xref: /dpdk/drivers/net/hns3/hns3_ethdev.c (revision 081e42dab11d1add2d038fdf2bd4c86b20043d08)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2021 HiSilicon Limited.
3  */
4 
5 #include <rte_alarm.h>
6 #include <rte_bus_pci.h>
7 #include <ethdev_pci.h>
8 #include <rte_pci.h>
9 #include <rte_kvargs.h>
10 
11 #include "hns3_ethdev.h"
12 #include "hns3_logs.h"
13 #include "hns3_rxtx.h"
14 #include "hns3_intr.h"
15 #include "hns3_regs.h"
16 #include "hns3_dcb.h"
17 #include "hns3_mp.h"
18 
19 #define HNS3_SERVICE_INTERVAL		1000000 /* us */
20 #define HNS3_SERVICE_QUICK_INTERVAL	10
21 #define HNS3_INVALID_PVID		0xFFFF
22 
23 #define HNS3_FILTER_TYPE_VF		0
24 #define HNS3_FILTER_TYPE_PORT		1
25 #define HNS3_FILTER_FE_EGRESS_V1_B	BIT(0)
26 #define HNS3_FILTER_FE_NIC_INGRESS_B	BIT(0)
27 #define HNS3_FILTER_FE_NIC_EGRESS_B	BIT(1)
28 #define HNS3_FILTER_FE_ROCE_INGRESS_B	BIT(2)
29 #define HNS3_FILTER_FE_ROCE_EGRESS_B	BIT(3)
30 #define HNS3_FILTER_FE_EGRESS		(HNS3_FILTER_FE_NIC_EGRESS_B \
31 					| HNS3_FILTER_FE_ROCE_EGRESS_B)
32 #define HNS3_FILTER_FE_INGRESS		(HNS3_FILTER_FE_NIC_INGRESS_B \
33 					| HNS3_FILTER_FE_ROCE_INGRESS_B)
34 
35 /* Reset related Registers */
36 #define HNS3_GLOBAL_RESET_BIT		0
37 #define HNS3_CORE_RESET_BIT		1
38 #define HNS3_IMP_RESET_BIT		2
39 #define HNS3_FUN_RST_ING_B		0
40 
41 #define HNS3_VECTOR0_IMP_RESET_INT_B	1
42 #define HNS3_VECTOR0_IMP_CMDQ_ERR_B	4U
43 #define HNS3_VECTOR0_IMP_RD_POISON_B	5U
44 #define HNS3_VECTOR0_ALL_MSIX_ERR_B	6U
45 
46 #define HNS3_RESET_WAIT_MS	100
47 #define HNS3_RESET_WAIT_CNT	200
48 
49 /* FEC mode order defined in HNS3 hardware */
50 #define HNS3_HW_FEC_MODE_NOFEC  0
51 #define HNS3_HW_FEC_MODE_BASER  1
52 #define HNS3_HW_FEC_MODE_RS     2
53 
54 enum hns3_evt_cause {
55 	HNS3_VECTOR0_EVENT_RST,
56 	HNS3_VECTOR0_EVENT_MBX,
57 	HNS3_VECTOR0_EVENT_ERR,
58 	HNS3_VECTOR0_EVENT_PTP,
59 	HNS3_VECTOR0_EVENT_OTHER,
60 };
61 
62 static const struct rte_eth_fec_capa speed_fec_capa_tbl[] = {
63 	{ ETH_SPEED_NUM_10G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
64 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
65 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) },
66 
67 	{ ETH_SPEED_NUM_25G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
68 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
69 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) |
70 			     RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
71 
72 	{ ETH_SPEED_NUM_40G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
73 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
74 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) },
75 
76 	{ ETH_SPEED_NUM_50G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
77 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
78 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) |
79 			     RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
80 
81 	{ ETH_SPEED_NUM_100G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
82 			      RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
83 			      RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
84 
85 	{ ETH_SPEED_NUM_200G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
86 			      RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
87 			      RTE_ETH_FEC_MODE_CAPA_MASK(RS) }
88 };
89 
90 static enum hns3_reset_level hns3_get_reset_level(struct hns3_adapter *hns,
91 						 uint64_t *levels);
92 static int hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
93 static int hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid,
94 				    int on);
95 static int hns3_update_link_info(struct rte_eth_dev *eth_dev);
96 static bool hns3_update_link_status(struct hns3_hw *hw);
97 
98 static int hns3_add_mc_addr(struct hns3_hw *hw,
99 			    struct rte_ether_addr *mac_addr);
100 static int hns3_remove_mc_addr(struct hns3_hw *hw,
101 			    struct rte_ether_addr *mac_addr);
102 static int hns3_restore_fec(struct hns3_hw *hw);
103 static int hns3_query_dev_fec_info(struct hns3_hw *hw);
104 static int hns3_do_stop(struct hns3_adapter *hns);
105 static int hns3_check_port_speed(struct hns3_hw *hw, uint32_t link_speeds);
106 static int hns3_cfg_mac_mode(struct hns3_hw *hw, bool enable);
107 
108 void hns3_ether_format_addr(char *buf, uint16_t size,
109 			    const struct rte_ether_addr *ether_addr)
110 {
111 	snprintf(buf, size, "%02X:**:**:**:%02X:%02X",
112 		ether_addr->addr_bytes[0],
113 		ether_addr->addr_bytes[4],
114 		ether_addr->addr_bytes[5]);
115 }
116 
117 static void
118 hns3_pf_disable_irq0(struct hns3_hw *hw)
119 {
120 	hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
121 }
122 
123 static void
124 hns3_pf_enable_irq0(struct hns3_hw *hw)
125 {
126 	hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
127 }
128 
129 static enum hns3_evt_cause
130 hns3_proc_imp_reset_event(struct hns3_adapter *hns, bool is_delay,
131 			  uint32_t *vec_val)
132 {
133 	struct hns3_hw *hw = &hns->hw;
134 
135 	__atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
136 	hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
137 	*vec_val = BIT(HNS3_VECTOR0_IMPRESET_INT_B);
138 	if (!is_delay) {
139 		hw->reset.stats.imp_cnt++;
140 		hns3_warn(hw, "IMP reset detected, clear reset status");
141 	} else {
142 		hns3_schedule_delayed_reset(hns);
143 		hns3_warn(hw, "IMP reset detected, don't clear reset status");
144 	}
145 
146 	return HNS3_VECTOR0_EVENT_RST;
147 }
148 
149 static enum hns3_evt_cause
150 hns3_proc_global_reset_event(struct hns3_adapter *hns, bool is_delay,
151 			     uint32_t *vec_val)
152 {
153 	struct hns3_hw *hw = &hns->hw;
154 
155 	__atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
156 	hns3_atomic_set_bit(HNS3_GLOBAL_RESET, &hw->reset.pending);
157 	*vec_val = BIT(HNS3_VECTOR0_GLOBALRESET_INT_B);
158 	if (!is_delay) {
159 		hw->reset.stats.global_cnt++;
160 		hns3_warn(hw, "Global reset detected, clear reset status");
161 	} else {
162 		hns3_schedule_delayed_reset(hns);
163 		hns3_warn(hw,
164 			  "Global reset detected, don't clear reset status");
165 	}
166 
167 	return HNS3_VECTOR0_EVENT_RST;
168 }
169 
170 static enum hns3_evt_cause
171 hns3_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
172 {
173 	struct hns3_hw *hw = &hns->hw;
174 	uint32_t vector0_int_stats;
175 	uint32_t cmdq_src_val;
176 	uint32_t hw_err_src_reg;
177 	uint32_t val;
178 	enum hns3_evt_cause ret;
179 	bool is_delay;
180 
181 	/* fetch the events from their corresponding regs */
182 	vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
183 	cmdq_src_val = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
184 	hw_err_src_reg = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG);
185 
186 	is_delay = clearval == NULL ? true : false;
187 	/*
188 	 * Assumption: If by any chance reset and mailbox events are reported
189 	 * together then we will only process reset event and defer the
190 	 * processing of the mailbox events. Since, we would have not cleared
191 	 * RX CMDQ event this time we would receive again another interrupt
192 	 * from H/W just for the mailbox.
193 	 */
194 	if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats) { /* IMP */
195 		ret = hns3_proc_imp_reset_event(hns, is_delay, &val);
196 		goto out;
197 	}
198 
199 	/* Global reset */
200 	if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats) {
201 		ret = hns3_proc_global_reset_event(hns, is_delay, &val);
202 		goto out;
203 	}
204 
205 	/* Check for vector0 1588 event source */
206 	if (BIT(HNS3_VECTOR0_1588_INT_B) & vector0_int_stats) {
207 		val = BIT(HNS3_VECTOR0_1588_INT_B);
208 		ret = HNS3_VECTOR0_EVENT_PTP;
209 		goto out;
210 	}
211 
212 	/* check for vector0 msix event source */
213 	if (vector0_int_stats & HNS3_VECTOR0_REG_MSIX_MASK ||
214 	    hw_err_src_reg & HNS3_RAS_REG_NFE_MASK) {
215 		val = vector0_int_stats | hw_err_src_reg;
216 		ret = HNS3_VECTOR0_EVENT_ERR;
217 		goto out;
218 	}
219 
220 	/* check for vector0 mailbox(=CMDQ RX) event source */
221 	if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_val) {
222 		cmdq_src_val &= ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
223 		val = cmdq_src_val;
224 		ret = HNS3_VECTOR0_EVENT_MBX;
225 		goto out;
226 	}
227 
228 	val = vector0_int_stats;
229 	ret = HNS3_VECTOR0_EVENT_OTHER;
230 out:
231 
232 	if (clearval)
233 		*clearval = val;
234 	return ret;
235 }
236 
237 static bool
238 hns3_is_1588_event_type(uint32_t event_type)
239 {
240 	return (event_type == HNS3_VECTOR0_EVENT_PTP);
241 }
242 
243 static void
244 hns3_clear_event_cause(struct hns3_hw *hw, uint32_t event_type, uint32_t regclr)
245 {
246 	if (event_type == HNS3_VECTOR0_EVENT_RST ||
247 	    hns3_is_1588_event_type(event_type))
248 		hns3_write_dev(hw, HNS3_MISC_RESET_STS_REG, regclr);
249 	else if (event_type == HNS3_VECTOR0_EVENT_MBX)
250 		hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
251 }
252 
253 static void
254 hns3_clear_all_event_cause(struct hns3_hw *hw)
255 {
256 	uint32_t vector0_int_stats;
257 
258 	vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
259 	if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats)
260 		hns3_warn(hw, "Probe during IMP reset interrupt");
261 
262 	if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats)
263 		hns3_warn(hw, "Probe during Global reset interrupt");
264 
265 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_RST,
266 			       BIT(HNS3_VECTOR0_IMPRESET_INT_B) |
267 			       BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) |
268 			       BIT(HNS3_VECTOR0_CORERESET_INT_B));
269 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_MBX, 0);
270 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_PTP,
271 				BIT(HNS3_VECTOR0_1588_INT_B));
272 }
273 
274 static void
275 hns3_handle_mac_tnl(struct hns3_hw *hw)
276 {
277 	struct hns3_cmd_desc desc;
278 	uint32_t status;
279 	int ret;
280 
281 	/* query and clear mac tnl interrupt */
282 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_MAC_TNL_INT, true);
283 	ret = hns3_cmd_send(hw, &desc, 1);
284 	if (ret) {
285 		hns3_err(hw, "failed to query mac tnl int, ret = %d.", ret);
286 		return;
287 	}
288 
289 	status = rte_le_to_cpu_32(desc.data[0]);
290 	if (status) {
291 		hns3_warn(hw, "mac tnl int occurs, status = 0x%x.", status);
292 		hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_MAC_TNL_INT,
293 					  false);
294 		desc.data[0] = rte_cpu_to_le_32(HNS3_MAC_TNL_INT_CLR);
295 		ret = hns3_cmd_send(hw, &desc, 1);
296 		if (ret)
297 			hns3_err(hw, "failed to clear mac tnl int, ret = %d.",
298 				 ret);
299 	}
300 }
301 
302 static void
303 hns3_interrupt_handler(void *param)
304 {
305 	struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
306 	struct hns3_adapter *hns = dev->data->dev_private;
307 	struct hns3_hw *hw = &hns->hw;
308 	enum hns3_evt_cause event_cause;
309 	uint32_t clearval = 0;
310 	uint32_t vector0_int;
311 	uint32_t ras_int;
312 	uint32_t cmdq_int;
313 
314 	/* Disable interrupt */
315 	hns3_pf_disable_irq0(hw);
316 
317 	event_cause = hns3_check_event_cause(hns, &clearval);
318 	vector0_int = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
319 	ras_int = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG);
320 	cmdq_int = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
321 	hns3_clear_event_cause(hw, event_cause, clearval);
322 	/* vector 0 interrupt is shared with reset and mailbox source events. */
323 	if (event_cause == HNS3_VECTOR0_EVENT_ERR) {
324 		hns3_warn(hw, "received interrupt: vector0_int_stat:0x%x "
325 			  "ras_int_stat:0x%x cmdq_int_stat:0x%x",
326 			  vector0_int, ras_int, cmdq_int);
327 		hns3_handle_mac_tnl(hw);
328 		hns3_handle_error(hns);
329 	} else if (event_cause == HNS3_VECTOR0_EVENT_RST) {
330 		hns3_warn(hw, "received reset interrupt");
331 		hns3_schedule_reset(hns);
332 	} else if (event_cause == HNS3_VECTOR0_EVENT_MBX) {
333 		hns3_dev_handle_mbx_msg(hw);
334 	} else {
335 		hns3_warn(hw, "received unknown event: vector0_int_stat:0x%x "
336 			  "ras_int_stat:0x%x cmdq_int_stat:0x%x",
337 			  vector0_int, ras_int, cmdq_int);
338 	}
339 
340 	/* Enable interrupt if it is not cause by reset */
341 	hns3_pf_enable_irq0(hw);
342 }
343 
344 static int
345 hns3_set_port_vlan_filter(struct hns3_adapter *hns, uint16_t vlan_id, int on)
346 {
347 #define HNS3_VLAN_ID_OFFSET_STEP	160
348 #define HNS3_VLAN_BYTE_SIZE		8
349 	struct hns3_vlan_filter_pf_cfg_cmd *req;
350 	struct hns3_hw *hw = &hns->hw;
351 	uint8_t vlan_offset_byte_val;
352 	struct hns3_cmd_desc desc;
353 	uint8_t vlan_offset_byte;
354 	uint8_t vlan_offset_base;
355 	int ret;
356 
357 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_PF_CFG, false);
358 
359 	vlan_offset_base = vlan_id / HNS3_VLAN_ID_OFFSET_STEP;
360 	vlan_offset_byte = (vlan_id % HNS3_VLAN_ID_OFFSET_STEP) /
361 			   HNS3_VLAN_BYTE_SIZE;
362 	vlan_offset_byte_val = 1 << (vlan_id % HNS3_VLAN_BYTE_SIZE);
363 
364 	req = (struct hns3_vlan_filter_pf_cfg_cmd *)desc.data;
365 	req->vlan_offset = vlan_offset_base;
366 	req->vlan_cfg = on ? 0 : 1;
367 	req->vlan_offset_bitmap[vlan_offset_byte] = vlan_offset_byte_val;
368 
369 	ret = hns3_cmd_send(hw, &desc, 1);
370 	if (ret)
371 		hns3_err(hw, "set port vlan id failed, vlan_id =%u, ret =%d",
372 			 vlan_id, ret);
373 
374 	return ret;
375 }
376 
377 static void
378 hns3_rm_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id)
379 {
380 	struct hns3_user_vlan_table *vlan_entry;
381 	struct hns3_pf *pf = &hns->pf;
382 
383 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
384 		if (vlan_entry->vlan_id == vlan_id) {
385 			if (vlan_entry->hd_tbl_status)
386 				hns3_set_port_vlan_filter(hns, vlan_id, 0);
387 			LIST_REMOVE(vlan_entry, next);
388 			rte_free(vlan_entry);
389 			break;
390 		}
391 	}
392 }
393 
394 static void
395 hns3_add_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id,
396 			bool writen_to_tbl)
397 {
398 	struct hns3_user_vlan_table *vlan_entry;
399 	struct hns3_hw *hw = &hns->hw;
400 	struct hns3_pf *pf = &hns->pf;
401 
402 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
403 		if (vlan_entry->vlan_id == vlan_id)
404 			return;
405 	}
406 
407 	vlan_entry = rte_zmalloc("hns3_vlan_tbl", sizeof(*vlan_entry), 0);
408 	if (vlan_entry == NULL) {
409 		hns3_err(hw, "Failed to malloc hns3 vlan table");
410 		return;
411 	}
412 
413 	vlan_entry->hd_tbl_status = writen_to_tbl;
414 	vlan_entry->vlan_id = vlan_id;
415 
416 	LIST_INSERT_HEAD(&pf->vlan_list, vlan_entry, next);
417 }
418 
419 static int
420 hns3_restore_vlan_table(struct hns3_adapter *hns)
421 {
422 	struct hns3_user_vlan_table *vlan_entry;
423 	struct hns3_hw *hw = &hns->hw;
424 	struct hns3_pf *pf = &hns->pf;
425 	uint16_t vlan_id;
426 	int ret = 0;
427 
428 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_ENABLE)
429 		return hns3_vlan_pvid_configure(hns,
430 						hw->port_base_vlan_cfg.pvid, 1);
431 
432 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
433 		if (vlan_entry->hd_tbl_status) {
434 			vlan_id = vlan_entry->vlan_id;
435 			ret = hns3_set_port_vlan_filter(hns, vlan_id, 1);
436 			if (ret)
437 				break;
438 		}
439 	}
440 
441 	return ret;
442 }
443 
444 static int
445 hns3_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
446 {
447 	struct hns3_hw *hw = &hns->hw;
448 	bool writen_to_tbl = false;
449 	int ret = 0;
450 
451 	/*
452 	 * When vlan filter is enabled, hardware regards packets without vlan
453 	 * as packets with vlan 0. So, to receive packets without vlan, vlan id
454 	 * 0 is not allowed to be removed by rte_eth_dev_vlan_filter.
455 	 */
456 	if (on == 0 && vlan_id == 0)
457 		return 0;
458 
459 	/*
460 	 * When port base vlan enabled, we use port base vlan as the vlan
461 	 * filter condition. In this case, we don't update vlan filter table
462 	 * when user add new vlan or remove exist vlan, just update the
463 	 * vlan list. The vlan id in vlan list will be written in vlan filter
464 	 * table until port base vlan disabled
465 	 */
466 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
467 		ret = hns3_set_port_vlan_filter(hns, vlan_id, on);
468 		writen_to_tbl = true;
469 	}
470 
471 	if (ret == 0) {
472 		if (on)
473 			hns3_add_dev_vlan_table(hns, vlan_id, writen_to_tbl);
474 		else
475 			hns3_rm_dev_vlan_table(hns, vlan_id);
476 	}
477 	return ret;
478 }
479 
480 static int
481 hns3_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
482 {
483 	struct hns3_adapter *hns = dev->data->dev_private;
484 	struct hns3_hw *hw = &hns->hw;
485 	int ret;
486 
487 	rte_spinlock_lock(&hw->lock);
488 	ret = hns3_vlan_filter_configure(hns, vlan_id, on);
489 	rte_spinlock_unlock(&hw->lock);
490 	return ret;
491 }
492 
493 static int
494 hns3_vlan_tpid_configure(struct hns3_adapter *hns, enum rte_vlan_type vlan_type,
495 			 uint16_t tpid)
496 {
497 	struct hns3_rx_vlan_type_cfg_cmd *rx_req;
498 	struct hns3_tx_vlan_type_cfg_cmd *tx_req;
499 	struct hns3_hw *hw = &hns->hw;
500 	struct hns3_cmd_desc desc;
501 	int ret;
502 
503 	if ((vlan_type != ETH_VLAN_TYPE_INNER &&
504 	     vlan_type != ETH_VLAN_TYPE_OUTER)) {
505 		hns3_err(hw, "Unsupported vlan type, vlan_type =%d", vlan_type);
506 		return -EINVAL;
507 	}
508 
509 	if (tpid != RTE_ETHER_TYPE_VLAN) {
510 		hns3_err(hw, "Unsupported vlan tpid, vlan_type =%d", vlan_type);
511 		return -EINVAL;
512 	}
513 
514 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_TYPE_ID, false);
515 	rx_req = (struct hns3_rx_vlan_type_cfg_cmd *)desc.data;
516 
517 	if (vlan_type == ETH_VLAN_TYPE_OUTER) {
518 		rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
519 		rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
520 	} else if (vlan_type == ETH_VLAN_TYPE_INNER) {
521 		rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
522 		rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
523 		rx_req->in_fst_vlan_type = rte_cpu_to_le_16(tpid);
524 		rx_req->in_sec_vlan_type = rte_cpu_to_le_16(tpid);
525 	}
526 
527 	ret = hns3_cmd_send(hw, &desc, 1);
528 	if (ret) {
529 		hns3_err(hw, "Send rxvlan protocol type command fail, ret =%d",
530 			 ret);
531 		return ret;
532 	}
533 
534 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_INSERT, false);
535 
536 	tx_req = (struct hns3_tx_vlan_type_cfg_cmd *)desc.data;
537 	tx_req->ot_vlan_type = rte_cpu_to_le_16(tpid);
538 	tx_req->in_vlan_type = rte_cpu_to_le_16(tpid);
539 
540 	ret = hns3_cmd_send(hw, &desc, 1);
541 	if (ret)
542 		hns3_err(hw, "Send txvlan protocol type command fail, ret =%d",
543 			 ret);
544 	return ret;
545 }
546 
547 static int
548 hns3_vlan_tpid_set(struct rte_eth_dev *dev, enum rte_vlan_type vlan_type,
549 		   uint16_t tpid)
550 {
551 	struct hns3_adapter *hns = dev->data->dev_private;
552 	struct hns3_hw *hw = &hns->hw;
553 	int ret;
554 
555 	rte_spinlock_lock(&hw->lock);
556 	ret = hns3_vlan_tpid_configure(hns, vlan_type, tpid);
557 	rte_spinlock_unlock(&hw->lock);
558 	return ret;
559 }
560 
561 static int
562 hns3_set_vlan_rx_offload_cfg(struct hns3_adapter *hns,
563 			     struct hns3_rx_vtag_cfg *vcfg)
564 {
565 	struct hns3_vport_vtag_rx_cfg_cmd *req;
566 	struct hns3_hw *hw = &hns->hw;
567 	struct hns3_cmd_desc desc;
568 	uint16_t vport_id;
569 	uint8_t bitmap;
570 	int ret;
571 
572 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_RX_CFG, false);
573 
574 	req = (struct hns3_vport_vtag_rx_cfg_cmd *)desc.data;
575 	hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG1_EN_B,
576 		     vcfg->strip_tag1_en ? 1 : 0);
577 	hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG2_EN_B,
578 		     vcfg->strip_tag2_en ? 1 : 0);
579 	hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG1_EN_B,
580 		     vcfg->vlan1_vlan_prionly ? 1 : 0);
581 	hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG2_EN_B,
582 		     vcfg->vlan2_vlan_prionly ? 1 : 0);
583 
584 	/* firmwall will ignore this configuration for PCI_REVISION_ID_HIP08 */
585 	hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG1_EN_B,
586 		     vcfg->strip_tag1_discard_en ? 1 : 0);
587 	hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG2_EN_B,
588 		     vcfg->strip_tag2_discard_en ? 1 : 0);
589 	/*
590 	 * In current version VF is not supported when PF is driven by DPDK
591 	 * driver, just need to configure parameters for PF vport.
592 	 */
593 	vport_id = HNS3_PF_FUNC_ID;
594 	req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
595 	bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
596 	req->vf_bitmap[req->vf_offset] = bitmap;
597 
598 	ret = hns3_cmd_send(hw, &desc, 1);
599 	if (ret)
600 		hns3_err(hw, "Send port rxvlan cfg command fail, ret =%d", ret);
601 	return ret;
602 }
603 
604 static void
605 hns3_update_rx_offload_cfg(struct hns3_adapter *hns,
606 			   struct hns3_rx_vtag_cfg *vcfg)
607 {
608 	struct hns3_pf *pf = &hns->pf;
609 	memcpy(&pf->vtag_config.rx_vcfg, vcfg, sizeof(pf->vtag_config.rx_vcfg));
610 }
611 
612 static void
613 hns3_update_tx_offload_cfg(struct hns3_adapter *hns,
614 			   struct hns3_tx_vtag_cfg *vcfg)
615 {
616 	struct hns3_pf *pf = &hns->pf;
617 	memcpy(&pf->vtag_config.tx_vcfg, vcfg, sizeof(pf->vtag_config.tx_vcfg));
618 }
619 
620 static int
621 hns3_en_hw_strip_rxvtag(struct hns3_adapter *hns, bool enable)
622 {
623 	struct hns3_rx_vtag_cfg rxvlan_cfg;
624 	struct hns3_hw *hw = &hns->hw;
625 	int ret;
626 
627 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
628 		rxvlan_cfg.strip_tag1_en = false;
629 		rxvlan_cfg.strip_tag2_en = enable;
630 		rxvlan_cfg.strip_tag2_discard_en = false;
631 	} else {
632 		rxvlan_cfg.strip_tag1_en = enable;
633 		rxvlan_cfg.strip_tag2_en = true;
634 		rxvlan_cfg.strip_tag2_discard_en = true;
635 	}
636 
637 	rxvlan_cfg.strip_tag1_discard_en = false;
638 	rxvlan_cfg.vlan1_vlan_prionly = false;
639 	rxvlan_cfg.vlan2_vlan_prionly = false;
640 	rxvlan_cfg.rx_vlan_offload_en = enable;
641 
642 	ret = hns3_set_vlan_rx_offload_cfg(hns, &rxvlan_cfg);
643 	if (ret) {
644 		hns3_err(hw, "%s strip rx vtag failed, ret = %d.",
645 				enable ? "enable" : "disable", ret);
646 		return ret;
647 	}
648 
649 	hns3_update_rx_offload_cfg(hns, &rxvlan_cfg);
650 
651 	return ret;
652 }
653 
654 static int
655 hns3_set_vlan_filter_ctrl(struct hns3_hw *hw, uint8_t vlan_type,
656 			  uint8_t fe_type, bool filter_en, uint8_t vf_id)
657 {
658 	struct hns3_vlan_filter_ctrl_cmd *req;
659 	struct hns3_cmd_desc desc;
660 	int ret;
661 
662 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_CTRL, false);
663 
664 	req = (struct hns3_vlan_filter_ctrl_cmd *)desc.data;
665 	req->vlan_type = vlan_type;
666 	req->vlan_fe = filter_en ? fe_type : 0;
667 	req->vf_id = vf_id;
668 
669 	ret = hns3_cmd_send(hw, &desc, 1);
670 	if (ret)
671 		hns3_err(hw, "set vlan filter fail, ret =%d", ret);
672 
673 	return ret;
674 }
675 
676 static int
677 hns3_vlan_filter_init(struct hns3_adapter *hns)
678 {
679 	struct hns3_hw *hw = &hns->hw;
680 	int ret;
681 
682 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_VF,
683 					HNS3_FILTER_FE_EGRESS, false,
684 					HNS3_PF_FUNC_ID);
685 	if (ret) {
686 		hns3_err(hw, "failed to init vf vlan filter, ret = %d", ret);
687 		return ret;
688 	}
689 
690 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
691 					HNS3_FILTER_FE_INGRESS, false,
692 					HNS3_PF_FUNC_ID);
693 	if (ret)
694 		hns3_err(hw, "failed to init port vlan filter, ret = %d", ret);
695 
696 	return ret;
697 }
698 
699 static int
700 hns3_enable_vlan_filter(struct hns3_adapter *hns, bool enable)
701 {
702 	struct hns3_hw *hw = &hns->hw;
703 	int ret;
704 
705 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
706 					HNS3_FILTER_FE_INGRESS, enable,
707 					HNS3_PF_FUNC_ID);
708 	if (ret)
709 		hns3_err(hw, "failed to %s port vlan filter, ret = %d",
710 			 enable ? "enable" : "disable", ret);
711 
712 	return ret;
713 }
714 
715 static int
716 hns3_vlan_offload_set(struct rte_eth_dev *dev, int mask)
717 {
718 	struct hns3_adapter *hns = dev->data->dev_private;
719 	struct hns3_hw *hw = &hns->hw;
720 	struct rte_eth_rxmode *rxmode;
721 	unsigned int tmp_mask;
722 	bool enable;
723 	int ret = 0;
724 
725 	rte_spinlock_lock(&hw->lock);
726 	rxmode = &dev->data->dev_conf.rxmode;
727 	tmp_mask = (unsigned int)mask;
728 	if (tmp_mask & ETH_VLAN_FILTER_MASK) {
729 		/* ignore vlan filter configuration during promiscuous mode */
730 		if (!dev->data->promiscuous) {
731 			/* Enable or disable VLAN filter */
732 			enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER ?
733 				 true : false;
734 
735 			ret = hns3_enable_vlan_filter(hns, enable);
736 			if (ret) {
737 				rte_spinlock_unlock(&hw->lock);
738 				hns3_err(hw, "failed to %s rx filter, ret = %d",
739 					 enable ? "enable" : "disable", ret);
740 				return ret;
741 			}
742 		}
743 	}
744 
745 	if (tmp_mask & ETH_VLAN_STRIP_MASK) {
746 		/* Enable or disable VLAN stripping */
747 		enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP ?
748 		    true : false;
749 
750 		ret = hns3_en_hw_strip_rxvtag(hns, enable);
751 		if (ret) {
752 			rte_spinlock_unlock(&hw->lock);
753 			hns3_err(hw, "failed to %s rx strip, ret = %d",
754 				 enable ? "enable" : "disable", ret);
755 			return ret;
756 		}
757 	}
758 
759 	rte_spinlock_unlock(&hw->lock);
760 
761 	return ret;
762 }
763 
764 static int
765 hns3_set_vlan_tx_offload_cfg(struct hns3_adapter *hns,
766 			     struct hns3_tx_vtag_cfg *vcfg)
767 {
768 	struct hns3_vport_vtag_tx_cfg_cmd *req;
769 	struct hns3_cmd_desc desc;
770 	struct hns3_hw *hw = &hns->hw;
771 	uint16_t vport_id;
772 	uint8_t bitmap;
773 	int ret;
774 
775 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_TX_CFG, false);
776 
777 	req = (struct hns3_vport_vtag_tx_cfg_cmd *)desc.data;
778 	req->def_vlan_tag1 = vcfg->default_tag1;
779 	req->def_vlan_tag2 = vcfg->default_tag2;
780 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG1_B,
781 		     vcfg->accept_tag1 ? 1 : 0);
782 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG1_B,
783 		     vcfg->accept_untag1 ? 1 : 0);
784 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG2_B,
785 		     vcfg->accept_tag2 ? 1 : 0);
786 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG2_B,
787 		     vcfg->accept_untag2 ? 1 : 0);
788 	hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG1_EN_B,
789 		     vcfg->insert_tag1_en ? 1 : 0);
790 	hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG2_EN_B,
791 		     vcfg->insert_tag2_en ? 1 : 0);
792 	hns3_set_bit(req->vport_vlan_cfg, HNS3_CFG_NIC_ROCE_SEL_B, 0);
793 
794 	/* firmwall will ignore this configuration for PCI_REVISION_ID_HIP08 */
795 	hns3_set_bit(req->vport_vlan_cfg, HNS3_TAG_SHIFT_MODE_EN_B,
796 		     vcfg->tag_shift_mode_en ? 1 : 0);
797 
798 	/*
799 	 * In current version VF is not supported when PF is driven by DPDK
800 	 * driver, just need to configure parameters for PF vport.
801 	 */
802 	vport_id = HNS3_PF_FUNC_ID;
803 	req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
804 	bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
805 	req->vf_bitmap[req->vf_offset] = bitmap;
806 
807 	ret = hns3_cmd_send(hw, &desc, 1);
808 	if (ret)
809 		hns3_err(hw, "Send port txvlan cfg command fail, ret =%d", ret);
810 
811 	return ret;
812 }
813 
814 static int
815 hns3_vlan_txvlan_cfg(struct hns3_adapter *hns, uint16_t port_base_vlan_state,
816 		     uint16_t pvid)
817 {
818 	struct hns3_hw *hw = &hns->hw;
819 	struct hns3_tx_vtag_cfg txvlan_cfg;
820 	int ret;
821 
822 	if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_DISABLE) {
823 		txvlan_cfg.accept_tag1 = true;
824 		txvlan_cfg.insert_tag1_en = false;
825 		txvlan_cfg.default_tag1 = 0;
826 	} else {
827 		txvlan_cfg.accept_tag1 =
828 			hw->vlan_mode == HNS3_HW_SHIFT_AND_DISCARD_MODE;
829 		txvlan_cfg.insert_tag1_en = true;
830 		txvlan_cfg.default_tag1 = pvid;
831 	}
832 
833 	txvlan_cfg.accept_untag1 = true;
834 	txvlan_cfg.accept_tag2 = true;
835 	txvlan_cfg.accept_untag2 = true;
836 	txvlan_cfg.insert_tag2_en = false;
837 	txvlan_cfg.default_tag2 = 0;
838 	txvlan_cfg.tag_shift_mode_en = true;
839 
840 	ret = hns3_set_vlan_tx_offload_cfg(hns, &txvlan_cfg);
841 	if (ret) {
842 		hns3_err(hw, "pf vlan set pvid failed, pvid =%u ,ret =%d", pvid,
843 			 ret);
844 		return ret;
845 	}
846 
847 	hns3_update_tx_offload_cfg(hns, &txvlan_cfg);
848 	return ret;
849 }
850 
851 
852 static void
853 hns3_rm_all_vlan_table(struct hns3_adapter *hns, bool is_del_list)
854 {
855 	struct hns3_user_vlan_table *vlan_entry;
856 	struct hns3_pf *pf = &hns->pf;
857 
858 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
859 		if (vlan_entry->hd_tbl_status) {
860 			hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 0);
861 			vlan_entry->hd_tbl_status = false;
862 		}
863 	}
864 
865 	if (is_del_list) {
866 		vlan_entry = LIST_FIRST(&pf->vlan_list);
867 		while (vlan_entry) {
868 			LIST_REMOVE(vlan_entry, next);
869 			rte_free(vlan_entry);
870 			vlan_entry = LIST_FIRST(&pf->vlan_list);
871 		}
872 	}
873 }
874 
875 static void
876 hns3_add_all_vlan_table(struct hns3_adapter *hns)
877 {
878 	struct hns3_user_vlan_table *vlan_entry;
879 	struct hns3_pf *pf = &hns->pf;
880 
881 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
882 		if (!vlan_entry->hd_tbl_status) {
883 			hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 1);
884 			vlan_entry->hd_tbl_status = true;
885 		}
886 	}
887 }
888 
889 static void
890 hns3_remove_all_vlan_table(struct hns3_adapter *hns)
891 {
892 	struct hns3_hw *hw = &hns->hw;
893 	int ret;
894 
895 	hns3_rm_all_vlan_table(hns, true);
896 	if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID) {
897 		ret = hns3_set_port_vlan_filter(hns,
898 						hw->port_base_vlan_cfg.pvid, 0);
899 		if (ret) {
900 			hns3_err(hw, "Failed to remove all vlan table, ret =%d",
901 				 ret);
902 			return;
903 		}
904 	}
905 }
906 
907 static int
908 hns3_update_vlan_filter_entries(struct hns3_adapter *hns,
909 			uint16_t port_base_vlan_state, uint16_t new_pvid)
910 {
911 	struct hns3_hw *hw = &hns->hw;
912 	uint16_t old_pvid;
913 	int ret;
914 
915 	if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_ENABLE) {
916 		old_pvid = hw->port_base_vlan_cfg.pvid;
917 		if (old_pvid != HNS3_INVALID_PVID) {
918 			ret = hns3_set_port_vlan_filter(hns, old_pvid, 0);
919 			if (ret) {
920 				hns3_err(hw, "failed to remove old pvid %u, "
921 						"ret = %d", old_pvid, ret);
922 				return ret;
923 			}
924 		}
925 
926 		hns3_rm_all_vlan_table(hns, false);
927 		ret = hns3_set_port_vlan_filter(hns, new_pvid, 1);
928 		if (ret) {
929 			hns3_err(hw, "failed to add new pvid %u, ret = %d",
930 					new_pvid, ret);
931 			return ret;
932 		}
933 	} else {
934 		ret = hns3_set_port_vlan_filter(hns, new_pvid, 0);
935 		if (ret) {
936 			hns3_err(hw, "failed to remove pvid %u, ret = %d",
937 					new_pvid, ret);
938 			return ret;
939 		}
940 
941 		hns3_add_all_vlan_table(hns);
942 	}
943 	return 0;
944 }
945 
946 static int
947 hns3_en_pvid_strip(struct hns3_adapter *hns, int on)
948 {
949 	struct hns3_rx_vtag_cfg *old_cfg = &hns->pf.vtag_config.rx_vcfg;
950 	struct hns3_rx_vtag_cfg rx_vlan_cfg;
951 	bool rx_strip_en;
952 	int ret;
953 
954 	rx_strip_en = old_cfg->rx_vlan_offload_en;
955 	if (on) {
956 		rx_vlan_cfg.strip_tag1_en = rx_strip_en;
957 		rx_vlan_cfg.strip_tag2_en = true;
958 		rx_vlan_cfg.strip_tag2_discard_en = true;
959 	} else {
960 		rx_vlan_cfg.strip_tag1_en = false;
961 		rx_vlan_cfg.strip_tag2_en = rx_strip_en;
962 		rx_vlan_cfg.strip_tag2_discard_en = false;
963 	}
964 	rx_vlan_cfg.strip_tag1_discard_en = false;
965 	rx_vlan_cfg.vlan1_vlan_prionly = false;
966 	rx_vlan_cfg.vlan2_vlan_prionly = false;
967 	rx_vlan_cfg.rx_vlan_offload_en = old_cfg->rx_vlan_offload_en;
968 
969 	ret = hns3_set_vlan_rx_offload_cfg(hns, &rx_vlan_cfg);
970 	if (ret)
971 		return ret;
972 
973 	hns3_update_rx_offload_cfg(hns, &rx_vlan_cfg);
974 	return ret;
975 }
976 
977 static int
978 hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid, int on)
979 {
980 	struct hns3_hw *hw = &hns->hw;
981 	uint16_t port_base_vlan_state;
982 	int ret, err;
983 
984 	if (on == 0 && pvid != hw->port_base_vlan_cfg.pvid) {
985 		if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID)
986 			hns3_warn(hw, "Invalid operation! As current pvid set "
987 				  "is %u, disable pvid %u is invalid",
988 				  hw->port_base_vlan_cfg.pvid, pvid);
989 		return 0;
990 	}
991 
992 	port_base_vlan_state = on ? HNS3_PORT_BASE_VLAN_ENABLE :
993 				    HNS3_PORT_BASE_VLAN_DISABLE;
994 	ret = hns3_vlan_txvlan_cfg(hns, port_base_vlan_state, pvid);
995 	if (ret) {
996 		hns3_err(hw, "failed to config tx vlan for pvid, ret = %d",
997 			 ret);
998 		return ret;
999 	}
1000 
1001 	ret = hns3_en_pvid_strip(hns, on);
1002 	if (ret) {
1003 		hns3_err(hw, "failed to config rx vlan strip for pvid, "
1004 			 "ret = %d", ret);
1005 		goto pvid_vlan_strip_fail;
1006 	}
1007 
1008 	if (pvid == HNS3_INVALID_PVID)
1009 		goto out;
1010 	ret = hns3_update_vlan_filter_entries(hns, port_base_vlan_state, pvid);
1011 	if (ret) {
1012 		hns3_err(hw, "failed to update vlan filter entries, ret = %d",
1013 			 ret);
1014 		goto vlan_filter_set_fail;
1015 	}
1016 
1017 out:
1018 	hw->port_base_vlan_cfg.state = port_base_vlan_state;
1019 	hw->port_base_vlan_cfg.pvid = on ? pvid : HNS3_INVALID_PVID;
1020 	return ret;
1021 
1022 vlan_filter_set_fail:
1023 	err = hns3_en_pvid_strip(hns, hw->port_base_vlan_cfg.state ==
1024 					HNS3_PORT_BASE_VLAN_ENABLE);
1025 	if (err)
1026 		hns3_err(hw, "fail to rollback pvid strip, ret = %d", err);
1027 
1028 pvid_vlan_strip_fail:
1029 	err = hns3_vlan_txvlan_cfg(hns, hw->port_base_vlan_cfg.state,
1030 					hw->port_base_vlan_cfg.pvid);
1031 	if (err)
1032 		hns3_err(hw, "fail to rollback txvlan status, ret = %d", err);
1033 
1034 	return ret;
1035 }
1036 
1037 static int
1038 hns3_vlan_pvid_set(struct rte_eth_dev *dev, uint16_t pvid, int on)
1039 {
1040 	struct hns3_adapter *hns = dev->data->dev_private;
1041 	struct hns3_hw *hw = &hns->hw;
1042 	bool pvid_en_state_change;
1043 	uint16_t pvid_state;
1044 	int ret;
1045 
1046 	if (pvid > RTE_ETHER_MAX_VLAN_ID) {
1047 		hns3_err(hw, "Invalid vlan_id = %u > %d", pvid,
1048 			 RTE_ETHER_MAX_VLAN_ID);
1049 		return -EINVAL;
1050 	}
1051 
1052 	/*
1053 	 * If PVID configuration state change, should refresh the PVID
1054 	 * configuration state in struct hns3_tx_queue/hns3_rx_queue.
