xref: /dpdk/drivers/net/failsafe/failsafe_private.h (revision 2b843cac232eb3f2fa79e4254e21766817e2019f)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2017 6WIND S.A.
3  * Copyright 2017 Mellanox Technologies, Ltd
4  */
5 
6 #ifndef _ETH_FAILSAFE_PRIVATE_H_
7 #define _ETH_FAILSAFE_PRIVATE_H_
8 
9 #include <stdint.h>
10 #include <sys/queue.h>
11 #include <pthread.h>
12 
13 #include <rte_atomic.h>
14 #include <dev_driver.h>
15 #include <ethdev_driver.h>
16 #include <rte_devargs.h>
17 #include <rte_flow.h>
18 #include <rte_interrupts.h>
19 
20 #define FAILSAFE_DRIVER_NAME "Fail-safe PMD"
21 #define FAILSAFE_OWNER_NAME "Fail-safe"
22 
23 #define PMD_FAILSAFE_MAC_KVARG "mac"
24 #define PMD_FAILSAFE_HOTPLUG_POLL_KVARG "hotplug_poll"
25 #define PMD_FAILSAFE_PARAM_STRING	\
26 	"dev(<ifc>),"			\
27 	"exec(<shell command>),"	\
28 	"fd(<fd number>),"		\
29 	"mac=mac_addr,"			\
30 	"hotplug_poll=u64"		\
31 	""
32 
33 #define FAILSAFE_HOTPLUG_DEFAULT_TIMEOUT_MS 2000
34 
35 #define FAILSAFE_MAX_ETHPORTS 2
36 #define FAILSAFE_MAX_ETHADDR 128
37 
38 #define DEVARGS_MAXLEN 4096
39 
40 enum rxp_service_state {
41 	SS_NO_SERVICE = 0,
42 	SS_REGISTERED,
43 	SS_READY,
44 	SS_RUNNING,
45 };
46 
47 /* TYPES */
48 
49 struct rx_proxy {
50 	/* epoll file descriptor */
51 	int efd;
52 	/* event vector to be used by epoll */
53 	struct rte_epoll_event *evec;
54 	/* rte service id */
55 	uint32_t sid;
56 	/* service core id */
57 	uint32_t scid;
58 	enum rxp_service_state sstate;
59 };
60 
61 #define FS_RX_PROXY_INIT (struct rx_proxy){ \
62 	.efd = -1, \
63 	.evec = NULL, \
64 	.sid = 0, \
65 	.scid = 0, \
66 	.sstate = SS_NO_SERVICE, \
67 }
68 
69 struct rxq {
70 	struct fs_priv *priv;
71 	uint16_t qid;
72 	/* next sub_device to poll */
73 	struct sub_device *sdev;
74 	unsigned int socket_id;
75 	int event_fd;
76 	unsigned int enable_events:1;
77 	struct rte_eth_rxq_info info;
78 	rte_atomic64_t refcnt[];
79 };
80 
81 struct txq {
82 	struct fs_priv *priv;
83 	uint16_t qid;
84 	unsigned int socket_id;
85 	struct rte_eth_txq_info info;
86 	rte_atomic64_t refcnt[];
87 };
88 
89 struct rte_flow {
90 	TAILQ_ENTRY(rte_flow) next;
91 	/* sub_flows */
92 	struct rte_flow *flows[FAILSAFE_MAX_ETHPORTS];
93 	/* flow description for synchronization */
94 	struct rte_flow_conv_rule rule;
95 	uint8_t rule_data[];
96 };
97 
98 enum dev_state {
99 	DEV_UNDEFINED,
100 	DEV_PARSED,
101 	DEV_PROBED,
102 	DEV_ACTIVE,
103 	DEV_STARTED,
104 };
105 
106 struct fs_stats {
107 	struct rte_eth_stats stats;
108 	uint64_t timestamp;
109 };
110 
111 /*
112  * Allocated in shared memory.
