xref: /dpdk/drivers/net/hns3/hns3_ethdev.c (revision 30a1de105a5f40d77b344a891c4a68f79e815c43)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2021 HiSilicon Limited.
3  */
4 
5 #include <rte_alarm.h>
6 #include <rte_bus_pci.h>
7 #include <ethdev_pci.h>
8 
9 #include "hns3_ethdev.h"
10 #include "hns3_common.h"
11 #include "hns3_logs.h"
12 #include "hns3_rxtx.h"
13 #include "hns3_intr.h"
14 #include "hns3_regs.h"
15 #include "hns3_dcb.h"
16 #include "hns3_mp.h"
17 #include "hns3_flow.h"
18 
19 #define HNS3_SERVICE_INTERVAL		1000000 /* us */
20 #define HNS3_SERVICE_QUICK_INTERVAL	10
21 #define HNS3_INVALID_PVID		0xFFFF
22 
23 #define HNS3_FILTER_TYPE_VF		0
24 #define HNS3_FILTER_TYPE_PORT		1
25 #define HNS3_FILTER_FE_EGRESS_V1_B	BIT(0)
26 #define HNS3_FILTER_FE_NIC_INGRESS_B	BIT(0)
27 #define HNS3_FILTER_FE_NIC_EGRESS_B	BIT(1)
28 #define HNS3_FILTER_FE_ROCE_INGRESS_B	BIT(2)
29 #define HNS3_FILTER_FE_ROCE_EGRESS_B	BIT(3)
30 #define HNS3_FILTER_FE_EGRESS		(HNS3_FILTER_FE_NIC_EGRESS_B \
31 					| HNS3_FILTER_FE_ROCE_EGRESS_B)
32 #define HNS3_FILTER_FE_INGRESS		(HNS3_FILTER_FE_NIC_INGRESS_B \
33 					| HNS3_FILTER_FE_ROCE_INGRESS_B)
34 
35 /* Reset related Registers */
36 #define HNS3_GLOBAL_RESET_BIT		0
37 #define HNS3_CORE_RESET_BIT		1
38 #define HNS3_IMP_RESET_BIT		2
39 #define HNS3_FUN_RST_ING_B		0
40 
41 #define HNS3_VECTOR0_IMP_RESET_INT_B	1
42 #define HNS3_VECTOR0_IMP_CMDQ_ERR_B	4U
43 #define HNS3_VECTOR0_IMP_RD_POISON_B	5U
44 #define HNS3_VECTOR0_ALL_MSIX_ERR_B	6U
45 
46 #define HNS3_RESET_WAIT_MS	100
47 #define HNS3_RESET_WAIT_CNT	200
48 
49 /* FEC mode order defined in HNS3 hardware */
50 #define HNS3_HW_FEC_MODE_NOFEC  0
51 #define HNS3_HW_FEC_MODE_BASER  1
52 #define HNS3_HW_FEC_MODE_RS     2
53 
54 enum hns3_evt_cause {
55 	HNS3_VECTOR0_EVENT_RST,
56 	HNS3_VECTOR0_EVENT_MBX,
57 	HNS3_VECTOR0_EVENT_ERR,
58 	HNS3_VECTOR0_EVENT_PTP,
59 	HNS3_VECTOR0_EVENT_OTHER,
60 };
61 
62 static const struct rte_eth_fec_capa speed_fec_capa_tbl[] = {
63 	{ RTE_ETH_SPEED_NUM_10G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
64 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
65 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) },
66 
67 	{ RTE_ETH_SPEED_NUM_25G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
68 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
69 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) |
70 			     RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
71 
72 	{ RTE_ETH_SPEED_NUM_40G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
73 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
74 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) },
75 
76 	{ RTE_ETH_SPEED_NUM_50G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
77 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
78 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) |
79 			     RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
80 
81 	{ RTE_ETH_SPEED_NUM_100G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
82 			      RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
83 			      RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
84 
85 	{ RTE_ETH_SPEED_NUM_200G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
86 			      RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
87 			      RTE_ETH_FEC_MODE_CAPA_MASK(RS) }
88 };
89 
90 static enum hns3_reset_level hns3_get_reset_level(struct hns3_adapter *hns,
91 						 uint64_t *levels);
92 static int hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
93 static int hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid,
94 				    int on);
95 static int hns3_update_link_info(struct rte_eth_dev *eth_dev);
96 static bool hns3_update_link_status(struct hns3_hw *hw);
97 
98 static int hns3_add_mc_mac_addr(struct hns3_hw *hw,
99 				struct rte_ether_addr *mac_addr);
100 static int hns3_remove_mc_mac_addr(struct hns3_hw *hw,
101 				   struct rte_ether_addr *mac_addr);
102 static int hns3_restore_fec(struct hns3_hw *hw);
103 static int hns3_query_dev_fec_info(struct hns3_hw *hw);
104 static int hns3_do_stop(struct hns3_adapter *hns);
105 static int hns3_check_port_speed(struct hns3_hw *hw, uint32_t link_speeds);
106 static int hns3_cfg_mac_mode(struct hns3_hw *hw, bool enable);
107 
108 
109 static void
110 hns3_pf_disable_irq0(struct hns3_hw *hw)
111 {
112 	hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
113 }
114 
115 static void
116 hns3_pf_enable_irq0(struct hns3_hw *hw)
117 {
118 	hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
119 }
120 
121 static enum hns3_evt_cause
122 hns3_proc_imp_reset_event(struct hns3_adapter *hns, bool is_delay,
123 			  uint32_t *vec_val)
124 {
125 	struct hns3_hw *hw = &hns->hw;
126 
127 	__atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
128 	hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
129 	*vec_val = BIT(HNS3_VECTOR0_IMPRESET_INT_B);
130 	if (!is_delay) {
131 		hw->reset.stats.imp_cnt++;
132 		hns3_warn(hw, "IMP reset detected, clear reset status");
133 	} else {
134 		hns3_schedule_delayed_reset(hns);
135 		hns3_warn(hw, "IMP reset detected, don't clear reset status");
136 	}
137 
138 	return HNS3_VECTOR0_EVENT_RST;
139 }
140 
141 static enum hns3_evt_cause
142 hns3_proc_global_reset_event(struct hns3_adapter *hns, bool is_delay,
143 			     uint32_t *vec_val)
144 {
145 	struct hns3_hw *hw = &hns->hw;
146 
147 	__atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
148 	hns3_atomic_set_bit(HNS3_GLOBAL_RESET, &hw->reset.pending);
149 	*vec_val = BIT(HNS3_VECTOR0_GLOBALRESET_INT_B);
150 	if (!is_delay) {
151 		hw->reset.stats.global_cnt++;
152 		hns3_warn(hw, "Global reset detected, clear reset status");
153 	} else {
154 		hns3_schedule_delayed_reset(hns);
155 		hns3_warn(hw,
156 			  "Global reset detected, don't clear reset status");
157 	}
158 
159 	return HNS3_VECTOR0_EVENT_RST;
160 }
161 
162 static enum hns3_evt_cause
163 hns3_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
164 {
165 	struct hns3_hw *hw = &hns->hw;
166 	uint32_t vector0_int_stats;
167 	uint32_t cmdq_src_val;
168 	uint32_t hw_err_src_reg;
169 	uint32_t val;
170 	enum hns3_evt_cause ret;
171 	bool is_delay;
172 
173 	/* fetch the events from their corresponding regs */
174 	vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
175 	cmdq_src_val = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
176 	hw_err_src_reg = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG);
177 
178 	is_delay = clearval == NULL ? true : false;
179 	/*
180 	 * Assumption: If by any chance reset and mailbox events are reported
181 	 * together then we will only process reset event and defer the
182 	 * processing of the mailbox events. Since, we would have not cleared
183 	 * RX CMDQ event this time we would receive again another interrupt
184 	 * from H/W just for the mailbox.
185 	 */
186 	if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats) { /* IMP */
187 		ret = hns3_proc_imp_reset_event(hns, is_delay, &val);
188 		goto out;
189 	}
190 
191 	/* Global reset */
192 	if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats) {
193 		ret = hns3_proc_global_reset_event(hns, is_delay, &val);
194 		goto out;
195 	}
196 
197 	/* Check for vector0 1588 event source */
198 	if (BIT(HNS3_VECTOR0_1588_INT_B) & vector0_int_stats) {
199 		val = BIT(HNS3_VECTOR0_1588_INT_B);
200 		ret = HNS3_VECTOR0_EVENT_PTP;
201 		goto out;
202 	}
203 
204 	/* check for vector0 msix event source */
205 	if (vector0_int_stats & HNS3_VECTOR0_REG_MSIX_MASK ||
206 	    hw_err_src_reg & HNS3_RAS_REG_NFE_MASK) {
207 		val = vector0_int_stats | hw_err_src_reg;
208 		ret = HNS3_VECTOR0_EVENT_ERR;
209 		goto out;
210 	}
211 
212 	/* check for vector0 mailbox(=CMDQ RX) event source */
213 	if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_val) {
214 		cmdq_src_val &= ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
215 		val = cmdq_src_val;
216 		ret = HNS3_VECTOR0_EVENT_MBX;
217 		goto out;
218 	}
219 
220 	val = vector0_int_stats;
221 	ret = HNS3_VECTOR0_EVENT_OTHER;
222 out:
223 
224 	if (clearval)
225 		*clearval = val;
226 	return ret;
227 }
228 
229 static void
230 hns3_clear_event_cause(struct hns3_hw *hw, uint32_t event_type, uint32_t regclr)
231 {
232 	if (event_type == HNS3_VECTOR0_EVENT_RST ||
233 	    event_type == HNS3_VECTOR0_EVENT_PTP)
234 		hns3_write_dev(hw, HNS3_MISC_RESET_STS_REG, regclr);
235 	else if (event_type == HNS3_VECTOR0_EVENT_MBX)
236 		hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
237 }
238 
239 static void
240 hns3_clear_all_event_cause(struct hns3_hw *hw)
241 {
242 	uint32_t vector0_int_stats;
243 
244 	vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
245 	if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats)
246 		hns3_warn(hw, "Probe during IMP reset interrupt");
247 
248 	if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats)
249 		hns3_warn(hw, "Probe during Global reset interrupt");
250 
251 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_RST,
252 			       BIT(HNS3_VECTOR0_IMPRESET_INT_B) |
253 			       BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) |
254 			       BIT(HNS3_VECTOR0_CORERESET_INT_B));
255 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_MBX, 0);
256 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_PTP,
257 				BIT(HNS3_VECTOR0_1588_INT_B));
258 }
259 
260 static void
261 hns3_handle_mac_tnl(struct hns3_hw *hw)
262 {
263 	struct hns3_cmd_desc desc;
264 	uint32_t status;
265 	int ret;
266 
267 	/* query and clear mac tnl interrupt */
268 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_MAC_TNL_INT, true);
269 	ret = hns3_cmd_send(hw, &desc, 1);
270 	if (ret) {
271 		hns3_err(hw, "failed to query mac tnl int, ret = %d.", ret);
272 		return;
273 	}
274 
275 	status = rte_le_to_cpu_32(desc.data[0]);
276 	if (status) {
277 		hns3_warn(hw, "mac tnl int occurs, status = 0x%x.", status);
278 		hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_MAC_TNL_INT,
279 					  false);
280 		desc.data[0] = rte_cpu_to_le_32(HNS3_MAC_TNL_INT_CLR);
281 		ret = hns3_cmd_send(hw, &desc, 1);
282 		if (ret)
283 			hns3_err(hw, "failed to clear mac tnl int, ret = %d.",
284 				 ret);
285 	}
286 }
287 
288 static void
289 hns3_interrupt_handler(void *param)
290 {
291 	struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
292 	struct hns3_adapter *hns = dev->data->dev_private;
293 	struct hns3_hw *hw = &hns->hw;
294 	enum hns3_evt_cause event_cause;
295 	uint32_t clearval = 0;
296 	uint32_t vector0_int;
297 	uint32_t ras_int;
298 	uint32_t cmdq_int;
299 
300 	/* Disable interrupt */
301 	hns3_pf_disable_irq0(hw);
302 
303 	event_cause = hns3_check_event_cause(hns, &clearval);
304 	vector0_int = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
305 	ras_int = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG);
306 	cmdq_int = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
307 	hns3_clear_event_cause(hw, event_cause, clearval);
308 	/* vector 0 interrupt is shared with reset and mailbox source events. */
309 	if (event_cause == HNS3_VECTOR0_EVENT_ERR) {
310 		hns3_warn(hw, "received interrupt: vector0_int_stat:0x%x "
311 			  "ras_int_stat:0x%x cmdq_int_stat:0x%x",
312 			  vector0_int, ras_int, cmdq_int);
313 		hns3_handle_mac_tnl(hw);
314 		hns3_handle_error(hns);
315 	} else if (event_cause == HNS3_VECTOR0_EVENT_RST) {
316 		hns3_warn(hw, "received reset interrupt");
317 		hns3_schedule_reset(hns);
318 	} else if (event_cause == HNS3_VECTOR0_EVENT_MBX) {
319 		hns3_dev_handle_mbx_msg(hw);
320 	} else {
321 		hns3_warn(hw, "received unknown event: vector0_int_stat:0x%x "
322 			  "ras_int_stat:0x%x cmdq_int_stat:0x%x",
323 			  vector0_int, ras_int, cmdq_int);
324 	}
325 
326 	/* Enable interrupt if it is not cause by reset */
327 	hns3_pf_enable_irq0(hw);
328 }
329 
330 static int
331 hns3_set_port_vlan_filter(struct hns3_adapter *hns, uint16_t vlan_id, int on)
332 {
333 #define HNS3_VLAN_ID_OFFSET_STEP	160
334 #define HNS3_VLAN_BYTE_SIZE		8
335 	struct hns3_vlan_filter_pf_cfg_cmd *req;
336 	struct hns3_hw *hw = &hns->hw;
337 	uint8_t vlan_offset_byte_val;
338 	struct hns3_cmd_desc desc;
339 	uint8_t vlan_offset_byte;
340 	uint8_t vlan_offset_base;
341 	int ret;
342 
343 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_PF_CFG, false);
344 
345 	vlan_offset_base = vlan_id / HNS3_VLAN_ID_OFFSET_STEP;
346 	vlan_offset_byte = (vlan_id % HNS3_VLAN_ID_OFFSET_STEP) /
347 			   HNS3_VLAN_BYTE_SIZE;
348 	vlan_offset_byte_val = 1 << (vlan_id % HNS3_VLAN_BYTE_SIZE);
349 
350 	req = (struct hns3_vlan_filter_pf_cfg_cmd *)desc.data;
351 	req->vlan_offset = vlan_offset_base;
352 	req->vlan_cfg = on ? 0 : 1;
353 	req->vlan_offset_bitmap[vlan_offset_byte] = vlan_offset_byte_val;
354 
355 	ret = hns3_cmd_send(hw, &desc, 1);
356 	if (ret)
357 		hns3_err(hw, "set port vlan id failed, vlan_id =%u, ret =%d",
358 			 vlan_id, ret);
359 
360 	return ret;
361 }
362 
363 static void
364 hns3_rm_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id)
365 {
366 	struct hns3_user_vlan_table *vlan_entry;
367 	struct hns3_pf *pf = &hns->pf;
368 
369 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
370 		if (vlan_entry->vlan_id == vlan_id) {
371 			if (vlan_entry->hd_tbl_status)
372 				hns3_set_port_vlan_filter(hns, vlan_id, 0);
373 			LIST_REMOVE(vlan_entry, next);
374 			rte_free(vlan_entry);
375 			break;
376 		}
377 	}
378 }
379 
380 static void
381 hns3_add_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id,
382 			bool writen_to_tbl)
383 {
384 	struct hns3_user_vlan_table *vlan_entry;
385 	struct hns3_hw *hw = &hns->hw;
386 	struct hns3_pf *pf = &hns->pf;
387 
388 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
389 		if (vlan_entry->vlan_id == vlan_id)
390 			return;
391 	}
392 
393 	vlan_entry = rte_zmalloc("hns3_vlan_tbl", sizeof(*vlan_entry), 0);
394 	if (vlan_entry == NULL) {
395 		hns3_err(hw, "Failed to malloc hns3 vlan table");
396 		return;
397 	}
398 
399 	vlan_entry->hd_tbl_status = writen_to_tbl;
400 	vlan_entry->vlan_id = vlan_id;
401 
402 	LIST_INSERT_HEAD(&pf->vlan_list, vlan_entry, next);
403 }
404 
405 static int
406 hns3_restore_vlan_table(struct hns3_adapter *hns)
407 {
408 	struct hns3_user_vlan_table *vlan_entry;
409 	struct hns3_hw *hw = &hns->hw;
410 	struct hns3_pf *pf = &hns->pf;
411 	uint16_t vlan_id;
412 	int ret = 0;
413 
414 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_ENABLE)
415 		return hns3_vlan_pvid_configure(hns,
416 						hw->port_base_vlan_cfg.pvid, 1);
417 
418 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
419 		if (vlan_entry->hd_tbl_status) {
420 			vlan_id = vlan_entry->vlan_id;
421 			ret = hns3_set_port_vlan_filter(hns, vlan_id, 1);
422 			if (ret)
423 				break;
424 		}
425 	}
426 
427 	return ret;
428 }
429 
430 static int
431 hns3_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
432 {
433 	struct hns3_hw *hw = &hns->hw;
434 	bool writen_to_tbl = false;
435 	int ret = 0;
436 
437 	/*
438 	 * When vlan filter is enabled, hardware regards packets without vlan
439 	 * as packets with vlan 0. So, to receive packets without vlan, vlan id
440 	 * 0 is not allowed to be removed by rte_eth_dev_vlan_filter.
441 	 */
442 	if (on == 0 && vlan_id == 0)
443 		return 0;
444 
445 	/*
446 	 * When port base vlan enabled, we use port base vlan as the vlan
447 	 * filter condition. In this case, we don't update vlan filter table
448 	 * when user add new vlan or remove exist vlan, just update the
449 	 * vlan list. The vlan id in vlan list will be written in vlan filter
450 	 * table until port base vlan disabled
451 	 */
452 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
453 		ret = hns3_set_port_vlan_filter(hns, vlan_id, on);
454 		writen_to_tbl = true;
455 	}
456 
457 	if (ret == 0) {
458 		if (on)
459 			hns3_add_dev_vlan_table(hns, vlan_id, writen_to_tbl);
460 		else
461 			hns3_rm_dev_vlan_table(hns, vlan_id);
462 	}
463 	return ret;
464 }
465 
466 static int
467 hns3_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
468 {
469 	struct hns3_adapter *hns = dev->data->dev_private;
470 	struct hns3_hw *hw = &hns->hw;
471 	int ret;
472 
473 	rte_spinlock_lock(&hw->lock);
474 	ret = hns3_vlan_filter_configure(hns, vlan_id, on);
475 	rte_spinlock_unlock(&hw->lock);
476 	return ret;
477 }
478 
479 static int
480 hns3_vlan_tpid_configure(struct hns3_adapter *hns, enum rte_vlan_type vlan_type,
481 			 uint16_t tpid)
482 {
483 	struct hns3_rx_vlan_type_cfg_cmd *rx_req;
484 	struct hns3_tx_vlan_type_cfg_cmd *tx_req;
485 	struct hns3_hw *hw = &hns->hw;
486 	struct hns3_cmd_desc desc;
487 	int ret;
488 
489 	if ((vlan_type != RTE_ETH_VLAN_TYPE_INNER &&
490 	     vlan_type != RTE_ETH_VLAN_TYPE_OUTER)) {
491 		hns3_err(hw, "Unsupported vlan type, vlan_type =%d", vlan_type);
492 		return -EINVAL;
493 	}
494 
495 	if (tpid != RTE_ETHER_TYPE_VLAN) {
496 		hns3_err(hw, "Unsupported vlan tpid, vlan_type =%d", vlan_type);
497 		return -EINVAL;
498 	}
499 
500 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_TYPE_ID, false);
501 	rx_req = (struct hns3_rx_vlan_type_cfg_cmd *)desc.data;
502 
503 	if (vlan_type == RTE_ETH_VLAN_TYPE_OUTER) {
504 		rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
505 		rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
506 	} else if (vlan_type == RTE_ETH_VLAN_TYPE_INNER) {
507 		rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
508 		rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
509 		rx_req->in_fst_vlan_type = rte_cpu_to_le_16(tpid);
510 		rx_req->in_sec_vlan_type = rte_cpu_to_le_16(tpid);
511 	}
512 
513 	ret = hns3_cmd_send(hw, &desc, 1);
514 	if (ret) {
515 		hns3_err(hw, "Send rxvlan protocol type command fail, ret =%d",
516 			 ret);
517 		return ret;
518 	}
519 
520 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_INSERT, false);
521 
522 	tx_req = (struct hns3_tx_vlan_type_cfg_cmd *)desc.data;
523 	tx_req->ot_vlan_type = rte_cpu_to_le_16(tpid);
524 	tx_req->in_vlan_type = rte_cpu_to_le_16(tpid);
525 
526 	ret = hns3_cmd_send(hw, &desc, 1);
527 	if (ret)
528 		hns3_err(hw, "Send txvlan protocol type command fail, ret =%d",
529 			 ret);
530 	return ret;
531 }
532 
533 static int
534 hns3_vlan_tpid_set(struct rte_eth_dev *dev, enum rte_vlan_type vlan_type,
535 		   uint16_t tpid)
536 {
537 	struct hns3_adapter *hns = dev->data->dev_private;
538 	struct hns3_hw *hw = &hns->hw;
539 	int ret;
540 
541 	rte_spinlock_lock(&hw->lock);
542 	ret = hns3_vlan_tpid_configure(hns, vlan_type, tpid);
543 	rte_spinlock_unlock(&hw->lock);
544 	return ret;
545 }
546 
547 static int
548 hns3_set_vlan_rx_offload_cfg(struct hns3_adapter *hns,
549 			     struct hns3_rx_vtag_cfg *vcfg)
550 {
551 	struct hns3_vport_vtag_rx_cfg_cmd *req;
552 	struct hns3_hw *hw = &hns->hw;
553 	struct hns3_cmd_desc desc;
554 	uint16_t vport_id;
555 	uint8_t bitmap;
556 	int ret;
557 
558 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_RX_CFG, false);
559 
560 	req = (struct hns3_vport_vtag_rx_cfg_cmd *)desc.data;
561 	hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG1_EN_B,
562 		     vcfg->strip_tag1_en ? 1 : 0);
563 	hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG2_EN_B,
564 		     vcfg->strip_tag2_en ? 1 : 0);
565 	hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG1_EN_B,
566 		     vcfg->vlan1_vlan_prionly ? 1 : 0);
567 	hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG2_EN_B,
568 		     vcfg->vlan2_vlan_prionly ? 1 : 0);
569 
570 	/* firmware will ignore this configuration for PCI_REVISION_ID_HIP08 */
571 	hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG1_EN_B,
572 		     vcfg->strip_tag1_discard_en ? 1 : 0);
573 	hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG2_EN_B,
574 		     vcfg->strip_tag2_discard_en ? 1 : 0);
575 	/*
576 	 * In current version VF is not supported when PF is driven by DPDK
577 	 * driver, just need to configure parameters for PF vport.
578 	 */
579 	vport_id = HNS3_PF_FUNC_ID;
580 	req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
581 	bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
582 	req->vf_bitmap[req->vf_offset] = bitmap;
583 
584 	ret = hns3_cmd_send(hw, &desc, 1);
585 	if (ret)
586 		hns3_err(hw, "Send port rxvlan cfg command fail, ret =%d", ret);
587 	return ret;
588 }
589 
590 static int
591 hns3_en_hw_strip_rxvtag(struct hns3_adapter *hns, bool enable)
592 {
593 	struct hns3_rx_vtag_cfg rxvlan_cfg;
594 	struct hns3_hw *hw = &hns->hw;
595 	int ret;
596 
597 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
598 		rxvlan_cfg.strip_tag1_en = false;
599 		rxvlan_cfg.strip_tag2_en = enable;
600 		rxvlan_cfg.strip_tag2_discard_en = false;
601 	} else {
602 		rxvlan_cfg.strip_tag1_en = enable;
603 		rxvlan_cfg.strip_tag2_en = true;
604 		rxvlan_cfg.strip_tag2_discard_en = true;
605 	}
606 
607 	rxvlan_cfg.strip_tag1_discard_en = false;
608 	rxvlan_cfg.vlan1_vlan_prionly = false;
609 	rxvlan_cfg.vlan2_vlan_prionly = false;
610 	rxvlan_cfg.rx_vlan_offload_en = enable;
611 
612 	ret = hns3_set_vlan_rx_offload_cfg(hns, &rxvlan_cfg);
613 	if (ret) {
614 		hns3_err(hw, "%s strip rx vtag failed, ret = %d.",
615 				enable ? "enable" : "disable", ret);
616 		return ret;
617 	}
618 
619 	memcpy(&hns->pf.vtag_config.rx_vcfg, &rxvlan_cfg,
620 	       sizeof(struct hns3_rx_vtag_cfg));
621 
622 	return ret;
623 }
624 
625 static int
626 hns3_set_vlan_filter_ctrl(struct hns3_hw *hw, uint8_t vlan_type,
627 			  uint8_t fe_type, bool filter_en, uint8_t vf_id)
628 {
629 	struct hns3_vlan_filter_ctrl_cmd *req;
630 	struct hns3_cmd_desc desc;
631 	int ret;
632 
633 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_CTRL, false);
634 
635 	req = (struct hns3_vlan_filter_ctrl_cmd *)desc.data;
636 	req->vlan_type = vlan_type;
637 	req->vlan_fe = filter_en ? fe_type : 0;
638 	req->vf_id = vf_id;
639 
640 	ret = hns3_cmd_send(hw, &desc, 1);
641 	if (ret)
642 		hns3_err(hw, "set vlan filter fail, ret =%d", ret);
643 
644 	return ret;
645 }
646 
647 static int
648 hns3_vlan_filter_init(struct hns3_adapter *hns)
649 {
650 	struct hns3_hw *hw = &hns->hw;
651 	int ret;
652 
653 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_VF,
654 					HNS3_FILTER_FE_EGRESS, false,
655 					HNS3_PF_FUNC_ID);
656 	if (ret) {
657 		hns3_err(hw, "failed to init vf vlan filter, ret = %d", ret);
658 		return ret;
659 	}
660 
661 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
662 					HNS3_FILTER_FE_INGRESS, false,
663 					HNS3_PF_FUNC_ID);
664 	if (ret)
665 		hns3_err(hw, "failed to init port vlan filter, ret = %d", ret);
666 
667 	return ret;
668 }
669 
670 static int
671 hns3_enable_vlan_filter(struct hns3_adapter *hns, bool enable)
672 {
673 	struct hns3_hw *hw = &hns->hw;
674 	int ret;
675 
676 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
677 					HNS3_FILTER_FE_INGRESS, enable,
678 					HNS3_PF_FUNC_ID);
679 	if (ret)
680 		hns3_err(hw, "failed to %s port vlan filter, ret = %d",
681 			 enable ? "enable" : "disable", ret);
682 
683 	return ret;
684 }
685 
686 static int
687 hns3_vlan_offload_set(struct rte_eth_dev *dev, int mask)
688 {
689 	struct hns3_adapter *hns = dev->data->dev_private;
690 	struct hns3_hw *hw = &hns->hw;
691 	struct rte_eth_rxmode *rxmode;
692 	unsigned int tmp_mask;
693 	bool enable;
694 	int ret = 0;
695 
696 	rte_spinlock_lock(&hw->lock);
697 	rxmode = &dev->data->dev_conf.rxmode;
698 	tmp_mask = (unsigned int)mask;
699 	if (tmp_mask & RTE_ETH_VLAN_FILTER_MASK) {
700 		/* ignore vlan filter configuration during promiscuous mode */
701 		if (!dev->data->promiscuous) {
702 			/* Enable or disable VLAN filter */
703 			enable = rxmode->offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER ?
704 				 true : false;
705 
706 			ret = hns3_enable_vlan_filter(hns, enable);
707 			if (ret) {
708 				rte_spinlock_unlock(&hw->lock);
709 				hns3_err(hw, "failed to %s rx filter, ret = %d",
710 					 enable ? "enable" : "disable", ret);
711 				return ret;
712 			}
713 		}
714 	}
715 
716 	if (tmp_mask & RTE_ETH_VLAN_STRIP_MASK) {
717 		/* Enable or disable VLAN stripping */
718 		enable = rxmode->offloads & RTE_ETH_RX_OFFLOAD_VLAN_STRIP ?
719 		    true : false;
720 
721 		ret = hns3_en_hw_strip_rxvtag(hns, enable);
722 		if (ret) {
723 			rte_spinlock_unlock(&hw->lock);
724 			hns3_err(hw, "failed to %s rx strip, ret = %d",
725 				 enable ? "enable" : "disable", ret);
726 			return ret;
727 		}
728 	}
729 
730 	rte_spinlock_unlock(&hw->lock);
731 
732 	return ret;
733 }
734 
735 static int
736 hns3_set_vlan_tx_offload_cfg(struct hns3_adapter *hns,
737 			     struct hns3_tx_vtag_cfg *vcfg)
738 {
739 	struct hns3_vport_vtag_tx_cfg_cmd *req;
740 	struct hns3_cmd_desc desc;
741 	struct hns3_hw *hw = &hns->hw;
742 	uint16_t vport_id;
743 	uint8_t bitmap;
744 	int ret;
745 
746 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_TX_CFG, false);
747 
748 	req = (struct hns3_vport_vtag_tx_cfg_cmd *)desc.data;
749 	req->def_vlan_tag1 = vcfg->default_tag1;
750 	req->def_vlan_tag2 = vcfg->default_tag2;
751 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG1_B,
752 		     vcfg->accept_tag1 ? 1 : 0);
753 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG1_B,
754 		     vcfg->accept_untag1 ? 1 : 0);
755 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG2_B,
756 		     vcfg->accept_tag2 ? 1 : 0);
757 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG2_B,
758 		     vcfg->accept_untag2 ? 1 : 0);
759 	hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG1_EN_B,
760 		     vcfg->insert_tag1_en ? 1 : 0);
761 	hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG2_EN_B,
762 		     vcfg->insert_tag2_en ? 1 : 0);
763 	hns3_set_bit(req->vport_vlan_cfg, HNS3_CFG_NIC_ROCE_SEL_B, 0);
764 
765 	/* firmware will ignore this configuration for PCI_REVISION_ID_HIP08 */
766 	hns3_set_bit(req->vport_vlan_cfg, HNS3_TAG_SHIFT_MODE_EN_B,
767 		     vcfg->tag_shift_mode_en ? 1 : 0);
768 
769 	/*
770 	 * In current version VF is not supported when PF is driven by DPDK
771 	 * driver, just need to configure parameters for PF vport.
