmd failed %d", ret);
4314 		return RTE_ETH_LINK_DOWN;
4315 	}
4316 
4317 	req = (struct hns3_link_status_cmd *)desc.data;
4318 	link_status = req->status & HNS3_LINK_STATUS_UP_M;
4319 
4320 	return !!link_status;
4321 }
4322 
4323 static bool
4324 hns3_update_link_status(struct hns3_hw *hw)
4325 {
4326 	int state;
4327 
4328 	state = hns3_get_mac_link_status(hw);
4329 	if (state != hw->mac.link_status) {
4330 		hw->mac.link_status = state;
4331 		hns3_warn(hw, "Link status change to %s!", state ? "up" : "down");
4332 		return true;
4333 	}
4334 
4335 	return false;
4336 }
4337 
4338 void
4339 hns3_update_linkstatus_and_event(struct hns3_hw *hw, bool query)
4340 {
4341 	struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
4342 	struct rte_eth_link new_link;
4343 	int ret;
4344 
4345 	if (query)
4346 		hns3_update_port_link_info(dev);
4347 
4348 	memset(&new_link, 0, sizeof(new_link));
4349 	hns3_setup_linkstatus(dev, &new_link);
4350 
4351 	ret = rte_eth_linkstatus_set(dev, &new_link);
4352 	if (ret == 0 && dev->data->dev_conf.intr_conf.lsc != 0)
4353 		hns3_start_report_lse(dev);
4354 }
4355 
4356 static void
4357 hns3_service_handler(void *param)
4358 {
4359 	struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
4360 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4361 	struct hns3_hw *hw = &hns->hw;
4362 
4363 	if (!hns3_is_reset_pending(hns)) {
4364 		hns3_update_linkstatus_and_event(hw, true);
4365 		hns3_update_hw_stats(hw);
4366 	} else {
4367 		hns3_warn(hw, "Cancel the query when reset is pending");
4368 	}
4369 
4370 	rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, eth_dev);
4371 }
4372 
4373 static int
4374 hns3_init_hardware(struct hns3_adapter *hns)
4375 {
4376 	struct hns3_hw *hw = &hns->hw;
4377 	int ret;
4378 
4379 	/*
4380 	 * All queue-related HW operations must be performed after the TCAM
4381 	 * table is configured.
4382 	 */
4383 	ret = hns3_map_tqp(hw);
4384 	if (ret) {
4385 		PMD_INIT_LOG(ERR, "Failed to map tqp: %d", ret);
4386 		return ret;
4387 	}
4388 
4389 	ret = hns3_init_umv_space(hw);
4390 	if (ret) {
4391 		PMD_INIT_LOG(ERR, "Failed to init umv space: %d", ret);
4392 		return ret;
4393 	}
4394 
4395 	ret = hns3_mac_init(hw);
4396 	if (ret) {
4397 		PMD_INIT_LOG(ERR, "Failed to init MAC: %d", ret);
4398 		goto err_mac_init;
4399 	}
4400 
4401 	ret = hns3_init_mgr_tbl(hw);
4402 	if (ret) {
4403 		PMD_INIT_LOG(ERR, "Failed to init manager table: %d", ret);
4404 		goto err_mac_init;
4405 	}
4406 
4407 	ret = hns3_promisc_init(hw);
4408 	if (ret) {
4409 		PMD_INIT_LOG(ERR, "Failed to init promisc: %d",
4410 			     ret);
4411 		goto err_mac_init;
4412 	}
4413 
4414 	ret = hns3_init_vlan_config(hns);
4415 	if (ret) {
4416 		PMD_INIT_LOG(ERR, "Failed to init vlan: %d", ret);
4417 		goto err_mac_init;
4418 	}
4419 
4420 	ret = hns3_dcb_init(hw);
4421 	if (ret) {
4422 		PMD_INIT_LOG(ERR, "Failed to init dcb: %d", ret);
4423 		goto err_mac_init;
4424 	}
4425 
4426 	ret = hns3_init_fd_config(hns);
4427 	if (ret) {
4428 		PMD_INIT_LOG(ERR, "Failed to init flow director: %d", ret);
4429 		goto err_mac_init;
4430 	}
4431 
4432 	ret = hns3_config_tso(hw, HNS3_TSO_MSS_MIN, HNS3_TSO_MSS_MAX);
4433 	if (ret) {
4434 		PMD_INIT_LOG(ERR, "Failed to config tso: %d", ret);
4435 		goto err_mac_init;
4436 	}
4437 
4438 	ret = hns3_config_gro(hw, false);
4439 	if (ret) {
4440 		PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
4441 		goto err_mac_init;
4442 	}
4443 
4444 	/*
4445 	 * In the initialization clearing the all hardware mapping relationship
4446 	 * configurations between queues and interrupt vectors is needed, so
4447 	 * some error caused by the residual configurations, such as the
4448 	 * unexpected interrupt, can be avoid.
4449 	 */
4450 	ret = hns3_init_ring_with_vector(hw);
4451 	if (ret) {
4452 		PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
4453 		goto err_mac_init;
4454 	}
4455 
4456 	return 0;
4457 
4458 err_mac_init:
4459 	hns3_uninit_umv_space(hw);
4460 	return ret;
4461 }
4462 
4463 static int
4464 hns3_clear_hw(struct hns3_hw *hw)
4465 {
4466 	struct hns3_cmd_desc desc;
4467 	int ret;
4468 
4469 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_HW_STATE, false);
4470 
4471 	ret = hns3_cmd_send(hw, &desc, 1);
4472 	if (ret && ret != -EOPNOTSUPP)
4473 		return ret;
4474 
4475 	return 0;
4476 }
4477 
4478 static void
4479 hns3_config_all_msix_error(struct hns3_hw *hw, bool enable)
4480 {
4481 	uint32_t val;
4482 
4483 	/*
4484 	 * The new firmware support report more hardware error types by
4485 	 * msix mode. These errors are defined as RAS errors in hardware
4486 	 * and belong to a different type from the MSI-x errors processed
4487 	 * by the network driver.
4488 	 *
4489 	 * Network driver should open the new error report on initialization.
4490 	 */
4491 	val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
4492 	hns3_set_bit(val, HNS3_VECTOR0_ALL_MSIX_ERR_B, enable ? 1 : 0);
4493 	hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, val);
4494 }
4495 
4496 static uint32_t
4497 hns3_set_firber_default_support_speed(struct hns3_hw *hw)
4498 {
4499 	struct hns3_mac *mac = &hw->mac;
4500 
4501 	switch (mac->link_speed) {
4502 	case RTE_ETH_SPEED_NUM_1G:
4503 		return HNS3_FIBER_LINK_SPEED_1G_BIT;
4504 	case RTE_ETH_SPEED_NUM_10G:
4505 		return HNS3_FIBER_LINK_SPEED_10G_BIT;
4506 	case RTE_ETH_SPEED_NUM_25G:
4507 		return HNS3_FIBER_LINK_SPEED_25G_BIT;
4508 	case RTE_ETH_SPEED_NUM_40G:
4509 		return HNS3_FIBER_LINK_SPEED_40G_BIT;
4510 	case RTE_ETH_SPEED_NUM_50G:
4511 		return HNS3_FIBER_LINK_SPEED_50G_BIT;
4512 	case RTE_ETH_SPEED_NUM_100G:
4513 		return HNS3_FIBER_LINK_SPEED_100G_BIT;
4514 	case RTE_ETH_SPEED_NUM_200G:
4515 		return HNS3_FIBER_LINK_SPEED_200G_BIT;
4516 	default:
4517 		hns3_warn(hw, "invalid speed %u Mbps.", mac->link_speed);
4518 		return 0;
4519 	}
4520 }
4521 
4522 /*
4523  * Validity of supported_speed for fiber and copper media type can be
4524  * guaranteed by the following policy:
4525  * Copper:
4526  *       Although the initialization of the phy in the firmware may not be
4527  *       completed, the firmware can guarantees that the supported_speed is
4528  *       an valid value.
4529  * Firber:
4530  *       If the version of firmware supports the active query way of the
4531  *       HNS3_OPC_GET_SFP_INFO opcode, the supported_speed can be obtained
4532  *       through it. If unsupported, use the SFP's speed as the value of the
4533  *       supported_speed.
4534  */
4535 static int
4536 hns3_get_port_supported_speed(struct rte_eth_dev *eth_dev)
4537 {
4538 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4539 	struct hns3_hw *hw = &hns->hw;
4540 	struct hns3_mac *mac = &hw->mac;
4541 	int ret;
4542 
4543 	ret = hns3_update_link_info(eth_dev);
4544 	if (ret)
4545 		return ret;
4546 
4547 	if (mac->media_type == HNS3_MEDIA_TYPE_FIBER) {
4548 		/*
4549 		 * Some firmware does not support the report of supported_speed,
4550 		 * and only report the effective speed of SFP. In this case, it
4551 		 * is necessary to use the SFP's speed as the supported_speed.
4552 		 */
4553 		if (mac->supported_speed == 0)
4554 			mac->supported_speed =
4555 				hns3_set_firber_default_support_speed(hw);
4556 	}
4557 
4558 	return 0;
4559 }
4560 
4561 static void
4562 hns3_get_fc_autoneg_capability(struct hns3_adapter *hns)
4563 {
4564 	struct hns3_mac *mac = &hns->hw.mac;
4565 
4566 	if (mac->media_type == HNS3_MEDIA_TYPE_COPPER) {
4567 		hns->pf.support_fc_autoneg = true;
4568 		return;
4569 	}
4570 
4571 	/*
4572 	 * Flow control auto-negotiation requires the cooperation of the driver
4573 	 * and firmware. Currently, the optical port does not support flow
4574 	 * control auto-negotiation.
4575 	 */
4576 	hns->pf.support_fc_autoneg = false;
4577 }
4578 
4579 static int
4580 hns3_init_pf(struct rte_eth_dev *eth_dev)
4581 {
4582 	struct rte_device *dev = eth_dev->device;
4583 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
4584 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4585 	struct hns3_hw *hw = &hns->hw;
4586 	int ret;
4587 
4588 	PMD_INIT_FUNC_TRACE();
4589 
4590 	/* Get hardware io base address from pcie BAR2 IO space */
4591 	hw->io_base = pci_dev->mem_resource[2].addr;
4592 
4593 	/* Firmware command queue initialize */
4594 	ret = hns3_cmd_init_queue(hw);
4595 	if (ret) {
4596 		PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
4597 		goto err_cmd_init_queue;
4598 	}
4599 
4600 	hns3_clear_all_event_cause(hw);
4601 
4602 	/* Firmware command initialize */
4603 	ret = hns3_cmd_init(hw);
4604 	if (ret) {
4605 		PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
4606 		goto err_cmd_init;
4607 	}
4608 
4609 	hns3_tx_push_init(eth_dev);
4610 
4611 	/*
4612 	 * To ensure that the hardware environment is clean during
4613 	 * initialization, the driver actively clear the hardware environment
4614 	 * during initialization, including PF and corresponding VFs' vlan, mac,
4615 	 * flow table configurations, etc.