113  */
114 struct sub_device {
115 	/* Exhaustive DPDK device description */
116 	struct sub_device *next;
117 	struct rte_devargs devargs;
118 	struct rte_bus *bus; /* for primary process only. */
119 	struct rte_device *dev; /* for primary process only. */
120 	uint8_t sid;
121 	/* Device state machine */
122 	enum dev_state state;
123 	/* Last stats snapshot passed to user */
124 	struct fs_stats stats_snapshot;
125 	/* Some device are defined as a command line */
126 	char *cmdline;
127 	/* Others are retrieved through a file descriptor */
128 	char *fd_str;
129 	/* fail-safe device backreference */
130 	uint16_t fs_port_id; /* shared between processes */
131 	/* sub device port id*/
132 	uint16_t sdev_port_id; /* shared between processes */
133 	/* flag calling for recollection */
134 	volatile unsigned int remove:1;
135 	/* flow isolation state */
136 	int flow_isolated:1;
137 	/* RMV callback registration state */
138 	unsigned int rmv_callback:1;
139 	/* LSC callback registration state */
140 	unsigned int lsc_callback:1;
141 };
142 
143 /*
144  * This is referenced by eth_dev->data->dev_private
145  * This is shared between processes.
146  */
147 struct fs_priv {
148 	struct rte_eth_dev_data *data; /* backreference to shared data. */
149 	/*
150 	 * Set of sub_devices.
151 	 * subs[0] is the preferred device
152 	 * any other is just another sub device
153 	 */
154 	struct sub_device *subs;  /* shared between processes */
155 	uint8_t subs_head; /* if head == tail, no subs */
156 	uint8_t subs_tail; /* first invalid */
157 	uint8_t subs_tx; /* current emitting device */
158 	uint8_t current_probed;
159 	/* flow mapping */
160 	TAILQ_HEAD(sub_flows, rte_flow) flow_list;
161 	/* current number of mac_addr slots allocated. */
162 	uint32_t nb_mac_addr;
163 	struct rte_ether_addr mac_addrs[FAILSAFE_MAX_ETHADDR];
164 	uint32_t mac_addr_pool[FAILSAFE_MAX_ETHADDR];
165 	uint32_t nb_mcast_addr;
166 	struct rte_ether_addr *mcast_addrs;
167 	/* current capabilities */
168 	struct rte_eth_dev_owner my_owner; /* Unique owner. */
169 	struct rte_intr_handle *intr_handle; /* Port interrupt handle. */
170 	/*
171 	 * Fail-safe state machine.
172 	 * This level will be tracking state of the EAL and eth
173 	 * layer at large as defined by the user application.
174 	 * It will then steer the sub_devices toward the same
175 	 * synchronized state.
176 	 */
177 	enum dev_state state;
178 	struct rte_eth_stats stats_accumulator;
179 	/*
180 	 * Rx interrupts/events proxy.
181 	 * The PMD issues Rx events to the EAL on behalf of its subdevices,
182 	 * it does that by registering an event-fd for each of its queues with
183 	 * the EAL. A PMD service thread listens to all the Rx events from the
184 	 * subdevices, when an Rx event is issued by a subdevice it will be
185 	 * caught by this service with will trigger an Rx event in the
186 	 * appropriate failsafe Rx queue.
