xref: /dpdk/drivers/net/ena/ena_ethdev.c (revision fbd1913561484b58e155fbefea4e15491ed60c9f)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
3  * All rights reserved.
4  */
5 
6 #include <rte_string_fns.h>
7 #include <rte_ether.h>
8 #include <rte_ethdev_driver.h>
9 #include <rte_ethdev_pci.h>
10 #include <rte_tcp.h>
11 #include <rte_atomic.h>
12 #include <rte_dev.h>
13 #include <rte_errno.h>
14 #include <rte_version.h>
15 #include <rte_net.h>
16 #include <rte_kvargs.h>
17 
18 #include "ena_ethdev.h"
19 #include "ena_logs.h"
20 #include "ena_platform.h"
21 #include "ena_com.h"
22 #include "ena_eth_com.h"
23 
24 #include <ena_common_defs.h>
25 #include <ena_regs_defs.h>
26 #include <ena_admin_defs.h>
27 #include <ena_eth_io_defs.h>
28 
29 #define DRV_MODULE_VER_MAJOR	2
30 #define DRV_MODULE_VER_MINOR	1
31 #define DRV_MODULE_VER_SUBMINOR	0
32 
33 #define ENA_IO_TXQ_IDX(q)	(2 * (q))
34 #define ENA_IO_RXQ_IDX(q)	(2 * (q) + 1)
35 /*reverse version of ENA_IO_RXQ_IDX*/
36 #define ENA_IO_RXQ_IDX_REV(q)	((q - 1) / 2)
37 
38 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
39 #define TEST_BIT(val, bit_shift) (val & (1UL << bit_shift))
40 
41 #define GET_L4_HDR_LEN(mbuf)					\
42 	((rte_pktmbuf_mtod_offset(mbuf,	struct rte_tcp_hdr *,	\
43 		mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
44 
45 #define ENA_RX_RSS_TABLE_LOG_SIZE  7
46 #define ENA_RX_RSS_TABLE_SIZE	(1 << ENA_RX_RSS_TABLE_LOG_SIZE)
47 #define ENA_HASH_KEY_SIZE	40
48 #define ETH_GSTRING_LEN	32
49 
50 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
51 
52 #define ENA_MIN_RING_DESC	128
53 
54 enum ethtool_stringset {
55 	ETH_SS_TEST             = 0,
56 	ETH_SS_STATS,
57 };
58 
59 struct ena_stats {
60 	char name[ETH_GSTRING_LEN];
61 	int stat_offset;
62 };
63 
64 #define ENA_STAT_ENTRY(stat, stat_type) { \
65 	.name = #stat, \
66 	.stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
67 }
68 
69 #define ENA_STAT_RX_ENTRY(stat) \
70 	ENA_STAT_ENTRY(stat, rx)
71 
72 #define ENA_STAT_TX_ENTRY(stat) \
73 	ENA_STAT_ENTRY(stat, tx)
74 
75 #define ENA_STAT_ENI_ENTRY(stat) \
76 	ENA_STAT_ENTRY(stat, eni)
77 
78 #define ENA_STAT_GLOBAL_ENTRY(stat) \
79 	ENA_STAT_ENTRY(stat, dev)
80 
81 /* Device arguments */
82 #define ENA_DEVARG_LARGE_LLQ_HDR "large_llq_hdr"
83 
84 /*
85  * Each rte_memzone should have unique name.
86  * To satisfy it, count number of allocation and add it to name.
87  */
88 rte_atomic32_t ena_alloc_cnt;
89 
90 static const struct ena_stats ena_stats_global_strings[] = {
91 	ENA_STAT_GLOBAL_ENTRY(wd_expired),
92 	ENA_STAT_GLOBAL_ENTRY(dev_start),
93 	ENA_STAT_GLOBAL_ENTRY(dev_stop),
94 	ENA_STAT_GLOBAL_ENTRY(tx_drops),
95 };
96 
97 static const struct ena_stats ena_stats_eni_strings[] = {
98 	ENA_STAT_ENI_ENTRY(bw_in_allowance_exceeded),
99 	ENA_STAT_ENI_ENTRY(bw_out_allowance_exceeded),
100 	ENA_STAT_ENI_ENTRY(pps_allowance_exceeded),
101 	ENA_STAT_ENI_ENTRY(conntrack_allowance_exceeded),
102 	ENA_STAT_ENI_ENTRY(linklocal_allowance_exceeded),
103 };
104 
105 static const struct ena_stats ena_stats_tx_strings[] = {
106 	ENA_STAT_TX_ENTRY(cnt),
107 	ENA_STAT_TX_ENTRY(bytes),
108 	ENA_STAT_TX_ENTRY(prepare_ctx_err),
109 	ENA_STAT_TX_ENTRY(linearize),
110 	ENA_STAT_TX_ENTRY(linearize_failed),
111 	ENA_STAT_TX_ENTRY(tx_poll),
112 	ENA_STAT_TX_ENTRY(doorbells),
113 	ENA_STAT_TX_ENTRY(bad_req_id),
114 	ENA_STAT_TX_ENTRY(available_desc),
115 };
116 
117 static const struct ena_stats ena_stats_rx_strings[] = {
118 	ENA_STAT_RX_ENTRY(cnt),
119 	ENA_STAT_RX_ENTRY(bytes),
120 	ENA_STAT_RX_ENTRY(refill_partial),
121 	ENA_STAT_RX_ENTRY(bad_csum),
122 	ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
123 	ENA_STAT_RX_ENTRY(bad_desc_num),
124 	ENA_STAT_RX_ENTRY(bad_req_id),
125 };
126 
127 #define ENA_STATS_ARRAY_GLOBAL	ARRAY_SIZE(ena_stats_global_strings)
128 #define ENA_STATS_ARRAY_ENI	ARRAY_SIZE(ena_stats_eni_strings)
129 #define ENA_STATS_ARRAY_TX	ARRAY_SIZE(ena_stats_tx_strings)
130 #define ENA_STATS_ARRAY_RX	ARRAY_SIZE(ena_stats_rx_strings)
131 
132 #define QUEUE_OFFLOADS (DEV_TX_OFFLOAD_TCP_CKSUM |\
133 			DEV_TX_OFFLOAD_UDP_CKSUM |\
134 			DEV_TX_OFFLOAD_IPV4_CKSUM |\
135 			DEV_TX_OFFLOAD_TCP_TSO)
136 #define MBUF_OFFLOADS (PKT_TX_L4_MASK |\
137 		       PKT_TX_IP_CKSUM |\
138 		       PKT_TX_TCP_SEG)
139 
140 /** Vendor ID used by Amazon devices */
141 #define PCI_VENDOR_ID_AMAZON 0x1D0F
142 /** Amazon devices */
143 #define PCI_DEVICE_ID_ENA_VF	0xEC20
144 #define PCI_DEVICE_ID_ENA_LLQ_VF	0xEC21
145 
146 #define	ENA_TX_OFFLOAD_MASK	(\
147 	PKT_TX_L4_MASK |         \
148 	PKT_TX_IPV6 |            \
149 	PKT_TX_IPV4 |            \
150 	PKT_TX_IP_CKSUM |        \
151 	PKT_TX_TCP_SEG)
152 
153 #define	ENA_TX_OFFLOAD_NOTSUP_MASK	\
154 	(PKT_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
155 
156 static const struct rte_pci_id pci_id_ena_map[] = {
157 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
158 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_LLQ_VF) },
159 	{ .device_id = 0 },
160 };
161 
162 static struct ena_aenq_handlers aenq_handlers;
163 
164 static int ena_device_init(struct ena_com_dev *ena_dev,
165 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
166 			   bool *wd_state);
167 static int ena_dev_configure(struct rte_eth_dev *dev);
168 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
169 	struct ena_tx_buffer *tx_info,
170 	struct rte_mbuf *mbuf,
171 	void **push_header,
172 	uint16_t *header_len);
173 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf);
174 static void ena_tx_cleanup(struct ena_ring *tx_ring);
175 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
176 				  uint16_t nb_pkts);
177 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
178 		uint16_t nb_pkts);
179 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
180 			      uint16_t nb_desc, unsigned int socket_id,
181 			      const struct rte_eth_txconf *tx_conf);
182 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
183 			      uint16_t nb_desc, unsigned int socket_id,
184 			      const struct rte_eth_rxconf *rx_conf,
185 			      struct rte_mempool *mp);
186 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len);
187 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
188 				    struct ena_com_rx_buf_info *ena_bufs,
189 				    uint32_t descs,
190 				    uint16_t *next_to_clean,
191 				    uint8_t offset);
192 static uint16_t eth_ena_recv_pkts(void *rx_queue,
193 				  struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
194 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
195 				  struct rte_mbuf *mbuf, uint16_t id);
196 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
197 static void ena_init_rings(struct ena_adapter *adapter,
198 			   bool disable_meta_caching);
199 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
200 static int ena_start(struct rte_eth_dev *dev);
201 static void ena_stop(struct rte_eth_dev *dev);
202 static int ena_close(struct rte_eth_dev *dev);
203 static int ena_dev_reset(struct rte_eth_dev *dev);
204 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
205 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
206 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
207 static void ena_rx_queue_release(void *queue);
208 static void ena_tx_queue_release(void *queue);
209 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
210 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
211 static int ena_link_update(struct rte_eth_dev *dev,
212 			   int wait_to_complete);
213 static int ena_create_io_queue(struct ena_ring *ring);
214 static void ena_queue_stop(struct ena_ring *ring);
215 static void ena_queue_stop_all(struct rte_eth_dev *dev,
216 			      enum ena_ring_type ring_type);
217 static int ena_queue_start(struct ena_ring *ring);
218 static int ena_queue_start_all(struct rte_eth_dev *dev,
219 			       enum ena_ring_type ring_type);
220 static void ena_stats_restart(struct rte_eth_dev *dev);
221 static int ena_infos_get(struct rte_eth_dev *dev,
222 			 struct rte_eth_dev_info *dev_info);
223 static int ena_rss_reta_update(struct rte_eth_dev *dev,
224 			       struct rte_eth_rss_reta_entry64 *reta_conf,
225 			       uint16_t reta_size);
226 static int ena_rss_reta_query(struct rte_eth_dev *dev,
227 			      struct rte_eth_rss_reta_entry64 *reta_conf,
228 			      uint16_t reta_size);
229 static void ena_interrupt_handler_rte(void *cb_arg);
230 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
231 static void ena_destroy_device(struct rte_eth_dev *eth_dev);
232 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
233 static int ena_xstats_get_names(struct rte_eth_dev *dev,
234 				struct rte_eth_xstat_name *xstats_names,
235 				unsigned int n);
236 static int ena_xstats_get(struct rte_eth_dev *dev,
237 			  struct rte_eth_xstat *stats,
238 			  unsigned int n);
239 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
240 				const uint64_t *ids,
241 				uint64_t *values,
242 				unsigned int n);
243 static int ena_process_bool_devarg(const char *key,
244 				   const char *value,
245 				   void *opaque);
246 static int ena_parse_devargs(struct ena_adapter *adapter,
247 			     struct rte_devargs *devargs);
248 static int ena_copy_eni_stats(struct ena_adapter *adapter);
249 
250 static const struct eth_dev_ops ena_dev_ops = {
251 	.dev_configure        = ena_dev_configure,
252 	.dev_infos_get        = ena_infos_get,
253 	.rx_queue_setup       = ena_rx_queue_setup,
254 	.tx_queue_setup       = ena_tx_queue_setup,
255 	.dev_start            = ena_start,
256 	.dev_stop             = ena_stop,
257 	.link_update          = ena_link_update,
258 	.stats_get            = ena_stats_get,