1055 	 */
1056 	pvid_state = hw->port_base_vlan_cfg.state;
1057 	if ((on && pvid_state == HNS3_PORT_BASE_VLAN_ENABLE) ||
1058 	    (!on && pvid_state == HNS3_PORT_BASE_VLAN_DISABLE))
1059 		pvid_en_state_change = false;
1060 	else
1061 		pvid_en_state_change = true;
1062 
1063 	rte_spinlock_lock(&hw->lock);
1064 	ret = hns3_vlan_pvid_configure(hns, pvid, on);
1065 	rte_spinlock_unlock(&hw->lock);
1066 	if (ret)
1067 		return ret;
1068 	/*
1069 	 * Only in HNS3_SW_SHIFT_AND_MODE the PVID related operation in Tx/Rx
1070 	 * need be processed by PMD driver.
1071 	 */
1072 	if (pvid_en_state_change &&
1073 	    hw->vlan_mode == HNS3_SW_SHIFT_AND_DISCARD_MODE)
1074 		hns3_update_all_queues_pvid_proc_en(hw);
1075 
1076 	return 0;
1077 }
1078 
1079 static int
1080 hns3_default_vlan_config(struct hns3_adapter *hns)
1081 {
1082 	struct hns3_hw *hw = &hns->hw;
1083 	int ret;
1084 
1085 	/*
1086 	 * When vlan filter is enabled, hardware regards packets without vlan
1087 	 * as packets with vlan 0. Therefore, if vlan 0 is not in the vlan
1088 	 * table, packets without vlan won't be received. So, add vlan 0 as
1089 	 * the default vlan.
1090 	 */
1091 	ret = hns3_vlan_filter_configure(hns, 0, 1);
1092 	if (ret)
1093 		hns3_err(hw, "default vlan 0 config failed, ret =%d", ret);
1094 	return ret;
1095 }
1096 
1097 static int
1098 hns3_init_vlan_config(struct hns3_adapter *hns)
1099 {
1100 	struct hns3_hw *hw = &hns->hw;
1101 	int ret;
1102 
1103 	/*
1104 	 * This function can be called in the initialization and reset process,
1105 	 * when in reset process, it means that hardware had been reseted
1106 	 * successfully and we need to restore the hardware configuration to
1107 	 * ensure that the hardware configuration remains unchanged before and
1108 	 * after reset.
1109 	 */
1110 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
1111 		hw->port_base_vlan_cfg.state = HNS3_PORT_BASE_VLAN_DISABLE;
1112 		hw->port_base_vlan_cfg.pvid = HNS3_INVALID_PVID;
1113 	}
1114 
1115 	ret = hns3_vlan_filter_init(hns);
1116 	if (ret) {
1117 		hns3_err(hw, "vlan init fail in pf, ret =%d", ret);
1118 		return ret;
1119 	}
1120 
1121 	ret = hns3_vlan_tpid_configure(hns, ETH_VLAN_TYPE_INNER,
1122 				       RTE_ETHER_TYPE_VLAN);
1123 	if (ret) {
1124 		hns3_err(hw, "tpid set fail in pf, ret =%d", ret);
1125 		return ret;
1126 	}
1127 
1128 	/*
1129 	 * When in the reinit dev stage of the reset process, the following
1130 	 * vlan-related configurations may differ from those at initialization,
1131 	 * we will restore configurations to hardware in hns3_restore_vlan_table
1132 	 * and hns3_restore_vlan_conf later.
1133 	 */
1134 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
1135 		ret = hns3_vlan_pvid_configure(hns, HNS3_INVALID_PVID, 0);
1136 		if (ret) {
1137 			hns3_err(hw, "pvid set fail in pf, ret =%d", ret);
1138 			return ret;
1139 		}
1140 
1141 		ret = hns3_en_hw_strip_rxvtag(hns, false);
1142 		if (ret) {
1143 			hns3_err(hw, "rx strip configure fail in pf, ret =%d",
1144 				 ret);
1145 			return ret;
1146 		}
1147 	}
1148 
1149 	return hns3_default_vlan_config(hns);
1150 }
1151 
1152 static int
1153 hns3_restore_vlan_conf(struct hns3_adapter *hns)
1154 {
1155 	struct hns3_pf *pf = &hns->pf;
1156 	struct hns3_hw *hw = &hns->hw;
1157 	uint64_t offloads;
1158 	bool enable;
1159 	int ret;
1160 
1161 	if (!hw->data->promiscuous) {
1162 		/* restore vlan filter states */
1163 		offloads = hw->data->dev_conf.rxmode.offloads;
1164 		enable = offloads & DEV_RX_OFFLOAD_VLAN_FILTER ? true : false;
1165 		ret = hns3_enable_vlan_filter(hns, enable);
1166 		if (ret) {
1167 			hns3_err(hw, "failed to restore vlan rx filter conf, "
1168 				 "ret = %d", ret);
1169 			return ret;
1170 		}
1171 	}
1172 
1173 	ret = hns3_set_vlan_rx_offload_cfg(hns, &pf->vtag_config.rx_vcfg);
1174 	if (ret) {
1175 		hns3_err(hw, "failed to restore vlan rx conf, ret = %d", ret);
1176 		return ret;
1177 	}
1178 
1179 	ret = hns3_set_vlan_tx_offload_cfg(hns, &pf->vtag_config.tx_vcfg);
1180 	if (ret)
1181 		hns3_err(hw, "failed to restore vlan tx conf, ret = %d", ret);
1182 
1183 	return ret;
1184 }
1185 
1186 static int
1187 hns3_dev_configure_vlan(struct rte_eth_dev *dev)
1188 {
1189 	struct hns3_adapter *hns = dev->data->dev_private;
1190 	struct rte_eth_dev_data *data = dev->data;
1191 	struct rte_eth_txmode *txmode;
1192 	struct hns3_hw *hw = &hns->hw;
1193 	int mask;
1194 	int ret;
1195 
1196 	txmode = &data->dev_conf.txmode;
1197 	if (txmode->hw_vlan_reject_tagged || txmode->hw_vlan_reject_untagged)
1198 		hns3_warn(hw,
1199 			  "hw_vlan_reject_tagged or hw_vlan_reject_untagged "
1200 			  "configuration is not supported! Ignore these two "
1201 			  "parameters: hw_vlan_reject_tagged(%u), "
1202 			  "hw_vlan_reject_untagged(%u)",
1203 			  txmode->hw_vlan_reject_tagged,
1204 			  txmode->hw_vlan_reject_untagged);
1205 
1206 	/* Apply vlan offload setting */
1207 	mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK;
1208 	ret = hns3_vlan_offload_set(dev, mask);
1209 	if (ret) {
1210 		hns3_err(hw, "dev config rx vlan offload failed, ret = %d",
1211 			 ret);
1212 		return ret;
1213 	}
1214 
1215 	/*
1216 	 * If pvid config is not set in rte_eth_conf, driver needn't to set
1217 	 * VLAN pvid related configuration to hardware.
1218 	 */
1219 	if (txmode->pvid == 0 && txmode->hw_vlan_insert_pvid == 0)
1220 		return 0;
1221 
1222 	/* Apply pvid setting */
1223 	ret = hns3_vlan_pvid_set(dev, txmode->pvid,
1224 				 txmode->hw_vlan_insert_pvid);
1225 	if (ret)
1226 		hns3_err(hw, "dev config vlan pvid(%u) failed, ret = %d",
1227 			 txmode->pvid, ret);
1228 
1229 	return ret;
1230 }
1231 
1232 static int
1233 hns3_config_tso(struct hns3_hw *hw, unsigned int tso_mss_min,
1234 		unsigned int tso_mss_max)
1235 {
1236 	struct hns3_cfg_tso_status_cmd *req;
1237 	struct hns3_cmd_desc desc;
1238 	uint16_t tso_mss;
1239 
1240 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TSO_GENERIC_CONFIG, false);
1241 
1242 	req = (struct hns3_cfg_tso_status_cmd *)desc.data;
1243 
1244 	tso_mss = 0;
1245 	hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1246 		       tso_mss_min);
1247 	req->tso_mss_min = rte_cpu_to_le_16(tso_mss);
1248 
1249 	tso_mss = 0;
1250 	hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1251 		       tso_mss_max);
1252 	req->tso_mss_max = rte_cpu_to_le_16(tso_mss);
1253 
1254 	return hns3_cmd_send(hw, &desc, 1);
1255 }
1256 
1257 static int
1258 hns3_set_umv_space(struct hns3_hw *hw, uint16_t space_size,
1259 		   uint16_t *allocated_size, bool is_alloc)
1260 {
1261 	struct hns3_umv_spc_alc_cmd *req;
1262 	struct hns3_cmd_desc desc;
1263 	int ret;
1264 
1265 	req = (struct hns3_umv_spc_alc_cmd *)desc.data;
1266 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ALLOCATE, false);
1267 	hns3_set_bit(req->allocate, HNS3_UMV_SPC_ALC_B, is_alloc ? 0 : 1);
1268 	req->space_size = rte_cpu_to_le_32(space_size);
1269 
1270 	ret = hns3_cmd_send(hw, &desc, 1);
1271 	if (ret) {
1272 		PMD_INIT_LOG(ERR, "%s umv space failed for cmd_send, ret =%d",
1273 			     is_alloc ? "allocate" : "free", ret);
1274 		return ret;
1275 	}
1276 
1277 	if (is_alloc && allocated_size)
1278 		*allocated_size = rte_le_to_cpu_32(desc.data[1]);
1279 
1280 	return 0;
1281 }
1282 
1283 static int
1284 hns3_init_umv_space(struct hns3_hw *hw)
1285 {
1286 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1287 	struct hns3_pf *pf = &hns->pf;
1288 	uint16_t allocated_size = 0;
1289 	int ret;
1290 
1291 	ret = hns3_set_umv_space(hw, pf->wanted_umv_size, &allocated_size,
1292 				 true);
1293 	if (ret)
1294 		return ret;
1295 
1296 	if (allocated_size < pf->wanted_umv_size)
1297 		PMD_INIT_LOG(WARNING, "Alloc umv space failed, want %u, get %u",
1298 			     pf->wanted_umv_size, allocated_size);
1299 
1300 	pf->max_umv_size = (!!allocated_size) ? allocated_size :
1301 						pf->wanted_umv_size;
1302 	pf->used_umv_size = 0;
1303 	return 0;
1304 }
1305 
1306 static int
1307 hns3_uninit_umv_space(struct hns3_hw *hw)
1308 {
1309 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1310 	struct hns3_pf *pf = &hns->pf;
1311 	int ret;
1312 
1313 	if (pf->max_umv_size == 0)
1314 		return 0;
1315 
1316 	ret = hns3_set_umv_space(hw, pf->max_umv_size, NULL, false);
1317 	if (ret)
1318 		return ret;
1319 
1320 	pf->max_umv_size = 0;
1321 
1322 	return 0;
1323 }
1324 
1325 static bool
1326 hns3_is_umv_space_full(struct hns3_hw *hw)
1327 {
1328 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1329 	struct hns3_pf *pf = &hns->pf;
1330 	bool is_full;
1331 
1332 	is_full = (pf->used_umv_size >= pf->max_umv_size);
1333 
1334 	return is_full;
1335 }
1336 
1337 static void
1338 hns3_update_umv_space(struct hns3_hw *hw, bool is_free)
1339 {
1340 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1341 	struct hns3_pf *pf = &hns->pf;
1342 
1343 	if (is_free) {
1344 		if (pf->used_umv_size > 0)
1345 			pf->used_umv_size--;
1346 	} else
1347 		pf->used_umv_size++;
1348 }
1349 
1350 static void
1351 hns3_prepare_mac_addr(struct hns3_mac_vlan_tbl_entry_cmd *new_req,
1352 		      const uint8_t *addr, bool is_mc)
1353 {
1354 	const unsigned char *mac_addr = addr;
1355 	uint32_t high_val = ((uint32_t)mac_addr[3] << 24) |
1356 			    ((uint32_t)mac_addr[2] << 16) |
1357 			    ((uint32_t)mac_addr[1] << 8) |
1358 			    (uint32_t)mac_addr[0];
1359 	uint32_t low_val = ((uint32_t)mac_addr[5] << 8) | (uint32_t)mac_addr[4];
1360 
1361 	hns3_set_bit(new_req->flags, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1362 	if (is_mc) {
1363 		hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1364 		hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT1_EN_B, 1);
1365 		hns3_set_bit(new_req->mc_mac_en, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1366 	}
1367 
1368 	new_req->mac_addr_hi32 = rte_cpu_to_le_32(high_val);
1369 	new_req->mac_addr_lo16 = rte_cpu_to_le_16(low_val & 0xffff);
1370 }
1371 
1372 static int
1373 hns3_get_mac_vlan_cmd_status(struct hns3_hw *hw, uint16_t cmdq_resp,
1374 			     uint8_t resp_code,
1375 			     enum hns3_mac_vlan_tbl_opcode op)
1376 {
1377 	if (cmdq_resp) {
1378 		hns3_err(hw, "cmdq execute failed for get_mac_vlan_cmd_status,status=%u",
1379 			 cmdq_resp);
1380 		return -EIO;
1381 	}
1382 
1383 	if (op == HNS3_MAC_VLAN_ADD) {
1384 		if (resp_code == 0 || resp_code == 1) {
1385 			return 0;
1386 		} else if (resp_code == HNS3_ADD_UC_OVERFLOW) {
1387 			hns3_err(hw, "add mac addr failed for uc_overflow");
1388 			return -ENOSPC;
1389 		} else if (resp_code == HNS3_ADD_MC_OVERFLOW) {
1390 			hns3_err(hw, "add mac addr failed for mc_overflow");
1391 			return -ENOSPC;
1392 		}
1393 
1394 		hns3_err(hw, "add mac addr failed for undefined, code=%u",
1395 			 resp_code);
1396 		return -EIO;
1397 	} else if (op == HNS3_MAC_VLAN_REMOVE) {
1398 		if (resp_code == 0) {
1399 			return 0;
1400 		} else if (resp_code == 1) {
1401 			hns3_dbg(hw, "remove mac addr failed for miss");
1402 			return -ENOENT;
1403 		}
1404 
1405 		hns3_err(hw, "remove mac addr failed for undefined, code=%u",
1406 			 resp_code);
1407 		return -EIO;
1408 	} else if (op == HNS3_MAC_VLAN_LKUP) {
1409 		if (resp_code == 0) {
1410 			return 0;
1411 		} else if (resp_code == 1) {
1412 			hns3_dbg(hw, "lookup mac addr failed for miss");
1413 			return -ENOENT;
1414 		}
1415 
1416 		hns3_err(hw, "lookup mac addr failed for undefined, code=%u",
1417 			 resp_code);
1418 		return -EIO;
1419 	}
1420 
1421 	hns3_err(hw, "unknown opcode for get_mac_vlan_cmd_status, opcode=%u",
1422 		 op);
1423 
1424 	return -EINVAL;
1425 }
1426 
1427 static int
1428 hns3_lookup_mac_vlan_tbl(struct hns3_hw *hw,
1429 			 struct hns3_mac_vlan_tbl_entry_cmd *req,
1430 			 struct hns3_cmd_desc *desc, uint8_t desc_num)
1431 {
1432 	uint8_t resp_code;
1433 	uint16_t retval;
1434 	int ret;
1435 	int i;
1436 
1437 	if (desc_num == HNS3_MC_MAC_VLAN_OPS_DESC_NUM) {
1438 		for (i = 0; i < desc_num - 1; i++) {
1439 			hns3_cmd_setup_basic_desc(&desc[i],
1440 						  HNS3_OPC_MAC_VLAN_ADD, true);
1441 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1442 			if (i == 0)
1443 				memcpy(desc[i].data, req,
1444 				sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1445 		}
1446 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_MAC_VLAN_ADD,
1447 					  true);
1448 	} else {
1449 		hns3_cmd_setup_basic_desc(&desc[0], HNS3_OPC_MAC_VLAN_ADD,
1450 					  true);
1451 		memcpy(desc[0].data, req,
1452 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1453 	}
1454 	ret = hns3_cmd_send(hw, desc, desc_num);
1455 	if (ret) {
1456 		hns3_err(hw, "lookup mac addr failed for cmd_send, ret =%d.",
1457 			 ret);
1458 		return ret;
1459 	}
1460 	resp_code = (rte_le_to_cpu_32(desc[0].data[0]) >> 8) & 0xff;
1461 	retval = rte_le_to_cpu_16(desc[0].retval);
1462 
1463 	return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1464 					    HNS3_MAC_VLAN_LKUP);
1465 }
1466 
1467 static int
1468 hns3_add_mac_vlan_tbl(struct hns3_hw *hw,
1469 		      struct hns3_mac_vlan_tbl_entry_cmd *req,
1470 		      struct hns3_cmd_desc *desc, uint8_t desc_num)
1471 {
1472 	uint8_t resp_code;
1473 	uint16_t retval;
1474 	int cfg_status;
1475 	int ret;
1476 	int i;
1477 
1478 	if (desc_num == HNS3_UC_MAC_VLAN_OPS_DESC_NUM) {
1479 		hns3_cmd_setup_basic_desc(desc, HNS3_OPC_MAC_VLAN_ADD, false);
1480 		memcpy(desc->data, req,
1481 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1482 		ret = hns3_cmd_send(hw, desc, desc_num);
1483 		resp_code = (rte_le_to_cpu_32(desc->data[0]) >> 8) & 0xff;
1484 		retval = rte_le_to_cpu_16(desc->retval);
1485 
1486 		cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1487 							  HNS3_MAC_VLAN_ADD);
1488 	} else {
1489 		for (i = 0; i < desc_num; i++) {
1490 			hns3_cmd_reuse_desc(&desc[i], false);
1491 			if (i == desc_num - 1)
1492 				desc[i].flag &=
1493 					rte_cpu_to_le_16(~HNS3_CMD_FLAG_NEXT);
1494 			else
1495 				desc[i].flag |=
1496 					rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1497 		}
1498 		memcpy(desc[0].data, req,
1499 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1500 		desc[0].retval = 0;
1501 		ret = hns3_cmd_send(hw, desc, desc_num);
1502 		resp_code = (rte_le_to_cpu_32(desc[0].data[0]) >> 8) & 0xff;
1503 		retval = rte_le_to_cpu_16(desc[0].retval);
1504 
1505 		cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1506 							  HNS3_MAC_VLAN_ADD);
1507 	}
1508 
1509 	if (ret) {
1510 		hns3_err(hw, "add mac addr failed for cmd_send, ret =%d", ret);
1511 		return ret;
1512 	}
1513 
1514 	return cfg_status;
1515 }
1516 
1517 static int
1518 hns3_remove_mac_vlan_tbl(struct hns3_hw *hw,
1519 			 struct hns3_mac_vlan_tbl_entry_cmd *req)
1520 {
1521 	struct hns3_cmd_desc desc;
1522 	uint8_t resp_code;
1523 	uint16_t retval;
1524 	int ret;
1525 
1526 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_REMOVE, false);
1527 
1528 	memcpy(desc.data, req, sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1529 
1530 	ret = hns3_cmd_send(hw, &desc, 1);
1531 	if (ret) {
1532 		hns3_err(hw, "del mac addr failed for cmd_send, ret =%d", ret);
1533 		return ret;
1534 	}
1535 	resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1536 	retval = rte_le_to_cpu_16(desc.retval);
1537 
1538 	return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1539 					    HNS3_MAC_VLAN_REMOVE);
1540 }
1541 
1542 static int
1543 hns3_add_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1544 {
1545 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1546 	struct hns3_mac_vlan_tbl_entry_cmd req;
1547 	struct hns3_pf *pf = &hns->pf;
1548 	struct hns3_cmd_desc desc;
1549 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1550 	uint16_t egress_port = 0;
1551 	uint8_t vf_id;
1552 	int ret;
1553 
1554 	/* check if mac addr is valid */
1555 	if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1556 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1557 				      mac_addr);
1558 		hns3_err(hw, "Add unicast mac addr err! addr(%s) invalid",
1559 			 mac_str);
1560 		return -EINVAL;
1561 	}
1562 
1563 	memset(&req, 0, sizeof(req));
1564 
1565 	/*
1566 	 * In current version VF is not supported when PF is driven by DPDK
1567 	 * driver, just need to configure parameters for PF vport.
1568 	 */
1569 	vf_id = HNS3_PF_FUNC_ID;
1570 	hns3_set_field(egress_port, HNS3_MAC_EPORT_VFID_M,
1571 		       HNS3_MAC_EPORT_VFID_S, vf_id);
1572 
1573 	req.egress_port = rte_cpu_to_le_16(egress_port);
1574 
1575 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1576 
1577 	/*
1578 	 * Lookup the mac address in the mac_vlan table, and add
1579 	 * it if the entry is inexistent. Repeated unicast entry
1580 	 * is not allowed in the mac vlan table.
1581 	 */
1582 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, &desc,
1583 					HNS3_UC_MAC_VLAN_OPS_DESC_NUM);
1584 	if (ret == -ENOENT) {
1585 		if (!hns3_is_umv_space_full(hw)) {
1586 			ret = hns3_add_mac_vlan_tbl(hw, &req, &desc,
1587 						HNS3_UC_MAC_VLAN_OPS_DESC_NUM);
1588 			if (!ret)
1589 				hns3_update_umv_space(hw, false);
1590 			return ret;
1591 		}
1592 
1593 		hns3_err(hw, "UC MAC table full(%u)", pf->used_umv_size);
1594 
1595 		return -ENOSPC;
1596 	}
1597 
1598 	hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, mac_addr);
1599 
1600 	/* check if we just hit the duplicate */
1601 	if (ret == 0) {
1602 		hns3_dbg(hw, "mac addr(%s) has been in the MAC table", mac_str);
1603 		return 0;
1604 	}
1605 
1606 	hns3_err(hw, "PF failed to add unicast entry(%s) in the MAC table",
1607 		 mac_str);
1608 
1609 	return ret;
1610 }
1611 
1612 static int
1613 hns3_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1614 {
1615 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1616 	struct rte_ether_addr *addr;
1617 	int ret;
1618 	int i;
1619 
1620 	for (i = 0; i < hw->mc_addrs_num; i++) {
1621 		addr = &hw->mc_addrs[i];
1622 		/* Check if there are duplicate addresses */
1623 		if (rte_is_same_ether_addr(addr, mac_addr)) {
1624 			hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1625 					      addr);
1626 			hns3_err(hw, "failed to add mc mac addr, same addrs"
1627 				 "(%s) is added by the set_mc_mac_addr_list "
1628 				 "API", mac_str);
1629 			return -EINVAL;
1630 		}
1631 	}
1632 
1633 	ret = hns3_add_mc_addr(hw, mac_addr);
1634 	if (ret) {
1635 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1636 				      mac_addr);
1637 		hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
1638 			 mac_str, ret);
1639 	}
1640 	return ret;
1641 }
1642 
1643 static int
1644 hns3_remove_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1645 {
1646 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1647 	int ret;
1648 
1649 	ret = hns3_remove_mc_addr(hw, mac_addr);
1650 	if (ret) {
1651 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1652 				      mac_addr);
1653 		hns3_err(hw, "failed to remove mc mac addr(%s), ret = %d",
1654 			 mac_str, ret);
1655 	}
1656 	return ret;
1657 }
1658 
1659 static int
1660 hns3_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
1661 		  __rte_unused uint32_t idx, __rte_unused uint32_t pool)
1662 {
1663 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1664 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1665 	int ret;
1666 
1667 	rte_spinlock_lock(&hw->lock);
1668 
1669 	/*
1670 	 * In hns3 network engine adding UC and MC mac address with different
1671 	 * commands with firmware. We need to determine whether the input
1672 	 * address is a UC or a MC address to call different commands.
1673 	 * By the way, it is recommended calling the API function named
1674 	 * rte_eth_dev_set_mc_addr_list to set the MC mac address, because
1675 	 * using the rte_eth_dev_mac_addr_add API function to set MC mac address
1676 	 * may affect the specifications of UC mac addresses.
1677 	 */
1678 	if (rte_is_multicast_ether_addr(mac_addr))
1679 		ret = hns3_add_mc_addr_common(hw, mac_addr);
1680 	else
1681 		ret = hns3_add_uc_addr_common(hw, mac_addr);
1682 
1683 	if (ret) {
1684 		rte_spinlock_unlock(&hw->lock);
1685 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1686 				      mac_addr);
1687 		hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
1688 			 ret);
1689 		return ret;
1690 	}
1691 
1692 	rte_spinlock_unlock(&hw->lock);
1693 
1694 	return ret;
1695 }
1696 
1697 static int
1698 hns3_remove_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1699 {
1700 	struct hns3_mac_vlan_tbl_entry_cmd req;
1701 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1702 	int ret;
1703 
1704 	/* check if mac addr is valid */
1705 	if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1706 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1707 				      mac_addr);
1708 		hns3_err(hw, "remove unicast mac addr err! addr(%s) invalid",
1709 			 mac_str);
1710 		return -EINVAL;
1711 	}
1712 
1713 	memset(&req, 0, sizeof(req));
1714 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1715 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1716 	ret = hns3_remove_mac_vlan_tbl(hw, &req);
1717 	if (ret == -ENOENT) /* mac addr isn't existent in the mac vlan table. */
1718 		return 0;
1719 	else if (ret == 0)
1720 		hns3_update_umv_space(hw, true);
1721 
1722 	return ret;
1723 }
1724 
1725 static void
1726 hns3_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
1727 {
1728 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1729 	/* index will be checked by upper level rte interface */
1730 	struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
1731 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1732 	int ret;
1733 
1734 	rte_spinlock_lock(&hw->lock);
1735 
1736 	if (rte_is_multicast_ether_addr(mac_addr))
1737 		ret = hns3_remove_mc_addr_common(hw, mac_addr);
1738 	else
1739 		ret = hns3_remove_uc_addr_common(hw, mac_addr);
1740 	rte_spinlock_unlock(&hw->lock);
1741 	if (ret) {
1742 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1743 				      mac_addr);
1744 		hns3_err(hw, "failed to remove mac addr(%s), ret = %d", mac_str,
1745 			 ret);
1746 	}
1747 }
1748 
1749 static int
1750 hns3_set_default_mac_addr(struct rte_eth_dev *dev,
1751 			  struct rte_ether_addr *mac_addr)
1752 {
1753 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1754 	struct rte_ether_addr *oaddr;
1755 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1756 	int ret, ret_val;
1757 
1758 	rte_spinlock_lock(&hw->lock);
1759 	oaddr = (struct rte_ether_addr *)hw->mac.mac_addr;
1760 	ret = hns3_remove_uc_addr_common(hw, oaddr);
1761 	if (ret) {
1762 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1763 				      oaddr);
1764 		hns3_warn(hw, "Remove old uc mac address(%s) fail: %d",
1765 			  mac_str, ret);
1766 
1767 		rte_spinlock_unlock(&hw->lock);
1768 		return ret;
1769 	}
1770 
1771 	ret = hns3_add_uc_addr_common(hw, mac_addr);
1772 	if (ret) {
1773 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1774 				      mac_addr);
1775 		hns3_err(hw, "Failed to set mac addr(%s): %d", mac_str, ret);
1776 		goto err_add_uc_addr;
1777 	}
1778 
1779 	ret = hns3_pause_addr_cfg(hw, mac_addr->addr_bytes);
1780 	if (ret) {
1781 		hns3_err(hw, "Failed to configure mac pause address: %d", ret);
1782 		goto err_pause_addr_cfg;
1783 	}
1784 
1785 	rte_ether_addr_copy(mac_addr,
1786 			    (struct rte_ether_addr *)hw->mac.mac_addr);
1787 	rte_spinlock_unlock(&hw->lock);
1788 
1789 	return 0;
1790 
1791 err_pause_addr_cfg:
1792 	ret_val = hns3_remove_uc_addr_common(hw, mac_addr);
1793 	if (ret_val) {
1794 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1795 				      mac_addr);
1796 		hns3_warn(hw,
1797 			  "Failed to roll back to del setted mac addr(%s): %d",
1798 			  mac_str, ret_val);
1799 	}
1800 
1801 err_add_uc_addr:
1802 	ret_val = hns3_add_uc_addr_common(hw, oaddr);
1803 	if (ret_val) {
1804 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, oaddr);
1805 		hns3_warn(hw, "Failed to restore old uc mac addr(%s): %d",
1806 				  mac_str, ret_val);
1807 	}
1808 	rte_spinlock_unlock(&hw->lock);
1809 
1810 	return ret;
1811 }
1812 
1813 static int
1814 hns3_configure_all_mac_addr(struct hns3_adapter *hns, bool del)
1815 {
1816 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1817 	struct hns3_hw *hw = &hns->hw;
1818 	struct rte_ether_addr *addr;
1819 	int err = 0;
1820 	int ret;
1821 	int i;
1822 
1823 	for (i = 0; i < HNS3_UC_MACADDR_NUM; i++) {
1824 		addr = &hw->data->mac_addrs[i];
1825 		if (rte_is_zero_ether_addr(addr))
1826 			continue;
1827 		if (rte_is_multicast_ether_addr(addr))
1828 			ret = del ? hns3_remove_mc_addr(hw, addr) :
1829 			      hns3_add_mc_addr(hw, addr);
1830 		else
1831 			ret = del ? hns3_remove_uc_addr_common(hw, addr) :
1832 			      hns3_add_uc_addr_common(hw, addr);
1833 
1834 		if (ret) {
1835 			err = ret;
1836 			hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1837 					      addr);
1838 			hns3_err(hw, "failed to %s mac addr(%s) index:%d "
1839 				 "ret = %d.", del ? "remove" : "restore",
1840 				 mac_str, i, ret);
1841 		}
1842 	}
1843 	return err;
1844 }
1845 
1846 static void
1847 hns3_update_desc_vfid(struct hns3_cmd_desc *desc, uint8_t vfid, bool clr)
1848 {
1849 #define HNS3_VF_NUM_IN_FIRST_DESC 192
1850 	uint8_t word_num;
1851 	uint8_t bit_num;
1852 
1853 	if (vfid < HNS3_VF_NUM_IN_FIRST_DESC) {
1854 		word_num = vfid / 32;
1855 		bit_num = vfid % 32;
1856 		if (clr)
1857 			desc[1].data[word_num] &=
1858 			    rte_cpu_to_le_32(~(1UL << bit_num));
1859 		else
1860 			desc[1].data[word_num] |=
1861 			    rte_cpu_to_le_32(1UL << bit_num);
1862 	} else {
1863 		word_num = (vfid - HNS3_VF_NUM_IN_FIRST_DESC) / 32;
1864 		bit_num = vfid % 32;
1865 		if (clr)
1866 			desc[2].data[word_num] &=
1867 			    rte_cpu_to_le_32(~(1UL << bit_num));
1868 		else
1869 			desc[2].data[word_num] |=
1870 			    rte_cpu_to_le_32(1UL << bit_num);
1871 	}
1872 }
1873 
1874 static int
1875 hns3_add_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1876 {
1877 	struct hns3_cmd_desc desc[HNS3_MC_MAC_VLAN_OPS_DESC_NUM];
1878 	struct hns3_mac_vlan_tbl_entry_cmd req;
1879 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1880 	uint8_t vf_id;
1881 	int ret;
1882 
1883 	/* Check if mac addr is valid */
1884 	if (!rte_is_multicast_ether_addr(mac_addr)) {
1885 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1886 				      mac_addr);
1887 		hns3_err(hw, "failed to add mc mac addr, addr(%s) invalid",
1888 			 mac_str);
1889 		return -EINVAL;
1890 	}
1891 
1892 	memset(&req, 0, sizeof(req));
1893 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1894 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1895 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc,
1896 					HNS3_MC_MAC_VLAN_OPS_DESC_NUM);
1897 	if (ret) {
1898 		/* This mac addr do not exist, add new entry for it */
1899 		memset(desc[0].data, 0, sizeof(desc[0].data));
1900 		memset(desc[1].data, 0, sizeof(desc[0].data));
1901 		memset(desc[2].data, 0, sizeof(desc[0].data));
1902 	}
1903 
1904 	/*
1905 	 * In current version VF is not supported when PF is driven by DPDK
1906 	 * driver, just need to configure parameters for PF vport.
1907 	 */
1908 	vf_id = HNS3_PF_FUNC_ID;
1909 	hns3_update_desc_vfid(desc, vf_id, false);
1910 	ret = hns3_add_mac_vlan_tbl(hw, &req, desc,
1911 					HNS3_MC_MAC_VLAN_OPS_DESC_NUM);
1912 	if (ret) {
1913 		if (ret == -ENOSPC)
1914 			hns3_err(hw, "mc mac vlan table is full");
1915 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1916 				      mac_addr);
1917 		hns3_err(hw, "failed to add mc mac addr(%s): %d", mac_str, ret);
1918 	}
1919 
1920 	return ret;
1921 }
1922 
1923 static int
1924 hns3_remove_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1925 {
1926 	struct hns3_mac_vlan_tbl_entry_cmd req;
1927 	struct hns3_cmd_desc desc[3];
1928 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1929 	uint8_t vf_id;
1930 	int ret;
1931 
1932 	/* Check if mac addr is valid */
1933 	if (!rte_is_multicast_ether_addr(mac_addr)) {
1934 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1935 				      mac_addr);
1936 		hns3_err(hw, "Failed to rm mc mac addr, addr(%s) invalid",
1937 			 mac_str);
1938 		return -EINVAL;
1939 	}
1940 
1941 	memset(&req, 0, sizeof(req));
1942 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1943 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1944 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc,
1945 					HNS3_MC_MAC_VLAN_OPS_DESC_NUM);
1946 	if (ret == 0) {
1947 		/*
1948 		 * This mac addr exist, remove this handle's VFID for it.
1949 		 * In current version VF is not supported when PF is driven by
1950 		 * DPDK driver, just need to configure parameters for PF vport.