187 	 */
188 	struct rx_proxy rxp;
189 	pthread_mutex_t hotplug_mutex;
190 	/* Hot-plug mutex is locked by the alarm mechanism. */
191 	volatile unsigned int alarm_lock:1;
192 	unsigned int pending_alarm:1; /* An alarm is pending */
193 	/* flow isolation state */
194 	int flow_isolated:1;
195 };
196 
197 /* FAILSAFE_INTR */
198 
199 int failsafe_rx_intr_install(struct rte_eth_dev *dev);
200 void failsafe_rx_intr_uninstall(struct rte_eth_dev *dev);
201 int failsafe_rx_intr_install_subdevice(struct sub_device *sdev);
202 void failsafe_rx_intr_uninstall_subdevice(struct sub_device *sdev);
203 
204 /* MISC */
205 
206 int failsafe_hotplug_alarm_install(struct rte_eth_dev *dev);
207 int failsafe_hotplug_alarm_cancel(struct rte_eth_dev *dev);
208 
209 /* RX / TX */
210 
211 void failsafe_set_burst_fn(struct rte_eth_dev *dev, int force_safe);
212 
213 uint16_t failsafe_rx_burst(void *rxq,
214 		struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
215 uint16_t failsafe_tx_burst(void *txq,
216 		struct rte_mbuf **tx_pkts, uint16_t nb_pkts);
217 
218 uint16_t failsafe_rx_burst_fast(void *rxq,
219 		struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
220 uint16_t failsafe_tx_burst_fast(void *txq,
221 		struct rte_mbuf **tx_pkts, uint16_t nb_pkts);
222 
223 /* ARGS */
224 
225 int failsafe_args_parse(struct rte_eth_dev *dev, const char *params);
226 void failsafe_args_free(struct rte_eth_dev *dev);
227 int failsafe_args_count_subdevice(struct rte_eth_dev *dev, const char *params);
228 int failsafe_args_parse_subs(struct rte_eth_dev *dev);
229 
230 /* EAL */
231 
232 int failsafe_eal_init(struct rte_eth_dev *dev);
233 int failsafe_eal_uninit(struct rte_eth_dev *dev);
234 
235 /* ETH_DEV */
236 
237 int failsafe_eth_dev_state_sync(struct rte_eth_dev *dev);
238 void failsafe_eth_dev_unregister_callbacks(struct sub_device *sdev);
239 int failsafe_eth_dev_close(struct rte_eth_dev *dev);
240 void failsafe_dev_remove(struct rte_eth_dev *dev);
241 void failsafe_stats_increment(struct rte_eth_stats *to,
242 				struct rte_eth_stats *from);
243 int failsafe_eth_rmv_event_callback(uint16_t port_id,
244 				    enum rte_eth_event_type type,
245 				    void *arg, void *out);
246 int failsafe_eth_lsc_event_callback(uint16_t port_id,
247 				    enum rte_eth_event_type event,
248 				    void *cb_arg, void *out);
249 int failsafe_eth_new_event_callback(uint16_t port_id,
250 				    enum rte_eth_event_type event,
251 				    void *cb_arg, void *out);
252 
253 /* GLOBALS */
254 
255 extern const char pmd_failsafe_driver_name[];
256 extern const struct eth_dev_ops failsafe_ops;
257 extern const struct rte_flow_ops fs_flow_ops;
258 extern uint64_t failsafe_hotplug_poll;
259 extern int failsafe_mac_from_arg;
260 
261 /* HELPERS */
262 
263 /* dev: (struct rte_eth_dev *) fail-safe device */
264 #define PRIV(dev) \
265 	((struct fs_priv *)(dev)->data->dev_private)
266 
267 /* sdev: (struct sub_device *) */
268 #define ETH(sdev) \
269 	((sdev)->sdev_port_id == RTE_MAX_ETHPORTS ? \
270 	NULL : &rte_eth_devices[(sdev)->sdev_port_id])
271 
272 /* sdev: (struct sub_device *) */
273 #define PORT_ID(sdev) \
274 	((sdev)->sdev_port_id)
275 
276 /* sdev: (struct sub_device *) */
277 #define SUB_ID(sdev) \
278 	((sdev)->sid)
279 