259 	.xstats_get_names     = ena_xstats_get_names,
260 	.xstats_get	      = ena_xstats_get,
261 	.xstats_get_by_id     = ena_xstats_get_by_id,
262 	.mtu_set              = ena_mtu_set,
263 	.rx_queue_release     = ena_rx_queue_release,
264 	.tx_queue_release     = ena_tx_queue_release,
265 	.dev_close            = ena_close,
266 	.dev_reset            = ena_dev_reset,
267 	.reta_update          = ena_rss_reta_update,
268 	.reta_query           = ena_rss_reta_query,
269 };
270 
271 void ena_rss_key_fill(void *key, size_t size)
272 {
273 	static bool key_generated;
274 	static uint8_t default_key[ENA_HASH_KEY_SIZE];
275 	size_t i;
276 
277 	RTE_ASSERT(size <= ENA_HASH_KEY_SIZE);
278 
279 	if (!key_generated) {
280 		for (i = 0; i < ENA_HASH_KEY_SIZE; ++i)
281 			default_key[i] = rte_rand() & 0xff;
282 		key_generated = true;
283 	}
284 
285 	rte_memcpy(key, default_key, size);
286 }
287 
288 static inline void ena_rx_mbuf_prepare(struct rte_mbuf *mbuf,
289 				       struct ena_com_rx_ctx *ena_rx_ctx)
290 {
291 	uint64_t ol_flags = 0;
292 	uint32_t packet_type = 0;
293 
294 	if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
295 		packet_type |= RTE_PTYPE_L4_TCP;
296 	else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
297 		packet_type |= RTE_PTYPE_L4_UDP;
298 
299 	if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4)
300 		packet_type |= RTE_PTYPE_L3_IPV4;
301 	else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6)
302 		packet_type |= RTE_PTYPE_L3_IPV6;
303 
304 	if (!ena_rx_ctx->l4_csum_checked)
305 		ol_flags |= PKT_RX_L4_CKSUM_UNKNOWN;
306 	else
307 		if (unlikely(ena_rx_ctx->l4_csum_err) && !ena_rx_ctx->frag)
308 			ol_flags |= PKT_RX_L4_CKSUM_BAD;
309 		else
310 			ol_flags |= PKT_RX_L4_CKSUM_UNKNOWN;
311 
312 	if (unlikely(ena_rx_ctx->l3_csum_err))
313 		ol_flags |= PKT_RX_IP_CKSUM_BAD;
314 
315 	mbuf->ol_flags = ol_flags;
316 	mbuf->packet_type = packet_type;
317 }
318 
319 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
320 				       struct ena_com_tx_ctx *ena_tx_ctx,
321 				       uint64_t queue_offloads,
322 				       bool disable_meta_caching)
323 {
324 	struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
325 
326 	if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
327 	    (queue_offloads & QUEUE_OFFLOADS)) {
328 		/* check if TSO is required */
329 		if ((mbuf->ol_flags & PKT_TX_TCP_SEG) &&
330 		    (queue_offloads & DEV_TX_OFFLOAD_TCP_TSO)) {
331 			ena_tx_ctx->tso_enable = true;
332 
333 			ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
334 		}
335 
336 		/* check if L3 checksum is needed */
337 		if ((mbuf->ol_flags & PKT_TX_IP_CKSUM) &&
338 		    (queue_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM))
339 			ena_tx_ctx->l3_csum_enable = true;
340 
341 		if (mbuf->ol_flags & PKT_TX_IPV6) {
342 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
343 		} else {
344 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
345 
346 			/* set don't fragment (DF) flag */
347 			if (mbuf->packet_type &
348 				(RTE_PTYPE_L4_NONFRAG
349 				 | RTE_PTYPE_INNER_L4_NONFRAG))
350 				ena_tx_ctx->df = true;
351 		}
352 
353 		/* check if L4 checksum is needed */
354 		if (((mbuf->ol_flags & PKT_TX_L4_MASK) == PKT_TX_TCP_CKSUM) &&
355 		    (queue_offloads & DEV_TX_OFFLOAD_TCP_CKSUM)) {
356 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
357 			ena_tx_ctx->l4_csum_enable = true;
358 		} else if (((mbuf->ol_flags & PKT_TX_L4_MASK) ==
359 				PKT_TX_UDP_CKSUM) &&
360 				(queue_offloads & DEV_TX_OFFLOAD_UDP_CKSUM)) {
361 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
362 			ena_tx_ctx->l4_csum_enable = true;
363 		} else {
364 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
365 			ena_tx_ctx->l4_csum_enable = false;
366 		}
367 
368 		ena_meta->mss = mbuf->tso_segsz;
369 		ena_meta->l3_hdr_len = mbuf->l3_len;
370 		ena_meta->l3_hdr_offset = mbuf->l2_len;
371 
372 		ena_tx_ctx->meta_valid = true;
373 	} else if (disable_meta_caching) {
374 		memset(ena_meta, 0, sizeof(*ena_meta));
375 		ena_tx_ctx->meta_valid = true;
376 	} else {
377 		ena_tx_ctx->meta_valid = false;
378 	}
379 }
380 
381 static inline int validate_rx_req_id(struct ena_ring *rx_ring, uint16_t req_id)
382 {
383 	if (likely(req_id < rx_ring->ring_size))
384 		return 0;
385 
386 	PMD_DRV_LOG(ERR, "Invalid rx req_id: %hu\n", req_id);
387 
388 	rx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID;
389 	rx_ring->adapter->trigger_reset = true;
390 	++rx_ring->rx_stats.bad_req_id;
391 
392 	return -EFAULT;
393 }
394 
395 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
396 {
397 	struct ena_tx_buffer *tx_info = NULL;
398 
399 	if (likely(req_id < tx_ring->ring_size)) {
400 		tx_info = &tx_ring->tx_buffer_info[req_id];
401 		if (likely(tx_info->mbuf))
402 			return 0;
403 	}
404 
405 	if (tx_info)
406 		PMD_DRV_LOG(ERR, "tx_info doesn't have valid mbuf\n");
407 	else
408 		PMD_DRV_LOG(ERR, "Invalid req_id: %hu\n", req_id);
409 
410 	/* Trigger device reset */
411 	++tx_ring->tx_stats.bad_req_id;
412 	tx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID;
413 	tx_ring->adapter->trigger_reset	= true;
414 	return -EFAULT;
415 }
416 
417 static void ena_config_host_info(struct ena_com_dev *ena_dev)
418 {
419 	struct ena_admin_host_info *host_info;
420 	int rc;
421 
422 	/* Allocate only the host info */
423 	rc = ena_com_allocate_host_info(ena_dev);
424 	if (rc) {
425 		PMD_DRV_LOG(ERR, "Cannot allocate host info\n");
426 		return;
427 	}
428 
429 	host_info = ena_dev->host_attr.host_info;
430 
431 	host_info->os_type = ENA_ADMIN_OS_DPDK;
432 	host_info->kernel_ver = RTE_VERSION;
433 	strlcpy((char *)host_info->kernel_ver_str, rte_version(),
434 		sizeof(host_info->kernel_ver_str));
435 	host_info->os_dist = RTE_VERSION;
436 	strlcpy((char *)host_info->os_dist_str, rte_version(),
437 		sizeof(host_info->os_dist_str));
438 	host_info->driver_version =
439 		(DRV_MODULE_VER_MAJOR) |
440 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
441 		(DRV_MODULE_VER_SUBMINOR <<
442 			ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
443 	host_info->num_cpus = rte_lcore_count();
444 
445 	host_info->driver_supported_features =
446 		ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK;
447 
448 	rc = ena_com_set_host_attributes(ena_dev);
449 	if (rc) {
450 		if (rc == -ENA_COM_UNSUPPORTED)
451 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
452 		else
453 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
454 
455 		goto err;
456 	}
457 
458 	return;
459 
460 err:
461 	ena_com_delete_host_info(ena_dev);
462 }
463 
464 /* This function calculates the number of xstats based on the current config */
465 static unsigned int ena_xstats_calc_num(struct rte_eth_dev *dev)
466 {
467 	return ENA_STATS_ARRAY_GLOBAL + ENA_STATS_ARRAY_ENI +
468 		(dev->data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
469 		(dev->data->nb_rx_queues * ENA_STATS_ARRAY_RX);
470 }
471 
472 static void ena_config_debug_area(struct ena_adapter *adapter)
473 {
474 	u32 debug_area_size;
475 	int rc, ss_count;
476 
477 	ss_count = ena_xstats_calc_num(adapter->rte_dev);
478 
479 	/* allocate 32 bytes for each string and 64bit for the value */
480 	debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
481 
482 	rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
483 	if (rc) {
484 		PMD_DRV_LOG(ERR, "Cannot allocate debug area\n");
485 		return;
486 	}
487 
488 	rc = ena_com_set_host_attributes(&adapter->ena_dev);
489 	if (rc) {
490 		if (rc == -ENA_COM_UNSUPPORTED)
491 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
492 		else
493 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
494 
495 		goto err;
496 	}
497 
498 	return;
499 err:
500 	ena_com_delete_debug_area(&adapter->ena_dev);
501 }
502 
503 static int ena_close(struct rte_eth_dev *dev)
504 {
505 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
506 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
507 	struct ena_adapter *adapter = dev->data->dev_private;
508 
509 	if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
510 		ena_stop(dev);
511 	adapter->state = ENA_ADAPTER_STATE_CLOSED;
512 
513 	ena_rx_queue_release_all(dev);
514 	ena_tx_queue_release_all(dev);
515 
516 	rte_free(adapter->drv_stats);
517 	adapter->drv_stats = NULL;
518 
519 	rte_intr_disable(intr_handle);
520 	rte_intr_callback_unregister(intr_handle,
521 				     ena_interrupt_handler_rte,
522 				     adapter);
523 
524 	/*
525 	 * MAC is not allocated dynamically. Setting NULL should prevent from
526 	 * release of the resource in the rte_eth_dev_release_port().
527 	 */
528 	dev->data->mac_addrs = NULL;
529 
530 	return 0;
531 }
532 
533 static int
534 ena_dev_reset(struct rte_eth_dev *dev)
535 {
536 	int rc = 0;
537 
538 	ena_destroy_device(dev);
539 	rc = eth_ena_dev_init(dev);
540 	if (rc)
541 		PMD_INIT_LOG(CRIT, "Cannot initialize device");
542 
543 	return rc;
544 }
545 
546 static int ena_rss_reta_update(struct rte_eth_dev *dev,
547 			       struct rte_eth_rss_reta_entry64 *reta_conf,
548 			       uint16_t reta_size)
549 {
550 	struct ena_adapter *adapter = dev->data->dev_private;
551 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
552 	int rc, i;
553 	u16 entry_value;
554 	int conf_idx;
555 	int idx;
556 
557 	if ((reta_size == 0) || (reta_conf == NULL))
558 		return -EINVAL;
559 
560 	if (reta_size > ENA_RX_RSS_TABLE_SIZE) {
561 		PMD_DRV_LOG(WARNING,
562 			"indirection table %d is bigger than supported (%d)\n",
563 			reta_size, ENA_RX_RSS_TABLE_SIZE);
564 		return -EINVAL;
565 	}
566 
567 	for (i = 0 ; i < reta_size ; i++) {
568 		/* each reta_conf is for 64 entries.