1951 		 */
1952 		vf_id = HNS3_PF_FUNC_ID;
1953 		hns3_update_desc_vfid(desc, vf_id, true);
1954 
1955 		/* All the vfid is zero, so need to delete this entry */
1956 		ret = hns3_remove_mac_vlan_tbl(hw, &req);
1957 	} else if (ret == -ENOENT) {
1958 		/* This mac addr doesn't exist. */
1959 		return 0;
1960 	}
1961 
1962 	if (ret) {
1963 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1964 				      mac_addr);
1965 		hns3_err(hw, "Failed to rm mc mac addr(%s): %d", mac_str, ret);
1966 	}
1967 
1968 	return ret;
1969 }
1970 
1971 static int
1972 hns3_set_mc_addr_chk_param(struct hns3_hw *hw,
1973 			   struct rte_ether_addr *mc_addr_set,
1974 			   uint32_t nb_mc_addr)
1975 {
1976 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1977 	struct rte_ether_addr *addr;
1978 	uint32_t i;
1979 	uint32_t j;
1980 
1981 	if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
1982 		hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%u) "
1983 			 "invalid. valid range: 0~%d",
1984 			 nb_mc_addr, HNS3_MC_MACADDR_NUM);
1985 		return -EINVAL;
1986 	}
1987 
1988 	/* Check if input mac addresses are valid */
1989 	for (i = 0; i < nb_mc_addr; i++) {
1990 		addr = &mc_addr_set[i];
1991 		if (!rte_is_multicast_ether_addr(addr)) {
1992 			hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1993 					      addr);
1994 			hns3_err(hw,
1995 				 "failed to set mc mac addr, addr(%s) invalid.",
1996 				 mac_str);
1997 			return -EINVAL;
1998 		}
1999 
2000 		/* Check if there are duplicate addresses */
2001 		for (j = i + 1; j < nb_mc_addr; j++) {
2002 			if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
2003 				hns3_ether_format_addr(mac_str,
2004 						      RTE_ETHER_ADDR_FMT_SIZE,
2005 						      addr);
2006 				hns3_err(hw, "failed to set mc mac addr, "
2007 					 "addrs invalid. two same addrs(%s).",
2008 					 mac_str);
2009 				return -EINVAL;
2010 			}
2011 		}
2012 
2013 		/*
2014 		 * Check if there are duplicate addresses between mac_addrs
2015 		 * and mc_addr_set
2016 		 */
2017 		for (j = 0; j < HNS3_UC_MACADDR_NUM; j++) {
2018 			if (rte_is_same_ether_addr(addr,
2019 						   &hw->data->mac_addrs[j])) {
2020 				hns3_ether_format_addr(mac_str,
2021 						      RTE_ETHER_ADDR_FMT_SIZE,
2022 						      addr);
2023 				hns3_err(hw, "failed to set mc mac addr, "
2024 					 "addrs invalid. addrs(%s) has already "
2025 					 "configured in mac_addr add API",
2026 					 mac_str);
2027 				return -EINVAL;
2028 			}
2029 		}
2030 	}
2031 
2032 	return 0;
2033 }
2034 
2035 static void
2036 hns3_set_mc_addr_calc_addr(struct hns3_hw *hw,
2037 			   struct rte_ether_addr *mc_addr_set,
2038 			   int mc_addr_num,
2039 			   struct rte_ether_addr *reserved_addr_list,
2040 			   int *reserved_addr_num,
2041 			   struct rte_ether_addr *add_addr_list,
2042 			   int *add_addr_num,
2043 			   struct rte_ether_addr *rm_addr_list,
2044 			   int *rm_addr_num)
2045 {
2046 	struct rte_ether_addr *addr;
2047 	int current_addr_num;
2048 	int reserved_num = 0;
2049 	int add_num = 0;
2050 	int rm_num = 0;
2051 	int num;
2052 	int i;
2053 	int j;
2054 	bool same_addr;
2055 
2056 	/* Calculate the mc mac address list that should be removed */
2057 	current_addr_num = hw->mc_addrs_num;
2058 	for (i = 0; i < current_addr_num; i++) {
2059 		addr = &hw->mc_addrs[i];
2060 		same_addr = false;
2061 		for (j = 0; j < mc_addr_num; j++) {
2062 			if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
2063 				same_addr = true;
2064 				break;
2065 			}
2066 		}
2067 
2068 		if (!same_addr) {
2069 			rte_ether_addr_copy(addr, &rm_addr_list[rm_num]);
2070 			rm_num++;
2071 		} else {
2072 			rte_ether_addr_copy(addr,
2073 					    &reserved_addr_list[reserved_num]);
2074 			reserved_num++;
2075 		}
2076 	}
2077 
2078 	/* Calculate the mc mac address list that should be added */
2079 	for (i = 0; i < mc_addr_num; i++) {
2080 		addr = &mc_addr_set[i];
2081 		same_addr = false;
2082 		for (j = 0; j < current_addr_num; j++) {
2083 			if (rte_is_same_ether_addr(addr, &hw->mc_addrs[j])) {
2084 				same_addr = true;
2085 				break;
2086 			}
2087 		}
2088 
2089 		if (!same_addr) {
2090 			rte_ether_addr_copy(addr, &add_addr_list[add_num]);
2091 			add_num++;
2092 		}
2093 	}
2094 
2095 	/* Reorder the mc mac address list maintained by driver */
2096 	for (i = 0; i < reserved_num; i++)
2097 		rte_ether_addr_copy(&reserved_addr_list[i], &hw->mc_addrs[i]);
2098 
2099 	for (i = 0; i < rm_num; i++) {
2100 		num = reserved_num + i;
2101 		rte_ether_addr_copy(&rm_addr_list[i], &hw->mc_addrs[num]);
2102 	}
2103 
2104 	*reserved_addr_num = reserved_num;
2105 	*add_addr_num = add_num;
2106 	*rm_addr_num = rm_num;
2107 }
2108 
2109 static int
2110 hns3_set_mc_mac_addr_list(struct rte_eth_dev *dev,
2111 			  struct rte_ether_addr *mc_addr_set,
2112 			  uint32_t nb_mc_addr)
2113 {
2114 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2115 	struct rte_ether_addr reserved_addr_list[HNS3_MC_MACADDR_NUM];
2116 	struct rte_ether_addr add_addr_list[HNS3_MC_MACADDR_NUM];
2117 	struct rte_ether_addr rm_addr_list[HNS3_MC_MACADDR_NUM];
2118 	struct rte_ether_addr *addr;
2119 	int reserved_addr_num;
2120 	int add_addr_num;
2121 	int rm_addr_num;
2122 	int mc_addr_num;
2123 	int num;
2124 	int ret;
2125 	int i;
2126 
2127 	/* Check if input parameters are valid */
2128 	ret = hns3_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
2129 	if (ret)
2130 		return ret;
2131 
2132 	rte_spinlock_lock(&hw->lock);
2133 
2134 	/*
2135 	 * Calculate the mc mac address lists those should be removed and be
2136 	 * added, Reorder the mc mac address list maintained by driver.
2137 	 */
2138 	mc_addr_num = (int)nb_mc_addr;
2139 	hns3_set_mc_addr_calc_addr(hw, mc_addr_set, mc_addr_num,
2140 				   reserved_addr_list, &reserved_addr_num,
2141 				   add_addr_list, &add_addr_num,
2142 				   rm_addr_list, &rm_addr_num);
2143 
2144 	/* Remove mc mac addresses */
2145 	for (i = 0; i < rm_addr_num; i++) {
2146 		num = rm_addr_num - i - 1;
2147 		addr = &rm_addr_list[num];
2148 		ret = hns3_remove_mc_addr(hw, addr);
2149 		if (ret) {
2150 			rte_spinlock_unlock(&hw->lock);
2151 			return ret;
2152 		}
2153 		hw->mc_addrs_num--;
2154 	}
2155 
2156 	/* Add mc mac addresses */
2157 	for (i = 0; i < add_addr_num; i++) {
2158 		addr = &add_addr_list[i];
2159 		ret = hns3_add_mc_addr(hw, addr);
2160 		if (ret) {
2161 			rte_spinlock_unlock(&hw->lock);
2162 			return ret;
2163 		}
2164 
2165 		num = reserved_addr_num + i;
2166 		rte_ether_addr_copy(addr, &hw->mc_addrs[num]);
2167 		hw->mc_addrs_num++;
2168 	}
2169 	rte_spinlock_unlock(&hw->lock);
2170 
2171 	return 0;
2172 }
2173 
2174 static int
2175 hns3_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
2176 {
2177 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2178 	struct hns3_hw *hw = &hns->hw;
2179 	struct rte_ether_addr *addr;
2180 	int err = 0;
2181 	int ret;
2182 	int i;
2183 
2184 	for (i = 0; i < hw->mc_addrs_num; i++) {
2185 		addr = &hw->mc_addrs[i];
2186 		if (!rte_is_multicast_ether_addr(addr))
2187 			continue;
2188 		if (del)
2189 			ret = hns3_remove_mc_addr(hw, addr);
2190 		else
2191 			ret = hns3_add_mc_addr(hw, addr);
2192 		if (ret) {
2193 			err = ret;
2194 			hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2195 					      addr);
2196 			hns3_dbg(hw, "%s mc mac addr: %s failed for pf: ret = %d",
2197 				 del ? "Remove" : "Restore", mac_str, ret);
2198 		}
2199 	}
2200 	return err;
2201 }
2202 
2203 static int
2204 hns3_check_mq_mode(struct rte_eth_dev *dev)
2205 {
2206 	enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
2207 	enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
2208 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2209 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
2210 	struct rte_eth_dcb_rx_conf *dcb_rx_conf;
2211 	struct rte_eth_dcb_tx_conf *dcb_tx_conf;
2212 	uint8_t num_tc;
2213 	int max_tc = 0;
2214 	int i;
2215 
2216 	if ((rx_mq_mode & ETH_MQ_RX_VMDQ_FLAG) ||
2217 	    (tx_mq_mode == ETH_MQ_TX_VMDQ_DCB ||
2218 	     tx_mq_mode == ETH_MQ_TX_VMDQ_ONLY)) {
2219 		hns3_err(hw, "VMDQ is not supported, rx_mq_mode = %d, tx_mq_mode = %d.",
2220 			 rx_mq_mode, tx_mq_mode);
2221 		return -EOPNOTSUPP;
2222 	}
2223 
2224 	dcb_rx_conf = &dev->data->dev_conf.rx_adv_conf.dcb_rx_conf;
2225 	dcb_tx_conf = &dev->data->dev_conf.tx_adv_conf.dcb_tx_conf;
2226 	if (rx_mq_mode & ETH_MQ_RX_DCB_FLAG) {
2227 		if (dcb_rx_conf->nb_tcs > pf->tc_max) {
2228 			hns3_err(hw, "nb_tcs(%u) > max_tc(%u) driver supported.",
2229 				 dcb_rx_conf->nb_tcs, pf->tc_max);
2230 			return -EINVAL;
2231 		}
2232 
2233 		if (!(dcb_rx_conf->nb_tcs == HNS3_4_TCS ||
2234 		      dcb_rx_conf->nb_tcs == HNS3_8_TCS)) {
2235 			hns3_err(hw, "on ETH_MQ_RX_DCB_RSS mode, "
2236 				 "nb_tcs(%d) != %d or %d in rx direction.",
2237 				 dcb_rx_conf->nb_tcs, HNS3_4_TCS, HNS3_8_TCS);
2238 			return -EINVAL;
2239 		}
2240 
2241 		if (dcb_rx_conf->nb_tcs != dcb_tx_conf->nb_tcs) {
2242 			hns3_err(hw, "num_tcs(%d) of tx is not equal to rx(%d)",
2243 				 dcb_tx_conf->nb_tcs, dcb_rx_conf->nb_tcs);
2244 			return -EINVAL;
2245 		}
2246 
2247 		for (i = 0; i < HNS3_MAX_USER_PRIO; i++) {
2248 			if (dcb_rx_conf->dcb_tc[i] != dcb_tx_conf->dcb_tc[i]) {
2249 				hns3_err(hw, "dcb_tc[%d] = %u in rx direction, "
2250 					 "is not equal to one in tx direction.",
2251 					 i, dcb_rx_conf->dcb_tc[i]);
2252 				return -EINVAL;
2253 			}
2254 			if (dcb_rx_conf->dcb_tc[i] > max_tc)
2255 				max_tc = dcb_rx_conf->dcb_tc[i];
2256 		}
2257 
2258 		num_tc = max_tc + 1;
2259 		if (num_tc > dcb_rx_conf->nb_tcs) {
2260 			hns3_err(hw, "max num_tc(%u) mapped > nb_tcs(%u)",
2261 				 num_tc, dcb_rx_conf->nb_tcs);
2262 			return -EINVAL;
2263 		}
2264 	}
2265 
2266 	return 0;
2267 }
2268 
2269 static int
2270 hns3_bind_ring_with_vector(struct hns3_hw *hw, uint16_t vector_id, bool en,
2271 			   enum hns3_ring_type queue_type, uint16_t queue_id)
2272 {
2273 	struct hns3_cmd_desc desc;
2274 	struct hns3_ctrl_vector_chain_cmd *req =
2275 		(struct hns3_ctrl_vector_chain_cmd *)desc.data;
2276 	enum hns3_opcode_type op;
2277 	uint16_t tqp_type_and_id = 0;
2278 	uint16_t type;
2279 	uint16_t gl;
2280 	int ret;
2281 
2282 	op = en ? HNS3_OPC_ADD_RING_TO_VECTOR : HNS3_OPC_DEL_RING_TO_VECTOR;
2283 	hns3_cmd_setup_basic_desc(&desc, op, false);
2284 	req->int_vector_id = hns3_get_field(vector_id, HNS3_TQP_INT_ID_L_M,
2285 					      HNS3_TQP_INT_ID_L_S);
2286 	req->int_vector_id_h = hns3_get_field(vector_id, HNS3_TQP_INT_ID_H_M,
2287 					      HNS3_TQP_INT_ID_H_S);
2288 
2289 	if (queue_type == HNS3_RING_TYPE_RX)
2290 		gl = HNS3_RING_GL_RX;
2291 	else
2292 		gl = HNS3_RING_GL_TX;
2293 
2294 	type = queue_type;
2295 
2296 	hns3_set_field(tqp_type_and_id, HNS3_INT_TYPE_M, HNS3_INT_TYPE_S,
2297 		       type);
2298 	hns3_set_field(tqp_type_and_id, HNS3_TQP_ID_M, HNS3_TQP_ID_S, queue_id);
2299 	hns3_set_field(tqp_type_and_id, HNS3_INT_GL_IDX_M, HNS3_INT_GL_IDX_S,
2300 		       gl);
2301 	req->tqp_type_and_id[0] = rte_cpu_to_le_16(tqp_type_and_id);
2302 	req->int_cause_num = 1;
2303 	ret = hns3_cmd_send(hw, &desc, 1);
2304 	if (ret) {
2305 		hns3_err(hw, "%s TQP %u fail, vector_id = %u, ret = %d.",
2306 			 en ? "Map" : "Unmap", queue_id, vector_id, ret);
2307 		return ret;
2308 	}
2309 
2310 	return 0;
2311 }
2312 
2313 static int
2314 hns3_init_ring_with_vector(struct hns3_hw *hw)
2315 {
2316 	uint16_t vec;
2317 	int ret;
2318 	int i;
2319 
2320 	/*
2321 	 * In hns3 network engine, vector 0 is always the misc interrupt of this
2322 	 * function, vector 1~N can be used respectively for the queues of the
2323 	 * function. Tx and Rx queues with the same number share the interrupt
2324 	 * vector. In the initialization clearing the all hardware mapping
2325 	 * relationship configurations between queues and interrupt vectors is
2326 	 * needed, so some error caused by the residual configurations, such as
2327 	 * the unexpected Tx interrupt, can be avoid.
2328 	 */
2329 	vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
2330 	if (hw->intr.mapping_mode == HNS3_INTR_MAPPING_VEC_RSV_ONE)
2331 		vec = vec - 1; /* the last interrupt is reserved */
2332 	hw->intr_tqps_num = RTE_MIN(vec, hw->tqps_num);
2333 	for (i = 0; i < hw->intr_tqps_num; i++) {
2334 		/*
2335 		 * Set gap limiter/rate limiter/quanity limiter algorithm
2336 		 * configuration for interrupt coalesce of queue's interrupt.
2337 		 */
2338 		hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
2339 				       HNS3_TQP_INTR_GL_DEFAULT);
2340 		hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
2341 				       HNS3_TQP_INTR_GL_DEFAULT);
2342 		hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
2343 		/*
2344 		 * QL(quantity limiter) is not used currently, just set 0 to
2345 		 * close it.
2346 		 */
2347 		hns3_set_queue_intr_ql(hw, i, HNS3_TQP_INTR_QL_DEFAULT);
2348 
2349 		ret = hns3_bind_ring_with_vector(hw, vec, false,
2350 						 HNS3_RING_TYPE_TX, i);
2351 		if (ret) {
2352 			PMD_INIT_LOG(ERR, "PF fail to unbind TX ring(%d) with "
2353 					  "vector: %u, ret=%d", i, vec, ret);
2354 			return ret;
2355 		}
2356 
2357 		ret = hns3_bind_ring_with_vector(hw, vec, false,
2358 						 HNS3_RING_TYPE_RX, i);
2359 		if (ret) {
2360 			PMD_INIT_LOG(ERR, "PF fail to unbind RX ring(%d) with "
2361 					  "vector: %u, ret=%d", i, vec, ret);
2362 			return ret;
2363 		}
2364 	}
2365 
2366 	return 0;
2367 }
2368 
2369 static int
2370 hns3_refresh_mtu(struct rte_eth_dev *dev, struct rte_eth_conf *conf)
2371 {
2372 	struct hns3_adapter *hns = dev->data->dev_private;
2373 	struct hns3_hw *hw = &hns->hw;
2374 	uint32_t max_rx_pkt_len;
2375 	uint16_t mtu;
2376 	int ret;
2377 
2378 	if (!(conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME))
2379 		return 0;
2380 
2381 	/*
2382 	 * If jumbo frames are enabled, MTU needs to be refreshed
2383 	 * according to the maximum RX packet length.
2384 	 */
2385 	max_rx_pkt_len = conf->rxmode.max_rx_pkt_len;
2386 	if (max_rx_pkt_len > HNS3_MAX_FRAME_LEN ||
2387 	    max_rx_pkt_len <= HNS3_DEFAULT_FRAME_LEN) {
2388 		hns3_err(hw, "maximum Rx packet length must be greater than %u "
2389 			 "and no more than %u when jumbo frame enabled.",
2390 			 (uint16_t)HNS3_DEFAULT_FRAME_LEN,
2391 			 (uint16_t)HNS3_MAX_FRAME_LEN);
2392 		return -EINVAL;
2393 	}
2394 
2395 	mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(max_rx_pkt_len);
2396 	ret = hns3_dev_mtu_set(dev, mtu);
2397 	if (ret)
2398 		return ret;
2399 	dev->data->mtu = mtu;
2400 
2401 	return 0;
2402 }
2403 
2404 static int
2405 hns3_setup_dcb(struct rte_eth_dev *dev)
2406 {
2407 	struct hns3_adapter *hns = dev->data->dev_private;
2408 	struct hns3_hw *hw = &hns->hw;
2409 	int ret;
2410 
2411 	if (!hns3_dev_get_support(hw, DCB)) {
2412 		hns3_err(hw, "this port does not support dcb configurations.");
2413 		return -EOPNOTSUPP;
2414 	}
2415 
2416 	if (hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE) {
2417 		hns3_err(hw, "MAC pause enabled, cannot config dcb info.");
2418 		return -EOPNOTSUPP;
2419 	}
2420 
2421 	ret = hns3_dcb_configure(hns);
2422 	if (ret)
2423 		hns3_err(hw, "failed to config dcb: %d", ret);
2424 
2425 	return ret;
2426 }
2427 
2428 static int
2429 hns3_check_link_speed(struct hns3_hw *hw, uint32_t link_speeds)
2430 {
2431 	int ret;
2432 
2433 	/*
2434 	 * Some hardware doesn't support auto-negotiation, but users may not
2435 	 * configure link_speeds (default 0), which means auto-negotiation.
2436 	 * In this case, it should return success.
2437 	 */
2438 	if (link_speeds == ETH_LINK_SPEED_AUTONEG &&
2439 	    hw->mac.support_autoneg == 0)
2440 		return 0;
2441 
2442 	if (link_speeds != ETH_LINK_SPEED_AUTONEG) {
2443 		ret = hns3_check_port_speed(hw, link_speeds);
2444 		if (ret)
2445 			return ret;
2446 	}
2447 
2448 	return 0;
2449 }
2450 
2451 static int
2452 hns3_check_dev_conf(struct rte_eth_dev *dev)
2453 {
2454 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2455 	struct rte_eth_conf *conf = &dev->data->dev_conf;
2456 	int ret;
2457 
2458 	ret = hns3_check_mq_mode(dev);
2459 	if (ret)
2460 		return ret;
2461 
2462 	return hns3_check_link_speed(hw, conf->link_speeds);
2463 }
2464 
2465 static int
2466 hns3_dev_configure(struct rte_eth_dev *dev)
2467 {
2468 	struct hns3_adapter *hns = dev->data->dev_private;
2469 	struct rte_eth_conf *conf = &dev->data->dev_conf;
2470 	enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
2471 	struct hns3_hw *hw = &hns->hw;
2472 	uint16_t nb_rx_q = dev->data->nb_rx_queues;
2473 	uint16_t nb_tx_q = dev->data->nb_tx_queues;
2474 	struct rte_eth_rss_conf rss_conf;
2475 	bool gro_en;
2476 	int ret;
2477 
2478 	hw->cfg_max_queues = RTE_MAX(nb_rx_q, nb_tx_q);
2479 
2480 	/*
2481 	 * Some versions of hardware network engine does not support
2482 	 * individually enable/disable/reset the Tx or Rx queue. These devices
2483 	 * must enable/disable/reset Tx and Rx queues at the same time. When the
2484 	 * numbers of Tx queues allocated by upper applications are not equal to
2485 	 * the numbers of Rx queues, driver needs to setup fake Tx or Rx queues
2486 	 * to adjust numbers of Tx/Rx queues. otherwise, network engine can not
2487 	 * work as usual. But these fake queues are imperceptible, and can not
2488 	 * be used by upper applications.
2489 	 */
2490 	ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
2491 	if (ret) {
2492 		hns3_err(hw, "fail to set Rx/Tx fake queues, ret = %d.", ret);
2493 		hw->cfg_max_queues = 0;
2494 		return ret;
2495 	}
2496 
2497 	hw->adapter_state = HNS3_NIC_CONFIGURING;
2498 	ret = hns3_check_dev_conf(dev);
2499 	if (ret)
2500 		goto cfg_err;
2501 
2502 	if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG) {
2503 		ret = hns3_setup_dcb(dev);
2504 		if (ret)
2505 			goto cfg_err;
2506 	}
2507 
2508 	/* When RSS is not configured, redirect the packet queue 0 */
2509 	if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
2510 		conf->rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
2511 		rss_conf = conf->rx_adv_conf.rss_conf;
2512 		hw->rss_dis_flag = false;
2513 		ret = hns3_dev_rss_hash_update(dev, &rss_conf);
2514 		if (ret)
2515 			goto cfg_err;
2516 	}
2517 
2518 	ret = hns3_refresh_mtu(dev, conf);
2519 	if (ret)
2520 		goto cfg_err;
2521 
2522 	ret = hns3_mbuf_dyn_rx_timestamp_register(dev, conf);
2523 	if (ret)
2524 		goto cfg_err;
2525 
2526 	ret = hns3_dev_configure_vlan(dev);
2527 	if (ret)
2528 		goto cfg_err;
2529 
2530 	/* config hardware GRO */
2531 	gro_en = conf->rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
2532 	ret = hns3_config_gro(hw, gro_en);
2533 	if (ret)
2534 		goto cfg_err;
2535 
2536 	hns3_init_rx_ptype_tble(dev);
2537 	hw->adapter_state = HNS3_NIC_CONFIGURED;
2538 
2539 	return 0;
2540 
2541 cfg_err:
2542 	hw->cfg_max_queues = 0;
2543 	(void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
2544 	hw->adapter_state = HNS3_NIC_INITIALIZED;
2545 
2546 	return ret;
2547 }
2548 
2549 static int
2550 hns3_set_mac_mtu(struct hns3_hw *hw, uint16_t new_mps)
2551 {
2552 	struct hns3_config_max_frm_size_cmd *req;
2553 	struct hns3_cmd_desc desc;
2554 
2555 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAX_FRM_SIZE, false);
2556 
2557 	req = (struct hns3_config_max_frm_size_cmd *)desc.data;
2558 	req->max_frm_size = rte_cpu_to_le_16(new_mps);
2559 	req->min_frm_size = RTE_ETHER_MIN_LEN;
2560 
2561 	return hns3_cmd_send(hw, &desc, 1);
2562 }
2563 
2564 static int
2565 hns3_config_mtu(struct hns3_hw *hw, uint16_t mps)
2566 {
2567 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2568 	uint16_t original_mps = hns->pf.mps;
2569 	int err;
2570 	int ret;
2571 
2572 	ret = hns3_set_mac_mtu(hw, mps);
2573 	if (ret) {
2574 		hns3_err(hw, "failed to set mtu, ret = %d", ret);
2575 		return ret;
2576 	}
2577 
2578 	hns->pf.mps = mps;
2579 	ret = hns3_buffer_alloc(hw);
2580 	if (ret) {
2581 		hns3_err(hw, "failed to allocate buffer, ret = %d", ret);
2582 		goto rollback;
2583 	}
2584 
2585 	return 0;
2586 
2587 rollback:
2588 	err = hns3_set_mac_mtu(hw, original_mps);
2589 	if (err) {
2590 		hns3_err(hw, "fail to rollback MTU, err = %d", err);
2591 		return ret;
2592 	}
2593 	hns->pf.mps = original_mps;
2594 
2595 	return ret;
2596 }
2597 
2598 static int
2599 hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
2600 {
2601 	struct hns3_adapter *hns = dev->data->dev_private;
2602 	uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
2603 	struct hns3_hw *hw = &hns->hw;
2604 	bool is_jumbo_frame;
2605 	int ret;
2606 
2607 	if (dev->data->dev_started) {
2608 		hns3_err(hw, "Failed to set mtu, port %u must be stopped "
2609 			 "before configuration", dev->data->port_id);
2610 		return -EBUSY;
2611 	}
2612 
2613 	rte_spinlock_lock(&hw->lock);
2614 	is_jumbo_frame = frame_size > HNS3_DEFAULT_FRAME_LEN ? true : false;
2615 	frame_size = RTE_MAX(frame_size, HNS3_DEFAULT_FRAME_LEN);
2616 
2617 	/*
2618 	 * Maximum value of frame_size is HNS3_MAX_FRAME_LEN, so it can safely
2619 	 * assign to "uint16_t" type variable.
2620 	 */
2621 	ret = hns3_config_mtu(hw, (uint16_t)frame_size);
2622 	if (ret) {
2623 		rte_spinlock_unlock(&hw->lock);
2624 		hns3_err(hw, "Failed to set mtu, port %u mtu %u: %d",
2625 			 dev->data->port_id, mtu, ret);
2626 		return ret;
2627 	}
2628 
2629 	if (is_jumbo_frame)
2630 		dev->data->dev_conf.rxmode.offloads |=
2631 						DEV_RX_OFFLOAD_JUMBO_FRAME;
2632 	else
2633 		dev->data->dev_conf.rxmode.offloads &=
2634 						~DEV_RX_OFFLOAD_JUMBO_FRAME;
2635 	dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
2636 	rte_spinlock_unlock(&hw->lock);
2637 
2638 	return 0;
2639 }
2640 
2641 static uint32_t
2642 hns3_get_copper_port_speed_capa(uint32_t supported_speed)
2643 {
2644 	uint32_t speed_capa = 0;
2645 
2646 	if (supported_speed & HNS3_PHY_LINK_SPEED_10M_HD_BIT)
2647 		speed_capa |= ETH_LINK_SPEED_10M_HD;
2648 	if (supported_speed & HNS3_PHY_LINK_SPEED_10M_BIT)
2649 		speed_capa |= ETH_LINK_SPEED_10M;
2650 	if (supported_speed & HNS3_PHY_LINK_SPEED_100M_HD_BIT)
2651 		speed_capa |= ETH_LINK_SPEED_100M_HD;
2652 	if (supported_speed & HNS3_PHY_LINK_SPEED_100M_BIT)
2653 		speed_capa |= ETH_LINK_SPEED_100M;
2654 	if (supported_speed & HNS3_PHY_LINK_SPEED_1000M_BIT)
2655 		speed_capa |= ETH_LINK_SPEED_1G;
2656 
2657 	return speed_capa;
2658 }
2659 
2660 static uint32_t
2661 hns3_get_firber_port_speed_capa(uint32_t supported_speed)
2662 {
2663 	uint32_t speed_capa = 0;
2664 
2665 	if (supported_speed & HNS3_FIBER_LINK_SPEED_1G_BIT)
2666 		speed_capa |= ETH_LINK_SPEED_1G;
2667 	if (supported_speed & HNS3_FIBER_LINK_SPEED_10G_BIT)
2668 		speed_capa |= ETH_LINK_SPEED_10G;
2669 	if (supported_speed & HNS3_FIBER_LINK_SPEED_25G_BIT)
2670 		speed_capa |= ETH_LINK_SPEED_25G;
2671 	if (supported_speed & HNS3_FIBER_LINK_SPEED_40G_BIT)
2672 		speed_capa |= ETH_LINK_SPEED_40G;
2673 	if (supported_speed & HNS3_FIBER_LINK_SPEED_50G_BIT)
2674 		speed_capa |= ETH_LINK_SPEED_50G;
2675 	if (supported_speed & HNS3_FIBER_LINK_SPEED_100G_BIT)
2676 		speed_capa |= ETH_LINK_SPEED_100G;
2677 	if (supported_speed & HNS3_FIBER_LINK_SPEED_200G_BIT)
2678 		speed_capa |= ETH_LINK_SPEED_200G;
2679 
2680 	return speed_capa;
2681 }
2682 
2683 static uint32_t
2684 hns3_get_speed_capa(struct hns3_hw *hw)
2685 {
2686 	struct hns3_mac *mac = &hw->mac;
2687 	uint32_t speed_capa;
2688 
2689 	if (mac->media_type == HNS3_MEDIA_TYPE_COPPER)
2690 		speed_capa =
2691 			hns3_get_copper_port_speed_capa(mac->supported_speed);
2692 	else
2693 		speed_capa =
2694 			hns3_get_firber_port_speed_capa(mac->supported_speed);
2695 
2696 	if (mac->support_autoneg == 0)
2697 		speed_capa |= ETH_LINK_SPEED_FIXED;
2698 
2699 	return speed_capa;
2700 }
2701 
2702 int
2703 hns3_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
2704 {
2705 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2706 	struct hns3_hw *hw = &hns->hw;
2707 	uint16_t queue_num = hw->tqps_num;
2708 
2709 	/*
2710 	 * In interrupt mode, 'max_rx_queues' is set based on the number of
2711 	 * MSI-X interrupt resources of the hardware.
2712 	 */
2713 	if (hw->data->dev_conf.intr_conf.rxq == 1)
2714 		queue_num = hw->intr_tqps_num;
2715 
2716 	info->max_rx_queues = queue_num;
2717 	info->max_tx_queues = hw->tqps_num;
2718 	info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
2719 	info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
2720 	info->max_mac_addrs = HNS3_UC_MACADDR_NUM;
2721 	info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
2722 	info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
2723 	info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
2724 				 DEV_RX_OFFLOAD_TCP_CKSUM |
2725 				 DEV_RX_OFFLOAD_UDP_CKSUM |
2726 				 DEV_RX_OFFLOAD_SCTP_CKSUM |
2727 				 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
2728 				 DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
2729 				 DEV_RX_OFFLOAD_KEEP_CRC |
2730 				 DEV_RX_OFFLOAD_SCATTER |
2731 				 DEV_RX_OFFLOAD_VLAN_STRIP |
2732 				 DEV_RX_OFFLOAD_VLAN_FILTER |
2733 				 DEV_RX_OFFLOAD_JUMBO_FRAME |
2734 				 DEV_RX_OFFLOAD_RSS_HASH |
2735 				 DEV_RX_OFFLOAD_TCP_LRO);
2736 	info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
2737 				 DEV_TX_OFFLOAD_IPV4_CKSUM |
2738 				 DEV_TX_OFFLOAD_TCP_CKSUM |
2739 				 DEV_TX_OFFLOAD_UDP_CKSUM |
2740 				 DEV_TX_OFFLOAD_SCTP_CKSUM |
2741 				 DEV_TX_OFFLOAD_MULTI_SEGS |
2742 				 DEV_TX_OFFLOAD_TCP_TSO |
2743 				 DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
2744 				 DEV_TX_OFFLOAD_GRE_TNL_TSO |
2745 				 DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
2746 				 DEV_TX_OFFLOAD_MBUF_FAST_FREE |
2747 				 hns3_txvlan_cap_get(hw));
2748 
2749 	if (hns3_dev_get_support(hw, OUTER_UDP_CKSUM))
2750 		info->tx_offload_capa |= DEV_TX_OFFLOAD_OUTER_UDP_CKSUM;
2751 
2752 	if (hns3_dev_get_support(hw, INDEP_TXRX))
2753 		info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
2754 				 RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
2755 
2756 	if (hns3_dev_get_support(hw, PTP))
2757 		info->rx_offload_capa |= DEV_RX_OFFLOAD_TIMESTAMP;
2758 
2759 	info->rx_desc_lim = (struct rte_eth_desc_lim) {
2760 		.nb_max = HNS3_MAX_RING_DESC,
2761 		.nb_min = HNS3_MIN_RING_DESC,
2762 		.nb_align = HNS3_ALIGN_RING_DESC,
2763 	};
2764 
2765 	info->tx_desc_lim = (struct rte_eth_desc_lim) {
2766 		.nb_max = HNS3_MAX_RING_DESC,
2767 		.nb_min = HNS3_MIN_RING_DESC,
2768 		.nb_align = HNS3_ALIGN_RING_DESC,
2769 		.nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
2770 		.nb_mtu_seg_max = hw->max_non_tso_bd_num,
2771 	};
2772 
2773 	info->speed_capa = hns3_get_speed_capa(hw);
2774 	info->default_rxconf = (struct rte_eth_rxconf) {
2775 		.rx_free_thresh = HNS3_DEFAULT_RX_FREE_THRESH,
2776 		/*
2777 		 * If there are no available Rx buffer descriptors, incoming
2778 		 * packets are always dropped by hardware based on hns3 network
2779 		 * engine.
2780 		 */
2781 		.rx_drop_en = 1,
2782 		.offloads = 0,
2783 	};
2784 	info->default_txconf = (struct rte_eth_txconf) {
2785 		.tx_rs_thresh = HNS3_DEFAULT_TX_RS_THRESH,
2786 		.offloads = 0,
2787 	};
2788 
2789 	info->reta_size = hw->rss_ind_tbl_size;
2790 	info->hash_key_size = HNS3_RSS_KEY_SIZE;
2791 	info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
2792 
2793 	info->default_rxportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
2794 	info->default_txportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
2795 	info->default_rxportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
2796 	info->default_txportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
2797 	info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
2798 	info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
2799 
2800 	return 0;
2801 }
2802 
2803 static int
2804 hns3_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
2805 		    size_t fw_size)
2806 {
2807 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2808 	struct hns3_hw *hw = &hns->hw;
2809 	uint32_t version = hw->fw_version;
2810 	int ret;
2811 
2812 	ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
2813 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
2814 				      HNS3_FW_VERSION_BYTE3_S),
2815 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
2816 				      HNS3_FW_VERSION_BYTE2_S),
2817 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
2818 				      HNS3_FW_VERSION_BYTE1_S),
2819 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
2820 				      HNS3_FW_VERSION_BYTE0_S));
2821 	if (ret < 0)
2822 		return -EINVAL;
2823 
2824 	ret += 1; /* add the size of '\0' */
2825 	if (fw_size < (size_t)ret)
2826 		return ret;
2827 	else
2828 		return 0;
2829 }
2830 
2831 static int
2832 hns3_update_port_link_info(struct rte_eth_dev *eth_dev)
2833 {
2834 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2835 	int ret;
2836 
2837 	(void)hns3_update_link_status(hw);
2838 
2839 	ret = hns3_update_link_info(eth_dev);
2840 	if (ret)
2841 		hw->mac.link_status = ETH_LINK_DOWN;
2842 
2843 	return ret;
2844 }
2845 
2846 static void
2847 hns3_setup_linkstatus(struct rte_eth_dev *eth_dev,
2848 		      struct rte_eth_link *new_link)
2849 {
2850 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2851 	struct hns3_mac *mac = &hw->mac;
2852 
2853 	switch (mac->link_speed) {
2854 	case ETH_SPEED_NUM_10M:
2855 	case ETH_SPEED_NUM_100M:
2856 	case ETH_SPEED_NUM_1G:
2857 	case ETH_SPEED_NUM_10G:
2858 	case ETH_SPEED_NUM_25G:
2859 	case ETH_SPEED_NUM_40G:
2860 	case ETH_SPEED_NUM_50G:
2861 	case ETH_SPEED_NUM_100G:
2862 	case ETH_SPEED_NUM_200G:
2863 		if (mac->link_status)
2864 			new_link->link_speed = mac->link_speed;
2865 		break;
2866 	default:
2867 		if (mac->link_status)
2868 			new_link->link_speed = ETH_SPEED_NUM_UNKNOWN;
2869 		break;
2870 	}
2871 
2872 	if (!mac->link_status)
2873 		new_link->link_speed = ETH_SPEED_NUM_NONE;
2874 
2875 	new_link->link_duplex = mac->link_duplex;
2876 	new_link->link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
2877 	new_link->link_autoneg = mac->link_autoneg;
2878 }
2879 
2880 static int
2881 hns3_dev_link_update(struct rte_eth_dev *eth_dev, int wait_to_complete)
2882 {
2883 #define HNS3_LINK_CHECK_INTERVAL 100  /* 100ms */
2884 #define HNS3_MAX_LINK_CHECK_TIMES 20  /* 2s (100 * 20ms) in total */
2885 
2886 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2887 	uint32_t retry_cnt = HNS3_MAX_LINK_CHECK_TIMES;
2888 	struct hns3_mac *mac = &hw->mac;
2889 	struct rte_eth_link new_link;
2890 	int ret;
2891 
2892 	/* When port is stopped, report link down. */
2893 	if (eth_dev->data->dev_started == 0) {
2894 		new_link.link_autoneg = mac->link_autoneg;
2895 		new_link.link_duplex = mac->link_duplex;
2896 		new_link.link_speed = ETH_SPEED_NUM_NONE;
2897 		new_link.link_status = ETH_LINK_DOWN;
2898 		goto out;
2899 	}
2900 
2901 	do {
2902 		ret = hns3_update_port_link_info(eth_dev);
2903 		if (ret) {
2904 			hns3_err(hw, "failed to get port link info, ret = %d.",
2905 				 ret);
2906 			break;
2907 		}
2908 
2909 		if (!wait_to_complete || mac->link_status == ETH_LINK_UP)
2910 			break;
2911 
2912 		rte_delay_ms(HNS3_LINK_CHECK_INTERVAL);
2913 	} while (retry_cnt--);
2914 
2915 	memset(&new_link, 0, sizeof(new_link));
2916 	hns3_setup_linkstatus(eth_dev, &new_link);
2917 
2918 out:
2919 	return rte_eth_linkstatus_set(eth_dev, &new_link);
2920 }
2921 
2922 static int
2923 hns3_dev_set_link_up(struct rte_eth_dev *dev)
2924 {
2925 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2926 	int ret;
2927 
2928 	/*
2929 	 * The "tx_pkt_burst" will be restored. But the secondary process does
2930 	 * not support the mechanism for notifying the primary process.