4616 	 */
4617 	ret = hns3_clear_hw(hw);
4618 	if (ret) {
4619 		PMD_INIT_LOG(ERR, "failed to clear hardware: %d", ret);
4620 		goto err_cmd_init;
4621 	}
4622 
4623 	hns3_config_all_msix_error(hw, true);
4624 
4625 	ret = rte_intr_callback_register(pci_dev->intr_handle,
4626 					 hns3_interrupt_handler,
4627 					 eth_dev);
4628 	if (ret) {
4629 		PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
4630 		goto err_intr_callback_register;
4631 	}
4632 
4633 	ret = hns3_ptp_init(hw);
4634 	if (ret)
4635 		goto err_get_config;
4636 
4637 	/* Enable interrupt */
4638 	rte_intr_enable(pci_dev->intr_handle);
4639 	hns3_pf_enable_irq0(hw);
4640 
4641 	/* Get configuration */
4642 	ret = hns3_get_configuration(hw);
4643 	if (ret) {
4644 		PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
4645 		goto err_get_config;
4646 	}
4647 
4648 	ret = hns3_stats_init(hw);
4649 	if (ret)
4650 		goto err_get_config;
4651 
4652 	ret = hns3_init_hardware(hns);
4653 	if (ret) {
4654 		PMD_INIT_LOG(ERR, "Failed to init hardware: %d", ret);
4655 		goto err_init_hw;
4656 	}
4657 
4658 	/* Initialize flow director filter list & hash */
4659 	ret = hns3_fdir_filter_init(hns);
4660 	if (ret) {
4661 		PMD_INIT_LOG(ERR, "Failed to alloc hashmap for fdir: %d", ret);
4662 		goto err_fdir;
4663 	}
4664 
4665 	hns3_rss_set_default_args(hw);
4666 
4667 	ret = hns3_enable_hw_error_intr(hns, true);
4668 	if (ret) {
4669 		PMD_INIT_LOG(ERR, "fail to enable hw error interrupts: %d",
4670 			     ret);
4671 		goto err_enable_intr;
4672 	}
4673 
4674 	ret = hns3_get_port_supported_speed(eth_dev);
4675 	if (ret) {
4676 		PMD_INIT_LOG(ERR, "failed to get speed capabilities supported "
4677 			     "by device, ret = %d.", ret);
4678 		goto err_supported_speed;
4679 	}
4680 
4681 	hns3_get_fc_autoneg_capability(hns);
4682 
4683 	hns3_tm_conf_init(eth_dev);
4684 
4685 	return 0;
4686 
4687 err_supported_speed:
4688 	(void)hns3_enable_hw_error_intr(hns, false);
4689 err_enable_intr:
4690 	hns3_fdir_filter_uninit(hns);
4691 err_fdir:
4692 	hns3_uninit_umv_space(hw);
4693 err_init_hw:
4694 	hns3_stats_uninit(hw);
4695 err_get_config:
4696 	hns3_pf_disable_irq0(hw);
4697 	rte_intr_disable(pci_dev->intr_handle);
4698 	hns3_intr_unregister(pci_dev->intr_handle, hns3_interrupt_handler,
4699 			     eth_dev);
4700 err_intr_callback_register:
4701 err_cmd_init:
4702 	hns3_cmd_uninit(hw);
4703 	hns3_cmd_destroy_queue(hw);
4704 err_cmd_init_queue:
4705 	hw->io_base = NULL;
4706 
4707 	return ret;
4708 }
4709 
4710 static void
4711 hns3_uninit_pf(struct rte_eth_dev *eth_dev)
4712 {
4713 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4714 	struct rte_device *dev = eth_dev->device;
4715 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
4716 	struct hns3_hw *hw = &hns->hw;
4717 
4718 	PMD_INIT_FUNC_TRACE();
4719 
4720 	hns3_tm_conf_uninit(eth_dev);
4721 	hns3_enable_hw_error_intr(hns, false);
4722 	hns3_rss_uninit(hns);
4723 	(void)hns3_config_gro(hw, false);
4724 	hns3_promisc_uninit(hw);
4725 	hns3_flow_uninit(eth_dev);
4726 	hns3_fdir_filter_uninit(hns);
4727 	hns3_uninit_umv_space(hw);
4728 	hns3_stats_uninit(hw);
4729 	hns3_config_mac_tnl_int(hw, false);
4730 	hns3_pf_disable_irq0(hw);
4731 	rte_intr_disable(pci_dev->intr_handle);
4732 	hns3_intr_unregister(pci_dev->intr_handle, hns3_interrupt_handler,
4733 			     eth_dev);
4734 	hns3_config_all_msix_error(hw, false);
4735 	hns3_cmd_uninit(hw);
4736 	hns3_cmd_destroy_queue(hw);
4737 	hw->io_base = NULL;
4738 }
4739 
4740 static uint32_t
4741 hns3_convert_link_speeds2bitmap_copper(uint32_t link_speeds)
4742 {
4743 	uint32_t speed_bit;
4744 
4745 	switch (link_speeds & ~RTE_ETH_LINK_SPEED_FIXED) {
4746 	case RTE_ETH_LINK_SPEED_10M:
4747 		speed_bit = HNS3_PHY_LINK_SPEED_10M_BIT;
4748 		break;
4749 	case RTE_ETH_LINK_SPEED_10M_HD:
4750 		speed_bit = HNS3_PHY_LINK_SPEED_10M_HD_BIT;
4751 		break;
4752 	case RTE_ETH_LINK_SPEED_100M:
4753 		speed_bit = HNS3_PHY_LINK_SPEED_100M_BIT;
4754 		break;
4755 	case RTE_ETH_LINK_SPEED_100M_HD:
4756 		speed_bit = HNS3_PHY_LINK_SPEED_100M_HD_BIT;
4757 		break;
4758 	case RTE_ETH_LINK_SPEED_1G:
4759 		speed_bit = HNS3_PHY_LINK_SPEED_1000M_BIT;
4760 		break;
4761 	default:
4762 		speed_bit = 0;
4763 		break;
4764 	}
4765 
4766 	return speed_bit;
4767 }
4768 
4769 static uint32_t
4770 hns3_convert_link_speeds2bitmap_fiber(uint32_t link_speeds)
4771 {
4772 	uint32_t speed_bit;
4773 
4774 	switch (link_speeds & ~RTE_ETH_LINK_SPEED_FIXED) {
4775 	case RTE_ETH_LINK_SPEED_1G:
4776 		speed_bit = HNS3_FIBER_LINK_SPEED_1G_BIT;
4777 		break;
4778 	case RTE_ETH_LINK_SPEED_10G:
4779 		speed_bit = HNS3_FIBER_LINK_SPEED_10G_BIT;
4780 		break;
4781 	case RTE_ETH_LINK_SPEED_25G:
4782 		speed_bit = HNS3_FIBER_LINK_SPEED_25G_BIT;
4783 		break;
4784 	case RTE_ETH_LINK_SPEED_40G:
4785 		speed_bit = HNS3_FIBER_LINK_SPEED_40G_BIT;
4786 		break;
4787 	case RTE_ETH_LINK_SPEED_50G:
4788 		speed_bit = HNS3_FIBER_LINK_SPEED_50G_BIT;
4789 		break;
4790 	case RTE_ETH_LINK_SPEED_100G:
4791 		speed_bit = HNS3_FIBER_LINK_SPEED_100G_BIT;
4792 		break;
4793 	case RTE_ETH_LINK_SPEED_200G:
4794 		speed_bit = HNS3_FIBER_LINK_SPEED_200G_BIT;
4795 		break;
4796 	default:
4797 		speed_bit = 0;
4798 		break;
4799 	}
4800 
4801 	return speed_bit;
4802 }
4803 
4804 static int
4805 hns3_check_port_speed(struct hns3_hw *hw, uint32_t link_speeds)
4806 {
4807 	struct hns3_mac *mac = &hw->mac;
4808 	uint32_t supported_speed = mac->supported_speed;
4809 	uint32_t speed_bit = 0;
4810 
4811 	if (mac->media_type == HNS3_MEDIA_TYPE_COPPER)
4812 		speed_bit = hns3_convert_link_speeds2bitmap_copper(link_speeds);
4813 	else if (mac->media_type == HNS3_MEDIA_TYPE_FIBER)
4814 		speed_bit = hns3_convert_link_speeds2bitmap_fiber(link_speeds);
4815 
4816 	if (!(speed_bit & supported_speed)) {
4817 		hns3_err(hw, "link_speeds(0x%x) exceeds the supported speed capability or is incorrect.",
4818 			 link_speeds);
4819 		return -EINVAL;
4820 	}
4821 
4822 	return 0;
4823 }
4824 
4825 static uint32_t
4826 hns3_get_link_speed(uint32_t link_speeds)
4827 {
4828 	uint32_t speed = RTE_ETH_SPEED_NUM_NONE;
4829 
4830 	if (link_speeds & RTE_ETH_LINK_SPEED_10M ||
4831 	    link_speeds & RTE_ETH_LINK_SPEED_10M_HD)
4832 		speed = RTE_ETH_SPEED_NUM_10M;
4833 	if (link_speeds & RTE_ETH_LINK_SPEED_100M ||
4834 	    link_speeds & RTE_ETH_LINK_SPEED_100M_HD)
4835 		speed = RTE_ETH_SPEED_NUM_100M;
4836 	if (link_speeds & RTE_ETH_LINK_SPEED_1G)
4837 		speed = RTE_ETH_SPEED_NUM_1G;
4838 	if (link_speeds & RTE_ETH_LINK_SPEED_10G)
4839 		speed = RTE_ETH_SPEED_NUM_10G;
4840 	if (link_speeds & RTE_ETH_LINK_SPEED_25G)
4841 		speed = RTE_ETH_SPEED_NUM_25G;
4842 	if (link_speeds & RTE_ETH_LINK_SPEED_40G)
4843 		speed = RTE_ETH_SPEED_NUM_40G;
4844 	if (link_speeds & RTE_ETH_LINK_SPEED_50G)
4845 		speed = RTE_ETH_SPEED_NUM_50G;
4846 	if (link_speeds & RTE_ETH_LINK_SPEED_100G)
4847 		speed = RTE_ETH_SPEED_NUM_100G;
4848 	if (link_speeds & RTE_ETH_LINK_SPEED_200G)
4849 		speed = RTE_ETH_SPEED_NUM_200G;
4850 
4851 	return speed;
4852 }
4853 
4854 static uint8_t
4855 hns3_get_link_duplex(uint32_t link_speeds)
4856 {
4857 	if ((link_speeds & RTE_ETH_LINK_SPEED_10M_HD) ||
4858 	    (link_speeds & RTE_ETH_LINK_SPEED_100M_HD))
4859 		return RTE_ETH_LINK_HALF_DUPLEX;
4860 	else
4861 		return RTE_ETH_LINK_FULL_DUPLEX;
4862 }
4863 
4864 static int
4865 hns3_set_copper_port_link_speed(struct hns3_hw *hw,
4866 				struct hns3_set_link_speed_cfg *cfg)
4867 {
4868 	struct hns3_cmd_desc desc[HNS3_PHY_PARAM_CFG_BD_NUM];
4869 	struct hns3_phy_params_bd0_cmd *req;
4870 	uint16_t i;
4871 
4872 	for (i = 0; i < HNS3_PHY_PARAM_CFG_BD_NUM - 1; i++) {
4873 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG,
4874 					  false);
4875 		desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
4876 	}
4877 	hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG, false);
4878 	req = (struct hns3_phy_params_bd0_cmd *)desc[0].data;
4879 	req->autoneg = cfg->autoneg;
4880 
4881 	/*
4882 	 * The full speed capability is used to negotiate when
4883 	 * auto-negotiation is enabled.
4884 	 */
4885 	if (cfg->autoneg) {
4886 		req->advertising = HNS3_PHY_LINK_SPEED_10M_BIT |
4887 				    HNS3_PHY_LINK_SPEED_10M_HD_BIT |
4888 				    HNS3_PHY_LINK_SPEED_100M_BIT |
4889 				    HNS3_PHY_LINK_SPEED_100M_HD_BIT |
4890 				    HNS3_PHY_LINK_SPEED_1000M_BIT;
4891 	} else {
4892 		req->speed = cfg->speed;
4893 		req->duplex = cfg->duplex;
4894 	}
4895 
4896 	return hns3_cmd_send(hw, desc, HNS3_PHY_PARAM_CFG_BD_NUM);
4897 }
4898 
4899 static int
4900 hns3_set_autoneg(struct hns3_hw *hw, bool enable)
4901 {
4902 	struct hns3_config_auto_neg_cmd *req;
4903 	struct hns3_cmd_desc desc;
4904 	uint32_t flag = 0;
4905 	int ret;
4906 
4907 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_AN_MODE, false);
4908 
4909 	req = (struct hns3_config_auto_neg_cmd *)desc.data;
4910 	if (enable)
4911 		hns3_set_bit(flag, HNS3_MAC_CFG_AN_EN_B, 1);
4912 	req->cfg_an_cmd_flag = rte_cpu_to_le_32(flag);
4913 
4914 	ret = hns3_cmd_send(hw, &desc, 1);
4915 	if (ret)
4916 		hns3_err(hw, "autoneg set cmd failed, ret = %d.", ret);
4917 
4918 	return ret;
4919 }
4920 
4921 static int
4922 hns3_set_fiber_port_link_speed(struct hns3_hw *hw,
4923 			       struct hns3_set_link_speed_cfg *cfg)
4924 {
4925 	int ret;
4926 
4927 	if (hw->mac.support_autoneg) {
4928 		ret = hns3_set_autoneg(hw, cfg->autoneg);
4929 		if (ret) {
4930 			hns3_err(hw, "failed to configure auto-negotiation.");
4931 			return ret;
4932 		}
4933 
4934 		/*
4935 		 * To enable auto-negotiation, we only need to open the switch
4936 		 * of auto-negotiation, then firmware sets all speed
4937 		 * capabilities.