280 /**
281  * Stateful iterator construct over fail-safe sub-devices:
282  * s:     (struct sub_device *), iterator
283  * i:     (uint8_t), increment
284  * dev:   (struct rte_eth_dev *), fail-safe ethdev
285  * state: (enum dev_state), minimum acceptable device state
286  */
287 #define FOREACH_SUBDEV_STATE(s, i, dev, state)		\
288 	for (s = fs_find_next((dev), 0, state, &i);	\
289 	     s != NULL;					\
290 	     s = fs_find_next((dev), i + 1, state, &i))
291 
292 /**
293  * Iterator construct over fail-safe sub-devices:
294  * s:   (struct sub_device *), iterator
295  * i:   (uint8_t), increment
296  * dev: (struct rte_eth_dev *), fail-safe ethdev
297  */
298 #define FOREACH_SUBDEV(s, i, dev)			\
299 	FOREACH_SUBDEV_STATE(s, i, dev, DEV_UNDEFINED)
300 
301 /* dev: (struct rte_eth_dev *) fail-safe device */
302 #define PREFERRED_SUBDEV(dev) \
303 	(&PRIV(dev)->subs[0])
304 
305 /* dev: (struct rte_eth_dev *) fail-safe device */
306 #define TX_SUBDEV(dev)							  \
307 	(PRIV(dev)->subs_tx >= PRIV(dev)->subs_tail		   ? NULL \
308 	 : (PRIV(dev)->subs[PRIV(dev)->subs_tx].state < DEV_PROBED ? NULL \
309 	 : &PRIV(dev)->subs[PRIV(dev)->subs_tx]))
310 
311 /**
312  * s:   (struct sub_device *)
313  * ops: (struct eth_dev_ops) member
314  */
315 #define SUBOPS(s, ops) \
316 	(ETH(s)->dev_ops->ops)
317 
318 /**
319  * Atomic guard
320  */
321 
322 /**
323  * a: (rte_atomic64_t)
324  */
325 #define FS_ATOMIC_P(a) \
326 	rte_atomic64_set(&(a), 1)
327 
328 /**
329  * a: (rte_atomic64_t)
330  */
331 #define FS_ATOMIC_V(a) \
332 	rte_atomic64_set(&(a), 0)
333 
334 /**
335  * s: (struct sub_device *)
336  * i: uint16_t qid
337  */
338 #define FS_ATOMIC_RX(s, i) \
339 	rte_atomic64_read( \
340 	 &((struct rxq *) \
341 	 (fs_dev(s)->data->rx_queues[i]))->refcnt[(s)->sid])
342 /**
343  * s: (struct sub_device *)
344  * i: uint16_t qid
345  */
346 #define FS_ATOMIC_TX(s, i) \
347 	rte_atomic64_read( \
348 	 &((struct txq *) \
349 	 (fs_dev(s)->data->tx_queues[i]))->refcnt[(s)->sid])
350 
351 #ifdef RTE_EXEC_ENV_FREEBSD
352 #define FS_THREADID_TYPE void*
353 #define FS_THREADID_FMT  "p"
354 #else
355 #define FS_THREADID_TYPE unsigned long
356 #define FS_THREADID_FMT  "lu"
357 #endif
358 
359 extern int failsafe_logtype;
360 #define RTE_LOGTYPE_NET_FAILSAFE failsafe_logtype
361 
362 #define LOG_(l, ...) RTE_LOG_LINE(l, NET_FAILSAFE, __VA_ARGS__)
363 #define DEBUG(...) LOG_(DEBUG, __VA_ARGS__)
364 #define INFO(...) LOG_(INFO, __VA_ARGS__)
365 #define WARN(...) LOG_(WARNING, __VA_ARGS__)
366 #define ERROR(...) LOG_(ERR, __VA_ARGS__)
367 
368 /* inlined functions */
369 
370 static inline struct sub_device *
371 fs_find_next(struct rte_eth_dev *dev,
372 	     uint8_t sid,
373 	     enum dev_state min_state,
374 	     uint8_t *sid_out)
375 {
376 	struct sub_device *subs;
377 	uint8_t tail;
378 
379 	subs = PRIV(dev)->subs;
380 	tail = PRIV(dev)->subs_tail;
381 	while (sid < tail) {
382 		if (subs[sid].state >= min_state)
383 			break;
384 		sid++;
385 	}
386 	*sid_out = sid;
387 	if (sid >= tail)
388 		return NULL;
389 	return &subs[sid];
390 }
391 
392 static inline struct rte_eth_dev *
393 fs_dev(struct sub_device *sdev) {
394 	return &rte_eth_devices[sdev->fs_port_id];
395 }
396 
397 /*
398  * Lock hot-plug mutex.