772 	 */
773 	vport_id = HNS3_PF_FUNC_ID;
774 	req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
775 	bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
776 	req->vf_bitmap[req->vf_offset] = bitmap;
777 
778 	ret = hns3_cmd_send(hw, &desc, 1);
779 	if (ret)
780 		hns3_err(hw, "Send port txvlan cfg command fail, ret =%d", ret);
781 
782 	return ret;
783 }
784 
785 static int
786 hns3_vlan_txvlan_cfg(struct hns3_adapter *hns, uint16_t port_base_vlan_state,
787 		     uint16_t pvid)
788 {
789 	struct hns3_hw *hw = &hns->hw;
790 	struct hns3_tx_vtag_cfg txvlan_cfg;
791 	int ret;
792 
793 	if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_DISABLE) {
794 		txvlan_cfg.accept_tag1 = true;
795 		txvlan_cfg.insert_tag1_en = false;
796 		txvlan_cfg.default_tag1 = 0;
797 	} else {
798 		txvlan_cfg.accept_tag1 =
799 			hw->vlan_mode == HNS3_HW_SHIFT_AND_DISCARD_MODE;
800 		txvlan_cfg.insert_tag1_en = true;
801 		txvlan_cfg.default_tag1 = pvid;
802 	}
803 
804 	txvlan_cfg.accept_untag1 = true;
805 	txvlan_cfg.accept_tag2 = true;
806 	txvlan_cfg.accept_untag2 = true;
807 	txvlan_cfg.insert_tag2_en = false;
808 	txvlan_cfg.default_tag2 = 0;
809 	txvlan_cfg.tag_shift_mode_en = true;
810 
811 	ret = hns3_set_vlan_tx_offload_cfg(hns, &txvlan_cfg);
812 	if (ret) {
813 		hns3_err(hw, "pf vlan set pvid failed, pvid =%u ,ret =%d", pvid,
814 			 ret);
815 		return ret;
816 	}
817 
818 	memcpy(&hns->pf.vtag_config.tx_vcfg, &txvlan_cfg,
819 	       sizeof(struct hns3_tx_vtag_cfg));
820 
821 	return ret;
822 }
823 
824 
825 static void
826 hns3_rm_all_vlan_table(struct hns3_adapter *hns, bool is_del_list)
827 {
828 	struct hns3_user_vlan_table *vlan_entry;
829 	struct hns3_pf *pf = &hns->pf;
830 
831 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
832 		if (vlan_entry->hd_tbl_status) {
833 			hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 0);
834 			vlan_entry->hd_tbl_status = false;
835 		}
836 	}
837 
838 	if (is_del_list) {
839 		vlan_entry = LIST_FIRST(&pf->vlan_list);
840 		while (vlan_entry) {
841 			LIST_REMOVE(vlan_entry, next);
842 			rte_free(vlan_entry);
843 			vlan_entry = LIST_FIRST(&pf->vlan_list);
844 		}
845 	}
846 }
847 
848 static void
849 hns3_add_all_vlan_table(struct hns3_adapter *hns)
850 {
851 	struct hns3_user_vlan_table *vlan_entry;
852 	struct hns3_pf *pf = &hns->pf;
853 
854 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
855 		if (!vlan_entry->hd_tbl_status) {
856 			hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 1);
857 			vlan_entry->hd_tbl_status = true;
858 		}
859 	}
860 }
861 
862 static void
863 hns3_remove_all_vlan_table(struct hns3_adapter *hns)
864 {
865 	struct hns3_hw *hw = &hns->hw;
866 	int ret;
867 
868 	hns3_rm_all_vlan_table(hns, true);
869 	if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID) {
870 		ret = hns3_set_port_vlan_filter(hns,
871 						hw->port_base_vlan_cfg.pvid, 0);
872 		if (ret) {
873 			hns3_err(hw, "Failed to remove all vlan table, ret =%d",
874 				 ret);
875 			return;
876 		}
877 	}
878 }
879 
880 static int
881 hns3_update_vlan_filter_entries(struct hns3_adapter *hns,
882 			uint16_t port_base_vlan_state, uint16_t new_pvid)
883 {
884 	struct hns3_hw *hw = &hns->hw;
885 	uint16_t old_pvid;
886 	int ret;
887 
888 	if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_ENABLE) {
889 		old_pvid = hw->port_base_vlan_cfg.pvid;
890 		if (old_pvid != HNS3_INVALID_PVID) {
891 			ret = hns3_set_port_vlan_filter(hns, old_pvid, 0);
892 			if (ret) {
893 				hns3_err(hw, "failed to remove old pvid %u, "
894 						"ret = %d", old_pvid, ret);
895 				return ret;
896 			}
897 		}
898 
899 		hns3_rm_all_vlan_table(hns, false);
900 		ret = hns3_set_port_vlan_filter(hns, new_pvid, 1);
901 		if (ret) {
902 			hns3_err(hw, "failed to add new pvid %u, ret = %d",
903 					new_pvid, ret);
904 			return ret;
905 		}
906 	} else {
907 		ret = hns3_set_port_vlan_filter(hns, new_pvid, 0);
908 		if (ret) {
909 			hns3_err(hw, "failed to remove pvid %u, ret = %d",
910 					new_pvid, ret);
911 			return ret;
912 		}
913 
914 		hns3_add_all_vlan_table(hns);
915 	}
916 	return 0;
917 }
918 
919 static int
920 hns3_en_pvid_strip(struct hns3_adapter *hns, int on)
921 {
922 	struct hns3_rx_vtag_cfg *old_cfg = &hns->pf.vtag_config.rx_vcfg;
923 	struct hns3_rx_vtag_cfg rx_vlan_cfg;
924 	bool rx_strip_en;
925 	int ret;
926 
927 	rx_strip_en = old_cfg->rx_vlan_offload_en;
928 	if (on) {
929 		rx_vlan_cfg.strip_tag1_en = rx_strip_en;
930 		rx_vlan_cfg.strip_tag2_en = true;
931 		rx_vlan_cfg.strip_tag2_discard_en = true;
932 	} else {
933 		rx_vlan_cfg.strip_tag1_en = false;
934 		rx_vlan_cfg.strip_tag2_en = rx_strip_en;
935 		rx_vlan_cfg.strip_tag2_discard_en = false;
936 	}
937 	rx_vlan_cfg.strip_tag1_discard_en = false;
938 	rx_vlan_cfg.vlan1_vlan_prionly = false;
939 	rx_vlan_cfg.vlan2_vlan_prionly = false;
940 	rx_vlan_cfg.rx_vlan_offload_en = old_cfg->rx_vlan_offload_en;
941 
942 	ret = hns3_set_vlan_rx_offload_cfg(hns, &rx_vlan_cfg);
943 	if (ret)
944 		return ret;
945 
946 	memcpy(&hns->pf.vtag_config.rx_vcfg, &rx_vlan_cfg,
947 	       sizeof(struct hns3_rx_vtag_cfg));
948 
949 	return ret;
950 }
951 
952 static int
953 hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid, int on)
954 {
955 	struct hns3_hw *hw = &hns->hw;
956 	uint16_t port_base_vlan_state;
957 	int ret, err;
958 
959 	if (on == 0 && pvid != hw->port_base_vlan_cfg.pvid) {
960 		if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID)
961 			hns3_warn(hw, "Invalid operation! As current pvid set "
962 				  "is %u, disable pvid %u is invalid",
963 				  hw->port_base_vlan_cfg.pvid, pvid);
964 		return 0;
965 	}
966 
967 	port_base_vlan_state = on ? HNS3_PORT_BASE_VLAN_ENABLE :
968 				    HNS3_PORT_BASE_VLAN_DISABLE;
969 	ret = hns3_vlan_txvlan_cfg(hns, port_base_vlan_state, pvid);
970 	if (ret) {
971 		hns3_err(hw, "failed to config tx vlan for pvid, ret = %d",
972 			 ret);
973 		return ret;
974 	}
975 
976 	ret = hns3_en_pvid_strip(hns, on);
977 	if (ret) {
978 		hns3_err(hw, "failed to config rx vlan strip for pvid, "
979 			 "ret = %d", ret);
980 		goto pvid_vlan_strip_fail;
981 	}
982 
983 	if (pvid == HNS3_INVALID_PVID)
984 		goto out;
985 	ret = hns3_update_vlan_filter_entries(hns, port_base_vlan_state, pvid);
986 	if (ret) {
987 		hns3_err(hw, "failed to update vlan filter entries, ret = %d",
988 			 ret);
989 		goto vlan_filter_set_fail;
990 	}
991 
992 out:
993 	hw->port_base_vlan_cfg.state = port_base_vlan_state;
994 	hw->port_base_vlan_cfg.pvid = on ? pvid : HNS3_INVALID_PVID;
995 	return ret;
996 
997 vlan_filter_set_fail:
998 	err = hns3_en_pvid_strip(hns, hw->port_base_vlan_cfg.state ==
999 					HNS3_PORT_BASE_VLAN_ENABLE);
1000 	if (err)
1001 		hns3_err(hw, "fail to rollback pvid strip, ret = %d", err);
1002 
1003 pvid_vlan_strip_fail:
1004 	err = hns3_vlan_txvlan_cfg(hns, hw->port_base_vlan_cfg.state,
1005 					hw->port_base_vlan_cfg.pvid);
1006 	if (err)
1007 		hns3_err(hw, "fail to rollback txvlan status, ret = %d", err);
1008 
1009 	return ret;
1010 }
1011 
1012 static int
1013 hns3_vlan_pvid_set(struct rte_eth_dev *dev, uint16_t pvid, int on)
1014 {
1015 	struct hns3_adapter *hns = dev->data->dev_private;
1016 	struct hns3_hw *hw = &hns->hw;
1017 	bool pvid_en_state_change;
1018 	uint16_t pvid_state;
1019 	int ret;
1020 
1021 	if (pvid > RTE_ETHER_MAX_VLAN_ID) {
1022 		hns3_err(hw, "Invalid vlan_id = %u > %d", pvid,
1023 			 RTE_ETHER_MAX_VLAN_ID);
1024 		return -EINVAL;
1025 	}
1026 
1027 	/*
1028 	 * If PVID configuration state change, should refresh the PVID
1029 	 * configuration state in struct hns3_tx_queue/hns3_rx_queue.
1030 	 */
1031 	pvid_state = hw->port_base_vlan_cfg.state;
1032 	if ((on && pvid_state == HNS3_PORT_BASE_VLAN_ENABLE) ||
1033 	    (!on && pvid_state == HNS3_PORT_BASE_VLAN_DISABLE))
1034 		pvid_en_state_change = false;
1035 	else
1036 		pvid_en_state_change = true;
1037 
1038 	rte_spinlock_lock(&hw->lock);
1039 	ret = hns3_vlan_pvid_configure(hns, pvid, on);
1040 	rte_spinlock_unlock(&hw->lock);
1041 	if (ret)
1042 		return ret;
1043 	/*
1044 	 * Only in HNS3_SW_SHIFT_AND_MODE the PVID related operation in Tx/Rx
1045 	 * need be processed by PMD.
1046 	 */
1047 	if (pvid_en_state_change &&
1048 	    hw->vlan_mode == HNS3_SW_SHIFT_AND_DISCARD_MODE)
1049 		hns3_update_all_queues_pvid_proc_en(hw);
1050 
1051 	return 0;
1052 }
1053 
1054 static int
1055 hns3_default_vlan_config(struct hns3_adapter *hns)
1056 {
1057 	struct hns3_hw *hw = &hns->hw;
1058 	int ret;
1059 
1060 	/*
1061 	 * When vlan filter is enabled, hardware regards packets without vlan
1062 	 * as packets with vlan 0. Therefore, if vlan 0 is not in the vlan
1063 	 * table, packets without vlan won't be received. So, add vlan 0 as
1064 	 * the default vlan.
1065 	 */
1066 	ret = hns3_vlan_filter_configure(hns, 0, 1);
1067 	if (ret)
1068 		hns3_err(hw, "default vlan 0 config failed, ret =%d", ret);
1069 	return ret;
1070 }
1071 
1072 static int
1073 hns3_init_vlan_config(struct hns3_adapter *hns)
1074 {
1075 	struct hns3_hw *hw = &hns->hw;
1076 	int ret;
1077 
1078 	/*
1079 	 * This function can be called in the initialization and reset process,
1080 	 * when in reset process, it means that hardware had been reseted
1081 	 * successfully and we need to restore the hardware configuration to
1082 	 * ensure that the hardware configuration remains unchanged before and
1083 	 * after reset.
1084 	 */
1085 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
1086 		hw->port_base_vlan_cfg.state = HNS3_PORT_BASE_VLAN_DISABLE;
1087 		hw->port_base_vlan_cfg.pvid = HNS3_INVALID_PVID;
1088 	}
1089 
1090 	ret = hns3_vlan_filter_init(hns);
1091 	if (ret) {
1092 		hns3_err(hw, "vlan init fail in pf, ret =%d", ret);
1093 		return ret;
1094 	}
1095 
1096 	ret = hns3_vlan_tpid_configure(hns, RTE_ETH_VLAN_TYPE_INNER,
1097 				       RTE_ETHER_TYPE_VLAN);
1098 	if (ret) {
1099 		hns3_err(hw, "tpid set fail in pf, ret =%d", ret);
1100 		return ret;
1101 	}
1102 
1103 	/*
1104 	 * When in the reinit dev stage of the reset process, the following
1105 	 * vlan-related configurations may differ from those at initialization,
1106 	 * we will restore configurations to hardware in hns3_restore_vlan_table
1107 	 * and hns3_restore_vlan_conf later.
1108 	 */
1109 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
1110 		ret = hns3_vlan_pvid_configure(hns, HNS3_INVALID_PVID, 0);
1111 		if (ret) {
1112 			hns3_err(hw, "pvid set fail in pf, ret =%d", ret);
1113 			return ret;
1114 		}
1115 
1116 		ret = hns3_en_hw_strip_rxvtag(hns, false);
1117 		if (ret) {
1118 			hns3_err(hw, "rx strip configure fail in pf, ret =%d",
1119 				 ret);
1120 			return ret;
1121 		}
1122 	}
1123 
1124 	return hns3_default_vlan_config(hns);
1125 }
1126 
1127 static int
1128 hns3_restore_vlan_conf(struct hns3_adapter *hns)
1129 {
1130 	struct hns3_pf *pf = &hns->pf;
1131 	struct hns3_hw *hw = &hns->hw;
1132 	uint64_t offloads;
1133 	bool enable;
1134 	int ret;
1135 
1136 	if (!hw->data->promiscuous) {
1137 		/* restore vlan filter states */
1138 		offloads = hw->data->dev_conf.rxmode.offloads;
1139 		enable = offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER ? true : false;
1140 		ret = hns3_enable_vlan_filter(hns, enable);
1141 		if (ret) {
1142 			hns3_err(hw, "failed to restore vlan rx filter conf, "
1143 				 "ret = %d", ret);
1144 			return ret;
1145 		}
1146 	}
1147 
1148 	ret = hns3_set_vlan_rx_offload_cfg(hns, &pf->vtag_config.rx_vcfg);
1149 	if (ret) {
1150 		hns3_err(hw, "failed to restore vlan rx conf, ret = %d", ret);
1151 		return ret;
1152 	}
1153 
1154 	ret = hns3_set_vlan_tx_offload_cfg(hns, &pf->vtag_config.tx_vcfg);
1155 	if (ret)
1156 		hns3_err(hw, "failed to restore vlan tx conf, ret = %d", ret);
1157 
1158 	return ret;
1159 }
1160 
1161 static int
1162 hns3_dev_configure_vlan(struct rte_eth_dev *dev)
1163 {
1164 	struct hns3_adapter *hns = dev->data->dev_private;
1165 	struct rte_eth_dev_data *data = dev->data;
1166 	struct rte_eth_txmode *txmode;
1167 	struct hns3_hw *hw = &hns->hw;
1168 	int mask;
1169 	int ret;
1170 
1171 	txmode = &data->dev_conf.txmode;
1172 	if (txmode->hw_vlan_reject_tagged || txmode->hw_vlan_reject_untagged)
1173 		hns3_warn(hw,
1174 			  "hw_vlan_reject_tagged or hw_vlan_reject_untagged "
1175 			  "configuration is not supported! Ignore these two "
1176 			  "parameters: hw_vlan_reject_tagged(%u), "
1177 			  "hw_vlan_reject_untagged(%u)",
1178 			  txmode->hw_vlan_reject_tagged,
1179 			  txmode->hw_vlan_reject_untagged);
1180 
1181 	/* Apply vlan offload setting */
1182 	mask = RTE_ETH_VLAN_STRIP_MASK | RTE_ETH_VLAN_FILTER_MASK;
1183 	ret = hns3_vlan_offload_set(dev, mask);
1184 	if (ret) {
1185 		hns3_err(hw, "dev config rx vlan offload failed, ret = %d",
1186 			 ret);
1187 		return ret;
1188 	}
1189 
1190 	/*
1191 	 * If pvid config is not set in rte_eth_conf, driver needn't to set
1192 	 * VLAN pvid related configuration to hardware.
1193 	 */
1194 	if (txmode->pvid == 0 && txmode->hw_vlan_insert_pvid == 0)
1195 		return 0;
1196 
1197 	/* Apply pvid setting */
1198 	ret = hns3_vlan_pvid_set(dev, txmode->pvid,
1199 				 txmode->hw_vlan_insert_pvid);
1200 	if (ret)
1201 		hns3_err(hw, "dev config vlan pvid(%u) failed, ret = %d",
1202 			 txmode->pvid, ret);
1203 
1204 	return ret;
1205 }
1206 
1207 static int
1208 hns3_config_tso(struct hns3_hw *hw, unsigned int tso_mss_min,
1209 		unsigned int tso_mss_max)
1210 {
1211 	struct hns3_cfg_tso_status_cmd *req;
1212 	struct hns3_cmd_desc desc;
1213 	uint16_t tso_mss;
1214 
1215 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TSO_GENERIC_CONFIG, false);
1216 
1217 	req = (struct hns3_cfg_tso_status_cmd *)desc.data;
1218 
1219 	tso_mss = 0;
1220 	hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1221 		       tso_mss_min);
1222 	req->tso_mss_min = rte_cpu_to_le_16(tso_mss);
1223 
1224 	tso_mss = 0;
1225 	hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1226 		       tso_mss_max);
1227 	req->tso_mss_max = rte_cpu_to_le_16(tso_mss);
1228 
1229 	return hns3_cmd_send(hw, &desc, 1);
1230 }
1231 
1232 static int
1233 hns3_set_umv_space(struct hns3_hw *hw, uint16_t space_size,
1234 		   uint16_t *allocated_size, bool is_alloc)
1235 {
1236 	struct hns3_umv_spc_alc_cmd *req;
1237 	struct hns3_cmd_desc desc;
1238 	int ret;
1239 
1240 	req = (struct hns3_umv_spc_alc_cmd *)desc.data;
1241 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ALLOCATE, false);
1242 	hns3_set_bit(req->allocate, HNS3_UMV_SPC_ALC_B, is_alloc ? 0 : 1);
1243 	req->space_size = rte_cpu_to_le_32(space_size);
1244 
1245 	ret = hns3_cmd_send(hw, &desc, 1);
1246 	if (ret) {
1247 		PMD_INIT_LOG(ERR, "%s umv space failed for cmd_send, ret =%d",
1248 			     is_alloc ? "allocate" : "free", ret);
1249 		return ret;
1250 	}
1251 
1252 	if (is_alloc && allocated_size)
1253 		*allocated_size = rte_le_to_cpu_32(desc.data[1]);
1254 
1255 	return 0;
1256 }
1257 
1258 static int
1259 hns3_init_umv_space(struct hns3_hw *hw)
1260 {
1261 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1262 	struct hns3_pf *pf = &hns->pf;
1263 	uint16_t allocated_size = 0;
1264 	int ret;
1265 
1266 	ret = hns3_set_umv_space(hw, pf->wanted_umv_size, &allocated_size,
1267 				 true);
1268 	if (ret)
1269 		return ret;
1270 
1271 	if (allocated_size < pf->wanted_umv_size)
1272 		PMD_INIT_LOG(WARNING, "Alloc umv space failed, want %u, get %u",
1273 			     pf->wanted_umv_size, allocated_size);
1274 
1275 	pf->max_umv_size = (!!allocated_size) ? allocated_size :
1276 						pf->wanted_umv_size;
1277 	pf->used_umv_size = 0;
1278 	return 0;
1279 }
1280 
1281 static int
1282 hns3_uninit_umv_space(struct hns3_hw *hw)
1283 {
1284 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1285 	struct hns3_pf *pf = &hns->pf;
1286 	int ret;
1287 
1288 	if (pf->max_umv_size == 0)
1289 		return 0;
1290 
1291 	ret = hns3_set_umv_space(hw, pf->max_umv_size, NULL, false);
1292 	if (ret)
1293 		return ret;
1294 
1295 	pf->max_umv_size = 0;
1296 
1297 	return 0;
1298 }
1299 
1300 static bool
1301 hns3_is_umv_space_full(struct hns3_hw *hw)
1302 {
1303 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1304 	struct hns3_pf *pf = &hns->pf;
1305 	bool is_full;
1306 
1307 	is_full = (pf->used_umv_size >= pf->max_umv_size);
1308 
1309 	return is_full;
1310 }
1311 
1312 static void
1313 hns3_update_umv_space(struct hns3_hw *hw, bool is_free)
1314 {
1315 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1316 	struct hns3_pf *pf = &hns->pf;
1317 
1318 	if (is_free) {
1319 		if (pf->used_umv_size > 0)
1320 			pf->used_umv_size--;
1321 	} else
1322 		pf->used_umv_size++;
1323 }
1324 
1325 static void
1326 hns3_prepare_mac_addr(struct hns3_mac_vlan_tbl_entry_cmd *new_req,
1327 		      const uint8_t *addr, bool is_mc)
1328 {
1329 	const unsigned char *mac_addr = addr;
1330 	uint32_t high_val = ((uint32_t)mac_addr[3] << 24) |
1331 			    ((uint32_t)mac_addr[2] << 16) |
1332 			    ((uint32_t)mac_addr[1] << 8) |
1333 			    (uint32_t)mac_addr[0];
1334 	uint32_t low_val = ((uint32_t)mac_addr[5] << 8) | (uint32_t)mac_addr[4];
1335 
1336 	hns3_set_bit(new_req->flags, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1337 	if (is_mc) {
1338 		hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1339 		hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT1_EN_B, 1);
1340 		hns3_set_bit(new_req->mc_mac_en, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1341 	}
1342 
1343 	new_req->mac_addr_hi32 = rte_cpu_to_le_32(high_val);
1344 	new_req->mac_addr_lo16 = rte_cpu_to_le_16(low_val & 0xffff);
1345 }
1346 
1347 static int
1348 hns3_get_mac_vlan_cmd_status(struct hns3_hw *hw, uint16_t cmdq_resp,
1349 			     uint8_t resp_code,
1350 			     enum hns3_mac_vlan_tbl_opcode op)
1351 {
1352 	if (cmdq_resp) {
1353 		hns3_err(hw, "cmdq execute failed for get_mac_vlan_cmd_status,status=%u",
1354 			 cmdq_resp);
1355 		return -EIO;
1356 	}
1357 
1358 	if (op == HNS3_MAC_VLAN_ADD) {
1359 		if (resp_code == 0 || resp_code == 1) {
1360 			return 0;
1361 		} else if (resp_code == HNS3_ADD_UC_OVERFLOW) {
1362 			hns3_err(hw, "add mac addr failed for uc_overflow");
1363 			return -ENOSPC;
1364 		} else if (resp_code == HNS3_ADD_MC_OVERFLOW) {
1365 			hns3_err(hw, "add mac addr failed for mc_overflow");
1366 			return -ENOSPC;
1367 		}
1368 
1369 		hns3_err(hw, "add mac addr failed for undefined, code=%u",
1370 			 resp_code);
1371 		return -EIO;
1372 	} else if (op == HNS3_MAC_VLAN_REMOVE) {
1373 		if (resp_code == 0) {
1374 			return 0;
1375 		} else if (resp_code == 1) {
1376 			hns3_dbg(hw, "remove mac addr failed for miss");
1377 			return -ENOENT;
1378 		}
1379 
1380 		hns3_err(hw, "remove mac addr failed for undefined, code=%u",
1381 			 resp_code);
1382 		return -EIO;
1383 	} else if (op == HNS3_MAC_VLAN_LKUP) {
1384 		if (resp_code == 0) {
1385 			return 0;
1386 		} else if (resp_code == 1) {
1387 			hns3_dbg(hw, "lookup mac addr failed for miss");
1388 			return -ENOENT;
1389 		}
1390 
1391 		hns3_err(hw, "lookup mac addr failed for undefined, code=%u",
1392 			 resp_code);
1393 		return -EIO;
1394 	}
1395 
1396 	hns3_err(hw, "unknown opcode for get_mac_vlan_cmd_status, opcode=%u",
1397 		 op);
1398 
1399 	return -EINVAL;
1400 }
1401 
1402 static int
1403 hns3_lookup_mac_vlan_tbl(struct hns3_hw *hw,
1404 			 struct hns3_mac_vlan_tbl_entry_cmd *req,
1405 			 struct hns3_cmd_desc *desc, uint8_t desc_num)
1406 {
1407 	uint8_t resp_code;
1408 	uint16_t retval;
1409 	int ret;
1410 	int i;
1411 
1412 	if (desc_num == HNS3_MC_MAC_VLAN_OPS_DESC_NUM) {
1413 		for (i = 0; i < desc_num - 1; i++) {
1414 			hns3_cmd_setup_basic_desc(&desc[i],
1415 						  HNS3_OPC_MAC_VLAN_ADD, true);
1416 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1417 			if (i == 0)
1418 				memcpy(desc[i].data, req,
1419 				sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1420 		}
1421 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_MAC_VLAN_ADD,
1422 					  true);
1423 	} else {
1424 		hns3_cmd_setup_basic_desc(&desc[0], HNS3_OPC_MAC_VLAN_ADD,
1425 					  true);
1426 		memcpy(desc[0].data, req,
1427 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1428 	}
1429 	ret = hns3_cmd_send(hw, desc, desc_num);
1430 	if (ret) {
1431 		hns3_err(hw, "lookup mac addr failed for cmd_send, ret =%d.",
1432 			 ret);
1433 		return ret;
1434 	}
1435 	resp_code = (rte_le_to_cpu_32(desc[0].data[0]) >> 8) & 0xff;
1436 	retval = rte_le_to_cpu_16(desc[0].retval);
1437 
1438 	return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1439 					    HNS3_MAC_VLAN_LKUP);
1440 }
1441 
1442 static int
1443 hns3_add_mac_vlan_tbl(struct hns3_hw *hw,
1444 		      struct hns3_mac_vlan_tbl_entry_cmd *req,
1445 		      struct hns3_cmd_desc *desc, uint8_t desc_num)
1446 {
1447 	uint8_t resp_code;
1448 	uint16_t retval;
1449 	int cfg_status;
1450 	int ret;
1451 	int i;
1452 
1453 	if (desc_num == HNS3_UC_MAC_VLAN_OPS_DESC_NUM) {
1454 		hns3_cmd_setup_basic_desc(desc, HNS3_OPC_MAC_VLAN_ADD, false);
1455 		memcpy(desc->data, req,
1456 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1457 		ret = hns3_cmd_send(hw, desc, desc_num);
1458 		resp_code = (rte_le_to_cpu_32(desc->data[0]) >> 8) & 0xff;
1459 		retval = rte_le_to_cpu_16(desc->retval);
1460 
1461 		cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1462 							  HNS3_MAC_VLAN_ADD);
1463 	} else {
1464 		for (i = 0; i < desc_num; i++) {
1465 			hns3_cmd_reuse_desc(&desc[i], false);
1466 			if (i == desc_num - 1)
1467 				desc[i].flag &=
1468 					rte_cpu_to_le_16(~HNS3_CMD_FLAG_NEXT);
1469 			else
1470 				desc[i].flag |=
1471 					rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1472 		}
1473 		memcpy(desc[0].data, req,
1474 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1475 		desc[0].retval = 0;
1476 		ret = hns3_cmd_send(hw, desc, desc_num);
1477 		resp_code = (rte_le_to_cpu_32(desc[0].data[0]) >> 8) & 0xff;
1478 		retval = rte_le_to_cpu_16(desc[0].retval);
1479 
1480 		cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1481 							  HNS3_MAC_VLAN_ADD);
1482 	}
1483 
1484 	if (ret) {
1485 		hns3_err(hw, "add mac addr failed for cmd_send, ret =%d", ret);
1486 		return ret;
1487 	}
1488 
1489 	return cfg_status;
1490 }
1491 
1492 static int
1493 hns3_remove_mac_vlan_tbl(struct hns3_hw *hw,
1494 			 struct hns3_mac_vlan_tbl_entry_cmd *req)
1495 {
1496 	struct hns3_cmd_desc desc;
1497 	uint8_t resp_code;
1498 	uint16_t retval;
1499 	int ret;
1500 
1501 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_REMOVE, false);
1502 
1503 	memcpy(desc.data, req, sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1504 
1505 	ret = hns3_cmd_send(hw, &desc, 1);
1506 	if (ret) {
1507 		hns3_err(hw, "del mac addr failed for cmd_send, ret =%d", ret);
1508 		return ret;
1509 	}
1510 	resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1511 	retval = rte_le_to_cpu_16(desc.retval);
1512 
1513 	return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1514 					    HNS3_MAC_VLAN_REMOVE);
1515 }
1516 
1517 static int
1518 hns3_add_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1519 {
1520 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1521 	struct hns3_mac_vlan_tbl_entry_cmd req;
1522 	struct hns3_pf *pf = &hns->pf;
1523 	struct hns3_cmd_desc desc;
1524 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1525 	uint16_t egress_port = 0;
1526 	uint8_t vf_id;
1527 	int ret;
1528 
1529 	/* check if mac addr is valid */
1530 	if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1531 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1532 				      mac_addr);
1533 		hns3_err(hw, "Add unicast mac addr err! addr(%s) invalid",
1534 			 mac_str);
1535 		return -EINVAL;
1536 	}
1537 
1538 	memset(&req, 0, sizeof(req));
1539 
1540 	/*
1541 	 * In current version VF is not supported when PF is driven by DPDK
1542 	 * driver, just need to configure parameters for PF vport.
1543 	 */
1544 	vf_id = HNS3_PF_FUNC_ID;
1545 	hns3_set_field(egress_port, HNS3_MAC_EPORT_VFID_M,
1546 		       HNS3_MAC_EPORT_VFID_S, vf_id);
1547 
1548 	req.egress_port = rte_cpu_to_le_16(egress_port);
1549 
1550 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1551 
1552 	/*
1553 	 * Lookup the mac address in the mac_vlan table, and add
1554 	 * it if the entry is inexistent. Repeated unicast entry
1555 	 * is not allowed in the mac vlan table.
1556 	 */
1557 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, &desc,
1558 					HNS3_UC_MAC_VLAN_OPS_DESC_NUM);
1559 	if (ret == -ENOENT) {
1560 		if (!hns3_is_umv_space_full(hw)) {
1561 			ret = hns3_add_mac_vlan_tbl(hw, &req, &desc,
1562 						HNS3_UC_MAC_VLAN_OPS_DESC_NUM);
1563 			if (!ret)
1564 				hns3_update_umv_space(hw, false);
1565 			return ret;
1566 		}
1567 
1568 		hns3_err(hw, "UC MAC table full(%u)", pf->used_umv_size);
1569 
1570 		return -ENOSPC;
1571 	}
1572 
1573 	hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, mac_addr);
1574 
1575 	/* check if we just hit the duplicate */
1576 	if (ret == 0) {
1577 		hns3_dbg(hw, "mac addr(%s) has been in the MAC table", mac_str);
1578 		return 0;
1579 	}
1580 
1581 	hns3_err(hw, "PF failed to add unicast entry(%s) in the MAC table",
1582 		 mac_str);
1583 
1584 	return ret;
1585 }
1586 
1587 static int
1588 hns3_remove_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1589 {
1590 	struct hns3_mac_vlan_tbl_entry_cmd req;
1591 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1592 	int ret;
1593 
1594 	/* check if mac addr is valid */
1595 	if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1596 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1597 				      mac_addr);
1598 		hns3_err(hw, "remove unicast mac addr err! addr(%s) invalid",
1599 			 mac_str);
1600 		return -EINVAL;
1601 	}
1602 
1603 	memset(&req, 0, sizeof(req));
1604 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1605 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1606 	ret = hns3_remove_mac_vlan_tbl(hw, &req);
1607 	if (ret == -ENOENT) /* mac addr isn't existent in the mac vlan table. */
1608 		return 0;
1609 	else if (ret == 0)
1610 		hns3_update_umv_space(hw, true);
1611 
1612 	return ret;
1613 }
1614 
1615 static int
1616 hns3_set_default_mac_addr(struct rte_eth_dev *dev,
1617 			  struct rte_ether_addr *mac_addr)
1618 {
1619 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1620 	struct rte_ether_addr *oaddr;
1621 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1622 	int ret, ret_val;
1623 
1624 	rte_spinlock_lock(&hw->lock);
1625 	oaddr = (struct rte_ether_addr *)hw->mac.mac_addr;
1626 	ret = hw->ops.del_uc_mac_addr(hw, oaddr);
1627 	if (ret) {
1628 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1629 				      oaddr);
1630 		hns3_warn(hw, "Remove old uc mac address(%s) fail: %d",
1631 			  mac_str, ret);
1632 
1633 		rte_spinlock_unlock(&hw->lock);
1634 		return ret;
1635 	}
1636 
1637 	ret = hw->ops.add_uc_mac_addr(hw, mac_addr);
1638 	if (ret) {
1639 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1640 				      mac_addr);
1641 		hns3_err(hw, "Failed to set mac addr(%s): %d", mac_str, ret);
1642 		goto err_add_uc_addr;
1643 	}
1644 
1645 	ret = hns3_pause_addr_cfg(hw, mac_addr->addr_bytes);
1646 	if (ret) {
1647 		hns3_err(hw, "Failed to configure mac pause address: %d", ret);
1648 		goto err_pause_addr_cfg;
1649 	}
1650 
1651 	rte_ether_addr_copy(mac_addr,
1652 			    (struct rte_ether_addr *)hw->mac.mac_addr);
1653 	rte_spinlock_unlock(&hw->lock);
1654 
1655 	return 0;
1656 
1657 err_pause_addr_cfg:
1658 	ret_val = hw->ops.del_uc_mac_addr(hw, mac_addr);
1659 	if (ret_val) {
1660 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1661 				      mac_addr);
1662 		hns3_warn(hw,
1663 			  "Failed to roll back to del setted mac addr(%s): %d",
1664 			  mac_str, ret_val);
1665 	}
1666 
1667 err_add_uc_addr:
1668 	ret_val = hw->ops.add_uc_mac_addr(hw, oaddr);
1669 	if (ret_val) {
1670 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, oaddr);
1671 		hns3_warn(hw, "Failed to restore old uc mac addr(%s): %d",
1672 				  mac_str, ret_val);
1673 	}
1674 	rte_spinlock_unlock(&hw->lock);
1675 
1676 	return ret;
1677 }
1678 
1679 static void
1680 hns3_update_desc_vfid(struct hns3_cmd_desc *desc, uint8_t vfid, bool clr)
1681 {
1682 #define HNS3_VF_NUM_IN_FIRST_DESC 192
1683 	uint8_t word_num;
1684 	uint8_t bit_num;
1685 
1686 	if (vfid < HNS3_VF_NUM_IN_FIRST_DESC) {
1687 		word_num = vfid / 32;
1688 		bit_num = vfid % 32;
1689 		if (clr)
1690 			desc[1].data[word_num] &=
1691 			    rte_cpu_to_le_32(~(1UL << bit_num));
1692 		else
1693 			desc[1].data[word_num] |=
1694 			    rte_cpu_to_le_32(1UL << bit_num);
1695 	} else {
1696 		word_num = (vfid - HNS3_VF_NUM_IN_FIRST_DESC) / 32;
1697 		bit_num = vfid % 32;
1698 		if (clr)
1699 			desc[2].data[word_num] &=
1700 			    rte_cpu_to_le_32(~(1UL << bit_num));
1701 		else
1702 			desc[2].data[word_num] |=
1703 			    rte_cpu_to_le_32(1UL << bit_num);
1704 	}
1705 }
1706 
1707 static int
1708 hns3_add_mc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1709 {
1710 	struct hns3_cmd_desc desc[HNS3_MC_MAC_VLAN_OPS_DESC_NUM];
1711 	struct hns3_mac_vlan_tbl_entry_cmd req;
1712 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1713 	uint8_t vf_id;
1714 	int ret;
1715 
1716 	/* Check if mac addr is valid */
1717 	if (!rte_is_multicast_ether_addr(mac_addr)) {
1718 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1719 				      mac_addr);
1720 		hns3_err(hw, "failed to add mc mac addr, addr(%s) invalid",
1721 			 mac_str);
1722 		return -EINVAL;
1723 	}
1724 
1725 	memset(&req, 0, sizeof(req));
1726 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1727 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1728 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc,
1729 					HNS3_MC_MAC_VLAN_OPS_DESC_NUM);
1730 	if (ret) {
1731 		/* This mac addr do not exist, add new entry for it */
1732 		memset(desc[0].data, 0, sizeof(desc[0].data));
1733 		memset(desc[1].data, 0, sizeof(desc[0].data));
1734 		memset(desc[2].data, 0, sizeof(desc[0].data));
1735 	}
1736 
1737 	/*
1738 	 * In current version VF is not supported when PF is driven by DPDK
1739 	 * driver, just need to configure parameters for PF vport.