569 		 * to support 128 we use 2 conf of 64
570 		 */
571 		conf_idx = i / RTE_RETA_GROUP_SIZE;
572 		idx = i % RTE_RETA_GROUP_SIZE;
573 		if (TEST_BIT(reta_conf[conf_idx].mask, idx)) {
574 			entry_value =
575 				ENA_IO_RXQ_IDX(reta_conf[conf_idx].reta[idx]);
576 
577 			rc = ena_com_indirect_table_fill_entry(ena_dev,
578 							       i,
579 							       entry_value);
580 			if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
581 				PMD_DRV_LOG(ERR,
582 					"Cannot fill indirect table\n");
583 				return rc;
584 			}
585 		}
586 	}
587 
588 	rte_spinlock_lock(&adapter->admin_lock);
589 	rc = ena_com_indirect_table_set(ena_dev);
590 	rte_spinlock_unlock(&adapter->admin_lock);
591 	if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
592 		PMD_DRV_LOG(ERR, "Cannot flush the indirect table\n");
593 		return rc;
594 	}
595 
596 	PMD_DRV_LOG(DEBUG, "%s(): RSS configured %d entries  for port %d\n",
597 		__func__, reta_size, adapter->rte_dev->data->port_id);
598 
599 	return 0;
600 }
601 
602 /* Query redirection table. */
603 static int ena_rss_reta_query(struct rte_eth_dev *dev,
604 			      struct rte_eth_rss_reta_entry64 *reta_conf,
605 			      uint16_t reta_size)
606 {
607 	struct ena_adapter *adapter = dev->data->dev_private;
608 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
609 	int rc;
610 	int i;
611 	u32 indirect_table[ENA_RX_RSS_TABLE_SIZE] = {0};
612 	int reta_conf_idx;
613 	int reta_idx;
614 
615 	if (reta_size == 0 || reta_conf == NULL ||
616 	    (reta_size > RTE_RETA_GROUP_SIZE && ((reta_conf + 1) == NULL)))
617 		return -EINVAL;
618 
619 	rte_spinlock_lock(&adapter->admin_lock);
620 	rc = ena_com_indirect_table_get(ena_dev, indirect_table);
621 	rte_spinlock_unlock(&adapter->admin_lock);
622 	if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
623 		PMD_DRV_LOG(ERR, "cannot get indirect table\n");
624 		return -ENOTSUP;
625 	}
626 
627 	for (i = 0 ; i < reta_size ; i++) {
628 		reta_conf_idx = i / RTE_RETA_GROUP_SIZE;
629 		reta_idx = i % RTE_RETA_GROUP_SIZE;
630 		if (TEST_BIT(reta_conf[reta_conf_idx].mask, reta_idx))
631 			reta_conf[reta_conf_idx].reta[reta_idx] =
632 				ENA_IO_RXQ_IDX_REV(indirect_table[i]);
633 	}
634 
635 	return 0;
636 }
637 
638 static int ena_rss_init_default(struct ena_adapter *adapter)
639 {
640 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
641 	uint16_t nb_rx_queues = adapter->rte_dev->data->nb_rx_queues;
642 	int rc, i;
643 	u32 val;
644 
645 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
646 	if (unlikely(rc)) {
647 		PMD_DRV_LOG(ERR, "Cannot init indirect table\n");
648 		goto err_rss_init;
649 	}
650 
651 	for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
652 		val = i % nb_rx_queues;
653 		rc = ena_com_indirect_table_fill_entry(ena_dev, i,
654 						       ENA_IO_RXQ_IDX(val));
655 		if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
656 			PMD_DRV_LOG(ERR, "Cannot fill indirect table\n");
657 			goto err_fill_indir;
658 		}
659 	}
660 
661 	rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL,
662 					ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
663 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
664 		PMD_DRV_LOG(INFO, "Cannot fill hash function\n");
665 		goto err_fill_indir;
666 	}
667 
668 	rc = ena_com_set_default_hash_ctrl(ena_dev);
669 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
670 		PMD_DRV_LOG(INFO, "Cannot fill hash control\n");
671 		goto err_fill_indir;
672 	}
673 
674 	rc = ena_com_indirect_table_set(ena_dev);
675 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
676 		PMD_DRV_LOG(ERR, "Cannot flush the indirect table\n");
677 		goto err_fill_indir;
678 	}
679 	PMD_DRV_LOG(DEBUG, "RSS configured for port %d\n",
680 		adapter->rte_dev->data->port_id);
681 
682 	return 0;
683 
684 err_fill_indir:
685 	ena_com_rss_destroy(ena_dev);
686 err_rss_init:
687 
688 	return rc;
689 }
690 
691 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
692 {
693 	struct ena_ring **queues = (struct ena_ring **)dev->data->rx_queues;
694 	int nb_queues = dev->data->nb_rx_queues;
695 	int i;
696 
697 	for (i = 0; i < nb_queues; i++)
698 		ena_rx_queue_release(queues[i]);
699 }
700 
701 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
702 {
703 	struct ena_ring **queues = (struct ena_ring **)dev->data->tx_queues;
704 	int nb_queues = dev->data->nb_tx_queues;
705 	int i;
706 
707 	for (i = 0; i < nb_queues; i++)
708 		ena_tx_queue_release(queues[i]);
709 }
710 
711 static void ena_rx_queue_release(void *queue)
712 {
713 	struct ena_ring *ring = (struct ena_ring *)queue;
714 
715 	/* Free ring resources */
716 	if (ring->rx_buffer_info)
717 		rte_free(ring->rx_buffer_info);
718 	ring->rx_buffer_info = NULL;
719 
720 	if (ring->rx_refill_buffer)
721 		rte_free(ring->rx_refill_buffer);
722 	ring->rx_refill_buffer = NULL;
723 
724 	if (ring->empty_rx_reqs)
725 		rte_free(ring->empty_rx_reqs);
726 	ring->empty_rx_reqs = NULL;
727 
728 	ring->configured = 0;
729 
730 	PMD_DRV_LOG(NOTICE, "RX Queue %d:%d released\n",
731 		ring->port_id, ring->id);
732 }
733 
734 static void ena_tx_queue_release(void *queue)
735 {
736 	struct ena_ring *ring = (struct ena_ring *)queue;
737 
738 	/* Free ring resources */
739 	if (ring->push_buf_intermediate_buf)
740 		rte_free(ring->push_buf_intermediate_buf);
741 
742 	if (ring->tx_buffer_info)
743 		rte_free(ring->tx_buffer_info);
744 
745 	if (ring->empty_tx_reqs)
746 		rte_free(ring->empty_tx_reqs);
747 
748 	ring->empty_tx_reqs = NULL;
749 	ring->tx_buffer_info = NULL;
750 	ring->push_buf_intermediate_buf = NULL;
751 
752 	ring->configured = 0;
753 
754 	PMD_DRV_LOG(NOTICE, "TX Queue %d:%d released\n",
755 		ring->port_id, ring->id);
756 }
757 
758 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
759 {
760 	unsigned int i;
761 
762 	for (i = 0; i < ring->ring_size; ++i) {
763 		struct ena_rx_buffer *rx_info = &ring->rx_buffer_info[i];
764 		if (rx_info->mbuf) {
765 			rte_mbuf_raw_free(rx_info->mbuf);
766 			rx_info->mbuf = NULL;
767 		}
768 	}
769 }
770 
771 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
772 {
773 	unsigned int i;
774 
775 	for (i = 0; i < ring->ring_size; ++i) {
776 		struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
777 
778 		if (tx_buf->mbuf)
779 			rte_pktmbuf_free(tx_buf->mbuf);
780 	}
781 }
782 
783 static int ena_link_update(struct rte_eth_dev *dev,
784 			   __rte_unused int wait_to_complete)
785 {
786 	struct rte_eth_link *link = &dev->data->dev_link;
787 	struct ena_adapter *adapter = dev->data->dev_private;
788 
789 	link->link_status = adapter->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
790 	link->link_speed = ETH_SPEED_NUM_NONE;
791 	link->link_duplex = ETH_LINK_FULL_DUPLEX;
792 
793 	return 0;
794 }
795 
796 static int ena_queue_start_all(struct rte_eth_dev *dev,
797 			       enum ena_ring_type ring_type)
798 {
799 	struct ena_adapter *adapter = dev->data->dev_private;
800 	struct ena_ring *queues = NULL;
801 	int nb_queues;
802 	int i = 0;
803 	int rc = 0;
804 
805 	if (ring_type == ENA_RING_TYPE_RX) {
806 		queues = adapter->rx_ring;
807 		nb_queues = dev->data->nb_rx_queues;
808 	} else {
809 		queues = adapter->tx_ring;
810 		nb_queues = dev->data->nb_tx_queues;
811 	}
812 	for (i = 0; i < nb_queues; i++) {
813 		if (queues[i].configured) {
814 			if (ring_type == ENA_RING_TYPE_RX) {
815 				ena_assert_msg(
816 					dev->data->rx_queues[i] == &queues[i],
817 					"Inconsistent state of rx queues\n");
818 			} else {
819 				ena_assert_msg(
820 					dev->data->tx_queues[i] == &queues[i],
821 					"Inconsistent state of tx queues\n");
822 			}
823 
824 			rc = ena_queue_start(&queues[i]);
825 
826 			if (rc) {
827 				PMD_INIT_LOG(ERR,
828 					     "failed to start queue %d type(%d)",
829 					     i, ring_type);
830 				goto err;
831 			}
832 		}
833 	}
834 
835 	return 0;
836 
837 err:
838 	while (i--)
839 		if (queues[i].configured)
840 			ena_queue_stop(&queues[i]);
841 
842 	return rc;
843 }
844 
845 static uint32_t ena_get_mtu_conf(struct ena_adapter *adapter)
846 {
847 	uint32_t max_frame_len = adapter->max_mtu;
848 
849 	if (adapter->rte_eth_dev_data->dev_conf.rxmode.offloads &
850 	    DEV_RX_OFFLOAD_JUMBO_FRAME)
851 		max_frame_len =
852 			adapter->rte_eth_dev_data->dev_conf.rxmode.max_rx_pkt_len;
853 
854 	return max_frame_len;
855 }
856 
857 static int ena_check_valid_conf(struct ena_adapter *adapter)
858 {
859 	uint32_t max_frame_len = ena_get_mtu_conf(adapter);
860 
861 	if (max_frame_len > adapter->max_mtu || max_frame_len < ENA_MIN_MTU) {
862 		PMD_INIT_LOG(ERR, "Unsupported MTU of %d. "
863 				  "max mtu: %d, min mtu: %d",
864 			     max_frame_len, adapter->max_mtu, ENA_MIN_MTU);
865 		return ENA_COM_UNSUPPORTED;
866 	}
867 
868 	return 0;
869 }
870 
871 static int
872 ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx,
873 		       bool use_large_llq_hdr)
874 {
875 	struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
876 	struct ena_com_dev *ena_dev = ctx->ena_dev;
877 	uint32_t max_tx_queue_size;
878 	uint32_t max_rx_queue_size;
879 
880 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
881 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
882 			&ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
883 		max_rx_queue_size = RTE_MIN(max_queue_ext->max_rx_cq_depth,
884 			max_queue_ext->max_rx_sq_depth);
885 		max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
886 
887 		if (ena_dev->tx_mem_queue_type ==
888 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
889 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
890 				llq->max_llq_depth);
891 		} else {
892 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
893 				max_queue_ext->max_tx_sq_depth);
894 		}
895 
896 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
897 			max_queue_ext->max_per_packet_rx_descs);
898 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
899 			max_queue_ext->max_per_packet_tx_descs);
900 	} else {
901 		struct ena_admin_queue_feature_desc *max_queues =
902 			&ctx->get_feat_ctx->max_queues;
903 		max_rx_queue_size = RTE_MIN(max_queues->max_cq_depth,
904 			max_queues->max_sq_depth);
905 		max_tx_queue_size = max_queues->max_cq_depth;
906 
907 		if (ena_dev->tx_mem_queue_type ==