4938 		 */
4939 		if (cfg->autoneg)
4940 			return 0;
4941 	}
4942 
4943 	/*
4944 	 * Some hardware doesn't support auto-negotiation, but users may not
4945 	 * configure link_speeds (default 0), which means auto-negotiation.
4946 	 * In this case, a warning message need to be printed, instead of
4947 	 * an error.
4948 	 */
4949 	if (cfg->autoneg) {
4950 		hns3_warn(hw, "auto-negotiation is not supported, use default fixed speed!");
4951 		return 0;
4952 	}
4953 
4954 	return hns3_cfg_mac_speed_dup(hw, cfg->speed, cfg->duplex);
4955 }
4956 
4957 static int
4958 hns3_set_port_link_speed(struct hns3_hw *hw,
4959 			 struct hns3_set_link_speed_cfg *cfg)
4960 {
4961 	int ret;
4962 
4963 	if (hw->mac.media_type == HNS3_MEDIA_TYPE_COPPER) {
4964 #if defined(RTE_HNS3_ONLY_1630_FPGA)
4965 		struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw);
4966 		if (pf->is_tmp_phy)
4967 			return 0;
4968 #endif
4969 
4970 		ret = hns3_set_copper_port_link_speed(hw, cfg);
4971 		if (ret) {
4972 			hns3_err(hw, "failed to set copper port link speed,"
4973 				 "ret = %d.", ret);
4974 			return ret;
4975 		}
4976 	} else if (hw->mac.media_type == HNS3_MEDIA_TYPE_FIBER) {
4977 		ret = hns3_set_fiber_port_link_speed(hw, cfg);
4978 		if (ret) {
4979 			hns3_err(hw, "failed to set fiber port link speed,"
4980 				 "ret = %d.", ret);
4981 			return ret;
4982 		}
4983 	}
4984 
4985 	return 0;
4986 }
4987 
4988 static int
4989 hns3_apply_link_speed(struct hns3_hw *hw)
4990 {
4991 	struct rte_eth_conf *conf = &hw->data->dev_conf;
4992 	struct hns3_set_link_speed_cfg cfg;
4993 
4994 	memset(&cfg, 0, sizeof(struct hns3_set_link_speed_cfg));
4995 	cfg.autoneg = (conf->link_speeds == RTE_ETH_LINK_SPEED_AUTONEG) ?
4996 			RTE_ETH_LINK_AUTONEG : RTE_ETH_LINK_FIXED;
4997 	if (cfg.autoneg != RTE_ETH_LINK_AUTONEG) {
4998 		cfg.speed = hns3_get_link_speed(conf->link_speeds);
4999 		cfg.duplex = hns3_get_link_duplex(conf->link_speeds);
5000 	}
5001 
5002 	return hns3_set_port_link_speed(hw, &cfg);
5003 }
5004 
5005 static int
5006 hns3_do_start(struct hns3_adapter *hns, bool reset_queue)
5007 {
5008 	struct hns3_hw *hw = &hns->hw;
5009 	bool link_en;
5010 	int ret;
5011 
5012 	ret = hns3_update_queue_map_configure(hns);
5013 	if (ret) {
5014 		hns3_err(hw, "failed to update queue mapping configuration, ret = %d",
5015 			 ret);
5016 		return ret;
5017 	}
5018 
5019 	/* Note: hns3_tm_conf_update must be called after configuring DCB. */
5020 	ret = hns3_tm_conf_update(hw);
5021 	if (ret) {
5022 		PMD_INIT_LOG(ERR, "failed to update tm conf, ret = %d.", ret);
5023 		return ret;
5024 	}
5025 
5026 	hns3_enable_rxd_adv_layout(hw);
5027 
5028 	ret = hns3_init_queues(hns, reset_queue);
5029 	if (ret) {
5030 		PMD_INIT_LOG(ERR, "failed to init queues, ret = %d.", ret);
5031 		return ret;
5032 	}
5033 
5034 	link_en = hw->set_link_down ? false : true;
5035 	ret = hns3_cfg_mac_mode(hw, link_en);
5036 	if (ret) {
5037 		PMD_INIT_LOG(ERR, "failed to enable MAC, ret = %d", ret);
5038 		goto err_config_mac_mode;
5039 	}
5040 
5041 	ret = hns3_apply_link_speed(hw);
5042 	if (ret)
5043 		goto err_set_link_speed;
5044 
5045 	return 0;
5046 
5047 err_set_link_speed:
5048 	(void)hns3_cfg_mac_mode(hw, false);
5049 
5050 err_config_mac_mode:
5051 	hns3_dev_release_mbufs(hns);
5052 	/*
5053 	 * Here is exception handling, hns3_reset_all_tqps will have the
5054 	 * corresponding error message if it is handled incorrectly, so it is
5055 	 * not necessary to check hns3_reset_all_tqps return value, here keep
5056 	 * ret as the error code causing the exception.
5057 	 */
5058 	(void)hns3_reset_all_tqps(hns);
5059 	return ret;
5060 }
5061 
5062 static void
5063 hns3_restore_filter(struct rte_eth_dev *dev)
5064 {
5065 	hns3_restore_rss_filter(dev);
5066 }
5067 
5068 static int
5069 hns3_dev_start(struct rte_eth_dev *dev)
5070 {
5071 	struct hns3_adapter *hns = dev->data->dev_private;
5072 	struct hns3_hw *hw = &hns->hw;
5073 	bool old_state = hw->set_link_down;
5074 	int ret;
5075 
5076 	PMD_INIT_FUNC_TRACE();
5077 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED))
5078 		return -EBUSY;
5079 
5080 	rte_spinlock_lock(&hw->lock);
5081 	hw->adapter_state = HNS3_NIC_STARTING;
5082 
5083 	/*
5084 	 * If the dev_set_link_down() API has been called, the "set_link_down"
5085 	 * flag can be cleared by dev_start() API. In addition, the flag should
5086 	 * also be cleared before calling hns3_do_start() so that MAC can be
5087 	 * enabled in dev_start stage.
5088 	 */
5089 	hw->set_link_down = false;
5090 	ret = hns3_do_start(hns, true);
5091 	if (ret)
5092 		goto do_start_fail;
5093 
5094 	ret = hns3_map_rx_interrupt(dev);
5095 	if (ret)
5096 		goto map_rx_inter_err;
5097 
5098 	/*
5099 	 * There are three register used to control the status of a TQP
5100 	 * (contains a pair of Tx queue and Rx queue) in the new version network
5101 	 * engine. One is used to control the enabling of Tx queue, the other is
5102 	 * used to control the enabling of Rx queue, and the last is the master
5103 	 * switch used to control the enabling of the tqp. The Tx register and
5104 	 * TQP register must be enabled at the same time to enable a Tx queue.
5105 	 * The same applies to the Rx queue. For the older network engine, this
5106 	 * function only refresh the enabled flag, and it is used to update the
5107 	 * status of queue in the dpdk framework.
5108 	 */
5109 	ret = hns3_start_all_txqs(dev);
5110 	if (ret)
5111 		goto map_rx_inter_err;
5112 
5113 	ret = hns3_start_all_rxqs(dev);
5114 	if (ret)
5115 		goto start_all_rxqs_fail;
5116 
5117 	hw->adapter_state = HNS3_NIC_STARTED;
5118 	rte_spinlock_unlock(&hw->lock);
5119 
5120 	hns3_rx_scattered_calc(dev);
5121 	hns3_set_rxtx_function(dev);
5122 	hns3_mp_req_start_rxtx(dev);
5123 
5124 	hns3_restore_filter(dev);
5125 
5126 	/* Enable interrupt of all rx queues before enabling queues */
5127 	hns3_dev_all_rx_queue_intr_enable(hw, true);
5128 
5129 	/*
5130 	 * After finished the initialization, enable tqps to receive/transmit
5131 	 * packets and refresh all queue status.
5132 	 */
5133 	hns3_start_tqps(hw);
5134 
5135 	hns3_tm_dev_start_proc(hw);
5136 
5137 	if (dev->data->dev_conf.intr_conf.lsc != 0)
5138 		hns3_dev_link_update(dev, 0);
5139 	rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, dev);
5140 
5141 	hns3_info(hw, "hns3 dev start successful!");
5142 
5143 	return 0;
5144 
5145 start_all_rxqs_fail:
5146 	hns3_stop_all_txqs(dev);
5147 map_rx_inter_err:
5148 	(void)hns3_do_stop(hns);
5149 do_start_fail:
5150 	hw->set_link_down = old_state;
5151 	hw->adapter_state = HNS3_NIC_CONFIGURED;
5152 	rte_spinlock_unlock(&hw->lock);
5153 
5154 	return ret;
5155 }
5156 
5157 static int
5158 hns3_do_stop(struct hns3_adapter *hns)
5159 {
5160 	struct hns3_hw *hw = &hns->hw;
5161 	int ret;
5162 
5163 	/*
5164 	 * The "hns3_do_stop" function will also be called by .stop_service to
5165 	 * prepare reset. At the time of global or IMP reset, the command cannot
5166 	 * be sent to stop the tx/rx queues. The mbuf in Tx/Rx queues may be
5167 	 * accessed during the reset process. So the mbuf can not be released
5168 	 * during reset and is required to be released after the reset is
5169 	 * completed.
5170 	 */
5171 	if (__atomic_load_n(&hw->reset.resetting,  __ATOMIC_RELAXED) == 0)
5172 		hns3_dev_release_mbufs(hns);
5173 
5174 	ret = hns3_cfg_mac_mode(hw, false);
5175 	if (ret)
5176 		return ret;
5177 	hw->mac.link_status = RTE_ETH_LINK_DOWN;
5178 
5179 	if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0) {
5180 		hns3_configure_all_mac_addr(hns, true);
5181 		ret = hns3_reset_all_tqps(hns);
5182 		if (ret) {
5183 			hns3_err(hw, "failed to reset all queues ret = %d.",
5184 				 ret);
5185 			return ret;
5186 		}
5187 	}
5188 
5189 	return 0;
5190 }
5191 
5192 static int
5193 hns3_dev_stop(struct rte_eth_dev *dev)
5194 {
5195 	struct hns3_adapter *hns = dev->data->dev_private;
5196 	struct hns3_hw *hw = &hns->hw;
5197 
5198 	PMD_INIT_FUNC_TRACE();
5199 	dev->data->dev_started = 0;
5200 
5201 	hw->adapter_state = HNS3_NIC_STOPPING;
5202 	hns3_set_rxtx_function(dev);
5203 	rte_wmb();
5204 	/* Disable datapath on secondary process. */
5205 	hns3_mp_req_stop_rxtx(dev);
5206 	/* Prevent crashes when queues are still in use. */
5207 	rte_delay_ms(hw->cfg_max_queues);
5208 
5209 	rte_spinlock_lock(&hw->lock);
5210 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
5211 		hns3_tm_dev_stop_proc(hw);
5212 		hns3_config_mac_tnl_int(hw, false);
5213 		hns3_stop_tqps(hw);
5214 		hns3_do_stop(hns);
5215 		hns3_unmap_rx_interrupt(dev);
5216 		hw->adapter_state = HNS3_NIC_CONFIGURED;
5217 	}
5218 	hns3_rx_scattered_reset(dev);
5219 	rte_eal_alarm_cancel(hns3_service_handler, dev);
5220 	hns3_stop_report_lse(dev);
5221 	rte_spinlock_unlock(&hw->lock);
5222 
5223 	return 0;
5224 }
5225 
5226 static int
5227 hns3_dev_close(struct rte_eth_dev *eth_dev)
5228 {
5229 	struct hns3_adapter *hns = eth_dev->data->dev_private;
5230 	struct hns3_hw *hw = &hns->hw;
5231 	int ret = 0;
5232 
5233 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
5234 		hns3_mp_uninit(eth_dev);
5235 		return 0;
5236 	}
5237 
5238 	if (hw->adapter_state == HNS3_NIC_STARTED)
5239 		ret = hns3_dev_stop(eth_dev);
5240 
5241 	hw->adapter_state = HNS3_NIC_CLOSING;
5242 	hns3_reset_abort(hns);
5243 	hw->adapter_state = HNS3_NIC_CLOSED;
5244 
5245 	hns3_configure_all_mc_mac_addr(hns, true);
5246 	hns3_remove_all_vlan_table(hns);
5247 	hns3_vlan_txvlan_cfg(hns, HNS3_PORT_BASE_VLAN_DISABLE, 0);
5248 	hns3_uninit_pf(eth_dev);
5249 	hns3_free_all_queues(eth_dev);
5250 	rte_free(hw->reset.wait_data);
5251 	hns3_mp_uninit(eth_dev);
5252 	hns3_warn(hw, "Close port %u finished", hw->data->port_id);
5253 
5254 	return ret;
5255 }
5256 
5257 static void
5258 hns3_get_autoneg_rxtx_pause_copper(struct hns3_hw *hw, bool *rx_pause,
5259 				   bool *tx_pause)
5260 {
5261 	struct hns3_mac *mac = &hw->mac;
5262 	uint32_t advertising = mac->advertising;
5263 	uint32_t lp_advertising = mac->lp_advertising;
5264 	*rx_pause = false;
5265 	*tx_pause = false;
5266 
5267 	if (advertising & lp_advertising & HNS3_PHY_LINK_MODE_PAUSE_BIT) {
5268 		*rx_pause = true;
5269 		*tx_pause = true;
5270 	} else if (advertising & lp_advertising &
5271 		   HNS3_PHY_LINK_MODE_ASYM_PAUSE_BIT) {
5272 		if (advertising & HNS3_PHY_LINK_MODE_PAUSE_BIT)
5273 			*rx_pause = true;
5274 		else if (lp_advertising & HNS3_PHY_LINK_MODE_PAUSE_BIT)
5275 			*tx_pause = true;
5276 	}
5277 }
5278 
5279 static enum hns3_fc_mode
5280 hns3_get_autoneg_fc_mode(struct hns3_hw *hw)
5281 {
5282 	enum hns3_fc_mode current_mode;
5283 	bool rx_pause = false;
5284 	bool tx_pause = false;
5285 
5286 	switch (hw->mac.media_type) {
5287 	case HNS3_MEDIA_TYPE_COPPER:
5288 		hns3_get_autoneg_rxtx_pause_copper(hw, &rx_pause, &tx_pause);
5289 		break;
5290 
5291 	/*
5292 	 * Flow control auto-negotiation is not supported for fiber and
5293 	 * backplane media type.