1740 	 */
1741 	vf_id = HNS3_PF_FUNC_ID;
1742 	hns3_update_desc_vfid(desc, vf_id, false);
1743 	ret = hns3_add_mac_vlan_tbl(hw, &req, desc,
1744 					HNS3_MC_MAC_VLAN_OPS_DESC_NUM);
1745 	if (ret) {
1746 		if (ret == -ENOSPC)
1747 			hns3_err(hw, "mc mac vlan table is full");
1748 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1749 				      mac_addr);
1750 		hns3_err(hw, "failed to add mc mac addr(%s): %d", mac_str, ret);
1751 	}
1752 
1753 	return ret;
1754 }
1755 
1756 static int
1757 hns3_remove_mc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1758 {
1759 	struct hns3_mac_vlan_tbl_entry_cmd req;
1760 	struct hns3_cmd_desc desc[3];
1761 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1762 	uint8_t vf_id;
1763 	int ret;
1764 
1765 	/* Check if mac addr is valid */
1766 	if (!rte_is_multicast_ether_addr(mac_addr)) {
1767 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1768 				      mac_addr);
1769 		hns3_err(hw, "Failed to rm mc mac addr, addr(%s) invalid",
1770 			 mac_str);
1771 		return -EINVAL;
1772 	}
1773 
1774 	memset(&req, 0, sizeof(req));
1775 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1776 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1777 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc,
1778 					HNS3_MC_MAC_VLAN_OPS_DESC_NUM);
1779 	if (ret == 0) {
1780 		/*
1781 		 * This mac addr exist, remove this handle's VFID for it.
1782 		 * In current version VF is not supported when PF is driven by
1783 		 * DPDK driver, just need to configure parameters for PF vport.
1784 		 */
1785 		vf_id = HNS3_PF_FUNC_ID;
1786 		hns3_update_desc_vfid(desc, vf_id, true);
1787 
1788 		/* All the vfid is zero, so need to delete this entry */
1789 		ret = hns3_remove_mac_vlan_tbl(hw, &req);
1790 	} else if (ret == -ENOENT) {
1791 		/* This mac addr doesn't exist. */
1792 		return 0;
1793 	}
1794 
1795 	if (ret) {
1796 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1797 				      mac_addr);
1798 		hns3_err(hw, "Failed to rm mc mac addr(%s): %d", mac_str, ret);
1799 	}
1800 
1801 	return ret;
1802 }
1803 
1804 static int
1805 hns3_check_mq_mode(struct rte_eth_dev *dev)
1806 {
1807 	enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
1808 	enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
1809 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1810 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1811 	struct rte_eth_dcb_rx_conf *dcb_rx_conf;
1812 	struct rte_eth_dcb_tx_conf *dcb_tx_conf;
1813 	uint8_t num_tc;
1814 	int max_tc = 0;
1815 	int i;
1816 
1817 	if (((uint32_t)rx_mq_mode & RTE_ETH_MQ_RX_VMDQ_FLAG) ||
1818 	    (tx_mq_mode == RTE_ETH_MQ_TX_VMDQ_DCB ||
1819 	     tx_mq_mode == RTE_ETH_MQ_TX_VMDQ_ONLY)) {
1820 		hns3_err(hw, "VMDQ is not supported, rx_mq_mode = %d, tx_mq_mode = %d.",
1821 			 rx_mq_mode, tx_mq_mode);
1822 		return -EOPNOTSUPP;
1823 	}
1824 
1825 	dcb_rx_conf = &dev->data->dev_conf.rx_adv_conf.dcb_rx_conf;
1826 	dcb_tx_conf = &dev->data->dev_conf.tx_adv_conf.dcb_tx_conf;
1827 	if ((uint32_t)rx_mq_mode & RTE_ETH_MQ_RX_DCB_FLAG) {
1828 		if (dcb_rx_conf->nb_tcs > pf->tc_max) {
1829 			hns3_err(hw, "nb_tcs(%u) > max_tc(%u) driver supported.",
1830 				 dcb_rx_conf->nb_tcs, pf->tc_max);
1831 			return -EINVAL;
1832 		}
1833 
1834 		if (!(dcb_rx_conf->nb_tcs == HNS3_4_TCS ||
1835 		      dcb_rx_conf->nb_tcs == HNS3_8_TCS)) {
1836 			hns3_err(hw, "on RTE_ETH_MQ_RX_DCB_RSS mode, "
1837 				 "nb_tcs(%d) != %d or %d in rx direction.",
1838 				 dcb_rx_conf->nb_tcs, HNS3_4_TCS, HNS3_8_TCS);
1839 			return -EINVAL;
1840 		}
1841 
1842 		if (dcb_rx_conf->nb_tcs != dcb_tx_conf->nb_tcs) {
1843 			hns3_err(hw, "num_tcs(%d) of tx is not equal to rx(%d)",
1844 				 dcb_tx_conf->nb_tcs, dcb_rx_conf->nb_tcs);
1845 			return -EINVAL;
1846 		}
1847 
1848 		for (i = 0; i < HNS3_MAX_USER_PRIO; i++) {
1849 			if (dcb_rx_conf->dcb_tc[i] != dcb_tx_conf->dcb_tc[i]) {
1850 				hns3_err(hw, "dcb_tc[%d] = %u in rx direction, "
1851 					 "is not equal to one in tx direction.",
1852 					 i, dcb_rx_conf->dcb_tc[i]);
1853 				return -EINVAL;
1854 			}
1855 			if (dcb_rx_conf->dcb_tc[i] > max_tc)
1856 				max_tc = dcb_rx_conf->dcb_tc[i];
1857 		}
1858 
1859 		num_tc = max_tc + 1;
1860 		if (num_tc > dcb_rx_conf->nb_tcs) {
1861 			hns3_err(hw, "max num_tc(%u) mapped > nb_tcs(%u)",
1862 				 num_tc, dcb_rx_conf->nb_tcs);
1863 			return -EINVAL;
1864 		}
1865 	}
1866 
1867 	return 0;
1868 }
1869 
1870 static int
1871 hns3_bind_ring_with_vector(struct hns3_hw *hw, uint16_t vector_id, bool en,
1872 			   enum hns3_ring_type queue_type, uint16_t queue_id)
1873 {
1874 	struct hns3_cmd_desc desc;
1875 	struct hns3_ctrl_vector_chain_cmd *req =
1876 		(struct hns3_ctrl_vector_chain_cmd *)desc.data;
1877 	enum hns3_opcode_type op;
1878 	uint16_t tqp_type_and_id = 0;
1879 	uint16_t type;
1880 	uint16_t gl;
1881 	int ret;
1882 
1883 	op = en ? HNS3_OPC_ADD_RING_TO_VECTOR : HNS3_OPC_DEL_RING_TO_VECTOR;
1884 	hns3_cmd_setup_basic_desc(&desc, op, false);
1885 	req->int_vector_id = hns3_get_field(vector_id, HNS3_TQP_INT_ID_L_M,
1886 					      HNS3_TQP_INT_ID_L_S);
1887 	req->int_vector_id_h = hns3_get_field(vector_id, HNS3_TQP_INT_ID_H_M,
1888 					      HNS3_TQP_INT_ID_H_S);
1889 
1890 	if (queue_type == HNS3_RING_TYPE_RX)
1891 		gl = HNS3_RING_GL_RX;
1892 	else
1893 		gl = HNS3_RING_GL_TX;
1894 
1895 	type = queue_type;
1896 
1897 	hns3_set_field(tqp_type_and_id, HNS3_INT_TYPE_M, HNS3_INT_TYPE_S,
1898 		       type);
1899 	hns3_set_field(tqp_type_and_id, HNS3_TQP_ID_M, HNS3_TQP_ID_S, queue_id);
1900 	hns3_set_field(tqp_type_and_id, HNS3_INT_GL_IDX_M, HNS3_INT_GL_IDX_S,
1901 		       gl);
1902 	req->tqp_type_and_id[0] = rte_cpu_to_le_16(tqp_type_and_id);
1903 	req->int_cause_num = 1;
1904 	ret = hns3_cmd_send(hw, &desc, 1);
1905 	if (ret) {
1906 		hns3_err(hw, "%s TQP %u fail, vector_id = %u, ret = %d.",
1907 			 en ? "Map" : "Unmap", queue_id, vector_id, ret);
1908 		return ret;
1909 	}
1910 
1911 	return 0;
1912 }
1913 
1914 static int
1915 hns3_setup_dcb(struct rte_eth_dev *dev)
1916 {
1917 	struct hns3_adapter *hns = dev->data->dev_private;
1918 	struct hns3_hw *hw = &hns->hw;
1919 	int ret;
1920 
1921 	if (!hns3_dev_get_support(hw, DCB)) {
1922 		hns3_err(hw, "this port does not support dcb configurations.");
1923 		return -EOPNOTSUPP;
1924 	}
1925 
1926 	if (hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE) {
1927 		hns3_err(hw, "MAC pause enabled, cannot config dcb info.");
1928 		return -EOPNOTSUPP;
1929 	}
1930 
1931 	ret = hns3_dcb_configure(hns);
1932 	if (ret)
1933 		hns3_err(hw, "failed to config dcb: %d", ret);
1934 
1935 	return ret;
1936 }
1937 
1938 static int
1939 hns3_check_link_speed(struct hns3_hw *hw, uint32_t link_speeds)
1940 {
1941 	int ret;
1942 
1943 	/*
1944 	 * Some hardware doesn't support auto-negotiation, but users may not
1945 	 * configure link_speeds (default 0), which means auto-negotiation.
1946 	 * In this case, it should return success.
1947 	 */
1948 	if (link_speeds == RTE_ETH_LINK_SPEED_AUTONEG &&
1949 	    hw->mac.support_autoneg == 0)
1950 		return 0;
1951 
1952 	if (link_speeds != RTE_ETH_LINK_SPEED_AUTONEG) {
1953 		ret = hns3_check_port_speed(hw, link_speeds);
1954 		if (ret)
1955 			return ret;
1956 	}
1957 
1958 	return 0;
1959 }
1960 
1961 static int
1962 hns3_check_dev_conf(struct rte_eth_dev *dev)
1963 {
1964 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1965 	struct rte_eth_conf *conf = &dev->data->dev_conf;
1966 	int ret;
1967 
1968 	ret = hns3_check_mq_mode(dev);
1969 	if (ret)
1970 		return ret;
1971 
1972 	return hns3_check_link_speed(hw, conf->link_speeds);
1973 }
1974 
1975 static int
1976 hns3_dev_configure(struct rte_eth_dev *dev)
1977 {
1978 	struct hns3_adapter *hns = dev->data->dev_private;
1979 	struct rte_eth_conf *conf = &dev->data->dev_conf;
1980 	enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
1981 	struct hns3_hw *hw = &hns->hw;
1982 	uint16_t nb_rx_q = dev->data->nb_rx_queues;
1983 	uint16_t nb_tx_q = dev->data->nb_tx_queues;
1984 	struct rte_eth_rss_conf rss_conf;
1985 	bool gro_en;
1986 	int ret;
1987 
1988 	hw->cfg_max_queues = RTE_MAX(nb_rx_q, nb_tx_q);
1989 
1990 	/*
1991 	 * Some versions of hardware network engine does not support
1992 	 * individually enable/disable/reset the Tx or Rx queue. These devices
1993 	 * must enable/disable/reset Tx and Rx queues at the same time. When the
1994 	 * numbers of Tx queues allocated by upper applications are not equal to
1995 	 * the numbers of Rx queues, driver needs to setup fake Tx or Rx queues
1996 	 * to adjust numbers of Tx/Rx queues. otherwise, network engine can not
1997 	 * work as usual. But these fake queues are imperceptible, and can not
1998 	 * be used by upper applications.
1999 	 */
2000 	ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
2001 	if (ret) {
2002 		hns3_err(hw, "fail to set Rx/Tx fake queues, ret = %d.", ret);
2003 		hw->cfg_max_queues = 0;
2004 		return ret;
2005 	}
2006 
2007 	hw->adapter_state = HNS3_NIC_CONFIGURING;
2008 	ret = hns3_check_dev_conf(dev);
2009 	if (ret)
2010 		goto cfg_err;
2011 
2012 	if ((uint32_t)mq_mode & RTE_ETH_MQ_RX_DCB_FLAG) {
2013 		ret = hns3_setup_dcb(dev);
2014 		if (ret)
2015 			goto cfg_err;
2016 	}
2017 
2018 	/* When RSS is not configured, redirect the packet queue 0 */
2019 	if ((uint32_t)mq_mode & RTE_ETH_MQ_RX_RSS_FLAG) {
2020 		conf->rxmode.offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2021 		rss_conf = conf->rx_adv_conf.rss_conf;
2022 		hw->rss_dis_flag = false;
2023 		ret = hns3_dev_rss_hash_update(dev, &rss_conf);
2024 		if (ret)
2025 			goto cfg_err;
2026 	}
2027 
2028 	ret = hns3_dev_mtu_set(dev, conf->rxmode.mtu);
2029 	if (ret != 0)
2030 		goto cfg_err;
2031 
2032 	ret = hns3_mbuf_dyn_rx_timestamp_register(dev, conf);
2033 	if (ret)
2034 		goto cfg_err;
2035 
2036 	ret = hns3_dev_configure_vlan(dev);
2037 	if (ret)
2038 		goto cfg_err;
2039 
2040 	/* config hardware GRO */
2041 	gro_en = conf->rxmode.offloads & RTE_ETH_RX_OFFLOAD_TCP_LRO ? true : false;
2042 	ret = hns3_config_gro(hw, gro_en);
2043 	if (ret)
2044 		goto cfg_err;
2045 
2046 	hns3_init_rx_ptype_tble(dev);
2047 	hw->adapter_state = HNS3_NIC_CONFIGURED;
2048 
2049 	return 0;
2050 
2051 cfg_err:
2052 	hw->cfg_max_queues = 0;
2053 	(void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
2054 	hw->adapter_state = HNS3_NIC_INITIALIZED;
2055 
2056 	return ret;
2057 }
2058 
2059 static int
2060 hns3_set_mac_mtu(struct hns3_hw *hw, uint16_t new_mps)
2061 {
2062 	struct hns3_config_max_frm_size_cmd *req;
2063 	struct hns3_cmd_desc desc;
2064 
2065 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAX_FRM_SIZE, false);
2066 
2067 	req = (struct hns3_config_max_frm_size_cmd *)desc.data;
2068 	req->max_frm_size = rte_cpu_to_le_16(new_mps);
2069 	req->min_frm_size = RTE_ETHER_MIN_LEN;
2070 
2071 	return hns3_cmd_send(hw, &desc, 1);
2072 }
2073 
2074 static int
2075 hns3_config_mtu(struct hns3_hw *hw, uint16_t mps)
2076 {
2077 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2078 	int err;
2079 	int ret;
2080 
2081 	ret = hns3_set_mac_mtu(hw, mps);
2082 	if (ret) {
2083 		hns3_err(hw, "failed to set mtu, ret = %d", ret);
2084 		return ret;
2085 	}
2086 
2087 	ret = hns3_buffer_alloc(hw);
2088 	if (ret) {
2089 		hns3_err(hw, "failed to allocate buffer, ret = %d", ret);
2090 		goto rollback;
2091 	}
2092 
2093 	hns->pf.mps = mps;
2094 
2095 	return 0;
2096 
2097 rollback:
2098 	err = hns3_set_mac_mtu(hw, hns->pf.mps);
2099 	if (err)
2100 		hns3_err(hw, "fail to rollback MTU, err = %d", err);
2101 
2102 	return ret;
2103 }
2104 
2105 static int
2106 hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
2107 {
2108 	struct hns3_adapter *hns = dev->data->dev_private;
2109 	uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
2110 	struct hns3_hw *hw = &hns->hw;
2111 	int ret;
2112 
2113 	if (dev->data->dev_started) {
2114 		hns3_err(hw, "Failed to set mtu, port %u must be stopped "
2115 			 "before configuration", dev->data->port_id);
2116 		return -EBUSY;
2117 	}
2118 
2119 	rte_spinlock_lock(&hw->lock);
2120 	frame_size = RTE_MAX(frame_size, HNS3_DEFAULT_FRAME_LEN);
2121 
2122 	/*
2123 	 * Maximum value of frame_size is HNS3_MAX_FRAME_LEN, so it can safely
2124 	 * assign to "uint16_t" type variable.
2125 	 */
2126 	ret = hns3_config_mtu(hw, (uint16_t)frame_size);
2127 	if (ret) {
2128 		rte_spinlock_unlock(&hw->lock);
2129 		hns3_err(hw, "Failed to set mtu, port %u mtu %u: %d",
2130 			 dev->data->port_id, mtu, ret);
2131 		return ret;
2132 	}
2133 
2134 	rte_spinlock_unlock(&hw->lock);
2135 
2136 	return 0;
2137 }
2138 
2139 static uint32_t
2140 hns3_get_copper_port_speed_capa(uint32_t supported_speed)
2141 {
2142 	uint32_t speed_capa = 0;
2143 
2144 	if (supported_speed & HNS3_PHY_LINK_SPEED_10M_HD_BIT)
2145 		speed_capa |= RTE_ETH_LINK_SPEED_10M_HD;
2146 	if (supported_speed & HNS3_PHY_LINK_SPEED_10M_BIT)
2147 		speed_capa |= RTE_ETH_LINK_SPEED_10M;
2148 	if (supported_speed & HNS3_PHY_LINK_SPEED_100M_HD_BIT)
2149 		speed_capa |= RTE_ETH_LINK_SPEED_100M_HD;
2150 	if (supported_speed & HNS3_PHY_LINK_SPEED_100M_BIT)
2151 		speed_capa |= RTE_ETH_LINK_SPEED_100M;
2152 	if (supported_speed & HNS3_PHY_LINK_SPEED_1000M_BIT)
2153 		speed_capa |= RTE_ETH_LINK_SPEED_1G;
2154 
2155 	return speed_capa;
2156 }
2157 
2158 static uint32_t
2159 hns3_get_firber_port_speed_capa(uint32_t supported_speed)
2160 {
2161 	uint32_t speed_capa = 0;
2162 
2163 	if (supported_speed & HNS3_FIBER_LINK_SPEED_1G_BIT)
2164 		speed_capa |= RTE_ETH_LINK_SPEED_1G;
2165 	if (supported_speed & HNS3_FIBER_LINK_SPEED_10G_BIT)
2166 		speed_capa |= RTE_ETH_LINK_SPEED_10G;
2167 	if (supported_speed & HNS3_FIBER_LINK_SPEED_25G_BIT)
2168 		speed_capa |= RTE_ETH_LINK_SPEED_25G;
2169 	if (supported_speed & HNS3_FIBER_LINK_SPEED_40G_BIT)
2170 		speed_capa |= RTE_ETH_LINK_SPEED_40G;
2171 	if (supported_speed & HNS3_FIBER_LINK_SPEED_50G_BIT)
2172 		speed_capa |= RTE_ETH_LINK_SPEED_50G;
2173 	if (supported_speed & HNS3_FIBER_LINK_SPEED_100G_BIT)
2174 		speed_capa |= RTE_ETH_LINK_SPEED_100G;
2175 	if (supported_speed & HNS3_FIBER_LINK_SPEED_200G_BIT)
2176 		speed_capa |= RTE_ETH_LINK_SPEED_200G;
2177 
2178 	return speed_capa;
2179 }
2180 
2181 uint32_t
2182 hns3_get_speed_capa(struct hns3_hw *hw)
2183 {
2184 	struct hns3_mac *mac = &hw->mac;
2185 	uint32_t speed_capa;
2186 
2187 	if (mac->media_type == HNS3_MEDIA_TYPE_COPPER)
2188 		speed_capa =
2189 			hns3_get_copper_port_speed_capa(mac->supported_speed);
2190 	else
2191 		speed_capa =
2192 			hns3_get_firber_port_speed_capa(mac->supported_speed);
2193 
2194 	if (mac->support_autoneg == 0)
2195 		speed_capa |= RTE_ETH_LINK_SPEED_FIXED;
2196 
2197 	return speed_capa;
2198 }
2199 
2200 static int
2201 hns3_update_port_link_info(struct rte_eth_dev *eth_dev)
2202 {
2203 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2204 	int ret;
2205 
2206 	(void)hns3_update_link_status(hw);
2207 
2208 	ret = hns3_update_link_info(eth_dev);
2209 	if (ret)
2210 		hw->mac.link_status = RTE_ETH_LINK_DOWN;
2211 
2212 	return ret;
2213 }
2214 
2215 static void
2216 hns3_setup_linkstatus(struct rte_eth_dev *eth_dev,
2217 		      struct rte_eth_link *new_link)
2218 {
2219 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2220 	struct hns3_mac *mac = &hw->mac;
2221 
2222 	switch (mac->link_speed) {
2223 	case RTE_ETH_SPEED_NUM_10M:
2224 	case RTE_ETH_SPEED_NUM_100M:
2225 	case RTE_ETH_SPEED_NUM_1G:
2226 	case RTE_ETH_SPEED_NUM_10G:
2227 	case RTE_ETH_SPEED_NUM_25G:
2228 	case RTE_ETH_SPEED_NUM_40G:
2229 	case RTE_ETH_SPEED_NUM_50G:
2230 	case RTE_ETH_SPEED_NUM_100G:
2231 	case RTE_ETH_SPEED_NUM_200G:
2232 		if (mac->link_status)
2233 			new_link->link_speed = mac->link_speed;
2234 		break;
2235 	default:
2236 		if (mac->link_status)
2237 			new_link->link_speed = RTE_ETH_SPEED_NUM_UNKNOWN;
2238 		break;
2239 	}
2240 
2241 	if (!mac->link_status)
2242 		new_link->link_speed = RTE_ETH_SPEED_NUM_NONE;
2243 
2244 	new_link->link_duplex = mac->link_duplex;
2245 	new_link->link_status = mac->link_status ? RTE_ETH_LINK_UP : RTE_ETH_LINK_DOWN;
2246 	new_link->link_autoneg = mac->link_autoneg;
2247 }
2248 
2249 static int
2250 hns3_dev_link_update(struct rte_eth_dev *eth_dev, int wait_to_complete)
2251 {
2252 #define HNS3_LINK_CHECK_INTERVAL 100  /* 100ms */
2253 #define HNS3_MAX_LINK_CHECK_TIMES 20  /* 2s (100 * 20ms) in total */
2254 
2255 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2256 	uint32_t retry_cnt = HNS3_MAX_LINK_CHECK_TIMES;
2257 	struct hns3_mac *mac = &hw->mac;
2258 	struct rte_eth_link new_link;
2259 	int ret;
2260 
2261 	/* When port is stopped, report link down. */
2262 	if (eth_dev->data->dev_started == 0) {
2263 		new_link.link_autoneg = mac->link_autoneg;
2264 		new_link.link_duplex = mac->link_duplex;
2265 		new_link.link_speed = RTE_ETH_SPEED_NUM_NONE;
2266 		new_link.link_status = RTE_ETH_LINK_DOWN;
2267 		goto out;
2268 	}
2269 
2270 	do {
2271 		ret = hns3_update_port_link_info(eth_dev);
2272 		if (ret) {
2273 			hns3_err(hw, "failed to get port link info, ret = %d.",
2274 				 ret);
2275 			break;
2276 		}
2277 
2278 		if (!wait_to_complete || mac->link_status == RTE_ETH_LINK_UP)
2279 			break;
2280 
2281 		rte_delay_ms(HNS3_LINK_CHECK_INTERVAL);
2282 	} while (retry_cnt--);
2283 
2284 	memset(&new_link, 0, sizeof(new_link));
2285 	hns3_setup_linkstatus(eth_dev, &new_link);
2286 
2287 out:
2288 	return rte_eth_linkstatus_set(eth_dev, &new_link);
2289 }
2290 
2291 static int
2292 hns3_dev_set_link_up(struct rte_eth_dev *dev)
2293 {
2294 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2295 	int ret;
2296 
2297 	/*
2298 	 * The "tx_pkt_burst" will be restored. But the secondary process does
2299 	 * not support the mechanism for notifying the primary process.
2300 	 */
2301 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2302 		hns3_err(hw, "secondary process does not support to set link up.");
2303 		return -ENOTSUP;
2304 	}
2305 
2306 	/*
2307 	 * If device isn't started Rx/Tx function is still disabled, setting
2308 	 * link up is not allowed. But it is probably better to return success
2309 	 * to reduce the impact on the upper layer.
2310 	 */
2311 	if (hw->adapter_state != HNS3_NIC_STARTED) {
2312 		hns3_info(hw, "device isn't started, can't set link up.");
2313 		return 0;
2314 	}
2315 
2316 	if (!hw->set_link_down)
2317 		return 0;
2318 
2319 	rte_spinlock_lock(&hw->lock);
2320 	ret = hns3_cfg_mac_mode(hw, true);
2321 	if (ret) {
2322 		rte_spinlock_unlock(&hw->lock);
2323 		hns3_err(hw, "failed to set link up, ret = %d", ret);
2324 		return ret;
2325 	}
2326 
2327 	hw->set_link_down = false;
2328 	hns3_start_tx_datapath(dev);
2329 	rte_spinlock_unlock(&hw->lock);
2330 
2331 	return 0;
2332 }
2333 
2334 static int
2335 hns3_dev_set_link_down(struct rte_eth_dev *dev)
2336 {
2337 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2338 	int ret;
2339 
2340 	/*
2341 	 * The "tx_pkt_burst" will be set to dummy function. But the secondary
2342 	 * process does not support the mechanism for notifying the primary
2343 	 * process.
2344 	 */
2345 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2346 		hns3_err(hw, "secondary process does not support to set link down.");
2347 		return -ENOTSUP;
2348 	}
2349 
2350 	/*
2351 	 * If device isn't started or the API has been called, link status is
2352 	 * down, return success.
2353 	 */
2354 	if (hw->adapter_state != HNS3_NIC_STARTED || hw->set_link_down)
2355 		return 0;
2356 
2357 	rte_spinlock_lock(&hw->lock);
2358 	hns3_stop_tx_datapath(dev);
2359 	ret = hns3_cfg_mac_mode(hw, false);
2360 	if (ret) {
2361 		hns3_start_tx_datapath(dev);
2362 		rte_spinlock_unlock(&hw->lock);
2363 		hns3_err(hw, "failed to set link down, ret = %d", ret);
2364 		return ret;
2365 	}
2366 
2367 	hw->set_link_down = true;
2368 	rte_spinlock_unlock(&hw->lock);
2369 
2370 	return 0;
2371 }
2372 
2373 static int
2374 hns3_parse_func_status(struct hns3_hw *hw, struct hns3_func_status_cmd *status)
2375 {
2376 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2377 	struct hns3_pf *pf = &hns->pf;
2378 
2379 	if (!(status->pf_state & HNS3_PF_STATE_DONE))
2380 		return -EINVAL;
2381 
2382 	pf->is_main_pf = (status->pf_state & HNS3_PF_STATE_MAIN) ? true : false;
2383 
2384 	return 0;
2385 }
2386 
2387 static int
2388 hns3_query_function_status(struct hns3_hw *hw)
2389 {
2390 #define HNS3_QUERY_MAX_CNT		10
2391 #define HNS3_QUERY_SLEEP_MSCOEND	1
2392 	struct hns3_func_status_cmd *req;
2393 	struct hns3_cmd_desc desc;
2394 	int timeout = 0;
2395 	int ret;
2396 
2397 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_FUNC_STATUS, true);
2398 	req = (struct hns3_func_status_cmd *)desc.data;
2399 
2400 	do {
2401 		ret = hns3_cmd_send(hw, &desc, 1);
2402 		if (ret) {
2403 			PMD_INIT_LOG(ERR, "query function status failed %d",
2404 				     ret);
2405 			return ret;
2406 		}
2407 
2408 		/* Check pf reset is done */
2409 		if (req->pf_state)
2410 			break;
2411 
2412 		rte_delay_ms(HNS3_QUERY_SLEEP_MSCOEND);
2413 	} while (timeout++ < HNS3_QUERY_MAX_CNT);
2414 
2415 	return hns3_parse_func_status(hw, req);
2416 }
2417 
2418 static int
2419 hns3_get_pf_max_tqp_num(struct hns3_hw *hw)
2420 {
2421 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2422 	struct hns3_pf *pf = &hns->pf;
2423 
2424 	if (pf->tqp_config_mode == HNS3_FLEX_MAX_TQP_NUM_MODE) {
2425 		/*
2426 		 * The total_tqps_num obtained from firmware is maximum tqp
2427 		 * numbers of this port, which should be used for PF and VFs.
2428 		 * There is no need for pf to have so many tqp numbers in
2429 		 * most cases. RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF,
2430 		 * coming from config file, is assigned to maximum queue number
2431 		 * for the PF of this port by user. So users can modify the
2432 		 * maximum queue number of PF according to their own application
2433 		 * scenarios, which is more flexible to use. In addition, many
2434 		 * memories can be saved due to allocating queue statistics
2435 		 * room according to the actual number of queues required. The
2436 		 * maximum queue number of PF for network engine with
2437 		 * revision_id greater than 0x30 is assigned by config file.
2438 		 */
2439 		if (RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF <= 0) {
2440 			hns3_err(hw, "RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF(%d) "
2441 				 "must be greater than 0.",
2442 				 RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF);
2443 			return -EINVAL;
2444 		}
2445 
2446 		hw->tqps_num = RTE_MIN(RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF,
2447 				       hw->total_tqps_num);
2448 	} else {
2449 		/*
2450 		 * Due to the limitation on the number of PF interrupts
2451 		 * available, the maximum queue number assigned to PF on
2452 		 * the network engine with revision_id 0x21 is 64.
2453 		 */
2454 		hw->tqps_num = RTE_MIN(hw->total_tqps_num,
2455 				       HNS3_MAX_TQP_NUM_HIP08_PF);
2456 	}
2457 
2458 	return 0;
2459 }
2460 
2461 static int
2462 hns3_query_pf_resource(struct hns3_hw *hw)
2463 {
2464 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2465 	struct hns3_pf *pf = &hns->pf;
2466 	struct hns3_pf_res_cmd *req;
2467 	struct hns3_cmd_desc desc;
2468 	int ret;
2469 
2470 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_PF_RSRC, true);
2471 	ret = hns3_cmd_send(hw, &desc, 1);
2472 	if (ret) {
2473 		PMD_INIT_LOG(ERR, "query pf resource failed %d", ret);
2474 		return ret;
2475 	}
2476 
2477 	req = (struct hns3_pf_res_cmd *)desc.data;
2478 	hw->total_tqps_num = rte_le_to_cpu_16(req->tqp_num) +
2479 			     rte_le_to_cpu_16(req->ext_tqp_num);
2480 	ret = hns3_get_pf_max_tqp_num(hw);
2481 	if (ret)
2482 		return ret;
2483 
2484 	pf->pkt_buf_size = rte_le_to_cpu_16(req->buf_size) << HNS3_BUF_UNIT_S;
2485 	pf->func_num = rte_le_to_cpu_16(req->pf_own_fun_number);
2486 
2487 	if (req->tx_buf_size)
2488 		pf->tx_buf_size =
2489 		    rte_le_to_cpu_16(req->tx_buf_size) << HNS3_BUF_UNIT_S;
2490 	else
2491 		pf->tx_buf_size = HNS3_DEFAULT_TX_BUF;
2492 
2493 	pf->tx_buf_size = roundup(pf->tx_buf_size, HNS3_BUF_SIZE_UNIT);
2494 
2495 	if (req->dv_buf_size)
2496 		pf->dv_buf_size =
2497 		    rte_le_to_cpu_16(req->dv_buf_size) << HNS3_BUF_UNIT_S;
2498 	else
2499 		pf->dv_buf_size = HNS3_DEFAULT_DV;
2500 
2501 	pf->dv_buf_size = roundup(pf->dv_buf_size, HNS3_BUF_SIZE_UNIT);
2502 
2503 	hw->num_msi =
2504 		hns3_get_field(rte_le_to_cpu_16(req->nic_pf_intr_vector_number),
2505 			       HNS3_PF_VEC_NUM_M, HNS3_PF_VEC_NUM_S);
2506 
2507 	return 0;
2508 }
2509 
2510 static void
2511 hns3_parse_cfg(struct hns3_cfg *cfg, struct hns3_cmd_desc *desc)
2512 {
2513 	struct hns3_cfg_param_cmd *req;
2514 	uint64_t mac_addr_tmp_high;
2515 	uint8_t ext_rss_size_max;
2516 	uint64_t mac_addr_tmp;
2517 	uint32_t i;
2518 
2519 	req = (struct hns3_cfg_param_cmd *)desc[0].data;
2520 
2521 	/* get the configuration */
2522 	cfg->tc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2523 				     HNS3_CFG_TC_NUM_M, HNS3_CFG_TC_NUM_S);
2524 
2525 	cfg->phy_addr = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2526 				       HNS3_CFG_PHY_ADDR_M,
2527 				       HNS3_CFG_PHY_ADDR_S);
2528 	cfg->media_type = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2529 					 HNS3_CFG_MEDIA_TP_M,
2530 					 HNS3_CFG_MEDIA_TP_S);
2531 	/* get mac address */
2532 	mac_addr_tmp = rte_le_to_cpu_32(req->param[2]);
2533 	mac_addr_tmp_high = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2534 					   HNS3_CFG_MAC_ADDR_H_M,
2535 					   HNS3_CFG_MAC_ADDR_H_S);
2536 
2537 	mac_addr_tmp |= (mac_addr_tmp_high << 31) << 1;
2538 
2539 	cfg->default_speed = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2540 					    HNS3_CFG_DEFAULT_SPEED_M,
2541 					    HNS3_CFG_DEFAULT_SPEED_S);
2542 	cfg->rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2543 					   HNS3_CFG_RSS_SIZE_M,
2544 					   HNS3_CFG_RSS_SIZE_S);
2545 
2546 	for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
2547 		cfg->mac_addr[i] = (mac_addr_tmp >> (8 * i)) & 0xff;
2548 
2549 	req = (struct hns3_cfg_param_cmd *)desc[1].data;
2550 	cfg->numa_node_map = rte_le_to_cpu_32(req->param[0]);
2551 
2552 	cfg->speed_ability = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2553 					    HNS3_CFG_SPEED_ABILITY_M,
2554 					    HNS3_CFG_SPEED_ABILITY_S);
2555 	cfg->umv_space = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2556 					HNS3_CFG_UMV_TBL_SPACE_M,
2557 					HNS3_CFG_UMV_TBL_SPACE_S);
2558 	if (!cfg->umv_space)
2559 		cfg->umv_space = HNS3_DEFAULT_UMV_SPACE_PER_PF;
2560 
2561 	ext_rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[2]),
2562 					       HNS3_CFG_EXT_RSS_SIZE_M,
2563 					       HNS3_CFG_EXT_RSS_SIZE_S);
2564 	/*
2565 	 * Field ext_rss_size_max obtained from firmware will be more flexible
2566 	 * for future changes and expansions, which is an exponent of 2, instead
2567 	 * of reading out directly. If this field is not zero, hns3 PF PMD
2568 	 * uses it as rss_size_max under one TC. Device, whose revision
2569 	 * id is greater than or equal to PCI_REVISION_ID_HIP09_A, obtains the
2570 	 * maximum number of queues supported under a TC through this field.