399  * is_alarm means that the caller is, for sure, the hot-plug alarm mechanism.
400  */
401 static inline int
402 fs_lock(struct rte_eth_dev *dev, unsigned int is_alarm)
403 {
404 	int ret;
405 
406 	if (is_alarm) {
407 		ret = pthread_mutex_trylock(&PRIV(dev)->hotplug_mutex);
408 		if (ret) {
409 			DEBUG("Hot-plug mutex lock trying failed(%s), will try"
410 			      " again later...", strerror(ret));
411 			return ret;
412 		}
413 		PRIV(dev)->alarm_lock = 1;
414 	} else {
415 		ret = pthread_mutex_lock(&PRIV(dev)->hotplug_mutex);
416 		if (ret) {
417 			ERROR("Cannot lock mutex(%s)", strerror(ret));
418 			return ret;
419 		}
420 	}
421 	return ret;
422 }
423 
424 /*
425  * Unlock hot-plug mutex.
426  * is_alarm means that the caller is, for sure, the hot-plug alarm mechanism.
427  */
428 static inline void
429 fs_unlock(struct rte_eth_dev *dev, unsigned int is_alarm)
430 {
431 	int ret;
432 
433 	if (is_alarm) {
434 		RTE_ASSERT(PRIV(dev)->alarm_lock == 1);
435 		PRIV(dev)->alarm_lock = 0;
436 	}
437 	ret = pthread_mutex_unlock(&PRIV(dev)->hotplug_mutex);
438 	if (ret)
439 		ERROR("Cannot unlock hot-plug mutex(%s)", strerror(ret));
440 }
441 
442 /*
443  * Switch emitting device.
444  * If banned is set, banned must not be considered for
445  * the role of emitting device.
446  */
447 static inline void
448 fs_switch_dev(struct rte_eth_dev *dev,
449 	      struct sub_device *banned)
450 {
451 	struct sub_device *txd;
452 	enum dev_state req_state;
453 
454 	req_state = PRIV(dev)->state;
455 	txd = TX_SUBDEV(dev);
456 	if (PREFERRED_SUBDEV(dev)->state >= req_state &&
457 	    PREFERRED_SUBDEV(dev) != banned) {
458 		if (txd != PREFERRED_SUBDEV(dev) &&
459 		    (txd == NULL ||
460 		     (req_state == DEV_STARTED) ||
461 		     (txd && txd->state < DEV_STARTED))) {
462 			DEBUG("Switching tx_dev to preferred sub_device");
463 			PRIV(dev)->subs_tx = 0;
464 		}
465 	} else if ((txd && txd->state < req_state) ||
466 		   txd == NULL ||
467 		   txd == banned) {
468 		struct sub_device *sdev = NULL;
469 		uint8_t i;
470 
471 		/* Using acceptable device */
472 		FOREACH_SUBDEV_STATE(sdev, i, dev, req_state) {
473 			if (sdev == banned)
474 				continue;
475 			DEBUG("Switching tx_dev to sub_device %d",
476 			      i);
477 			PRIV(dev)->subs_tx = i;
478 			break;
479 		}
480 		if (i >= PRIV(dev)->subs_tail || sdev == NULL) {
481 			DEBUG("No device ready, deactivating tx_dev");
482 			PRIV(dev)->subs_tx = PRIV(dev)->subs_tail;
483 		}
484 	} else {
485 		return;
486 	}
487 	failsafe_set_burst_fn(dev, 0);
488 	rte_wmb();
489 }
490 
491 /*
492  * Adjust error value and rte_errno to the fail-safe actual error value.
493  */
494 static inline int
495 fs_err(struct sub_device *sdev, int err)
496 {
497 	/* A device removal shouldn't be reported as an error. */
498 	if (sdev->remove == 1 || err == -EIO)
499 		return rte_errno = 0;
500 	return err;
501 }
502 #endif /* _ETH_FAILSAFE_PRIVATE_H_ */
503