2931 	 */
2932 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2933 		hns3_err(hw, "secondary process does not support to set link up.");
2934 		return -ENOTSUP;
2935 	}
2936 
2937 	/*
2938 	 * If device isn't started Rx/Tx function is still disabled, setting
2939 	 * link up is not allowed. But it is probably better to return success
2940 	 * to reduce the impact on the upper layer.
2941 	 */
2942 	if (hw->adapter_state != HNS3_NIC_STARTED) {
2943 		hns3_info(hw, "device isn't started, can't set link up.");
2944 		return 0;
2945 	}
2946 
2947 	if (!hw->set_link_down)
2948 		return 0;
2949 
2950 	rte_spinlock_lock(&hw->lock);
2951 	ret = hns3_cfg_mac_mode(hw, true);
2952 	if (ret) {
2953 		rte_spinlock_unlock(&hw->lock);
2954 		hns3_err(hw, "failed to set link up, ret = %d", ret);
2955 		return ret;
2956 	}
2957 
2958 	hw->set_link_down = false;
2959 	hns3_start_tx_datapath(dev);
2960 	rte_spinlock_unlock(&hw->lock);
2961 
2962 	return 0;
2963 }
2964 
2965 static int
2966 hns3_dev_set_link_down(struct rte_eth_dev *dev)
2967 {
2968 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2969 	int ret;
2970 
2971 	/*
2972 	 * The "tx_pkt_burst" will be set to dummy function. But the secondary
2973 	 * process does not support the mechanism for notifying the primary
2974 	 * process.
2975 	 */
2976 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2977 		hns3_err(hw, "secondary process does not support to set link down.");
2978 		return -ENOTSUP;
2979 	}
2980 
2981 	/*
2982 	 * If device isn't started or the API has been called, link status is
2983 	 * down, return success.
2984 	 */
2985 	if (hw->adapter_state != HNS3_NIC_STARTED || hw->set_link_down)
2986 		return 0;
2987 
2988 	rte_spinlock_lock(&hw->lock);
2989 	hns3_stop_tx_datapath(dev);
2990 	ret = hns3_cfg_mac_mode(hw, false);
2991 	if (ret) {
2992 		hns3_start_tx_datapath(dev);
2993 		rte_spinlock_unlock(&hw->lock);
2994 		hns3_err(hw, "failed to set link down, ret = %d", ret);
2995 		return ret;
2996 	}
2997 
2998 	hw->set_link_down = true;
2999 	rte_spinlock_unlock(&hw->lock);
3000 
3001 	return 0;
3002 }
3003 
3004 static int
3005 hns3_parse_func_status(struct hns3_hw *hw, struct hns3_func_status_cmd *status)
3006 {
3007 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3008 	struct hns3_pf *pf = &hns->pf;
3009 
3010 	if (!(status->pf_state & HNS3_PF_STATE_DONE))
3011 		return -EINVAL;
3012 
3013 	pf->is_main_pf = (status->pf_state & HNS3_PF_STATE_MAIN) ? true : false;
3014 
3015 	return 0;
3016 }
3017 
3018 static int
3019 hns3_query_function_status(struct hns3_hw *hw)
3020 {
3021 #define HNS3_QUERY_MAX_CNT		10
3022 #define HNS3_QUERY_SLEEP_MSCOEND	1
3023 	struct hns3_func_status_cmd *req;
3024 	struct hns3_cmd_desc desc;
3025 	int timeout = 0;
3026 	int ret;
3027 
3028 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_FUNC_STATUS, true);
3029 	req = (struct hns3_func_status_cmd *)desc.data;
3030 
3031 	do {
3032 		ret = hns3_cmd_send(hw, &desc, 1);
3033 		if (ret) {
3034 			PMD_INIT_LOG(ERR, "query function status failed %d",
3035 				     ret);
3036 			return ret;
3037 		}
3038 
3039 		/* Check pf reset is done */
3040 		if (req->pf_state)
3041 			break;
3042 
3043 		rte_delay_ms(HNS3_QUERY_SLEEP_MSCOEND);
3044 	} while (timeout++ < HNS3_QUERY_MAX_CNT);
3045 
3046 	return hns3_parse_func_status(hw, req);
3047 }
3048 
3049 static int
3050 hns3_get_pf_max_tqp_num(struct hns3_hw *hw)
3051 {
3052 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3053 	struct hns3_pf *pf = &hns->pf;
3054 
3055 	if (pf->tqp_config_mode == HNS3_FLEX_MAX_TQP_NUM_MODE) {
3056 		/*
3057 		 * The total_tqps_num obtained from firmware is maximum tqp
3058 		 * numbers of this port, which should be used for PF and VFs.
3059 		 * There is no need for pf to have so many tqp numbers in
3060 		 * most cases. RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF,
3061 		 * coming from config file, is assigned to maximum queue number
3062 		 * for the PF of this port by user. So users can modify the
3063 		 * maximum queue number of PF according to their own application
3064 		 * scenarios, which is more flexible to use. In addition, many
3065 		 * memories can be saved due to allocating queue statistics
3066 		 * room according to the actual number of queues required. The
3067 		 * maximum queue number of PF for network engine with
3068 		 * revision_id greater than 0x30 is assigned by config file.
3069 		 */
3070 		if (RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF <= 0) {
3071 			hns3_err(hw, "RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF(%d) "
3072 				 "must be greater than 0.",
3073 				 RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF);
3074 			return -EINVAL;
3075 		}
3076 
3077 		hw->tqps_num = RTE_MIN(RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF,
3078 				       hw->total_tqps_num);
3079 	} else {
3080 		/*
3081 		 * Due to the limitation on the number of PF interrupts
3082 		 * available, the maximum queue number assigned to PF on
3083 		 * the network engine with revision_id 0x21 is 64.
3084 		 */
3085 		hw->tqps_num = RTE_MIN(hw->total_tqps_num,
3086 				       HNS3_MAX_TQP_NUM_HIP08_PF);
3087 	}
3088 
3089 	return 0;
3090 }
3091 
3092 static int
3093 hns3_query_pf_resource(struct hns3_hw *hw)
3094 {
3095 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3096 	struct hns3_pf *pf = &hns->pf;
3097 	struct hns3_pf_res_cmd *req;
3098 	struct hns3_cmd_desc desc;
3099 	int ret;
3100 
3101 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_PF_RSRC, true);
3102 	ret = hns3_cmd_send(hw, &desc, 1);
3103 	if (ret) {
3104 		PMD_INIT_LOG(ERR, "query pf resource failed %d", ret);
3105 		return ret;
3106 	}
3107 
3108 	req = (struct hns3_pf_res_cmd *)desc.data;
3109 	hw->total_tqps_num = rte_le_to_cpu_16(req->tqp_num) +
3110 			     rte_le_to_cpu_16(req->ext_tqp_num);
3111 	ret = hns3_get_pf_max_tqp_num(hw);
3112 	if (ret)
3113 		return ret;
3114 
3115 	pf->pkt_buf_size = rte_le_to_cpu_16(req->buf_size) << HNS3_BUF_UNIT_S;
3116 	pf->func_num = rte_le_to_cpu_16(req->pf_own_fun_number);
3117 
3118 	if (req->tx_buf_size)
3119 		pf->tx_buf_size =
3120 		    rte_le_to_cpu_16(req->tx_buf_size) << HNS3_BUF_UNIT_S;
3121 	else
3122 		pf->tx_buf_size = HNS3_DEFAULT_TX_BUF;
3123 
3124 	pf->tx_buf_size = roundup(pf->tx_buf_size, HNS3_BUF_SIZE_UNIT);
3125 
3126 	if (req->dv_buf_size)
3127 		pf->dv_buf_size =
3128 		    rte_le_to_cpu_16(req->dv_buf_size) << HNS3_BUF_UNIT_S;
3129 	else
3130 		pf->dv_buf_size = HNS3_DEFAULT_DV;
3131 
3132 	pf->dv_buf_size = roundup(pf->dv_buf_size, HNS3_BUF_SIZE_UNIT);
3133 
3134 	hw->num_msi =
3135 		hns3_get_field(rte_le_to_cpu_16(req->nic_pf_intr_vector_number),
3136 			       HNS3_PF_VEC_NUM_M, HNS3_PF_VEC_NUM_S);
3137 
3138 	return 0;
3139 }
3140 
3141 static void
3142 hns3_parse_cfg(struct hns3_cfg *cfg, struct hns3_cmd_desc *desc)
3143 {
3144 	struct hns3_cfg_param_cmd *req;
3145 	uint64_t mac_addr_tmp_high;
3146 	uint8_t ext_rss_size_max;
3147 	uint64_t mac_addr_tmp;
3148 	uint32_t i;
3149 
3150 	req = (struct hns3_cfg_param_cmd *)desc[0].data;
3151 
3152 	/* get the configuration */
3153 	cfg->tc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
3154 				     HNS3_CFG_TC_NUM_M, HNS3_CFG_TC_NUM_S);
3155 	cfg->tqp_desc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
3156 					   HNS3_CFG_TQP_DESC_N_M,
3157 					   HNS3_CFG_TQP_DESC_N_S);
3158 
3159 	cfg->phy_addr = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
3160 				       HNS3_CFG_PHY_ADDR_M,
3161 				       HNS3_CFG_PHY_ADDR_S);
3162 	cfg->media_type = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
3163 					 HNS3_CFG_MEDIA_TP_M,
3164 					 HNS3_CFG_MEDIA_TP_S);
3165 	cfg->rx_buf_len = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
3166 					 HNS3_CFG_RX_BUF_LEN_M,
3167 					 HNS3_CFG_RX_BUF_LEN_S);
3168 	/* get mac address */
3169 	mac_addr_tmp = rte_le_to_cpu_32(req->param[2]);
3170 	mac_addr_tmp_high = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
3171 					   HNS3_CFG_MAC_ADDR_H_M,
3172 					   HNS3_CFG_MAC_ADDR_H_S);
3173 
3174 	mac_addr_tmp |= (mac_addr_tmp_high << 31) << 1;
3175 
3176 	cfg->default_speed = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
3177 					    HNS3_CFG_DEFAULT_SPEED_M,
3178 					    HNS3_CFG_DEFAULT_SPEED_S);
3179 	cfg->rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
3180 					   HNS3_CFG_RSS_SIZE_M,
3181 					   HNS3_CFG_RSS_SIZE_S);
3182 
3183 	for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
3184 		cfg->mac_addr[i] = (mac_addr_tmp >> (8 * i)) & 0xff;
3185 
3186 	req = (struct hns3_cfg_param_cmd *)desc[1].data;
3187 	cfg->numa_node_map = rte_le_to_cpu_32(req->param[0]);
3188 
3189 	cfg->speed_ability = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
3190 					    HNS3_CFG_SPEED_ABILITY_M,
3191 					    HNS3_CFG_SPEED_ABILITY_S);
3192 	cfg->umv_space = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
3193 					HNS3_CFG_UMV_TBL_SPACE_M,
3194 					HNS3_CFG_UMV_TBL_SPACE_S);
3195 	if (!cfg->umv_space)
3196 		cfg->umv_space = HNS3_DEFAULT_UMV_SPACE_PER_PF;
3197 
3198 	ext_rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[2]),
3199 					       HNS3_CFG_EXT_RSS_SIZE_M,
3200 					       HNS3_CFG_EXT_RSS_SIZE_S);
3201 	/*
3202 	 * Field ext_rss_size_max obtained from firmware will be more flexible
3203 	 * for future changes and expansions, which is an exponent of 2, instead
3204 	 * of reading out directly. If this field is not zero, hns3 PF PMD
3205 	 * driver uses it as rss_size_max under one TC. Device, whose revision
3206 	 * id is greater than or equal to PCI_REVISION_ID_HIP09_A, obtains the
3207 	 * maximum number of queues supported under a TC through this field.
3208 	 */
3209 	if (ext_rss_size_max)
3210 		cfg->rss_size_max = 1U << ext_rss_size_max;
3211 }
3212 
3213 /* hns3_get_board_cfg: query the static parameter from NCL_config file in flash
3214  * @hw: pointer to struct hns3_hw
3215  * @hcfg: the config structure to be getted
3216  */
3217 static int
3218 hns3_get_board_cfg(struct hns3_hw *hw, struct hns3_cfg *hcfg)
3219 {
3220 	struct hns3_cmd_desc desc[HNS3_PF_CFG_DESC_NUM];
3221 	struct hns3_cfg_param_cmd *req;
3222 	uint32_t offset;
3223 	uint32_t i;
3224 	int ret;
3225 
3226 	for (i = 0; i < HNS3_PF_CFG_DESC_NUM; i++) {
3227 		offset = 0;
3228 		req = (struct hns3_cfg_param_cmd *)desc[i].data;
3229 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_CFG_PARAM,
3230 					  true);
3231 		hns3_set_field(offset, HNS3_CFG_OFFSET_M, HNS3_CFG_OFFSET_S,
3232 			       i * HNS3_CFG_RD_LEN_BYTES);
3233 		/* Len should be divided by 4 when send to hardware */
3234 		hns3_set_field(offset, HNS3_CFG_RD_LEN_M, HNS3_CFG_RD_LEN_S,
3235 			       HNS3_CFG_RD_LEN_BYTES / HNS3_CFG_RD_LEN_UNIT);
3236 		req->offset = rte_cpu_to_le_32(offset);
3237 	}
3238 
3239 	ret = hns3_cmd_send(hw, desc, HNS3_PF_CFG_DESC_NUM);
3240 	if (ret) {
3241 		PMD_INIT_LOG(ERR, "get config failed %d.", ret);
3242 		return ret;
3243 	}
3244 
3245 	hns3_parse_cfg(hcfg, desc);
3246 
3247 	return 0;
3248 }
3249 
3250 static int
3251 hns3_parse_speed(int speed_cmd, uint32_t *speed)
3252 {
3253 	switch (speed_cmd) {
3254 	case HNS3_CFG_SPEED_10M:
3255 		*speed = ETH_SPEED_NUM_10M;
3256 		break;
3257 	case HNS3_CFG_SPEED_100M:
3258 		*speed = ETH_SPEED_NUM_100M;
3259 		break;
3260 	case HNS3_CFG_SPEED_1G:
3261 		*speed = ETH_SPEED_NUM_1G;
3262 		break;
3263 	case HNS3_CFG_SPEED_10G:
3264 		*speed = ETH_SPEED_NUM_10G;
3265 		break;
3266 	case HNS3_CFG_SPEED_25G:
3267 		*speed = ETH_SPEED_NUM_25G;
3268 		break;
3269 	case HNS3_CFG_SPEED_40G:
3270 		*speed = ETH_SPEED_NUM_40G;
3271 		break;
3272 	case HNS3_CFG_SPEED_50G:
3273 		*speed = ETH_SPEED_NUM_50G;
3274 		break;
3275 	case HNS3_CFG_SPEED_100G:
3276 		*speed = ETH_SPEED_NUM_100G;
3277 		break;
3278 	case HNS3_CFG_SPEED_200G:
3279 		*speed = ETH_SPEED_NUM_200G;
3280 		break;
3281 	default:
3282 		return -EINVAL;
3283 	}
3284 
3285 	return 0;
3286 }
3287 
3288 static void
3289 hns3_set_default_dev_specifications(struct hns3_hw *hw)
3290 {
3291 	hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
3292 	hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
3293 	hw->rss_key_size = HNS3_RSS_KEY_SIZE;
3294 	hw->max_tm_rate = HNS3_ETHER_MAX_RATE;
3295 	hw->intr.int_ql_max = HNS3_INTR_QL_NONE;
3296 }
3297 
3298 static void
3299 hns3_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
3300 {
3301 	struct hns3_dev_specs_0_cmd *req0;
3302 
3303 	req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
3304 
3305 	hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
3306 	hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
3307 	hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
3308 	hw->max_tm_rate = rte_le_to_cpu_32(req0->max_tm_rate);
3309 	hw->intr.int_ql_max = rte_le_to_cpu_16(req0->intr_ql_max);
3310 }
3311 
3312 static int
3313 hns3_check_dev_specifications(struct hns3_hw *hw)
3314 {
3315 	if (hw->rss_ind_tbl_size == 0 ||
3316 	    hw->rss_ind_tbl_size > HNS3_RSS_IND_TBL_SIZE_MAX) {
3317 		hns3_err(hw, "the size of hash lookup table configured (%u)"
3318 			      " exceeds the maximum(%u)", hw->rss_ind_tbl_size,
3319 			      HNS3_RSS_IND_TBL_SIZE_MAX);
3320 		return -EINVAL;
3321 	}
3322 
3323 	return 0;
3324 }
3325 
3326 static int
3327 hns3_query_dev_specifications(struct hns3_hw *hw)
3328 {
3329 	struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
3330 	int ret;
3331 	int i;
3332 
3333 	for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
3334 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
3335 					  true);
3336 		desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3337 	}
3338 	hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
3339 
3340 	ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
3341 	if (ret)
3342 		return ret;
3343 
3344 	hns3_parse_dev_specifications(hw, desc);
3345 
3346 	return hns3_check_dev_specifications(hw);
3347 }
3348 
3349 static int
3350 hns3_get_capability(struct hns3_hw *hw)
3351 {
3352 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3353 	struct rte_pci_device *pci_dev;
3354 	struct hns3_pf *pf = &hns->pf;
3355 	struct rte_eth_dev *eth_dev;
3356 	uint16_t device_id;
3357 	uint8_t revision;
3358 	int ret;
3359 
3360 	eth_dev = &rte_eth_devices[hw->data->port_id];
3361 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
3362 	device_id = pci_dev->id.device_id;
3363 
3364 	if (device_id == HNS3_DEV_ID_25GE_RDMA ||
3365 	    device_id == HNS3_DEV_ID_50GE_RDMA ||
3366 	    device_id == HNS3_DEV_ID_100G_RDMA_MACSEC ||
3367 	    device_id == HNS3_DEV_ID_200G_RDMA)
3368 		hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_DCB_B, 1);
3369 
3370 	/* Get PCI revision id */
3371 	ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
3372 				  HNS3_PCI_REVISION_ID);
3373 	if (ret != HNS3_PCI_REVISION_ID_LEN) {
3374 		PMD_INIT_LOG(ERR, "failed to read pci revision id, ret = %d",
3375 			     ret);
3376 		return -EIO;
3377 	}
3378 	hw->revision = revision;
3379 
3380 	if (revision < PCI_REVISION_ID_HIP09_A) {
3381 		hns3_set_default_dev_specifications(hw);
3382 		hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
3383 		hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
3384 		hw->tso_mode = HNS3_TSO_SW_CAL_PSEUDO_H_CSUM;
3385 		hw->vlan_mode = HNS3_SW_SHIFT_AND_DISCARD_MODE;
3386 		hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE1;
3387 		hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
3388 		pf->tqp_config_mode = HNS3_FIXED_MAX_TQP_NUM_MODE;
3389 		hw->rss_info.ipv6_sctp_offload_supported = false;
3390 		hw->udp_cksum_mode = HNS3_SPECIAL_PORT_SW_CKSUM_MODE;
3391 		pf->support_multi_tc_pause = false;
3392 		return 0;
3393 	}
3394 
3395 	ret = hns3_query_dev_specifications(hw);
3396 	if (ret) {
3397 		PMD_INIT_LOG(ERR,
3398 			     "failed to query dev specifications, ret = %d",
3399 			     ret);
3400 		return ret;
3401 	}
3402 
3403 	hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
3404 	hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
3405 	hw->tso_mode = HNS3_TSO_HW_CAL_PSEUDO_H_CSUM;
3406 	hw->vlan_mode = HNS3_HW_SHIFT_AND_DISCARD_MODE;
3407 	hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE2;
3408 	hw->min_tx_pkt_len = HNS3_HIP09_MIN_TX_PKT_LEN;
3409 	pf->tqp_config_mode = HNS3_FLEX_MAX_TQP_NUM_MODE;
3410 	hw->rss_info.ipv6_sctp_offload_supported = true;
3411 	hw->udp_cksum_mode = HNS3_SPECIAL_PORT_HW_CKSUM_MODE;
3412 	pf->support_multi_tc_pause = true;
3413 
3414 	return 0;
3415 }
3416 
3417 static int
3418 hns3_check_media_type(struct hns3_hw *hw, uint8_t media_type)
3419 {
3420 	int ret;
3421 
3422 	switch (media_type) {
3423 	case HNS3_MEDIA_TYPE_COPPER:
3424 		if (!hns3_dev_get_support(hw, COPPER)) {
3425 			PMD_INIT_LOG(ERR,
3426 				     "Media type is copper, not supported.");
3427 			ret = -EOPNOTSUPP;
3428 		} else {
3429 			ret = 0;
3430 		}
3431 		break;
3432 	case HNS3_MEDIA_TYPE_FIBER:
3433 		ret = 0;
3434 		break;
3435 	case HNS3_MEDIA_TYPE_BACKPLANE:
3436 		PMD_INIT_LOG(ERR, "Media type is Backplane, not supported.");
3437 		ret = -EOPNOTSUPP;
3438 		break;
3439 	default:
3440 		PMD_INIT_LOG(ERR, "Unknown media type = %u!", media_type);
3441 		ret = -EINVAL;
3442 		break;
3443 	}
3444 
3445 	return ret;
3446 }
3447 
3448 static int
3449 hns3_get_board_configuration(struct hns3_hw *hw)
3450 {
3451 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3452 	struct hns3_pf *pf = &hns->pf;
3453 	struct hns3_cfg cfg;
3454 	int ret;
3455 
3456 	ret = hns3_get_board_cfg(hw, &cfg);
3457 	if (ret) {
3458 		PMD_INIT_LOG(ERR, "get board config failed %d", ret);
3459 		return ret;
3460 	}
3461 
3462 	ret = hns3_check_media_type(hw, cfg.media_type);
3463 	if (ret)
3464 		return ret;
3465 
3466 	hw->mac.media_type = cfg.media_type;
3467 	hw->rss_size_max = cfg.rss_size_max;
3468 	hw->rss_dis_flag = false;
3469 	memcpy(hw->mac.mac_addr, cfg.mac_addr, RTE_ETHER_ADDR_LEN);
3470 	hw->mac.phy_addr = cfg.phy_addr;
3471 	hw->num_tx_desc = cfg.tqp_desc_num;
3472 	hw->num_rx_desc = cfg.tqp_desc_num;
3473 	hw->dcb_info.num_pg = 1;
3474 	hw->dcb_info.hw_pfc_map = 0;
3475 
3476 	ret = hns3_parse_speed(cfg.default_speed, &hw->mac.link_speed);
3477 	if (ret) {
3478 		PMD_INIT_LOG(ERR, "Get wrong speed %u, ret = %d",
3479 			     cfg.default_speed, ret);
3480 		return ret;
3481 	}
3482 
3483 	pf->tc_max = cfg.tc_num;
3484 	if (pf->tc_max > HNS3_MAX_TC_NUM || pf->tc_max < 1) {
3485 		PMD_INIT_LOG(WARNING,
3486 			     "Get TC num(%u) from flash, set TC num to 1",
3487 			     pf->tc_max);
3488 		pf->tc_max = 1;
3489 	}
3490 
3491 	/* Dev does not support DCB */
3492 	if (!hns3_dev_get_support(hw, DCB)) {
3493 		pf->tc_max = 1;
3494 		pf->pfc_max = 0;
3495 	} else
3496 		pf->pfc_max = pf->tc_max;
3497 
3498 	hw->dcb_info.num_tc = 1;
3499 	hw->alloc_rss_size = RTE_MIN(hw->rss_size_max,
3500 				     hw->tqps_num / hw->dcb_info.num_tc);
3501 	hns3_set_bit(hw->hw_tc_map, 0, 1);
3502 	pf->tx_sch_mode = HNS3_FLAG_TC_BASE_SCH_MODE;
3503 
3504 	pf->wanted_umv_size = cfg.umv_space;
3505 
3506 	return ret;
3507 }
3508 
3509 static int
3510 hns3_get_configuration(struct hns3_hw *hw)
3511 {
3512 	int ret;
3513 
3514 	ret = hns3_query_function_status(hw);
3515 	if (ret) {
3516 		PMD_INIT_LOG(ERR, "Failed to query function status: %d.", ret);
3517 		return ret;
3518 	}
3519 
3520 	/* Get device capability */
3521 	ret = hns3_get_capability(hw);
3522 	if (ret) {
3523 		PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
3524 		return ret;
3525 	}
3526 
3527 	/* Get pf resource */
3528 	ret = hns3_query_pf_resource(hw);
3529 	if (ret) {
3530 		PMD_INIT_LOG(ERR, "Failed to query pf resource: %d", ret);
3531 		return ret;
3532 	}
3533 
3534 	ret = hns3_get_board_configuration(hw);
3535 	if (ret) {
3536 		PMD_INIT_LOG(ERR, "failed to get board configuration: %d", ret);
3537 		return ret;
3538 	}
3539 
3540 	ret = hns3_query_dev_fec_info(hw);
3541 	if (ret)
3542 		PMD_INIT_LOG(ERR,
3543 			     "failed to query FEC information, ret = %d", ret);
3544 
3545 	return ret;
3546 }
3547 
3548 static int
3549 hns3_map_tqps_to_func(struct hns3_hw *hw, uint16_t func_id, uint16_t tqp_pid,
3550 		      uint16_t tqp_vid, bool is_pf)
3551 {
3552 	struct hns3_tqp_map_cmd *req;
3553 	struct hns3_cmd_desc desc;
3554 	int ret;
3555 
3556 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SET_TQP_MAP, false);
3557 
3558 	req = (struct hns3_tqp_map_cmd *)desc.data;
3559 	req->tqp_id = rte_cpu_to_le_16(tqp_pid);
3560 	req->tqp_vf = func_id;
3561 	req->tqp_flag = 1 << HNS3_TQP_MAP_EN_B;
3562 	if (!is_pf)
3563 		req->tqp_flag |= (1 << HNS3_TQP_MAP_TYPE_B);
3564 	req->tqp_vid = rte_cpu_to_le_16(tqp_vid);
3565 
3566 	ret = hns3_cmd_send(hw, &desc, 1);
3567 	if (ret)
3568 		PMD_INIT_LOG(ERR, "TQP map failed %d", ret);
3569 
3570 	return ret;
3571 }
3572 
3573 static int
3574 hns3_map_tqp(struct hns3_hw *hw)
3575 {
3576 	int ret;
3577 	int i;
3578 
3579 	/*
3580 	 * In current version, VF is not supported when PF is driven by DPDK
3581 	 * driver, so we assign total tqps_num tqps allocated to this port
3582 	 * to PF.
3583 	 */
3584 	for (i = 0; i < hw->total_tqps_num; i++) {
3585 		ret = hns3_map_tqps_to_func(hw, HNS3_PF_FUNC_ID, i, i, true);
3586 		if (ret)
3587 			return ret;
3588 	}
3589 
3590 	return 0;
3591 }
3592 
3593 static int
3594 hns3_cfg_mac_speed_dup_hw(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
3595 {
3596 	struct hns3_config_mac_speed_dup_cmd *req;
3597 	struct hns3_cmd_desc desc;
3598 	int ret;
3599 
3600 	req = (struct hns3_config_mac_speed_dup_cmd *)desc.data;
3601 
3602 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_SPEED_DUP, false);
3603 
3604 	hns3_set_bit(req->speed_dup, HNS3_CFG_DUPLEX_B, !!duplex ? 1 : 0);
3605 
3606 	switch (speed) {
3607 	case ETH_SPEED_NUM_10M:
3608 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3609 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10M);
3610 		break;
3611 	case ETH_SPEED_NUM_100M:
3612 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3613 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100M);
3614 		break;
3615 	case ETH_SPEED_NUM_1G:
3616 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3617 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_1G);
3618 		break;
3619 	case ETH_SPEED_NUM_10G:
3620 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3621 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10G);
3622 		break;
3623 	case ETH_SPEED_NUM_25G:
3624 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3625 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_25G);
3626 		break;
3627 	case ETH_SPEED_NUM_40G:
3628 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3629 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_40G);
3630 		break;
3631 	case ETH_SPEED_NUM_50G:
3632 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3633 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_50G);
3634 		break;
3635 	case ETH_SPEED_NUM_100G:
3636 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3637 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100G);
3638 		break;
3639 	case ETH_SPEED_NUM_200G:
3640 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3641 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_200G);
3642 		break;
3643 	default:
3644 		PMD_INIT_LOG(ERR, "invalid speed (%u)", speed);
3645 		return -EINVAL;
3646 	}
3647 
3648 	hns3_set_bit(req->mac_change_fec_en, HNS3_CFG_MAC_SPEED_CHANGE_EN_B, 1);
3649 
3650 	ret = hns3_cmd_send(hw, &desc, 1);
3651 	if (ret)
3652 		PMD_INIT_LOG(ERR, "mac speed/duplex config cmd failed %d", ret);
3653 
3654 	return ret;
3655 }
3656 
3657 static int
3658 hns3_tx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3659 {
3660 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3661 	struct hns3_pf *pf = &hns->pf;
3662 	struct hns3_priv_buf *priv;
3663 	uint32_t i, total_size;
3664 
3665 	total_size = pf->pkt_buf_size;
3666 
3667 	/* alloc tx buffer for all enabled tc */
3668 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3669 		priv = &buf_alloc->priv_buf[i];
3670 
3671 		if (hw->hw_tc_map & BIT(i)) {
3672 			if (total_size < pf->tx_buf_size)
3673 				return -ENOMEM;
3674 
3675 			priv->tx_buf_size = pf->tx_buf_size;
3676 		} else
3677 			priv->tx_buf_size = 0;
3678 
3679 		total_size -= priv->tx_buf_size;
3680 	}
3681 
3682 	return 0;
3683 }
3684 
3685 static int
3686 hns3_tx_buffer_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3687 {
3688 /* TX buffer size is unit by 128 byte */
3689 #define HNS3_BUF_SIZE_UNIT_SHIFT	7
3690 #define HNS3_BUF_SIZE_UPDATE_EN_MSK	BIT(15)
3691 	struct hns3_tx_buff_alloc_cmd *req;
3692 	struct hns3_cmd_desc desc;
3693 	uint32_t buf_size;
3694 	uint32_t i;
3695 	int ret;
3696 
3697 	req = (struct hns3_tx_buff_alloc_cmd *)desc.data;
3698 
3699 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TX_BUFF_ALLOC, 0);
3700 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3701 		buf_size = buf_alloc->priv_buf[i].tx_buf_size;
3702 
3703 		buf_size = buf_size >> HNS3_BUF_SIZE_UNIT_SHIFT;
3704 		req->tx_pkt_buff[i] = rte_cpu_to_le_16(buf_size |
3705 						HNS3_BUF_SIZE_UPDATE_EN_MSK);
3706 	}
3707 
3708 	ret = hns3_cmd_send(hw, &desc, 1);
3709 	if (ret)
3710 		PMD_INIT_LOG(ERR, "tx buffer alloc cmd failed %d", ret);
3711 
3712 	return ret;
3713 }
3714 
3715 static int
3716 hns3_get_tc_num(struct hns3_hw *hw)
3717 {
3718 	int cnt = 0;
3719 	uint8_t i;
3720 
3721 	for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3722 		if (hw->hw_tc_map & BIT(i))
3723 			cnt++;
3724 	return cnt;
3725 }
3726 
3727 static uint32_t
3728 hns3_get_rx_priv_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3729 {
3730 	struct hns3_priv_buf *priv;
3731 	uint32_t rx_priv = 0;
3732 	int i;
3733 
3734 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3735 		priv = &buf_alloc->priv_buf[i];
3736 		if (priv->enable)
3737 			rx_priv += priv->buf_size;
3738 	}
3739 	return rx_priv;
3740 }
3741 
3742 static uint32_t
3743 hns3_get_tx_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3744 {
3745 	uint32_t total_tx_size = 0;
3746 	uint32_t i;
3747 
3748 	for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3749 		total_tx_size += buf_alloc->priv_buf[i].tx_buf_size;
3750 
3751 	return total_tx_size;
3752 }
3753 
3754 /* Get the number of pfc enabled TCs, which have private buffer */
3755 static int
3756 hns3_get_pfc_priv_num(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3757 {
3758 	struct hns3_priv_buf *priv;
3759 	int cnt = 0;
3760 	uint8_t i;
3761 
3762 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3763 		priv = &buf_alloc->priv_buf[i];
3764 		if ((hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3765 			cnt++;
3766 	}
3767 
3768 	return cnt;
3769 }
3770 
3771 /* Get the number of pfc disabled TCs, which have private buffer */
3772 static int
3773 hns3_get_no_pfc_priv_num(struct hns3_hw *hw,
3774 			 struct hns3_pkt_buf_alloc *buf_alloc)
3775 {
3776 	struct hns3_priv_buf *priv;
3777 	int cnt = 0;
3778 	uint8_t i;
3779 
3780 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3781 		priv = &buf_alloc->priv_buf[i];
3782 		if (hw->hw_tc_map & BIT(i) &&
3783 		    !(hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3784 			cnt++;
3785 	}
3786 
3787 	return cnt;
3788 }
3789 
3790 static bool
3791 hns3_is_rx_buf_ok(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc,
3792 		  uint32_t rx_all)
3793 {
3794 	uint32_t shared_buf_min, shared_buf_tc, shared_std, hi_thrd, lo_thrd;
3795 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3796 	struct hns3_pf *pf = &hns->pf;
3797 	uint32_t shared_buf, aligned_mps;
3798 	uint32_t rx_priv;
3799 	uint8_t tc_num;
3800 	uint8_t i;
3801 
3802 	tc_num = hns3_get_tc_num(hw);
3803 	aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3804 
3805 	if (hns3_dev_get_support(hw, DCB))
3806 		shared_buf_min = HNS3_BUF_MUL_BY * aligned_mps +
3807 					pf->dv_buf_size;
3808 	else
3809 		shared_buf_min = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF
3810 					+ pf->dv_buf_size;
3811 
3812 	shared_buf_tc = tc_num * aligned_mps + aligned_mps;
3813 	shared_std = roundup(RTE_MAX(shared_buf_min, shared_buf_tc),
3814 			     HNS3_BUF_SIZE_UNIT);
3815 
3816 	rx_priv = hns3_get_rx_priv_buff_alloced(buf_alloc);
3817 	if (rx_all < rx_priv + shared_std)
3818 		return false;
3819 
3820 	shared_buf = rounddown(rx_all - rx_priv, HNS3_BUF_SIZE_UNIT);
3821 	buf_alloc->s_buf.buf_size = shared_buf;
3822 	if (hns3_dev_get_support(hw, DCB)) {
3823 		buf_alloc->s_buf.self.high = shared_buf - pf->dv_buf_size;
3824 		buf_alloc->s_buf.self.low = buf_alloc->s_buf.self.high
3825 			- roundup(aligned_mps / HNS3_BUF_DIV_BY,
3826 				  HNS3_BUF_SIZE_UNIT);
3827 	} else {
3828 		buf_alloc->s_buf.self.high =
3829 			aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3830 		buf_alloc->s_buf.self.low = aligned_mps;
3831 	}
3832 
3833 	if (hns3_dev_get_support(hw, DCB)) {
3834 		hi_thrd = shared_buf - pf->dv_buf_size;
3835 
3836 		if (tc_num <= NEED_RESERVE_TC_NUM)
3837 			hi_thrd = hi_thrd * BUF_RESERVE_PERCENT /
3838 				  BUF_MAX_PERCENT;
3839 
3840 		if (tc_num)
3841 			hi_thrd = hi_thrd / tc_num;
3842 
3843 		hi_thrd = RTE_MAX(hi_thrd, HNS3_BUF_MUL_BY * aligned_mps);
3844 		hi_thrd = rounddown(hi_thrd, HNS3_BUF_SIZE_UNIT);
3845 		lo_thrd = hi_thrd - aligned_mps / HNS3_BUF_DIV_BY;
3846 	} else {
3847 		hi_thrd = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3848 		lo_thrd = aligned_mps;
3849 	}
3850 
3851 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3852 		buf_alloc->s_buf.tc_thrd[i].low = lo_thrd;
3853 		buf_alloc->s_buf.tc_thrd[i].high = hi_thrd;
3854 	}
3855 
3856 	return true;
3857 }
3858 
3859 static bool
3860 hns3_rx_buf_calc_all(struct hns3_hw *hw, bool max,
3861 		     struct hns3_pkt_buf_alloc *buf_alloc)
3862 {
3863 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3864 	struct hns3_pf *pf = &hns->pf;
3865 	struct hns3_priv_buf *priv;
3866 	uint32_t aligned_mps;
3867 	uint32_t rx_all;
3868 	uint8_t i;
3869 
3870 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3871 	aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3872 
3873 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3874 		priv = &buf_alloc->priv_buf[i];
3875 
3876 		priv->enable = 0;
3877 		priv->wl.low = 0;
3878 		priv->wl.high = 0;
3879 		priv->buf_size = 0;
3880 
3881 		if (!(hw->hw_tc_map & BIT(i)))
3882 			continue;
3883 
3884 		priv->enable = 1;
3885 		if (hw->dcb_info.hw_pfc_map & BIT(i)) {
3886 			priv->wl.low = max ? aligned_mps : HNS3_BUF_SIZE_UNIT;
3887 			priv->wl.high = roundup(priv->wl.low + aligned_mps,
3888 						HNS3_BUF_SIZE_UNIT);
3889 		} else {
3890 			priv->wl.low = 0;
3891 			priv->wl.high = max ? (aligned_mps * HNS3_BUF_MUL_BY) :
3892 					aligned_mps;
3893 		}
3894 
3895 		priv->buf_size = priv->wl.high + pf->dv_buf_size;
3896 	}
3897 
3898 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3899 }
3900 
3901 static bool
3902 hns3_drop_nopfc_buf_till_fit(struct hns3_hw *hw,
3903 			     struct hns3_pkt_buf_alloc *buf_alloc)
3904 {
3905 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3906 	struct hns3_pf *pf = &hns->pf;
3907 	struct hns3_priv_buf *priv;
3908 	int no_pfc_priv_num;
3909 	uint32_t rx_all;
3910 	uint8_t mask;
3911 	int i;
3912 
3913 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3914 	no_pfc_priv_num = hns3_get_no_pfc_priv_num(hw, buf_alloc);
3915 
3916 	/* let the last to be cleared first */
3917 	for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3918 		priv = &buf_alloc->priv_buf[i];
3919 		mask = BIT((uint8_t)i);
3920 		if (hw->hw_tc_map & mask &&
3921 		    !(hw->dcb_info.hw_pfc_map & mask)) {
3922 			/* Clear the no pfc TC private buffer */
3923 			priv->wl.low = 0;
3924 			priv->wl.high = 0;
3925 			priv->buf_size = 0;
3926 			priv->enable = 0;
3927 			no_pfc_priv_num--;
3928 		}
3929 
3930 		if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3931 		    no_pfc_priv_num == 0)
3932 			break;
3933 	}
3934 
3935 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3936 }
3937 
3938 static bool
3939 hns3_drop_pfc_buf_till_fit(struct hns3_hw *hw,
3940 			   struct hns3_pkt_buf_alloc *buf_alloc)
3941 {
3942 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3943 	struct hns3_pf *pf = &hns->pf;
3944 	struct hns3_priv_buf *priv;
3945 	uint32_t rx_all;
3946 	int pfc_priv_num;
3947 	uint8_t mask;
3948 	int i;
3949 
3950 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3951 	pfc_priv_num = hns3_get_pfc_priv_num(hw, buf_alloc);
3952 
3953 	/* let the last to be cleared first */
3954 	for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3955 		priv = &buf_alloc->priv_buf[i];
3956 		mask = BIT((uint8_t)i);
3957 		if (hw->hw_tc_map & mask && hw->dcb_info.hw_pfc_map & mask) {
3958 			/* Reduce the number of pfc TC with private buffer */
3959 			priv->wl.low = 0;
3960 			priv->enable = 0;
3961 			priv->wl.high = 0;
3962 			priv->buf_size = 0;
3963 			pfc_priv_num--;
3964 		}
3965 		if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3966 		    pfc_priv_num == 0)
3967 			break;
3968 	}
3969 
3970 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3971 }
3972 
3973 static bool
3974 hns3_only_alloc_priv_buff(struct hns3_hw *hw,
3975 			  struct hns3_pkt_buf_alloc *buf_alloc)
3976 {
3977 #define COMPENSATE_BUFFER	0x3C00
3978 #define COMPENSATE_HALF_MPS_NUM	5
3979 #define PRIV_WL_GAP		0x1800
3980 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3981 	struct hns3_pf *pf = &hns->pf;
3982 	uint32_t tc_num = hns3_get_tc_num(hw);
3983 	uint32_t half_mps = pf->mps >> 1;
3984 	struct hns3_priv_buf *priv;
3985 	uint32_t min_rx_priv;
3986 	uint32_t rx_priv;
3987 	uint8_t i;
3988 
3989 	rx_priv = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3990 	if (tc_num)
3991 		rx_priv = rx_priv / tc_num;
3992 
3993 	if (tc_num <= NEED_RESERVE_TC_NUM)
3994 		rx_priv = rx_priv * BUF_RESERVE_PERCENT / BUF_MAX_PERCENT;
3995 
3996 	/*
3997 	 * Minimum value of private buffer in rx direction (min_rx_priv) is
3998 	 * equal to "DV + 2.5 * MPS + 15KB". Driver only allocates rx private
3999 	 * buffer if rx_priv is greater than min_rx_priv.