2571 	 */
2572 	if (ext_rss_size_max)
2573 		cfg->rss_size_max = 1U << ext_rss_size_max;
2574 }
2575 
2576 /* hns3_get_board_cfg: query the static parameter from NCL_config file in flash
2577  * @hw: pointer to struct hns3_hw
2578  * @hcfg: the config structure to be getted
2579  */
2580 static int
2581 hns3_get_board_cfg(struct hns3_hw *hw, struct hns3_cfg *hcfg)
2582 {
2583 	struct hns3_cmd_desc desc[HNS3_PF_CFG_DESC_NUM];
2584 	struct hns3_cfg_param_cmd *req;
2585 	uint32_t offset;
2586 	uint32_t i;
2587 	int ret;
2588 
2589 	for (i = 0; i < HNS3_PF_CFG_DESC_NUM; i++) {
2590 		offset = 0;
2591 		req = (struct hns3_cfg_param_cmd *)desc[i].data;
2592 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_CFG_PARAM,
2593 					  true);
2594 		hns3_set_field(offset, HNS3_CFG_OFFSET_M, HNS3_CFG_OFFSET_S,
2595 			       i * HNS3_CFG_RD_LEN_BYTES);
2596 		/* Len should be divided by 4 when send to hardware */
2597 		hns3_set_field(offset, HNS3_CFG_RD_LEN_M, HNS3_CFG_RD_LEN_S,
2598 			       HNS3_CFG_RD_LEN_BYTES / HNS3_CFG_RD_LEN_UNIT);
2599 		req->offset = rte_cpu_to_le_32(offset);
2600 	}
2601 
2602 	ret = hns3_cmd_send(hw, desc, HNS3_PF_CFG_DESC_NUM);
2603 	if (ret) {
2604 		PMD_INIT_LOG(ERR, "get config failed %d.", ret);
2605 		return ret;
2606 	}
2607 
2608 	hns3_parse_cfg(hcfg, desc);
2609 
2610 	return 0;
2611 }
2612 
2613 static int
2614 hns3_parse_speed(int speed_cmd, uint32_t *speed)
2615 {
2616 	switch (speed_cmd) {
2617 	case HNS3_CFG_SPEED_10M:
2618 		*speed = RTE_ETH_SPEED_NUM_10M;
2619 		break;
2620 	case HNS3_CFG_SPEED_100M:
2621 		*speed = RTE_ETH_SPEED_NUM_100M;
2622 		break;
2623 	case HNS3_CFG_SPEED_1G:
2624 		*speed = RTE_ETH_SPEED_NUM_1G;
2625 		break;
2626 	case HNS3_CFG_SPEED_10G:
2627 		*speed = RTE_ETH_SPEED_NUM_10G;
2628 		break;
2629 	case HNS3_CFG_SPEED_25G:
2630 		*speed = RTE_ETH_SPEED_NUM_25G;
2631 		break;
2632 	case HNS3_CFG_SPEED_40G:
2633 		*speed = RTE_ETH_SPEED_NUM_40G;
2634 		break;
2635 	case HNS3_CFG_SPEED_50G:
2636 		*speed = RTE_ETH_SPEED_NUM_50G;
2637 		break;
2638 	case HNS3_CFG_SPEED_100G:
2639 		*speed = RTE_ETH_SPEED_NUM_100G;
2640 		break;
2641 	case HNS3_CFG_SPEED_200G:
2642 		*speed = RTE_ETH_SPEED_NUM_200G;
2643 		break;
2644 	default:
2645 		return -EINVAL;
2646 	}
2647 
2648 	return 0;
2649 }
2650 
2651 static void
2652 hns3_set_default_dev_specifications(struct hns3_hw *hw)
2653 {
2654 	hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
2655 	hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
2656 	hw->rss_key_size = HNS3_RSS_KEY_SIZE;
2657 	hw->max_tm_rate = HNS3_ETHER_MAX_RATE;
2658 	hw->intr.int_ql_max = HNS3_INTR_QL_NONE;
2659 }
2660 
2661 static void
2662 hns3_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
2663 {
2664 	struct hns3_dev_specs_0_cmd *req0;
2665 
2666 	req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
2667 
2668 	hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
2669 	hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
2670 	hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
2671 	hw->max_tm_rate = rte_le_to_cpu_32(req0->max_tm_rate);
2672 	hw->intr.int_ql_max = rte_le_to_cpu_16(req0->intr_ql_max);
2673 }
2674 
2675 static int
2676 hns3_check_dev_specifications(struct hns3_hw *hw)
2677 {
2678 	if (hw->rss_ind_tbl_size == 0 ||
2679 	    hw->rss_ind_tbl_size > HNS3_RSS_IND_TBL_SIZE_MAX) {
2680 		hns3_err(hw, "the size of hash lookup table configured (%u)"
2681 			      " exceeds the maximum(%u)", hw->rss_ind_tbl_size,
2682 			      HNS3_RSS_IND_TBL_SIZE_MAX);
2683 		return -EINVAL;
2684 	}
2685 
2686 	return 0;
2687 }
2688 
2689 static int
2690 hns3_query_dev_specifications(struct hns3_hw *hw)
2691 {
2692 	struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
2693 	int ret;
2694 	int i;
2695 
2696 	for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
2697 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
2698 					  true);
2699 		desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
2700 	}
2701 	hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
2702 
2703 	ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
2704 	if (ret)
2705 		return ret;
2706 
2707 	hns3_parse_dev_specifications(hw, desc);
2708 
2709 	return hns3_check_dev_specifications(hw);
2710 }
2711 
2712 static int
2713 hns3_get_capability(struct hns3_hw *hw)
2714 {
2715 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2716 	struct rte_pci_device *pci_dev;
2717 	struct hns3_pf *pf = &hns->pf;
2718 	struct rte_eth_dev *eth_dev;
2719 	uint16_t device_id;
2720 	int ret;
2721 
2722 	eth_dev = &rte_eth_devices[hw->data->port_id];
2723 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2724 	device_id = pci_dev->id.device_id;
2725 
2726 	if (device_id == HNS3_DEV_ID_25GE_RDMA ||
2727 	    device_id == HNS3_DEV_ID_50GE_RDMA ||
2728 	    device_id == HNS3_DEV_ID_100G_RDMA_MACSEC ||
2729 	    device_id == HNS3_DEV_ID_200G_RDMA)
2730 		hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_DCB_B, 1);
2731 
2732 	ret = hns3_get_pci_revision_id(hw, &hw->revision);
2733 	if (ret)
2734 		return ret;
2735 
2736 	ret = hns3_query_mac_stats_reg_num(hw);
2737 	if (ret)
2738 		return ret;
2739 
2740 	if (hw->revision < PCI_REVISION_ID_HIP09_A) {
2741 		hns3_set_default_dev_specifications(hw);
2742 		hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
2743 		hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
2744 		hw->tso_mode = HNS3_TSO_SW_CAL_PSEUDO_H_CSUM;
2745 		hw->vlan_mode = HNS3_SW_SHIFT_AND_DISCARD_MODE;
2746 		hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE1;
2747 		hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
2748 		pf->tqp_config_mode = HNS3_FIXED_MAX_TQP_NUM_MODE;
2749 		hw->rss_info.ipv6_sctp_offload_supported = false;
2750 		hw->udp_cksum_mode = HNS3_SPECIAL_PORT_SW_CKSUM_MODE;
2751 		pf->support_multi_tc_pause = false;
2752 		return 0;
2753 	}
2754 
2755 	ret = hns3_query_dev_specifications(hw);
2756 	if (ret) {
2757 		PMD_INIT_LOG(ERR,
2758 			     "failed to query dev specifications, ret = %d",
2759 			     ret);
2760 		return ret;
2761 	}
2762 
2763 	hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
2764 	hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
2765 	hw->tso_mode = HNS3_TSO_HW_CAL_PSEUDO_H_CSUM;
2766 	hw->vlan_mode = HNS3_HW_SHIFT_AND_DISCARD_MODE;
2767 	hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE2;
2768 	hw->min_tx_pkt_len = HNS3_HIP09_MIN_TX_PKT_LEN;
2769 	pf->tqp_config_mode = HNS3_FLEX_MAX_TQP_NUM_MODE;
2770 	hw->rss_info.ipv6_sctp_offload_supported = true;
2771 	hw->udp_cksum_mode = HNS3_SPECIAL_PORT_HW_CKSUM_MODE;
2772 	pf->support_multi_tc_pause = true;
2773 
2774 	return 0;
2775 }
2776 
2777 static int
2778 hns3_check_media_type(struct hns3_hw *hw, uint8_t media_type)
2779 {
2780 	int ret;
2781 
2782 	switch (media_type) {
2783 	case HNS3_MEDIA_TYPE_COPPER:
2784 		if (!hns3_dev_get_support(hw, COPPER)) {
2785 			PMD_INIT_LOG(ERR,
2786 				     "Media type is copper, not supported.");
2787 			ret = -EOPNOTSUPP;
2788 		} else {
2789 			ret = 0;
2790 		}
2791 		break;
2792 	case HNS3_MEDIA_TYPE_FIBER:
2793 		ret = 0;
2794 		break;
2795 	case HNS3_MEDIA_TYPE_BACKPLANE:
2796 		PMD_INIT_LOG(ERR, "Media type is Backplane, not supported.");
2797 		ret = -EOPNOTSUPP;
2798 		break;
2799 	default:
2800 		PMD_INIT_LOG(ERR, "Unknown media type = %u!", media_type);
2801 		ret = -EINVAL;
2802 		break;
2803 	}
2804 
2805 	return ret;
2806 }
2807 
2808 static int
2809 hns3_get_board_configuration(struct hns3_hw *hw)
2810 {
2811 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2812 	struct hns3_pf *pf = &hns->pf;
2813 	struct hns3_cfg cfg;
2814 	int ret;
2815 
2816 	ret = hns3_get_board_cfg(hw, &cfg);
2817 	if (ret) {
2818 		PMD_INIT_LOG(ERR, "get board config failed %d", ret);
2819 		return ret;
2820 	}
2821 
2822 	ret = hns3_check_media_type(hw, cfg.media_type);
2823 	if (ret)
2824 		return ret;
2825 
2826 	hw->mac.media_type = cfg.media_type;
2827 	hw->rss_size_max = cfg.rss_size_max;
2828 	hw->rss_dis_flag = false;
2829 	memcpy(hw->mac.mac_addr, cfg.mac_addr, RTE_ETHER_ADDR_LEN);
2830 	hw->mac.phy_addr = cfg.phy_addr;
2831 	hw->dcb_info.num_pg = 1;
2832 	hw->dcb_info.hw_pfc_map = 0;
2833 
2834 	ret = hns3_parse_speed(cfg.default_speed, &hw->mac.link_speed);
2835 	if (ret) {
2836 		PMD_INIT_LOG(ERR, "Get wrong speed %u, ret = %d",
2837 			     cfg.default_speed, ret);
2838 		return ret;
2839 	}
2840 
2841 	pf->tc_max = cfg.tc_num;
2842 	if (pf->tc_max > HNS3_MAX_TC_NUM || pf->tc_max < 1) {
2843 		PMD_INIT_LOG(WARNING,
2844 			     "Get TC num(%u) from flash, set TC num to 1",
2845 			     pf->tc_max);
2846 		pf->tc_max = 1;
2847 	}
2848 
2849 	/* Dev does not support DCB */
2850 	if (!hns3_dev_get_support(hw, DCB)) {
2851 		pf->tc_max = 1;
2852 		pf->pfc_max = 0;
2853 	} else
2854 		pf->pfc_max = pf->tc_max;
2855 
2856 	hw->dcb_info.num_tc = 1;
2857 	hw->alloc_rss_size = RTE_MIN(hw->rss_size_max,
2858 				     hw->tqps_num / hw->dcb_info.num_tc);
2859 	hns3_set_bit(hw->hw_tc_map, 0, 1);
2860 	pf->tx_sch_mode = HNS3_FLAG_TC_BASE_SCH_MODE;
2861 
2862 	pf->wanted_umv_size = cfg.umv_space;
2863 
2864 	return ret;
2865 }
2866 
2867 static int
2868 hns3_get_configuration(struct hns3_hw *hw)
2869 {
2870 	int ret;
2871 
2872 	ret = hns3_query_function_status(hw);
2873 	if (ret) {
2874 		PMD_INIT_LOG(ERR, "Failed to query function status: %d.", ret);
2875 		return ret;
2876 	}
2877 
2878 	/* Get device capability */
2879 	ret = hns3_get_capability(hw);
2880 	if (ret) {
2881 		PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
2882 		return ret;
2883 	}
2884 
2885 	/* Get pf resource */
2886 	ret = hns3_query_pf_resource(hw);
2887 	if (ret) {
2888 		PMD_INIT_LOG(ERR, "Failed to query pf resource: %d", ret);
2889 		return ret;
2890 	}
2891 
2892 	ret = hns3_get_board_configuration(hw);
2893 	if (ret) {
2894 		PMD_INIT_LOG(ERR, "failed to get board configuration: %d", ret);
2895 		return ret;
2896 	}
2897 
2898 	ret = hns3_query_dev_fec_info(hw);
2899 	if (ret)
2900 		PMD_INIT_LOG(ERR,
2901 			     "failed to query FEC information, ret = %d", ret);
2902 
2903 	return ret;
2904 }
2905 
2906 static int
2907 hns3_map_tqps_to_func(struct hns3_hw *hw, uint16_t func_id, uint16_t tqp_pid,
2908 		      uint16_t tqp_vid, bool is_pf)
2909 {
2910 	struct hns3_tqp_map_cmd *req;
2911 	struct hns3_cmd_desc desc;
2912 	int ret;
2913 
2914 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SET_TQP_MAP, false);
2915 
2916 	req = (struct hns3_tqp_map_cmd *)desc.data;
2917 	req->tqp_id = rte_cpu_to_le_16(tqp_pid);
2918 	req->tqp_vf = func_id;
2919 	req->tqp_flag = 1 << HNS3_TQP_MAP_EN_B;
2920 	if (!is_pf)
2921 		req->tqp_flag |= (1 << HNS3_TQP_MAP_TYPE_B);
2922 	req->tqp_vid = rte_cpu_to_le_16(tqp_vid);
2923 
2924 	ret = hns3_cmd_send(hw, &desc, 1);
2925 	if (ret)
2926 		PMD_INIT_LOG(ERR, "TQP map failed %d", ret);
2927 
2928 	return ret;
2929 }
2930 
2931 static int
2932 hns3_map_tqp(struct hns3_hw *hw)
2933 {
2934 	int ret;
2935 	int i;
2936 
2937 	/*
2938 	 * In current version, VF is not supported when PF is driven by DPDK
2939 	 * driver, so we assign total tqps_num tqps allocated to this port
2940 	 * to PF.
2941 	 */
2942 	for (i = 0; i < hw->total_tqps_num; i++) {
2943 		ret = hns3_map_tqps_to_func(hw, HNS3_PF_FUNC_ID, i, i, true);
2944 		if (ret)
2945 			return ret;
2946 	}
2947 
2948 	return 0;
2949 }
2950 
2951 static int
2952 hns3_cfg_mac_speed_dup_hw(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
2953 {
2954 	struct hns3_config_mac_speed_dup_cmd *req;
2955 	struct hns3_cmd_desc desc;
2956 	int ret;
2957 
2958 	req = (struct hns3_config_mac_speed_dup_cmd *)desc.data;
2959 
2960 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_SPEED_DUP, false);
2961 
2962 	hns3_set_bit(req->speed_dup, HNS3_CFG_DUPLEX_B, !!duplex ? 1 : 0);
2963 
2964 	switch (speed) {
2965 	case RTE_ETH_SPEED_NUM_10M:
2966 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2967 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10M);
2968 		break;
2969 	case RTE_ETH_SPEED_NUM_100M:
2970 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2971 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100M);
2972 		break;
2973 	case RTE_ETH_SPEED_NUM_1G:
2974 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2975 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_1G);
2976 		break;
2977 	case RTE_ETH_SPEED_NUM_10G:
2978 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2979 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10G);
2980 		break;
2981 	case RTE_ETH_SPEED_NUM_25G:
2982 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2983 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_25G);
2984 		break;
2985 	case RTE_ETH_SPEED_NUM_40G:
2986 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2987 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_40G);
2988 		break;
2989 	case RTE_ETH_SPEED_NUM_50G:
2990 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2991 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_50G);
2992 		break;
2993 	case RTE_ETH_SPEED_NUM_100G:
2994 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2995 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100G);
2996 		break;
2997 	case RTE_ETH_SPEED_NUM_200G:
2998 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2999 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_200G);
3000 		break;
3001 	default:
3002 		PMD_INIT_LOG(ERR, "invalid speed (%u)", speed);
3003 		return -EINVAL;
3004 	}
3005 
3006 	hns3_set_bit(req->mac_change_fec_en, HNS3_CFG_MAC_SPEED_CHANGE_EN_B, 1);
3007 
3008 	ret = hns3_cmd_send(hw, &desc, 1);
3009 	if (ret)
3010 		PMD_INIT_LOG(ERR, "mac speed/duplex config cmd failed %d", ret);
3011 
3012 	return ret;
3013 }
3014 
3015 static int
3016 hns3_tx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3017 {
3018 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3019 	struct hns3_pf *pf = &hns->pf;
3020 	struct hns3_priv_buf *priv;
3021 	uint32_t i, total_size;
3022 
3023 	total_size = pf->pkt_buf_size;
3024 
3025 	/* alloc tx buffer for all enabled tc */
3026 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3027 		priv = &buf_alloc->priv_buf[i];
3028 
3029 		if (hw->hw_tc_map & BIT(i)) {
3030 			if (total_size < pf->tx_buf_size)
3031 				return -ENOMEM;
3032 
3033 			priv->tx_buf_size = pf->tx_buf_size;
3034 		} else
3035 			priv->tx_buf_size = 0;
3036 
3037 		total_size -= priv->tx_buf_size;
3038 	}
3039 
3040 	return 0;
3041 }
3042 
3043 static int
3044 hns3_tx_buffer_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3045 {
3046 /* TX buffer size is unit by 128 byte */
3047 #define HNS3_BUF_SIZE_UNIT_SHIFT	7
3048 #define HNS3_BUF_SIZE_UPDATE_EN_MSK	BIT(15)
3049 	struct hns3_tx_buff_alloc_cmd *req;
3050 	struct hns3_cmd_desc desc;
3051 	uint32_t buf_size;
3052 	uint32_t i;
3053 	int ret;
3054 
3055 	req = (struct hns3_tx_buff_alloc_cmd *)desc.data;
3056 
3057 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TX_BUFF_ALLOC, 0);
3058 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3059 		buf_size = buf_alloc->priv_buf[i].tx_buf_size;
3060 
3061 		buf_size = buf_size >> HNS3_BUF_SIZE_UNIT_SHIFT;
3062 		req->tx_pkt_buff[i] = rte_cpu_to_le_16(buf_size |
3063 						HNS3_BUF_SIZE_UPDATE_EN_MSK);
3064 	}
3065 
3066 	ret = hns3_cmd_send(hw, &desc, 1);
3067 	if (ret)
3068 		PMD_INIT_LOG(ERR, "tx buffer alloc cmd failed %d", ret);
3069 
3070 	return ret;
3071 }
3072 
3073 static int
3074 hns3_get_tc_num(struct hns3_hw *hw)
3075 {
3076 	int cnt = 0;
3077 	uint8_t i;
3078 
3079 	for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3080 		if (hw->hw_tc_map & BIT(i))
3081 			cnt++;
3082 	return cnt;
3083 }
3084 
3085 static uint32_t
3086 hns3_get_rx_priv_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3087 {
3088 	struct hns3_priv_buf *priv;
3089 	uint32_t rx_priv = 0;
3090 	int i;
3091 
3092 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3093 		priv = &buf_alloc->priv_buf[i];
3094 		if (priv->enable)
3095 			rx_priv += priv->buf_size;
3096 	}
3097 	return rx_priv;
3098 }
3099 
3100 static uint32_t
3101 hns3_get_tx_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3102 {
3103 	uint32_t total_tx_size = 0;
3104 	uint32_t i;
3105 
3106 	for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3107 		total_tx_size += buf_alloc->priv_buf[i].tx_buf_size;
3108 
3109 	return total_tx_size;
3110 }
3111 
3112 /* Get the number of pfc enabled TCs, which have private buffer */
3113 static int
3114 hns3_get_pfc_priv_num(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3115 {
3116 	struct hns3_priv_buf *priv;
3117 	int cnt = 0;
3118 	uint8_t i;
3119 
3120 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3121 		priv = &buf_alloc->priv_buf[i];
3122 		if ((hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3123 			cnt++;
3124 	}
3125 
3126 	return cnt;
3127 }
3128 
3129 /* Get the number of pfc disabled TCs, which have private buffer */
3130 static int
3131 hns3_get_no_pfc_priv_num(struct hns3_hw *hw,
3132 			 struct hns3_pkt_buf_alloc *buf_alloc)
3133 {
3134 	struct hns3_priv_buf *priv;
3135 	int cnt = 0;
3136 	uint8_t i;
3137 
3138 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3139 		priv = &buf_alloc->priv_buf[i];
3140 		if (hw->hw_tc_map & BIT(i) &&
3141 		    !(hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3142 			cnt++;
3143 	}
3144 
3145 	return cnt;
3146 }
3147 
3148 static bool
3149 hns3_is_rx_buf_ok(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc,
3150 		  uint32_t rx_all)
3151 {
3152 	uint32_t shared_buf_min, shared_buf_tc, shared_std, hi_thrd, lo_thrd;
3153 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3154 	struct hns3_pf *pf = &hns->pf;
3155 	uint32_t shared_buf, aligned_mps;
3156 	uint32_t rx_priv;
3157 	uint8_t tc_num;
3158 	uint8_t i;
3159 
3160 	tc_num = hns3_get_tc_num(hw);
3161 	aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3162 
3163 	if (hns3_dev_get_support(hw, DCB))
3164 		shared_buf_min = HNS3_BUF_MUL_BY * aligned_mps +
3165 					pf->dv_buf_size;
3166 	else
3167 		shared_buf_min = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF
3168 					+ pf->dv_buf_size;
3169 
3170 	shared_buf_tc = tc_num * aligned_mps + aligned_mps;
3171 	shared_std = roundup(RTE_MAX(shared_buf_min, shared_buf_tc),
3172 			     HNS3_BUF_SIZE_UNIT);
3173 
3174 	rx_priv = hns3_get_rx_priv_buff_alloced(buf_alloc);
3175 	if (rx_all < rx_priv + shared_std)
3176 		return false;
3177 
3178 	shared_buf = rounddown(rx_all - rx_priv, HNS3_BUF_SIZE_UNIT);
3179 	buf_alloc->s_buf.buf_size = shared_buf;
3180 	if (hns3_dev_get_support(hw, DCB)) {
3181 		buf_alloc->s_buf.self.high = shared_buf - pf->dv_buf_size;
3182 		buf_alloc->s_buf.self.low = buf_alloc->s_buf.self.high
3183 			- roundup(aligned_mps / HNS3_BUF_DIV_BY,
3184 				  HNS3_BUF_SIZE_UNIT);
3185 	} else {
3186 		buf_alloc->s_buf.self.high =
3187 			aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3188 		buf_alloc->s_buf.self.low = aligned_mps;
3189 	}
3190 
3191 	if (hns3_dev_get_support(hw, DCB)) {
3192 		hi_thrd = shared_buf - pf->dv_buf_size;
3193 
3194 		if (tc_num <= NEED_RESERVE_TC_NUM)
3195 			hi_thrd = hi_thrd * BUF_RESERVE_PERCENT /
3196 				  BUF_MAX_PERCENT;
3197 
3198 		if (tc_num)
3199 			hi_thrd = hi_thrd / tc_num;
3200 
3201 		hi_thrd = RTE_MAX(hi_thrd, HNS3_BUF_MUL_BY * aligned_mps);
3202 		hi_thrd = rounddown(hi_thrd, HNS3_BUF_SIZE_UNIT);
3203 		lo_thrd = hi_thrd - aligned_mps / HNS3_BUF_DIV_BY;
3204 	} else {
3205 		hi_thrd = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3206 		lo_thrd = aligned_mps;
3207 	}
3208 
3209 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3210 		buf_alloc->s_buf.tc_thrd[i].low = lo_thrd;
3211 		buf_alloc->s_buf.tc_thrd[i].high = hi_thrd;
3212 	}
3213 
3214 	return true;
3215 }
3216 
3217 static bool
3218 hns3_rx_buf_calc_all(struct hns3_hw *hw, bool max,
3219 		     struct hns3_pkt_buf_alloc *buf_alloc)
3220 {
3221 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3222 	struct hns3_pf *pf = &hns->pf;
3223 	struct hns3_priv_buf *priv;
3224 	uint32_t aligned_mps;
3225 	uint32_t rx_all;
3226 	uint8_t i;
3227 
3228 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3229 	aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3230 
3231 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3232 		priv = &buf_alloc->priv_buf[i];
3233 
3234 		priv->enable = 0;
3235 		priv->wl.low = 0;
3236 		priv->wl.high = 0;
3237 		priv->buf_size = 0;
3238 
3239 		if (!(hw->hw_tc_map & BIT(i)))
3240 			continue;
3241 
3242 		priv->enable = 1;
3243 		if (hw->dcb_info.hw_pfc_map & BIT(i)) {
3244 			priv->wl.low = max ? aligned_mps : HNS3_BUF_SIZE_UNIT;
3245 			priv->wl.high = roundup(priv->wl.low + aligned_mps,
3246 						HNS3_BUF_SIZE_UNIT);
3247 		} else {
3248 			priv->wl.low = 0;
3249 			priv->wl.high = max ? (aligned_mps * HNS3_BUF_MUL_BY) :
3250 					aligned_mps;
3251 		}
3252 
3253 		priv->buf_size = priv->wl.high + pf->dv_buf_size;
3254 	}
3255 
3256 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3257 }
3258 
3259 static bool
3260 hns3_drop_nopfc_buf_till_fit(struct hns3_hw *hw,
3261 			     struct hns3_pkt_buf_alloc *buf_alloc)
3262 {
3263 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3264 	struct hns3_pf *pf = &hns->pf;
3265 	struct hns3_priv_buf *priv;
3266 	int no_pfc_priv_num;
3267 	uint32_t rx_all;
3268 	uint8_t mask;
3269 	int i;
3270 
3271 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3272 	no_pfc_priv_num = hns3_get_no_pfc_priv_num(hw, buf_alloc);
3273 
3274 	/* let the last to be cleared first */
3275 	for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3276 		priv = &buf_alloc->priv_buf[i];
3277 		mask = BIT((uint8_t)i);
3278 		if (hw->hw_tc_map & mask &&
3279 		    !(hw->dcb_info.hw_pfc_map & mask)) {
3280 			/* Clear the no pfc TC private buffer */
3281 			priv->wl.low = 0;
3282 			priv->wl.high = 0;
3283 			priv->buf_size = 0;
3284 			priv->enable = 0;
3285 			no_pfc_priv_num--;
3286 		}
3287 
3288 		if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3289 		    no_pfc_priv_num == 0)
3290 			break;
3291 	}
3292 
3293 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3294 }
3295 
3296 static bool
3297 hns3_drop_pfc_buf_till_fit(struct hns3_hw *hw,
3298 			   struct hns3_pkt_buf_alloc *buf_alloc)
3299 {
3300 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3301 	struct hns3_pf *pf = &hns->pf;
3302 	struct hns3_priv_buf *priv;
3303 	uint32_t rx_all;
3304 	int pfc_priv_num;
3305 	uint8_t mask;
3306 	int i;
3307 
3308 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3309 	pfc_priv_num = hns3_get_pfc_priv_num(hw, buf_alloc);
3310 
3311 	/* let the last to be cleared first */
3312 	for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3313 		priv = &buf_alloc->priv_buf[i];
3314 		mask = BIT((uint8_t)i);
3315 		if (hw->hw_tc_map & mask && hw->dcb_info.hw_pfc_map & mask) {
3316 			/* Reduce the number of pfc TC with private buffer */
3317 			priv->wl.low = 0;
3318 			priv->enable = 0;
3319 			priv->wl.high = 0;
3320 			priv->buf_size = 0;
3321 			pfc_priv_num--;
3322 		}
3323 		if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3324 		    pfc_priv_num == 0)
3325 			break;
3326 	}
3327 
3328 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3329 }
3330 
3331 static bool
3332 hns3_only_alloc_priv_buff(struct hns3_hw *hw,
3333 			  struct hns3_pkt_buf_alloc *buf_alloc)
3334 {
3335 #define COMPENSATE_BUFFER	0x3C00
3336 #define COMPENSATE_HALF_MPS_NUM	5
3337 #define PRIV_WL_GAP		0x1800
3338 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3339 	struct hns3_pf *pf = &hns->pf;
3340 	uint32_t tc_num = hns3_get_tc_num(hw);
3341 	uint32_t half_mps = pf->mps >> 1;
3342 	struct hns3_priv_buf *priv;
3343 	uint32_t min_rx_priv;
3344 	uint32_t rx_priv;
3345 	uint8_t i;
3346 
3347 	rx_priv = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3348 	if (tc_num)
3349 		rx_priv = rx_priv / tc_num;
3350 
3351 	if (tc_num <= NEED_RESERVE_TC_NUM)
3352 		rx_priv = rx_priv * BUF_RESERVE_PERCENT / BUF_MAX_PERCENT;
3353 
3354 	/*
3355 	 * Minimum value of private buffer in rx direction (min_rx_priv) is
3356 	 * equal to "DV + 2.5 * MPS + 15KB". Driver only allocates rx private
3357 	 * buffer if rx_priv is greater than min_rx_priv.
3358 	 */
3359 	min_rx_priv = pf->dv_buf_size + COMPENSATE_BUFFER +
3360 			COMPENSATE_HALF_MPS_NUM * half_mps;
3361 	min_rx_priv = roundup(min_rx_priv, HNS3_BUF_SIZE_UNIT);
3362 	rx_priv = rounddown(rx_priv, HNS3_BUF_SIZE_UNIT);
3363 	if (rx_priv < min_rx_priv)
3364 		return false;
3365 
3366 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3367 		priv = &buf_alloc->priv_buf[i];
3368 		priv->enable = 0;
3369 		priv->wl.low = 0;
3370 		priv->wl.high = 0;
3371 		priv->buf_size = 0;
3372 
3373 		if (!(hw->hw_tc_map & BIT(i)))
3374 			continue;
3375 
3376 		priv->enable = 1;
3377 		priv->buf_size = rx_priv;
3378 		priv->wl.high = rx_priv - pf->dv_buf_size;
3379 		priv->wl.low = priv->wl.high - PRIV_WL_GAP;
3380 	}
3381 
3382 	buf_alloc->s_buf.buf_size = 0;
3383 
3384 	return true;
3385 }
3386 
3387 /*
3388  * hns3_rx_buffer_calc: calculate the rx private buffer size for all TCs
3389  * @hw: pointer to struct hns3_hw
3390  * @buf_alloc: pointer to buffer calculation data
3391  * @return: 0: calculate successful, negative: fail
3392  */
3393 static int
3394 hns3_rx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3395 {
3396 	/* When DCB is not supported, rx private buffer is not allocated. */
3397 	if (!hns3_dev_get_support(hw, DCB)) {
3398 		struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3399 		struct hns3_pf *pf = &hns->pf;
3400 		uint32_t rx_all = pf->pkt_buf_size;
3401 
3402 		rx_all -= hns3_get_tx_buff_alloced(buf_alloc);
3403 		if (!hns3_is_rx_buf_ok(hw, buf_alloc, rx_all))
3404 			return -ENOMEM;
3405 
3406 		return 0;
3407 	}
3408 
3409 	/*
3410 	 * Try to allocate privated packet buffer for all TCs without share
3411 	 * buffer.