5294 	 */
5295 	case HNS3_MEDIA_TYPE_FIBER:
5296 	case HNS3_MEDIA_TYPE_BACKPLANE:
5297 		hns3_err(hw, "autoneg FC mode can't be obtained, but flow control auto-negotiation is enabled.");
5298 		current_mode = hw->requested_fc_mode;
5299 		goto out;
5300 	default:
5301 		hns3_err(hw, "autoneg FC mode can't be obtained for unknown media type(%u).",
5302 			 hw->mac.media_type);
5303 		current_mode = HNS3_FC_NONE;
5304 		goto out;
5305 	}
5306 
5307 	if (rx_pause && tx_pause)
5308 		current_mode = HNS3_FC_FULL;
5309 	else if (rx_pause)
5310 		current_mode = HNS3_FC_RX_PAUSE;
5311 	else if (tx_pause)
5312 		current_mode = HNS3_FC_TX_PAUSE;
5313 	else
5314 		current_mode = HNS3_FC_NONE;
5315 
5316 out:
5317 	return current_mode;
5318 }
5319 
5320 static enum hns3_fc_mode
5321 hns3_get_current_fc_mode(struct rte_eth_dev *dev)
5322 {
5323 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5324 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5325 	struct hns3_mac *mac = &hw->mac;
5326 
5327 	/*
5328 	 * When the flow control mode is obtained, the device may not complete
5329 	 * auto-negotiation. It is necessary to wait for link establishment.
5330 	 */
5331 	(void)hns3_dev_link_update(dev, 1);
5332 
5333 	/*
5334 	 * If the link auto-negotiation of the nic is disabled, or the flow
5335 	 * control auto-negotiation is not supported, the forced flow control
5336 	 * mode is used.
5337 	 */
5338 	if (mac->link_autoneg == 0 || !pf->support_fc_autoneg)
5339 		return hw->requested_fc_mode;
5340 
5341 	return hns3_get_autoneg_fc_mode(hw);
5342 }
5343 
5344 int
5345 hns3_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
5346 {
5347 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5348 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5349 	enum hns3_fc_mode current_mode;
5350 
5351 	current_mode = hns3_get_current_fc_mode(dev);
5352 	switch (current_mode) {
5353 	case HNS3_FC_FULL:
5354 		fc_conf->mode = RTE_ETH_FC_FULL;
5355 		break;
5356 	case HNS3_FC_TX_PAUSE:
5357 		fc_conf->mode = RTE_ETH_FC_TX_PAUSE;
5358 		break;
5359 	case HNS3_FC_RX_PAUSE:
5360 		fc_conf->mode = RTE_ETH_FC_RX_PAUSE;
5361 		break;
5362 	case HNS3_FC_NONE:
5363 	default:
5364 		fc_conf->mode = RTE_ETH_FC_NONE;
5365 		break;
5366 	}
5367 
5368 	fc_conf->pause_time = pf->pause_time;
5369 	fc_conf->autoneg = pf->support_fc_autoneg ? hw->mac.link_autoneg : 0;
5370 
5371 	return 0;
5372 }
5373 
5374 static int
5375 hns3_check_fc_autoneg_valid(struct hns3_hw *hw, uint8_t autoneg)
5376 {
5377 	struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw);
5378 
5379 	if (!pf->support_fc_autoneg) {
5380 		if (autoneg != 0) {
5381 			hns3_err(hw, "unsupported fc auto-negotiation setting.");
5382 			return -EOPNOTSUPP;
5383 		}
5384 
5385 		/*
5386 		 * Flow control auto-negotiation of the NIC is not supported,
5387 		 * but other auto-negotiation features may be supported.
5388 		 */
5389 		if (autoneg != hw->mac.link_autoneg) {
5390 			hns3_err(hw, "please use 'link_speeds' in struct rte_eth_conf to disable autoneg!");
5391 			return -EOPNOTSUPP;
5392 		}
5393 
5394 		return 0;
5395 	}
5396 
5397 	/*
5398 	 * If flow control auto-negotiation of the NIC is supported, all
5399 	 * auto-negotiation features are supported.
5400 	 */
5401 	if (autoneg != hw->mac.link_autoneg) {
5402 		hns3_err(hw, "please use 'link_speeds' in struct rte_eth_conf to change autoneg!");
5403 		return -EOPNOTSUPP;
5404 	}
5405 
5406 	return 0;
5407 }
5408 
5409 static int
5410 hns3_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
5411 {
5412 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5413 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5414 	int ret;
5415 
5416 	if (fc_conf->high_water || fc_conf->low_water ||
5417 	    fc_conf->send_xon || fc_conf->mac_ctrl_frame_fwd) {
5418 		hns3_err(hw, "Unsupported flow control settings specified, "
5419 			 "high_water(%u), low_water(%u), send_xon(%u) and "
5420 			 "mac_ctrl_frame_fwd(%u) must be set to '0'",
5421 			 fc_conf->high_water, fc_conf->low_water,
5422 			 fc_conf->send_xon, fc_conf->mac_ctrl_frame_fwd);
5423 		return -EINVAL;
5424 	}
5425 
5426 	ret = hns3_check_fc_autoneg_valid(hw, fc_conf->autoneg);
5427 	if (ret)
5428 		return ret;
5429 
5430 	if (!fc_conf->pause_time) {
5431 		hns3_err(hw, "Invalid pause time %u setting.",
5432 			 fc_conf->pause_time);
5433 		return -EINVAL;
5434 	}
5435 
5436 	if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
5437 	    hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE)) {
5438 		hns3_err(hw, "PFC is enabled. Cannot set MAC pause. "
5439 			 "current_fc_status = %d", hw->current_fc_status);
5440 		return -EOPNOTSUPP;
5441 	}
5442 
5443 	if (hw->num_tc > 1 && !pf->support_multi_tc_pause) {
5444 		hns3_err(hw, "in multi-TC scenarios, MAC pause is not supported.");
5445 		return -EOPNOTSUPP;
5446 	}
5447 
5448 	rte_spinlock_lock(&hw->lock);
5449 	ret = hns3_fc_enable(dev, fc_conf);
5450 	rte_spinlock_unlock(&hw->lock);
5451 
5452 	return ret;
5453 }
5454 
5455 static int
5456 hns3_priority_flow_ctrl_set(struct rte_eth_dev *dev,
5457 			    struct rte_eth_pfc_conf *pfc_conf)
5458 {
5459 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5460 	int ret;
5461 
5462 	if (!hns3_dev_get_support(hw, DCB)) {
5463 		hns3_err(hw, "This port does not support dcb configurations.");
5464 		return -EOPNOTSUPP;
5465 	}
5466 
5467 	if (pfc_conf->fc.high_water || pfc_conf->fc.low_water ||
5468 	    pfc_conf->fc.send_xon || pfc_conf->fc.mac_ctrl_frame_fwd) {
5469 		hns3_err(hw, "Unsupported flow control settings specified, "
5470 			 "high_water(%u), low_water(%u), send_xon(%u) and "
5471 			 "mac_ctrl_frame_fwd(%u) must be set to '0'",
5472 			 pfc_conf->fc.high_water, pfc_conf->fc.low_water,
5473 			 pfc_conf->fc.send_xon,
5474 			 pfc_conf->fc.mac_ctrl_frame_fwd);
5475 		return -EINVAL;
5476 	}
5477 	if (pfc_conf->fc.autoneg) {
5478 		hns3_err(hw, "Unsupported fc auto-negotiation setting.");
5479 		return -EINVAL;
5480 	}
5481 	if (pfc_conf->fc.pause_time == 0) {
5482 		hns3_err(hw, "Invalid pause time %u setting.",
5483 			 pfc_conf->fc.pause_time);
5484 		return -EINVAL;
5485 	}
5486 
5487 	if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
5488 	    hw->current_fc_status == HNS3_FC_STATUS_PFC)) {
5489 		hns3_err(hw, "MAC pause is enabled. Cannot set PFC."