4000 	 */
4001 	min_rx_priv = pf->dv_buf_size + COMPENSATE_BUFFER +
4002 			COMPENSATE_HALF_MPS_NUM * half_mps;
4003 	min_rx_priv = roundup(min_rx_priv, HNS3_BUF_SIZE_UNIT);
4004 	rx_priv = rounddown(rx_priv, HNS3_BUF_SIZE_UNIT);
4005 	if (rx_priv < min_rx_priv)
4006 		return false;
4007 
4008 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
4009 		priv = &buf_alloc->priv_buf[i];
4010 		priv->enable = 0;
4011 		priv->wl.low = 0;
4012 		priv->wl.high = 0;
4013 		priv->buf_size = 0;
4014 
4015 		if (!(hw->hw_tc_map & BIT(i)))
4016 			continue;
4017 
4018 		priv->enable = 1;
4019 		priv->buf_size = rx_priv;
4020 		priv->wl.high = rx_priv - pf->dv_buf_size;
4021 		priv->wl.low = priv->wl.high - PRIV_WL_GAP;
4022 	}
4023 
4024 	buf_alloc->s_buf.buf_size = 0;
4025 
4026 	return true;
4027 }
4028 
4029 /*
4030  * hns3_rx_buffer_calc: calculate the rx private buffer size for all TCs
4031  * @hw: pointer to struct hns3_hw
4032  * @buf_alloc: pointer to buffer calculation data
4033  * @return: 0: calculate sucessful, negative: fail
4034  */
4035 static int
4036 hns3_rx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
4037 {
4038 	/* When DCB is not supported, rx private buffer is not allocated. */
4039 	if (!hns3_dev_get_support(hw, DCB)) {
4040 		struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
4041 		struct hns3_pf *pf = &hns->pf;
4042 		uint32_t rx_all = pf->pkt_buf_size;
4043 
4044 		rx_all -= hns3_get_tx_buff_alloced(buf_alloc);
4045 		if (!hns3_is_rx_buf_ok(hw, buf_alloc, rx_all))
4046 			return -ENOMEM;
4047 
4048 		return 0;
4049 	}
4050 
4051 	/*
4052 	 * Try to allocate privated packet buffer for all TCs without share
4053 	 * buffer.
4054 	 */
4055 	if (hns3_only_alloc_priv_buff(hw, buf_alloc))
4056 		return 0;
4057 
4058 	/*
4059 	 * Try to allocate privated packet buffer for all TCs with share
4060 	 * buffer.
4061 	 */
4062 	if (hns3_rx_buf_calc_all(hw, true, buf_alloc))
4063 		return 0;
4064 
4065 	/*
4066 	 * For different application scenes, the enabled port number, TC number
4067 	 * and no_drop TC number are different. In order to obtain the better
4068 	 * performance, software could allocate the buffer size and configure
4069 	 * the waterline by trying to decrease the private buffer size according
4070 	 * to the order, namely, waterline of valid tc, pfc disabled tc, pfc
4071 	 * enabled tc.
4072 	 */
4073 	if (hns3_rx_buf_calc_all(hw, false, buf_alloc))
4074 		return 0;
4075 
4076 	if (hns3_drop_nopfc_buf_till_fit(hw, buf_alloc))
4077 		return 0;
4078 
4079 	if (hns3_drop_pfc_buf_till_fit(hw, buf_alloc))
4080 		return 0;
4081 
4082 	return -ENOMEM;
4083 }
4084 
4085 static int
4086 hns3_rx_priv_buf_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
4087 {
4088 	struct hns3_rx_priv_buff_cmd *req;
4089 	struct hns3_cmd_desc desc;
4090 	uint32_t buf_size;
4091 	int ret;
4092 	int i;
4093 
4094 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_PRIV_BUFF_ALLOC, false);
4095 	req = (struct hns3_rx_priv_buff_cmd *)desc.data;
4096 
4097 	/* Alloc private buffer TCs */
4098 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
4099 		struct hns3_priv_buf *priv = &buf_alloc->priv_buf[i];
4100 
4101 		req->buf_num[i] =
4102 			rte_cpu_to_le_16(priv->buf_size >> HNS3_BUF_UNIT_S);
4103 		req->buf_num[i] |= rte_cpu_to_le_16(1 << HNS3_TC0_PRI_BUF_EN_B);
4104 	}
4105 
4106 	buf_size = buf_alloc->s_buf.buf_size;
4107 	req->shared_buf = rte_cpu_to_le_16((buf_size >> HNS3_BUF_UNIT_S) |
4108 					   (1 << HNS3_TC0_PRI_BUF_EN_B));
4109 
4110 	ret = hns3_cmd_send(hw, &desc, 1);
4111 	if (ret)
4112 		PMD_INIT_LOG(ERR, "rx private buffer alloc cmd failed %d", ret);
4113 
4114 	return ret;
4115 }
4116 
4117 static int
4118 hns3_rx_priv_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
4119 {
4120 #define HNS3_RX_PRIV_WL_ALLOC_DESC_NUM 2
4121 	struct hns3_rx_priv_wl_buf *req;
4122 	struct hns3_priv_buf *priv;
4123 	struct hns3_cmd_desc desc[HNS3_RX_PRIV_WL_ALLOC_DESC_NUM];
4124 	int i, j;
4125 	int ret;
4126 
4127 	for (i = 0; i < HNS3_RX_PRIV_WL_ALLOC_DESC_NUM; i++) {
4128 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_PRIV_WL_ALLOC,
4129 					  false);
4130 		req = (struct hns3_rx_priv_wl_buf *)desc[i].data;
4131 
4132 		/* The first descriptor set the NEXT bit to 1 */
4133 		if (i == 0)
4134 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
4135 		else
4136 			desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
4137 
4138 		for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
4139 			uint32_t idx = i * HNS3_TC_NUM_ONE_DESC + j;
4140 
4141 			priv = &buf_alloc->priv_buf[idx];
4142 			req->tc_wl[j].high = rte_cpu_to_le_16(priv->wl.high >>
4143 							HNS3_BUF_UNIT_S);
4144 			req->tc_wl[j].high |=
4145 				rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
4146 			req->tc_wl[j].low = rte_cpu_to_le_16(priv->wl.low >>
4147 							HNS3_BUF_UNIT_S);
4148 			req->tc_wl[j].low |=
4149 				rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
4150 		}
4151 	}
4152 
4153 	/* Send 2 descriptor at one time */
4154 	ret = hns3_cmd_send(hw, desc, HNS3_RX_PRIV_WL_ALLOC_DESC_NUM);
4155 	if (ret)
4156 		PMD_INIT_LOG(ERR, "rx private waterline config cmd failed %d",
4157 			     ret);
4158 	return ret;
4159 }
4160 
4161 static int
4162 hns3_common_thrd_config(struct hns3_hw *hw,
4163 			struct hns3_pkt_buf_alloc *buf_alloc)
4164 {
4165 #define HNS3_RX_COM_THRD_ALLOC_DESC_NUM 2
4166 	struct hns3_shared_buf *s_buf = &buf_alloc->s_buf;
4167 	struct hns3_rx_com_thrd *req;
4168 	struct hns3_cmd_desc desc[HNS3_RX_COM_THRD_ALLOC_DESC_NUM];
4169 	struct hns3_tc_thrd *tc;
4170 	int tc_idx;
4171 	int i, j;
4172 	int ret;
4173 
4174 	for (i = 0; i < HNS3_RX_COM_THRD_ALLOC_DESC_NUM; i++) {
4175 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_COM_THRD_ALLOC,
4176 					  false);
4177 		req = (struct hns3_rx_com_thrd *)&desc[i].data;
4178 
4179 		/* The first descriptor set the NEXT bit to 1 */
4180 		if (i == 0)
4181 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
4182 		else
4183 			desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
4184 
4185 		for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
4186 			tc_idx = i * HNS3_TC_NUM_ONE_DESC + j;
4187 			tc = &s_buf->tc_thrd[tc_idx];
4188 
4189 			req->com_thrd[j].high =
4190 				rte_cpu_to_le_16(tc->high >> HNS3_BUF_UNIT_S);
4191 			req->com_thrd[j].high |=
4192 				 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
4193 			req->com_thrd[j].low =
4194 				rte_cpu_to_le_16(tc->low >> HNS3_BUF_UNIT_S);
4195 			req->com_thrd[j].low |=
4196 				 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
4197 		}
4198 	}
4199 
4200 	/* Send 2 descriptors at one time */
4201 	ret = hns3_cmd_send(hw, desc, HNS3_RX_COM_THRD_ALLOC_DESC_NUM);
4202 	if (ret)
4203 		PMD_INIT_LOG(ERR, "common threshold config cmd failed %d", ret);
4204 
4205 	return ret;
4206 }
4207 
4208 static int
4209 hns3_common_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
4210 {
4211 	struct hns3_shared_buf *buf = &buf_alloc->s_buf;
4212 	struct hns3_rx_com_wl *req;
4213 	struct hns3_cmd_desc desc;
4214 	int ret;
4215 
4216 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_COM_WL_ALLOC, false);
4217 
4218 	req = (struct hns3_rx_com_wl *)desc.data;
4219 	req->com_wl.high = rte_cpu_to_le_16(buf->self.high >> HNS3_BUF_UNIT_S);
4220 	req->com_wl.high |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
4221 
4222 	req->com_wl.low = rte_cpu_to_le_16(buf->self.low >> HNS3_BUF_UNIT_S);
4223 	req->com_wl.low |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
4224 
4225 	ret = hns3_cmd_send(hw, &desc, 1);
4226 	if (ret)
4227 		PMD_INIT_LOG(ERR, "common waterline config cmd failed %d", ret);
4228 
4229 	return ret;
4230 }
4231 
4232 int
4233 hns3_buffer_alloc(struct hns3_hw *hw)
4234 {
4235 	struct hns3_pkt_buf_alloc pkt_buf;
4236 	int ret;
4237 
4238 	memset(&pkt_buf, 0, sizeof(pkt_buf));
4239 	ret = hns3_tx_buffer_calc(hw, &pkt_buf);
4240 	if (ret) {
4241 		PMD_INIT_LOG(ERR,
4242 			     "could not calc tx buffer size for all TCs %d",
4243 			     ret);
4244 		return ret;
4245 	}
4246 
4247 	ret = hns3_tx_buffer_alloc(hw, &pkt_buf);
4248 	if (ret) {
4249 		PMD_INIT_LOG(ERR, "could not alloc tx buffers %d", ret);
4250 		return ret;
4251 	}
4252 
4253 	ret = hns3_rx_buffer_calc(hw, &pkt_buf);
4254 	if (ret) {
4255 		PMD_INIT_LOG(ERR,
4256 			     "could not calc rx priv buffer size for all TCs %d",
4257 			     ret);
4258 		return ret;
4259 	}
4260 
4261 	ret = hns3_rx_priv_buf_alloc(hw, &pkt_buf);
4262 	if (ret) {
4263 		PMD_INIT_LOG(ERR, "could not alloc rx priv buffer %d", ret);
4264 		return ret;
4265 	}
4266 
4267 	if (hns3_dev_get_support(hw, DCB)) {
4268 		ret = hns3_rx_priv_wl_config(hw, &pkt_buf);
4269 		if (ret) {
4270 			PMD_INIT_LOG(ERR,
4271 				     "could not configure rx private waterline %d",
4272 				     ret);
4273 			return ret;
4274 		}
4275 
4276 		ret = hns3_common_thrd_config(hw, &pkt_buf);
4277 		if (ret) {
4278 			PMD_INIT_LOG(ERR,
4279 				     "could not configure common threshold %d",
4280 				     ret);
4281 			return ret;
4282 		}
4283 	}
4284 
4285 	ret = hns3_common_wl_config(hw, &pkt_buf);
4286 	if (ret)
4287 		PMD_INIT_LOG(ERR, "could not configure common waterline %d",
4288 			     ret);
4289 
4290 	return ret;
4291 }
4292 
4293 static int
4294 hns3_mac_init(struct hns3_hw *hw)
4295 {
4296 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
4297 	struct hns3_mac *mac = &hw->mac;
4298 	struct hns3_pf *pf = &hns->pf;
4299 	int ret;
4300 
4301 	pf->support_sfp_query = true;
4302 	mac->link_duplex = ETH_LINK_FULL_DUPLEX;
4303 	ret = hns3_cfg_mac_speed_dup_hw(hw, mac->link_speed, mac->link_duplex);
4304 	if (ret) {
4305 		PMD_INIT_LOG(ERR, "Config mac speed dup fail ret = %d", ret);
4306 		return ret;
4307 	}
4308 
4309 	mac->link_status = ETH_LINK_DOWN;
4310 
4311 	return hns3_config_mtu(hw, pf->mps);
4312 }
4313 
4314 static int
4315 hns3_get_mac_ethertype_cmd_status(uint16_t cmdq_resp, uint8_t resp_code)
4316 {
4317 #define HNS3_ETHERTYPE_SUCCESS_ADD		0
4318 #define HNS3_ETHERTYPE_ALREADY_ADD		1
4319 #define HNS3_ETHERTYPE_MGR_TBL_OVERFLOW		2
4320 #define HNS3_ETHERTYPE_KEY_CONFLICT		3
4321 	int return_status;
4322 
4323 	if (cmdq_resp) {
4324 		PMD_INIT_LOG(ERR,
4325 			     "cmdq execute failed for get_mac_ethertype_cmd_status, status=%u.\n",
4326 			     cmdq_resp);
4327 		return -EIO;
4328 	}
4329 
4330 	switch (resp_code) {
4331 	case HNS3_ETHERTYPE_SUCCESS_ADD:
4332 	case HNS3_ETHERTYPE_ALREADY_ADD:
4333 		return_status = 0;
4334 		break;
4335 	case HNS3_ETHERTYPE_MGR_TBL_OVERFLOW:
4336 		PMD_INIT_LOG(ERR,
4337 			     "add mac ethertype failed for manager table overflow.");
4338 		return_status = -EIO;
4339 		break;
4340 	case HNS3_ETHERTYPE_KEY_CONFLICT:
4341 		PMD_INIT_LOG(ERR, "add mac ethertype failed for key conflict.");
4342 		return_status = -EIO;
4343 		break;
4344 	default:
4345 		PMD_INIT_LOG(ERR,
4346 			     "add mac ethertype failed for undefined, code=%u.",
4347 			     resp_code);
4348 		return_status = -EIO;
4349 		break;
4350 	}
4351 
4352 	return return_status;
4353 }
4354 
4355 static int
4356 hns3_add_mgr_tbl(struct hns3_hw *hw,
4357 		 const struct hns3_mac_mgr_tbl_entry_cmd *req)
4358 {
4359 	struct hns3_cmd_desc desc;
4360 	uint8_t resp_code;
4361 	uint16_t retval;
4362 	int ret;
4363 
4364 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_ETHTYPE_ADD, false);
4365 	memcpy(desc.data, req, sizeof(struct hns3_mac_mgr_tbl_entry_cmd));
4366 
4367 	ret = hns3_cmd_send(hw, &desc, 1);
4368 	if (ret) {
4369 		PMD_INIT_LOG(ERR,
4370 			     "add mac ethertype failed for cmd_send, ret =%d.",
4371 			     ret);
4372 		return ret;
4373 	}
4374 
4375 	resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
4376 	retval = rte_le_to_cpu_16(desc.retval);
4377 
4378 	return hns3_get_mac_ethertype_cmd_status(retval, resp_code);
4379 }
4380 
4381 static void
4382 hns3_prepare_mgr_tbl(struct hns3_mac_mgr_tbl_entry_cmd *mgr_table,
4383 		     int *table_item_num)
4384 {
4385 	struct hns3_mac_mgr_tbl_entry_cmd *tbl;
4386 
4387 	/*
4388 	 * In current version, we add one item in management table as below:
4389 	 * 0x0180C200000E -- LLDP MC address
4390 	 */
4391 	tbl = mgr_table;
4392 	tbl->flags = HNS3_MAC_MGR_MASK_VLAN_B;
4393 	tbl->ethter_type = rte_cpu_to_le_16(HNS3_MAC_ETHERTYPE_LLDP);
4394 	tbl->mac_addr_hi32 = rte_cpu_to_le_32(htonl(0x0180C200));
4395 	tbl->mac_addr_lo16 = rte_cpu_to_le_16(htons(0x000E));
4396 	tbl->i_port_bitmap = 0x1;
4397 	*table_item_num = 1;
4398 }
4399 
4400 static int
4401 hns3_init_mgr_tbl(struct hns3_hw *hw)
4402 {
4403 #define HNS_MAC_MGR_TBL_MAX_SIZE	16
4404 	struct hns3_mac_mgr_tbl_entry_cmd mgr_table[HNS_MAC_MGR_TBL_MAX_SIZE];
4405 	int table_item_num;
4406 	int ret;
4407 	int i;
4408 
4409 	memset(mgr_table, 0, sizeof(mgr_table));
4410 	hns3_prepare_mgr_tbl(mgr_table, &table_item_num);
4411 	for (i = 0; i < table_item_num; i++) {
4412 		ret = hns3_add_mgr_tbl(hw, &mgr_table[i]);
4413 		if (ret) {
4414 			PMD_INIT_LOG(ERR, "add mac ethertype failed, ret =%d",
4415 				     ret);
4416 			return ret;
4417 		}
4418 	}
4419 
4420 	return 0;
4421 }
4422 
4423 static void
4424 hns3_promisc_param_init(struct hns3_promisc_param *param, bool en_uc,
4425 			bool en_mc, bool en_bc, int vport_id)
4426 {
4427 	if (!param)
4428 		return;
4429 
4430 	memset(param, 0, sizeof(struct hns3_promisc_param));
4431 	if (en_uc)
4432 		param->enable = HNS3_PROMISC_EN_UC;
4433 	if (en_mc)
4434 		param->enable |= HNS3_PROMISC_EN_MC;
4435 	if (en_bc)
4436 		param->enable |= HNS3_PROMISC_EN_BC;
4437 	param->vf_id = vport_id;
4438 }
4439 
4440 static int
4441 hns3_cmd_set_promisc_mode(struct hns3_hw *hw, struct hns3_promisc_param *param)
4442 {
4443 	struct hns3_promisc_cfg_cmd *req;
4444 	struct hns3_cmd_desc desc;
4445 	int ret;
4446 
4447 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_PROMISC_MODE, false);
4448 
4449 	req = (struct hns3_promisc_cfg_cmd *)desc.data;
4450 	req->vf_id = param->vf_id;
4451 	req->flag = (param->enable << HNS3_PROMISC_EN_B) |
4452 	    HNS3_PROMISC_TX_EN_B | HNS3_PROMISC_RX_EN_B;
4453 
4454 	ret = hns3_cmd_send(hw, &desc, 1);
4455 	if (ret)
4456 		PMD_INIT_LOG(ERR, "Set promisc mode fail, ret = %d", ret);
4457 
4458 	return ret;
4459 }
4460 
4461 static int
4462 hns3_set_promisc_mode(struct hns3_hw *hw, bool en_uc_pmc, bool en_mc_pmc)
4463 {
4464 	struct hns3_promisc_param param;
4465 	bool en_bc_pmc = true;
4466 	uint8_t vf_id;
4467 
4468 	/*
4469 	 * In current version VF is not supported when PF is driven by DPDK
4470 	 * driver, just need to configure parameters for PF vport.
4471 	 */
4472 	vf_id = HNS3_PF_FUNC_ID;
4473 
4474 	hns3_promisc_param_init(&param, en_uc_pmc, en_mc_pmc, en_bc_pmc, vf_id);
4475 	return hns3_cmd_set_promisc_mode(hw, &param);
4476 }
4477 
4478 static int
4479 hns3_promisc_init(struct hns3_hw *hw)
4480 {
4481 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
4482 	struct hns3_pf *pf = &hns->pf;
4483 	struct hns3_promisc_param param;
4484 	uint16_t func_id;
4485 	int ret;
4486 
4487 	ret = hns3_set_promisc_mode(hw, false, false);
4488 	if (ret) {
4489 		PMD_INIT_LOG(ERR, "failed to set promisc mode, ret = %d", ret);
4490 		return ret;
4491 	}
4492 
4493 	/*
4494 	 * In current version VFs are not supported when PF is driven by DPDK
4495 	 * driver. After PF has been taken over by DPDK, the original VF will
4496 	 * be invalid. So, there is a possibility of entry residues. It should
4497 	 * clear VFs's promisc mode to avoid unnecessary bandwidth usage
4498 	 * during init.
4499 	 */
4500 	for (func_id = HNS3_1ST_VF_FUNC_ID; func_id < pf->func_num; func_id++) {
4501 		hns3_promisc_param_init(&param, false, false, false, func_id);
4502 		ret = hns3_cmd_set_promisc_mode(hw, &param);
4503 		if (ret) {
4504 			PMD_INIT_LOG(ERR, "failed to clear vf:%u promisc mode,"
4505 					" ret = %d", func_id, ret);
4506 			return ret;
4507 		}
4508 	}
4509 
4510 	return 0;
4511 }
4512 
4513 static void
4514 hns3_promisc_uninit(struct hns3_hw *hw)
4515 {
4516 	struct hns3_promisc_param param;
4517 	uint16_t func_id;
4518 	int ret;
4519 
4520 	func_id = HNS3_PF_FUNC_ID;
4521 
4522 	/*
4523 	 * In current version VFs are not supported when PF is driven by
4524 	 * DPDK driver, and VFs' promisc mode status has been cleared during
4525 	 * init and their status will not change. So just clear PF's promisc
4526 	 * mode status during uninit.
4527 	 */
4528 	hns3_promisc_param_init(&param, false, false, false, func_id);
4529 	ret = hns3_cmd_set_promisc_mode(hw, &param);
4530 	if (ret)
4531 		PMD_INIT_LOG(ERR, "failed to clear promisc status during"
4532 				" uninit, ret = %d", ret);
4533 }
4534 
4535 static int
4536 hns3_dev_promiscuous_enable(struct rte_eth_dev *dev)
4537 {
4538 	bool allmulti = dev->data->all_multicast ? true : false;
4539 	struct hns3_adapter *hns = dev->data->dev_private;
4540 	struct hns3_hw *hw = &hns->hw;
4541 	uint64_t offloads;
4542 	int err;
4543 	int ret;
4544 
4545 	rte_spinlock_lock(&hw->lock);
4546 	ret = hns3_set_promisc_mode(hw, true, true);
4547 	if (ret) {
4548 		rte_spinlock_unlock(&hw->lock);
4549 		hns3_err(hw, "failed to enable promiscuous mode, ret = %d",
4550 			 ret);
4551 		return ret;
4552 	}
4553 
4554 	/*
4555 	 * When promiscuous mode was enabled, disable the vlan filter to let
4556 	 * all packets coming in in the receiving direction.
4557 	 */
4558 	offloads = dev->data->dev_conf.rxmode.offloads;
4559 	if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
4560 		ret = hns3_enable_vlan_filter(hns, false);
4561 		if (ret) {
4562 			hns3_err(hw, "failed to enable promiscuous mode due to "
4563 				     "failure to disable vlan filter, ret = %d",
4564 				 ret);
4565 			err = hns3_set_promisc_mode(hw, false, allmulti);
4566 			if (err)
4567 				hns3_err(hw, "failed to restore promiscuous "
4568 					 "status after disable vlan filter "
4569 					 "failed during enabling promiscuous "
4570 					 "mode, ret = %d", ret);
4571 		}
4572 	}
4573 
4574 	rte_spinlock_unlock(&hw->lock);
4575 
4576 	return ret;
4577 }
4578 
4579 static int
4580 hns3_dev_promiscuous_disable(struct rte_eth_dev *dev)
4581 {
4582 	bool allmulti = dev->data->all_multicast ? true : false;
4583 	struct hns3_adapter *hns = dev->data->dev_private;
4584 	struct hns3_hw *hw = &hns->hw;
4585 	uint64_t offloads;
4586 	int err;
4587 	int ret;
4588 
4589 	/* If now in all_multicast mode, must remain in all_multicast mode. */
4590 	rte_spinlock_lock(&hw->lock);
4591 	ret = hns3_set_promisc_mode(hw, false, allmulti);
4592 	if (ret) {
4593 		rte_spinlock_unlock(&hw->lock);
4594 		hns3_err(hw, "failed to disable promiscuous mode, ret = %d",
4595 			 ret);
4596 		return ret;
4597 	}
4598 	/* when promiscuous mode was disabled, restore the vlan filter status */
4599 	offloads = dev->data->dev_conf.rxmode.offloads;
4600 	if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
4601 		ret = hns3_enable_vlan_filter(hns, true);
4602 		if (ret) {
4603 			hns3_err(hw, "failed to disable promiscuous mode due to"
4604 				 " failure to restore vlan filter, ret = %d",
4605 				 ret);
4606 			err = hns3_set_promisc_mode(hw, true, true);
4607 			if (err)
4608 				hns3_err(hw, "failed to restore promiscuous "
4609 					 "status after enabling vlan filter "
4610 					 "failed during disabling promiscuous "
4611 					 "mode, ret = %d", ret);
4612 		}
4613 	}
4614 	rte_spinlock_unlock(&hw->lock);
4615 
4616 	return ret;
4617 }
4618 
4619 static int
4620 hns3_dev_allmulticast_enable(struct rte_eth_dev *dev)
4621 {
4622 	struct hns3_adapter *hns = dev->data->dev_private;
4623 	struct hns3_hw *hw = &hns->hw;
4624 	int ret;
4625 
4626 	if (dev->data->promiscuous)
4627 		return 0;
4628 
4629 	rte_spinlock_lock(&hw->lock);
4630 	ret = hns3_set_promisc_mode(hw, false, true);
4631 	rte_spinlock_unlock(&hw->lock);
4632 	if (ret)
4633 		hns3_err(hw, "failed to enable allmulticast mode, ret = %d",
4634 			 ret);
4635 
4636 	return ret;
4637 }
4638 
4639 static int
4640 hns3_dev_allmulticast_disable(struct rte_eth_dev *dev)
4641 {
4642 	struct hns3_adapter *hns = dev->data->dev_private;
4643 	struct hns3_hw *hw = &hns->hw;
4644 	int ret;
4645 
4646 	/* If now in promiscuous mode, must remain in all_multicast mode. */
4647 	if (dev->data->promiscuous)
4648 		return 0;
4649 
4650 	rte_spinlock_lock(&hw->lock);
4651 	ret = hns3_set_promisc_mode(hw, false, false);
4652 	rte_spinlock_unlock(&hw->lock);
4653 	if (ret)
4654 		hns3_err(hw, "failed to disable allmulticast mode, ret = %d",
4655 			 ret);
4656 
4657 	return ret;
4658 }
4659 
4660 static int
4661 hns3_dev_promisc_restore(struct hns3_adapter *hns)
4662 {
4663 	struct hns3_hw *hw = &hns->hw;
4664 	bool allmulti = hw->data->all_multicast ? true : false;
4665 	int ret;
4666 
4667 	if (hw->data->promiscuous) {
4668 		ret = hns3_set_promisc_mode(hw, true, true);
4669 		if (ret)
4670 			hns3_err(hw, "failed to restore promiscuous mode, "
4671 				 "ret = %d", ret);
4672 		return ret;
4673 	}
4674 
4675 	ret = hns3_set_promisc_mode(hw, false, allmulti);
4676 	if (ret)
4677 		hns3_err(hw, "failed to restore allmulticast mode, ret = %d",
4678 			 ret);
4679 	return ret;
4680 }
4681 
4682 static int
4683 hns3_get_sfp_info(struct hns3_hw *hw, struct hns3_mac *mac_info)
4684 {
4685 	struct hns3_sfp_info_cmd *resp;
4686 	struct hns3_cmd_desc desc;
4687 	int ret;
4688 
4689 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GET_SFP_INFO, true);
4690 	resp = (struct hns3_sfp_info_cmd *)desc.data;
4691 	resp->query_type = HNS3_ACTIVE_QUERY;
4692 
4693 	ret = hns3_cmd_send(hw, &desc, 1);
4694 	if (ret == -EOPNOTSUPP) {
4695 		hns3_warn(hw, "firmware does not support get SFP info,"
4696 			  " ret = %d.", ret);
4697 		return ret;
4698 	} else if (ret) {
4699 		hns3_err(hw, "get sfp info failed, ret = %d.", ret);
4700 		return ret;
4701 	}
4702 
4703 	/*
4704 	 * In some case, the speed of MAC obtained from firmware may be 0, it
4705 	 * shouldn't be set to mac->speed.
4706 	 */
4707 	if (!rte_le_to_cpu_32(resp->sfp_speed))
4708 		return 0;
4709 
4710 	mac_info->link_speed = rte_le_to_cpu_32(resp->sfp_speed);
4711 	/*
4712 	 * if resp->supported_speed is 0, it means it's an old version
4713 	 * firmware, do not update these params.
4714 	 */
4715 	if (resp->supported_speed) {
4716 		mac_info->query_type = HNS3_ACTIVE_QUERY;
4717 		mac_info->supported_speed =
4718 					rte_le_to_cpu_32(resp->supported_speed);
4719 		mac_info->support_autoneg = resp->autoneg_ability;
4720 		mac_info->link_autoneg = (resp->autoneg == 0) ? ETH_LINK_FIXED
4721 					: ETH_LINK_AUTONEG;
4722 	} else {
4723 		mac_info->query_type = HNS3_DEFAULT_QUERY;
4724 	}
4725 
4726 	return 0;
4727 }
4728 
4729 static uint8_t
4730 hns3_check_speed_dup(uint8_t duplex, uint32_t speed)
4731 {
4732 	if (!(speed == ETH_SPEED_NUM_10M || speed == ETH_SPEED_NUM_100M))
4733 		duplex = ETH_LINK_FULL_DUPLEX;
4734 
4735 	return duplex;
4736 }
4737 
4738 static int
4739 hns3_cfg_mac_speed_dup(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
4740 {
4741 	struct hns3_mac *mac = &hw->mac;
4742 	int ret;
4743 
4744 	duplex = hns3_check_speed_dup(duplex, speed);
4745 	if (mac->link_speed == speed && mac->link_duplex == duplex)
4746 		return 0;
4747 
4748 	ret = hns3_cfg_mac_speed_dup_hw(hw, speed, duplex);
4749 	if (ret)
4750 		return ret;
4751 
4752 	ret = hns3_port_shaper_update(hw, speed);
4753 	if (ret)
4754 		return ret;
4755 
4756 	mac->link_speed = speed;
4757 	mac->link_duplex = duplex;
4758 
4759 	return 0;
4760 }
4761 
4762 static int
4763 hns3_update_fiber_link_info(struct hns3_hw *hw)
4764 {
4765 	struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw);
4766 	struct hns3_mac *mac = &hw->mac;
4767 	struct hns3_mac mac_info;
4768 	int ret;
4769 
4770 	/* If firmware do not support get SFP/qSFP speed, return directly */
4771 	if (!pf->support_sfp_query)
4772 		return 0;
4773 
4774 	memset(&mac_info, 0, sizeof(struct hns3_mac));
4775 	ret = hns3_get_sfp_info(hw, &mac_info);
4776 	if (ret == -EOPNOTSUPP) {
4777 		pf->support_sfp_query = false;
4778 		return ret;
4779 	} else if (ret)
4780 		return ret;
4781 
4782 	/* Do nothing if no SFP */
4783 	if (mac_info.link_speed == ETH_SPEED_NUM_NONE)
4784 		return 0;
4785 
4786 	/*
4787 	 * If query_type is HNS3_ACTIVE_QUERY, it is no need
4788 	 * to reconfigure the speed of MAC. Otherwise, it indicates
4789 	 * that the current firmware only supports to obtain the
4790 	 * speed of the SFP, and the speed of MAC needs to reconfigure.