3412 	 */
3413 	if (hns3_only_alloc_priv_buff(hw, buf_alloc))
3414 		return 0;
3415 
3416 	/*
3417 	 * Try to allocate privated packet buffer for all TCs with share
3418 	 * buffer.
3419 	 */
3420 	if (hns3_rx_buf_calc_all(hw, true, buf_alloc))
3421 		return 0;
3422 
3423 	/*
3424 	 * For different application scenes, the enabled port number, TC number
3425 	 * and no_drop TC number are different. In order to obtain the better
3426 	 * performance, software could allocate the buffer size and configure
3427 	 * the waterline by trying to decrease the private buffer size according
3428 	 * to the order, namely, waterline of valid tc, pfc disabled tc, pfc
3429 	 * enabled tc.
3430 	 */
3431 	if (hns3_rx_buf_calc_all(hw, false, buf_alloc))
3432 		return 0;
3433 
3434 	if (hns3_drop_nopfc_buf_till_fit(hw, buf_alloc))
3435 		return 0;
3436 
3437 	if (hns3_drop_pfc_buf_till_fit(hw, buf_alloc))
3438 		return 0;
3439 
3440 	return -ENOMEM;
3441 }
3442 
3443 static int
3444 hns3_rx_priv_buf_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3445 {
3446 	struct hns3_rx_priv_buff_cmd *req;
3447 	struct hns3_cmd_desc desc;
3448 	uint32_t buf_size;
3449 	int ret;
3450 	int i;
3451 
3452 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_PRIV_BUFF_ALLOC, false);
3453 	req = (struct hns3_rx_priv_buff_cmd *)desc.data;
3454 
3455 	/* Alloc private buffer TCs */
3456 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3457 		struct hns3_priv_buf *priv = &buf_alloc->priv_buf[i];
3458 
3459 		req->buf_num[i] =
3460 			rte_cpu_to_le_16(priv->buf_size >> HNS3_BUF_UNIT_S);
3461 		req->buf_num[i] |= rte_cpu_to_le_16(1 << HNS3_TC0_PRI_BUF_EN_B);
3462 	}
3463 
3464 	buf_size = buf_alloc->s_buf.buf_size;
3465 	req->shared_buf = rte_cpu_to_le_16((buf_size >> HNS3_BUF_UNIT_S) |
3466 					   (1 << HNS3_TC0_PRI_BUF_EN_B));
3467 
3468 	ret = hns3_cmd_send(hw, &desc, 1);
3469 	if (ret)
3470 		PMD_INIT_LOG(ERR, "rx private buffer alloc cmd failed %d", ret);
3471 
3472 	return ret;
3473 }
3474 
3475 static int
3476 hns3_rx_priv_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3477 {
3478 #define HNS3_RX_PRIV_WL_ALLOC_DESC_NUM 2
3479 	struct hns3_rx_priv_wl_buf *req;
3480 	struct hns3_priv_buf *priv;
3481 	struct hns3_cmd_desc desc[HNS3_RX_PRIV_WL_ALLOC_DESC_NUM];
3482 	int i, j;
3483 	int ret;
3484 
3485 	for (i = 0; i < HNS3_RX_PRIV_WL_ALLOC_DESC_NUM; i++) {
3486 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_PRIV_WL_ALLOC,
3487 					  false);
3488 		req = (struct hns3_rx_priv_wl_buf *)desc[i].data;
3489 
3490 		/* The first descriptor set the NEXT bit to 1 */
3491 		if (i == 0)
3492 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3493 		else
3494 			desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3495 
3496 		for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3497 			uint32_t idx = i * HNS3_TC_NUM_ONE_DESC + j;
3498 
3499 			priv = &buf_alloc->priv_buf[idx];
3500 			req->tc_wl[j].high = rte_cpu_to_le_16(priv->wl.high >>
3501 							HNS3_BUF_UNIT_S);
3502 			req->tc_wl[j].high |=
3503 				rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3504 			req->tc_wl[j].low = rte_cpu_to_le_16(priv->wl.low >>
3505 							HNS3_BUF_UNIT_S);
3506 			req->tc_wl[j].low |=
3507 				rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3508 		}
3509 	}
3510 
3511 	/* Send 2 descriptor at one time */
3512 	ret = hns3_cmd_send(hw, desc, HNS3_RX_PRIV_WL_ALLOC_DESC_NUM);
3513 	if (ret)
3514 		PMD_INIT_LOG(ERR, "rx private waterline config cmd failed %d",
3515 			     ret);
3516 	return ret;
3517 }
3518 
3519 static int
3520 hns3_common_thrd_config(struct hns3_hw *hw,
3521 			struct hns3_pkt_buf_alloc *buf_alloc)
3522 {
3523 #define HNS3_RX_COM_THRD_ALLOC_DESC_NUM 2
3524 	struct hns3_shared_buf *s_buf = &buf_alloc->s_buf;
3525 	struct hns3_rx_com_thrd *req;
3526 	struct hns3_cmd_desc desc[HNS3_RX_COM_THRD_ALLOC_DESC_NUM];
3527 	struct hns3_tc_thrd *tc;
3528 	int tc_idx;
3529 	int i, j;
3530 	int ret;
3531 
3532 	for (i = 0; i < HNS3_RX_COM_THRD_ALLOC_DESC_NUM; i++) {
3533 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_COM_THRD_ALLOC,
3534 					  false);
3535 		req = (struct hns3_rx_com_thrd *)&desc[i].data;
3536 
3537 		/* The first descriptor set the NEXT bit to 1 */
3538 		if (i == 0)
3539 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3540 		else
3541 			desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3542 
3543 		for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3544 			tc_idx = i * HNS3_TC_NUM_ONE_DESC + j;
3545 			tc = &s_buf->tc_thrd[tc_idx];
3546 
3547 			req->com_thrd[j].high =
3548 				rte_cpu_to_le_16(tc->high >> HNS3_BUF_UNIT_S);
3549 			req->com_thrd[j].high |=
3550 				 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3551 			req->com_thrd[j].low =
3552 				rte_cpu_to_le_16(tc->low >> HNS3_BUF_UNIT_S);
3553 			req->com_thrd[j].low |=
3554 				 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3555 		}
3556 	}
3557 
3558 	/* Send 2 descriptors at one time */
3559 	ret = hns3_cmd_send(hw, desc, HNS3_RX_COM_THRD_ALLOC_DESC_NUM);
3560 	if (ret)
3561 		PMD_INIT_LOG(ERR, "common threshold config cmd failed %d", ret);
3562 
3563 	return ret;
3564 }
3565 
3566 static int
3567 hns3_common_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3568 {
3569 	struct hns3_shared_buf *buf = &buf_alloc->s_buf;
3570 	struct hns3_rx_com_wl *req;
3571 	struct hns3_cmd_desc desc;
3572 	int ret;
3573 
3574 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_COM_WL_ALLOC, false);
3575 
3576 	req = (struct hns3_rx_com_wl *)desc.data;
3577 	req->com_wl.high = rte_cpu_to_le_16(buf->self.high >> HNS3_BUF_UNIT_S);
3578 	req->com_wl.high |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3579 
3580 	req->com_wl.low = rte_cpu_to_le_16(buf->self.low >> HNS3_BUF_UNIT_S);
3581 	req->com_wl.low |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3582 
3583 	ret = hns3_cmd_send(hw, &desc, 1);
3584 	if (ret)
3585 		PMD_INIT_LOG(ERR, "common waterline config cmd failed %d", ret);
3586 
3587 	return ret;
3588 }
3589 
3590 int
3591 hns3_buffer_alloc(struct hns3_hw *hw)
3592 {
3593 	struct hns3_pkt_buf_alloc pkt_buf;
3594 	int ret;
3595 
3596 	memset(&pkt_buf, 0, sizeof(pkt_buf));
3597 	ret = hns3_tx_buffer_calc(hw, &pkt_buf);
3598 	if (ret) {
3599 		PMD_INIT_LOG(ERR,
3600 			     "could not calc tx buffer size for all TCs %d",
3601 			     ret);
3602 		return ret;
3603 	}
3604 
3605 	ret = hns3_tx_buffer_alloc(hw, &pkt_buf);
3606 	if (ret) {
3607 		PMD_INIT_LOG(ERR, "could not alloc tx buffers %d", ret);
3608 		return ret;
3609 	}
3610 
3611 	ret = hns3_rx_buffer_calc(hw, &pkt_buf);
3612 	if (ret) {
3613 		PMD_INIT_LOG(ERR,
3614 			     "could not calc rx priv buffer size for all TCs %d",
3615 			     ret);
3616 		return ret;
3617 	}
3618 
3619 	ret = hns3_rx_priv_buf_alloc(hw, &pkt_buf);
3620 	if (ret) {
3621 		PMD_INIT_LOG(ERR, "could not alloc rx priv buffer %d", ret);
3622 		return ret;
3623 	}
3624 
3625 	if (hns3_dev_get_support(hw, DCB)) {
3626 		ret = hns3_rx_priv_wl_config(hw, &pkt_buf);
3627 		if (ret) {
3628 			PMD_INIT_LOG(ERR,
3629 				     "could not configure rx private waterline %d",
3630 				     ret);
3631 			return ret;
3632 		}
3633 
3634 		ret = hns3_common_thrd_config(hw, &pkt_buf);
3635 		if (ret) {
3636 			PMD_INIT_LOG(ERR,
3637 				     "could not configure common threshold %d",
3638 				     ret);
3639 			return ret;
3640 		}
3641 	}
3642 
3643 	ret = hns3_common_wl_config(hw, &pkt_buf);
3644 	if (ret)
3645 		PMD_INIT_LOG(ERR, "could not configure common waterline %d",
3646 			     ret);
3647 
3648 	return ret;
3649 }
3650 
3651 static int
3652 hns3_mac_init(struct hns3_hw *hw)
3653 {
3654 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3655 	struct hns3_mac *mac = &hw->mac;
3656 	struct hns3_pf *pf = &hns->pf;
3657 	int ret;
3658 
3659 	pf->support_sfp_query = true;
3660 	mac->link_duplex = RTE_ETH_LINK_FULL_DUPLEX;
3661 	ret = hns3_cfg_mac_speed_dup_hw(hw, mac->link_speed, mac->link_duplex);
3662 	if (ret) {
3663 		PMD_INIT_LOG(ERR, "Config mac speed dup fail ret = %d", ret);
3664 		return ret;
3665 	}
3666 
3667 	mac->link_status = RTE_ETH_LINK_DOWN;
3668 
3669 	return hns3_config_mtu(hw, pf->mps);
3670 }
3671 
3672 static int
3673 hns3_get_mac_ethertype_cmd_status(uint16_t cmdq_resp, uint8_t resp_code)
3674 {
3675 #define HNS3_ETHERTYPE_SUCCESS_ADD		0
3676 #define HNS3_ETHERTYPE_ALREADY_ADD		1
3677 #define HNS3_ETHERTYPE_MGR_TBL_OVERFLOW		2
3678 #define HNS3_ETHERTYPE_KEY_CONFLICT		3
3679 	int return_status;
3680 
3681 	if (cmdq_resp) {
3682 		PMD_INIT_LOG(ERR,
3683 			     "cmdq execute failed for get_mac_ethertype_cmd_status, status=%u.\n",
3684 			     cmdq_resp);
3685 		return -EIO;
3686 	}
3687 
3688 	switch (resp_code) {
3689 	case HNS3_ETHERTYPE_SUCCESS_ADD:
3690 	case HNS3_ETHERTYPE_ALREADY_ADD:
3691 		return_status = 0;
3692 		break;
3693 	case HNS3_ETHERTYPE_MGR_TBL_OVERFLOW:
3694 		PMD_INIT_LOG(ERR,
3695 			     "add mac ethertype failed for manager table overflow.");
3696 		return_status = -EIO;
3697 		break;
3698 	case HNS3_ETHERTYPE_KEY_CONFLICT:
3699 		PMD_INIT_LOG(ERR, "add mac ethertype failed for key conflict.");
3700 		return_status = -EIO;
3701 		break;
3702 	default:
3703 		PMD_INIT_LOG(ERR,
3704 			     "add mac ethertype failed for undefined, code=%u.",
3705 			     resp_code);
3706 		return_status = -EIO;
3707 		break;
3708 	}
3709 
3710 	return return_status;
3711 }
3712 
3713 static int
3714 hns3_add_mgr_tbl(struct hns3_hw *hw,
3715 		 const struct hns3_mac_mgr_tbl_entry_cmd *req)
3716 {
3717 	struct hns3_cmd_desc desc;
3718 	uint8_t resp_code;
3719 	uint16_t retval;
3720 	int ret;
3721 
3722 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_ETHTYPE_ADD, false);
3723 	memcpy(desc.data, req, sizeof(struct hns3_mac_mgr_tbl_entry_cmd));
3724 
3725 	ret = hns3_cmd_send(hw, &desc, 1);
3726 	if (ret) {
3727 		PMD_INIT_LOG(ERR,
3728 			     "add mac ethertype failed for cmd_send, ret =%d.",
3729 			     ret);
3730 		return ret;
3731 	}
3732 
3733 	resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
3734 	retval = rte_le_to_cpu_16(desc.retval);
3735 
3736 	return hns3_get_mac_ethertype_cmd_status(retval, resp_code);
3737 }
3738 
3739 static void
3740 hns3_prepare_mgr_tbl(struct hns3_mac_mgr_tbl_entry_cmd *mgr_table,
3741 		     int *table_item_num)
3742 {
3743 	struct hns3_mac_mgr_tbl_entry_cmd *tbl;
3744 
3745 	/*
3746 	 * In current version, we add one item in management table as below:
3747 	 * 0x0180C200000E -- LLDP MC address
3748 	 */
3749 	tbl = mgr_table;
3750 	tbl->flags = HNS3_MAC_MGR_MASK_VLAN_B;
3751 	tbl->ethter_type = rte_cpu_to_le_16(HNS3_MAC_ETHERTYPE_LLDP);
3752 	tbl->mac_addr_hi32 = rte_cpu_to_le_32(htonl(0x0180C200));
3753 	tbl->mac_addr_lo16 = rte_cpu_to_le_16(htons(0x000E));
3754 	tbl->i_port_bitmap = 0x1;
3755 	*table_item_num = 1;
3756 }
3757 
3758 static int
3759 hns3_init_mgr_tbl(struct hns3_hw *hw)
3760 {
3761 #define HNS_MAC_MGR_TBL_MAX_SIZE	16
3762 	struct hns3_mac_mgr_tbl_entry_cmd mgr_table[HNS_MAC_MGR_TBL_MAX_SIZE];
3763 	int table_item_num;
3764 	int ret;
3765 	int i;
3766 
3767 	memset(mgr_table, 0, sizeof(mgr_table));
3768 	hns3_prepare_mgr_tbl(mgr_table, &table_item_num);
3769 	for (i = 0; i < table_item_num; i++) {
3770 		ret = hns3_add_mgr_tbl(hw, &mgr_table[i]);
3771 		if (ret) {
3772 			PMD_INIT_LOG(ERR, "add mac ethertype failed, ret =%d",
3773 				     ret);
3774 			return ret;
3775 		}
3776 	}
3777 
3778 	return 0;
3779 }
3780 
3781 static void
3782 hns3_promisc_param_init(struct hns3_promisc_param *param, bool en_uc,
3783 			bool en_mc, bool en_bc, int vport_id)
3784 {
3785 	if (!param)
3786 		return;
3787 
3788 	memset(param, 0, sizeof(struct hns3_promisc_param));
3789 	if (en_uc)
3790 		param->enable = HNS3_PROMISC_EN_UC;
3791 	if (en_mc)
3792 		param->enable |= HNS3_PROMISC_EN_MC;
3793 	if (en_bc)
3794 		param->enable |= HNS3_PROMISC_EN_BC;
3795 	param->vf_id = vport_id;
3796 }
3797 
3798 static int
3799 hns3_cmd_set_promisc_mode(struct hns3_hw *hw, struct hns3_promisc_param *param)
3800 {
3801 	struct hns3_promisc_cfg_cmd *req;
3802 	struct hns3_cmd_desc desc;
3803 	int ret;
3804 
3805 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_PROMISC_MODE, false);
3806 
3807 	req = (struct hns3_promisc_cfg_cmd *)desc.data;
3808 	req->vf_id = param->vf_id;
3809 	req->flag = (param->enable << HNS3_PROMISC_EN_B) |
3810 	    HNS3_PROMISC_TX_EN_B | HNS3_PROMISC_RX_EN_B;
3811 
3812 	ret = hns3_cmd_send(hw, &desc, 1);
3813 	if (ret)
3814 		PMD_INIT_LOG(ERR, "Set promisc mode fail, ret = %d", ret);
3815 
3816 	return ret;
3817 }
3818 
3819 static int
3820 hns3_set_promisc_mode(struct hns3_hw *hw, bool en_uc_pmc, bool en_mc_pmc)
3821 {
3822 	struct hns3_promisc_param param;
3823 	bool en_bc_pmc = true;
3824 	uint8_t vf_id;
3825 
3826 	/*
3827 	 * In current version VF is not supported when PF is driven by DPDK
3828 	 * driver, just need to configure parameters for PF vport.
3829 	 */
3830 	vf_id = HNS3_PF_FUNC_ID;
3831 
3832 	hns3_promisc_param_init(&param, en_uc_pmc, en_mc_pmc, en_bc_pmc, vf_id);
3833 	return hns3_cmd_set_promisc_mode(hw, &param);
3834 }
3835 
3836 static int
3837 hns3_promisc_init(struct hns3_hw *hw)
3838 {
3839 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3840 	struct hns3_pf *pf = &hns->pf;
3841 	struct hns3_promisc_param param;
3842 	uint16_t func_id;
3843 	int ret;
3844 
3845 	ret = hns3_set_promisc_mode(hw, false, false);
3846 	if (ret) {
3847 		PMD_INIT_LOG(ERR, "failed to set promisc mode, ret = %d", ret);
3848 		return ret;
3849 	}
3850 
3851 	/*
3852 	 * In current version VFs are not supported when PF is driven by DPDK
3853 	 * driver. After PF has been taken over by DPDK, the original VF will
3854 	 * be invalid. So, there is a possibility of entry residues. It should
3855 	 * clear VFs's promisc mode to avoid unnecessary bandwidth usage
3856 	 * during init.
3857 	 */
3858 	for (func_id = HNS3_1ST_VF_FUNC_ID; func_id < pf->func_num; func_id++) {
3859 		hns3_promisc_param_init(&param, false, false, false, func_id);
3860 		ret = hns3_cmd_set_promisc_mode(hw, &param);
3861 		if (ret) {
3862 			PMD_INIT_LOG(ERR, "failed to clear vf:%u promisc mode,"
3863 					" ret = %d", func_id, ret);
3864 			return ret;
3865 		}
3866 	}
3867 
3868 	return 0;
3869 }
3870 
3871 static void
3872 hns3_promisc_uninit(struct hns3_hw *hw)
3873 {
3874 	struct hns3_promisc_param param;
3875 	uint16_t func_id;
3876 	int ret;
3877 
3878 	func_id = HNS3_PF_FUNC_ID;
3879 
3880 	/*
3881 	 * In current version VFs are not supported when PF is driven by
3882 	 * DPDK driver, and VFs' promisc mode status has been cleared during
3883 	 * init and their status will not change. So just clear PF's promisc
3884 	 * mode status during uninit.
3885 	 */
3886 	hns3_promisc_param_init(&param, false, false, false, func_id);
3887 	ret = hns3_cmd_set_promisc_mode(hw, &param);
3888 	if (ret)
3889 		PMD_INIT_LOG(ERR, "failed to clear promisc status during"
3890 				" uninit, ret = %d", ret);
3891 }
3892 
3893 static int
3894 hns3_dev_promiscuous_enable(struct rte_eth_dev *dev)
3895 {
3896 	bool allmulti = dev->data->all_multicast ? true : false;
3897 	struct hns3_adapter *hns = dev->data->dev_private;
3898 	struct hns3_hw *hw = &hns->hw;
3899 	uint64_t offloads;
3900 	int err;
3901 	int ret;
3902 
3903 	rte_spinlock_lock(&hw->lock);
3904 	ret = hns3_set_promisc_mode(hw, true, true);
3905 	if (ret) {
3906 		rte_spinlock_unlock(&hw->lock);
3907 		hns3_err(hw, "failed to enable promiscuous mode, ret = %d",
3908 			 ret);
3909 		return ret;
3910 	}
3911 
3912 	/*
3913 	 * When promiscuous mode was enabled, disable the vlan filter to let
3914 	 * all packets coming in in the receiving direction.
3915 	 */
3916 	offloads = dev->data->dev_conf.rxmode.offloads;
3917 	if (offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER) {
3918 		ret = hns3_enable_vlan_filter(hns, false);
3919 		if (ret) {
3920 			hns3_err(hw, "failed to enable promiscuous mode due to "
3921 				     "failure to disable vlan filter, ret = %d",
3922 				 ret);
3923 			err = hns3_set_promisc_mode(hw, false, allmulti);
3924 			if (err)
3925 				hns3_err(hw, "failed to restore promiscuous "
3926 					 "status after disable vlan filter "
3927 					 "failed during enabling promiscuous "
3928 					 "mode, ret = %d", ret);
3929 		}
3930 	}
3931 
3932 	rte_spinlock_unlock(&hw->lock);
3933 
3934 	return ret;
3935 }
3936 
3937 static int
3938 hns3_dev_promiscuous_disable(struct rte_eth_dev *dev)
3939 {
3940 	bool allmulti = dev->data->all_multicast ? true : false;
3941 	struct hns3_adapter *hns = dev->data->dev_private;
3942 	struct hns3_hw *hw = &hns->hw;
3943 	uint64_t offloads;
3944 	int err;
3945 	int ret;
3946 
3947 	/* If now in all_multicast mode, must remain in all_multicast mode. */
3948 	rte_spinlock_lock(&hw->lock);
3949 	ret = hns3_set_promisc_mode(hw, false, allmulti);
3950 	if (ret) {
3951 		rte_spinlock_unlock(&hw->lock);
3952 		hns3_err(hw, "failed to disable promiscuous mode, ret = %d",
3953 			 ret);
3954 		return ret;
3955 	}
3956 	/* when promiscuous mode was disabled, restore the vlan filter status */
3957 	offloads = dev->data->dev_conf.rxmode.offloads;
3958 	if (offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER) {
3959 		ret = hns3_enable_vlan_filter(hns, true);
3960 		if (ret) {
3961 			hns3_err(hw, "failed to disable promiscuous mode due to"
3962 				 " failure to restore vlan filter, ret = %d",
3963 				 ret);
3964 			err = hns3_set_promisc_mode(hw, true, true);
3965 			if (err)
3966 				hns3_err(hw, "failed to restore promiscuous "
3967 					 "status after enabling vlan filter "
3968 					 "failed during disabling promiscuous "
3969 					 "mode, ret = %d", ret);
3970 		}
3971 	}
3972 	rte_spinlock_unlock(&hw->lock);
3973 
3974 	return ret;
3975 }
3976 
3977 static int
3978 hns3_dev_allmulticast_enable(struct rte_eth_dev *dev)
3979 {
3980 	struct hns3_adapter *hns = dev->data->dev_private;
3981 	struct hns3_hw *hw = &hns->hw;
3982 	int ret;
3983 
3984 	if (dev->data->promiscuous)
3985 		return 0;
3986 
3987 	rte_spinlock_lock(&hw->lock);
3988 	ret = hns3_set_promisc_mode(hw, false, true);
3989 	rte_spinlock_unlock(&hw->lock);
3990 	if (ret)
3991 		hns3_err(hw, "failed to enable allmulticast mode, ret = %d",
3992 			 ret);
3993 
3994 	return ret;
3995 }
3996 
3997 static int
3998 hns3_dev_allmulticast_disable(struct rte_eth_dev *dev)
3999 {
4000 	struct hns3_adapter *hns = dev->data->dev_private;
4001 	struct hns3_hw *hw = &hns->hw;
4002 	int ret;
4003 
4004 	/* If now in promiscuous mode, must remain in all_multicast mode. */
4005 	if (dev->data->promiscuous)
4006 		return 0;
4007 
4008 	rte_spinlock_lock(&hw->lock);
4009 	ret = hns3_set_promisc_mode(hw, false, false);
4010 	rte_spinlock_unlock(&hw->lock);
4011 	if (ret)
4012 		hns3_err(hw, "failed to disable allmulticast mode, ret = %d",
4013 			 ret);
4014 
4015 	return ret;
4016 }
4017 
4018 static int
4019 hns3_dev_promisc_restore(struct hns3_adapter *hns)
4020 {
4021 	struct hns3_hw *hw = &hns->hw;
4022 	bool allmulti = hw->data->all_multicast ? true : false;
4023 	int ret;
4024 
4025 	if (hw->data->promiscuous) {
4026 		ret = hns3_set_promisc_mode(hw, true, true);
4027 		if (ret)
4028 			hns3_err(hw, "failed to restore promiscuous mode, "
4029 				 "ret = %d", ret);
4030 		return ret;
4031 	}
4032 
4033 	ret = hns3_set_promisc_mode(hw, false, allmulti);
4034 	if (ret)
4035 		hns3_err(hw, "failed to restore allmulticast mode, ret = %d",
4036 			 ret);
4037 	return ret;
4038 }
4039 
4040 static int
4041 hns3_get_sfp_info(struct hns3_hw *hw, struct hns3_mac *mac_info)
4042 {
4043 	struct hns3_sfp_info_cmd *resp;
4044 	struct hns3_cmd_desc desc;
4045 	int ret;
4046 
4047 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GET_SFP_INFO, true);
4048 	resp = (struct hns3_sfp_info_cmd *)desc.data;
4049 	resp->query_type = HNS3_ACTIVE_QUERY;
4050 
4051 	ret = hns3_cmd_send(hw, &desc, 1);
4052 	if (ret == -EOPNOTSUPP) {
4053 		hns3_warn(hw, "firmware does not support get SFP info,"
4054 			  " ret = %d.", ret);
4055 		return ret;
4056 	} else if (ret) {
4057 		hns3_err(hw, "get sfp info failed, ret = %d.", ret);
4058 		return ret;
4059 	}
4060 
4061 	/*
4062 	 * In some case, the speed of MAC obtained from firmware may be 0, it
4063 	 * shouldn't be set to mac->speed.
4064 	 */
4065 	if (!rte_le_to_cpu_32(resp->sfp_speed))
4066 		return 0;
4067 
4068 	mac_info->link_speed = rte_le_to_cpu_32(resp->sfp_speed);
4069 	/*
4070 	 * if resp->supported_speed is 0, it means it's an old version
4071 	 * firmware, do not update these params.
4072 	 */
4073 	if (resp->supported_speed) {
4074 		mac_info->query_type = HNS3_ACTIVE_QUERY;
4075 		mac_info->supported_speed =
4076 					rte_le_to_cpu_32(resp->supported_speed);
4077 		mac_info->support_autoneg = resp->autoneg_ability;
4078 		mac_info->link_autoneg = (resp->autoneg == 0) ? RTE_ETH_LINK_FIXED
4079 					: RTE_ETH_LINK_AUTONEG;
4080 	} else {
4081 		mac_info->query_type = HNS3_DEFAULT_QUERY;
4082 	}
4083 
4084 	return 0;
4085 }
4086 
4087 static uint8_t
4088 hns3_check_speed_dup(uint8_t duplex, uint32_t speed)
4089 {
4090 	if (!(speed == RTE_ETH_SPEED_NUM_10M || speed == RTE_ETH_SPEED_NUM_100M))
4091 		duplex = RTE_ETH_LINK_FULL_DUPLEX;
4092 
4093 	return duplex;
4094 }
4095 
4096 static int
4097 hns3_cfg_mac_speed_dup(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
4098 {
4099 	struct hns3_mac *mac = &hw->mac;
4100 	int ret;
4101 
4102 	duplex = hns3_check_speed_dup(duplex, speed);
4103 	if (mac->link_speed == speed && mac->link_duplex == duplex)
4104 		return 0;
4105 
4106 	ret = hns3_cfg_mac_speed_dup_hw(hw, speed, duplex);
4107 	if (ret)
4108 		return ret;
4109 
4110 	ret = hns3_port_shaper_update(hw, speed);
4111 	if (ret)
4112 		return ret;
4113 
4114 	mac->link_speed = speed;
4115 	mac->link_duplex = duplex;
4116 
4117 	return 0;
4118 }
4119 
4120 static int
4121 hns3_update_fiber_link_info(struct hns3_hw *hw)
4122 {
4123 	struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw);
4124 	struct hns3_mac *mac = &hw->mac;
4125 	struct hns3_mac mac_info;
4126 	int ret;
4127 
4128 	/* If firmware do not support get SFP/qSFP speed, return directly */
4129 	if (!pf->support_sfp_query)
4130 		return 0;
4131 
4132 	memset(&mac_info, 0, sizeof(struct hns3_mac));
4133 	ret = hns3_get_sfp_info(hw, &mac_info);
4134 	if (ret == -EOPNOTSUPP) {
4135 		pf->support_sfp_query = false;
4136 		return ret;
4137 	} else if (ret)
4138 		return ret;
4139 
4140 	/* Do nothing if no SFP */
4141 	if (mac_info.link_speed == RTE_ETH_SPEED_NUM_NONE)
4142 		return 0;
4143 
4144 	/*
4145 	 * If query_type is HNS3_ACTIVE_QUERY, it is no need
4146 	 * to reconfigure the speed of MAC. Otherwise, it indicates
4147 	 * that the current firmware only supports to obtain the
4148 	 * speed of the SFP, and the speed of MAC needs to reconfigure.
4149 	 */
4150 	mac->query_type = mac_info.query_type;
4151 	if (mac->query_type == HNS3_ACTIVE_QUERY) {
4152 		if (mac_info.link_speed != mac->link_speed) {
4153 			ret = hns3_port_shaper_update(hw, mac_info.link_speed);
4154 			if (ret)
4155 				return ret;
4156 		}
4157 
4158 		mac->link_speed = mac_info.link_speed;
4159 		mac->supported_speed = mac_info.supported_speed;
4160 		mac->support_autoneg = mac_info.support_autoneg;
4161 		mac->link_autoneg = mac_info.link_autoneg;
4162 
4163 		return 0;
4164 	}
4165 
4166 	/* Config full duplex for SFP */
4167 	return hns3_cfg_mac_speed_dup(hw, mac_info.link_speed,
4168 				      RTE_ETH_LINK_FULL_DUPLEX);
4169 }
4170 
4171 static void
4172 hns3_parse_copper_phy_params(struct hns3_cmd_desc *desc, struct hns3_mac *mac)
4173 {
4174 #define HNS3_PHY_SUPPORTED_SPEED_MASK   0x2f
4175 
4176 	struct hns3_phy_params_bd0_cmd *req;
4177 	uint32_t supported;
4178 
4179 	req = (struct hns3_phy_params_bd0_cmd *)desc[0].data;
4180 	mac->link_speed = rte_le_to_cpu_32(req->speed);
4181 	mac->link_duplex = hns3_get_bit(req->duplex,
4182 					   HNS3_PHY_DUPLEX_CFG_B);
4183 	mac->link_autoneg = hns3_get_bit(req->autoneg,
4184 					   HNS3_PHY_AUTONEG_CFG_B);
4185 	mac->advertising = rte_le_to_cpu_32(req->advertising);
4186 	mac->lp_advertising = rte_le_to_cpu_32(req->lp_advertising);
4187 	supported = rte_le_to_cpu_32(req->supported);
4188 	mac->supported_speed = supported & HNS3_PHY_SUPPORTED_SPEED_MASK;
4189 	mac->support_autoneg = !!(supported & HNS3_PHY_LINK_MODE_AUTONEG_BIT);
4190 }
4191 
4192 static int
4193 hns3_get_copper_phy_params(struct hns3_hw *hw, struct hns3_mac *mac)
4194 {
4195 	struct hns3_cmd_desc desc[HNS3_PHY_PARAM_CFG_BD_NUM];
4196 	uint16_t i;
4197 	int ret;
4198 
4199 	for (i = 0; i < HNS3_PHY_PARAM_CFG_BD_NUM - 1; i++) {
4200 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG,
4201 					  true);
4202 		desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
4203 	}
4204 	hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG, true);
4205 
4206 	ret = hns3_cmd_send(hw, desc, HNS3_PHY_PARAM_CFG_BD_NUM);
4207 	if (ret) {
4208 		hns3_err(hw, "get phy parameters failed, ret = %d.", ret);
4209 		return ret;
4210 	}
4211 
4212 	hns3_parse_copper_phy_params(desc, mac);
4213 
4214 	return 0;
4215 }
4216 
4217 static int
4218 hns3_update_copper_link_info(struct hns3_hw *hw)
4219 {
4220 	struct hns3_mac *mac = &hw->mac;
4221 	struct hns3_mac mac_info;
4222 	int ret;
4223 
4224 	memset(&mac_info, 0, sizeof(struct hns3_mac));
4225 	ret = hns3_get_copper_phy_params(hw, &mac_info);
4226 	if (ret)
4227 		return ret;
4228 
4229 	if (mac_info.link_speed != mac->link_speed) {
4230 		ret = hns3_port_shaper_update(hw, mac_info.link_speed);
4231 		if (ret)
4232 			return ret;
4233 	}
4234 
4235 	mac->link_speed = mac_info.link_speed;
4236 	mac->link_duplex = mac_info.link_duplex;
4237 	mac->link_autoneg = mac_info.link_autoneg;
4238 	mac->supported_speed = mac_info.supported_speed;
4239 	mac->advertising = mac_info.advertising;
4240 	mac->lp_advertising = mac_info.lp_advertising;
4241 	mac->support_autoneg = mac_info.support_autoneg;
4242 
4243 	return 0;
4244 }
4245 
4246 static int
4247 hns3_update_link_info(struct rte_eth_dev *eth_dev)
4248 {
4249 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4250 	struct hns3_hw *hw = &hns->hw;
4251 	int ret = 0;
4252 
4253 	if (hw->mac.media_type == HNS3_MEDIA_TYPE_COPPER)
4254 		ret = hns3_update_copper_link_info(hw);
4255 	else if (hw->mac.media_type == HNS3_MEDIA_TYPE_FIBER)
4256 		ret = hns3_update_fiber_link_info(hw);
4257 
4258 	return ret;
4259 }
4260 
4261 static int
4262 hns3_cfg_mac_mode(struct hns3_hw *hw, bool enable)
4263 {
4264 	struct hns3_config_mac_mode_cmd *req;
4265 	struct hns3_cmd_desc desc;
4266 	uint32_t loop_en = 0;
4267 	uint8_t val = 0;
4268 	int ret;
4269 
4270 	req = (struct hns3_config_mac_mode_cmd *)desc.data;
4271 
4272 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAC_MODE, false);
4273 	if (enable)
4274 		val = 1;
4275 	hns3_set_bit(loop_en, HNS3_MAC_TX_EN_B, val);
4276 	hns3_set_bit(loop_en, HNS3_MAC_RX_EN_B, val);
4277 	hns3_set_bit(loop_en, HNS3_MAC_PAD_TX_B, val);
4278 	hns3_set_bit(loop_en, HNS3_MAC_PAD_RX_B, val);
4279 	hns3_set_bit(loop_en, HNS3_MAC_1588_TX_B, 0);
4280 	hns3_set_bit(loop_en, HNS3_MAC_1588_RX_B, 0);
4281 	hns3_set_bit(loop_en, HNS3_MAC_APP_LP_B, 0);
4282 	hns3_set_bit(loop_en, HNS3_MAC_LINE_LP_B, 0);
4283 	hns3_set_bit(loop_en, HNS3_MAC_FCS_TX_B, val);
4284 	hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_B, val);
4285 
4286 	/*
4287 	 * If RTE_ETH_RX_OFFLOAD_KEEP_CRC offload is set, MAC will not strip CRC
4288 	 * when receiving frames. Otherwise, CRC will be stripped.