908 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
909 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
910 				llq->max_llq_depth);
911 		} else {
912 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
913 				max_queues->max_sq_depth);
914 		}
915 
916 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
917 			max_queues->max_packet_rx_descs);
918 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
919 			max_queues->max_packet_tx_descs);
920 	}
921 
922 	/* Round down to the nearest power of 2 */
923 	max_rx_queue_size = rte_align32prevpow2(max_rx_queue_size);
924 	max_tx_queue_size = rte_align32prevpow2(max_tx_queue_size);
925 
926 	if (use_large_llq_hdr) {
927 		if ((llq->entry_size_ctrl_supported &
928 		     ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
929 		    (ena_dev->tx_mem_queue_type ==
930 		     ENA_ADMIN_PLACEMENT_POLICY_DEV)) {
931 			max_tx_queue_size /= 2;
932 			PMD_INIT_LOG(INFO,
933 				"Forcing large headers and decreasing maximum TX queue size to %d\n",
934 				max_tx_queue_size);
935 		} else {
936 			PMD_INIT_LOG(ERR,
937 				"Forcing large headers failed: LLQ is disabled or device does not support large headers\n");
938 		}
939 	}
940 
941 	if (unlikely(max_rx_queue_size == 0 || max_tx_queue_size == 0)) {
942 		PMD_INIT_LOG(ERR, "Invalid queue size");
943 		return -EFAULT;
944 	}
945 
946 	ctx->max_tx_queue_size = max_tx_queue_size;
947 	ctx->max_rx_queue_size = max_rx_queue_size;
948 
949 	return 0;
950 }
951 
952 static void ena_stats_restart(struct rte_eth_dev *dev)
953 {
954 	struct ena_adapter *adapter = dev->data->dev_private;
955 
956 	rte_atomic64_init(&adapter->drv_stats->ierrors);
957 	rte_atomic64_init(&adapter->drv_stats->oerrors);
958 	rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
959 	adapter->drv_stats->rx_drops = 0;
960 }
961 
962 static int ena_stats_get(struct rte_eth_dev *dev,
963 			  struct rte_eth_stats *stats)
964 {
965 	struct ena_admin_basic_stats ena_stats;
966 	struct ena_adapter *adapter = dev->data->dev_private;
967 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
968 	int rc;
969 	int i;
970 	int max_rings_stats;
971 
972 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
973 		return -ENOTSUP;
974 
975 	memset(&ena_stats, 0, sizeof(ena_stats));
976 
977 	rte_spinlock_lock(&adapter->admin_lock);
978 	rc = ena_com_get_dev_basic_stats(ena_dev, &ena_stats);
979 	rte_spinlock_unlock(&adapter->admin_lock);
980 	if (unlikely(rc)) {
981 		PMD_DRV_LOG(ERR, "Could not retrieve statistics from ENA\n");
982 		return rc;
983 	}
984 
985 	/* Set of basic statistics from ENA */
986 	stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
987 					  ena_stats.rx_pkts_low);
988 	stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
989 					  ena_stats.tx_pkts_low);
990 	stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
991 					ena_stats.rx_bytes_low);
992 	stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
993 					ena_stats.tx_bytes_low);
994 
995 	/* Driver related stats */
996 	stats->imissed = adapter->drv_stats->rx_drops;
997 	stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
998 	stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
999 	stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
1000 
1001 	max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
1002 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
1003 	for (i = 0; i < max_rings_stats; ++i) {
1004 		struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
1005 
1006 		stats->q_ibytes[i] = rx_stats->bytes;
1007 		stats->q_ipackets[i] = rx_stats->cnt;
1008 		stats->q_errors[i] = rx_stats->bad_desc_num +
1009 			rx_stats->bad_req_id;
1010 	}
1011 
1012 	max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
1013 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
1014 	for (i = 0; i < max_rings_stats; ++i) {
1015 		struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
1016 
1017 		stats->q_obytes[i] = tx_stats->bytes;
1018 		stats->q_opackets[i] = tx_stats->cnt;
1019 	}
1020 
1021 	return 0;
1022 }
1023 
1024 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1025 {
1026 	struct ena_adapter *adapter;
1027 	struct ena_com_dev *ena_dev;
1028 	int rc = 0;
1029 
1030 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
1031 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
1032 	adapter = dev->data->dev_private;
1033 
1034 	ena_dev = &adapter->ena_dev;
1035 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
1036 
1037 	if (mtu > ena_get_mtu_conf(adapter) || mtu < ENA_MIN_MTU) {
1038 		PMD_DRV_LOG(ERR,
1039 			"Invalid MTU setting. new_mtu: %d "
1040 			"max mtu: %d min mtu: %d\n",
1041 			mtu, ena_get_mtu_conf(adapter), ENA_MIN_MTU);
1042 		return -EINVAL;
1043 	}
1044 
1045 	rc = ena_com_set_dev_mtu(ena_dev, mtu);
1046 	if (rc)
1047 		PMD_DRV_LOG(ERR, "Could not set MTU: %d\n", mtu);
1048 	else
1049 		PMD_DRV_LOG(NOTICE, "Set MTU: %d\n", mtu);
1050 
1051 	return rc;
1052 }
1053 
1054 static int ena_start(struct rte_eth_dev *dev)
1055 {
1056 	struct ena_adapter *adapter = dev->data->dev_private;
1057 	uint64_t ticks;
1058 	int rc = 0;
1059 
1060 	rc = ena_check_valid_conf(adapter);
1061 	if (rc)
1062 		return rc;
1063 
1064 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
1065 	if (rc)
1066 		return rc;
1067 
1068 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
1069 	if (rc)
1070 		goto err_start_tx;
1071 
1072 	if (adapter->rte_dev->data->dev_conf.rxmode.mq_mode &
1073 	    ETH_MQ_RX_RSS_FLAG && adapter->rte_dev->data->nb_rx_queues > 0) {
1074 		rc = ena_rss_init_default(adapter);
1075 		if (rc)
1076 			goto err_rss_init;
1077 	}
1078 
1079 	ena_stats_restart(dev);
1080 
1081 	adapter->timestamp_wd = rte_get_timer_cycles();
1082 	adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
1083 
1084 	ticks = rte_get_timer_hz();
1085 	rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
1086 			ena_timer_wd_callback, adapter);
1087 
1088 	++adapter->dev_stats.dev_start;
1089 	adapter->state = ENA_ADAPTER_STATE_RUNNING;
1090 
1091 	return 0;
1092 
1093 err_rss_init:
1094 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1095 err_start_tx:
1096 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1097 	return rc;
1098 }
1099 
1100 static void ena_stop(struct rte_eth_dev *dev)
1101 {
1102 	struct ena_adapter *adapter = dev->data->dev_private;
1103 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1104 	int rc;
1105 
1106 	rte_timer_stop_sync(&adapter->timer_wd);
1107 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1108 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1109 
1110 	if (adapter->trigger_reset) {
1111 		rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
1112 		if (rc)
1113 			PMD_DRV_LOG(ERR, "Device reset failed rc=%d\n", rc);
1114 	}
1115 
1116 	++adapter->dev_stats.dev_stop;
1117 	adapter->state = ENA_ADAPTER_STATE_STOPPED;
1118 }
1119 
1120 static int ena_create_io_queue(struct ena_ring *ring)
1121 {
1122 	struct ena_adapter *adapter;
1123 	struct ena_com_dev *ena_dev;
1124 	struct ena_com_create_io_ctx ctx =
1125 		/* policy set to _HOST just to satisfy icc compiler */
1126 		{ ENA_ADMIN_PLACEMENT_POLICY_HOST,
1127 		  0, 0, 0, 0, 0 };
1128 	uint16_t ena_qid;
1129 	unsigned int i;
1130 	int rc;
1131 
1132 	adapter = ring->adapter;
1133 	ena_dev = &adapter->ena_dev;
1134 
1135 	if (ring->type == ENA_RING_TYPE_TX) {
1136 		ena_qid = ENA_IO_TXQ_IDX(ring->id);
1137 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1138 		ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1139 		for (i = 0; i < ring->ring_size; i++)
1140 			ring->empty_tx_reqs[i] = i;
1141 	} else {
1142 		ena_qid = ENA_IO_RXQ_IDX(ring->id);
1143 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1144 		for (i = 0; i < ring->ring_size; i++)
1145 			ring->empty_rx_reqs[i] = i;
1146 	}
1147 	ctx.queue_size = ring->ring_size;
1148 	ctx.qid = ena_qid;
1149 	ctx.msix_vector = -1; /* interrupts not used */
1150 	ctx.numa_node = ring->numa_socket_id;
1151 
1152 	rc = ena_com_create_io_queue(ena_dev, &ctx);
1153 	if (rc) {
1154 		PMD_DRV_LOG(ERR,
1155 			"failed to create io queue #%d (qid:%d) rc: %d\n",
1156 			ring->id, ena_qid, rc);
1157 		return rc;
1158 	}
1159 
1160 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1161 				     &ring->ena_com_io_sq,
1162 				     &ring->ena_com_io_cq);
1163 	if (rc) {
1164 		PMD_DRV_LOG(ERR,
1165 			"Failed to get io queue handlers. queue num %d rc: %d\n",
1166 			ring->id, rc);
1167 		ena_com_destroy_io_queue(ena_dev, ena_qid);
1168 		return rc;
1169 	}
1170 
1171 	if (ring->type == ENA_RING_TYPE_TX)
1172 		ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1173 
1174 	return 0;
1175 }
1176 
1177 static void ena_queue_stop(struct ena_ring *ring)
1178 {
1179 	struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
1180 
1181 	if (ring->type == ENA_RING_TYPE_RX) {
1182 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
1183 		ena_rx_queue_release_bufs(ring);
1184 	} else {
1185 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
1186 		ena_tx_queue_release_bufs(ring);
1187 	}
1188 }
1189 
1190 static void ena_queue_stop_all(struct rte_eth_dev *dev,
1191 			      enum ena_ring_type ring_type)
1192 {
1193 	struct ena_adapter *adapter = dev->data->dev_private;
1194 	struct ena_ring *queues = NULL;
1195 	uint16_t nb_queues, i;
1196 
1197 	if (ring_type == ENA_RING_TYPE_RX) {
1198 		queues = adapter->rx_ring;
1199 		nb_queues = dev->data->nb_rx_queues;
1200 	} else {
1201 		queues = adapter->tx_ring;
1202 		nb_queues = dev->data->nb_tx_queues;
1203 	}
1204 
1205 	for (i = 0; i < nb_queues; ++i)
1206 		if (queues[i].configured)
1207 			ena_queue_stop(&queues[i]);
1208 }
1209 
1210 static int ena_queue_start(struct ena_ring *ring)
1211 {
1212 	int rc, bufs_num;
1213 
1214 	ena_assert_msg(ring->configured == 1,
1215 		       "Trying to start unconfigured queue\n");
1216 
1217 	rc = ena_create_io_queue(ring);
1218 	if (rc) {
1219 		PMD_INIT_LOG(ERR, "Failed to create IO queue!");
1220 		return rc;
1221 	}
1222 
1223 	ring->next_to_clean = 0;
1224 	ring->next_to_use = 0;
1225 
1226 	if (ring->type == ENA_RING_TYPE_TX) {
1227 		ring->tx_stats.available_desc =
1228 			ena_com_free_q_entries(ring->ena_com_io_sq);