4791 	 */
4792 	mac->query_type = mac_info.query_type;
4793 	if (mac->query_type == HNS3_ACTIVE_QUERY) {
4794 		if (mac_info.link_speed != mac->link_speed) {
4795 			ret = hns3_port_shaper_update(hw, mac_info.link_speed);
4796 			if (ret)
4797 				return ret;
4798 		}
4799 
4800 		mac->link_speed = mac_info.link_speed;
4801 		mac->supported_speed = mac_info.supported_speed;
4802 		mac->support_autoneg = mac_info.support_autoneg;
4803 		mac->link_autoneg = mac_info.link_autoneg;
4804 
4805 		return 0;
4806 	}
4807 
4808 	/* Config full duplex for SFP */
4809 	return hns3_cfg_mac_speed_dup(hw, mac_info.link_speed,
4810 				      ETH_LINK_FULL_DUPLEX);
4811 }
4812 
4813 static void
4814 hns3_parse_copper_phy_params(struct hns3_cmd_desc *desc, struct hns3_mac *mac)
4815 {
4816 #define HNS3_PHY_SUPPORTED_SPEED_MASK   0x2f
4817 
4818 	struct hns3_phy_params_bd0_cmd *req;
4819 	uint32_t supported;
4820 
4821 	req = (struct hns3_phy_params_bd0_cmd *)desc[0].data;
4822 	mac->link_speed = rte_le_to_cpu_32(req->speed);
4823 	mac->link_duplex = hns3_get_bit(req->duplex,
4824 					   HNS3_PHY_DUPLEX_CFG_B);
4825 	mac->link_autoneg = hns3_get_bit(req->autoneg,
4826 					   HNS3_PHY_AUTONEG_CFG_B);
4827 	mac->advertising = rte_le_to_cpu_32(req->advertising);
4828 	mac->lp_advertising = rte_le_to_cpu_32(req->lp_advertising);
4829 	supported = rte_le_to_cpu_32(req->supported);
4830 	mac->supported_speed = supported & HNS3_PHY_SUPPORTED_SPEED_MASK;
4831 	mac->support_autoneg = !!(supported & HNS3_PHY_LINK_MODE_AUTONEG_BIT);
4832 }
4833 
4834 static int
4835 hns3_get_copper_phy_params(struct hns3_hw *hw, struct hns3_mac *mac)
4836 {
4837 	struct hns3_cmd_desc desc[HNS3_PHY_PARAM_CFG_BD_NUM];
4838 	uint16_t i;
4839 	int ret;
4840 
4841 	for (i = 0; i < HNS3_PHY_PARAM_CFG_BD_NUM - 1; i++) {
4842 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG,
4843 					  true);
4844 		desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
4845 	}
4846 	hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG, true);
4847 
4848 	ret = hns3_cmd_send(hw, desc, HNS3_PHY_PARAM_CFG_BD_NUM);
4849 	if (ret) {
4850 		hns3_err(hw, "get phy parameters failed, ret = %d.", ret);
4851 		return ret;
4852 	}
4853 
4854 	hns3_parse_copper_phy_params(desc, mac);
4855 
4856 	return 0;
4857 }
4858 
4859 static int
4860 hns3_update_copper_link_info(struct hns3_hw *hw)
4861 {
4862 	struct hns3_mac *mac = &hw->mac;
4863 	struct hns3_mac mac_info;
4864 	int ret;
4865 
4866 	memset(&mac_info, 0, sizeof(struct hns3_mac));
4867 	ret = hns3_get_copper_phy_params(hw, &mac_info);
4868 	if (ret)
4869 		return ret;
4870 
4871 	if (mac_info.link_speed != mac->link_speed) {
4872 		ret = hns3_port_shaper_update(hw, mac_info.link_speed);
4873 		if (ret)
4874 			return ret;
4875 	}
4876 
4877 	mac->link_speed = mac_info.link_speed;
4878 	mac->link_duplex = mac_info.link_duplex;
4879 	mac->link_autoneg = mac_info.link_autoneg;
4880 	mac->supported_speed = mac_info.supported_speed;
4881 	mac->advertising = mac_info.advertising;
4882 	mac->lp_advertising = mac_info.lp_advertising;
4883 	mac->support_autoneg = mac_info.support_autoneg;
4884 
4885 	return 0;
4886 }
4887 
4888 static int
4889 hns3_update_link_info(struct rte_eth_dev *eth_dev)
4890 {
4891 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4892 	struct hns3_hw *hw = &hns->hw;
4893 	int ret = 0;
4894 
4895 	if (hw->mac.media_type == HNS3_MEDIA_TYPE_COPPER)
4896 		ret = hns3_update_copper_link_info(hw);
4897 	else if (hw->mac.media_type == HNS3_MEDIA_TYPE_FIBER)
4898 		ret = hns3_update_fiber_link_info(hw);
4899 
4900 	return ret;
4901 }
4902 
4903 static int
4904 hns3_cfg_mac_mode(struct hns3_hw *hw, bool enable)
4905 {
4906 	struct hns3_config_mac_mode_cmd *req;
4907 	struct hns3_cmd_desc desc;
4908 	uint32_t loop_en = 0;
4909 	uint8_t val = 0;
4910 	int ret;
4911 
4912 	req = (struct hns3_config_mac_mode_cmd *)desc.data;
4913 
4914 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAC_MODE, false);
4915 	if (enable)
4916 		val = 1;
4917 	hns3_set_bit(loop_en, HNS3_MAC_TX_EN_B, val);
4918 	hns3_set_bit(loop_en, HNS3_MAC_RX_EN_B, val);
4919 	hns3_set_bit(loop_en, HNS3_MAC_PAD_TX_B, val);
4920 	hns3_set_bit(loop_en, HNS3_MAC_PAD_RX_B, val);
4921 	hns3_set_bit(loop_en, HNS3_MAC_1588_TX_B, 0);
4922 	hns3_set_bit(loop_en, HNS3_MAC_1588_RX_B, 0);
4923 	hns3_set_bit(loop_en, HNS3_MAC_APP_LP_B, 0);
4924 	hns3_set_bit(loop_en, HNS3_MAC_LINE_LP_B, 0);
4925 	hns3_set_bit(loop_en, HNS3_MAC_FCS_TX_B, val);
4926 	hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_B, val);
4927 
4928 	/*
4929 	 * If DEV_RX_OFFLOAD_KEEP_CRC offload is set, MAC will not strip CRC
4930 	 * when receiving frames. Otherwise, CRC will be stripped.
4931 	 */
4932 	if (hw->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
4933 		hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, 0);
4934 	else
4935 		hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, val);
4936 	hns3_set_bit(loop_en, HNS3_MAC_TX_OVERSIZE_TRUNCATE_B, val);
4937 	hns3_set_bit(loop_en, HNS3_MAC_RX_OVERSIZE_TRUNCATE_B, val);
4938 	hns3_set_bit(loop_en, HNS3_MAC_TX_UNDER_MIN_ERR_B, val);
4939 	req->txrx_pad_fcs_loop_en = rte_cpu_to_le_32(loop_en);
4940 
4941 	ret = hns3_cmd_send(hw, &desc, 1);
4942 	if (ret)
4943 		PMD_INIT_LOG(ERR, "mac enable fail, ret =%d.", ret);
4944 
4945 	return ret;
4946 }
4947 
4948 static int
4949 hns3_get_mac_link_status(struct hns3_hw *hw)
4950 {
4951 	struct hns3_link_status_cmd *req;
4952 	struct hns3_cmd_desc desc;
4953 	int link_status;
4954 	int ret;
4955 
4956 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_LINK_STATUS, true);
4957 	ret = hns3_cmd_send(hw, &desc, 1);
4958 	if (ret) {
4959 		hns3_err(hw, "get link status cmd failed %d", ret);
4960 		return ETH_LINK_DOWN;
4961 	}
4962 
4963 	req = (struct hns3_link_status_cmd *)desc.data;
4964 	link_status = req->status & HNS3_LINK_STATUS_UP_M;
4965 
4966 	return !!link_status;
4967 }
4968 
4969 static bool
4970 hns3_update_link_status(struct hns3_hw *hw)
4971 {
4972 	int state;
4973 
4974 	state = hns3_get_mac_link_status(hw);
4975 	if (state != hw->mac.link_status) {
4976 		hw->mac.link_status = state;
4977 		hns3_warn(hw, "Link status change to %s!", state ? "up" : "down");
4978 		return true;
4979 	}
4980 
4981 	return false;
4982 }
4983 
4984 void
4985 hns3_update_linkstatus_and_event(struct hns3_hw *hw, bool query)
4986 {
4987 	struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
4988 	struct rte_eth_link new_link;
4989 	int ret;
4990 
4991 	if (query)
4992 		hns3_update_port_link_info(dev);
4993 
4994 	memset(&new_link, 0, sizeof(new_link));
4995 	hns3_setup_linkstatus(dev, &new_link);
4996 
4997 	ret = rte_eth_linkstatus_set(dev, &new_link);
4998 	if (ret == 0 && dev->data->dev_conf.intr_conf.lsc != 0)
4999 		hns3_start_report_lse(dev);
5000 }
5001 
5002 static void
5003 hns3_service_handler(void *param)
5004 {
5005 	struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
5006 	struct hns3_adapter *hns = eth_dev->data->dev_private;
5007 	struct hns3_hw *hw = &hns->hw;
5008 
5009 	if (!hns3_is_reset_pending(hns))
5010 		hns3_update_linkstatus_and_event(hw, true);
5011 	else
5012 		hns3_warn(hw, "Cancel the query when reset is pending");
5013 
5014 	rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, eth_dev);
5015 }
5016 
5017 static int
5018 hns3_init_hardware(struct hns3_adapter *hns)
5019 {
5020 	struct hns3_hw *hw = &hns->hw;
5021 	int ret;
5022 
5023 	ret = hns3_map_tqp(hw);
5024 	if (ret) {
5025 		PMD_INIT_LOG(ERR, "Failed to map tqp: %d", ret);
5026 		return ret;
5027 	}
5028 
5029 	ret = hns3_init_umv_space(hw);
5030 	if (ret) {
5031 		PMD_INIT_LOG(ERR, "Failed to init umv space: %d", ret);
5032 		return ret;
5033 	}
5034 
5035 	ret = hns3_mac_init(hw);
5036 	if (ret) {
5037 		PMD_INIT_LOG(ERR, "Failed to init MAC: %d", ret);
5038 		goto err_mac_init;
5039 	}
5040 
5041 	ret = hns3_init_mgr_tbl(hw);
5042 	if (ret) {
5043 		PMD_INIT_LOG(ERR, "Failed to init manager table: %d", ret);
5044 		goto err_mac_init;
5045 	}
5046 
5047 	ret = hns3_promisc_init(hw);
5048 	if (ret) {
5049 		PMD_INIT_LOG(ERR, "Failed to init promisc: %d",
5050 			     ret);
5051 		goto err_mac_init;
5052 	}
5053 
5054 	ret = hns3_init_vlan_config(hns);
5055 	if (ret) {
5056 		PMD_INIT_LOG(ERR, "Failed to init vlan: %d", ret);
5057 		goto err_mac_init;
5058 	}
5059 
5060 	ret = hns3_dcb_init(hw);
5061 	if (ret) {
5062 		PMD_INIT_LOG(ERR, "Failed to init dcb: %d", ret);
5063 		goto err_mac_init;
5064 	}
5065 
5066 	ret = hns3_init_fd_config(hns);
5067 	if (ret) {
5068 		PMD_INIT_LOG(ERR, "Failed to init flow director: %d", ret);
5069 		goto err_mac_init;
5070 	}
5071 
5072 	ret = hns3_config_tso(hw, HNS3_TSO_MSS_MIN, HNS3_TSO_MSS_MAX);
5073 	if (ret) {
5074 		PMD_INIT_LOG(ERR, "Failed to config tso: %d", ret);
5075 		goto err_mac_init;
5076 	}
5077 
5078 	ret = hns3_config_gro(hw, false);
5079 	if (ret) {
5080 		PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
5081 		goto err_mac_init;
5082 	}
5083 
5084 	/*
5085 	 * In the initialization clearing the all hardware mapping relationship
5086 	 * configurations between queues and interrupt vectors is needed, so
5087 	 * some error caused by the residual configurations, such as the
5088 	 * unexpected interrupt, can be avoid.
5089 	 */
5090 	ret = hns3_init_ring_with_vector(hw);
5091 	if (ret) {
5092 		PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
5093 		goto err_mac_init;
5094 	}
5095 
5096 	return 0;
5097 
5098 err_mac_init:
5099 	hns3_uninit_umv_space(hw);
5100 	return ret;
5101 }
5102 
5103 static int
5104 hns3_clear_hw(struct hns3_hw *hw)
5105 {
5106 	struct hns3_cmd_desc desc;
5107 	int ret;
5108 
5109 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_HW_STATE, false);
5110 
5111 	ret = hns3_cmd_send(hw, &desc, 1);
5112 	if (ret && ret != -EOPNOTSUPP)
5113 		return ret;
5114 
5115 	return 0;
5116 }
5117 
5118 static void
5119 hns3_config_all_msix_error(struct hns3_hw *hw, bool enable)
5120 {
5121 	uint32_t val;
5122 
5123 	/*
5124 	 * The new firmware support report more hardware error types by
5125 	 * msix mode. These errors are defined as RAS errors in hardware
5126 	 * and belong to a different type from the MSI-x errors processed
5127 	 * by the network driver.
5128 	 *
5129 	 * Network driver should open the new error report on initialization.
5130 	 */
5131 	val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
5132 	hns3_set_bit(val, HNS3_VECTOR0_ALL_MSIX_ERR_B, enable ? 1 : 0);
5133 	hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, val);
5134 }
5135 
5136 static uint32_t
5137 hns3_set_firber_default_support_speed(struct hns3_hw *hw)
5138 {
5139 	struct hns3_mac *mac = &hw->mac;
5140 
5141 	switch (mac->link_speed) {
5142 	case ETH_SPEED_NUM_1G:
5143 		return HNS3_FIBER_LINK_SPEED_1G_BIT;
5144 	case ETH_SPEED_NUM_10G:
5145 		return HNS3_FIBER_LINK_SPEED_10G_BIT;
5146 	case ETH_SPEED_NUM_25G:
5147 		return HNS3_FIBER_LINK_SPEED_25G_BIT;
5148 	case ETH_SPEED_NUM_40G:
5149 		return HNS3_FIBER_LINK_SPEED_40G_BIT;
5150 	case ETH_SPEED_NUM_50G:
5151 		return HNS3_FIBER_LINK_SPEED_50G_BIT;
5152 	case ETH_SPEED_NUM_100G:
5153 		return HNS3_FIBER_LINK_SPEED_100G_BIT;
5154 	case ETH_SPEED_NUM_200G:
5155 		return HNS3_FIBER_LINK_SPEED_200G_BIT;
5156 	default:
5157 		hns3_warn(hw, "invalid speed %u Mbps.", mac->link_speed);
5158 		return 0;
5159 	}
5160 }
5161 
5162 /*
5163  * Validity of supported_speed for firber and copper media type can be
5164  * guaranteed by the following policy:
5165  * Copper:
5166  *       Although the initialization of the phy in the firmware may not be
5167  *       completed, the firmware can guarantees that the supported_speed is
5168  *       an valid value.
5169  * Firber:
5170  *       If the version of firmware supports the acitive query way of the
5171  *       HNS3_OPC_GET_SFP_INFO opcode, the supported_speed can be obtained
5172  *       through it. If unsupported, use the SFP's speed as the value of the
5173  *       supported_speed.
5174  */
5175 static int
5176 hns3_get_port_supported_speed(struct rte_eth_dev *eth_dev)
5177 {
5178 	struct hns3_adapter *hns = eth_dev->data->dev_private;
5179 	struct hns3_hw *hw = &hns->hw;
5180 	struct hns3_mac *mac = &hw->mac;
5181 	int ret;
5182 
5183 	ret = hns3_update_link_info(eth_dev);
5184 	if (ret)
5185 		return ret;
5186 
5187 	if (mac->media_type == HNS3_MEDIA_TYPE_FIBER) {
5188 		/*
5189 		 * Some firmware does not support the report of supported_speed,
5190 		 * and only report the effective speed of SFP. In this case, it
5191 		 * is necessary to use the SFP's speed as the supported_speed.
5192 		 */
5193 		if (mac->supported_speed == 0)
5194 			mac->supported_speed =
5195 				hns3_set_firber_default_support_speed(hw);
5196 	}
5197 
5198 	return 0;
5199 }
5200 
5201 static void
5202 hns3_get_fc_autoneg_capability(struct hns3_adapter *hns)
5203 {
5204 	struct hns3_mac *mac = &hns->hw.mac;
5205 
5206 	if (mac->media_type == HNS3_MEDIA_TYPE_COPPER) {
5207 		hns->pf.support_fc_autoneg = true;
5208 		return;
5209 	}
5210 
5211 	/*
5212 	 * Flow control auto-negotiation requires the cooperation of the driver
5213 	 * and firmware. Currently, the optical port does not support flow
5214 	 * control auto-negotiation.
5215 	 */
5216 	hns->pf.support_fc_autoneg = false;
5217 }
5218 
5219 static int
5220 hns3_init_pf(struct rte_eth_dev *eth_dev)
5221 {
5222 	struct rte_device *dev = eth_dev->device;
5223 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
5224 	struct hns3_adapter *hns = eth_dev->data->dev_private;
5225 	struct hns3_hw *hw = &hns->hw;
5226 	int ret;
5227 
5228 	PMD_INIT_FUNC_TRACE();
5229 
5230 	/* Get hardware io base address from pcie BAR2 IO space */
5231 	hw->io_base = pci_dev->mem_resource[2].addr;
5232 
5233 	/* Firmware command queue initialize */
5234 	ret = hns3_cmd_init_queue(hw);
5235 	if (ret) {
5236 		PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
5237 		goto err_cmd_init_queue;
5238 	}
5239 
5240 	hns3_clear_all_event_cause(hw);
5241 
5242 	/* Firmware command initialize */
5243 	ret = hns3_cmd_init(hw);
5244 	if (ret) {
5245 		PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
5246 		goto err_cmd_init;
5247 	}
5248 
5249 	hns3_tx_push_init(eth_dev);
5250 
5251 	/*
5252 	 * To ensure that the hardware environment is clean during
5253 	 * initialization, the driver actively clear the hardware environment
5254 	 * during initialization, including PF and corresponding VFs' vlan, mac,
5255 	 * flow table configurations, etc.
5256 	 */
5257 	ret = hns3_clear_hw(hw);
5258 	if (ret) {
5259 		PMD_INIT_LOG(ERR, "failed to clear hardware: %d", ret);
5260 		goto err_cmd_init;
5261 	}
5262 
5263 	/* Hardware statistics of imissed registers cleared. */
5264 	ret = hns3_update_imissed_stats(hw, true);
5265 	if (ret) {
5266 		hns3_err(hw, "clear imissed stats failed, ret = %d", ret);
5267 		goto err_cmd_init;
5268 	}
5269 
5270 	hns3_config_all_msix_error(hw, true);
5271 
5272 	ret = rte_intr_callback_register(&pci_dev->intr_handle,
5273 					 hns3_interrupt_handler,
5274 					 eth_dev);
5275 	if (ret) {
5276 		PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
5277 		goto err_intr_callback_register;
5278 	}
5279 
5280 	ret = hns3_ptp_init(hw);
5281 	if (ret)
5282 		goto err_get_config;
5283 
5284 	/* Enable interrupt */
5285 	rte_intr_enable(&pci_dev->intr_handle);
5286 	hns3_pf_enable_irq0(hw);
5287 
5288 	/* Get configuration */
5289 	ret = hns3_get_configuration(hw);
5290 	if (ret) {
5291 		PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
5292 		goto err_get_config;
5293 	}
5294 
5295 	ret = hns3_tqp_stats_init(hw);
5296 	if (ret)
5297 		goto err_get_config;
5298 
5299 	ret = hns3_init_hardware(hns);
5300 	if (ret) {
5301 		PMD_INIT_LOG(ERR, "Failed to init hardware: %d", ret);
5302 		goto err_init_hw;
5303 	}
5304 
5305 	/* Initialize flow director filter list & hash */
5306 	ret = hns3_fdir_filter_init(hns);
5307 	if (ret) {
5308 		PMD_INIT_LOG(ERR, "Failed to alloc hashmap for fdir: %d", ret);
5309 		goto err_fdir;
5310 	}
5311 
5312 	hns3_rss_set_default_args(hw);
5313 
5314 	ret = hns3_enable_hw_error_intr(hns, true);
5315 	if (ret) {
5316 		PMD_INIT_LOG(ERR, "fail to enable hw error interrupts: %d",
5317 			     ret);
5318 		goto err_enable_intr;
5319 	}
5320 
5321 	ret = hns3_get_port_supported_speed(eth_dev);
5322 	if (ret) {
5323 		PMD_INIT_LOG(ERR, "failed to get speed capabilities supported "
5324 			     "by device, ret = %d.", ret);
5325 		goto err_supported_speed;
5326 	}
5327 
5328 	hns3_get_fc_autoneg_capability(hns);
5329 
5330 	hns3_tm_conf_init(eth_dev);
5331 
5332 	return 0;
5333 
5334 err_supported_speed:
5335 	(void)hns3_enable_hw_error_intr(hns, false);
5336 err_enable_intr:
5337 	hns3_fdir_filter_uninit(hns);
5338 err_fdir:
5339 	hns3_uninit_umv_space(hw);
5340 err_init_hw:
5341 	hns3_tqp_stats_uninit(hw);
5342 err_get_config:
5343 	hns3_pf_disable_irq0(hw);
5344 	rte_intr_disable(&pci_dev->intr_handle);
5345 	hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
5346 			     eth_dev);
5347 err_intr_callback_register:
5348 err_cmd_init:
5349 	hns3_cmd_uninit(hw);
5350 	hns3_cmd_destroy_queue(hw);
5351 err_cmd_init_queue:
5352 	hw->io_base = NULL;
5353 
5354 	return ret;
5355 }
5356 
5357 static void
5358 hns3_uninit_pf(struct rte_eth_dev *eth_dev)
5359 {
5360 	struct hns3_adapter *hns = eth_dev->data->dev_private;
5361 	struct rte_device *dev = eth_dev->device;
5362 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
5363 	struct hns3_hw *hw = &hns->hw;
5364 
5365 	PMD_INIT_FUNC_TRACE();
5366 
5367 	hns3_tm_conf_uninit(eth_dev);
5368 	hns3_enable_hw_error_intr(hns, false);
5369 	hns3_rss_uninit(hns);
5370 	(void)hns3_config_gro(hw, false);
5371 	hns3_promisc_uninit(hw);
5372 	hns3_flow_uninit(eth_dev);
5373 	hns3_fdir_filter_uninit(hns);
5374 	hns3_uninit_umv_space(hw);
5375 	hns3_tqp_stats_uninit(hw);
5376 	hns3_config_mac_tnl_int(hw, false);
5377 	hns3_pf_disable_irq0(hw);
5378 	rte_intr_disable(&pci_dev->intr_handle);
5379 	hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
5380 			     eth_dev);
5381 	hns3_config_all_msix_error(hw, false);
5382 	hns3_cmd_uninit(hw);
5383 	hns3_cmd_destroy_queue(hw);
5384 	hw->io_base = NULL;
5385 }
5386 
5387 static uint32_t
5388 hns3_convert_link_speeds2bitmap_copper(uint32_t link_speeds)
5389 {
5390 	uint32_t speed_bit;
5391 
5392 	switch (link_speeds & ~ETH_LINK_SPEED_FIXED) {
5393 	case ETH_LINK_SPEED_10M:
5394 		speed_bit = HNS3_PHY_LINK_SPEED_10M_BIT;
5395 		break;
5396 	case ETH_LINK_SPEED_10M_HD:
5397 		speed_bit = HNS3_PHY_LINK_SPEED_10M_HD_BIT;
5398 		break;
5399 	case ETH_LINK_SPEED_100M:
5400 		speed_bit = HNS3_PHY_LINK_SPEED_100M_BIT;
5401 		break;
5402 	case ETH_LINK_SPEED_100M_HD:
5403 		speed_bit = HNS3_PHY_LINK_SPEED_100M_HD_BIT;
5404 		break;
5405 	case ETH_LINK_SPEED_1G:
5406 		speed_bit = HNS3_PHY_LINK_SPEED_1000M_BIT;
5407 		break;
5408 	default:
5409 		speed_bit = 0;
5410 		break;
5411 	}
5412 
5413 	return speed_bit;
5414 }
5415 
5416 static uint32_t
5417 hns3_convert_link_speeds2bitmap_fiber(uint32_t link_speeds)
5418 {
5419 	uint32_t speed_bit;
5420 
5421 	switch (link_speeds & ~ETH_LINK_SPEED_FIXED) {
5422 	case ETH_LINK_SPEED_1G:
5423 		speed_bit = HNS3_FIBER_LINK_SPEED_1G_BIT;
5424 		break;
5425 	case ETH_LINK_SPEED_10G:
5426 		speed_bit = HNS3_FIBER_LINK_SPEED_10G_BIT;
5427 		break;
5428 	case ETH_LINK_SPEED_25G:
5429 		speed_bit = HNS3_FIBER_LINK_SPEED_25G_BIT;
5430 		break;
5431 	case ETH_LINK_SPEED_40G:
5432 		speed_bit = HNS3_FIBER_LINK_SPEED_40G_BIT;
5433 		break;
5434 	case ETH_LINK_SPEED_50G:
5435 		speed_bit = HNS3_FIBER_LINK_SPEED_50G_BIT;
5436 		break;
5437 	case ETH_LINK_SPEED_100G:
5438 		speed_bit = HNS3_FIBER_LINK_SPEED_100G_BIT;
5439 		break;
5440 	case ETH_LINK_SPEED_200G:
5441 		speed_bit = HNS3_FIBER_LINK_SPEED_200G_BIT;
5442 		break;
5443 	default:
5444 		speed_bit = 0;
5445 		break;
5446 	}
5447 
5448 	return speed_bit;
5449 }
5450 
5451 static int
5452 hns3_check_port_speed(struct hns3_hw *hw, uint32_t link_speeds)
5453 {
5454 	struct hns3_mac *mac = &hw->mac;
5455 	uint32_t supported_speed = mac->supported_speed;
5456 	uint32_t speed_bit = 0;
5457 
5458 	if (mac->media_type == HNS3_MEDIA_TYPE_COPPER)
5459 		speed_bit = hns3_convert_link_speeds2bitmap_copper(link_speeds);
5460 	else if (mac->media_type == HNS3_MEDIA_TYPE_FIBER)
5461 		speed_bit = hns3_convert_link_speeds2bitmap_fiber(link_speeds);
5462 
5463 	if (!(speed_bit & supported_speed)) {
5464 		hns3_err(hw, "link_speeds(0x%x) exceeds the supported speed capability or is incorrect.",
5465 			 link_speeds);
5466 		return -EINVAL;
5467 	}
5468 
5469 	return 0;
5470 }
5471 
5472 static inline uint32_t
5473 hns3_get_link_speed(uint32_t link_speeds)
5474 {
5475 	uint32_t speed = ETH_SPEED_NUM_NONE;
5476 
5477 	if (link_speeds & ETH_LINK_SPEED_10M ||
5478 	    link_speeds & ETH_LINK_SPEED_10M_HD)
5479 		speed = ETH_SPEED_NUM_10M;
5480 	if (link_speeds & ETH_LINK_SPEED_100M ||
5481 	    link_speeds & ETH_LINK_SPEED_100M_HD)
5482 		speed = ETH_SPEED_NUM_100M;
5483 	if (link_speeds & ETH_LINK_SPEED_1G)
5484 		speed = ETH_SPEED_NUM_1G;
5485 	if (link_speeds & ETH_LINK_SPEED_10G)
5486 		speed = ETH_SPEED_NUM_10G;
5487 	if (link_speeds & ETH_LINK_SPEED_25G)
5488 		speed = ETH_SPEED_NUM_25G;
5489 	if (link_speeds & ETH_LINK_SPEED_40G)
5490 		speed = ETH_SPEED_NUM_40G;
5491 	if (link_speeds & ETH_LINK_SPEED_50G)
5492 		speed = ETH_SPEED_NUM_50G;
5493 	if (link_speeds & ETH_LINK_SPEED_100G)
5494 		speed = ETH_SPEED_NUM_100G;
5495 	if (link_speeds & ETH_LINK_SPEED_200G)
5496 		speed = ETH_SPEED_NUM_200G;
5497 
5498 	return speed;
5499 }
5500 
5501 static uint8_t
5502 hns3_get_link_duplex(uint32_t link_speeds)
5503 {
5504 	if ((link_speeds & ETH_LINK_SPEED_10M_HD) ||
5505 	    (link_speeds & ETH_LINK_SPEED_100M_HD))
5506 		return ETH_LINK_HALF_DUPLEX;
5507 	else
5508 		return ETH_LINK_FULL_DUPLEX;
5509 }
5510 
5511 static int
5512 hns3_set_copper_port_link_speed(struct hns3_hw *hw,
5513 				struct hns3_set_link_speed_cfg *cfg)
5514 {
5515 	struct hns3_cmd_desc desc[HNS3_PHY_PARAM_CFG_BD_NUM];
5516 	struct hns3_phy_params_bd0_cmd *req;
5517 	uint16_t i;
5518 
5519 	for (i = 0; i < HNS3_PHY_PARAM_CFG_BD_NUM - 1; i++) {
5520 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG,
5521 					  false);
5522 		desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
5523 	}
5524 	hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG, false);
5525 	req = (struct hns3_phy_params_bd0_cmd *)desc[0].data;
5526 	req->autoneg = cfg->autoneg;
5527 
5528 	/*
5529 	 * The full speed capability is used to negotiate when
5530 	 * auto-negotiation is enabled.
5531 	 */
5532 	if (cfg->autoneg) {
5533 		req->advertising = HNS3_PHY_LINK_SPEED_10M_BIT |
5534 				    HNS3_PHY_LINK_SPEED_10M_HD_BIT |
5535 				    HNS3_PHY_LINK_SPEED_100M_BIT |
5536 				    HNS3_PHY_LINK_SPEED_100M_HD_BIT |
5537 				    HNS3_PHY_LINK_SPEED_1000M_BIT;
5538 	} else {
5539 		req->speed = cfg->speed;
5540 		req->duplex = cfg->duplex;
5541 	}
5542 
5543 	return hns3_cmd_send(hw, desc, HNS3_PHY_PARAM_CFG_BD_NUM);
5544 }
5545 
5546 static int
5547 hns3_set_autoneg(struct hns3_hw *hw, bool enable)
5548 {
5549 	struct hns3_config_auto_neg_cmd *req;
5550 	struct hns3_cmd_desc desc;
5551 	uint32_t flag = 0;
5552 	int ret;
5553 
5554 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_AN_MODE, false);
5555 
5556 	req = (struct hns3_config_auto_neg_cmd *)desc.data;
5557 	if (enable)
5558 		hns3_set_bit(flag, HNS3_MAC_CFG_AN_EN_B, 1);
5559 	req->cfg_an_cmd_flag = rte_cpu_to_le_32(flag);
5560 
5561 	ret = hns3_cmd_send(hw, &desc, 1);
5562 	if (ret)
5563 		hns3_err(hw, "autoneg set cmd failed, ret = %d.", ret);
5564 
5565 	return ret;
5566 }
5567 
5568 static int
5569 hns3_set_fiber_port_link_speed(struct hns3_hw *hw,
5570 			       struct hns3_set_link_speed_cfg *cfg)
5571 {
5572 	int ret;
5573 
5574 	if (hw->mac.support_autoneg) {
5575 		ret = hns3_set_autoneg(hw, cfg->autoneg);
5576 		if (ret) {
5577 			hns3_err(hw, "failed to configure auto-negotiation.");
5578 			return ret;
5579 		}
5580 
5581 		/*
5582 		 * To enable auto-negotiation, we only need to open the switch
5583 		 * of auto-negotiation, then firmware sets all speed
5584 		 * capabilities.
5585 		 */
5586 		if (cfg->autoneg)
5587 			return 0;
5588 	}
5589 
5590 	/*
5591 	 * Some hardware doesn't support auto-negotiation, but users may not
5592 	 * configure link_speeds (default 0), which means auto-negotiation.
5593 	 * In this case, a warning message need to be printed, instead of
5594 	 * an error.
5595 	 */
5596 	if (cfg->autoneg) {
5597 		hns3_warn(hw, "auto-negotiation is not supported, use default fixed speed!");
5598 		return 0;
5599 	}
5600 
5601 	return hns3_cfg_mac_speed_dup(hw, cfg->speed, cfg->duplex);
5602 }
5603 
5604 static int
5605 hns3_set_port_link_speed(struct hns3_hw *hw,
5606 			 struct hns3_set_link_speed_cfg *cfg)
5607 {
5608 	int ret;
5609 
5610 	if (hw->mac.media_type == HNS3_MEDIA_TYPE_COPPER) {
5611 #if defined(RTE_HNS3_ONLY_1630_FPGA)
5612 		struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw);
5613 		if (pf->is_tmp_phy)
5614 			return 0;
5615 #endif
5616 
5617 		ret = hns3_set_copper_port_link_speed(hw, cfg);
5618 		if (ret) {
5619 			hns3_err(hw, "failed to set copper port link speed,"
5620 				 "ret = %d.", ret);
5621 			return ret;
5622 		}
5623 	} else if (hw->mac.media_type == HNS3_MEDIA_TYPE_FIBER) {
5624 		ret = hns3_set_fiber_port_link_speed(hw, cfg);
5625 		if (ret) {
5626 			hns3_err(hw, "failed to set fiber port link speed,"
5627 				 "ret = %d.", ret);
5628 			return ret;
5629 		}
5630 	}
5631 
5632 	return 0;
5633 }
5634 
5635 static int
5636 hns3_apply_link_speed(struct hns3_hw *hw)
5637 {
5638 	struct rte_eth_conf *conf = &hw->data->dev_conf;
5639 	struct hns3_set_link_speed_cfg cfg;
5640 
5641 	memset(&cfg, 0, sizeof(struct hns3_set_link_speed_cfg));
5642 	cfg.autoneg = (conf->link_speeds == ETH_LINK_SPEED_AUTONEG) ?
5643 			ETH_LINK_AUTONEG : ETH_LINK_FIXED;
5644 	if (cfg.autoneg != ETH_LINK_AUTONEG) {
5645 		cfg.speed = hns3_get_link_speed(conf->link_speeds);
5646 		cfg.duplex = hns3_get_link_duplex(conf->link_speeds);
5647 	}
5648 
5649 	return hns3_set_port_link_speed(hw, &cfg);
5650 }
5651 
5652 static int
5653 hns3_do_start(struct hns3_adapter *hns, bool reset_queue)
5654 {
5655 	struct hns3_hw *hw = &hns->hw;
5656 	bool link_en;
5657 	int ret;
5658 
5659 	ret = hns3_update_queue_map_configure(hns);
5660 	if (ret) {
5661 		hns3_err(hw, "failed to update queue mapping configuration, ret = %d",
5662 			 ret);
5663 		return ret;
5664 	}
5665 
5666 	/* Note: hns3_tm_conf_update must be called after configuring DCB. */
5667 	ret = hns3_tm_conf_update(hw);
5668 	if (ret) {
5669 		PMD_INIT_LOG(ERR, "failed to update tm conf, ret = %d.", ret);
5670 		return ret;
5671 	}
5672 
5673 	hns3_enable_rxd_adv_layout(hw);
5674 
5675 	ret = hns3_init_queues(hns, reset_queue);
5676 	if (ret) {
5677 		PMD_INIT_LOG(ERR, "failed to init queues, ret = %d.", ret);
5678 		return ret;
5679 	}
5680 
5681 	link_en = hw->set_link_down ? false : true;
5682 	ret = hns3_cfg_mac_mode(hw, link_en);
5683 	if (ret) {
5684 		PMD_INIT_LOG(ERR, "failed to enable MAC, ret = %d", ret);
5685 		goto err_config_mac_mode;
5686 	}
5687 
5688 	ret = hns3_apply_link_speed(hw);
5689 	if (ret)
5690 		goto err_set_link_speed;
5691 
5692 	return 0;
5693 
5694 err_set_link_speed:
5695 	(void)hns3_cfg_mac_mode(hw, false);
5696 
5697 err_config_mac_mode:
5698 	hns3_dev_release_mbufs(hns);
5699 	/*
5700 	 * Here is exception handling, hns3_reset_all_tqps will have the
5701 	 * corresponding error message if it is handled incorrectly, so it is
5702 	 * not necessary to check hns3_reset_all_tqps return value, here keep
5703 	 * ret as the error code causing the exception.
5704 	 */
5705 	(void)hns3_reset_all_tqps(hns);
5706 	return ret;
5707 }
5708 
5709 static int
5710 hns3_map_rx_interrupt(struct rte_eth_dev *dev)
5711 {
5712 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5713 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5714 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5715 	uint16_t base = RTE_INTR_VEC_ZERO_OFFSET;
5716 	uint16_t vec = RTE_INTR_VEC_ZERO_OFFSET;
5717 	uint32_t intr_vector;
5718 	uint16_t q_id;
5719 	int ret;
5720 
5721 	/*
5722 	 * hns3 needs a separate interrupt to be used as event interrupt which
5723 	 * could not be shared with task queue pair, so KERNEL drivers need
5724 	 * support multiple interrupt vectors.
5725 	 */
5726 	if (dev->data->dev_conf.intr_conf.rxq == 0 ||
5727 	    !rte_intr_cap_multiple(intr_handle))
5728 		return 0;
5729 
5730 	rte_intr_disable(intr_handle);
5731 	intr_vector = hw->used_rx_queues;
5732 	/* creates event fd for each intr vector when MSIX is used */
5733 	if (rte_intr_efd_enable(intr_handle, intr_vector))
5734 		return -EINVAL;
5735 
5736 	if (intr_handle->intr_vec == NULL) {
5737 		intr_handle->intr_vec =
5738 			rte_zmalloc("intr_vec",
5739 				    hw->used_rx_queues * sizeof(int), 0);
5740 		if (intr_handle->intr_vec == NULL) {
5741 			hns3_err(hw, "failed to allocate %u rx_queues intr_vec",
5742 					hw->used_rx_queues);
5743 			ret = -ENOMEM;
5744 			goto alloc_intr_vec_error;
5745 		}
5746 	}
5747 
5748 	if (rte_intr_allow_others(intr_handle)) {
5749 		vec = RTE_INTR_VEC_RXTX_OFFSET;
5750 		base = RTE_INTR_VEC_RXTX_OFFSET;
5751 	}
5752 
5753 	for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
5754 		ret = hns3_bind_ring_with_vector(hw, vec, true,
5755 						 HNS3_RING_TYPE_RX, q_id);
5756 		if (ret)
5757 			goto bind_vector_error;
5758 		intr_handle->intr_vec[q_id] = vec;
5759 		/*
5760 		 * If there are not enough efds (e.g. not enough interrupt),
5761 		 * remaining queues will be bond to the last interrupt.