5490 			     "current_fc_status = %d", hw->current_fc_status);
5491 		return -EOPNOTSUPP;
5492 	}
5493 
5494 	rte_spinlock_lock(&hw->lock);
5495 	ret = hns3_dcb_pfc_enable(dev, pfc_conf);
5496 	rte_spinlock_unlock(&hw->lock);
5497 
5498 	return ret;
5499 }
5500 
5501 static int
5502 hns3_get_dcb_info(struct rte_eth_dev *dev, struct rte_eth_dcb_info *dcb_info)
5503 {
5504 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5505 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5506 	enum rte_eth_rx_mq_mode mq_mode = dev->data->dev_conf.rxmode.mq_mode;
5507 	int i;
5508 
5509 	rte_spinlock_lock(&hw->lock);
5510 	if ((uint32_t)mq_mode & RTE_ETH_MQ_RX_DCB_FLAG)
5511 		dcb_info->nb_tcs = pf->local_max_tc;
5512 	else
5513 		dcb_info->nb_tcs = 1;
5514 
5515 	for (i = 0; i < HNS3_MAX_USER_PRIO; i++)
5516 		dcb_info->prio_tc[i] = hw->dcb_info.prio_tc[i];
5517 	for (i = 0; i < dcb_info->nb_tcs; i++)
5518 		dcb_info->tc_bws[i] = hw->dcb_info.pg_info[0].tc_dwrr[i];
5519 
5520 	for (i = 0; i < hw->num_tc; i++) {
5521 		dcb_info->tc_queue.tc_rxq[0][i].base = hw->alloc_rss_size * i;
5522 		dcb_info->tc_queue.tc_txq[0][i].base =
5523 						hw->tc_queue[i].tqp_offset;
5524 		dcb_info->tc_queue.tc_rxq[0][i].nb_queue = hw->alloc_rss_size;
5525 		dcb_info->tc_queue.tc_txq[0][i].nb_queue =
5526 						hw->tc_queue[i].tqp_count;
5527 	}
5528 	rte_spinlock_unlock(&hw->lock);
5529 
5530 	return 0;
5531 }
5532 
5533 static int
5534 hns3_reinit_dev(struct hns3_adapter *hns)
5535 {
5536 	struct hns3_hw *hw = &hns->hw;
5537 	int ret;
5538 
5539 	ret = hns3_cmd_init(hw);
5540 	if (ret) {
5541 		hns3_err(hw, "Failed to init cmd: %d", ret);
5542 		return ret;
5543 	}
5544 
5545 	ret = hns3_init_hardware(hns);
5546 	if (ret) {
5547 		hns3_err(hw, "Failed to init hardware: %d", ret);
5548 		return ret;
5549 	}
5550 
5551 	ret = hns3_reset_all_tqps(hns);
5552 	if (ret) {
5553 		hns3_err(hw, "Failed to reset all queues: %d", ret);
5554 		return ret;
5555 	}
5556 
5557 	ret = hns3_enable_hw_error_intr(hns, true);
5558 	if (ret) {
5559 		hns3_err(hw, "fail to enable hw error interrupts: %d",
5560 			     ret);
5561 		return ret;
5562 	}
5563 	hns3_info(hw, "Reset done, driver initialization finished.");
5564 
5565 	return 0;
5566 }
5567 
5568 static bool
5569 is_pf_reset_done(struct hns3_hw *hw)
5570 {
5571 	uint32_t val, reg, reg_bit;
5572 
5573 	switch (hw->reset.level) {
5574 	case HNS3_IMP_RESET:
5575 		reg = HNS3_GLOBAL_RESET_REG;
5576 		reg_bit = HNS3_IMP_RESET_BIT;
5577 		break;
5578 	case HNS3_GLOBAL_RESET:
5579 		reg = HNS3_GLOBAL_RESET_REG;
5580 		reg_bit = HNS3_GLOBAL_RESET_BIT;
5581 		break;
5582 	case HNS3_FUNC_RESET:
5583 		reg = HNS3_FUN_RST_ING;
5584 		reg_bit = HNS3_FUN_RST_ING_B;
5585 		break;
5586 	case HNS3_FLR_RESET:
5587 	default:
5588 		hns3_err(hw, "Wait for unsupported reset level: %d",
5589 			 hw->reset.level);
5590 		return true;
5591 	}
5592 	val = hns3_read_dev(hw, reg);
5593 	if (hns3_get_bit(val, reg_bit))
5594 		return false;
5595 	else
5596 		return true;
5597 }
5598 
5599 bool
5600 hns3_is_reset_pending(struct hns3_adapter *hns)
5601 {
5602 	struct hns3_hw *hw = &hns->hw;
5603 	enum hns3_reset_level reset;
5604 
5605 	hns3_check_event_cause(hns, NULL);
5606 	reset = hns3_get_reset_level(hns, &hw->reset.pending);
5607 	if (reset != HNS3_NONE_RESET && hw->reset.level != HNS3_NONE_RESET &&
5608 	    hw->reset.level < reset) {
5609 		hns3_warn(hw, "High level reset %d is pending", reset);
5610 		return true;
5611 	}
5612 	reset = hns3_get_reset_level(hns, &hw->reset.request);
5613 	if (reset != HNS3_NONE_RESET && hw->reset.level != HNS3_NONE_RESET &&
5614 	    hw->reset.level < reset) {
5615 		hns3_warn(hw, "High level reset %d is request", reset);
5616 		return true;
5617 	}
5618 	return false;
5619 }
5620 
5621 static int
5622 hns3_wait_hardware_ready(struct hns3_adapter *hns)
5623 {
5624 	struct hns3_hw *hw = &hns->hw;
5625 	struct hns3_wait_data *wait_data = hw->reset.wait_data;
5626 	struct timeval tv;
5627 
5628 	if (wait_data->result == HNS3_WAIT_SUCCESS)
5629 		return 0;
5630 	else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
5631 		hns3_clock_gettime(&tv);
5632 		hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
5633 			  tv.tv_sec, tv.tv_usec);
5634 		return -ETIME;
5635 	} else if (wait_data->result == HNS3_WAIT_REQUEST)
5636 		return -EAGAIN;
5637 
5638 	wait_data->hns = hns;
5639 	wait_data->check_completion = is_pf_reset_done;
5640 	wait_data->end_ms = (uint64_t)HNS3_RESET_WAIT_CNT *
5641 				HNS3_RESET_WAIT_MS + hns3_clock_gettime_ms();
5642 	wait_data->interval = HNS3_RESET_WAIT_MS * USEC_PER_MSEC;
5643 	wait_data->count = HNS3_RESET_WAIT_CNT;
5644 	wait_data->result = HNS3_WAIT_REQUEST;
5645 	rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
5646 	return -EAGAIN;
5647 }
5648 
5649 static int
5650 hns3_func_reset_cmd(struct hns3_hw *hw, int func_id)
5651 {
5652 	struct hns3_cmd_desc desc;
5653 	struct hns3_reset_cmd *req = (struct hns3_reset_cmd *)desc.data;
5654 
5655 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_RST_TRIGGER, false);
5656 	hns3_set_bit(req->mac_func_reset, HNS3_CFG_RESET_FUNC_B, 1);
5657 	req->fun_reset_vfid = func_id;
5658 
5659 	return hns3_cmd_send(hw, &desc, 1);
5660 }
5661 
5662 static int
5663 hns3_imp_reset_cmd(struct hns3_hw *hw)
5664 {
5665 	struct hns3_cmd_desc desc;
5666 
5667 	hns3_cmd_setup_basic_desc(&desc, 0xFFFE, false);
5668 	desc.data[0] = 0xeedd;
5669 
5670 	return hns3_cmd_send(hw, &desc, 1);
5671 }
5672 
5673 static void
5674 hns3_msix_process(struct hns3_adapter *hns, enum hns3_reset_level reset_level)
5675 {
5676 	struct hns3_hw *hw = &hns->hw;
5677 	struct timeval tv;
5678 	uint32_t val;
5679 
5680 	hns3_clock_gettime(&tv);
5681 	if (hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG) ||
5682 	    hns3_read_dev(hw, HNS3_FUN_RST_ING)) {
5683 		hns3_warn(hw, "Don't process msix during resetting time=%ld.%.6ld",
5684 			  tv.tv_sec, tv.tv_usec);
5685 		return;
5686 	}
5687 
5688 	switch (reset_level) {
5689 	case HNS3_IMP_RESET:
5690 		hns3_imp_reset_cmd(hw);
5691 		hns3_warn(hw, "IMP Reset requested time=%ld.%.6ld",
5692 			  tv.tv_sec, tv.tv_usec);
5693 		break;
5694 	case HNS3_GLOBAL_RESET:
5695 		val = hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG);
5696 		hns3_set_bit(val, HNS3_GLOBAL_RESET_BIT, 1);
5697 		hns3_write_dev(hw, HNS3_GLOBAL_RESET_REG, val);
5698 		hns3_warn(hw, "Global Reset requested time=%ld.%.6ld",
5699 			  tv.tv_sec, tv.tv_usec);
5700 		break;
5701 	case HNS3_FUNC_RESET:
5702 		hns3_warn(hw, "PF Reset requested time=%ld.%.6ld",
5703 			  tv.tv_sec, tv.tv_usec);
5704 		/* schedule again to check later */
5705 		hns3_atomic_set_bit(HNS3_FUNC_RESET, &hw->reset.pending);
5706 		hns3_schedule_reset(hns);
5707 		break;
5708 	default:
5709 		hns3_warn(hw, "Unsupported reset level: %d", reset_level);
5710 		return;
5711 	}
5712 	hns3_atomic_clear_bit(reset_level, &hw->reset.request);
5713 }
5714 
5715 static enum hns3_reset_level
5716 hns3_get_reset_level(struct hns3_adapter *hns, uint64_t *levels)
5717 {
5718 	struct hns3_hw *hw = &hns->hw;
5719 	enum hns3_reset_level reset_level = HNS3_NONE_RESET;
5720 
5721 	/* Return the highest priority reset level amongst all */
5722 	if (hns3_atomic_test_bit(HNS3_IMP_RESET, levels))
5723 		reset_level = HNS3_IMP_RESET;
5724 	else if (hns3_atomic_test_bit(HNS3_GLOBAL_RESET, levels))
5725 		reset_level = HNS3_GLOBAL_RESET;
5726 	else if (hns3_atomic_test_bit(HNS3_FUNC_RESET, levels))
5727 		reset_level = HNS3_FUNC_RESET;
5728 	else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
5729 		reset_level = HNS3_FLR_RESET;
5730 
5731 	if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
5732 		return HNS3_NONE_RESET;
5733 
5734 	return reset_level;
5735 }
5736 
5737 static void
5738 hns3_record_imp_error(struct hns3_adapter *hns)
5739 {
5740 	struct hns3_hw *hw = &hns->hw;
5741 	uint32_t reg_val;
5742 
5743 	reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
5744 	if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B)) {
5745 		hns3_warn(hw, "Detected IMP RD poison!");
5746 		hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B, 0);
5747 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
5748 	}
5749 
5750 	if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B)) {
5751 		hns3_warn(hw, "Detected IMP CMDQ error!");
5752 		hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B, 0);
5753 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
5754 	}
5755 }
5756 
5757 static int
5758 hns3_prepare_reset(struct hns3_adapter *hns)
5759 {
5760 	struct hns3_hw *hw = &hns->hw;
5761 	uint32_t reg_val;
5762 	int ret;
5763 
5764 	switch (hw->reset.level) {
5765 	case HNS3_FUNC_RESET:
5766 		ret = hns3_func_reset_cmd(hw, HNS3_PF_FUNC_ID);
5767 		if (ret)
5768 			return ret;
5769 
5770 		/*
5771 		 * After performaning pf reset, it is not necessary to do the
5772 		 * mailbox handling or send any command to firmware, because
5773 		 * any mailbox handling or command to firmware is only valid
5774 		 * after hns3_cmd_init is called.
5775 		 */
5776 		__atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
5777 		hw->reset.stats.request_cnt++;
5778 		break;
5779 	case HNS3_IMP_RESET:
5780 		hns3_record_imp_error(hns);
5781 		reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
5782 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val |
5783 			       BIT(HNS3_VECTOR0_IMP_RESET_INT_B));
5784 		break;
5785 	default:
5786 		break;
5787 	}
5788 	return 0;
5789 }
5790 
5791 static int
5792 hns3_set_rst_done(struct hns3_hw *hw)
5793 {
5794 	struct hns3_pf_rst_done_cmd *req;
5795 	struct hns3_cmd_desc desc;
5796 
5797 	req = (struct hns3_pf_rst_done_cmd *)desc.data;
5798 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_PF_RST_DONE, false);
5799 	req->pf_rst_done |= HNS3_PF_RESET_DONE_BIT;
5800 	return hns3_cmd_send(hw, &desc, 1);
5801 }
5802 
5803 static int
5804 hns3_stop_service(struct hns3_adapter *hns)
5805 {
5806 	struct hns3_hw *hw = &hns->hw;
5807 	struct rte_eth_dev *eth_dev;
5808 
5809 	eth_dev = &rte_eth_devices[hw->data->port_id];
5810 	hw->mac.link_status = RTE_ETH_LINK_DOWN;
5811 	if (hw->adapter_state == HNS3_NIC_STARTED) {
5812 		rte_eal_alarm_cancel(hns3_service_handler, eth_dev);
5813 		hns3_update_linkstatus_and_event(hw, false);
5814 	}
5815 
5816 	hns3_set_rxtx_function(eth_dev);
5817 	rte_wmb();
5818 	/* Disable datapath on secondary process. */
5819 	hns3_mp_req_stop_rxtx(eth_dev);
5820 	rte_delay_ms(hw->cfg_max_queues);
5821 
5822 	rte_spinlock_lock(&hw->lock);
5823 	if (hns->hw.adapter_state == HNS3_NIC_STARTED ||
5824 	    hw->adapter_state == HNS3_NIC_STOPPING) {
5825 		hns3_enable_all_queues(hw, false);
5826 		hns3_do_stop(hns);
5827 		hw->reset.mbuf_deferred_free = true;
5828 	} else
5829 		hw->reset.mbuf_deferred_free = false;
5830 
5831 	/*
5832 	 * It is cumbersome for hardware to pick-and-choose entries for deletion
5833 	 * from table space. Hence, for function reset software intervention is
5834 	 * required to delete the entries
5835 	 */
5836 	if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0)
5837 		hns3_configure_all_mc_mac_addr(hns, true);
5838 	rte_spinlock_unlock(&hw->lock);
5839 
5840 	return 0;
5841 }
5842 
5843 static int
5844 hns3_start_service(struct hns3_adapter *hns)
5845 {
5846 	struct hns3_hw *hw = &hns->hw;
5847 	struct rte_eth_dev *eth_dev;
5848 
5849 	if (hw->reset.level == HNS3_IMP_RESET ||
5850 	    hw->reset.level == HNS3_GLOBAL_RESET)
5851 		hns3_set_rst_done(hw);
5852 	eth_dev = &rte_eth_devices[hw->data->port_id];
5853 	hns3_set_rxtx_function(eth_dev);
5854 	hns3_mp_req_start_rxtx(eth_dev);
5855 	if (hw->adapter_state == HNS3_NIC_STARTED) {
5856 		/*
5857 		 * This API parent function already hold the hns3_hw.lock, the
5858 		 * hns3_service_handler may report lse, in bonding application
5859 		 * it will call driver's ops which may acquire the hns3_hw.lock
5860 		 * again, thus lead to deadlock.