1229 		return 0;
1230 	}
1231 
1232 	bufs_num = ring->ring_size - 1;
1233 	rc = ena_populate_rx_queue(ring, bufs_num);
1234 	if (rc != bufs_num) {
1235 		ena_com_destroy_io_queue(&ring->adapter->ena_dev,
1236 					 ENA_IO_RXQ_IDX(ring->id));
1237 		PMD_INIT_LOG(ERR, "Failed to populate rx ring !");
1238 		return ENA_COM_FAULT;
1239 	}
1240 
1241 	return 0;
1242 }
1243 
1244 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1245 			      uint16_t queue_idx,
1246 			      uint16_t nb_desc,
1247 			      unsigned int socket_id,
1248 			      const struct rte_eth_txconf *tx_conf)
1249 {
1250 	struct ena_ring *txq = NULL;
1251 	struct ena_adapter *adapter = dev->data->dev_private;
1252 	unsigned int i;
1253 
1254 	txq = &adapter->tx_ring[queue_idx];
1255 
1256 	if (txq->configured) {
1257 		PMD_DRV_LOG(CRIT,
1258 			"API violation. Queue %d is already configured\n",
1259 			queue_idx);
1260 		return ENA_COM_FAULT;
1261 	}
1262 
1263 	if (!rte_is_power_of_2(nb_desc)) {
1264 		PMD_DRV_LOG(ERR,
1265 			"Unsupported size of TX queue: %d is not a power of 2.\n",
1266 			nb_desc);
1267 		return -EINVAL;
1268 	}
1269 
1270 	if (nb_desc > adapter->max_tx_ring_size) {
1271 		PMD_DRV_LOG(ERR,
1272 			"Unsupported size of TX queue (max size: %d)\n",
1273 			adapter->max_tx_ring_size);
1274 		return -EINVAL;
1275 	}
1276 
1277 	if (nb_desc == RTE_ETH_DEV_FALLBACK_TX_RINGSIZE)
1278 		nb_desc = adapter->max_tx_ring_size;
1279 
1280 	txq->port_id = dev->data->port_id;
1281 	txq->next_to_clean = 0;
1282 	txq->next_to_use = 0;
1283 	txq->ring_size = nb_desc;
1284 	txq->size_mask = nb_desc - 1;
1285 	txq->numa_socket_id = socket_id;
1286 
1287 	txq->tx_buffer_info = rte_zmalloc("txq->tx_buffer_info",
1288 					  sizeof(struct ena_tx_buffer) *
1289 					  txq->ring_size,
1290 					  RTE_CACHE_LINE_SIZE);
1291 	if (!txq->tx_buffer_info) {
1292 		PMD_DRV_LOG(ERR, "failed to alloc mem for tx buffer info\n");
1293 		return -ENOMEM;
1294 	}
1295 
1296 	txq->empty_tx_reqs = rte_zmalloc("txq->empty_tx_reqs",
1297 					 sizeof(u16) * txq->ring_size,
1298 					 RTE_CACHE_LINE_SIZE);
1299 	if (!txq->empty_tx_reqs) {
1300 		PMD_DRV_LOG(ERR, "failed to alloc mem for tx reqs\n");
1301 		rte_free(txq->tx_buffer_info);
1302 		return -ENOMEM;
1303 	}
1304 
1305 	txq->push_buf_intermediate_buf =
1306 		rte_zmalloc("txq->push_buf_intermediate_buf",
1307 			    txq->tx_max_header_size,
1308 			    RTE_CACHE_LINE_SIZE);
1309 	if (!txq->push_buf_intermediate_buf) {
1310 		PMD_DRV_LOG(ERR, "failed to alloc push buff for LLQ\n");
1311 		rte_free(txq->tx_buffer_info);
1312 		rte_free(txq->empty_tx_reqs);
1313 		return -ENOMEM;
1314 	}
1315 
1316 	for (i = 0; i < txq->ring_size; i++)
1317 		txq->empty_tx_reqs[i] = i;
1318 
1319 	if (tx_conf != NULL) {
1320 		txq->offloads =
1321 			tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1322 	}
1323 	/* Store pointer to this queue in upper layer */
1324 	txq->configured = 1;
1325 	dev->data->tx_queues[queue_idx] = txq;
1326 
1327 	return 0;
1328 }
1329 
1330 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1331 			      uint16_t queue_idx,
1332 			      uint16_t nb_desc,
1333 			      unsigned int socket_id,
1334 			      __rte_unused const struct rte_eth_rxconf *rx_conf,
1335 			      struct rte_mempool *mp)
1336 {
1337 	struct ena_adapter *adapter = dev->data->dev_private;
1338 	struct ena_ring *rxq = NULL;
1339 	size_t buffer_size;
1340 	int i;
1341 
1342 	rxq = &adapter->rx_ring[queue_idx];
1343 	if (rxq->configured) {
1344 		PMD_DRV_LOG(CRIT,
1345 			"API violation. Queue %d is already configured\n",
1346 			queue_idx);
1347 		return ENA_COM_FAULT;
1348 	}
1349 
1350 	if (nb_desc == RTE_ETH_DEV_FALLBACK_RX_RINGSIZE)
1351 		nb_desc = adapter->max_rx_ring_size;
1352 
1353 	if (!rte_is_power_of_2(nb_desc)) {
1354 		PMD_DRV_LOG(ERR,
1355 			"Unsupported size of RX queue: %d is not a power of 2.\n",
1356 			nb_desc);
1357 		return -EINVAL;
1358 	}
1359 
1360 	if (nb_desc > adapter->max_rx_ring_size) {
1361 		PMD_DRV_LOG(ERR,
1362 			"Unsupported size of RX queue (max size: %d)\n",
1363 			adapter->max_rx_ring_size);
1364 		return -EINVAL;
1365 	}
1366 
1367 	/* ENA isn't supporting buffers smaller than 1400 bytes */
1368 	buffer_size = rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
1369 	if (buffer_size < ENA_RX_BUF_MIN_SIZE) {
1370 		PMD_DRV_LOG(ERR,
1371 			"Unsupported size of RX buffer: %zu (min size: %d)\n",
1372 			buffer_size, ENA_RX_BUF_MIN_SIZE);
1373 		return -EINVAL;
1374 	}
1375 
1376 	rxq->port_id = dev->data->port_id;
1377 	rxq->next_to_clean = 0;
1378 	rxq->next_to_use = 0;
1379 	rxq->ring_size = nb_desc;
1380 	rxq->size_mask = nb_desc - 1;
1381 	rxq->numa_socket_id = socket_id;
1382 	rxq->mb_pool = mp;
1383 
1384 	rxq->rx_buffer_info = rte_zmalloc("rxq->buffer_info",
1385 		sizeof(struct ena_rx_buffer) * nb_desc,
1386 		RTE_CACHE_LINE_SIZE);
1387 	if (!rxq->rx_buffer_info) {
1388 		PMD_DRV_LOG(ERR, "failed to alloc mem for rx buffer info\n");
1389 		return -ENOMEM;
1390 	}
1391 
1392 	rxq->rx_refill_buffer = rte_zmalloc("rxq->rx_refill_buffer",
1393 					    sizeof(struct rte_mbuf *) * nb_desc,
1394 					    RTE_CACHE_LINE_SIZE);
1395 
1396 	if (!rxq->rx_refill_buffer) {
1397 		PMD_DRV_LOG(ERR, "failed to alloc mem for rx refill buffer\n");
1398 		rte_free(rxq->rx_buffer_info);
1399 		rxq->rx_buffer_info = NULL;
1400 		return -ENOMEM;
1401 	}
1402 
1403 	rxq->empty_rx_reqs = rte_zmalloc("rxq->empty_rx_reqs",
1404 					 sizeof(uint16_t) * nb_desc,
1405 					 RTE_CACHE_LINE_SIZE);
1406 	if (!rxq->empty_rx_reqs) {
1407 		PMD_DRV_LOG(ERR, "failed to alloc mem for empty rx reqs\n");
1408 		rte_free(rxq->rx_buffer_info);
1409 		rxq->rx_buffer_info = NULL;
1410 		rte_free(rxq->rx_refill_buffer);
1411 		rxq->rx_refill_buffer = NULL;
1412 		return -ENOMEM;
1413 	}
1414 
1415 	for (i = 0; i < nb_desc; i++)
1416 		rxq->empty_rx_reqs[i] = i;
1417 
1418 	/* Store pointer to this queue in upper layer */
1419 	rxq->configured = 1;
1420 	dev->data->rx_queues[queue_idx] = rxq;
1421 
1422 	return 0;
1423 }
1424 
1425 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
1426 				  struct rte_mbuf *mbuf, uint16_t id)
1427 {
1428 	struct ena_com_buf ebuf;
1429 	int rc;
1430 
1431 	/* prepare physical address for DMA transaction */
1432 	ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1433 	ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1434 
1435 	/* pass resource to device */
1436 	rc = ena_com_add_single_rx_desc(io_sq, &ebuf, id);
1437 	if (unlikely(rc != 0))
1438 		PMD_DRV_LOG(WARNING, "failed adding rx desc\n");
1439 
1440 	return rc;
1441 }
1442 
1443 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1444 {
1445 	unsigned int i;
1446 	int rc;
1447 	uint16_t next_to_use = rxq->next_to_use;
1448 	uint16_t in_use, req_id;
1449 	struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1450 
1451 	if (unlikely(!count))
1452 		return 0;
1453 
1454 	in_use = rxq->ring_size - 1 -
1455 		ena_com_free_q_entries(rxq->ena_com_io_sq);
1456 	ena_assert_msg(((in_use + count) < rxq->ring_size),
1457 		"bad ring state\n");
1458 
1459 	/* get resources for incoming packets */
1460 	rc = rte_mempool_get_bulk(rxq->mb_pool, (void **)mbufs, count);
1461 	if (unlikely(rc < 0)) {
1462 		rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1463 		++rxq->rx_stats.mbuf_alloc_fail;
1464 		PMD_RX_LOG(DEBUG, "there are no enough free buffers");
1465 		return 0;
1466 	}
1467 
1468 	for (i = 0; i < count; i++) {
1469 		struct rte_mbuf *mbuf = mbufs[i];
1470 		struct ena_rx_buffer *rx_info;
1471 
1472 		if (likely((i + 4) < count))
1473 			rte_prefetch0(mbufs[i + 4]);
1474 
1475 		req_id = rxq->empty_rx_reqs[next_to_use];
1476 		rc = validate_rx_req_id(rxq, req_id);
1477 		if (unlikely(rc))
1478 			break;
1479 
1480 		rx_info = &rxq->rx_buffer_info[req_id];
1481 
1482 		rc = ena_add_single_rx_desc(rxq->ena_com_io_sq, mbuf, req_id);
1483 		if (unlikely(rc != 0))
1484 			break;
1485 
1486 		rx_info->mbuf = mbuf;
1487 		next_to_use = ENA_IDX_NEXT_MASKED(next_to_use, rxq->size_mask);
1488 	}
1489 
1490 	if (unlikely(i < count)) {
1491 		PMD_DRV_LOG(WARNING, "refilled rx qid %d with only %d "
1492 			"buffers (from %d)\n", rxq->id, i, count);
1493 		rte_mempool_put_bulk(rxq->mb_pool, (void **)(&mbufs[i]),
1494 				     count - i);
1495 		++rxq->rx_stats.refill_partial;
1496 	}
1497 
1498 	/* When we submitted free recources to device... */
1499 	if (likely(i > 0)) {
1500 		/* ...let HW know that it can fill buffers with data. */
1501 		ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1502 
1503 		rxq->next_to_use = next_to_use;
1504 	}
1505 
1506 	return i;
1507 }
1508 
1509 static int ena_device_init(struct ena_com_dev *ena_dev,
1510 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
1511 			   bool *wd_state)
1512 {
1513 	uint32_t aenq_groups;
1514 	int rc;
1515 	bool readless_supported;
1516 
1517 	/* Initialize mmio registers */
1518 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
1519 	if (rc) {
1520 		PMD_DRV_LOG(ERR, "failed to init mmio read less\n");
1521 		return rc;
1522 	}
1523 
1524 	/* The PCIe configuration space revision id indicate if mmio reg
1525 	 * read is disabled.
1526 	 */
1527 	readless_supported =
1528 		!(((struct rte_pci_device *)ena_dev->dmadev)->id.class_id
1529 			       & ENA_MMIO_DISABLE_REG_READ);
1530 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1531 
1532 	/* reset device */
1533 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1534 	if (rc) {
1535 		PMD_DRV_LOG(ERR, "cannot reset device\n");
1536 		goto err_mmio_read_less;
1537 	}
1538 
1539 	/* check FW version */
1540 	rc = ena_com_validate_version(ena_dev);
1541 	if (rc) {
1542 		PMD_DRV_LOG(ERR, "device version is too low\n");
1543 		goto err_mmio_read_less;
1544 	}
1545 
1546 	ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1547 
1548 	/* ENA device administration layer init */
1549 	rc = ena_com_admin_init(ena_dev, &aenq_handlers);
1550 	if (rc) {
1551 		PMD_DRV_LOG(ERR,
1552 			"cannot initialize ena admin queue with device\n");
1553 		goto err_mmio_read_less;
1554 	}
1555 
1556 	/* To enable the msix interrupts the driver needs to know the number
1557 	 * of queues. So the driver uses polling mode to retrieve this
1558 	 * information.