5762 		 */
5763 		if (vec < base + intr_handle->nb_efd - 1)
5764 			vec++;
5765 	}
5766 	rte_intr_enable(intr_handle);
5767 	return 0;
5768 
5769 bind_vector_error:
5770 	rte_free(intr_handle->intr_vec);
5771 	intr_handle->intr_vec = NULL;
5772 alloc_intr_vec_error:
5773 	rte_intr_efd_disable(intr_handle);
5774 	return ret;
5775 }
5776 
5777 static int
5778 hns3_restore_rx_interrupt(struct hns3_hw *hw)
5779 {
5780 	struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
5781 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5782 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5783 	uint16_t q_id;
5784 	int ret;
5785 
5786 	if (dev->data->dev_conf.intr_conf.rxq == 0)
5787 		return 0;
5788 
5789 	if (rte_intr_dp_is_en(intr_handle)) {
5790 		for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
5791 			ret = hns3_bind_ring_with_vector(hw,
5792 					intr_handle->intr_vec[q_id], true,
5793 					HNS3_RING_TYPE_RX, q_id);
5794 			if (ret)
5795 				return ret;
5796 		}
5797 	}
5798 
5799 	return 0;
5800 }
5801 
5802 static void
5803 hns3_restore_filter(struct rte_eth_dev *dev)
5804 {
5805 	hns3_restore_rss_filter(dev);
5806 }
5807 
5808 static int
5809 hns3_dev_start(struct rte_eth_dev *dev)
5810 {
5811 	struct hns3_adapter *hns = dev->data->dev_private;
5812 	struct hns3_hw *hw = &hns->hw;
5813 	bool old_state = hw->set_link_down;
5814 	int ret;
5815 
5816 	PMD_INIT_FUNC_TRACE();
5817 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED))
5818 		return -EBUSY;
5819 
5820 	rte_spinlock_lock(&hw->lock);
5821 	hw->adapter_state = HNS3_NIC_STARTING;
5822 
5823 	/*
5824 	 * If the dev_set_link_down() API has been called, the "set_link_down"
5825 	 * flag can be cleared by dev_start() API. In addition, the flag should
5826 	 * also be cleared before calling hns3_do_start() so that MAC can be
5827 	 * enabled in dev_start stage.
5828 	 */
5829 	hw->set_link_down = false;
5830 	ret = hns3_do_start(hns, true);
5831 	if (ret)
5832 		goto do_start_fail;
5833 
5834 	ret = hns3_map_rx_interrupt(dev);
5835 	if (ret)
5836 		goto map_rx_inter_err;
5837 
5838 	/*
5839 	 * There are three register used to control the status of a TQP
5840 	 * (contains a pair of Tx queue and Rx queue) in the new version network
5841 	 * engine. One is used to control the enabling of Tx queue, the other is
5842 	 * used to control the enabling of Rx queue, and the last is the master
5843 	 * switch used to control the enabling of the tqp. The Tx register and
5844 	 * TQP register must be enabled at the same time to enable a Tx queue.
5845 	 * The same applies to the Rx queue. For the older network engine, this
5846 	 * function only refresh the enabled flag, and it is used to update the
5847 	 * status of queue in the dpdk framework.
5848 	 */
5849 	ret = hns3_start_all_txqs(dev);
5850 	if (ret)
5851 		goto map_rx_inter_err;
5852 
5853 	ret = hns3_start_all_rxqs(dev);
5854 	if (ret)
5855 		goto start_all_rxqs_fail;
5856 
5857 	hw->adapter_state = HNS3_NIC_STARTED;
5858 	rte_spinlock_unlock(&hw->lock);
5859 
5860 	hns3_rx_scattered_calc(dev);
5861 	hns3_set_rxtx_function(dev);
5862 	hns3_mp_req_start_rxtx(dev);
5863 
5864 	hns3_restore_filter(dev);
5865 
5866 	/* Enable interrupt of all rx queues before enabling queues */
5867 	hns3_dev_all_rx_queue_intr_enable(hw, true);
5868 
5869 	/*
5870 	 * After finished the initialization, enable tqps to receive/transmit
5871 	 * packets and refresh all queue status.
5872 	 */
5873 	hns3_start_tqps(hw);
5874 
5875 	hns3_tm_dev_start_proc(hw);
5876 
5877 	if (dev->data->dev_conf.intr_conf.lsc != 0)
5878 		hns3_dev_link_update(dev, 0);
5879 	rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, dev);
5880 
5881 	hns3_info(hw, "hns3 dev start successful!");
5882 
5883 	return 0;
5884 
5885 start_all_rxqs_fail:
5886 	hns3_stop_all_txqs(dev);
5887 map_rx_inter_err:
5888 	(void)hns3_do_stop(hns);
5889 do_start_fail:
5890 	hw->set_link_down = old_state;
5891 	hw->adapter_state = HNS3_NIC_CONFIGURED;
5892 	rte_spinlock_unlock(&hw->lock);
5893 
5894 	return ret;
5895 }
5896 
5897 static int
5898 hns3_do_stop(struct hns3_adapter *hns)
5899 {
5900 	struct hns3_hw *hw = &hns->hw;
5901 	int ret;
5902 
5903 	/*
5904 	 * The "hns3_do_stop" function will also be called by .stop_service to
5905 	 * prepare reset. At the time of global or IMP reset, the command cannot
5906 	 * be sent to stop the tx/rx queues. The mbuf in Tx/Rx queues may be
5907 	 * accessed during the reset process. So the mbuf can not be released
5908 	 * during reset and is required to be released after the reset is
5909 	 * completed.
5910 	 */
5911 	if (__atomic_load_n(&hw->reset.resetting,  __ATOMIC_RELAXED) == 0)
5912 		hns3_dev_release_mbufs(hns);
5913 
5914 	ret = hns3_cfg_mac_mode(hw, false);
5915 	if (ret)
5916 		return ret;
5917 	hw->mac.link_status = ETH_LINK_DOWN;
5918 
5919 	if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0) {
5920 		hns3_configure_all_mac_addr(hns, true);
5921 		ret = hns3_reset_all_tqps(hns);
5922 		if (ret) {
5923 			hns3_err(hw, "failed to reset all queues ret = %d.",
5924 				 ret);
5925 			return ret;
5926 		}
5927 	}
5928 
5929 	return 0;
5930 }
5931 
5932 static void
5933 hns3_unmap_rx_interrupt(struct rte_eth_dev *dev)
5934 {
5935 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5936 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5937 	struct hns3_adapter *hns = dev->data->dev_private;
5938 	struct hns3_hw *hw = &hns->hw;
5939 	uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
5940 	uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
5941 	uint16_t q_id;
5942 
5943 	if (dev->data->dev_conf.intr_conf.rxq == 0)
5944 		return;
5945 
5946 	/* unmap the ring with vector */
5947 	if (rte_intr_allow_others(intr_handle)) {
5948 		vec = RTE_INTR_VEC_RXTX_OFFSET;
5949 		base = RTE_INTR_VEC_RXTX_OFFSET;
5950 	}
5951 	if (rte_intr_dp_is_en(intr_handle)) {
5952 		for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
5953 			(void)hns3_bind_ring_with_vector(hw, vec, false,
5954 							 HNS3_RING_TYPE_RX,
5955 							 q_id);
5956 			if (vec < base + intr_handle->nb_efd - 1)
5957 				vec++;
5958 		}
5959 	}
5960 	/* Clean datapath event and queue/vec mapping */
5961 	rte_intr_efd_disable(intr_handle);
5962 	if (intr_handle->intr_vec) {
5963 		rte_free(intr_handle->intr_vec);
5964 		intr_handle->intr_vec = NULL;
5965 	}
5966 }
5967 
5968 static int
5969 hns3_dev_stop(struct rte_eth_dev *dev)
5970 {
5971 	struct hns3_adapter *hns = dev->data->dev_private;
5972 	struct hns3_hw *hw = &hns->hw;
5973 
5974 	PMD_INIT_FUNC_TRACE();
5975 	dev->data->dev_started = 0;
5976 
5977 	hw->adapter_state = HNS3_NIC_STOPPING;
5978 	hns3_set_rxtx_function(dev);
5979 	rte_wmb();
5980 	/* Disable datapath on secondary process. */
5981 	hns3_mp_req_stop_rxtx(dev);
5982 	/* Prevent crashes when queues are still in use. */
5983 	rte_delay_ms(hw->cfg_max_queues);
5984 
5985 	rte_spinlock_lock(&hw->lock);
5986 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
5987 		hns3_tm_dev_stop_proc(hw);
5988 		hns3_config_mac_tnl_int(hw, false);
5989 		hns3_stop_tqps(hw);
5990 		hns3_do_stop(hns);
5991 		hns3_unmap_rx_interrupt(dev);
5992 		hw->adapter_state = HNS3_NIC_CONFIGURED;
5993 	}
5994 	hns3_rx_scattered_reset(dev);
5995 	rte_eal_alarm_cancel(hns3_service_handler, dev);
5996 	hns3_stop_report_lse(dev);
5997 	rte_spinlock_unlock(&hw->lock);
5998 
5999 	return 0;
6000 }
6001 
6002 static int
6003 hns3_dev_close(struct rte_eth_dev *eth_dev)
6004 {
6005 	struct hns3_adapter *hns = eth_dev->data->dev_private;
6006 	struct hns3_hw *hw = &hns->hw;
6007 	int ret = 0;
6008 
6009 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
6010 		return 0;
6011 
6012 	if (hw->adapter_state == HNS3_NIC_STARTED)
6013 		ret = hns3_dev_stop(eth_dev);
6014 
6015 	hw->adapter_state = HNS3_NIC_CLOSING;
6016 	hns3_reset_abort(hns);
6017 	hw->adapter_state = HNS3_NIC_CLOSED;
6018 
6019 	hns3_configure_all_mc_mac_addr(hns, true);
6020 	hns3_remove_all_vlan_table(hns);
6021 	hns3_vlan_txvlan_cfg(hns, HNS3_PORT_BASE_VLAN_DISABLE, 0);
6022 	hns3_uninit_pf(eth_dev);
6023 	hns3_free_all_queues(eth_dev);
6024 	rte_free(hw->reset.wait_data);
6025 	hns3_mp_uninit_primary();
6026 	hns3_warn(hw, "Close port %u finished", hw->data->port_id);
6027 
6028 	return ret;
6029 }
6030 
6031 static void
6032 hns3_get_autoneg_rxtx_pause_copper(struct hns3_hw *hw, bool *rx_pause,
6033 				   bool *tx_pause)
6034 {
6035 	struct hns3_mac *mac = &hw->mac;
6036 	uint32_t advertising = mac->advertising;
6037 	uint32_t lp_advertising = mac->lp_advertising;
6038 	*rx_pause = false;
6039 	*tx_pause = false;
6040 
6041 	if (advertising & lp_advertising & HNS3_PHY_LINK_MODE_PAUSE_BIT) {
6042 		*rx_pause = true;
6043 		*tx_pause = true;
6044 	} else if (advertising & lp_advertising &
6045 		   HNS3_PHY_LINK_MODE_ASYM_PAUSE_BIT) {
6046 		if (advertising & HNS3_PHY_LINK_MODE_PAUSE_BIT)
6047 			*rx_pause = true;
6048 		else if (lp_advertising & HNS3_PHY_LINK_MODE_PAUSE_BIT)
6049 			*tx_pause = true;
6050 	}
6051 }
6052 
6053 static enum hns3_fc_mode
6054 hns3_get_autoneg_fc_mode(struct hns3_hw *hw)
6055 {
6056 	enum hns3_fc_mode current_mode;
6057 	bool rx_pause = false;
6058 	bool tx_pause = false;
6059 
6060 	switch (hw->mac.media_type) {
6061 	case HNS3_MEDIA_TYPE_COPPER:
6062 		hns3_get_autoneg_rxtx_pause_copper(hw, &rx_pause, &tx_pause);
6063 		break;
6064 
6065 	/*
6066 	 * Flow control auto-negotiation is not supported for fiber and
6067 	 * backpalne media type.
6068 	 */
6069 	case HNS3_MEDIA_TYPE_FIBER:
6070 	case HNS3_MEDIA_TYPE_BACKPLANE:
6071 		hns3_err(hw, "autoneg FC mode can't be obtained, but flow control auto-negotiation is enabled.");
6072 		current_mode = hw->requested_fc_mode;
6073 		goto out;
6074 	default:
6075 		hns3_err(hw, "autoneg FC mode can't be obtained for unknown media type(%u).",
6076 			 hw->mac.media_type);
6077 		current_mode = HNS3_FC_NONE;
6078 		goto out;
6079 	}
6080 
6081 	if (rx_pause && tx_pause)
6082 		current_mode = HNS3_FC_FULL;
6083 	else if (rx_pause)
6084 		current_mode = HNS3_FC_RX_PAUSE;
6085 	else if (tx_pause)
6086 		current_mode = HNS3_FC_TX_PAUSE;
6087 	else
6088 		current_mode = HNS3_FC_NONE;
6089 
6090 out:
6091 	return current_mode;
6092 }
6093 
6094 static enum hns3_fc_mode
6095 hns3_get_current_fc_mode(struct rte_eth_dev *dev)
6096 {
6097 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6098 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
6099 	struct hns3_mac *mac = &hw->mac;
6100 
6101 	/*
6102 	 * When the flow control mode is obtained, the device may not complete
6103 	 * auto-negotiation. It is necessary to wait for link establishment.
6104 	 */
6105 	(void)hns3_dev_link_update(dev, 1);
6106 
6107 	/*
6108 	 * If the link auto-negotiation of the nic is disabled, or the flow
6109 	 * control auto-negotiation is not supported, the forced flow control
6110 	 * mode is used.
6111 	 */
6112 	if (mac->link_autoneg == 0 || !pf->support_fc_autoneg)
6113 		return hw->requested_fc_mode;
6114 
6115 	return hns3_get_autoneg_fc_mode(hw);
6116 }
6117 
6118 static int
6119 hns3_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
6120 {
6121 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6122 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
6123 	enum hns3_fc_mode current_mode;
6124 
6125 	current_mode = hns3_get_current_fc_mode(dev);
6126 	switch (current_mode) {
6127 	case HNS3_FC_FULL:
6128 		fc_conf->mode = RTE_FC_FULL;
6129 		break;
6130 	case HNS3_FC_TX_PAUSE:
6131 		fc_conf->mode = RTE_FC_TX_PAUSE;
6132 		break;
6133 	case HNS3_FC_RX_PAUSE:
6134 		fc_conf->mode = RTE_FC_RX_PAUSE;
6135 		break;
6136 	case HNS3_FC_NONE:
6137 	default:
6138 		fc_conf->mode = RTE_FC_NONE;
6139 		break;
6140 	}
6141 
6142 	fc_conf->pause_time = pf->pause_time;
6143 	fc_conf->autoneg = pf->support_fc_autoneg ? hw->mac.link_autoneg : 0;
6144 
6145 	return 0;
6146 }
6147 
6148 static int
6149 hns3_check_fc_autoneg_valid(struct hns3_hw *hw, uint8_t autoneg)
6150 {
6151 	struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw);
6152 
6153 	if (!pf->support_fc_autoneg) {
6154 		if (autoneg != 0) {
6155 			hns3_err(hw, "unsupported fc auto-negotiation setting.");
6156 			return -EOPNOTSUPP;
6157 		}
6158 
6159 		/*
6160 		 * Flow control auto-negotiation of the NIC is not supported,
6161 		 * but other auto-negotiation features may be supported.
6162 		 */
6163 		if (autoneg != hw->mac.link_autoneg) {
6164 			hns3_err(hw, "please use 'link_speeds' in struct rte_eth_conf to disable autoneg!");
6165 			return -EOPNOTSUPP;
6166 		}
6167 
6168 		return 0;
6169 	}
6170 
6171 	/*
6172 	 * If flow control auto-negotiation of the NIC is supported, all
6173 	 * auto-negotiation features are supported.
6174 	 */
6175 	if (autoneg != hw->mac.link_autoneg) {
6176 		hns3_err(hw, "please use 'link_speeds' in struct rte_eth_conf to change autoneg!");
6177 		return -EOPNOTSUPP;
6178 	}
6179 
6180 	return 0;
6181 }
6182 
6183 static int
6184 hns3_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
6185 {
6186 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6187 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
6188 	int ret;
6189 
6190 	if (fc_conf->high_water || fc_conf->low_water ||
6191 	    fc_conf->send_xon || fc_conf->mac_ctrl_frame_fwd) {
6192 		hns3_err(hw, "Unsupported flow control settings specified, "
6193 			 "high_water(%u), low_water(%u), send_xon(%u) and "
6194 			 "mac_ctrl_frame_fwd(%u) must be set to '0'",
6195 			 fc_conf->high_water, fc_conf->low_water,
6196 			 fc_conf->send_xon, fc_conf->mac_ctrl_frame_fwd);
6197 		return -EINVAL;
6198 	}
6199 
6200 	ret = hns3_check_fc_autoneg_valid(hw, fc_conf->autoneg);
6201 	if (ret)
6202 		return ret;
6203 
6204 	if (!fc_conf->pause_time) {
6205 		hns3_err(hw, "Invalid pause time %u setting.",
6206 			 fc_conf->pause_time);
6207 		return -EINVAL;
6208 	}
6209 
6210 	if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
6211 	    hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE)) {
6212 		hns3_err(hw, "PFC is enabled. Cannot set MAC pause. "
6213 			 "current_fc_status = %d", hw->current_fc_status);
6214 		return -EOPNOTSUPP;
6215 	}
6216 
6217 	if (hw->num_tc > 1 && !pf->support_multi_tc_pause) {
6218 		hns3_err(hw, "in multi-TC scenarios, MAC pause is not supported.");
6219 		return -EOPNOTSUPP;
6220 	}
6221 
6222 	rte_spinlock_lock(&hw->lock);
6223 	ret = hns3_fc_enable(dev, fc_conf);
6224 	rte_spinlock_unlock(&hw->lock);
6225 
6226 	return ret;
6227 }
6228 
6229 static int
6230 hns3_priority_flow_ctrl_set(struct rte_eth_dev *dev,
6231 			    struct rte_eth_pfc_conf *pfc_conf)
6232 {
6233 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6234 	int ret;
6235 
6236 	if (!hns3_dev_get_support(hw, DCB)) {
6237 		hns3_err(hw, "This port does not support dcb configurations.");
6238 		return -EOPNOTSUPP;
6239 	}
6240 
6241 	if (pfc_conf->fc.high_water || pfc_conf->fc.low_water ||
6242 	    pfc_conf->fc.send_xon || pfc_conf->fc.mac_ctrl_frame_fwd) {
6243 		hns3_err(hw, "Unsupported flow control settings specified, "
6244 			 "high_water(%u), low_water(%u), send_xon(%u) and "
6245 			 "mac_ctrl_frame_fwd(%u) must be set to '0'",
6246 			 pfc_conf->fc.high_water, pfc_conf->fc.low_water,
6247 			 pfc_conf->fc.send_xon,
6248 			 pfc_conf->fc.mac_ctrl_frame_fwd);
6249 		return -EINVAL;
6250 	}
6251 	if (pfc_conf->fc.autoneg) {
6252 		hns3_err(hw, "Unsupported fc auto-negotiation setting.");
6253 		return -EINVAL;
6254 	}
6255 	if (pfc_conf->fc.pause_time == 0) {
6256 		hns3_err(hw, "Invalid pause time %u setting.",
6257 			 pfc_conf->fc.pause_time);
6258 		return -EINVAL;
6259 	}
6260 
6261 	if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
6262 	    hw->current_fc_status == HNS3_FC_STATUS_PFC)) {
6263 		hns3_err(hw, "MAC pause is enabled. Cannot set PFC."
6264 			     "current_fc_status = %d", hw->current_fc_status);
6265 		return -EOPNOTSUPP;
6266 	}
6267 
6268 	rte_spinlock_lock(&hw->lock);
6269 	ret = hns3_dcb_pfc_enable(dev, pfc_conf);
6270 	rte_spinlock_unlock(&hw->lock);
6271 
6272 	return ret;
6273 }
6274 
6275 static int
6276 hns3_get_dcb_info(struct rte_eth_dev *dev, struct rte_eth_dcb_info *dcb_info)
6277 {
6278 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6279 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
6280 	enum rte_eth_rx_mq_mode mq_mode = dev->data->dev_conf.rxmode.mq_mode;
6281 	int i;
6282 
6283 	rte_spinlock_lock(&hw->lock);
6284 	if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG)
6285 		dcb_info->nb_tcs = pf->local_max_tc;
6286 	else
6287 		dcb_info->nb_tcs = 1;
6288 
6289 	for (i = 0; i < HNS3_MAX_USER_PRIO; i++)
6290 		dcb_info->prio_tc[i] = hw->dcb_info.prio_tc[i];
6291 	for (i = 0; i < dcb_info->nb_tcs; i++)
6292 		dcb_info->tc_bws[i] = hw->dcb_info.pg_info[0].tc_dwrr[i];
6293 
6294 	for (i = 0; i < hw->num_tc; i++) {
6295 		dcb_info->tc_queue.tc_rxq[0][i].base = hw->alloc_rss_size * i;
6296 		dcb_info->tc_queue.tc_txq[0][i].base =
6297 						hw->tc_queue[i].tqp_offset;
6298 		dcb_info->tc_queue.tc_rxq[0][i].nb_queue = hw->alloc_rss_size;
6299 		dcb_info->tc_queue.tc_txq[0][i].nb_queue =
6300 						hw->tc_queue[i].tqp_count;
6301 	}
6302 	rte_spinlock_unlock(&hw->lock);
6303 
6304 	return 0;
6305 }
6306 
6307 static int
6308 hns3_reinit_dev(struct hns3_adapter *hns)
6309 {
6310 	struct hns3_hw *hw = &hns->hw;
6311 	int ret;
6312 
6313 	ret = hns3_cmd_init(hw);
6314 	if (ret) {
6315 		hns3_err(hw, "Failed to init cmd: %d", ret);
6316 		return ret;
6317 	}
6318 
6319 	ret = hns3_reset_all_tqps(hns);
6320 	if (ret) {
6321 		hns3_err(hw, "Failed to reset all queues: %d", ret);
6322 		return ret;
6323 	}
6324 
6325 	ret = hns3_init_hardware(hns);
6326 	if (ret) {
6327 		hns3_err(hw, "Failed to init hardware: %d", ret);
6328 		return ret;
6329 	}
6330 
6331 	ret = hns3_enable_hw_error_intr(hns, true);
6332 	if (ret) {
6333 		hns3_err(hw, "fail to enable hw error interrupts: %d",
6334 			     ret);
6335 		return ret;
6336 	}
6337 	hns3_info(hw, "Reset done, driver initialization finished.");
6338 
6339 	return 0;
6340 }
6341 
6342 static bool
6343 is_pf_reset_done(struct hns3_hw *hw)
6344 {
6345 	uint32_t val, reg, reg_bit;
6346 
6347 	switch (hw->reset.level) {
6348 	case HNS3_IMP_RESET:
6349 		reg = HNS3_GLOBAL_RESET_REG;
6350 		reg_bit = HNS3_IMP_RESET_BIT;
6351 		break;
6352 	case HNS3_GLOBAL_RESET:
6353 		reg = HNS3_GLOBAL_RESET_REG;
6354 		reg_bit = HNS3_GLOBAL_RESET_BIT;
6355 		break;
6356 	case HNS3_FUNC_RESET:
6357 		reg = HNS3_FUN_RST_ING;
6358 		reg_bit = HNS3_FUN_RST_ING_B;
6359 		break;
6360 	case HNS3_FLR_RESET:
6361 	default:
6362 		hns3_err(hw, "Wait for unsupported reset level: %d",
6363 			 hw->reset.level);
6364 		return true;
6365 	}
6366 	val = hns3_read_dev(hw, reg);
6367 	if (hns3_get_bit(val, reg_bit))
6368 		return false;
6369 	else
6370 		return true;
6371 }
6372 
6373 bool
6374 hns3_is_reset_pending(struct hns3_adapter *hns)
6375 {
6376 	struct hns3_hw *hw = &hns->hw;
6377 	enum hns3_reset_level reset;
6378 
6379 	hns3_check_event_cause(hns, NULL);
6380 	reset = hns3_get_reset_level(hns, &hw->reset.pending);
6381 	if (reset != HNS3_NONE_RESET && hw->reset.level != HNS3_NONE_RESET &&
6382 	    hw->reset.level < reset) {
6383 		hns3_warn(hw, "High level reset %d is pending", reset);
6384 		return true;
6385 	}
6386 	reset = hns3_get_reset_level(hns, &hw->reset.request);
6387 	if (reset != HNS3_NONE_RESET && hw->reset.level != HNS3_NONE_RESET &&
6388 	    hw->reset.level < reset) {
6389 		hns3_warn(hw, "High level reset %d is request", reset);
6390 		return true;
6391 	}
6392 	return false;
6393 }
6394 
6395 static int
6396 hns3_wait_hardware_ready(struct hns3_adapter *hns)
6397 {
6398 	struct hns3_hw *hw = &hns->hw;
6399 	struct hns3_wait_data *wait_data = hw->reset.wait_data;
6400 	struct timeval tv;
6401 
6402 	if (wait_data->result == HNS3_WAIT_SUCCESS)
6403 		return 0;
6404 	else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
6405 		hns3_clock_gettime(&tv);
6406 		hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
6407 			  tv.tv_sec, tv.tv_usec);
6408 		return -ETIME;
6409 	} else if (wait_data->result == HNS3_WAIT_REQUEST)
6410 		return -EAGAIN;
6411 
6412 	wait_data->hns = hns;
6413 	wait_data->check_completion = is_pf_reset_done;
6414 	wait_data->end_ms = (uint64_t)HNS3_RESET_WAIT_CNT *
6415 				HNS3_RESET_WAIT_MS + hns3_clock_gettime_ms();
6416 	wait_data->interval = HNS3_RESET_WAIT_MS * USEC_PER_MSEC;
6417 	wait_data->count = HNS3_RESET_WAIT_CNT;
6418 	wait_data->result = HNS3_WAIT_REQUEST;
6419 	rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
6420 	return -EAGAIN;
6421 }
6422 
6423 static int
6424 hns3_func_reset_cmd(struct hns3_hw *hw, int func_id)
6425 {
6426 	struct hns3_cmd_desc desc;
6427 	struct hns3_reset_cmd *req = (struct hns3_reset_cmd *)desc.data;
6428 
6429 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_RST_TRIGGER, false);
6430 	hns3_set_bit(req->mac_func_reset, HNS3_CFG_RESET_FUNC_B, 1);
6431 	req->fun_reset_vfid = func_id;
6432 
6433 	return hns3_cmd_send(hw, &desc, 1);
6434 }
6435 
6436 static int
6437 hns3_imp_reset_cmd(struct hns3_hw *hw)
6438 {
6439 	struct hns3_cmd_desc desc;
6440 
6441 	hns3_cmd_setup_basic_desc(&desc, 0xFFFE, false);
6442 	desc.data[0] = 0xeedd;
6443 
6444 	return hns3_cmd_send(hw, &desc, 1);
6445 }
6446 
6447 static void
6448 hns3_msix_process(struct hns3_adapter *hns, enum hns3_reset_level reset_level)
6449 {
6450 	struct hns3_hw *hw = &hns->hw;
6451 	struct timeval tv;
6452 	uint32_t val;
6453 
6454 	hns3_clock_gettime(&tv);
6455 	if (hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG) ||
6456 	    hns3_read_dev(hw, HNS3_FUN_RST_ING)) {
6457 		hns3_warn(hw, "Don't process msix during resetting time=%ld.%.6ld",
6458 			  tv.tv_sec, tv.tv_usec);
6459 		return;
6460 	}
6461 
6462 	switch (reset_level) {
6463 	case HNS3_IMP_RESET:
6464 		hns3_imp_reset_cmd(hw);
6465 		hns3_warn(hw, "IMP Reset requested time=%ld.%.6ld",
6466 			  tv.tv_sec, tv.tv_usec);
6467 		break;
6468 	case HNS3_GLOBAL_RESET:
6469 		val = hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG);
6470 		hns3_set_bit(val, HNS3_GLOBAL_RESET_BIT, 1);
6471 		hns3_write_dev(hw, HNS3_GLOBAL_RESET_REG, val);
6472 		hns3_warn(hw, "Global Reset requested time=%ld.%.6ld",
6473 			  tv.tv_sec, tv.tv_usec);
6474 		break;
6475 	case HNS3_FUNC_RESET:
6476 		hns3_warn(hw, "PF Reset requested time=%ld.%.6ld",
6477 			  tv.tv_sec, tv.tv_usec);
6478 		/* schedule again to check later */
6479 		hns3_atomic_set_bit(HNS3_FUNC_RESET, &hw->reset.pending);
6480 		hns3_schedule_reset(hns);
6481 		break;
6482 	default:
6483 		hns3_warn(hw, "Unsupported reset level: %d", reset_level);
6484 		return;
6485 	}
6486 	hns3_atomic_clear_bit(reset_level, &hw->reset.request);
6487 }
6488 
6489 static enum hns3_reset_level
6490 hns3_get_reset_level(struct hns3_adapter *hns, uint64_t *levels)
6491 {
6492 	struct hns3_hw *hw = &hns->hw;
6493 	enum hns3_reset_level reset_level = HNS3_NONE_RESET;
6494 
6495 	/* Return the highest priority reset level amongst all */
6496 	if (hns3_atomic_test_bit(HNS3_IMP_RESET, levels))
6497 		reset_level = HNS3_IMP_RESET;
6498 	else if (hns3_atomic_test_bit(HNS3_GLOBAL_RESET, levels))
6499 		reset_level = HNS3_GLOBAL_RESET;
6500 	else if (hns3_atomic_test_bit(HNS3_FUNC_RESET, levels))
6501 		reset_level = HNS3_FUNC_RESET;
6502 	else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
6503 		reset_level = HNS3_FLR_RESET;
6504 
6505 	if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
6506 		return HNS3_NONE_RESET;
6507 
6508 	return reset_level;
6509 }
6510 
6511 static void
6512 hns3_record_imp_error(struct hns3_adapter *hns)
6513 {
6514 	struct hns3_hw *hw = &hns->hw;
6515 	uint32_t reg_val;
6516 
6517 	reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
6518 	if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B)) {
6519 		hns3_warn(hw, "Detected IMP RD poison!");
6520 		hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B, 0);
6521 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
6522 	}
6523 
6524 	if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B)) {
6525 		hns3_warn(hw, "Detected IMP CMDQ error!");
6526 		hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B, 0);
6527 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
6528 	}
6529 }
6530 
6531 static int
6532 hns3_prepare_reset(struct hns3_adapter *hns)
6533 {
6534 	struct hns3_hw *hw = &hns->hw;
6535 	uint32_t reg_val;
6536 	int ret;
6537 
6538 	switch (hw->reset.level) {
6539 	case HNS3_FUNC_RESET:
6540 		ret = hns3_func_reset_cmd(hw, HNS3_PF_FUNC_ID);
6541 		if (ret)
6542 			return ret;
6543 
6544 		/*
6545 		 * After performaning pf reset, it is not necessary to do the
6546 		 * mailbox handling or send any command to firmware, because
6547 		 * any mailbox handling or command to firmware is only valid
6548 		 * after hns3_cmd_init is called.
6549 		 */
6550 		__atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
6551 		hw->reset.stats.request_cnt++;
6552 		break;
6553 	case HNS3_IMP_RESET:
6554 		hns3_record_imp_error(hns);
6555 		reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
6556 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val |
6557 			       BIT(HNS3_VECTOR0_IMP_RESET_INT_B));
6558 		break;
6559 	default:
6560 		break;
6561 	}
6562 	return 0;
6563 }
6564 
6565 static int
6566 hns3_set_rst_done(struct hns3_hw *hw)
6567 {
6568 	struct hns3_pf_rst_done_cmd *req;
6569 	struct hns3_cmd_desc desc;
6570 
6571 	req = (struct hns3_pf_rst_done_cmd *)desc.data;
6572 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_PF_RST_DONE, false);
6573 	req->pf_rst_done |= HNS3_PF_RESET_DONE_BIT;
6574 	return hns3_cmd_send(hw, &desc, 1);
6575 }
6576 
6577 static int
6578 hns3_stop_service(struct hns3_adapter *hns)
6579 {
6580 	struct hns3_hw *hw = &hns->hw;
6581 	struct rte_eth_dev *eth_dev;
6582 
6583 	eth_dev = &rte_eth_devices[hw->data->port_id];
6584 	hw->mac.link_status = ETH_LINK_DOWN;
6585 	if (hw->adapter_state == HNS3_NIC_STARTED) {
6586 		rte_eal_alarm_cancel(hns3_service_handler, eth_dev);
6587 		hns3_update_linkstatus_and_event(hw, false);
6588 	}
6589 
6590 	hns3_set_rxtx_function(eth_dev);
6591 	rte_wmb();
6592 	/* Disable datapath on secondary process. */
6593 	hns3_mp_req_stop_rxtx(eth_dev);
6594 	rte_delay_ms(hw->cfg_max_queues);
6595 
6596 	rte_spinlock_lock(&hw->lock);
6597 	if (hns->hw.adapter_state == HNS3_NIC_STARTED ||
6598 	    hw->adapter_state == HNS3_NIC_STOPPING) {
6599 		hns3_enable_all_queues(hw, false);
6600 		hns3_do_stop(hns);
6601 		hw->reset.mbuf_deferred_free = true;
6602 	} else
6603 		hw->reset.mbuf_deferred_free = false;
6604 
6605 	/*
6606 	 * It is cumbersome for hardware to pick-and-choose entries for deletion
6607 	 * from table space. Hence, for function reset software intervention is
6608 	 * required to delete the entries
6609 	 */
6610 	if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0)
6611 		hns3_configure_all_mc_mac_addr(hns, true);
6612 	rte_spinlock_unlock(&hw->lock);
6613 
6614 	return 0;
6615 }
6616 
6617 static int
6618 hns3_start_service(struct hns3_adapter *hns)
6619 {
6620 	struct hns3_hw *hw = &hns->hw;
6621 	struct rte_eth_dev *eth_dev;
6622 
6623 	if (hw->reset.level == HNS3_IMP_RESET ||
6624 	    hw->reset.level == HNS3_GLOBAL_RESET)
6625 		hns3_set_rst_done(hw);
6626 	eth_dev = &rte_eth_devices[hw->data->port_id];
6627 	hns3_set_rxtx_function(eth_dev);
6628 	hns3_mp_req_start_rxtx(eth_dev);
6629 	if (hw->adapter_state == HNS3_NIC_STARTED) {
6630 		/*
6631 		 * This API parent function already hold the hns3_hw.lock, the
6632 		 * hns3_service_handler may report lse, in bonding application
6633 		 * it will call driver's ops which may acquire the hns3_hw.lock
6634 		 * again, thus lead to deadlock.
6635 		 * We defer calls hns3_service_handler to avoid the deadlock.
6636 		 */
6637 		rte_eal_alarm_set(HNS3_SERVICE_QUICK_INTERVAL,
6638 				  hns3_service_handler, eth_dev);
6639 
6640 		/* Enable interrupt of all rx queues before enabling queues */
6641 		hns3_dev_all_rx_queue_intr_enable(hw, true);
6642 		/*
6643 		 * Enable state of each rxq and txq will be recovered after
6644 		 * reset, so we need to restore them before enable all tqps;
6645 		 */
6646 		hns3_restore_tqp_enable_state(hw);
6647 		/*
6648 		 * When finished the initialization, enable queues to receive
6649 		 * and transmit packets.
6650 		 */
6651 		hns3_enable_all_queues(hw, true);
6652 	}
6653 
6654 	return 0;
6655 }
6656 
6657 static int
6658 hns3_restore_conf(struct hns3_adapter *hns)
6659 {
6660 	struct hns3_hw *hw = &hns->hw;
6661 	int ret;
6662 
6663 	ret = hns3_configure_all_mac_addr(hns, false);
6664 	if (ret)
6665 		return ret;
6666 
6667 	ret = hns3_configure_all_mc_mac_addr(hns, false);
6668 	if (ret)
6669 		goto err_mc_mac;
6670 
6671 	ret = hns3_dev_promisc_restore(hns);
6672 	if (ret)
6673 		goto err_promisc;
6674 
6675 	ret = hns3_restore_vlan_table(hns);
6676 	if (ret)
6677 		goto err_promisc;
6678 
6679 	ret = hns3_restore_vlan_conf(hns);
6680 	if (ret)
6681 		goto err_promisc;
6682 
6683 	ret = hns3_restore_all_fdir_filter(hns);
6684 	if (ret)
6685 		goto err_promisc;
6686 
6687 	ret = hns3_restore_ptp(hns);
6688 	if (ret)
6689 		goto err_promisc;
6690 
6691 	ret = hns3_restore_rx_interrupt(hw);
6692 	if (ret)
6693 		goto err_promisc;
6694 
6695 	ret = hns3_restore_gro_conf(hw);
6696 	if (ret)
6697 		goto err_promisc;
6698 
6699 	ret = hns3_restore_fec(hw);
6700 	if (ret)
6701 		goto err_promisc;
6702 
6703 	if (hns->hw.adapter_state == HNS3_NIC_STARTED) {
6704 		ret = hns3_do_start(hns, false);
6705 		if (ret)
6706 			goto err_promisc;
6707 		hns3_info(hw, "hns3 dev restart successful!");
6708 	} else if (hw->adapter_state == HNS3_NIC_STOPPING)
6709 		hw->adapter_state = HNS3_NIC_CONFIGURED;
6710 	return 0;
6711 
6712 err_promisc:
6713 	hns3_configure_all_mc_mac_addr(hns, true);
6714 err_mc_mac:
6715 	hns3_configure_all_mac_addr(hns, true);
6716 	return ret;
6717 }
6718 
6719 static void
6720 hns3_reset_service(void *param)
6721 {
6722 	struct hns3_adapter *hns = (struct hns3_adapter *)param;
6723 	struct hns3_hw *hw = &hns->hw;
6724 	enum hns3_reset_level reset_level;
6725 	struct timeval tv_delta;
6726 	struct timeval tv_start;
6727 	struct timeval tv;
6728 	uint64_t msec;
6729 	int ret;
6730 
6731 	/*
6732 	 * The interrupt is not triggered within the delay time.
6733 	 * The interrupt may have been lost. It is necessary to handle
6734 	 * the interrupt to recover from the error.