4289 	 */
4290 	if (hw->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC)
4291 		hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, 0);
4292 	else
4293 		hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, val);
4294 	hns3_set_bit(loop_en, HNS3_MAC_TX_OVERSIZE_TRUNCATE_B, val);
4295 	hns3_set_bit(loop_en, HNS3_MAC_RX_OVERSIZE_TRUNCATE_B, val);
4296 	hns3_set_bit(loop_en, HNS3_MAC_TX_UNDER_MIN_ERR_B, val);
4297 	req->txrx_pad_fcs_loop_en = rte_cpu_to_le_32(loop_en);
4298 
4299 	ret = hns3_cmd_send(hw, &desc, 1);
4300 	if (ret)
4301 		PMD_INIT_LOG(ERR, "mac enable fail, ret =%d.", ret);
4302 
4303 	return ret;
4304 }
4305 
4306 static int
4307 hns3_get_mac_link_status(struct hns3_hw *hw)
4308 {
4309 	struct hns3_link_status_cmd *req;
4310 	struct hns3_cmd_desc desc;
4311 	int link_status;
4312 	int ret;
4313 
4314 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_LINK_STATUS, true);
4315 	ret = hns3_cmd_send(hw, &desc, 1);
4316 	if (ret) {
4317 		hns3_err(hw, "get link status cmd failed %d", ret);
4318 		return RTE_ETH_LINK_DOWN;
4319 	}
4320 
4321 	req = (struct hns3_link_status_cmd *)desc.data;
4322 	link_status = req->status & HNS3_LINK_STATUS_UP_M;
4323 
4324 	return !!link_status;
4325 }
4326 
4327 static bool
4328 hns3_update_link_status(struct hns3_hw *hw)
4329 {
4330 	int state;
4331 
4332 	state = hns3_get_mac_link_status(hw);
4333 	if (state != hw->mac.link_status) {
4334 		hw->mac.link_status = state;
4335 		hns3_warn(hw, "Link status change to %s!", state ? "up" : "down");
4336 		return true;
4337 	}
4338 
4339 	return false;
4340 }
4341 
4342 void
4343 hns3_update_linkstatus_and_event(struct hns3_hw *hw, bool query)
4344 {
4345 	struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
4346 	struct rte_eth_link new_link;
4347 	int ret;
4348 
4349 	if (query)
4350 		hns3_update_port_link_info(dev);
4351 
4352 	memset(&new_link, 0, sizeof(new_link));
4353 	hns3_setup_linkstatus(dev, &new_link);
4354 
4355 	ret = rte_eth_linkstatus_set(dev, &new_link);
4356 	if (ret == 0 && dev->data->dev_conf.intr_conf.lsc != 0)
4357 		hns3_start_report_lse(dev);
4358 }
4359 
4360 static void
4361 hns3_service_handler(void *param)
4362 {
4363 	struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
4364 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4365 	struct hns3_hw *hw = &hns->hw;
4366 
4367 	if (!hns3_is_reset_pending(hns))
4368 		hns3_update_linkstatus_and_event(hw, true);
4369 	else
4370 		hns3_warn(hw, "Cancel the query when reset is pending");
4371 
4372 	rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, eth_dev);
4373 }
4374 
4375 static int
4376 hns3_init_hardware(struct hns3_adapter *hns)
4377 {
4378 	struct hns3_hw *hw = &hns->hw;
4379 	int ret;
4380 
4381 	/*
4382 	 * All queue-related HW operations must be performed after the TCAM
4383 	 * table is configured.
4384 	 */
4385 	ret = hns3_map_tqp(hw);
4386 	if (ret) {
4387 		PMD_INIT_LOG(ERR, "Failed to map tqp: %d", ret);
4388 		return ret;
4389 	}
4390 
4391 	ret = hns3_init_umv_space(hw);
4392 	if (ret) {
4393 		PMD_INIT_LOG(ERR, "Failed to init umv space: %d", ret);
4394 		return ret;
4395 	}
4396 
4397 	ret = hns3_mac_init(hw);
4398 	if (ret) {
4399 		PMD_INIT_LOG(ERR, "Failed to init MAC: %d", ret);
4400 		goto err_mac_init;
4401 	}
4402 
4403 	ret = hns3_init_mgr_tbl(hw);
4404 	if (ret) {
4405 		PMD_INIT_LOG(ERR, "Failed to init manager table: %d", ret);
4406 		goto err_mac_init;
4407 	}
4408 
4409 	ret = hns3_promisc_init(hw);
4410 	if (ret) {
4411 		PMD_INIT_LOG(ERR, "Failed to init promisc: %d",
4412 			     ret);
4413 		goto err_mac_init;
4414 	}
4415 
4416 	ret = hns3_init_vlan_config(hns);
4417 	if (ret) {
4418 		PMD_INIT_LOG(ERR, "Failed to init vlan: %d", ret);
4419 		goto err_mac_init;
4420 	}
4421 
4422 	ret = hns3_dcb_init(hw);
4423 	if (ret) {
4424 		PMD_INIT_LOG(ERR, "Failed to init dcb: %d", ret);
4425 		goto err_mac_init;
4426 	}
4427 
4428 	ret = hns3_init_fd_config(hns);
4429 	if (ret) {
4430 		PMD_INIT_LOG(ERR, "Failed to init flow director: %d", ret);
4431 		goto err_mac_init;
4432 	}
4433 
4434 	ret = hns3_config_tso(hw, HNS3_TSO_MSS_MIN, HNS3_TSO_MSS_MAX);
4435 	if (ret) {
4436 		PMD_INIT_LOG(ERR, "Failed to config tso: %d", ret);
4437 		goto err_mac_init;
4438 	}
4439 
4440 	ret = hns3_config_gro(hw, false);
4441 	if (ret) {
4442 		PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
4443 		goto err_mac_init;
4444 	}
4445 
4446 	/*
4447 	 * In the initialization clearing the all hardware mapping relationship
4448 	 * configurations between queues and interrupt vectors is needed, so
4449 	 * some error caused by the residual configurations, such as the
4450 	 * unexpected interrupt, can be avoid.
4451 	 */
4452 	ret = hns3_init_ring_with_vector(hw);
4453 	if (ret) {
4454 		PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
4455 		goto err_mac_init;
4456 	}
4457 
4458 	return 0;
4459 
4460 err_mac_init:
4461 	hns3_uninit_umv_space(hw);
4462 	return ret;
4463 }
4464 
4465 static int
4466 hns3_clear_hw(struct hns3_hw *hw)
4467 {
4468 	struct hns3_cmd_desc desc;
4469 	int ret;
4470 
4471 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_HW_STATE, false);
4472 
4473 	ret = hns3_cmd_send(hw, &desc, 1);
4474 	if (ret && ret != -EOPNOTSUPP)
4475 		return ret;
4476 
4477 	return 0;
4478 }
4479 
4480 static void
4481 hns3_config_all_msix_error(struct hns3_hw *hw, bool enable)
4482 {
4483 	uint32_t val;
4484 
4485 	/*
4486 	 * The new firmware support report more hardware error types by
4487 	 * msix mode. These errors are defined as RAS errors in hardware
4488 	 * and belong to a different type from the MSI-x errors processed
4489 	 * by the network driver.
4490 	 *
4491 	 * Network driver should open the new error report on initialization.
4492 	 */
4493 	val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
4494 	hns3_set_bit(val, HNS3_VECTOR0_ALL_MSIX_ERR_B, enable ? 1 : 0);
4495 	hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, val);
4496 }
4497 
4498 static uint32_t
4499 hns3_set_firber_default_support_speed(struct hns3_hw *hw)
4500 {
4501 	struct hns3_mac *mac = &hw->mac;
4502 
4503 	switch (mac->link_speed) {
4504 	case RTE_ETH_SPEED_NUM_1G:
4505 		return HNS3_FIBER_LINK_SPEED_1G_BIT;
4506 	case RTE_ETH_SPEED_NUM_10G:
4507 		return HNS3_FIBER_LINK_SPEED_10G_BIT;
4508 	case RTE_ETH_SPEED_NUM_25G:
4509 		return HNS3_FIBER_LINK_SPEED_25G_BIT;
4510 	case RTE_ETH_SPEED_NUM_40G:
4511 		return HNS3_FIBER_LINK_SPEED_40G_BIT;
4512 	case RTE_ETH_SPEED_NUM_50G:
4513 		return HNS3_FIBER_LINK_SPEED_50G_BIT;
4514 	case RTE_ETH_SPEED_NUM_100G:
4515 		return HNS3_FIBER_LINK_SPEED_100G_BIT;
4516 	case RTE_ETH_SPEED_NUM_200G:
4517 		return HNS3_FIBER_LINK_SPEED_200G_BIT;
4518 	default:
4519 		hns3_warn(hw, "invalid speed %u Mbps.", mac->link_speed);
4520 		return 0;
4521 	}
4522 }
4523 
4524 /*
4525  * Validity of supported_speed for fiber and copper media type can be
4526  * guaranteed by the following policy:
4527  * Copper:
4528  *       Although the initialization of the phy in the firmware may not be
4529  *       completed, the firmware can guarantees that the supported_speed is
4530  *       an valid value.
4531  * Firber:
4532  *       If the version of firmware supports the active query way of the
4533  *       HNS3_OPC_GET_SFP_INFO opcode, the supported_speed can be obtained
4534  *       through it. If unsupported, use the SFP's speed as the value of the
4535  *       supported_speed.
4536  */
4537 static int
4538 hns3_get_port_supported_speed(struct rte_eth_dev *eth_dev)
4539 {
4540 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4541 	struct hns3_hw *hw = &hns->hw;
4542 	struct hns3_mac *mac = &hw->mac;
4543 	int ret;
4544 
4545 	ret = hns3_update_link_info(eth_dev);
4546 	if (ret)
4547 		return ret;
4548 
4549 	if (mac->media_type == HNS3_MEDIA_TYPE_FIBER) {
4550 		/*
4551 		 * Some firmware does not support the report of supported_speed,
4552 		 * and only report the effective speed of SFP. In this case, it
4553 		 * is necessary to use the SFP's speed as the supported_speed.
4554 		 */
4555 		if (mac->supported_speed == 0)
4556 			mac->supported_speed =
4557 				hns3_set_firber_default_support_speed(hw);
4558 	}
4559 
4560 	return 0;
4561 }
4562 
4563 static void
4564 hns3_get_fc_autoneg_capability(struct hns3_adapter *hns)
4565 {
4566 	struct hns3_mac *mac = &hns->hw.mac;
4567 
4568 	if (mac->media_type == HNS3_MEDIA_TYPE_COPPER) {
4569 		hns->pf.support_fc_autoneg = true;
4570 		return;
4571 	}
4572 
4573 	/*
4574 	 * Flow control auto-negotiation requires the cooperation of the driver
4575 	 * and firmware. Currently, the optical port does not support flow
4576 	 * control auto-negotiation.
4577 	 */
4578 	hns->pf.support_fc_autoneg = false;
4579 }
4580 
4581 static int
4582 hns3_init_pf(struct rte_eth_dev *eth_dev)
4583 {
4584 	struct rte_device *dev = eth_dev->device;
4585 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
4586 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4587 	struct hns3_hw *hw = &hns->hw;
4588 	int ret;
4589 
4590 	PMD_INIT_FUNC_TRACE();
4591 
4592 	/* Get hardware io base address from pcie BAR2 IO space */
4593 	hw->io_base = pci_dev->mem_resource[2].addr;
4594 
4595 	/* Firmware command queue initialize */
4596 	ret = hns3_cmd_init_queue(hw);
4597 	if (ret) {
4598 		PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
4599 		goto err_cmd_init_queue;
4600 	}
4601 
4602 	hns3_clear_all_event_cause(hw);
4603 
4604 	/* Firmware command initialize */
4605 	ret = hns3_cmd_init(hw);
4606 	if (ret) {
4607 		PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
4608 		goto err_cmd_init;
4609 	}
4610 
4611 	hns3_tx_push_init(eth_dev);
4612 
4613 	/*
4614 	 * To ensure that the hardware environment is clean during
4615 	 * initialization, the driver actively clear the hardware environment
4616 	 * during initialization, including PF and corresponding VFs' vlan, mac,
4617 	 * flow table configurations, etc.
4618 	 */
4619 	ret = hns3_clear_hw(hw);
4620 	if (ret) {
4621 		PMD_INIT_LOG(ERR, "failed to clear hardware: %d", ret);
4622 		goto err_cmd_init;
4623 	}
4624 
4625 	/* Hardware statistics of imissed registers cleared. */
4626 	ret = hns3_update_imissed_stats(hw, true);
4627 	if (ret) {
4628 		hns3_err(hw, "clear imissed stats failed, ret = %d", ret);
4629 		goto err_cmd_init;
4630 	}
4631 
4632 	hns3_config_all_msix_error(hw, true);
4633 
4634 	ret = rte_intr_callback_register(pci_dev->intr_handle,
4635 					 hns3_interrupt_handler,
4636 					 eth_dev);
4637 	if (ret) {
4638 		PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
4639 		goto err_intr_callback_register;
4640 	}
4641 
4642 	ret = hns3_ptp_init(hw);
4643 	if (ret)
4644 		goto err_get_config;
4645 
4646 	/* Enable interrupt */
4647 	rte_intr_enable(pci_dev->intr_handle);
4648 	hns3_pf_enable_irq0(hw);
4649 
4650 	/* Get configuration */
4651 	ret = hns3_get_configuration(hw);
4652 	if (ret) {
4653 		PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
4654 		goto err_get_config;
4655 	}
4656 
4657 	ret = hns3_tqp_stats_init(hw);
4658 	if (ret)
4659 		goto err_get_config;
4660 
4661 	ret = hns3_init_hardware(hns);
4662 	if (ret) {
4663 		PMD_INIT_LOG(ERR, "Failed to init hardware: %d", ret);
4664 		goto err_init_hw;
4665 	}
4666 
4667 	/* Initialize flow director filter list & hash */
4668 	ret = hns3_fdir_filter_init(hns);
4669 	if (ret) {
4670 		PMD_INIT_LOG(ERR, "Failed to alloc hashmap for fdir: %d", ret);
4671 		goto err_fdir;
4672 	}
4673 
4674 	hns3_rss_set_default_args(hw);
4675 
4676 	ret = hns3_enable_hw_error_intr(hns, true);
4677 	if (ret) {
4678 		PMD_INIT_LOG(ERR, "fail to enable hw error interrupts: %d",
4679 			     ret);
4680 		goto err_enable_intr;
4681 	}
4682 
4683 	ret = hns3_get_port_supported_speed(eth_dev);
4684 	if (ret) {
4685 		PMD_INIT_LOG(ERR, "failed to get speed capabilities supported "
4686 			     "by device, ret = %d.", ret);
4687 		goto err_supported_speed;
4688 	}
4689 
4690 	hns3_get_fc_autoneg_capability(hns);
4691 
4692 	hns3_tm_conf_init(eth_dev);
4693 
4694 	return 0;
4695 
4696 err_supported_speed:
4697 	(void)hns3_enable_hw_error_intr(hns, false);
4698 err_enable_intr:
4699 	hns3_fdir_filter_uninit(hns);
4700 err_fdir:
4701 	hns3_uninit_umv_space(hw);
4702 err_init_hw:
4703 	hns3_tqp_stats_uninit(hw);
4704 err_get_config:
4705 	hns3_pf_disable_irq0(hw);
4706 	rte_intr_disable(pci_dev->intr_handle);
4707 	hns3_intr_unregister(pci_dev->intr_handle, hns3_interrupt_handler,
4708 			     eth_dev);
4709 err_intr_callback_register:
4710 err_cmd_init:
4711 	hns3_cmd_uninit(hw);
4712 	hns3_cmd_destroy_queue(hw);
4713 err_cmd_init_queue:
4714 	hw->io_base = NULL;
4715 
4716 	return ret;
4717 }
4718 
4719 static void
4720 hns3_uninit_pf(struct rte_eth_dev *eth_dev)
4721 {
4722 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4723 	struct rte_device *dev = eth_dev->device;
4724 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
4725 	struct hns3_hw *hw = &hns->hw;
4726 
4727 	PMD_INIT_FUNC_TRACE();
4728 
4729 	hns3_tm_conf_uninit(eth_dev);
4730 	hns3_enable_hw_error_intr(hns, false);
4731 	hns3_rss_uninit(hns);
4732 	(void)hns3_config_gro(hw, false);
4733 	hns3_promisc_uninit(hw);
4734 	hns3_flow_uninit(eth_dev);
4735 	hns3_fdir_filter_uninit(hns);
4736 	hns3_uninit_umv_space(hw);
4737 	hns3_tqp_stats_uninit(hw);
4738 	hns3_config_mac_tnl_int(hw, false);
4739 	hns3_pf_disable_irq0(hw);
4740 	rte_intr_disable(pci_dev->intr_handle);
4741 	hns3_intr_unregister(pci_dev->intr_handle, hns3_interrupt_handler,
4742 			     eth_dev);
4743 	hns3_config_all_msix_error(hw, false);
4744 	hns3_cmd_uninit(hw);
4745 	hns3_cmd_destroy_queue(hw);
4746 	hw->io_base = NULL;
4747 }
4748 
4749 static uint32_t
4750 hns3_convert_link_speeds2bitmap_copper(uint32_t link_speeds)
4751 {
4752 	uint32_t speed_bit;
4753 
4754 	switch (link_speeds & ~RTE_ETH_LINK_SPEED_FIXED) {
4755 	case RTE_ETH_LINK_SPEED_10M:
4756 		speed_bit = HNS3_PHY_LINK_SPEED_10M_BIT;
4757 		break;
4758 	case RTE_ETH_LINK_SPEED_10M_HD:
4759 		speed_bit = HNS3_PHY_LINK_SPEED_10M_HD_BIT;
4760 		break;
4761 	case RTE_ETH_LINK_SPEED_100M:
4762 		speed_bit = HNS3_PHY_LINK_SPEED_100M_BIT;
4763 		break;
4764 	case RTE_ETH_LINK_SPEED_100M_HD:
4765 		speed_bit = HNS3_PHY_LINK_SPEED_100M_HD_BIT;
4766 		break;
4767 	case RTE_ETH_LINK_SPEED_1G:
4768 		speed_bit = HNS3_PHY_LINK_SPEED_1000M_BIT;
4769 		break;
4770 	default:
4771 		speed_bit = 0;
4772 		break;
4773 	}
4774 
4775 	return speed_bit;
4776 }
4777 
4778 static uint32_t
4779 hns3_convert_link_speeds2bitmap_fiber(uint32_t link_speeds)
4780 {
4781 	uint32_t speed_bit;
4782 
4783 	switch (link_speeds & ~RTE_ETH_LINK_SPEED_FIXED) {
4784 	case RTE_ETH_LINK_SPEED_1G:
4785 		speed_bit = HNS3_FIBER_LINK_SPEED_1G_BIT;
4786 		break;
4787 	case RTE_ETH_LINK_SPEED_10G:
4788 		speed_bit = HNS3_FIBER_LINK_SPEED_10G_BIT;
4789 		break;
4790 	case RTE_ETH_LINK_SPEED_25G:
4791 		speed_bit = HNS3_FIBER_LINK_SPEED_25G_BIT;
4792 		break;
4793 	case RTE_ETH_LINK_SPEED_40G:
4794 		speed_bit = HNS3_FIBER_LINK_SPEED_40G_BIT;
4795 		break;
4796 	case RTE_ETH_LINK_SPEED_50G:
4797 		speed_bit = HNS3_FIBER_LINK_SPEED_50G_BIT;
4798 		break;
4799 	case RTE_ETH_LINK_SPEED_100G:
4800 		speed_bit = HNS3_FIBER_LINK_SPEED_100G_BIT;
4801 		break;
4802 	case RTE_ETH_LINK_SPEED_200G:
4803 		speed_bit = HNS3_FIBER_LINK_SPEED_200G_BIT;
4804 		break;
4805 	default:
4806 		speed_bit = 0;
4807 		break;
4808 	}
4809 
4810 	return speed_bit;
4811 }
4812 
4813 static int
4814 hns3_check_port_speed(struct hns3_hw *hw, uint32_t link_speeds)
4815 {
4816 	struct hns3_mac *mac = &hw->mac;
4817 	uint32_t supported_speed = mac->supported_speed;
4818 	uint32_t speed_bit = 0;
4819 
4820 	if (mac->media_type == HNS3_MEDIA_TYPE_COPPER)
4821 		speed_bit = hns3_convert_link_speeds2bitmap_copper(link_speeds);
4822 	else if (mac->media_type == HNS3_MEDIA_TYPE_FIBER)
4823 		speed_bit = hns3_convert_link_speeds2bitmap_fiber(link_speeds);
4824 
4825 	if (!(speed_bit & supported_speed)) {
4826 		hns3_err(hw, "link_speeds(0x%x) exceeds the supported speed capability or is incorrect.",
4827 			 link_speeds);
4828 		return -EINVAL;
4829 	}
4830 
4831 	return 0;
4832 }
4833 
4834 static uint32_t
4835 hns3_get_link_speed(uint32_t link_speeds)
4836 {
4837 	uint32_t speed = RTE_ETH_SPEED_NUM_NONE;
4838 
4839 	if (link_speeds & RTE_ETH_LINK_SPEED_10M ||
4840 	    link_speeds & RTE_ETH_LINK_SPEED_10M_HD)
4841 		speed = RTE_ETH_SPEED_NUM_10M;
4842 	if (link_speeds & RTE_ETH_LINK_SPEED_100M ||
4843 	    link_speeds & RTE_ETH_LINK_SPEED_100M_HD)
4844 		speed = RTE_ETH_SPEED_NUM_100M;
4845 	if (link_speeds & RTE_ETH_LINK_SPEED_1G)
4846 		speed = RTE_ETH_SPEED_NUM_1G;
4847 	if (link_speeds & RTE_ETH_LINK_SPEED_10G)
4848 		speed = RTE_ETH_SPEED_NUM_10G;
4849 	if (link_speeds & RTE_ETH_LINK_SPEED_25G)
4850 		speed = RTE_ETH_SPEED_NUM_25G;
4851 	if (link_speeds & RTE_ETH_LINK_SPEED_40G)
4852 		speed = RTE_ETH_SPEED_NUM_40G;
4853 	if (link_speeds & RTE_ETH_LINK_SPEED_50G)
4854 		speed = RTE_ETH_SPEED_NUM_50G;
4855 	if (link_speeds & RTE_ETH_LINK_SPEED_100G)
4856 		speed = RTE_ETH_SPEED_NUM_100G;
4857 	if (link_speeds & RTE_ETH_LINK_SPEED_200G)
4858 		speed = RTE_ETH_SPEED_NUM_200G;
4859 
4860 	return speed;
4861 }
4862 
4863 static uint8_t
4864 hns3_get_link_duplex(uint32_t link_speeds)
4865 {
4866 	if ((link_speeds & RTE_ETH_LINK_SPEED_10M_HD) ||
4867 	    (link_speeds & RTE_ETH_LINK_SPEED_100M_HD))
4868 		return RTE_ETH_LINK_HALF_DUPLEX;
4869 	else
4870 		return RTE_ETH_LINK_FULL_DUPLEX;
4871 }
4872 
4873 static int
4874 hns3_set_copper_port_link_speed(struct hns3_hw *hw,
4875 				struct hns3_set_link_speed_cfg *cfg)
4876 {
4877 	struct hns3_cmd_desc desc[HNS3_PHY_PARAM_CFG_BD_NUM];
4878 	struct hns3_phy_params_bd0_cmd *req;
4879 	uint16_t i;
4880 
4881 	for (i = 0; i < HNS3_PHY_PARAM_CFG_BD_NUM - 1; i++) {
4882 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG,
4883 					  false);
4884 		desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
4885 	}
4886 	hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG, false);
4887 	req = (struct hns3_phy_params_bd0_cmd *)desc[0].data;
4888 	req->autoneg = cfg->autoneg;
4889 
4890 	/*
4891 	 * The full speed capability is used to negotiate when
4892 	 * auto-negotiation is enabled.
4893 	 */
4894 	if (cfg->autoneg) {
4895 		req->advertising = HNS3_PHY_LINK_SPEED_10M_BIT |
4896 				    HNS3_PHY_LINK_SPEED_10M_HD_BIT |
4897 				    HNS3_PHY_LINK_SPEED_100M_BIT |
4898 				    HNS3_PHY_LINK_SPEED_100M_HD_BIT |
4899 				    HNS3_PHY_LINK_SPEED_1000M_BIT;
4900 	} else {
4901 		req->speed = cfg->speed;
4902 		req->duplex = cfg->duplex;
4903 	}
4904 
4905 	return hns3_cmd_send(hw, desc, HNS3_PHY_PARAM_CFG_BD_NUM);
4906 }
4907 
4908 static int
4909 hns3_set_autoneg(struct hns3_hw *hw, bool enable)
4910 {
4911 	struct hns3_config_auto_neg_cmd *req;
4912 	struct hns3_cmd_desc desc;
4913 	uint32_t flag = 0;
4914 	int ret;
4915 
4916 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_AN_MODE, false);
4917 
4918 	req = (struct hns3_config_auto_neg_cmd *)desc.data;
4919 	if (enable)
4920 		hns3_set_bit(flag, HNS3_MAC_CFG_AN_EN_B, 1);
4921 	req->cfg_an_cmd_flag = rte_cpu_to_le_32(flag);
4922 
4923 	ret = hns3_cmd_send(hw, &desc, 1);
4924 	if (ret)
4925 		hns3_err(hw, "autoneg set cmd failed, ret = %d.", ret);
4926 
4927 	return ret;
4928 }
4929 
4930 static int
4931 hns3_set_fiber_port_link_speed(struct hns3_hw *hw,
4932 			       struct hns3_set_link_speed_cfg *cfg)
4933 {
4934 	int ret;
4935 
4936 	if (hw->mac.support_autoneg) {
4937 		ret = hns3_set_autoneg(hw, cfg->autoneg);
4938 		if (ret) {
4939 			hns3_err(hw, "failed to configure auto-negotiation.");
4940 			return ret;
4941 		}
4942 
4943 		/*
4944 		 * To enable auto-negotiation, we only need to open the switch
4945 		 * of auto-negotiation, then firmware sets all speed
4946 		 * capabilities.
4947 		 */
4948 		if (cfg->autoneg)
4949 			return 0;
4950 	}
4951 
4952 	/*
4953 	 * Some hardware doesn't support auto-negotiation, but users may not
4954 	 * configure link_speeds (default 0), which means auto-negotiation.
4955 	 * In this case, a warning message need to be printed, instead of
4956 	 * an error.
4957 	 */
4958 	if (cfg->autoneg) {
4959 		hns3_warn(hw, "auto-negotiation is not supported, use default fixed speed!");
4960 		return 0;
4961 	}
4962 
4963 	return hns3_cfg_mac_speed_dup(hw, cfg->speed, cfg->duplex);
4964 }
4965 
4966 static int
4967 hns3_set_port_link_speed(struct hns3_hw *hw,
4968 			 struct hns3_set_link_speed_cfg *cfg)
4969 {
4970 	int ret;
4971 
4972 	if (hw->mac.media_type == HNS3_MEDIA_TYPE_COPPER) {
4973 #if defined(RTE_HNS3_ONLY_1630_FPGA)
4974 		struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw);
4975 		if (pf->is_tmp_phy)
4976 			return 0;
4977 #endif
4978 
4979 		ret = hns3_set_copper_port_link_speed(hw, cfg);
4980 		if (ret) {
4981 			hns3_err(hw, "failed to set copper port link speed,"
4982 				 "ret = %d.", ret);
4983 			return ret;
4984 		}
4985 	} else if (hw->mac.media_type == HNS3_MEDIA_TYPE_FIBER) {
4986 		ret = hns3_set_fiber_port_link_speed(hw, cfg);
4987 		if (ret) {
4988 			hns3_err(hw, "failed to set fiber port link speed,"
4989 				 "ret = %d.", ret);
4990 			return ret;
4991 		}
4992 	}
4993 
4994 	return 0;
4995 }
4996 
4997 static int
4998 hns3_apply_link_speed(struct hns3_hw *hw)
4999 {
5000 	struct rte_eth_conf *conf = &hw->data->dev_conf;
5001 	struct hns3_set_link_speed_cfg cfg;
5002 
5003 	memset(&cfg, 0, sizeof(struct hns3_set_link_speed_cfg));
5004 	cfg.autoneg = (conf->link_speeds == RTE_ETH_LINK_SPEED_AUTONEG) ?
5005 			RTE_ETH_LINK_AUTONEG : RTE_ETH_LINK_FIXED;
5006 	if (cfg.autoneg != RTE_ETH_LINK_AUTONEG) {
5007 		cfg.speed = hns3_get_link_speed(conf->link_speeds);
5008 		cfg.duplex = hns3_get_link_duplex(conf->link_speeds);
5009 	}
5010 
5011 	return hns3_set_port_link_speed(hw, &cfg);
5012 }
5013 
5014 static int
5015 hns3_do_start(struct hns3_adapter *hns, bool reset_queue)
5016 {
5017 	struct hns3_hw *hw = &hns->hw;
5018 	bool link_en;
5019 	int ret;
5020 
5021 	ret = hns3_update_queue_map_configure(hns);
5022 	if (ret) {
5023 		hns3_err(hw, "failed to update queue mapping configuration, ret = %d",
5024 			 ret);
5025 		return ret;
5026 	}
5027 
5028 	/* Note: hns3_tm_conf_update must be called after configuring DCB. */
5029 	ret = hns3_tm_conf_update(hw);
5030 	if (ret) {
5031 		PMD_INIT_LOG(ERR, "failed to update tm conf, ret = %d.", ret);
5032 		return ret;
5033 	}
5034 
5035 	hns3_enable_rxd_adv_layout(hw);
5036 
5037 	ret = hns3_init_queues(hns, reset_queue);
5038 	if (ret) {
5039 		PMD_INIT_LOG(ERR, "failed to init queues, ret = %d.", ret);
5040 		return ret;
5041 	}
5042 
5043 	link_en = hw->set_link_down ? false : true;
5044 	ret = hns3_cfg_mac_mode(hw, link_en);
5045 	if (ret) {
5046 		PMD_INIT_LOG(ERR, "failed to enable MAC, ret = %d", ret);
5047 		goto err_config_mac_mode;
5048 	}
5049 
5050 	ret = hns3_apply_link_speed(hw);
5051 	if (ret)
5052 		goto err_set_link_speed;
5053 
5054 	return 0;
5055 
5056 err_set_link_speed:
5057 	(void)hns3_cfg_mac_mode(hw, false);
5058 
5059 err_config_mac_mode:
5060 	hns3_dev_release_mbufs(hns);
5061 	/*
5062 	 * Here is exception handling, hns3_reset_all_tqps will have the
5063 	 * corresponding error message if it is handled incorrectly, so it is
5064 	 * not necessary to check hns3_reset_all_tqps return value, here keep
5065 	 * ret as the error code causing the exception.
5066 	 */
5067 	(void)hns3_reset_all_tqps(hns);
5068 	return ret;
5069 }
5070 
5071 static void
5072 hns3_restore_filter(struct rte_eth_dev *dev)
5073 {
5074 	hns3_restore_rss_filter(dev);
5075 }
5076 
5077 static int
5078 hns3_dev_start(struct rte_eth_dev *dev)
5079 {
5080 	struct hns3_adapter *hns = dev->data->dev_private;
5081 	struct hns3_hw *hw = &hns->hw;
5082 	bool old_state = hw->set_link_down;
5083 	int ret;
5084 
5085 	PMD_INIT_FUNC_TRACE();
5086 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED))
5087 		return -EBUSY;
5088 
5089 	rte_spinlock_lock(&hw->lock);
5090 	hw->adapter_state = HNS3_NIC_STARTING;
5091 
5092 	/*
5093 	 * If the dev_set_link_down() API has been called, the "set_link_down"
5094 	 * flag can be cleared by dev_start() API. In addition, the flag should
5095 	 * also be cleared before calling hns3_do_start() so that MAC can be
5096 	 * enabled in dev_start stage.