5861 		 * We defer calls hns3_service_handler to avoid the deadlock.
5862 		 */
5863 		rte_eal_alarm_set(HNS3_SERVICE_QUICK_INTERVAL,
5864 				  hns3_service_handler, eth_dev);
5865 
5866 		/* Enable interrupt of all rx queues before enabling queues */
5867 		hns3_dev_all_rx_queue_intr_enable(hw, true);
5868 		/*
5869 		 * Enable state of each rxq and txq will be recovered after
5870 		 * reset, so we need to restore them before enable all tqps;
5871 		 */
5872 		hns3_restore_tqp_enable_state(hw);
5873 		/*
5874 		 * When finished the initialization, enable queues to receive
5875 		 * and transmit packets.
5876 		 */
5877 		hns3_enable_all_queues(hw, true);
5878 	}
5879 
5880 	return 0;
5881 }
5882 
5883 static int
5884 hns3_restore_conf(struct hns3_adapter *hns)
5885 {
5886 	struct hns3_hw *hw = &hns->hw;
5887 	int ret;
5888 
5889 	ret = hns3_configure_all_mac_addr(hns, false);
5890 	if (ret)
5891 		return ret;
5892 
5893 	ret = hns3_configure_all_mc_mac_addr(hns, false);
5894 	if (ret)
5895 		goto err_mc_mac;
5896 
5897 	ret = hns3_dev_promisc_restore(hns);
5898 	if (ret)
5899 		goto err_promisc;
5900 
5901 	ret = hns3_restore_vlan_table(hns);
5902 	if (ret)
5903 		goto err_promisc;
5904 
5905 	ret = hns3_restore_vlan_conf(hns);
5906 	if (ret)
5907 		goto err_promisc;
5908 
5909 	ret = hns3_restore_all_fdir_filter(hns);
5910 	if (ret)
5911 		goto err_promisc;
5912 
5913 	ret = hns3_restore_ptp(hns);
5914 	if (ret)
5915 		goto err_promisc;
5916 
5917 	ret = hns3_restore_rx_interrupt(hw);
5918 	if (ret)
5919 		goto err_promisc;
5920 
5921 	ret = hns3_restore_gro_conf(hw);
5922 	if (ret)
5923 		goto err_promisc;
5924 
5925 	ret = hns3_restore_fec(hw);
5926 	if (ret)
5927 		goto err_promisc;
5928 
5929 	if (hns->hw.adapter_state == HNS3_NIC_STARTED) {
5930 		ret = hns3_do_start(hns, false);
5931 		if (ret)
5932 			goto err_promisc;
5933 		hns3_info(hw, "hns3 dev restart successful!");
5934 	} else if (hw->adapter_state == HNS3_NIC_STOPPING)
5935 		hw->adapter_state = HNS3_NIC_CONFIGURED;
5936 	return 0;
5937 
5938 err_promisc:
5939 	hns3_configure_all_mc_mac_addr(hns, true);
5940 err_mc_mac:
5941 	hns3_configure_all_mac_addr(hns, true);
5942 	return ret;
5943 }
5944 
5945 static void
5946 hns3_reset_service(void *param)
5947 {
5948 	struct hns3_adapter *hns = (struct hns3_adapter *)param;
5949 	struct hns3_hw *hw = &hns->hw;
5950 	enum hns3_reset_level reset_level;
5951 	struct timeval tv_delta;
5952 	struct timeval tv_start;
5953 	struct timeval tv;
5954 	uint64_t msec;
5955 	int ret;
5956 
5957 	/*
5958 	 * The interrupt is not triggered within the delay time.
5959 	 * The interrupt may have been lost. It is necessary to handle
5960 	 * the interrupt to recover from the error.
5961 	 */
5962 	if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
5963 			    SCHEDULE_DEFERRED) {
5964 		__atomic_store_n(&hw->reset.schedule, SCHEDULE_REQUESTED,
5965 				  __ATOMIC_RELAXED);
5966 		hns3_err(hw, "Handling interrupts in delayed tasks");
5967 		hns3_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
5968 		reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
5969 		if (reset_level == HNS3_NONE_RESET) {
5970 			hns3_err(hw, "No reset level is set, try IMP reset");
5971 			hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
5972 		}
5973 	}
5974 	__atomic_store_n(&hw->reset.schedule, SCHEDULE_NONE, __ATOMIC_RELAXED);
5975 
5976 	/*
5977 	 * Check if there is any ongoing reset in the hardware. This status can
5978 	 * be checked from reset_pending. If there is then, we need to wait for
5979 	 * hardware to complete reset.
5980 	 *    a. If we are able to figure out in reasonable time that hardware
5981 	 *       has fully resetted then, we can proceed with driver, client
5982 	 *       reset.
5983 	 *    b. else, we can come back later to check this status so re-sched
5984 	 *       now.
5985 	 */
5986 	reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
5987 	if (reset_level != HNS3_NONE_RESET) {
5988 		hns3_clock_gettime(&tv_start);
5989 		ret = hns3_reset_process(hns, reset_level);
5990 		hns3_clock_gettime(&tv);
5991 		timersub(&tv, &tv_start, &tv_delta);
5992 		msec = hns3_clock_calctime_ms(&tv_delta);
5993 		if (msec > HNS3_RESET_PROCESS_MS)
5994 			hns3_err(hw, "%d handle long time delta %" PRIu64 " ms time=%ld.%.6ld",
5995 				 hw->reset.level, msec,
5996 				 tv.tv_sec, tv.tv_usec);
5997 		if (ret == -EAGAIN)
5998 			return;
5999 	}
6000 
6001 	/* Check if we got any *new* reset requests to be honored */
6002 	reset_level = hns3_get_reset_level(hns, &hw->reset.request);
6003 	if (reset_level != HNS3_NONE_RESET)
6004 		hns3_msix_process(hns, reset_level);
6005 }
6006 
6007 static unsigned int
6008 hns3_get_speed_capa_num(uint16_t device_id)
6009 {
6010 	unsigned int num;
6011 
6012 	switch (device_id) {
6013 	case HNS3_DEV_ID_25GE:
6014 	case HNS3_DEV_ID_25GE_RDMA:
6015 		num = 2;
6016 		break;
6017 	case HNS3_DEV_ID_100G_RDMA_MACSEC:
6018 	case HNS3_DEV_ID_200G_RDMA:
6019 		num = 1;
6020 		break;
6021 	default:
6022 		num = 0;
6023 		break;
6024 	}
6025 
6026 	return num;
6027 }
6028 
6029 static int
6030 hns3_get_speed_fec_capa(struct rte_eth_fec_capa *speed_fec_capa,
6031 			uint16_t device_id)
6032 {
6033 	switch (device_id) {
6034 	case HNS3_DEV_ID_25GE:
6035 	/* fallthrough */
6036 	case HNS3_DEV_ID_25GE_RDMA:
6037 		speed_fec_capa[0].speed = speed_fec_capa_tbl[1].speed;
6038 		speed_fec_capa[0].capa = speed_fec_capa_tbl[1].capa;
6039 
6040 		/* In HNS3 device, the 25G NIC is compatible with 10G rate */
6041 		speed_fec_capa[1].speed = speed_fec_capa_tbl[0].speed;
6042 		speed_fec_capa[1].capa = speed_fec_capa_tbl[0].capa;
6043 		break;
6044 	case HNS3_DEV_ID_100G_RDMA_MACSEC:
6045 		speed_fec_capa[0].speed = speed_fec_capa_tbl[4].speed;
6046 		speed_fec_capa[0].capa = speed_fec_capa_tbl[4].capa;
6047 		break;
6048 	case HNS3_DEV_ID_200G_RDMA:
6049 		speed_fec_capa[0].speed = speed_fec_capa_tbl[5].speed;
6050 		speed_fec_capa[0].capa = speed_fec_capa_tbl[5].capa;
6051 		break;
6052 	default:
6053 		return -ENOTSUP;
6054 	}
6055 
6056 	return 0;
6057 }
6058 
6059 static int
6060 hns3_fec_get_capability(struct rte_eth_dev *dev,
6061 			struct rte_eth_fec_capa *speed_fec_capa,
6062 			unsigned int num)
6063 {
6064 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6065 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
6066 	uint16_t device_id = pci_dev->id.device_id;
6067 	unsigned int capa_num;
6068 	int ret;
6069 
6070 	capa_num = hns3_get_speed_capa_num(device_id);
6071 	if (capa_num == 0) {
6072 		hns3_err(hw, "device(0x%x) is not supported by hns3 PMD",
6073 			 device_id);
6074 		return -ENOTSUP;
6075 	}
6076 
6077 	if (speed_fec_capa == NULL || num < capa_num)
6078 		return capa_num;
6079 
6080 	ret = hns3_get_speed_fec_capa(speed_fec_capa, device_id);
6081 	if (ret)
6082 		return -ENOTSUP;
6083 
6084 	return capa_num;
6085 }
6086 
6087 static int
6088 get_current_fec_auto_state(struct hns3_hw *hw, uint8_t *state)
6089 {
6090 	struct hns3_config_fec_cmd *req;
6091 	struct hns3_cmd_desc desc;
6092 	int ret;
6093 
6094 	/*
6095 	 * CMD(HNS3_OPC_CONFIG_FEC_MODE) read is not supported
6096 	 * in device of link speed
6097 	 * below 10 Gbps.
6098 	 */
6099 	if (hw->mac.link_speed < RTE_ETH_SPEED_NUM_10G) {
6100 		*state = 0;
6101 		return 0;
6102 	}
6103 
6104 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_FEC_MODE, true);
6105 	req = (struct hns3_config_fec_cmd *)desc.data;
6106 	ret = hns3_cmd_send(hw, &desc, 1);
6107 	if (ret) {
6108 		hns3_err(hw, "get current fec auto state failed, ret = %d",
6109 			 ret);
6110 		return ret;
6111 	}
6112 
6113 	*state = req->fec_mode & (1U << HNS3_MAC_CFG_FEC_AUTO_EN_B);
6114 	return 0;
6115 }
6116 
6117 static int
6118 hns3_fec_get_internal(struct hns3_hw *hw, uint32_t *fec_capa)
6119 {
6120 	struct hns3_sfp_info_cmd *resp;
6121 	uint32_t tmp_fec_capa;
6122 	uint8_t auto_state;
6123 	struct hns3_cmd_desc desc;
6124 	int ret;
6125 
6126 	/*
6127 	 * If link is down and AUTO is enabled, AUTO is returned, otherwise,
6128 	 * configured FEC mode is returned.
6129 	 * If link is up, current FEC mode is returned.
6130 	 */
6131 	if (hw->mac.link_status == RTE_ETH_LINK_DOWN) {
6132 		ret = get_current_fec_auto_state(hw, &auto_state);
6133 		if (ret)
6134 			return ret;
6135 
6136 		if (auto_state == 0x1) {
6137 			*fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(AUTO);
6138 			return 0;
6139 		}
6140 	}
6141 
6142 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GET_SFP_INFO, true);
6143 	resp = (struct hns3_sfp_info_cmd *)desc.data;
6144 	resp->query_type = HNS3_ACTIVE_QUERY;
6145 
6146 	ret = hns3_cmd_send(hw, &desc, 1);
6147 	if (ret == -EOPNOTSUPP) {
6148 		hns3_err(hw, "IMP do not support get FEC, ret = %d", ret);
6149 		return ret;
6150 	} else if (ret) {
6151 		hns3_err(hw, "get FEC failed, ret = %d", ret);
6152 		return ret;
6153 	}
6154 
6155 	/*
6156 	 * FEC mode order defined in hns3 hardware is inconsistent with
6157 	 * that defined in the ethdev library. So the sequence needs
6158 	 * to be converted.