1559 	 */
1560 	ena_com_set_admin_polling_mode(ena_dev, true);
1561 
1562 	ena_config_host_info(ena_dev);
1563 
1564 	/* Get Device Attributes and features */
1565 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1566 	if (rc) {
1567 		PMD_DRV_LOG(ERR,
1568 			"cannot get attribute for ena device rc= %d\n", rc);
1569 		goto err_admin_init;
1570 	}
1571 
1572 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1573 		      BIT(ENA_ADMIN_NOTIFICATION) |
1574 		      BIT(ENA_ADMIN_KEEP_ALIVE) |
1575 		      BIT(ENA_ADMIN_FATAL_ERROR) |
1576 		      BIT(ENA_ADMIN_WARNING);
1577 
1578 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
1579 	rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
1580 	if (rc) {
1581 		PMD_DRV_LOG(ERR, "Cannot configure aenq groups rc: %d\n", rc);
1582 		goto err_admin_init;
1583 	}
1584 
1585 	*wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
1586 
1587 	return 0;
1588 
1589 err_admin_init:
1590 	ena_com_admin_destroy(ena_dev);
1591 
1592 err_mmio_read_less:
1593 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1594 
1595 	return rc;
1596 }
1597 
1598 static void ena_interrupt_handler_rte(void *cb_arg)
1599 {
1600 	struct ena_adapter *adapter = cb_arg;
1601 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1602 
1603 	ena_com_admin_q_comp_intr_handler(ena_dev);
1604 	if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED))
1605 		ena_com_aenq_intr_handler(ena_dev, adapter);
1606 }
1607 
1608 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1609 {
1610 	if (!adapter->wd_state)
1611 		return;
1612 
1613 	if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1614 		return;
1615 
1616 	if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1617 	    adapter->keep_alive_timeout)) {
1618 		PMD_DRV_LOG(ERR, "Keep alive timeout\n");
1619 		adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
1620 		adapter->trigger_reset = true;
1621 		++adapter->dev_stats.wd_expired;
1622 	}
1623 }
1624 
1625 /* Check if admin queue is enabled */
1626 static void check_for_admin_com_state(struct ena_adapter *adapter)
1627 {
1628 	if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1629 		PMD_DRV_LOG(ERR, "ENA admin queue is not in running state!\n");
1630 		adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
1631 		adapter->trigger_reset = true;
1632 	}
1633 }
1634 
1635 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
1636 				  void *arg)
1637 {
1638 	struct ena_adapter *adapter = arg;
1639 	struct rte_eth_dev *dev = adapter->rte_dev;
1640 
1641 	check_for_missing_keep_alive(adapter);
1642 	check_for_admin_com_state(adapter);
1643 
1644 	if (unlikely(adapter->trigger_reset)) {
1645 		PMD_DRV_LOG(ERR, "Trigger reset is on\n");
1646 		rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
1647 			NULL);
1648 	}
1649 }
1650 
1651 static inline void
1652 set_default_llq_configurations(struct ena_llq_configurations *llq_config,
1653 			       struct ena_admin_feature_llq_desc *llq,
1654 			       bool use_large_llq_hdr)
1655 {
1656 	llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
1657 	llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
1658 	llq_config->llq_num_decs_before_header =
1659 		ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
1660 
1661 	if (use_large_llq_hdr &&
1662 	    (llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B)) {
1663 		llq_config->llq_ring_entry_size =
1664 			ENA_ADMIN_LIST_ENTRY_SIZE_256B;
1665 		llq_config->llq_ring_entry_size_value = 256;
1666 	} else {
1667 		llq_config->llq_ring_entry_size =
1668 			ENA_ADMIN_LIST_ENTRY_SIZE_128B;
1669 		llq_config->llq_ring_entry_size_value = 128;
1670 	}
1671 }
1672 
1673 static int
1674 ena_set_queues_placement_policy(struct ena_adapter *adapter,
1675 				struct ena_com_dev *ena_dev,
1676 				struct ena_admin_feature_llq_desc *llq,
1677 				struct ena_llq_configurations *llq_default_configurations)
1678 {
1679 	int rc;
1680 	u32 llq_feature_mask;
1681 
1682 	llq_feature_mask = 1 << ENA_ADMIN_LLQ;
1683 	if (!(ena_dev->supported_features & llq_feature_mask)) {
1684 		PMD_DRV_LOG(INFO,
1685 			"LLQ is not supported. Fallback to host mode policy.\n");
1686 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1687 		return 0;
1688 	}
1689 
1690 	rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
1691 	if (unlikely(rc)) {
1692 		PMD_INIT_LOG(WARNING, "Failed to config dev mode. "
1693 			"Fallback to host mode policy.");
1694 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1695 		return 0;
1696 	}
1697 
1698 	/* Nothing to config, exit */
1699 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1700 		return 0;
1701 
1702 	if (!adapter->dev_mem_base) {
1703 		PMD_DRV_LOG(ERR, "Unable to access LLQ bar resource. "
1704 			"Fallback to host mode policy.\n.");
1705 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1706 		return 0;
1707 	}
1708 
1709 	ena_dev->mem_bar = adapter->dev_mem_base;
1710 
1711 	return 0;
1712 }
1713 
1714 static uint32_t ena_calc_max_io_queue_num(struct ena_com_dev *ena_dev,
1715 	struct ena_com_dev_get_features_ctx *get_feat_ctx)
1716 {
1717 	uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
1718 
1719 	/* Regular queues capabilities */
1720 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1721 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1722 			&get_feat_ctx->max_queue_ext.max_queue_ext;
1723 		io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
1724 				    max_queue_ext->max_rx_cq_num);
1725 		io_tx_sq_num = max_queue_ext->max_tx_sq_num;
1726 		io_tx_cq_num = max_queue_ext->max_tx_cq_num;
1727 	} else {
1728 		struct ena_admin_queue_feature_desc *max_queues =
1729 			&get_feat_ctx->max_queues;
1730 		io_tx_sq_num = max_queues->max_sq_num;
1731 		io_tx_cq_num = max_queues->max_cq_num;
1732 		io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
1733 	}
1734 
1735 	/* In case of LLQ use the llq number in the get feature cmd */
1736 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
1737 		io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
1738 
1739 	max_num_io_queues = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
1740 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_sq_num);
1741 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_cq_num);
1742 
1743 	if (unlikely(max_num_io_queues == 0)) {
1744 		PMD_DRV_LOG(ERR, "Number of IO queues should not be 0\n");
1745 		return -EFAULT;
1746 	}
1747 
1748 	return max_num_io_queues;
1749 }
1750 
1751 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
1752 {
1753 	struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
1754 	struct rte_pci_device *pci_dev;
1755 	struct rte_intr_handle *intr_handle;
1756 	struct ena_adapter *adapter = eth_dev->data->dev_private;
1757 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1758 	struct ena_com_dev_get_features_ctx get_feat_ctx;
1759 	struct ena_llq_configurations llq_config;
1760 	const char *queue_type_str;
1761 	uint32_t max_num_io_queues;
1762 	int rc;
1763 	static int adapters_found;
1764 	bool disable_meta_caching;
1765 	bool wd_state = false;
1766 
1767 	eth_dev->dev_ops = &ena_dev_ops;
1768 	eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
1769 	eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
1770 	eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
1771 
1772 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1773 		return 0;
1774 
1775 	memset(adapter, 0, sizeof(struct ena_adapter));
1776 	ena_dev = &adapter->ena_dev;
1777 
1778 	adapter->rte_eth_dev_data = eth_dev->data;
1779 	adapter->rte_dev = eth_dev;
1780 
1781 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1782 	adapter->pdev = pci_dev;
1783 
1784 	PMD_INIT_LOG(INFO, "Initializing %x:%x:%x.%d",
1785 		     pci_dev->addr.domain,
1786 		     pci_dev->addr.bus,
1787 		     pci_dev->addr.devid,
1788 		     pci_dev->addr.function);
1789 
1790 	intr_handle = &pci_dev->intr_handle;
1791 
1792 	adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
1793 	adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
1794 
1795 	if (!adapter->regs) {
1796 		PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)",
1797 			     ENA_REGS_BAR);
1798 		return -ENXIO;
1799 	}
1800 
1801 	ena_dev->reg_bar = adapter->regs;
1802 	ena_dev->dmadev = adapter->pdev;
1803 
1804 	adapter->id_number = adapters_found;
1805 
1806 	snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
1807 		 adapter->id_number);
1808 
1809 	rc = ena_parse_devargs(adapter, pci_dev->device.devargs);
1810 	if (rc != 0) {
1811 		PMD_INIT_LOG(CRIT, "Failed to parse devargs\n");
1812 		goto err;
1813 	}
1814 
1815 	/* device specific initialization routine */
1816 	rc = ena_device_init(ena_dev, &get_feat_ctx, &wd_state);
1817 	if (rc) {
1818 		PMD_INIT_LOG(CRIT, "Failed to init ENA device");
1819 		goto err;
1820 	}
1821 	adapter->wd_state = wd_state;
1822 
1823 	set_default_llq_configurations(&llq_config, &get_feat_ctx.llq,
1824 		adapter->use_large_llq_hdr);
1825 	rc = ena_set_queues_placement_policy(adapter, ena_dev,
1826 					     &get_feat_ctx.llq, &llq_config);
1827 	if (unlikely(rc)) {
1828 		PMD_INIT_LOG(CRIT, "Failed to set placement policy");
1829 		return rc;
1830 	}
1831 
1832 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1833 		queue_type_str = "Regular";
1834 	else
1835 		queue_type_str = "Low latency";
1836 	PMD_DRV_LOG(INFO, "Placement policy: %s\n", queue_type_str);
1837 
1838 	calc_queue_ctx.ena_dev = ena_dev;
1839 	calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
1840 
1841 	max_num_io_queues = ena_calc_max_io_queue_num(ena_dev, &get_feat_ctx);
1842 	rc = ena_calc_io_queue_size(&calc_queue_ctx,
1843 		adapter->use_large_llq_hdr);
1844 	if (unlikely((rc != 0) || (max_num_io_queues == 0))) {
1845 		rc = -EFAULT;
1846 		goto err_device_destroy;
1847 	}
1848 
1849 	adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
1850 	adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
1851 	adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
1852 	adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
1853 	adapter->max_num_io_queues = max_num_io_queues;
1854 
1855 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1856 		disable_meta_caching =
1857 			!!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
1858 			BIT(ENA_ADMIN_DISABLE_META_CACHING));
1859 	} else {
1860 		disable_meta_caching = false;
1861 	}
1862 
1863 	/* prepare ring structures */
1864 	ena_init_rings(adapter, disable_meta_caching);
1865 
1866 	ena_config_debug_area(adapter);
1867 
1868 	/* Set max MTU for this device */
1869 	adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
1870 
1871 	/* set device support for offloads */
1872 	adapter->offloads.tso4_supported = (get_feat_ctx.offload.tx &
1873 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) != 0;
1874 	adapter->offloads.tx_csum_supported = (get_feat_ctx.offload.tx &
1875 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK) != 0;
1876 	adapter->offloads.rx_csum_supported =
1877 		(get_feat_ctx.offload.rx_supported &
1878 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK) != 0;
1879 
1880 	/* Copy MAC address and point DPDK to it */
1881 	eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr;
1882 	rte_ether_addr_copy((struct rte_ether_addr *)
1883 			get_feat_ctx.dev_attr.mac_addr,
1884 			(struct rte_ether_addr *)adapter->mac_addr);
1885 
1886 	adapter->drv_stats = rte_zmalloc("adapter stats",
1887 					 sizeof(*adapter->drv_stats),
1888 					 RTE_CACHE_LINE_SIZE);
1889 	if (!adapter->drv_stats) {
1890 		PMD_DRV_LOG(ERR, "failed to alloc mem for adapter stats\n");
1891 		rc = -ENOMEM;
1892 		goto err_delete_debug_area;
1893 	}
1894 
1895 	rte_spinlock_init(&adapter->admin_lock);
1896 
1897 	rte_intr_callback_register(intr_handle,
1898 				   ena_interrupt_handler_rte,
1899 				   adapter);
1900 	rte_intr_enable(intr_handle);
1901 	ena_com_set_admin_polling_mode(ena_dev, false);
1902 	ena_com_admin_aenq_enable(ena_dev);
1903 
1904 	if (adapters_found == 0)
1905 		rte_timer_subsystem_init();
1906 	rte_timer_init(&adapter->timer_wd);
1907 
1908 	adapters_found++;
1909 	adapter->state = ENA_ADAPTER_STATE_INIT;
1910 
1911 	return 0;
1912 
1913 err_delete_debug_area:
1914 	ena_com_delete_debug_area(ena_dev);
1915 
1916 err_device_destroy:
1917 	ena_com_delete_host_info(ena_dev);
1918 	ena_com_admin_destroy(ena_dev);
1919 
1920 err:
1921 	return rc;
1922 }
1923 
1924 static void ena_destroy_device(struct rte_eth_dev *eth_dev)
1925 {