6735 	 */
6736 	if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
6737 			    SCHEDULE_DEFERRED) {
6738 		__atomic_store_n(&hw->reset.schedule, SCHEDULE_REQUESTED,
6739 				  __ATOMIC_RELAXED);
6740 		hns3_err(hw, "Handling interrupts in delayed tasks");
6741 		hns3_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
6742 		reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
6743 		if (reset_level == HNS3_NONE_RESET) {
6744 			hns3_err(hw, "No reset level is set, try IMP reset");
6745 			hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
6746 		}
6747 	}
6748 	__atomic_store_n(&hw->reset.schedule, SCHEDULE_NONE, __ATOMIC_RELAXED);
6749 
6750 	/*
6751 	 * Check if there is any ongoing reset in the hardware. This status can
6752 	 * be checked from reset_pending. If there is then, we need to wait for
6753 	 * hardware to complete reset.
6754 	 *    a. If we are able to figure out in reasonable time that hardware
6755 	 *       has fully resetted then, we can proceed with driver, client
6756 	 *       reset.
6757 	 *    b. else, we can come back later to check this status so re-sched
6758 	 *       now.
6759 	 */
6760 	reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
6761 	if (reset_level != HNS3_NONE_RESET) {
6762 		hns3_clock_gettime(&tv_start);
6763 		ret = hns3_reset_process(hns, reset_level);
6764 		hns3_clock_gettime(&tv);
6765 		timersub(&tv, &tv_start, &tv_delta);
6766 		msec = hns3_clock_calctime_ms(&tv_delta);
6767 		if (msec > HNS3_RESET_PROCESS_MS)
6768 			hns3_err(hw, "%d handle long time delta %" PRIu64
6769 				     " ms time=%ld.%.6ld",
6770 				 hw->reset.level, msec,
6771 				 tv.tv_sec, tv.tv_usec);
6772 		if (ret == -EAGAIN)
6773 			return;
6774 	}
6775 
6776 	/* Check if we got any *new* reset requests to be honored */
6777 	reset_level = hns3_get_reset_level(hns, &hw->reset.request);
6778 	if (reset_level != HNS3_NONE_RESET)
6779 		hns3_msix_process(hns, reset_level);
6780 }
6781 
6782 static unsigned int
6783 hns3_get_speed_capa_num(uint16_t device_id)
6784 {
6785 	unsigned int num;
6786 
6787 	switch (device_id) {
6788 	case HNS3_DEV_ID_25GE:
6789 	case HNS3_DEV_ID_25GE_RDMA:
6790 		num = 2;
6791 		break;
6792 	case HNS3_DEV_ID_100G_RDMA_MACSEC:
6793 	case HNS3_DEV_ID_200G_RDMA:
6794 		num = 1;
6795 		break;
6796 	default:
6797 		num = 0;
6798 		break;
6799 	}
6800 
6801 	return num;
6802 }
6803 
6804 static int
6805 hns3_get_speed_fec_capa(struct rte_eth_fec_capa *speed_fec_capa,
6806 			uint16_t device_id)
6807 {
6808 	switch (device_id) {
6809 	case HNS3_DEV_ID_25GE:
6810 	/* fallthrough */
6811 	case HNS3_DEV_ID_25GE_RDMA:
6812 		speed_fec_capa[0].speed = speed_fec_capa_tbl[1].speed;
6813 		speed_fec_capa[0].capa = speed_fec_capa_tbl[1].capa;
6814 
6815 		/* In HNS3 device, the 25G NIC is compatible with 10G rate */
6816 		speed_fec_capa[1].speed = speed_fec_capa_tbl[0].speed;
6817 		speed_fec_capa[1].capa = speed_fec_capa_tbl[0].capa;
6818 		break;
6819 	case HNS3_DEV_ID_100G_RDMA_MACSEC:
6820 		speed_fec_capa[0].speed = speed_fec_capa_tbl[4].speed;
6821 		speed_fec_capa[0].capa = speed_fec_capa_tbl[4].capa;
6822 		break;
6823 	case HNS3_DEV_ID_200G_RDMA:
6824 		speed_fec_capa[0].speed = speed_fec_capa_tbl[5].speed;
6825 		speed_fec_capa[0].capa = speed_fec_capa_tbl[5].capa;
6826 		break;
6827 	default:
6828 		return -ENOTSUP;
6829 	}
6830 
6831 	return 0;
6832 }
6833 
6834 static int
6835 hns3_fec_get_capability(struct rte_eth_dev *dev,
6836 			struct rte_eth_fec_capa *speed_fec_capa,
6837 			unsigned int num)
6838 {
6839 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6840 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
6841 	uint16_t device_id = pci_dev->id.device_id;
6842 	unsigned int capa_num;
6843 	int ret;
6844 
6845 	capa_num = hns3_get_speed_capa_num(device_id);
6846 	if (capa_num == 0) {
6847 		hns3_err(hw, "device(0x%x) is not supported by hns3 PMD",
6848 			 device_id);
6849 		return -ENOTSUP;
6850 	}
6851 
6852 	if (speed_fec_capa == NULL || num < capa_num)
6853 		return capa_num;
6854 
6855 	ret = hns3_get_speed_fec_capa(speed_fec_capa, device_id);
6856 	if (ret)
6857 		return -ENOTSUP;
6858 
6859 	return capa_num;
6860 }
6861 
6862 static int
6863 get_current_fec_auto_state(struct hns3_hw *hw, uint8_t *state)
6864 {
6865 	struct hns3_config_fec_cmd *req;
6866 	struct hns3_cmd_desc desc;
6867 	int ret;
6868 
6869 	/*
6870 	 * CMD(HNS3_OPC_CONFIG_FEC_MODE) read is not supported
6871 	 * in device of link speed
6872 	 * below 10 Gbps.
6873 	 */
6874 	if (hw->mac.link_speed < ETH_SPEED_NUM_10G) {
6875 		*state = 0;
6876 		return 0;
6877 	}
6878 
6879 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_FEC_MODE, true);
6880 	req = (struct hns3_config_fec_cmd *)desc.data;
6881 	ret = hns3_cmd_send(hw, &desc, 1);
6882 	if (ret) {
6883 		hns3_err(hw, "get current fec auto state failed, ret = %d",
6884 			 ret);
6885 		return ret;
6886 	}
6887 
6888 	*state = req->fec_mode & (1U << HNS3_MAC_CFG_FEC_AUTO_EN_B);
6889 	return 0;
6890 }
6891 
6892 static int
6893 hns3_fec_get_internal(struct hns3_hw *hw, uint32_t *fec_capa)
6894 {
6895 	struct hns3_sfp_info_cmd *resp;
6896 	uint32_t tmp_fec_capa;
6897 	uint8_t auto_state;
6898 	struct hns3_cmd_desc desc;
6899 	int ret;
6900 
6901 	/*
6902 	 * If link is down and AUTO is enabled, AUTO is returned, otherwise,
6903 	 * configured FEC mode is returned.
6904 	 * If link is up, current FEC mode is returned.
6905 	 */
6906 	if (hw->mac.link_status == ETH_LINK_DOWN) {
6907 		ret = get_current_fec_auto_state(hw, &auto_state);
6908 		if (ret)
6909 			return ret;
6910 
6911 		if (auto_state == 0x1) {
6912 			*fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(AUTO);
6913 			return 0;
6914 		}
6915 	}
6916 
6917 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GET_SFP_INFO, true);
6918 	resp = (struct hns3_sfp_info_cmd *)desc.data;
6919 	resp->query_type = HNS3_ACTIVE_QUERY;
6920 
6921 	ret = hns3_cmd_send(hw, &desc, 1);
6922 	if (ret == -EOPNOTSUPP) {
6923 		hns3_err(hw, "IMP do not support get FEC, ret = %d", ret);
6924 		return ret;
6925 	} else if (ret) {
6926 		hns3_err(hw, "get FEC failed, ret = %d", ret);
6927 		return ret;
6928 	}
6929 
6930 	/*
6931 	 * FEC mode order defined in hns3 hardware is inconsistend with
6932 	 * that defined in the ethdev library. So the sequence needs
6933 	 * to be converted.
6934 	 */
6935 	switch (resp->active_fec) {
6936 	case HNS3_HW_FEC_MODE_NOFEC:
6937 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC);
6938 		break;
6939 	case HNS3_HW_FEC_MODE_BASER:
6940 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(BASER);
6941 		break;
6942 	case HNS3_HW_FEC_MODE_RS:
6943 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(RS);
6944 		break;
6945 	default:
6946 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC);
6947 		break;
6948 	}
6949 
6950 	*fec_capa = tmp_fec_capa;
6951 	return 0;
6952 }
6953 
6954 static int
6955 hns3_fec_get(struct rte_eth_dev *dev, uint32_t *fec_capa)
6956 {
6957 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6958 
6959 	return hns3_fec_get_internal(hw, fec_capa);
6960 }
6961 
6962 static int
6963 hns3_set_fec_hw(struct hns3_hw *hw, uint32_t mode)
6964 {
6965 	struct hns3_config_fec_cmd *req;
6966 	struct hns3_cmd_desc desc;
6967 	int ret;
6968 
6969 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_FEC_MODE, false);
6970 
6971 	req = (struct hns3_config_fec_cmd *)desc.data;
6972 	switch (mode) {
6973 	case RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC):
6974 		hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6975 				HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_OFF);
6976 		break;
6977 	case RTE_ETH_FEC_MODE_CAPA_MASK(BASER):
6978 		hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6979 				HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_BASER);
6980 		break;
6981 	case RTE_ETH_FEC_MODE_CAPA_MASK(RS):
6982 		hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6983 				HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_RS);
6984 		break;
6985 	case RTE_ETH_FEC_MODE_CAPA_MASK(AUTO):
6986 		hns3_set_bit(req->fec_mode, HNS3_MAC_CFG_FEC_AUTO_EN_B, 1);
6987 		break;
6988 	default:
6989 		return 0;
6990 	}
6991 	ret = hns3_cmd_send(hw, &desc, 1);
6992 	if (ret)
6993 		hns3_err(hw, "set fec mode failed, ret = %d", ret);
6994 
6995 	return ret;
6996 }
6997 
6998 static uint32_t
6999 get_current_speed_fec_cap(struct hns3_hw *hw, struct rte_eth_fec_capa *fec_capa)
7000 {
7001 	struct hns3_mac *mac = &hw->mac;
7002 	uint32_t cur_capa;
7003 
7004 	switch (mac->link_speed) {
7005 	case ETH_SPEED_NUM_10G:
7006 		cur_capa = fec_capa[1].capa;
7007 		break;
7008 	case ETH_SPEED_NUM_25G:
7009 	case ETH_SPEED_NUM_100G:
7010 	case ETH_SPEED_NUM_200G:
7011 		cur_capa = fec_capa[0].capa;
7012 		break;
7013 	default:
7014 		cur_capa = 0;
7015 		break;
7016 	}
7017 
7018 	return cur_capa;
7019 }
7020 
7021 static bool
7022 is_fec_mode_one_bit_set(uint32_t mode)
7023 {
7024 	int cnt = 0;
7025 	uint8_t i;
7026 
7027 	for (i = 0; i < sizeof(mode); i++)
7028 		if (mode >> i & 0x1)
7029 			cnt++;
7030 
7031 	return cnt == 1 ? true : false;
7032 }
7033 
7034 static int
7035 hns3_fec_set(struct rte_eth_dev *dev, uint32_t mode)
7036 {
7037 #define FEC_CAPA_NUM 2
7038 	struct hns3_adapter *hns = dev->data->dev_private;
7039 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
7040 	struct hns3_pf *pf = &hns->pf;
7041 
7042 	struct rte_eth_fec_capa fec_capa[FEC_CAPA_NUM];
7043 	uint32_t cur_capa;
7044 	uint32_t num = FEC_CAPA_NUM;
7045 	int ret;
7046 
7047 	ret = hns3_fec_get_capability(dev, fec_capa, num);
7048 	if (ret < 0)
7049 		return ret;
7050 
7051 	/* HNS3 PMD driver only support one bit set mode, e.g. 0x1, 0x4 */
7052 	if (!is_fec_mode_one_bit_set(mode)) {
7053 		hns3_err(hw, "FEC mode(0x%x) not supported in HNS3 PMD, "
7054 			     "FEC mode should be only one bit set", mode);
7055 		return -EINVAL;
7056 	}
7057 
7058 	/*
7059 	 * Check whether the configured mode is within the FEC capability.
7060 	 * If not, the configured mode will not be supported.
7061 	 */
7062 	cur_capa = get_current_speed_fec_cap(hw, fec_capa);
7063 	if (!(cur_capa & mode)) {
7064 		hns3_err(hw, "unsupported FEC mode = 0x%x", mode);
7065 		return -EINVAL;
7066 	}
7067 
7068 	rte_spinlock_lock(&hw->lock);
7069 	ret = hns3_set_fec_hw(hw, mode);
7070 	if (ret) {
7071 		rte_spinlock_unlock(&hw->lock);
7072 		return ret;
7073 	}
7074 
7075 	pf->fec_mode = mode;
7076 	rte_spinlock_unlock(&hw->lock);
7077 
7078 	return 0;
7079 }
7080 
7081 static int
7082 hns3_restore_fec(struct hns3_hw *hw)
7083 {
7084 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
7085 	struct hns3_pf *pf = &hns->pf;
7086 	uint32_t mode = pf->fec_mode;
7087 	int ret;
7088 
7089 	ret = hns3_set_fec_hw(hw, mode);
7090 	if (ret)
7091 		hns3_err(hw, "restore fec mode(0x%x) failed, ret = %d",
7092 			 mode, ret);
7093 
7094 	return ret;
7095 }
7096 
7097 static int
7098 hns3_query_dev_fec_info(struct hns3_hw *hw)
7099 {
7100 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
7101 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(hns);
7102 	int ret;
7103 
7104 	ret = hns3_fec_get_internal(hw, &pf->fec_mode);
7105 	if (ret)
7106 		hns3_err(hw, "query device FEC info failed, ret = %d", ret);
7107 
7108 	return ret;
7109 }
7110 
7111 static bool
7112 hns3_optical_module_existed(struct hns3_hw *hw)
7113 {
7114 	struct hns3_cmd_desc desc;
7115 	bool existed;
7116 	int ret;
7117 
7118 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GET_SFP_EXIST, true);
7119 	ret = hns3_cmd_send(hw, &desc, 1);
7120 	if (ret) {
7121 		hns3_err(hw,
7122 			 "fail to get optical module exist state, ret = %d.\n",
7123 			 ret);
7124 		return false;
7125 	}
7126 	existed = !!desc.data[0];
7127 
7128 	return existed;
7129 }
7130 
7131 static int
7132 hns3_get_module_eeprom_data(struct hns3_hw *hw, uint32_t offset,
7133 				uint32_t len, uint8_t *data)
7134 {
7135 #define HNS3_SFP_INFO_CMD_NUM 6
7136 #define HNS3_SFP_INFO_MAX_LEN \
7137 	(HNS3_SFP_INFO_BD0_LEN + \
7138 	(HNS3_SFP_INFO_CMD_NUM - 1) * HNS3_SFP_INFO_BDX_LEN)
7139 	struct hns3_cmd_desc desc[HNS3_SFP_INFO_CMD_NUM];
7140 	struct hns3_sfp_info_bd0_cmd *sfp_info_bd0;
7141 	uint16_t read_len;
7142 	uint16_t copy_len;
7143 	int ret;
7144 	int i;
7145 
7146 	for (i = 0; i < HNS3_SFP_INFO_CMD_NUM; i++) {
7147 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_SFP_EEPROM,
7148 					  true);
7149 		if (i < HNS3_SFP_INFO_CMD_NUM - 1)
7150 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
7151 	}
7152 
7153 	sfp_info_bd0 = (struct hns3_sfp_info_bd0_cmd *)desc[0].data;
7154 	sfp_info_bd0->offset = rte_cpu_to_le_16((uint16_t)offset);
7155 	read_len = RTE_MIN(len, HNS3_SFP_INFO_MAX_LEN);
7156 	sfp_info_bd0->read_len = rte_cpu_to_le_16((uint16_t)read_len);
7157 
7158 	ret = hns3_cmd_send(hw, desc, HNS3_SFP_INFO_CMD_NUM);
7159 	if (ret) {
7160 		hns3_err(hw, "fail to get module EEPROM info, ret = %d.\n",
7161 				ret);
7162 		return ret;
7163 	}
7164 
7165 	/* The data format in BD0 is different with the others. */
7166 	copy_len = RTE_MIN(len, HNS3_SFP_INFO_BD0_LEN);
7167 	memcpy(data, sfp_info_bd0->data, copy_len);
7168 	read_len = copy_len;
7169 
7170 	for (i = 1; i < HNS3_SFP_INFO_CMD_NUM; i++) {
7171 		if (read_len >= len)
7172 			break;
7173 
7174 		copy_len = RTE_MIN(len - read_len, HNS3_SFP_INFO_BDX_LEN);
7175 		memcpy(data + read_len, desc[i].data, copy_len);
7176 		read_len += copy_len;
7177 	}
7178 
7179 	return (int)read_len;
7180 }
7181 
7182 static int
7183 hns3_get_module_eeprom(struct rte_eth_dev *dev,
7184 		       struct rte_dev_eeprom_info *info)
7185 {
7186 	struct hns3_adapter *hns = dev->data->dev_private;
7187 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
7188 	uint32_t offset = info->offset;
7189 	uint32_t len = info->length;
7190 	uint8_t *data = info->data;
7191 	uint32_t read_len = 0;
7192 
7193 	if (hw->mac.media_type != HNS3_MEDIA_TYPE_FIBER)
7194 		return -ENOTSUP;
7195 
7196 	if (!hns3_optical_module_existed(hw)) {
7197 		hns3_err(hw, "fail to read module EEPROM: no module is connected.\n");
7198 		return -EIO;
7199 	}
7200 
7201 	while (read_len < len) {
7202 		int ret;
7203 		ret = hns3_get_module_eeprom_data(hw, offset + read_len,
7204 						  len - read_len,
7205 						  data + read_len);
7206 		if (ret < 0)
7207 			return -EIO;
7208 		read_len += ret;
7209 	}
7210 
7211 	return 0;
7212 }
7213 
7214 static int
7215 hns3_get_module_info(struct rte_eth_dev *dev,
7216 		     struct rte_eth_dev_module_info *modinfo)
7217 {
7218 #define HNS3_SFF8024_ID_SFP		0x03
7219 #define HNS3_SFF8024_ID_QSFP_8438	0x0c
7220 #define HNS3_SFF8024_ID_QSFP_8436_8636	0x0d
7221 #define HNS3_SFF8024_ID_QSFP28_8636	0x11
7222 #define HNS3_SFF_8636_V1_3		0x03
7223 	struct hns3_adapter *hns = dev->data->dev_private;
7224 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
7225 	struct rte_dev_eeprom_info info;
7226 	struct hns3_sfp_type sfp_type;
7227 	int ret;
7228 
7229 	memset(&sfp_type, 0, sizeof(sfp_type));
7230 	memset(&info, 0, sizeof(info));
7231 	info.data = (uint8_t *)&sfp_type;
7232 	info.length = sizeof(sfp_type);
7233 	ret = hns3_get_module_eeprom(dev, &info);
7234 	if (ret)
7235 		return ret;
7236 
7237 	switch (sfp_type.type) {
7238 	case HNS3_SFF8024_ID_SFP:
7239 		modinfo->type = RTE_ETH_MODULE_SFF_8472;
7240 		modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8472_LEN;
7241 		break;
7242 	case HNS3_SFF8024_ID_QSFP_8438:
7243 		modinfo->type = RTE_ETH_MODULE_SFF_8436;
7244 		modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8436_MAX_LEN;
7245 		break;
7246 	case HNS3_SFF8024_ID_QSFP_8436_8636:
7247 		if (sfp_type.ext_type < HNS3_SFF_8636_V1_3) {
7248 			modinfo->type = RTE_ETH_MODULE_SFF_8436;
7249 			modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8436_MAX_LEN;
7250 		} else {
7251 			modinfo->type = RTE_ETH_MODULE_SFF_8636;
7252 			modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8636_MAX_LEN;
7253 		}
7254 		break;
7255 	case HNS3_SFF8024_ID_QSFP28_8636:
7256 		modinfo->type = RTE_ETH_MODULE_SFF_8636;
7257 		modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8636_MAX_LEN;
7258 		break;
7259 	default:
7260 		hns3_err(hw, "unknown module, type = %u, extra_type = %u.\n",
7261 			 sfp_type.type, sfp_type.ext_type);
7262 		return -EINVAL;
7263 	}
7264 
7265 	return 0;
7266 }
7267 
7268 void
7269 hns3_clock_gettime(struct timeval *tv)
7270 {
7271 #ifdef CLOCK_MONOTONIC_RAW /* Defined in glibc bits/time.h */
7272 #define CLOCK_TYPE CLOCK_MONOTONIC_RAW
7273 #else
7274 #define CLOCK_TYPE CLOCK_MONOTONIC
7275 #endif
7276 #define NSEC_TO_USEC_DIV 1000
7277 
7278 	struct timespec spec;
7279 	(void)clock_gettime(CLOCK_TYPE, &spec);
7280 
7281 	tv->tv_sec = spec.tv_sec;
7282 	tv->tv_usec = spec.tv_nsec / NSEC_TO_USEC_DIV;
7283 }
7284 
7285 uint64_t
7286 hns3_clock_calctime_ms(struct timeval *tv)
7287 {
7288 	return (uint64_t)tv->tv_sec * MSEC_PER_SEC +
7289 		tv->tv_usec / USEC_PER_MSEC;
7290 }
7291 
7292 uint64_t
7293 hns3_clock_gettime_ms(void)
7294 {
7295 	struct timeval tv;
7296 
7297 	hns3_clock_gettime(&tv);
7298 	return hns3_clock_calctime_ms(&tv);
7299 }
7300 
7301 static int
7302 hns3_parse_io_hint_func(const char *key, const char *value, void *extra_args)
7303 {
7304 	uint32_t hint = HNS3_IO_FUNC_HINT_NONE;
7305 
7306 	RTE_SET_USED(key);
7307 
7308 	if (strcmp(value, "vec") == 0)
7309 		hint = HNS3_IO_FUNC_HINT_VEC;
7310 	else if (strcmp(value, "sve") == 0)
7311 		hint = HNS3_IO_FUNC_HINT_SVE;
7312 	else if (strcmp(value, "simple") == 0)
7313 		hint = HNS3_IO_FUNC_HINT_SIMPLE;
7314 	else if (strcmp(value, "common") == 0)
7315 		hint = HNS3_IO_FUNC_HINT_COMMON;
7316 
7317 	/* If the hint is valid then update output parameters */
7318 	if (hint != HNS3_IO_FUNC_HINT_NONE)
7319 		*(uint32_t *)extra_args = hint;
7320 
7321 	return 0;
7322 }
7323 
7324 static const char *
7325 hns3_get_io_hint_func_name(uint32_t hint)
7326 {
7327 	switch (hint) {
7328 	case HNS3_IO_FUNC_HINT_VEC:
7329 		return "vec";
7330 	case HNS3_IO_FUNC_HINT_SVE:
7331 		return "sve";
7332 	case HNS3_IO_FUNC_HINT_SIMPLE:
7333 		return "simple";
7334 	case HNS3_IO_FUNC_HINT_COMMON:
7335 		return "common";
7336 	default:
7337 		return "none";
7338 	}
7339 }
7340 
7341 static int
7342 hns3_parse_dev_caps_mask(const char *key, const char *value, void *extra_args)
7343 {
7344 	uint64_t val;
7345 
7346 	RTE_SET_USED(key);
7347 
7348 	val = strtoull(value, NULL, 16);
7349 	*(uint64_t *)extra_args = val;
7350 
7351 	return 0;
7352 }
7353 
7354 void
7355 hns3_parse_devargs(struct rte_eth_dev *dev)
7356 {
7357 	struct hns3_adapter *hns = dev->data->dev_private;
7358 	uint32_t rx_func_hint = HNS3_IO_FUNC_HINT_NONE;
7359 	uint32_t tx_func_hint = HNS3_IO_FUNC_HINT_NONE;
7360 	struct hns3_hw *hw = &hns->hw;
7361 	uint64_t dev_caps_mask = 0;
7362 	struct rte_kvargs *kvlist;
7363 
7364 	if (dev->device->devargs == NULL)
7365 		return;
7366 
7367 	kvlist = rte_kvargs_parse(dev->device->devargs->args, NULL);
7368 	if (!kvlist)
7369 		return;
7370 
7371 	(void)rte_kvargs_process(kvlist, HNS3_DEVARG_RX_FUNC_HINT,
7372 			   &hns3_parse_io_hint_func, &rx_func_hint);
7373 	(void)rte_kvargs_process(kvlist, HNS3_DEVARG_TX_FUNC_HINT,
7374 			   &hns3_parse_io_hint_func, &tx_func_hint);
7375 	(void)rte_kvargs_process(kvlist, HNS3_DEVARG_DEV_CAPS_MASK,
7376 			   &hns3_parse_dev_caps_mask, &dev_caps_mask);
7377 	rte_kvargs_free(kvlist);
7378 
7379 	if (rx_func_hint != HNS3_IO_FUNC_HINT_NONE)
7380 		hns3_warn(hw, "parsed %s = %s.", HNS3_DEVARG_RX_FUNC_HINT,
7381 			  hns3_get_io_hint_func_name(rx_func_hint));
7382 	hns->rx_func_hint = rx_func_hint;
7383 	if (tx_func_hint != HNS3_IO_FUNC_HINT_NONE)
7384 		hns3_warn(hw, "parsed %s = %s.", HNS3_DEVARG_TX_FUNC_HINT,
7385 			  hns3_get_io_hint_func_name(tx_func_hint));
7386 	hns->tx_func_hint = tx_func_hint;
7387 
7388 	if (dev_caps_mask != 0)
7389 		hns3_warn(hw, "parsed %s = 0x%" PRIx64 ".",
7390 			  HNS3_DEVARG_DEV_CAPS_MASK, dev_caps_mask);
7391 	hns->dev_caps_mask = dev_caps_mask;
7392 }
7393 
7394 static const struct eth_dev_ops hns3_eth_dev_ops = {
7395 	.dev_configure      = hns3_dev_configure,
7396 	.dev_start          = hns3_dev_start,
7397 	.dev_stop           = hns3_dev_stop,
7398 	.dev_close          = hns3_dev_close,
7399 	.promiscuous_enable = hns3_dev_promiscuous_enable,
7400 	.promiscuous_disable = hns3_dev_promiscuous_disable,
7401 	.allmulticast_enable  = hns3_dev_allmulticast_enable,
7402 	.allmulticast_disable = hns3_dev_allmulticast_disable,
7403 	.mtu_set            = hns3_dev_mtu_set,
7404 	.stats_get          = hns3_stats_get,
7405 	.stats_reset        = hns3_stats_reset,
7406 	.xstats_get         = hns3_dev_xstats_get,
7407 	.xstats_get_names   = hns3_dev_xstats_get_names,
7408 	.xstats_reset       = hns3_dev_xstats_reset,
7409 	.xstats_get_by_id   = hns3_dev_xstats_get_by_id,
7410 	.xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
7411 	.dev_infos_get          = hns3_dev_infos_get,
7412 	.fw_version_get         = hns3_fw_version_get,
7413 	.rx_queue_setup         = hns3_rx_queue_setup,
7414 	.tx_queue_setup         = hns3_tx_queue_setup,
7415 	.rx_queue_release       = hns3_dev_rx_queue_release,
7416 	.tx_queue_release       = hns3_dev_tx_queue_release,
7417 	.rx_queue_start         = hns3_dev_rx_queue_start,
7418 	.rx_queue_stop          = hns3_dev_rx_queue_stop,
7419 	.tx_queue_start         = hns3_dev_tx_queue_start,
7420 	.tx_queue_stop          = hns3_dev_tx_queue_stop,
7421 	.rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
7422 	.rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
7423 	.rxq_info_get           = hns3_rxq_info_get,
7424 	.txq_info_get           = hns3_txq_info_get,
7425 	.rx_burst_mode_get      = hns3_rx_burst_mode_get,
7426 	.tx_burst_mode_get      = hns3_tx_burst_mode_get,
7427 	.flow_ctrl_get          = hns3_flow_ctrl_get,
7428 	.flow_ctrl_set          = hns3_flow_ctrl_set,
7429 	.priority_flow_ctrl_set = hns3_priority_flow_ctrl_set,
7430 	.mac_addr_add           = hns3_add_mac_addr,
7431 	.mac_addr_remove        = hns3_remove_mac_addr,
7432 	.mac_addr_set           = hns3_set_default_mac_addr,
7433 	.set_mc_addr_list       = hns3_set_mc_mac_addr_list,
7434 	.link_update            = hns3_dev_link_update,
7435 	.dev_set_link_up        = hns3_dev_set_link_up,
7436 	.dev_set_link_down      = hns3_dev_set_link_down,
7437 	.rss_hash_update        = hns3_dev_rss_hash_update,
7438 	.rss_hash_conf_get      = hns3_dev_rss_hash_conf_get,
7439 	.reta_update            = hns3_dev_rss_reta_update,
7440 	.reta_query             = hns3_dev_rss_reta_query,
7441 	.flow_ops_get           = hns3_dev_flow_ops_get,
7442 	.vlan_filter_set        = hns3_vlan_filter_set,
7443 	.vlan_tpid_set          = hns3_vlan_tpid_set,
7444 	.vlan_offload_set       = hns3_vlan_offload_set,
7445 	.vlan_pvid_set          = hns3_vlan_pvid_set,
7446 	.get_reg                = hns3_get_regs,
7447 	.get_module_info        = hns3_get_module_info,
7448 	.get_module_eeprom      = hns3_get_module_eeprom,
7449 	.get_dcb_info           = hns3_get_dcb_info,
7450 	.dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
7451 	.fec_get_capability     = hns3_fec_get_capability,
7452 	.fec_get                = hns3_fec_get,
7453 	.fec_set                = hns3_fec_set,
7454 	.tm_ops_get             = hns3_tm_ops_get,
7455 	.tx_done_cleanup        = hns3_tx_done_cleanup,
7456 	.timesync_enable            = hns3_timesync_enable,
7457 	.timesync_disable           = hns3_timesync_disable,
7458 	.timesync_read_rx_timestamp = hns3_timesync_read_rx_timestamp,
7459 	.timesync_read_tx_timestamp = hns3_timesync_read_tx_timestamp,
7460 	.timesync_adjust_time       = hns3_timesync_adjust_time,
7461 	.timesync_read_time         = hns3_timesync_read_time,
7462 	.timesync_write_time        = hns3_timesync_write_time,
7463 };
7464 
7465 static const struct hns3_reset_ops hns3_reset_ops = {
7466 	.reset_service       = hns3_reset_service,
7467 	.stop_service        = hns3_stop_service,
7468 	.prepare_reset       = hns3_prepare_reset,
7469 	.wait_hardware_ready = hns3_wait_hardware_ready,
7470 	.reinit_dev          = hns3_reinit_dev,
7471 	.restore_conf	     = hns3_restore_conf,
7472 	.start_service       = hns3_start_service,
7473 };
7474 
7475 static int
7476 hns3_dev_init(struct rte_eth_dev *eth_dev)
7477 {
7478 	struct hns3_adapter *hns = eth_dev->data->dev_private;
7479 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
7480 	struct rte_ether_addr *eth_addr;
7481 	struct hns3_hw *hw = &hns->hw;
7482 	int ret;
7483 
7484 	PMD_INIT_FUNC_TRACE();
7485 
7486 	hns3_flow_init(eth_dev);
7487 
7488 	hns3_set_rxtx_function(eth_dev);
7489 	eth_dev->dev_ops = &hns3_eth_dev_ops;
7490 	eth_dev->rx_queue_count = hns3_rx_queue_count;
7491 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
7492 		ret = hns3_mp_init_secondary();
7493 		if (ret) {
7494 			PMD_INIT_LOG(ERR, "Failed to init for secondary "
7495 				     "process, ret = %d", ret);
7496 			goto err_mp_init_secondary;
7497 		}
7498 		hw->secondary_cnt++;
7499 		hns3_tx_push_init(eth_dev);
7500 		return 0;
7501 	}
7502 
7503 	ret = hns3_mp_init_primary();
7504 	if (ret) {
7505 		PMD_INIT_LOG(ERR,
7506 			     "Failed to init for primary process, ret = %d",
7507 			     ret);
7508 		goto err_mp_init_primary;
7509 	}
7510 
7511 	hw->adapter_state = HNS3_NIC_UNINITIALIZED;
7512 	hns->is_vf = false;
7513 	hw->data = eth_dev->data;
7514 	hns3_parse_devargs(eth_dev);
7515 
7516 	/*
7517 	 * Set default max packet size according to the mtu
7518 	 * default vale in DPDK frame.
7519 	 */
7520 	hns->pf.mps = hw->data->mtu + HNS3_ETH_OVERHEAD;
7521 
7522 	ret = hns3_reset_init(hw);
7523 	if (ret)
7524 		goto err_init_reset;
7525 	hw->reset.ops = &hns3_reset_ops;
7526 
7527 	ret = hns3_init_pf(eth_dev);
7528 	if (ret) {
7529 		PMD_INIT_LOG(ERR, "Failed to init pf: %d", ret);
7530 		goto err_init_pf;
7531 	}
7532 
7533 	/* Allocate memory for storing MAC addresses */
7534 	eth_dev->data->mac_addrs = rte_zmalloc("hns3-mac",
7535 					       sizeof(struct rte_ether_addr) *
7536 					       HNS3_UC_MACADDR_NUM, 0);
7537 	if (eth_dev->data->mac_addrs == NULL) {
7538 		PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
7539 			     "to store MAC addresses",
7540 			     sizeof(struct rte_ether_addr) *
7541 			     HNS3_UC_MACADDR_NUM);
7542 		ret = -ENOMEM;
7543 		goto err_rte_zmalloc;
7544 	}
7545 
7546 	eth_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
7547 	if (!rte_is_valid_assigned_ether_addr(eth_addr)) {
7548 		rte_eth_random_addr(hw->mac.mac_addr);
7549 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
7550 				(struct rte_ether_addr *)hw->mac.mac_addr);
7551 		hns3_warn(hw, "default mac_addr from firmware is an invalid "
7552 			  "unicast address, using random MAC address %s",
7553 			  mac_str);
7554 	}
7555 	rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
7556 			    &eth_dev->data->mac_addrs[0]);
7557 
7558 	hw->adapter_state = HNS3_NIC_INITIALIZED;
7559 
7560 	if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
7561 			    SCHEDULE_PENDING) {
7562 		hns3_err(hw, "Reschedule reset service after dev_init");
7563 		hns3_schedule_reset(hns);
7564 	} else {
7565 		/* IMP will wait ready flag before reset */
7566 		hns3_notify_reset_ready(hw, false);
7567 	}
7568 
7569 	hns3_info(hw, "hns3 dev initialization successful!");
7570 	return 0;
7571 
7572 err_rte_zmalloc:
7573 	hns3_uninit_pf(eth_dev);
7574 
7575 err_init_pf:
7576 	rte_free(hw->reset.wait_data);
7577 
7578 err_init_reset:
7579 	hns3_mp_uninit_primary();
7580 
7581 err_mp_init_primary:
7582 err_mp_init_secondary:
7583 	eth_dev->dev_ops = NULL;
7584 	eth_dev->rx_pkt_burst = NULL;
7585 	eth_dev->rx_descriptor_status = NULL;
7586 	eth_dev->tx_pkt_burst = NULL;
7587 	eth_dev->tx_pkt_prepare = NULL;
7588 	eth_dev->tx_descriptor_status = NULL;
7589 	return ret;
7590 }
7591 
7592 static int
7593 hns3_dev_uninit(struct rte_eth_dev *eth_dev)
7594 {
7595 	struct hns3_adapter *hns = eth_dev->data->dev_private;
7596 	struct hns3_hw *hw = &hns->hw;
7597 
7598 	PMD_INIT_FUNC_TRACE();
7599 
7600 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
7601 		return 0;
7602 
7603 	if (hw->adapter_state < HNS3_NIC_CLOSING)
7604 		hns3_dev_close(eth_dev);
7605 
7606 	hw->adapter_state = HNS3_NIC_REMOVED;
7607 	return 0;
7608 }
7609 
7610 static int
7611 eth_hns3_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
7612 		   struct rte_pci_device *pci_dev)
7613 {
7614 	return rte_eth_dev_pci_generic_probe(pci_dev,
7615 					     sizeof(struct hns3_adapter),
7616 					     hns3_dev_init);
7617 }
7618 
7619 static int
7620 eth_hns3_pci_remove(struct rte_pci_device *pci_dev)
7621 {
7622 	return rte_eth_dev_pci_generic_remove(pci_dev, hns3_dev_uninit);
7623 }
7624 
7625 static const struct rte_pci_id pci_id_hns3_map[] = {
7626 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_GE) },
7627 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE) },
7628 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE_RDMA) },
7629 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_50GE_RDMA) },
7630 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_MACSEC) },
7631 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_200G_RDMA) },
7632 	{ .vendor_id = 0, }, /* sentinel */
7633 };
7634 
7635 static struct rte_pci_driver rte_hns3_pmd = {
7636 	.id_table = pci_id_hns3_map,
7637 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
7638 	.probe = eth_hns3_pci_probe,
7639 	.remove = eth_hns3_pci_remove,
7640 };
7641 
7642 RTE_PMD_REGISTER_PCI(net_hns3, rte_hns3_pmd);
7643 RTE_PMD_REGISTER_PCI_TABLE(net_hns3, pci_id_hns3_map);
7644 RTE_PMD_REGISTER_KMOD_DEP(net_hns3, "* igb_uio | vfio-pci");
7645 RTE_PMD_REGISTER_PARAM_STRING(net_hns3,
7646 		HNS3_DEVARG_RX_FUNC_HINT "=vec|sve|simple|common "
7647 		HNS3_DEVARG_TX_FUNC_HINT "=vec|sve|simple|common "
7648 		HNS3_DEVARG_DEV_CAPS_MASK "=<1-65535> ");
7649 RTE_LOG_REGISTER_SUFFIX(hns3_logtype_init, init, NOTICE);
7650 RTE_LOG_REGISTER_SUFFIX(hns3_logtype_driver, driver, NOTICE);
7651