5097 	 */
5098 	hw->set_link_down = false;
5099 	ret = hns3_do_start(hns, true);
5100 	if (ret)
5101 		goto do_start_fail;
5102 
5103 	ret = hns3_map_rx_interrupt(dev);
5104 	if (ret)
5105 		goto map_rx_inter_err;
5106 
5107 	/*
5108 	 * There are three register used to control the status of a TQP
5109 	 * (contains a pair of Tx queue and Rx queue) in the new version network
5110 	 * engine. One is used to control the enabling of Tx queue, the other is
5111 	 * used to control the enabling of Rx queue, and the last is the master
5112 	 * switch used to control the enabling of the tqp. The Tx register and
5113 	 * TQP register must be enabled at the same time to enable a Tx queue.
5114 	 * The same applies to the Rx queue. For the older network engine, this
5115 	 * function only refresh the enabled flag, and it is used to update the
5116 	 * status of queue in the dpdk framework.
5117 	 */
5118 	ret = hns3_start_all_txqs(dev);
5119 	if (ret)
5120 		goto map_rx_inter_err;
5121 
5122 	ret = hns3_start_all_rxqs(dev);
5123 	if (ret)
5124 		goto start_all_rxqs_fail;
5125 
5126 	hw->adapter_state = HNS3_NIC_STARTED;
5127 	rte_spinlock_unlock(&hw->lock);
5128 
5129 	hns3_rx_scattered_calc(dev);
5130 	hns3_set_rxtx_function(dev);
5131 	hns3_mp_req_start_rxtx(dev);
5132 
5133 	hns3_restore_filter(dev);
5134 
5135 	/* Enable interrupt of all rx queues before enabling queues */
5136 	hns3_dev_all_rx_queue_intr_enable(hw, true);
5137 
5138 	/*
5139 	 * After finished the initialization, enable tqps to receive/transmit
5140 	 * packets and refresh all queue status.
5141 	 */
5142 	hns3_start_tqps(hw);
5143 
5144 	hns3_tm_dev_start_proc(hw);
5145 
5146 	if (dev->data->dev_conf.intr_conf.lsc != 0)
5147 		hns3_dev_link_update(dev, 0);
5148 	rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, dev);
5149 
5150 	hns3_info(hw, "hns3 dev start successful!");
5151 
5152 	return 0;
5153 
5154 start_all_rxqs_fail:
5155 	hns3_stop_all_txqs(dev);
5156 map_rx_inter_err:
5157 	(void)hns3_do_stop(hns);
5158 do_start_fail:
5159 	hw->set_link_down = old_state;
5160 	hw->adapter_state = HNS3_NIC_CONFIGURED;
5161 	rte_spinlock_unlock(&hw->lock);
5162 
5163 	return ret;
5164 }
5165 
5166 static int
5167 hns3_do_stop(struct hns3_adapter *hns)
5168 {
5169 	struct hns3_hw *hw = &hns->hw;
5170 	int ret;
5171 
5172 	/*
5173 	 * The "hns3_do_stop" function will also be called by .stop_service to
5174 	 * prepare reset. At the time of global or IMP reset, the command cannot
5175 	 * be sent to stop the tx/rx queues. The mbuf in Tx/Rx queues may be
5176 	 * accessed during the reset process. So the mbuf can not be released
5177 	 * during reset and is required to be released after the reset is
5178 	 * completed.
5179 	 */
5180 	if (__atomic_load_n(&hw->reset.resetting,  __ATOMIC_RELAXED) == 0)
5181 		hns3_dev_release_mbufs(hns);
5182 
5183 	ret = hns3_cfg_mac_mode(hw, false);
5184 	if (ret)
5185 		return ret;
5186 	hw->mac.link_status = RTE_ETH_LINK_DOWN;
5187 
5188 	if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0) {
5189 		hns3_configure_all_mac_addr(hns, true);
5190 		ret = hns3_reset_all_tqps(hns);
5191 		if (ret) {
5192 			hns3_err(hw, "failed to reset all queues ret = %d.",
5193 				 ret);
5194 			return ret;
5195 		}
5196 	}
5197 
5198 	return 0;
5199 }
5200 
5201 static int
5202 hns3_dev_stop(struct rte_eth_dev *dev)
5203 {
5204 	struct hns3_adapter *hns = dev->data->dev_private;
5205 	struct hns3_hw *hw = &hns->hw;
5206 
5207 	PMD_INIT_FUNC_TRACE();
5208 	dev->data->dev_started = 0;
5209 
5210 	hw->adapter_state = HNS3_NIC_STOPPING;
5211 	hns3_set_rxtx_function(dev);
5212 	rte_wmb();
5213 	/* Disable datapath on secondary process. */
5214 	hns3_mp_req_stop_rxtx(dev);
5215 	/* Prevent crashes when queues are still in use. */
5216 	rte_delay_ms(hw->cfg_max_queues);
5217 
5218 	rte_spinlock_lock(&hw->lock);
5219 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
5220 		hns3_tm_dev_stop_proc(hw);
5221 		hns3_config_mac_tnl_int(hw, false);
5222 		hns3_stop_tqps(hw);
5223 		hns3_do_stop(hns);
5224 		hns3_unmap_rx_interrupt(dev);
5225 		hw->adapter_state = HNS3_NIC_CONFIGURED;
5226 	}
5227 	hns3_rx_scattered_reset(dev);
5228 	rte_eal_alarm_cancel(hns3_service_handler, dev);
5229 	hns3_stop_report_lse(dev);
5230 	rte_spinlock_unlock(&hw->lock);
5231 
5232 	return 0;
5233 }
5234 
5235 static int
5236 hns3_dev_close(struct rte_eth_dev *eth_dev)
5237 {
5238 	struct hns3_adapter *hns = eth_dev->data->dev_private;
5239 	struct hns3_hw *hw = &hns->hw;
5240 	int ret = 0;
5241 
5242 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
5243 		hns3_mp_uninit(eth_dev);
5244 		return 0;
5245 	}
5246 
5247 	if (hw->adapter_state == HNS3_NIC_STARTED)
5248 		ret = hns3_dev_stop(eth_dev);
5249 
5250 	hw->adapter_state = HNS3_NIC_CLOSING;
5251 	hns3_reset_abort(hns);
5252 	hw->adapter_state = HNS3_NIC_CLOSED;
5253 
5254 	hns3_configure_all_mc_mac_addr(hns, true);
5255 	hns3_remove_all_vlan_table(hns);
5256 	hns3_vlan_txvlan_cfg(hns, HNS3_PORT_BASE_VLAN_DISABLE, 0);
5257 	hns3_uninit_pf(eth_dev);
5258 	hns3_free_all_queues(eth_dev);
5259 	rte_free(hw->reset.wait_data);
5260 	hns3_mp_uninit(eth_dev);
5261 	hns3_warn(hw, "Close port %u finished", hw->data->port_id);
5262 
5263 	return ret;
5264 }
5265 
5266 static void
5267 hns3_get_autoneg_rxtx_pause_copper(struct hns3_hw *hw, bool *rx_pause,
5268 				   bool *tx_pause)
5269 {
5270 	struct hns3_mac *mac = &hw->mac;
5271 	uint32_t advertising = mac->advertising;
5272 	uint32_t lp_advertising = mac->lp_advertising;
5273 	*rx_pause = false;
5274 	*tx_pause = false;
5275 
5276 	if (advertising & lp_advertising & HNS3_PHY_LINK_MODE_PAUSE_BIT) {
5277 		*rx_pause = true;
5278 		*tx_pause = true;
5279 	} else if (advertising & lp_advertising &
5280 		   HNS3_PHY_LINK_MODE_ASYM_PAUSE_BIT) {
5281 		if (advertising & HNS3_PHY_LINK_MODE_PAUSE_BIT)
5282 			*rx_pause = true;
5283 		else if (lp_advertising & HNS3_PHY_LINK_MODE_PAUSE_BIT)
5284 			*tx_pause = true;
5285 	}
5286 }
5287 
5288 static enum hns3_fc_mode
5289 hns3_get_autoneg_fc_mode(struct hns3_hw *hw)
5290 {
5291 	enum hns3_fc_mode current_mode;
5292 	bool rx_pause = false;
5293 	bool tx_pause = false;
5294 
5295 	switch (hw->mac.media_type) {
5296 	case HNS3_MEDIA_TYPE_COPPER:
5297 		hns3_get_autoneg_rxtx_pause_copper(hw, &rx_pause, &tx_pause);
5298 		break;
5299 
5300 	/*
5301 	 * Flow control auto-negotiation is not supported for fiber and
5302 	 * backplane media type.
5303 	 */
5304 	case HNS3_MEDIA_TYPE_FIBER:
5305 	case HNS3_MEDIA_TYPE_BACKPLANE:
5306 		hns3_err(hw, "autoneg FC mode can't be obtained, but flow control auto-negotiation is enabled.");
5307 		current_mode = hw->requested_fc_mode;
5308 		goto out;
5309 	default:
5310 		hns3_err(hw, "autoneg FC mode can't be obtained for unknown media type(%u).",
5311 			 hw->mac.media_type);
5312 		current_mode = HNS3_FC_NONE;
5313 		goto out;
5314 	}
5315 
5316 	if (rx_pause && tx_pause)
5317 		current_mode = HNS3_FC_FULL;
5318 	else if (rx_pause)
5319 		current_mode = HNS3_FC_RX_PAUSE;
5320 	else if (tx_pause)
5321 		current_mode = HNS3_FC_TX_PAUSE;
5322 	else
5323 		current_mode = HNS3_FC_NONE;
5324 
5325 out:
5326 	return current_mode;
5327 }
5328 
5329 static enum hns3_fc_mode
5330 hns3_get_current_fc_mode(struct rte_eth_dev *dev)
5331 {
5332 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5333 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5334 	struct hns3_mac *mac = &hw->mac;
5335 
5336 	/*
5337 	 * When the flow control mode is obtained, the device may not complete
5338 	 * auto-negotiation. It is necessary to wait for link establishment.
5339 	 */
5340 	(void)hns3_dev_link_update(dev, 1);
5341 
5342 	/*
5343 	 * If the link auto-negotiation of the nic is disabled, or the flow
5344 	 * control auto-negotiation is not supported, the forced flow control
5345 	 * mode is used.
5346 	 */
5347 	if (mac->link_autoneg == 0 || !pf->support_fc_autoneg)
5348 		return hw->requested_fc_mode;
5349 
5350 	return hns3_get_autoneg_fc_mode(hw);
5351 }
5352 
5353 int
5354 hns3_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
5355 {
5356 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5357 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5358 	enum hns3_fc_mode current_mode;
5359 
5360 	current_mode = hns3_get_current_fc_mode(dev);
5361 	switch (current_mode) {
5362 	case HNS3_FC_FULL:
5363 		fc_conf->mode = RTE_ETH_FC_FULL;
5364 		break;
5365 	case HNS3_FC_TX_PAUSE:
5366 		fc_conf->mode = RTE_ETH_FC_TX_PAUSE;
5367 		break;
5368 	case HNS3_FC_RX_PAUSE:
5369 		fc_conf->mode = RTE_ETH_FC_RX_PAUSE;
5370 		break;
5371 	case HNS3_FC_NONE:
5372 	default:
5373 		fc_conf->mode = RTE_ETH_FC_NONE;
5374 		break;
5375 	}
5376 
5377 	fc_conf->pause_time = pf->pause_time;
5378 	fc_conf->autoneg = pf->support_fc_autoneg ? hw->mac.link_autoneg : 0;
5379 
5380 	return 0;
5381 }
5382 
5383 static int
5384 hns3_check_fc_autoneg_valid(struct hns3_hw *hw, uint8_t autoneg)
5385 {
5386 	struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw);
5387 
5388 	if (!pf->support_fc_autoneg) {
5389 		if (autoneg != 0) {
5390 			hns3_err(hw, "unsupported fc auto-negotiation setting.");
5391 			return -EOPNOTSUPP;
5392 		}
5393 
5394 		/*
5395 		 * Flow control auto-negotiation of the NIC is not supported,
5396 		 * but other auto-negotiation features may be supported.
5397 		 */
5398 		if (autoneg != hw->mac.link_autoneg) {
5399 			hns3_err(hw, "please use 'link_speeds' in struct rte_eth_conf to disable autoneg!");
5400 			return -EOPNOTSUPP;
5401 		}
5402 
5403 		return 0;
5404 	}
5405 
5406 	/*
5407 	 * If flow control auto-negotiation of the NIC is supported, all
5408 	 * auto-negotiation features are supported.
5409 	 */
5410 	if (autoneg != hw->mac.link_autoneg) {
5411 		hns3_err(hw, "please use 'link_speeds' in struct rte_eth_conf to change autoneg!");
5412 		return -EOPNOTSUPP;
5413 	}
5414 
5415 	return 0;
5416 }
5417 
5418 static int
5419 hns3_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
5420 {
5421 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5422 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5423 	int ret;
5424 
5425 	if (fc_conf->high_water || fc_conf->low_water ||
5426 	    fc_conf->send_xon || fc_conf->mac_ctrl_frame_fwd) {
5427 		hns3_err(hw, "Unsupported flow control settings specified, "
5428 			 "high_water(%u), low_water(%u), send_xon(%u) and "
5429 			 "mac_ctrl_frame_fwd(%u) must be set to '0'",
5430 			 fc_conf->high_water, fc_conf->low_water,
5431 			 fc_conf->send_xon, fc_conf->mac_ctrl_frame_fwd);
5432 		return -EINVAL;
5433 	}
5434 
5435 	ret = hns3_check_fc_autoneg_valid(hw, fc_conf->autoneg);
5436 	if (ret)
5437 		return ret;
5438 
5439 	if (!fc_conf->pause_time) {
5440 		hns3_err(hw, "Invalid pause time %u setting.",
5441 			 fc_conf->pause_time);
5442 		return -EINVAL;
5443 	}
5444 
5445 	if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
5446 	    hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE)) {
5447 		hns3_err(hw, "PFC is enabled. Cannot set MAC pause. "
5448 			 "current_fc_status = %d", hw->current_fc_status);
5449 		return -EOPNOTSUPP;
5450 	}
5451 
5452 	if (hw->num_tc > 1 && !pf->support_multi_tc_pause) {
5453 		hns3_err(hw, "in multi-TC scenarios, MAC pause is not supported.");
5454 		return -EOPNOTSUPP;
5455 	}
5456 
5457 	rte_spinlock_lock(&hw->lock);
5458 	ret = hns3_fc_enable(dev, fc_conf);
5459 	rte_spinlock_unlock(&hw->lock);
5460 
5461 	return ret;
5462 }
5463 
5464 static int
5465 hns3_priority_flow_ctrl_set(struct rte_eth_dev *dev,
5466 			    struct rte_eth_pfc_conf *pfc_conf)
5467 {
5468 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5469 	int ret;
5470 
5471 	if (!hns3_dev_get_support(hw, DCB)) {
5472 		hns3_err(hw, "This port does not support dcb configurations.");
5473 		return -EOPNOTSUPP;
5474 	}
5475 
5476 	if (pfc_conf->fc.high_water || pfc_conf->fc.low_water ||
5477 	    pfc_conf->fc.send_xon || pfc_conf->fc.mac_ctrl_frame_fwd) {
5478 		hns3_err(hw, "Unsupported flow control settings specified, "
5479 			 "high_water(%u), low_water(%u), send_xon(%u) and "
5480 			 "mac_ctrl_frame_fwd(%u) must be set to '0'",
5481 			 pfc_conf->fc.high_water, pfc_conf->fc.low_water,
5482 			 pfc_conf->fc.send_xon,
5483 			 pfc_conf->fc.mac_ctrl_frame_fwd);
5484 		return -EINVAL;
5485 	}
5486 	if (pfc_conf->fc.autoneg) {
5487 		hns3_err(hw, "Unsupported fc auto-negotiation setting.");
5488 		return -EINVAL;
5489 	}
5490 	if (pfc_conf->fc.pause_time == 0) {
5491 		hns3_err(hw, "Invalid pause time %u setting.",
5492 			 pfc_conf->fc.pause_time);
5493 		return -EINVAL;
5494 	}
5495 
5496 	if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
5497 	    hw->current_fc_status == HNS3_FC_STATUS_PFC)) {
5498 		hns3_err(hw, "MAC pause is enabled. Cannot set PFC."
5499 			     "current_fc_status = %d", hw->current_fc_status);
5500 		return -EOPNOTSUPP;
5501 	}
5502 
5503 	rte_spinlock_lock(&hw->lock);
5504 	ret = hns3_dcb_pfc_enable(dev, pfc_conf);
5505 	rte_spinlock_unlock(&hw->lock);
5506 
5507 	return ret;
5508 }
5509 
5510 static int
5511 hns3_get_dcb_info(struct rte_eth_dev *dev, struct rte_eth_dcb_info *dcb_info)
5512 {
5513 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5514 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5515 	enum rte_eth_rx_mq_mode mq_mode = dev->data->dev_conf.rxmode.mq_mode;
5516 	int i;
5517 
5518 	rte_spinlock_lock(&hw->lock);
5519 	if ((uint32_t)mq_mode & RTE_ETH_MQ_RX_DCB_FLAG)
5520 		dcb_info->nb_tcs = pf->local_max_tc;
5521 	else
5522 		dcb_info->nb_tcs = 1;
5523 
5524 	for (i = 0; i < HNS3_MAX_USER_PRIO; i++)
5525 		dcb_info->prio_tc[i] = hw->dcb_info.prio_tc[i];
5526 	for (i = 0; i < dcb_info->nb_tcs; i++)
5527 		dcb_info->tc_bws[i] = hw->dcb_info.pg_info[0].tc_dwrr[i];
5528 
5529 	for (i = 0; i < hw->num_tc; i++) {
5530 		dcb_info->tc_queue.tc_rxq[0][i].base = hw->alloc_rss_size * i;
5531 		dcb_info->tc_queue.tc_txq[0][i].base =
5532 						hw->tc_queue[i].tqp_offset;
5533 		dcb_info->tc_queue.tc_rxq[0][i].nb_queue = hw->alloc_rss_size;
5534 		dcb_info->tc_queue.tc_txq[0][i].nb_queue =
5535 						hw->tc_queue[i].tqp_count;
5536 	}
5537 	rte_spinlock_unlock(&hw->lock);
5538 
5539 	return 0;
5540 }
5541 
5542 static int
5543 hns3_reinit_dev(struct hns3_adapter *hns)
5544 {
5545 	struct hns3_hw *hw = &hns->hw;
5546 	int ret;
5547 
5548 	ret = hns3_cmd_init(hw);
5549 	if (ret) {
5550 		hns3_err(hw, "Failed to init cmd: %d", ret);
5551 		return ret;
5552 	}
5553 
5554 	ret = hns3_init_hardware(hns);
5555 	if (ret) {
5556 		hns3_err(hw, "Failed to init hardware: %d", ret);
5557 		return ret;
5558 	}
5559 
5560 	ret = hns3_reset_all_tqps(hns);
5561 	if (ret) {
5562 		hns3_err(hw, "Failed to reset all queues: %d", ret);
5563 		return ret;
5564 	}
5565 
5566 	ret = hns3_enable_hw_error_intr(hns, true);
5567 	if (ret) {
5568 		hns3_err(hw, "fail to enable hw error interrupts: %d",
5569 			     ret);
5570 		return ret;
5571 	}
5572 	hns3_info(hw, "Reset done, driver initialization finished.");
5573 
5574 	return 0;
5575 }
5576 
5577 static bool
5578 is_pf_reset_done(struct hns3_hw *hw)
5579 {
5580 	uint32_t val, reg, reg_bit;
5581 
5582 	switch (hw->reset.level) {
5583 	case HNS3_IMP_RESET:
5584 		reg = HNS3_GLOBAL_RESET_REG;
5585 		reg_bit = HNS3_IMP_RESET_BIT;
5586 		break;
5587 	case HNS3_GLOBAL_RESET:
5588 		reg = HNS3_GLOBAL_RESET_REG;
5589 		reg_bit = HNS3_GLOBAL_RESET_BIT;
5590 		break;
5591 	case HNS3_FUNC_RESET:
5592 		reg = HNS3_FUN_RST_ING;
5593 		reg_bit = HNS3_FUN_RST_ING_B;
5594 		break;
5595 	case HNS3_FLR_RESET:
5596 	default:
5597 		hns3_err(hw, "Wait for unsupported reset level: %d",
5598 			 hw->reset.level);
5599 		return true;
5600 	}
5601 	val = hns3_read_dev(hw, reg);
5602 	if (hns3_get_bit(val, reg_bit))
5603 		return false;
5604 	else
5605 		return true;
5606 }
5607 
5608 bool
5609 hns3_is_reset_pending(struct hns3_adapter *hns)
5610 {
5611 	struct hns3_hw *hw = &hns->hw;
5612 	enum hns3_reset_level reset;
5613 
5614 	hns3_check_event_cause(hns, NULL);
5615 	reset = hns3_get_reset_level(hns, &hw->reset.pending);
5616 	if (reset != HNS3_NONE_RESET && hw->reset.level != HNS3_NONE_RESET &&
5617 	    hw->reset.level < reset) {
5618 		hns3_warn(hw, "High level reset %d is pending", reset);
5619 		return true;
5620 	}
5621 	reset = hns3_get_reset_level(hns, &hw->reset.request);
5622 	if (reset != HNS3_NONE_RESET && hw->reset.level != HNS3_NONE_RESET &&
5623 	    hw->reset.level < reset) {
5624 		hns3_warn(hw, "High level reset %d is request", reset);
5625 		return true;
5626 	}
5627 	return false;
5628 }
5629 
5630 static int
5631 hns3_wait_hardware_ready(struct hns3_adapter *hns)
5632 {
5633 	struct hns3_hw *hw = &hns->hw;
5634 	struct hns3_wait_data *wait_data = hw->reset.wait_data;
5635 	struct timeval tv;
5636 
5637 	if (wait_data->result == HNS3_WAIT_SUCCESS)
5638 		return 0;
5639 	else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
5640 		hns3_clock_gettime(&tv);
5641 		hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
5642 			  tv.tv_sec, tv.tv_usec);
5643 		return -ETIME;
5644 	} else if (wait_data->result == HNS3_WAIT_REQUEST)
5645 		return -EAGAIN;
5646 
5647 	wait_data->hns = hns;
5648 	wait_data->check_completion = is_pf_reset_done;
5649 	wait_data->end_ms = (uint64_t)HNS3_RESET_WAIT_CNT *
5650 				HNS3_RESET_WAIT_MS + hns3_clock_gettime_ms();
5651 	wait_data->interval = HNS3_RESET_WAIT_MS * USEC_PER_MSEC;
5652 	wait_data->count = HNS3_RESET_WAIT_CNT;
5653 	wait_data->result = HNS3_WAIT_REQUEST;
5654 	rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
5655 	return -EAGAIN;
5656 }
5657 
5658 static int
5659 hns3_func_reset_cmd(struct hns3_hw *hw, int func_id)
5660 {
5661 	struct hns3_cmd_desc desc;
5662 	struct hns3_reset_cmd *req = (struct hns3_reset_cmd *)desc.data;
5663 
5664 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_RST_TRIGGER, false);
5665 	hns3_set_bit(req->mac_func_reset, HNS3_CFG_RESET_FUNC_B, 1);
5666 	req->fun_reset_vfid = func_id;
5667 
5668 	return hns3_cmd_send(hw, &desc, 1);
5669 }
5670 
5671 static int
5672 hns3_imp_reset_cmd(struct hns3_hw *hw)
5673 {
5674 	struct hns3_cmd_desc desc;
5675 
5676 	hns3_cmd_setup_basic_desc(&desc, 0xFFFE, false);
5677 	desc.data[0] = 0xeedd;
5678 
5679 	return hns3_cmd_send(hw, &desc, 1);
5680 }
5681 
5682 static void
5683 hns3_msix_process(struct hns3_adapter *hns, enum hns3_reset_level reset_level)
5684 {
5685 	struct hns3_hw *hw = &hns->hw;
5686 	struct timeval tv;
5687 	uint32_t val;
5688 
5689 	hns3_clock_gettime(&tv);
5690 	if (hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG) ||
5691 	    hns3_read_dev(hw, HNS3_FUN_RST_ING)) {
5692 		hns3_warn(hw, "Don't process msix during resetting time=%ld.%.6ld",
5693 			  tv.tv_sec, tv.tv_usec);
5694 		return;
5695 	}
5696 
5697 	switch (reset_level) {
5698 	case HNS3_IMP_RESET:
5699 		hns3_imp_reset_cmd(hw);
5700 		hns3_warn(hw, "IMP Reset requested time=%ld.%.6ld",
5701 			  tv.tv_sec, tv.tv_usec);
5702 		break;
5703 	case HNS3_GLOBAL_RESET:
5704 		val = hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG);
5705 		hns3_set_bit(val, HNS3_GLOBAL_RESET_BIT, 1);
5706 		hns3_write_dev(hw, HNS3_GLOBAL_RESET_REG, val);
5707 		hns3_warn(hw, "Global Reset requested time=%ld.%.6ld",
5708 			  tv.tv_sec, tv.tv_usec);
5709 		break;
5710 	case HNS3_FUNC_RESET:
5711 		hns3_warn(hw, "PF Reset requested time=%ld.%.6ld",
5712 			  tv.tv_sec, tv.tv_usec);
5713 		/* schedule again to check later */
5714 		hns3_atomic_set_bit(HNS3_FUNC_RESET, &hw->reset.pending);
5715 		hns3_schedule_reset(hns);
5716 		break;
5717 	default:
5718 		hns3_warn(hw, "Unsupported reset level: %d", reset_level);
5719 		return;
5720 	}
5721 	hns3_atomic_clear_bit(reset_level, &hw->reset.request);
5722 }
5723 
5724 static enum hns3_reset_level
5725 hns3_get_reset_level(struct hns3_adapter *hns, uint64_t *levels)
5726 {
5727 	struct hns3_hw *hw = &hns->hw;
5728 	enum hns3_reset_level reset_level = HNS3_NONE_RESET;
5729 
5730 	/* Return the highest priority reset level amongst all */
5731 	if (hns3_atomic_test_bit(HNS3_IMP_RESET, levels))
5732 		reset_level = HNS3_IMP_RESET;
5733 	else if (hns3_atomic_test_bit(HNS3_GLOBAL_RESET, levels))
5734 		reset_level = HNS3_GLOBAL_RESET;
5735 	else if (hns3_atomic_test_bit(HNS3_FUNC_RESET, levels))
5736 		reset_level = HNS3_FUNC_RESET;
5737 	else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
5738 		reset_level = HNS3_FLR_RESET;
5739 
5740 	if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
5741 		return HNS3_NONE_RESET;
5742 
5743 	return reset_level;
5744 }
5745 
5746 static void
5747 hns3_record_imp_error(struct hns3_adapter *hns)
5748 {
5749 	struct hns3_hw *hw = &hns->hw;
5750 	uint32_t reg_val;
5751 
5752 	reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
5753 	if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B)) {
5754 		hns3_warn(hw, "Detected IMP RD poison!");
5755 		hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B, 0);
5756 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
5757 	}
5758 
5759 	if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B)) {
5760 		hns3_warn(hw, "Detected IMP CMDQ error!");
5761 		hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B, 0);
5762 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
5763 	}
5764 }
5765 
5766 static int
5767 hns3_prepare_reset(struct hns3_adapter *hns)
5768 {
5769 	struct hns3_hw *hw = &hns->hw;
5770 	uint32_t reg_val;
5771 	int ret;
5772 
5773 	switch (hw->reset.level) {
5774 	case HNS3_FUNC_RESET:
5775 		ret = hns3_func_reset_cmd(hw, HNS3_PF_FUNC_ID);
5776 		if (ret)
5777 			return ret;
5778 
5779 		/*
5780 		 * After performaning pf reset, it is not necessary to do the
5781 		 * mailbox handling or send any command to firmware, because
5782 		 * any mailbox handling or command to firmware is only valid
5783 		 * after hns3_cmd_init is called.
5784 		 */
5785 		__atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
5786 		hw->reset.stats.request_cnt++;
5787 		break;
5788 	case HNS3_IMP_RESET:
5789 		hns3_record_imp_error(hns);
5790 		reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
5791 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val |
5792 			       BIT(HNS3_VECTOR0_IMP_RESET_INT_B));
5793 		break;
5794 	default:
5795 		break;
5796 	}
5797 	return 0;
5798 }
5799 
5800 static int
5801 hns3_set_rst_done(struct hns3_hw *hw)
5802 {
5803 	struct hns3_pf_rst_done_cmd *req;
5804 	struct hns3_cmd_desc desc;
5805 
5806 	req = (struct hns3_pf_rst_done_cmd *)desc.data;
5807 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_PF_RST_DONE, false);
5808 	req->pf_rst_done |= HNS3_PF_RESET_DONE_BIT;
5809 	return hns3_cmd_send(hw, &desc, 1);
5810 }
5811 
5812 static int
5813 hns3_stop_service(struct hns3_adapter *hns)
5814 {
5815 	struct hns3_hw *hw = &hns->hw;
5816 	struct rte_eth_dev *eth_dev;
5817 
5818 	eth_dev = &rte_eth_devices[hw->data->port_id];
5819 	hw->mac.link_status = RTE_ETH_LINK_DOWN;
5820 	if (hw->adapter_state == HNS3_NIC_STARTED) {
5821 		rte_eal_alarm_cancel(hns3_service_handler, eth_dev);
5822 		hns3_update_linkstatus_and_event(hw, false);
5823 	}
5824 
5825 	hns3_set_rxtx_function(eth_dev);
5826 	rte_wmb();
5827 	/* Disable datapath on secondary process. */
5828 	hns3_mp_req_stop_rxtx(eth_dev);
5829 	rte_delay_ms(hw->cfg_max_queues);
5830 
5831 	rte_spinlock_lock(&hw->lock);
5832 	if (hns->hw.adapter_state == HNS3_NIC_STARTED ||
5833 	    hw->adapter_state == HNS3_NIC_STOPPING) {
5834 		hns3_enable_all_queues(hw, false);
5835 		hns3_do_stop(hns);
5836 		hw->reset.mbuf_deferred_free = true;
5837 	} else
5838 		hw->reset.mbuf_deferred_free = false;
5839 
5840 	/*
5841 	 * It is cumbersome for hardware to pick-and-choose entries for deletion
5842 	 * from table space. Hence, for function reset software intervention is
5843 	 * required to delete the entries
5844 	 */
5845 	if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0)
5846 		hns3_configure_all_mc_mac_addr(hns, true);
5847 	rte_spinlock_unlock(&hw->lock);
5848 
5849 	return 0;
5850 }
5851 
5852 static int
5853 hns3_start_service(struct hns3_adapter *hns)
5854 {
5855 	struct hns3_hw *hw = &hns->hw;
5856 	struct rte_eth_dev *eth_dev;
5857 
5858 	if (hw->reset.level == HNS3_IMP_RESET ||
5859 	    hw->reset.level == HNS3_GLOBAL_RESET)
5860 		hns3_set_rst_done(hw);
5861 	eth_dev = &rte_eth_devices[hw->data->port_id];
5862 	hns3_set_rxtx_function(eth_dev);
5863 	hns3_mp_req_start_rxtx(eth_dev);
5864 	if (hw->adapter_state == HNS3_NIC_STARTED) {
5865 		/*
5866 		 * This API parent function already hold the hns3_hw.lock, the
5867 		 * hns3_service_handler may report lse, in bonding application
5868 		 * it will call driver's ops which may acquire the hns3_hw.lock
5869 		 * again, thus lead to deadlock.
5870 		 * We defer calls hns3_service_handler to avoid the deadlock.
5871 		 */
5872 		rte_eal_alarm_set(HNS3_SERVICE_QUICK_INTERVAL,
5873 				  hns3_service_handler, eth_dev);
5874 
5875 		/* Enable interrupt of all rx queues before enabling queues */
5876 		hns3_dev_all_rx_queue_intr_enable(hw, true);
5877 		/*
5878 		 * Enable state of each rxq and txq will be recovered after
5879 		 * reset, so we need to restore them before enable all tqps;
5880 		 */
5881 		hns3_restore_tqp_enable_state(hw);
5882 		/*
5883 		 * When finished the initialization, enable queues to receive
5884 		 * and transmit packets.