1926 	struct ena_adapter *adapter = eth_dev->data->dev_private;
1927 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1928 
1929 	if (adapter->state == ENA_ADAPTER_STATE_FREE)
1930 		return;
1931 
1932 	ena_com_set_admin_running_state(ena_dev, false);
1933 
1934 	if (adapter->state != ENA_ADAPTER_STATE_CLOSED)
1935 		ena_close(eth_dev);
1936 
1937 	ena_com_delete_debug_area(ena_dev);
1938 	ena_com_delete_host_info(ena_dev);
1939 
1940 	ena_com_abort_admin_commands(ena_dev);
1941 	ena_com_wait_for_abort_completion(ena_dev);
1942 	ena_com_admin_destroy(ena_dev);
1943 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1944 
1945 	adapter->state = ENA_ADAPTER_STATE_FREE;
1946 }
1947 
1948 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
1949 {
1950 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1951 		return 0;
1952 
1953 	ena_destroy_device(eth_dev);
1954 
1955 	eth_dev->dev_ops = NULL;
1956 	eth_dev->rx_pkt_burst = NULL;
1957 	eth_dev->tx_pkt_burst = NULL;
1958 	eth_dev->tx_pkt_prepare = NULL;
1959 
1960 	return 0;
1961 }
1962 
1963 static int ena_dev_configure(struct rte_eth_dev *dev)
1964 {
1965 	struct ena_adapter *adapter = dev->data->dev_private;
1966 
1967 	adapter->state = ENA_ADAPTER_STATE_CONFIG;
1968 
1969 	adapter->tx_selected_offloads = dev->data->dev_conf.txmode.offloads;
1970 	adapter->rx_selected_offloads = dev->data->dev_conf.rxmode.offloads;
1971 	return 0;
1972 }
1973 
1974 static void ena_init_rings(struct ena_adapter *adapter,
1975 			   bool disable_meta_caching)
1976 {
1977 	size_t i;
1978 
1979 	for (i = 0; i < adapter->max_num_io_queues; i++) {
1980 		struct ena_ring *ring = &adapter->tx_ring[i];
1981 
1982 		ring->configured = 0;
1983 		ring->type = ENA_RING_TYPE_TX;
1984 		ring->adapter = adapter;
1985 		ring->id = i;
1986 		ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
1987 		ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
1988 		ring->sgl_size = adapter->max_tx_sgl_size;
1989 		ring->disable_meta_caching = disable_meta_caching;
1990 	}
1991 
1992 	for (i = 0; i < adapter->max_num_io_queues; i++) {
1993 		struct ena_ring *ring = &adapter->rx_ring[i];
1994 
1995 		ring->configured = 0;
1996 		ring->type = ENA_RING_TYPE_RX;
1997 		ring->adapter = adapter;
1998 		ring->id = i;
1999 		ring->sgl_size = adapter->max_rx_sgl_size;
2000 	}
2001 }
2002 
2003 static int ena_infos_get(struct rte_eth_dev *dev,
2004 			  struct rte_eth_dev_info *dev_info)
2005 {
2006 	struct ena_adapter *adapter;
2007 	struct ena_com_dev *ena_dev;
2008 	uint64_t rx_feat = 0, tx_feat = 0;
2009 
2010 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
2011 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
2012 	adapter = dev->data->dev_private;
2013 
2014 	ena_dev = &adapter->ena_dev;
2015 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
2016 
2017 	dev_info->speed_capa =
2018 			ETH_LINK_SPEED_1G   |
2019 			ETH_LINK_SPEED_2_5G |
2020 			ETH_LINK_SPEED_5G   |
2021 			ETH_LINK_SPEED_10G  |
2022 			ETH_LINK_SPEED_25G  |
2023 			ETH_LINK_SPEED_40G  |
2024 			ETH_LINK_SPEED_50G  |
2025 			ETH_LINK_SPEED_100G;
2026 
2027 	/* Set Tx & Rx features available for device */
2028 	if (adapter->offloads.tso4_supported)
2029 		tx_feat	|= DEV_TX_OFFLOAD_TCP_TSO;
2030 
2031 	if (adapter->offloads.tx_csum_supported)
2032 		tx_feat |= DEV_TX_OFFLOAD_IPV4_CKSUM |
2033 			DEV_TX_OFFLOAD_UDP_CKSUM |
2034 			DEV_TX_OFFLOAD_TCP_CKSUM;
2035 
2036 	if (adapter->offloads.rx_csum_supported)
2037 		rx_feat |= DEV_RX_OFFLOAD_IPV4_CKSUM |
2038 			DEV_RX_OFFLOAD_UDP_CKSUM  |
2039 			DEV_RX_OFFLOAD_TCP_CKSUM;
2040 
2041 	rx_feat |= DEV_RX_OFFLOAD_JUMBO_FRAME;
2042 
2043 	/* Inform framework about available features */
2044 	dev_info->rx_offload_capa = rx_feat;
2045 	dev_info->rx_queue_offload_capa = rx_feat;
2046 	dev_info->tx_offload_capa = tx_feat;
2047 	dev_info->tx_queue_offload_capa = tx_feat;
2048 
2049 	dev_info->flow_type_rss_offloads = ETH_RSS_IP | ETH_RSS_TCP |
2050 					   ETH_RSS_UDP;
2051 
2052 	dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
2053 	dev_info->max_rx_pktlen  = adapter->max_mtu;
2054 	dev_info->max_mac_addrs = 1;
2055 
2056 	dev_info->max_rx_queues = adapter->max_num_io_queues;
2057 	dev_info->max_tx_queues = adapter->max_num_io_queues;
2058 	dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
2059 
2060 	adapter->tx_supported_offloads = tx_feat;
2061 	adapter->rx_supported_offloads = rx_feat;
2062 
2063 	dev_info->rx_desc_lim.nb_max = adapter->max_rx_ring_size;
2064 	dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2065 	dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2066 					adapter->max_rx_sgl_size);
2067 	dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2068 					adapter->max_rx_sgl_size);
2069 
2070 	dev_info->tx_desc_lim.nb_max = adapter->max_tx_ring_size;
2071 	dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2072 	dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2073 					adapter->max_tx_sgl_size);
2074 	dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2075 					adapter->max_tx_sgl_size);
2076 
2077 	return 0;
2078 }
2079 
2080 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len)
2081 {
2082 	mbuf->data_len = len;
2083 	mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2084 	mbuf->refcnt = 1;
2085 	mbuf->next = NULL;
2086 }
2087 
2088 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
2089 				    struct ena_com_rx_buf_info *ena_bufs,
2090 				    uint32_t descs,
2091 				    uint16_t *next_to_clean,
2092 				    uint8_t offset)
2093 {
2094 	struct rte_mbuf *mbuf;
2095 	struct rte_mbuf *mbuf_head;
2096 	struct ena_rx_buffer *rx_info;
2097 	int rc;
2098 	uint16_t ntc, len, req_id, buf = 0;
2099 
2100 	if (unlikely(descs == 0))
2101 		return NULL;
2102 
2103 	ntc = *next_to_clean;
2104 
2105 	len = ena_bufs[buf].len;
2106 	req_id = ena_bufs[buf].req_id;
2107 	if (unlikely(validate_rx_req_id(rx_ring, req_id)))
2108 		return NULL;
2109 
2110 	rx_info = &rx_ring->rx_buffer_info[req_id];
2111 
2112 	mbuf = rx_info->mbuf;
2113 	RTE_ASSERT(mbuf != NULL);
2114 
2115 	ena_init_rx_mbuf(mbuf, len);
2116 
2117 	/* Fill the mbuf head with the data specific for 1st segment. */
2118 	mbuf_head = mbuf;
2119 	mbuf_head->nb_segs = descs;
2120 	mbuf_head->port = rx_ring->port_id;
2121 	mbuf_head->pkt_len = len;
2122 	mbuf_head->data_off += offset;
2123 
2124 	rx_info->mbuf = NULL;
2125 	rx_ring->empty_rx_reqs[ntc] = req_id;
2126 	ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2127 
2128 	while (--descs) {
2129 		++buf;
2130 		len = ena_bufs[buf].len;
2131 		req_id = ena_bufs[buf].req_id;
2132 		if (unlikely(validate_rx_req_id(rx_ring, req_id))) {
2133 			rte_mbuf_raw_free(mbuf_head);
2134 			return NULL;
2135 		}
2136 
2137 		rx_info = &rx_ring->rx_buffer_info[req_id];
2138 		RTE_ASSERT(rx_info->mbuf != NULL);
2139 
2140 		if (unlikely(len == 0)) {
2141 			/*
2142 			 * Some devices can pass descriptor with the length 0.
2143 			 * To avoid confusion, the PMD is simply putting the
2144 			 * descriptor back, as it was never used. We'll avoid
2145 			 * mbuf allocation that way.
2146 			 */
2147 			rc = ena_add_single_rx_desc(rx_ring->ena_com_io_sq,
2148 				rx_info->mbuf, req_id);
2149 			if (unlikely(rc != 0)) {
2150 				/* Free the mbuf in case of an error. */
2151 				rte_mbuf_raw_free(rx_info->mbuf);
2152 			} else {
2153 				/*
2154 				 * If there was no error, just exit the loop as
2155 				 * 0 length descriptor is always the last one.
2156 				 */
2157 				break;
2158 			}
2159 		} else {
2160 			/* Create an mbuf chain. */
2161 			mbuf->next = rx_info->mbuf;
2162 			mbuf = mbuf->next;
2163 
2164 			ena_init_rx_mbuf(mbuf, len);
2165 			mbuf_head->pkt_len += len;
2166 		}
2167 
2168 		/*
2169 		 * Mark the descriptor as depleted and perform necessary
2170 		 * cleanup.
2171 		 * This code will execute in two cases:
2172 		 *  1. Descriptor len was greater than 0 - normal situation.
2173 		 *  2. Descriptor len was 0 and we failed to add the descriptor
2174 		 *     to the device. In that situation, we should try to add
2175 		 *     the mbuf again in the populate routine and mark the
2176 		 *     descriptor as used up by the device.
2177 		 */
2178 		rx_info->mbuf = NULL;
2179 		rx_ring->empty_rx_reqs[ntc] = req_id;
2180 		ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2181 	}
2182 
2183 	*next_to_clean = ntc;
2184 
2185 	return mbuf_head;
2186 }
2187 
2188 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
2189 				  uint16_t nb_pkts)
2190 {
2191 	struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
2192 	unsigned int free_queue_entries;
2193 	unsigned int refill_threshold;
2194 	uint16_t next_to_clean = rx_ring->next_to_clean;
2195 	uint16_t descs_in_use;
2196 	struct rte_mbuf *mbuf;
2197 	uint16_t completed;
2198 	struct ena_com_rx_ctx ena_rx_ctx;
2199 	int i, rc = 0;
2200 
2201 	/* Check adapter state */
2202 	if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2203 		PMD_DRV_LOG(ALERT,
2204 			"Trying to receive pkts while device is NOT running\n");
2205 		return 0;
2206 	}
2207 
2208 	descs_in_use = rx_ring->ring_size -
2209 		ena_com_free_q_entries(rx_ring->ena_com_io_sq) - 1;
2210 	nb_pkts = RTE_MIN(descs_in_use, nb_pkts);
2211 
2212 	for (completed = 0; completed < nb_pkts; completed++) {
2213 		ena_rx_ctx.max_bufs = rx_ring->sgl_size;
2214 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
2215 		ena_rx_ctx.descs = 0;
2216 		ena_rx_ctx.pkt_offset = 0;
2217 		/* receive packet context */
2218 		rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
2219 				    rx_ring->ena_com_io_sq,
2220 				    &ena_rx_ctx);
2221 		if (unlikely(rc)) {
2222 			PMD_DRV_LOG(ERR, "ena_com_rx_pkt error %d\n", rc);
2223 			rx_ring->adapter->reset_reason =
2224 				ENA_REGS_RESET_TOO_MANY_RX_DESCS;
2225 			rx_ring->adapter->trigger_reset = true;
2226 			++rx_ring->rx_stats.bad_desc_num;
2227 			return 0;
2228 		}
2229 
2230 		mbuf = ena_rx_mbuf(rx_ring,
2231 			ena_rx_ctx.ena_bufs,
2232 			ena_rx_ctx.descs,
2233 			&next_to_clean,
2234 			ena_rx_ctx.pkt_offset);
2235 		if (unlikely(mbuf == NULL)) {
2236 			for (i = 0; i < ena_rx_ctx.descs; ++i) {
2237 				rx_ring->empty_rx_reqs[next_to_clean] =
2238 					rx_ring->ena_bufs[i].req_id;
2239 				next_to_clean = ENA_IDX_NEXT_MASKED(
2240 					next_to_clean, rx_ring->size_mask);
2241 			}
2242 			break;
2243 		}
2244 
2245 		/* fill mbuf attributes if any */
2246 		ena_rx_mbuf_prepare(mbuf, &ena_rx_ctx);
2247 
2248 		if (unlikely(mbuf->ol_flags &
2249 				(PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD))) {
2250 			rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors);
2251 			++rx_ring->rx_stats.bad_csum;
2252 		}
2253 
2254 		mbuf->hash.rss = ena_rx_ctx.hash;
2255 
2256 		rx_pkts[completed] = mbuf;
2257 		rx_ring->rx_stats.bytes += mbuf->pkt_len;
2258 	}
2259 
2260 	rx_ring->rx_stats.cnt += completed;
2261 	rx_ring->next_to_clean = next_to_clean;
2262 
2263 	free_queue_entries = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
2264 	refill_threshold =
2265 		RTE_MIN(rx_ring->ring_size / ENA_REFILL_THRESH_DIVIDER,
2266 		(unsigned int)ENA_REFILL_THRESH_PACKET);
2267 
2268 	/* Burst refill to save doorbells, memory barriers, const interval */
2269 	if (free_queue_entries > refill_threshold) {
2270 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
2271 		ena_populate_rx_queue(rx_ring, free_queue_entries);
2272 	}
2273 
2274 	return completed;
2275 }
2276 
2277 static uint16_t
2278 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2279 		uint16_t nb_pkts)
2280 {
2281 	int32_t ret;
2282 	uint32_t i;
2283 	struct rte_mbuf *m;
2284 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2285 	struct rte_ipv4_hdr *ip_hdr;
2286 	uint64_t ol_flags;
2287 	uint16_t frag_field;
2288 
2289 	for (i = 0; i != nb_pkts; i++) {
2290 		m = tx_pkts[i];
2291 		ol_flags = m->ol_flags;
2292 
2293 		if (!(ol_flags & PKT_TX_IPV4))
2294 			continue;
2295 
2296 		/* If there was not L2 header length specified, assume it is
2297 		 * length of the ethernet header.
2298 		 */
2299 		if (unlikely(m->l2_len == 0))
2300 			m->l2_len = sizeof(struct rte_ether_hdr);
2301 
2302 		ip_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *,
2303 						 m->l2_len);
2304 		frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
2305 
2306 		if ((frag_field & RTE_IPV4_HDR_DF_FLAG) != 0) {
2307 			m->packet_type |= RTE_PTYPE_L4_NONFRAG;
2308 
2309 			/* If IPv4 header has DF flag enabled and TSO support is
2310 			 * disabled, partial chcecksum should not be calculated.