6159 	 */
6160 	switch (resp->active_fec) {
6161 	case HNS3_HW_FEC_MODE_NOFEC:
6162 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC);
6163 		break;
6164 	case HNS3_HW_FEC_MODE_BASER:
6165 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(BASER);
6166 		break;
6167 	case HNS3_HW_FEC_MODE_RS:
6168 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(RS);
6169 		break;
6170 	default:
6171 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC);
6172 		break;
6173 	}
6174 
6175 	*fec_capa = tmp_fec_capa;
6176 	return 0;
6177 }
6178 
6179 static int
6180 hns3_fec_get(struct rte_eth_dev *dev, uint32_t *fec_capa)
6181 {
6182 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6183 
6184 	return hns3_fec_get_internal(hw, fec_capa);
6185 }
6186 
6187 static int
6188 hns3_set_fec_hw(struct hns3_hw *hw, uint32_t mode)
6189 {
6190 	struct hns3_config_fec_cmd *req;
6191 	struct hns3_cmd_desc desc;
6192 	int ret;
6193 
6194 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_FEC_MODE, false);
6195 
6196 	req = (struct hns3_config_fec_cmd *)desc.data;
6197 	switch (mode) {
6198 	case RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC):
6199 		hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6200 				HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_OFF);
6201 		break;
6202 	case RTE_ETH_FEC_MODE_CAPA_MASK(BASER):
6203 		hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6204 				HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_BASER);
6205 		break;
6206 	case RTE_ETH_FEC_MODE_CAPA_MASK(RS):
6207 		hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6208 				HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_RS);
6209 		break;
6210 	case RTE_ETH_FEC_MODE_CAPA_MASK(AUTO):
6211 		hns3_set_bit(req->fec_mode, HNS3_MAC_CFG_FEC_AUTO_EN_B, 1);
6212 		break;
6213 	default:
6214 		return 0;
6215 	}
6216 	ret = hns3_cmd_send(hw, &desc, 1);
6217 	if (ret)
6218 		hns3_err(hw, "set fec mode failed, ret = %d", ret);
6219 
6220 	return ret;
6221 }
6222 
6223 static uint32_t
6224 get_current_speed_fec_cap(struct hns3_hw *hw, struct rte_eth_fec_capa *fec_capa)
6225 {
6226 	struct hns3_mac *mac = &hw->mac;
6227 	uint32_t cur_capa;
6228 
6229 	switch (mac->link_speed) {
6230 	case RTE_ETH_SPEED_NUM_10G:
6231 		cur_capa = fec_capa[1].capa;
6232 		break;
6233 	case RTE_ETH_SPEED_NUM_25G:
6234 	case RTE_ETH_SPEED_NUM_100G:
6235 	case RTE_ETH_SPEED_NUM_200G:
6236 		cur_capa = fec_capa[0].capa;
6237 		break;
6238 	default:
6239 		cur_capa = 0;
6240 		break;
6241 	}
6242 
6243 	return cur_capa;
6244 }
6245 
6246 static bool
6247 is_fec_mode_one_bit_set(uint32_t mode)
6248 {
6249 	int cnt = 0;
6250 	uint8_t i;
6251 
6252 	for (i = 0; i < sizeof(mode); i++)
6253 		if (mode >> i & 0x1)
6254 			cnt++;
6255 
6256 	return cnt == 1 ? true : false;
6257 }
6258 
6259 static int
6260 hns3_fec_set(struct rte_eth_dev *dev, uint32_t mode)
6261 {
6262 #define FEC_CAPA_NUM 2
6263 	struct hns3_adapter *hns = dev->data->dev_private;
6264 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
6265 	struct hns3_pf *pf = &hns->pf;
6266 	struct rte_eth_fec_capa fec_capa[FEC_CAPA_NUM];
6267 	uint32_t cur_capa;
6268 	uint32_t num = FEC_CAPA_NUM;
6269 	int ret;
6270 
6271 	ret = hns3_fec_get_capability(dev, fec_capa, num);
6272 	if (ret < 0)
6273 		return ret;
6274 
6275 	/* HNS3 PMD only support one bit set mode, e.g. 0x1, 0x4 */
6276 	if (!is_fec_mode_one_bit_set(mode)) {
6277 		hns3_err(hw, "FEC mode(0x%x) not supported in HNS3 PMD, "
6278 			     "FEC mode should be only one bit set", mode);
6279 		return -EINVAL;
6280 	}
6281 
6282 	/*
6283 	 * Check whether the configured mode is within the FEC capability.
6284 	 * If not, the configured mode will not be supported.
6285 	 */
6286 	cur_capa = get_current_speed_fec_cap(hw, fec_capa);
6287 	if (!(cur_capa & mode)) {
6288 		hns3_err(hw, "unsupported FEC mode = 0x%x", mode);
6289 		return -EINVAL;
6290 	}
6291 
6292 	rte_spinlock_lock(&hw->lock);
6293 	ret = hns3_set_fec_hw(hw, mode);
6294 	if (ret) {
6295 		rte_spinlock_unlock(&hw->lock);
6296 		return ret;
6297 	}
6298 
6299 	pf->fec_mode = mode;
6300 	rte_spinlock_unlock(&hw->lock);
6301 
6302 	return 0;
6303 }
6304 
6305 static int
6306 hns3_restore_fec(struct hns3_hw *hw)
6307 {
6308 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
6309 	struct hns3_pf *pf = &hns->pf;
6310 	uint32_t mode = pf->fec_mode;
6311 	int ret;
6312 
6313 	ret = hns3_set_fec_hw(hw, mode);
6314 	if (ret)
6315 		hns3_err(hw, "restore fec mode(0x%x) failed, ret = %d",
6316 			 mode, ret);
6317 
6318 	return ret;
6319 }
6320 
6321 static int
6322 hns3_query_dev_fec_info(struct hns3_hw *hw)
6323 {
6324 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
6325 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(hns);
6326 	int ret;
6327 
6328 	ret = hns3_fec_get_internal(hw, &pf->fec_mode);
6329 	if (ret)
6330 		hns3_err(hw, "query device FEC info failed, ret = %d", ret);
6331 
6332 	return ret;
6333 }
6334 
6335 static bool
6336 hns3_optical_module_existed(struct hns3_hw *hw)
6337 {
6338 	struct hns3_cmd_desc desc;
6339 	bool existed;
6340 	int ret;
6341 
6342 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GET_SFP_EXIST, true);
6343 	ret = hns3_cmd_send(hw, &desc, 1);
6344 	if (ret) {
6345 		hns3_err(hw,
6346 			 "fail to get optical module exist state, ret = %d.\n",
6347 			 ret);
6348 		return false;
6349 	}
6350 	existed = !!desc.data[0];
6351 
6352 	return existed;
6353 }
6354 
6355 static int
6356 hns3_get_module_eeprom_data(struct hns3_hw *hw, uint32_t offset,
6357 				uint32_t len, uint8_t *data)
6358 {
6359 #define HNS3_SFP_INFO_CMD_NUM 6
6360 #define HNS3_SFP_INFO_MAX_LEN \
6361 	(HNS3_SFP_INFO_BD0_LEN + \
6362 	(HNS3_SFP_INFO_CMD_NUM - 1) * HNS3_SFP_INFO_BDX_LEN)
6363 	struct hns3_cmd_desc desc[HNS3_SFP_INFO_CMD_NUM];
6364 	struct hns3_sfp_info_bd0_cmd *sfp_info_bd0;
6365 	uint16_t read_len;
6366 	uint16_t copy_len;
6367 	int ret;
6368 	int i;
6369 
6370 	for (i = 0; i < HNS3_SFP_INFO_CMD_NUM; i++) {
6371 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_SFP_EEPROM,
6372 					  true);
6373 		if (i < HNS3_SFP_INFO_CMD_NUM - 1)
6374 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
6375 	}
6376 
6377 	sfp_info_bd0 = (struct hns3_sfp_info_bd0_cmd *)desc[0].data;
6378 	sfp_info_bd0->offset = rte_cpu_to_le_16((uint16_t)offset);
6379 	read_len = RTE_MIN(len, HNS3_SFP_INFO_MAX_LEN);
6380 	sfp_info_bd0->read_len = rte_cpu_to_le_16((uint16_t)read_len);
6381 
6382 	ret = hns3_cmd_send(hw, desc, HNS3_SFP_INFO_CMD_NUM);
6383 	if (ret) {
6384 		hns3_err(hw, "fail to get module EEPROM info, ret = %d.\n",
6385 				ret);
6386 		return ret;
6387 	}
6388 
6389 	/* The data format in BD0 is different with the others. */
6390 	copy_len = RTE_MIN(len, HNS3_SFP_INFO_BD0_LEN);
6391 	memcpy(data, sfp_info_bd0->data, copy_len);
6392 	read_len = copy_len;
6393 
6394 	for (i = 1; i < HNS3_SFP_INFO_CMD_NUM; i++) {
6395 		if (read_len >= len)
6396 			break;
6397 
6398 		copy_len = RTE_MIN(len - read_len, HNS3_SFP_INFO_BDX_LEN);
6399 		memcpy(data + read_len, desc[i].data, copy_len);
6400 		read_len += copy_len;
6401 	}
6402 
6403 	return (int)read_len;
6404 }
6405 
6406 static int
6407 hns3_get_module_eeprom(struct rte_eth_dev *dev,
6408 		       struct rte_dev_eeprom_info *info)
6409 {
6410 	struct hns3_adapter *hns = dev->data->dev_private;
6411 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
6412 	uint32_t offset = info->offset;
6413 	uint32_t len = info->length;
6414 	uint8_t *data = info->data;
6415 	uint32_t read_len = 0;
6416 
6417 	if (hw->mac.media_type != HNS3_MEDIA_TYPE_FIBER)
6418 		return -ENOTSUP;
6419 
6420 	if (!hns3_optical_module_existed(hw)) {
6421 		hns3_err(hw, "fail to read module EEPROM: no module is connected.\n");
6422 		return -EIO;
6423 	}
6424 
6425 	while (read_len < len) {
6426 		int ret;
6427 		ret = hns3_get_module_eeprom_data(hw, offset + read_len,
6428 						  len - read_len,
6429 						  data + read_len);
6430 		if (ret < 0)
6431 			return -EIO;
6432 		read_len += ret;
6433 	}
6434 
6435 	return 0;
6436 }
6437 
6438 static int
6439 hns3_get_module_info(struct rte_eth_dev *dev,
6440 		     struct rte_eth_dev_module_info *modinfo)
6441 {
6442 #define HNS3_SFF8024_ID_SFP		0x03
6443 #define HNS3_SFF8024_ID_QSFP_8438	0x0c
6444 #define HNS3_SFF8024_ID_QSFP_8436_8636	0x0d
6445 #define HNS3_SFF8024_ID_QSFP28_8636	0x11
6446 #define HNS3_SFF_8636_V1_3		0x03
6447 	struct hns3_adapter *hns = dev->data->dev_private;
6448 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
6449 	struct rte_dev_eeprom_info info;
6450 	struct hns3_sfp_type sfp_type;
6451 	int ret;
6452 
6453 	memset(&sfp_type, 0, sizeof(sfp_type));
6454 	memset(&info, 0, sizeof(info));
6455 	info.data = (uint8_t *)&sfp_type;
6456 	info.length = sizeof(sfp_type);
6457 	ret = hns3_get_module_eeprom(dev, &info);
6458 	if (ret)
6459 		return ret;
6460 
6461 	switch (sfp_type.type) {
6462 	case HNS3_SFF8024_ID_SFP:
6463 		modinfo->type = RTE_ETH_MODULE_SFF_8472;
6464 		modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8472_LEN;
6465 		break;
6466 	case HNS3_SFF8024_ID_QSFP_8438:
6467 		modinfo->type = RTE_ETH_MODULE_SFF_8436;
6468 		modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8436_MAX_LEN;
6469 		break;
6470 	case HNS3_SFF8024_ID_QSFP_8436_8636:
6471 		if (sfp_type.ext_type < HNS3_SFF_8636_V1_3) {
6472 			modinfo->type = RTE_ETH_MODULE_SFF_8436;
6473 			modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8436_MAX_LEN;
6474 		} else {
6475 			modinfo->type = RTE_ETH_MODULE_SFF_8636;
6476 			modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8636_MAX_LEN;