5885 		 */
5886 		hns3_enable_all_queues(hw, true);
5887 	}
5888 
5889 	return 0;
5890 }
5891 
5892 static int
5893 hns3_restore_conf(struct hns3_adapter *hns)
5894 {
5895 	struct hns3_hw *hw = &hns->hw;
5896 	int ret;
5897 
5898 	ret = hns3_configure_all_mac_addr(hns, false);
5899 	if (ret)
5900 		return ret;
5901 
5902 	ret = hns3_configure_all_mc_mac_addr(hns, false);
5903 	if (ret)
5904 		goto err_mc_mac;
5905 
5906 	ret = hns3_dev_promisc_restore(hns);
5907 	if (ret)
5908 		goto err_promisc;
5909 
5910 	ret = hns3_restore_vlan_table(hns);
5911 	if (ret)
5912 		goto err_promisc;
5913 
5914 	ret = hns3_restore_vlan_conf(hns);
5915 	if (ret)
5916 		goto err_promisc;
5917 
5918 	ret = hns3_restore_all_fdir_filter(hns);
5919 	if (ret)
5920 		goto err_promisc;
5921 
5922 	ret = hns3_restore_ptp(hns);
5923 	if (ret)
5924 		goto err_promisc;
5925 
5926 	ret = hns3_restore_rx_interrupt(hw);
5927 	if (ret)
5928 		goto err_promisc;
5929 
5930 	ret = hns3_restore_gro_conf(hw);
5931 	if (ret)
5932 		goto err_promisc;
5933 
5934 	ret = hns3_restore_fec(hw);
5935 	if (ret)
5936 		goto err_promisc;
5937 
5938 	if (hns->hw.adapter_state == HNS3_NIC_STARTED) {
5939 		ret = hns3_do_start(hns, false);
5940 		if (ret)
5941 			goto err_promisc;
5942 		hns3_info(hw, "hns3 dev restart successful!");
5943 	} else if (hw->adapter_state == HNS3_NIC_STOPPING)
5944 		hw->adapter_state = HNS3_NIC_CONFIGURED;
5945 	return 0;
5946 
5947 err_promisc:
5948 	hns3_configure_all_mc_mac_addr(hns, true);
5949 err_mc_mac:
5950 	hns3_configure_all_mac_addr(hns, true);
5951 	return ret;
5952 }
5953 
5954 static void
5955 hns3_reset_service(void *param)
5956 {
5957 	struct hns3_adapter *hns = (struct hns3_adapter *)param;
5958 	struct hns3_hw *hw = &hns->hw;
5959 	enum hns3_reset_level reset_level;
5960 	struct timeval tv_delta;
5961 	struct timeval tv_start;
5962 	struct timeval tv;
5963 	uint64_t msec;
5964 	int ret;
5965 
5966 	/*
5967 	 * The interrupt is not triggered within the delay time.
5968 	 * The interrupt may have been lost. It is necessary to handle
5969 	 * the interrupt to recover from the error.
5970 	 */
5971 	if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
5972 			    SCHEDULE_DEFERRED) {
5973 		__atomic_store_n(&hw->reset.schedule, SCHEDULE_REQUESTED,
5974 				  __ATOMIC_RELAXED);
5975 		hns3_err(hw, "Handling interrupts in delayed tasks");
5976 		hns3_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
5977 		reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
5978 		if (reset_level == HNS3_NONE_RESET) {
5979 			hns3_err(hw, "No reset level is set, try IMP reset");
5980 			hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
5981 		}
5982 	}
5983 	__atomic_store_n(&hw->reset.schedule, SCHEDULE_NONE, __ATOMIC_RELAXED);
5984 
5985 	/*
5986 	 * Check if there is any ongoing reset in the hardware. This status can
5987 	 * be checked from reset_pending. If there is then, we need to wait for
5988 	 * hardware to complete reset.
5989 	 *    a. If we are able to figure out in reasonable time that hardware
5990 	 *       has fully resetted then, we can proceed with driver, client
5991 	 *       reset.
5992 	 *    b. else, we can come back later to check this status so re-sched
5993 	 *       now.
5994 	 */
5995 	reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
5996 	if (reset_level != HNS3_NONE_RESET) {
5997 		hns3_clock_gettime(&tv_start);
5998 		ret = hns3_reset_process(hns, reset_level);
5999 		hns3_clock_gettime(&tv);
6000 		timersub(&tv, &tv_start, &tv_delta);
6001 		msec = hns3_clock_calctime_ms(&tv_delta);
6002 		if (msec > HNS3_RESET_PROCESS_MS)
6003 			hns3_err(hw, "%d handle long time delta %" PRIu64
6004 				     " ms time=%ld.%.6ld",
6005 				 hw->reset.level, msec,
6006 				 tv.tv_sec, tv.tv_usec);
6007 		if (ret == -EAGAIN)
6008 			return;
6009 	}
6010 
6011 	/* Check if we got any *new* reset requests to be honored */
6012 	reset_level = hns3_get_reset_level(hns, &hw->reset.request);
6013 	if (reset_level != HNS3_NONE_RESET)
6014 		hns3_msix_process(hns, reset_level);
6015 }
6016 
6017 static unsigned int
6018 hns3_get_speed_capa_num(uint16_t device_id)
6019 {
6020 	unsigned int num;
6021 
6022 	switch (device_id) {
6023 	case HNS3_DEV_ID_25GE:
6024 	case HNS3_DEV_ID_25GE_RDMA:
6025 		num = 2;
6026 		break;
6027 	case HNS3_DEV_ID_100G_RDMA_MACSEC:
6028 	case HNS3_DEV_ID_200G_RDMA:
6029 		num = 1;
6030 		break;
6031 	default:
6032 		num = 0;
6033 		break;
6034 	}
6035 
6036 	return num;
6037 }
6038 
6039 static int
6040 hns3_get_speed_fec_capa(struct rte_eth_fec_capa *speed_fec_capa,
6041 			uint16_t device_id)
6042 {
6043 	switch (device_id) {
6044 	case HNS3_DEV_ID_25GE:
6045 	/* fallthrough */
6046 	case HNS3_DEV_ID_25GE_RDMA:
6047 		speed_fec_capa[0].speed = speed_fec_capa_tbl[1].speed;
6048 		speed_fec_capa[0].capa = speed_fec_capa_tbl[1].capa;
6049 
6050 		/* In HNS3 device, the 25G NIC is compatible with 10G rate */
6051 		speed_fec_capa[1].speed = speed_fec_capa_tbl[0].speed;
6052 		speed_fec_capa[1].capa = speed_fec_capa_tbl[0].capa;
6053 		break;
6054 	case HNS3_DEV_ID_100G_RDMA_MACSEC:
6055 		speed_fec_capa[0].speed = speed_fec_capa_tbl[4].speed;
6056 		speed_fec_capa[0].capa = speed_fec_capa_tbl[4].capa;
6057 		break;
6058 	case HNS3_DEV_ID_200G_RDMA:
6059 		speed_fec_capa[0].speed = speed_fec_capa_tbl[5].speed;
6060 		speed_fec_capa[0].capa = speed_fec_capa_tbl[5].capa;
6061 		break;
6062 	default:
6063 		return -ENOTSUP;
6064 	}
6065 
6066 	return 0;
6067 }
6068 
6069 static int
6070 hns3_fec_get_capability(struct rte_eth_dev *dev,
6071 			struct rte_eth_fec_capa *speed_fec_capa,
6072 			unsigned int num)
6073 {
6074 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6075 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
6076 	uint16_t device_id = pci_dev->id.device_id;
6077 	unsigned int capa_num;
6078 	int ret;
6079 
6080 	capa_num = hns3_get_speed_capa_num(device_id);
6081 	if (capa_num == 0) {
6082 		hns3_err(hw, "device(0x%x) is not supported by hns3 PMD",
6083 			 device_id);
6084 		return -ENOTSUP;
6085 	}
6086 
6087 	if (speed_fec_capa == NULL || num < capa_num)
6088 		return capa_num;
6089 
6090 	ret = hns3_get_speed_fec_capa(speed_fec_capa, device_id);
6091 	if (ret)
6092 		return -ENOTSUP;
6093 
6094 	return capa_num;
6095 }
6096 
6097 static int
6098 get_current_fec_auto_state(struct hns3_hw *hw, uint8_t *state)
6099 {
6100 	struct hns3_config_fec_cmd *req;
6101 	struct hns3_cmd_desc desc;
6102 	int ret;
6103 
6104 	/*
6105 	 * CMD(HNS3_OPC_CONFIG_FEC_MODE) read is not supported
6106 	 * in device of link speed
6107 	 * below 10 Gbps.
6108 	 */
6109 	if (hw->mac.link_speed < RTE_ETH_SPEED_NUM_10G) {
6110 		*state = 0;
6111 		return 0;
6112 	}
6113 
6114 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_FEC_MODE, true);
6115 	req = (struct hns3_config_fec_cmd *)desc.data;
6116 	ret = hns3_cmd_send(hw, &desc, 1);
6117 	if (ret) {
6118 		hns3_err(hw, "get current fec auto state failed, ret = %d",
6119 			 ret);
6120 		return ret;
6121 	}
6122 
6123 	*state = req->fec_mode & (1U << HNS3_MAC_CFG_FEC_AUTO_EN_B);
6124 	return 0;
6125 }
6126 
6127 static int
6128 hns3_fec_get_internal(struct hns3_hw *hw, uint32_t *fec_capa)
6129 {
6130 	struct hns3_sfp_info_cmd *resp;
6131 	uint32_t tmp_fec_capa;
6132 	uint8_t auto_state;
6133 	struct hns3_cmd_desc desc;
6134 	int ret;
6135 
6136 	/*
6137 	 * If link is down and AUTO is enabled, AUTO is returned, otherwise,
6138 	 * configured FEC mode is returned.
6139 	 * If link is up, current FEC mode is returned.
6140 	 */
6141 	if (hw->mac.link_status == RTE_ETH_LINK_DOWN) {
6142 		ret = get_current_fec_auto_state(hw, &auto_state);
6143 		if (ret)
6144 			return ret;
6145 
6146 		if (auto_state == 0x1) {
6147 			*fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(AUTO);
6148 			return 0;
6149 		}
6150 	}
6151 
6152 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GET_SFP_INFO, true);
6153 	resp = (struct hns3_sfp_info_cmd *)desc.data;
6154 	resp->query_type = HNS3_ACTIVE_QUERY;
6155 
6156 	ret = hns3_cmd_send(hw, &desc, 1);
6157 	if (ret == -EOPNOTSUPP) {
6158 		hns3_err(hw, "IMP do not support get FEC, ret = %d", ret);
6159 		return ret;
6160 	} else if (ret) {
6161 		hns3_err(hw, "get FEC failed, ret = %d", ret);
6162 		return ret;
6163 	}
6164 
6165 	/*
6166 	 * FEC mode order defined in hns3 hardware is inconsistent with
6167 	 * that defined in the ethdev library. So the sequence needs
6168 	 * to be converted.
6169 	 */
6170 	switch (resp->active_fec) {
6171 	case HNS3_HW_FEC_MODE_NOFEC:
6172 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC);
6173 		break;
6174 	case HNS3_HW_FEC_MODE_BASER:
6175 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(BASER);
6176 		break;
6177 	case HNS3_HW_FEC_MODE_RS:
6178 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(RS);
6179 		break;
6180 	default:
6181 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC);
6182 		break;
6183 	}
6184 
6185 	*fec_capa = tmp_fec_capa;
6186 	return 0;
6187 }
6188 
6189 static int
6190 hns3_fec_get(struct rte_eth_dev *dev, uint32_t *fec_capa)
6191 {
6192 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6193 
6194 	return hns3_fec_get_internal(hw, fec_capa);
6195 }
6196 
6197 static int
6198 hns3_set_fec_hw(struct hns3_hw *hw, uint32_t mode)
6199 {
6200 	struct hns3_config_fec_cmd *req;
6201 	struct hns3_cmd_desc desc;
6202 	int ret;
6203 
6204 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_FEC_MODE, false);
6205 
6206 	req = (struct hns3_config_fec_cmd *)desc.data;
6207 	switch (mode) {
6208 	case RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC):
6209 		hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6210 				HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_OFF);
6211 		break;
6212 	case RTE_ETH_FEC_MODE_CAPA_MASK(BASER):
6213 		hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6214 				HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_BASER);
6215 		break;
6216 	case RTE_ETH_FEC_MODE_CAPA_MASK(RS):
6217 		hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6218 				HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_RS);
6219 		break;
6220 	case RTE_ETH_FEC_MODE_CAPA_MASK(AUTO):
6221 		hns3_set_bit(req->fec_mode, HNS3_MAC_CFG_FEC_AUTO_EN_B, 1);
6222 		break;
6223 	default:
6224 		return 0;
6225 	}
6226 	ret = hns3_cmd_send(hw, &desc, 1);
6227 	if (ret)
6228 		hns3_err(hw, "set fec mode failed, ret = %d", ret);
6229 
6230 	return ret;
6231 }
6232 
6233 static uint32_t
6234 get_current_speed_fec_cap(struct hns3_hw *hw, struct rte_eth_fec_capa *fec_capa)
6235 {
6236 	struct hns3_mac *mac = &hw->mac;
6237 	uint32_t cur_capa;
6238 
6239 	switch (mac->link_speed) {
6240 	case RTE_ETH_SPEED_NUM_10G:
6241 		cur_capa = fec_capa[1].capa;
6242 		break;
6243 	case RTE_ETH_SPEED_NUM_25G:
6244 	case RTE_ETH_SPEED_NUM_100G:
6245 	case RTE_ETH_SPEED_NUM_200G:
6246 		cur_capa = fec_capa[0].capa;
6247 		break;
6248 	default:
6249 		cur_capa = 0;
6250 		break;
6251 	}
6252 
6253 	return cur_capa;
6254 }
6255 
6256 static bool
6257 is_fec_mode_one_bit_set(uint32_t mode)
6258 {
6259 	int cnt = 0;
6260 	uint8_t i;
6261 
6262 	for (i = 0; i < sizeof(mode); i++)
6263 		if (mode >> i & 0x1)
6264 			cnt++;
6265 
6266 	return cnt == 1 ? true : false;
6267 }
6268 
6269 static int
6270 hns3_fec_set(struct rte_eth_dev *dev, uint32_t mode)
6271 {
6272 #define FEC_CAPA_NUM 2
6273 	struct hns3_adapter *hns = dev->data->dev_private;
6274 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
6275 	struct hns3_pf *pf = &hns->pf;
6276 	struct rte_eth_fec_capa fec_capa[FEC_CAPA_NUM];
6277 	uint32_t cur_capa;
6278 	uint32_t num = FEC_CAPA_NUM;
6279 	int ret;
6280 
6281 	ret = hns3_fec_get_capability(dev, fec_capa, num);
6282 	if (ret < 0)
6283 		return ret;
6284 
6285 	/* HNS3 PMD only support one bit set mode, e.g. 0x1, 0x4 */
6286 	if (!is_fec_mode_one_bit_set(mode)) {
6287 		hns3_err(hw, "FEC mode(0x%x) not supported in HNS3 PMD, "
6288 			     "FEC mode should be only one bit set", mode);
6289 		return -EINVAL;
6290 	}
6291 
6292 	/*
6293 	 * Check whether the configured mode is within the FEC capability.
6294 	 * If not, the configured mode will not be supported.
6295 	 */
6296 	cur_capa = get_current_speed_fec_cap(hw, fec_capa);
6297 	if (!(cur_capa & mode)) {
6298 		hns3_err(hw, "unsupported FEC mode = 0x%x", mode);
6299 		return -EINVAL;
6300 	}
6301 
6302 	rte_spinlock_lock(&hw->lock);
6303 	ret = hns3_set_fec_hw(hw, mode);
6304 	if (ret) {
6305 		rte_spinlock_unlock(&hw->lock);
6306 		return ret;
6307 	}
6308 
6309 	pf->fec_mode = mode;
6310 	rte_spinlock_unlock(&hw->lock);
6311 
6312 	return 0;
6313 }
6314 
6315 static int
6316 hns3_restore_fec(struct hns3_hw *hw)
6317 {
6318 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
6319 	struct hns3_pf *pf = &hns->pf;
6320 	uint32_t mode = pf->fec_mode;
6321 	int ret;
6322 
6323 	ret = hns3_set_fec_hw(hw, mode);
6324 	if (ret)
6325 		hns3_err(hw, "restore fec mode(0x%x) failed, ret = %d",
6326 			 mode, ret);
6327 
6328 	return ret;
6329 }
6330 
6331 static int
6332 hns3_query_dev_fec_info(struct hns3_hw *hw)
6333 {
6334 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
6335 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(hns);
6336 	int ret;
6337 
6338 	ret = hns3_fec_get_internal(hw, &pf->fec_mode);
6339 	if (ret)
6340 		hns3_err(hw, "query device FEC info failed, ret = %d", ret);
6341 
6342 	return ret;
6343 }
6344 
6345 static bool
6346 hns3_optical_module_existed(struct hns3_hw *hw)
6347 {
6348 	struct hns3_cmd_desc desc;
6349 	bool existed;
6350 	int ret;
6351 
6352 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GET_SFP_EXIST, true);
6353 	ret = hns3_cmd_send(hw, &desc, 1);
6354 	if (ret) {
6355 		hns3_err(hw,
6356 			 "fail to get optical module exist state, ret = %d.\n",
6357 			 ret);
6358 		return false;
6359 	}
6360 	existed = !!desc.data[0];
6361 
6362 	return existed;
6363 }
6364 
6365 static int
6366 hns3_get_module_eeprom_data(struct hns3_hw *hw, uint32_t offset,
6367 				uint32_t len, uint8_t *data)
6368 {
6369 #define HNS3_SFP_INFO_CMD_NUM 6
6370 #define HNS3_SFP_INFO_MAX_LEN \
6371 	(HNS3_SFP_INFO_BD0_LEN + \
6372 	(HNS3_SFP_INFO_CMD_NUM - 1) * HNS3_SFP_INFO_BDX_LEN)
6373 	struct hns3_cmd_desc desc[HNS3_SFP_INFO_CMD_NUM];
6374 	struct hns3_sfp_info_bd0_cmd *sfp_info_bd0;
6375 	uint16_t read_len;
6376 	uint16_t copy_len;
6377 	int ret;
6378 	int i;
6379 
6380 	for (i = 0; i < HNS3_SFP_INFO_CMD_NUM; i++) {
6381 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_SFP_EEPROM,
6382 					  true);
6383 		if (i < HNS3_SFP_INFO_CMD_NUM - 1)
6384 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
6385 	}
6386 
6387 	sfp_info_bd0 = (struct hns3_sfp_info_bd0_cmd *)desc[0].data;
6388 	sfp_info_bd0->offset = rte_cpu_to_le_16((uint16_t)offset);
6389 	read_len = RTE_MIN(len, HNS3_SFP_INFO_MAX_LEN);
6390 	sfp_info_bd0->read_len = rte_cpu_to_le_16((uint16_t)read_len);
6391 
6392 	ret = hns3_cmd_send(hw, desc, HNS3_SFP_INFO_CMD_NUM);
6393 	if (ret) {
6394 		hns3_err(hw, "fail to get module EEPROM info, ret = %d.\n",
6395 				ret);
6396 		return ret;
6397 	}
6398 
6399 	/* The data format in BD0 is different with the others. */
6400 	copy_len = RTE_MIN(len, HNS3_SFP_INFO_BD0_LEN);
6401 	memcpy(data, sfp_info_bd0->data, copy_len);
6402 	read_len = copy_len;
6403 
6404 	for (i = 1; i < HNS3_SFP_INFO_CMD_NUM; i++) {
6405 		if (read_len >= len)
6406 			break;
6407 
6408 		copy_len = RTE_MIN(len - read_len, HNS3_SFP_INFO_BDX_LEN);
6409 		memcpy(data + read_len, desc[i].data, copy_len);
6410 		read_len += copy_len;
6411 	}
6412 
6413 	return (int)read_len;
6414 }
6415 
6416 static int
6417 hns3_get_module_eeprom(struct rte_eth_dev *dev,
6418 		       struct rte_dev_eeprom_info *info)
6419 {
6420 	struct hns3_adapter *hns = dev->data->dev_private;
6421 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
6422 	uint32_t offset = info->offset;
6423 	uint32_t len = info->length;
6424 	uint8_t *data = info->data;
6425 	uint32_t read_len = 0;
6426 
6427 	if (hw->mac.media_type != HNS3_MEDIA_TYPE_FIBER)
6428 		return -ENOTSUP;
6429 
6430 	if (!hns3_optical_module_existed(hw)) {
6431 		hns3_err(hw, "fail to read module EEPROM: no module is connected.\n");
6432 		return -EIO;
6433 	}
6434 
6435 	while (read_len < len) {
6436 		int ret;
6437 		ret = hns3_get_module_eeprom_data(hw, offset + read_len,
6438 						  len - read_len,
6439 						  data + read_len);
6440 		if (ret < 0)
6441 			return -EIO;
6442 		read_len += ret;
6443 	}
6444 
6445 	return 0;
6446 }
6447 
6448 static int
6449 hns3_get_module_info(struct rte_eth_dev *dev,
6450 		     struct rte_eth_dev_module_info *modinfo)
6451 {
6452 #define HNS3_SFF8024_ID_SFP		0x03
6453 #define HNS3_SFF8024_ID_QSFP_8438	0x0c
6454 #define HNS3_SFF8024_ID_QSFP_8436_8636	0x0d
6455 #define HNS3_SFF8024_ID_QSFP28_8636	0x11
6456 #define HNS3_SFF_8636_V1_3		0x03
6457 	struct hns3_adapter *hns = dev->data->dev_private;
6458 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
6459 	struct rte_dev_eeprom_info info;
6460 	struct hns3_sfp_type sfp_type;
6461 	int ret;
6462 
6463 	memset(&sfp_type, 0, sizeof(sfp_type));
6464 	memset(&info, 0, sizeof(info));
6465 	info.data = (uint8_t *)&sfp_type;
6466 	info.length = sizeof(sfp_type);
6467 	ret = hns3_get_module_eeprom(dev, &info);
6468 	if (ret)
6469 		return ret;
6470 
6471 	switch (sfp_type.type) {
6472 	case HNS3_SFF8024_ID_SFP:
6473 		modinfo->type = RTE_ETH_MODULE_SFF_8472;
6474 		modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8472_LEN;
6475 		break;
6476 	case HNS3_SFF8024_ID_QSFP_8438:
6477 		modinfo->type = RTE_ETH_MODULE_SFF_8436;
6478 		modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8436_MAX_LEN;
6479 		break;
6480 	case HNS3_SFF8024_ID_QSFP_8436_8636:
6481 		if (sfp_type.ext_type < HNS3_SFF_8636_V1_3) {
6482 			modinfo->type = RTE_ETH_MODULE_SFF_8436;
6483 			modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8436_MAX_LEN;
6484 		} else {
6485 			modinfo->type = RTE_ETH_MODULE_SFF_8636;
6486 			modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8636_MAX_LEN;
6487 		}
6488 		break;
6489 	case HNS3_SFF8024_ID_QSFP28_8636:
6490 		modinfo->type = RTE_ETH_MODULE_SFF_8636;
6491 		modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8636_MAX_LEN;
6492 		break;
6493 	default:
6494 		hns3_err(hw, "unknown module, type = %u, extra_type = %u.\n",
6495 			 sfp_type.type, sfp_type.ext_type);
6496 		return -EINVAL;
6497 	}
6498 
6499 	return 0;
6500 }
6501 
6502 static const struct eth_dev_ops hns3_eth_dev_ops = {
6503 	.dev_configure      = hns3_dev_configure,
6504 	.dev_start          = hns3_dev_start,
6505 	.dev_stop           = hns3_dev_stop,
6506 	.dev_close          = hns3_dev_close,
6507 	.promiscuous_enable = hns3_dev_promiscuous_enable,
6508 	.promiscuous_disable = hns3_dev_promiscuous_disable,
6509 	.allmulticast_enable  = hns3_dev_allmulticast_enable,
6510 	.allmulticast_disable = hns3_dev_allmulticast_disable,
6511 	.mtu_set            = hns3_dev_mtu_set,
6512 	.stats_get          = hns3_stats_get,
6513 	.stats_reset        = hns3_stats_reset,
6514 	.xstats_get         = hns3_dev_xstats_get,
6515 	.xstats_get_names   = hns3_dev_xstats_get_names,
6516 	.xstats_reset       = hns3_dev_xstats_reset,
6517 	.xstats_get_by_id   = hns3_dev_xstats_get_by_id,
6518 	.xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
6519 	.dev_infos_get          = hns3_dev_infos_get,
6520 	.fw_version_get         = hns3_fw_version_get,
6521 	.rx_queue_setup         = hns3_rx_queue_setup,
6522 	.tx_queue_setup         = hns3_tx_queue_setup,
6523 	.rx_queue_release       = hns3_dev_rx_queue_release,
6524 	.tx_queue_release       = hns3_dev_tx_queue_release,
6525 	.rx_queue_start         = hns3_dev_rx_queue_start,
6526 	.rx_queue_stop          = hns3_dev_rx_queue_stop,
6527 	.tx_queue_start         = hns3_dev_tx_queue_start,
6528 	.tx_queue_stop          = hns3_dev_tx_queue_stop,
6529 	.rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
6530 	.rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
6531 	.rxq_info_get           = hns3_rxq_info_get,
6532 	.txq_info_get           = hns3_txq_info_get,
6533 	.rx_burst_mode_get      = hns3_rx_burst_mode_get,
6534 	.tx_burst_mode_get      = hns3_tx_burst_mode_get,
6535 	.flow_ctrl_get          = hns3_flow_ctrl_get,
6536 	.flow_ctrl_set          = hns3_flow_ctrl_set,
6537 	.priority_flow_ctrl_set = hns3_priority_flow_ctrl_set,
6538 	.mac_addr_add           = hns3_add_mac_addr,
6539 	.mac_addr_remove        = hns3_remove_mac_addr,
6540 	.mac_addr_set           = hns3_set_default_mac_addr,
6541 	.set_mc_addr_list       = hns3_set_mc_mac_addr_list,
6542 	.link_update            = hns3_dev_link_update,
6543 	.dev_set_link_up        = hns3_dev_set_link_up,
6544 	.dev_set_link_down      = hns3_dev_set_link_down,
6545 	.rss_hash_update        = hns3_dev_rss_hash_update,
6546 	.rss_hash_conf_get      = hns3_dev_rss_hash_conf_get,
6547 	.reta_update            = hns3_dev_rss_reta_update,
6548 	.reta_query             = hns3_dev_rss_reta_query,
6549 	.flow_ops_get           = hns3_dev_flow_ops_get,
6550 	.vlan_filter_set        = hns3_vlan_filter_set,
6551 	.vlan_tpid_set          = hns3_vlan_tpid_set,
6552 	.vlan_offload_set       = hns3_vlan_offload_set,
6553 	.vlan_pvid_set          = hns3_vlan_pvid_set,
6554 	.get_reg                = hns3_get_regs,
6555 	.get_module_info        = hns3_get_module_info,
6556 	.get_module_eeprom      = hns3_get_module_eeprom,
6557 	.get_dcb_info           = hns3_get_dcb_info,
6558 	.dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
6559 	.fec_get_capability     = hns3_fec_get_capability,
6560 	.fec_get                = hns3_fec_get,
6561 	.fec_set                = hns3_fec_set,
6562 	.tm_ops_get             = hns3_tm_ops_get,
6563 	.tx_done_cleanup        = hns3_tx_done_cleanup,
6564 	.timesync_enable            = hns3_timesync_enable,
6565 	.timesync_disable           = hns3_timesync_disable,
6566 	.timesync_read_rx_timestamp = hns3_timesync_read_rx_timestamp,
6567 	.timesync_read_tx_timestamp = hns3_timesync_read_tx_timestamp,
6568 	.timesync_adjust_time       = hns3_timesync_adjust_time,
6569 	.timesync_read_time         = hns3_timesync_read_time,
6570 	.timesync_write_time        = hns3_timesync_write_time,
6571 	.eth_dev_priv_dump          = hns3_eth_dev_priv_dump,
6572 };
6573 
6574 static const struct hns3_reset_ops hns3_reset_ops = {
6575 	.reset_service       = hns3_reset_service,
6576 	.stop_service        = hns3_stop_service,
6577 	.prepare_reset       = hns3_prepare_reset,
6578 	.wait_hardware_ready = hns3_wait_hardware_ready,
6579 	.reinit_dev          = hns3_reinit_dev,
6580 	.restore_conf	     = hns3_restore_conf,
6581 	.start_service       = hns3_start_service,
6582 };
6583 
6584 static void
6585 hns3_init_hw_ops(struct hns3_hw *hw)
6586 {
6587 	hw->ops.add_mc_mac_addr = hns3_add_mc_mac_addr;
6588 	hw->ops.del_mc_mac_addr = hns3_remove_mc_mac_addr;
6589 	hw->ops.add_uc_mac_addr = hns3_add_uc_mac_addr;
6590 	hw->ops.del_uc_mac_addr = hns3_remove_uc_mac_addr;
6591 	hw->ops.bind_ring_with_vector = hns3_bind_ring_with_vector;
6592 }
6593 
6594 static int
6595 hns3_dev_init(struct rte_eth_dev *eth_dev)
6596 {
6597 	struct hns3_adapter *hns = eth_dev->data->dev_private;
6598 	struct hns3_hw *hw = &hns->hw;
6599 	int ret;
6600 
6601 	PMD_INIT_FUNC_TRACE();
6602 
6603 	hns3_flow_init(eth_dev);
6604 
6605 	hns3_set_rxtx_function(eth_dev);
6606 	eth_dev->dev_ops = &hns3_eth_dev_ops;
6607 	eth_dev->rx_queue_count = hns3_rx_queue_count;
6608 	ret = hns3_mp_init(eth_dev);
6609 	if (ret)
6610 		goto err_mp_init;
6611 
6612 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
6613 		hns3_tx_push_init(eth_dev);
6614 		return 0;
6615 	}
6616 
6617 	hw->adapter_state = HNS3_NIC_UNINITIALIZED;
6618 	hns->is_vf = false;
6619 	hw->data = eth_dev->data;
6620 	hns3_parse_devargs(eth_dev);
6621 
6622 	/*
6623 	 * Set default max packet size according to the mtu
6624 	 * default vale in DPDK frame.
6625 	 */
6626 	hns->pf.mps = hw->data->mtu + HNS3_ETH_OVERHEAD;
6627 
6628 	ret = hns3_reset_init(hw);
6629 	if (ret)
6630 		goto err_init_reset;
6631 	hw->reset.ops = &hns3_reset_ops;
6632 
6633 	hns3_init_hw_ops(hw);
6634 	ret = hns3_init_pf(eth_dev);
6635 	if (ret) {
6636 		PMD_INIT_LOG(ERR, "Failed to init pf: %d", ret);
6637 		goto err_init_pf;
6638 	}
6639 
6640 	ret = hns3_init_mac_addrs(eth_dev);
6641 	if (ret != 0)
6642 		goto err_init_mac_addrs;
6643 
6644 	hw->adapter_state = HNS3_NIC_INITIALIZED;
6645 
6646 	if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
6647 			    SCHEDULE_PENDING) {
6648 		hns3_err(hw, "Reschedule reset service after dev_init");
6649 		hns3_schedule_reset(hns);
6650 	} else {
6651 		/* IMP will wait ready flag before reset */
6652 		hns3_notify_reset_ready(hw, false);
6653 	}
6654 
6655 	hns3_info(hw, "hns3 dev initialization successful!");
6656 	return 0;
6657 
6658 err_init_mac_addrs:
6659 	hns3_uninit_pf(eth_dev);
6660 
6661 err_init_pf:
6662 	rte_free(hw->reset.wait_data);
6663 
6664 err_init_reset:
6665 	hns3_mp_uninit(eth_dev);
6666 
6667 err_mp_init:
6668 	eth_dev->dev_ops = NULL;
6669 	eth_dev->rx_pkt_burst = NULL;
6670 	eth_dev->rx_descriptor_status = NULL;
6671 	eth_dev->tx_pkt_burst = NULL;
6672 	eth_dev->tx_pkt_prepare = NULL;
6673 	eth_dev->tx_descriptor_status = NULL;
6674 	return ret;
6675 }
6676 
6677 static int
6678 hns3_dev_uninit(struct rte_eth_dev *eth_dev)
6679 {
6680 	struct hns3_adapter *hns = eth_dev->data->dev_private;
6681 	struct hns3_hw *hw = &hns->hw;
6682 
6683 	PMD_INIT_FUNC_TRACE();
6684 
6685 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
6686 		hns3_mp_uninit(eth_dev);
6687 		return 0;
6688 	}
6689 
6690 	if (hw->adapter_state < HNS3_NIC_CLOSING)
6691 		hns3_dev_close(eth_dev);
6692 
6693 	hw->adapter_state = HNS3_NIC_REMOVED;
6694 	return 0;
6695 }
6696 
6697 static int
6698 eth_hns3_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
6699 		   struct rte_pci_device *pci_dev)
6700 {
6701 	return rte_eth_dev_pci_generic_probe(pci_dev,
6702 					     sizeof(struct hns3_adapter),
6703 					     hns3_dev_init);
6704 }
6705 
6706 static int
6707 eth_hns3_pci_remove(struct rte_pci_device *pci_dev)
6708 {
6709 	return rte_eth_dev_pci_generic_remove(pci_dev, hns3_dev_uninit);
6710 }
6711 
6712 static const struct rte_pci_id pci_id_hns3_map[] = {
6713 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_GE) },
6714 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE) },
6715 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE_RDMA) },
6716 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_50GE_RDMA) },
6717 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_MACSEC) },
6718 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_200G_RDMA) },
6719 	{ .vendor_id = 0, }, /* sentinel */
6720 };
6721 
6722 static struct rte_pci_driver rte_hns3_pmd = {
6723 	.id_table = pci_id_hns3_map,
6724 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
6725 	.probe = eth_hns3_pci_probe,
6726 	.remove = eth_hns3_pci_remove,
6727 };
6728 
6729 RTE_PMD_REGISTER_PCI(net_hns3, rte_hns3_pmd);
6730 RTE_PMD_REGISTER_PCI_TABLE(net_hns3, pci_id_hns3_map);
6731 RTE_PMD_REGISTER_KMOD_DEP(net_hns3, "* igb_uio | vfio-pci");
6732 RTE_PMD_REGISTER_PARAM_STRING(net_hns3,
6733 		HNS3_DEVARG_RX_FUNC_HINT "=vec|sve|simple|common "
6734 		HNS3_DEVARG_TX_FUNC_HINT "=vec|sve|simple|common "
6735 		HNS3_DEVARG_DEV_CAPS_MASK "=<1-65535> "
6736 		HNS3_DEVARG_MBX_TIME_LIMIT_MS "=<uint16> ");
6737 RTE_LOG_REGISTER_SUFFIX(hns3_logtype_init, init, NOTICE);
6738 RTE_LOG_REGISTER_SUFFIX(hns3_logtype_driver, driver, NOTICE);
6739