6477 		}
6478 		break;
6479 	case HNS3_SFF8024_ID_QSFP28_8636:
6480 		modinfo->type = RTE_ETH_MODULE_SFF_8636;
6481 		modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8636_MAX_LEN;
6482 		break;
6483 	default:
6484 		hns3_err(hw, "unknown module, type = %u, extra_type = %u.\n",
6485 			 sfp_type.type, sfp_type.ext_type);
6486 		return -EINVAL;
6487 	}
6488 
6489 	return 0;
6490 }
6491 
6492 static const struct eth_dev_ops hns3_eth_dev_ops = {
6493 	.dev_configure      = hns3_dev_configure,
6494 	.dev_start          = hns3_dev_start,
6495 	.dev_stop           = hns3_dev_stop,
6496 	.dev_close          = hns3_dev_close,
6497 	.promiscuous_enable = hns3_dev_promiscuous_enable,
6498 	.promiscuous_disable = hns3_dev_promiscuous_disable,
6499 	.allmulticast_enable  = hns3_dev_allmulticast_enable,
6500 	.allmulticast_disable = hns3_dev_allmulticast_disable,
6501 	.mtu_set            = hns3_dev_mtu_set,
6502 	.stats_get          = hns3_stats_get,
6503 	.stats_reset        = hns3_stats_reset,
6504 	.xstats_get         = hns3_dev_xstats_get,
6505 	.xstats_get_names   = hns3_dev_xstats_get_names,
6506 	.xstats_reset       = hns3_dev_xstats_reset,
6507 	.xstats_get_by_id   = hns3_dev_xstats_get_by_id,
6508 	.xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
6509 	.dev_infos_get          = hns3_dev_infos_get,
6510 	.fw_version_get         = hns3_fw_version_get,
6511 	.rx_queue_setup         = hns3_rx_queue_setup,
6512 	.tx_queue_setup         = hns3_tx_queue_setup,
6513 	.rx_queue_release       = hns3_dev_rx_queue_release,
6514 	.tx_queue_release       = hns3_dev_tx_queue_release,
6515 	.rx_queue_start         = hns3_dev_rx_queue_start,
6516 	.rx_queue_stop          = hns3_dev_rx_queue_stop,
6517 	.tx_queue_start         = hns3_dev_tx_queue_start,
6518 	.tx_queue_stop          = hns3_dev_tx_queue_stop,
6519 	.rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
6520 	.rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
6521 	.rxq_info_get           = hns3_rxq_info_get,
6522 	.txq_info_get           = hns3_txq_info_get,
6523 	.rx_burst_mode_get      = hns3_rx_burst_mode_get,
6524 	.tx_burst_mode_get      = hns3_tx_burst_mode_get,
6525 	.flow_ctrl_get          = hns3_flow_ctrl_get,
6526 	.flow_ctrl_set          = hns3_flow_ctrl_set,
6527 	.priority_flow_ctrl_set = hns3_priority_flow_ctrl_set,
6528 	.mac_addr_add           = hns3_add_mac_addr,
6529 	.mac_addr_remove        = hns3_remove_mac_addr,
6530 	.mac_addr_set           = hns3_set_default_mac_addr,
6531 	.set_mc_addr_list       = hns3_set_mc_mac_addr_list,
6532 	.link_update            = hns3_dev_link_update,
6533 	.dev_set_link_up        = hns3_dev_set_link_up,
6534 	.dev_set_link_down      = hns3_dev_set_link_down,
6535 	.rss_hash_update        = hns3_dev_rss_hash_update,
6536 	.rss_hash_conf_get      = hns3_dev_rss_hash_conf_get,
6537 	.reta_update            = hns3_dev_rss_reta_update,
6538 	.reta_query             = hns3_dev_rss_reta_query,
6539 	.flow_ops_get           = hns3_dev_flow_ops_get,
6540 	.vlan_filter_set        = hns3_vlan_filter_set,
6541 	.vlan_tpid_set          = hns3_vlan_tpid_set,
6542 	.vlan_offload_set       = hns3_vlan_offload_set,
6543 	.vlan_pvid_set          = hns3_vlan_pvid_set,
6544 	.get_reg                = hns3_get_regs,
6545 	.get_module_info        = hns3_get_module_info,
6546 	.get_module_eeprom      = hns3_get_module_eeprom,
6547 	.get_dcb_info           = hns3_get_dcb_info,
6548 	.dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
6549 	.fec_get_capability     = hns3_fec_get_capability,
6550 	.fec_get                = hns3_fec_get,
6551 	.fec_set                = hns3_fec_set,
6552 	.tm_ops_get             = hns3_tm_ops_get,
6553 	.tx_done_cleanup        = hns3_tx_done_cleanup,
6554 	.timesync_enable            = hns3_timesync_enable,
6555 	.timesync_disable           = hns3_timesync_disable,
6556 	.timesync_read_rx_timestamp = hns3_timesync_read_rx_timestamp,
6557 	.timesync_read_tx_timestamp = hns3_timesync_read_tx_timestamp,
6558 	.timesync_adjust_time       = hns3_timesync_adjust_time,
6559 	.timesync_read_time         = hns3_timesync_read_time,
6560 	.timesync_write_time        = hns3_timesync_write_time,
6561 	.eth_dev_priv_dump          = hns3_eth_dev_priv_dump,
6562 };
6563 
6564 static const struct hns3_reset_ops hns3_reset_ops = {
6565 	.reset_service       = hns3_reset_service,
6566 	.stop_service        = hns3_stop_service,
6567 	.prepare_reset       = hns3_prepare_reset,
6568 	.wait_hardware_ready = hns3_wait_hardware_ready,
6569 	.reinit_dev          = hns3_reinit_dev,
6570 	.restore_conf	     = hns3_restore_conf,
6571 	.start_service       = hns3_start_service,
6572 };
6573 
6574 static void
6575 hns3_init_hw_ops(struct hns3_hw *hw)
6576 {
6577 	hw->ops.add_mc_mac_addr = hns3_add_mc_mac_addr;
6578 	hw->ops.del_mc_mac_addr = hns3_remove_mc_mac_addr;
6579 	hw->ops.add_uc_mac_addr = hns3_add_uc_mac_addr;
6580 	hw->ops.del_uc_mac_addr = hns3_remove_uc_mac_addr;
6581 	hw->ops.bind_ring_with_vector = hns3_bind_ring_with_vector;
6582 }
6583 
6584 static int
6585 hns3_dev_init(struct rte_eth_dev *eth_dev)
6586 {
6587 	struct hns3_adapter *hns = eth_dev->data->dev_private;
6588 	struct hns3_hw *hw = &hns->hw;
6589 	int ret;
6590 
6591 	PMD_INIT_FUNC_TRACE();
6592 
6593 	hns3_flow_init(eth_dev);
6594 
6595 	hns3_set_rxtx_function(eth_dev);
6596 	eth_dev->dev_ops = &hns3_eth_dev_ops;
6597 	eth_dev->rx_queue_count = hns3_rx_queue_count;
6598 	ret = hns3_mp_init(eth_dev);
6599 	if (ret)
6600 		goto err_mp_init;
6601 
6602 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
6603 		hns3_tx_push_init(eth_dev);
6604 		return 0;
6605 	}
6606 
6607 	hw->adapter_state = HNS3_NIC_UNINITIALIZED;
6608 	hns->is_vf = false;
6609 	hw->data = eth_dev->data;
6610 	hns3_parse_devargs(eth_dev);
6611 
6612 	/*
6613 	 * Set default max packet size according to the mtu
6614 	 * default vale in DPDK frame.
6615 	 */
6616 	hns->pf.mps = hw->data->mtu + HNS3_ETH_OVERHEAD;
6617 
6618 	ret = hns3_reset_init(hw);
6619 	if (ret)
6620 		goto err_init_reset;
6621 	hw->reset.ops = &hns3_reset_ops;
6622 
6623 	hns3_init_hw_ops(hw);
6624 	ret = hns3_init_pf(eth_dev);
6625 	if (ret) {
6626 		PMD_INIT_LOG(ERR, "Failed to init pf: %d", ret);
6627 		goto err_init_pf;
6628 	}
6629 
6630 	ret = hns3_init_mac_addrs(eth_dev);
6631 	if (ret != 0)
6632 		goto err_init_mac_addrs;
6633 
6634 	hw->adapter_state = HNS3_NIC_INITIALIZED;
6635 
6636 	if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
6637 			    SCHEDULE_PENDING) {
6638 		hns3_err(hw, "Reschedule reset service after dev_init");
6639 		hns3_schedule_reset(hns);
6640 	} else {
6641 		/* IMP will wait ready flag before reset */
6642 		hns3_notify_reset_ready(hw, false);
6643 	}
6644 
6645 	hns3_info(hw, "hns3 dev initialization successful!");
6646 	return 0;
6647 
6648 err_init_mac_addrs:
6649 	hns3_uninit_pf(eth_dev);
6650 
6651 err_init_pf:
6652 	rte_free(hw->reset.wait_data);
6653 
6654 err_init_reset:
6655 	hns3_mp_uninit(eth_dev);
6656 
6657 err_mp_init:
6658 	eth_dev->dev_ops = NULL;
6659 	eth_dev->rx_pkt_burst = NULL;
6660 	eth_dev->rx_descriptor_status = NULL;
6661 	eth_dev->tx_pkt_burst = NULL;
6662 	eth_dev->tx_pkt_prepare = NULL;
6663 	eth_dev->tx_descriptor_status = NULL;
6664 	return ret;
6665 }
6666 
6667 static int
6668 hns3_dev_uninit(struct rte_eth_dev *eth_dev)
6669 {
6670 	struct hns3_adapter *hns = eth_dev->data->dev_private;
6671 	struct hns3_hw *hw = &hns->hw;
6672 
6673 	PMD_INIT_FUNC_TRACE();
6674 
6675 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
6676 		hns3_mp_uninit(eth_dev);
6677 		return 0;
6678 	}
6679 
6680 	if (hw->adapter_state < HNS3_NIC_CLOSING)
6681 		hns3_dev_close(eth_dev);
6682 
6683 	hw->adapter_state = HNS3_NIC_REMOVED;
6684 	return 0;
6685 }
6686 
6687 static int
6688 eth_hns3_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
6689 		   struct rte_pci_device *pci_dev)
6690 {
6691 	return rte_eth_dev_pci_generic_probe(pci_dev,
6692 					     sizeof(struct hns3_adapter),
6693 					     hns3_dev_init);
6694 }
6695 
6696 static int
6697 eth_hns3_pci_remove(struct rte_pci_device *pci_dev)
6698 {
6699 	return rte_eth_dev_pci_generic_remove(pci_dev, hns3_dev_uninit);
6700 }
6701 
6702 static const struct rte_pci_id pci_id_hns3_map[] = {
6703 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_GE) },
6704 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE) },
6705 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE_RDMA) },
6706 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_50GE_RDMA) },
6707 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_MACSEC) },
6708 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_200G_RDMA) },
6709 	{ .vendor_id = 0, }, /* sentinel */
6710 };
6711 
6712 static struct rte_pci_driver rte_hns3_pmd = {
6713 	.id_table = pci_id_hns3_map,
6714 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
6715 	.probe = eth_hns3_pci_probe,
6716 	.remove = eth_hns3_pci_remove,
6717 };
6718 
6719 RTE_PMD_REGISTER_PCI(net_hns3, rte_hns3_pmd);
6720 RTE_PMD_REGISTER_PCI_TABLE(net_hns3, pci_id_hns3_map);
6721 RTE_PMD_REGISTER_KMOD_DEP(net_hns3, "* igb_uio | vfio-pci");
6722 RTE_PMD_REGISTER_PARAM_STRING(net_hns3,
6723 		HNS3_DEVARG_RX_FUNC_HINT "=vec|sve|simple|common "
6724 		HNS3_DEVARG_TX_FUNC_HINT "=vec|sve|simple|common "
6725 		HNS3_DEVARG_DEV_CAPS_MASK "=<1-65535> "
6726 		HNS3_DEVARG_MBX_TIME_LIMIT_MS "=<uint16> ");
6727 RTE_LOG_REGISTER_SUFFIX(hns3_logtype_init, init, NOTICE);
6728 RTE_LOG_REGISTER_SUFFIX(hns3_logtype_driver, driver, NOTICE);
6729