2311 			 */
2312 			if (!tx_ring->adapter->offloads.tso4_supported)
2313 				continue;
2314 		}
2315 
2316 		if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) != 0 ||
2317 				(ol_flags & PKT_TX_L4_MASK) ==
2318 				PKT_TX_SCTP_CKSUM) {
2319 			rte_errno = ENOTSUP;
2320 			return i;
2321 		}
2322 
2323 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2324 		ret = rte_validate_tx_offload(m);
2325 		if (ret != 0) {
2326 			rte_errno = -ret;
2327 			return i;
2328 		}
2329 #endif
2330 
2331 		/* In case we are supposed to TSO and have DF not set (DF=0)
2332 		 * hardware must be provided with partial checksum, otherwise
2333 		 * it will take care of necessary calculations.
2334 		 */
2335 
2336 		ret = rte_net_intel_cksum_flags_prepare(m,
2337 			ol_flags & ~PKT_TX_TCP_SEG);
2338 		if (ret != 0) {
2339 			rte_errno = -ret;
2340 			return i;
2341 		}
2342 	}
2343 
2344 	return i;
2345 }
2346 
2347 static void ena_update_hints(struct ena_adapter *adapter,
2348 			     struct ena_admin_ena_hw_hints *hints)
2349 {
2350 	if (hints->admin_completion_tx_timeout)
2351 		adapter->ena_dev.admin_queue.completion_timeout =
2352 			hints->admin_completion_tx_timeout * 1000;
2353 
2354 	if (hints->mmio_read_timeout)
2355 		/* convert to usec */
2356 		adapter->ena_dev.mmio_read.reg_read_to =
2357 			hints->mmio_read_timeout * 1000;
2358 
2359 	if (hints->driver_watchdog_timeout) {
2360 		if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
2361 			adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
2362 		else
2363 			// Convert msecs to ticks
2364 			adapter->keep_alive_timeout =
2365 				(hints->driver_watchdog_timeout *
2366 				rte_get_timer_hz()) / 1000;
2367 	}
2368 }
2369 
2370 static int ena_check_and_linearize_mbuf(struct ena_ring *tx_ring,
2371 					struct rte_mbuf *mbuf)
2372 {
2373 	struct ena_com_dev *ena_dev;
2374 	int num_segments, header_len, rc;
2375 
2376 	ena_dev = &tx_ring->adapter->ena_dev;
2377 	num_segments = mbuf->nb_segs;
2378 	header_len = mbuf->data_len;
2379 
2380 	if (likely(num_segments < tx_ring->sgl_size))
2381 		return 0;
2382 
2383 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
2384 	    (num_segments == tx_ring->sgl_size) &&
2385 	    (header_len < tx_ring->tx_max_header_size))
2386 		return 0;
2387 
2388 	++tx_ring->tx_stats.linearize;
2389 	rc = rte_pktmbuf_linearize(mbuf);
2390 	if (unlikely(rc)) {
2391 		PMD_DRV_LOG(WARNING, "Mbuf linearize failed\n");
2392 		rte_atomic64_inc(&tx_ring->adapter->drv_stats->ierrors);
2393 		++tx_ring->tx_stats.linearize_failed;
2394 		return rc;
2395 	}
2396 
2397 	return rc;
2398 }
2399 
2400 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
2401 	struct ena_tx_buffer *tx_info,
2402 	struct rte_mbuf *mbuf,
2403 	void **push_header,
2404 	uint16_t *header_len)
2405 {
2406 	struct ena_com_buf *ena_buf;
2407 	uint16_t delta, seg_len, push_len;
2408 
2409 	delta = 0;
2410 	seg_len = mbuf->data_len;
2411 
2412 	tx_info->mbuf = mbuf;
2413 	ena_buf = tx_info->bufs;
2414 
2415 	if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2416 		/*
2417 		 * Tx header might be (and will be in most cases) smaller than
2418 		 * tx_max_header_size. But it's not an issue to send more data
2419 		 * to the device, than actually needed if the mbuf size is
2420 		 * greater than tx_max_header_size.
2421 		 */
2422 		push_len = RTE_MIN(mbuf->pkt_len, tx_ring->tx_max_header_size);
2423 		*header_len = push_len;
2424 
2425 		if (likely(push_len <= seg_len)) {
2426 			/* If the push header is in the single segment, then
2427 			 * just point it to the 1st mbuf data.
2428 			 */
2429 			*push_header = rte_pktmbuf_mtod(mbuf, uint8_t *);
2430 		} else {
2431 			/* If the push header lays in the several segments, copy
2432 			 * it to the intermediate buffer.
2433 			 */
2434 			rte_pktmbuf_read(mbuf, 0, push_len,
2435 				tx_ring->push_buf_intermediate_buf);
2436 			*push_header = tx_ring->push_buf_intermediate_buf;
2437 			delta = push_len - seg_len;
2438 		}
2439 	} else {
2440 		*push_header = NULL;
2441 		*header_len = 0;
2442 		push_len = 0;
2443 	}
2444 
2445 	/* Process first segment taking into consideration pushed header */
2446 	if (seg_len > push_len) {
2447 		ena_buf->paddr = mbuf->buf_iova +
2448 				mbuf->data_off +
2449 				push_len;
2450 		ena_buf->len = seg_len - push_len;
2451 		ena_buf++;
2452 		tx_info->num_of_bufs++;
2453 	}
2454 
2455 	while ((mbuf = mbuf->next) != NULL) {
2456 		seg_len = mbuf->data_len;
2457 
2458 		/* Skip mbufs if whole data is pushed as a header */
2459 		if (unlikely(delta > seg_len)) {
2460 			delta -= seg_len;
2461 			continue;
2462 		}
2463 
2464 		ena_buf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
2465 		ena_buf->len = seg_len - delta;
2466 		ena_buf++;
2467 		tx_info->num_of_bufs++;
2468 
2469 		delta = 0;
2470 	}
2471 }
2472 
2473 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf)
2474 {
2475 	struct ena_tx_buffer *tx_info;
2476 	struct ena_com_tx_ctx ena_tx_ctx = { { 0 } };
2477 	uint16_t next_to_use;
2478 	uint16_t header_len;
2479 	uint16_t req_id;
2480 	void *push_header;
2481 	int nb_hw_desc;
2482 	int rc;
2483 
2484 	rc = ena_check_and_linearize_mbuf(tx_ring, mbuf);
2485 	if (unlikely(rc))
2486 		return rc;
2487 
2488 	next_to_use = tx_ring->next_to_use;
2489 
2490 	req_id = tx_ring->empty_tx_reqs[next_to_use];
2491 	tx_info = &tx_ring->tx_buffer_info[req_id];
2492 	tx_info->num_of_bufs = 0;
2493 
2494 	ena_tx_map_mbuf(tx_ring, tx_info, mbuf, &push_header, &header_len);
2495 
2496 	ena_tx_ctx.ena_bufs = tx_info->bufs;
2497 	ena_tx_ctx.push_header = push_header;
2498 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2499 	ena_tx_ctx.req_id = req_id;
2500 	ena_tx_ctx.header_len = header_len;
2501 
2502 	/* Set Tx offloads flags, if applicable */
2503 	ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads,
2504 		tx_ring->disable_meta_caching);
2505 
2506 	if (unlikely(ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
2507 			&ena_tx_ctx))) {
2508 		PMD_DRV_LOG(DEBUG,
2509 			"llq tx max burst size of queue %d achieved, writing doorbell to send burst\n",
2510 			tx_ring->id);
2511 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2512 	}
2513 
2514 	/* prepare the packet's descriptors to dma engine */
2515 	rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq,	&ena_tx_ctx,
2516 		&nb_hw_desc);
2517 	if (unlikely(rc)) {
2518 		++tx_ring->tx_stats.prepare_ctx_err;
2519 		return rc;
2520 	}
2521 
2522 	tx_info->tx_descs = nb_hw_desc;
2523 
2524 	tx_ring->tx_stats.cnt++;
2525 	tx_ring->tx_stats.bytes += mbuf->pkt_len;
2526 
2527 	tx_ring->next_to_use = ENA_IDX_NEXT_MASKED(next_to_use,
2528 		tx_ring->size_mask);
2529 
2530 	return 0;
2531 }
2532 
2533 static void ena_tx_cleanup(struct ena_ring *tx_ring)
2534 {
2535 	unsigned int cleanup_budget;
2536 	unsigned int total_tx_descs = 0;
2537 	uint16_t next_to_clean = tx_ring->next_to_clean;
2538 
2539 	cleanup_budget = RTE_MIN(tx_ring->ring_size / ENA_REFILL_THRESH_DIVIDER,
2540 		(unsigned int)ENA_REFILL_THRESH_PACKET);
2541 
2542 	while (likely(total_tx_descs < cleanup_budget)) {
2543 		struct rte_mbuf *mbuf;
2544 		struct ena_tx_buffer *tx_info;
2545 		uint16_t req_id;
2546 
2547 		if (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) != 0)
2548 			break;
2549 
2550 		if (unlikely(validate_tx_req_id(tx_ring, req_id) != 0))
2551 			break;
2552 
2553 		/* Get Tx info & store how many descs were processed  */
2554 		tx_info = &tx_ring->tx_buffer_info[req_id];
2555 
2556 		mbuf = tx_info->mbuf;
2557 		rte_pktmbuf_free(mbuf);
2558 
2559 		tx_info->mbuf = NULL;
2560 		tx_ring->empty_tx_reqs[next_to_clean] = req_id;
2561 
2562 		total_tx_descs += tx_info->tx_descs;
2563 
2564 		/* Put back descriptor to the ring for reuse */
2565 		next_to_clean = ENA_IDX_NEXT_MASKED(next_to_clean,
2566 			tx_ring->size_mask);
2567 	}
2568 
2569 	if (likely(total_tx_descs > 0)) {
2570 		/* acknowledge completion of sent packets */
2571 		tx_ring->next_to_clean = next_to_clean;
2572 		ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
2573 		ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
2574 	}
2575 }
2576 
2577 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2578 				  uint16_t nb_pkts)
2579 {
2580 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2581 	uint16_t sent_idx = 0;
2582 
2583 	/* Check adapter state */
2584 	if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2585 		PMD_DRV_LOG(ALERT,
2586 			"Trying to xmit pkts while device is NOT running\n");
2587 		return 0;
2588 	}
2589 
2590 	nb_pkts = RTE_MIN(ena_com_free_q_entries(tx_ring->ena_com_io_sq),
2591 		nb_pkts);
2592 
2593 	for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
2594 		if (ena_xmit_mbuf(tx_ring, tx_pkts[sent_idx]))
2595 			break;
2596 
2597 		rte_prefetch0(tx_pkts[ENA_IDX_ADD_MASKED(sent_idx, 4,
2598 			tx_ring->size_mask)]);
2599 	}
2600 
2601 	tx_ring->tx_stats.available_desc =
2602 		ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2603 
2604 	/* If there are ready packets to be xmitted... */
2605 	if (sent_idx > 0) {
2606 		/* ...let HW do its best :-) */
2607 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2608 		tx_ring->tx_stats.doorbells++;
2609 	}
2610 
2611 	ena_tx_cleanup(tx_ring);
2612 
2613 	tx_ring->tx_stats.available_desc =
2614 		ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2615 	tx_ring->tx_stats.tx_poll++;
2616 
2617 	return sent_idx;
2618 }
2619 
2620 int ena_copy_eni_stats(struct ena_adapter *adapter)
2621 {
2622 	struct ena_admin_eni_stats admin_eni_stats;
2623 	int rc;
2624 
2625 	rte_spinlock_lock(&adapter->admin_lock);
2626 	rc = ena_com_get_eni_stats(&adapter->ena_dev, &admin_eni_stats);
2627 	rte_spinlock_unlock(&adapter->admin_lock);
2628 	if (rc != 0) {
2629 		if (rc == ENA_COM_UNSUPPORTED) {
2630 			PMD_DRV_LOG(DEBUG,
2631 				"Retrieving ENI metrics is not supported.\n");
2632 		} else {
2633 			PMD_DRV_LOG(WARNING,
2634 				"Failed to get ENI metrics: %d\n", rc);
2635 		}
2636 		return rc;
2637 	}
2638 
2639 	rte_memcpy(&adapter->eni_stats, &admin_eni_stats,
2640 		sizeof(struct ena_stats_eni));
2641 
2642 	return 0;
2643 }
2644 
2645 /**
2646  * DPDK callback to retrieve names of extended device statistics
2647  *
2648  * @param dev
2649  *   Pointer to Ethernet device structure.
2650  * @param[out] xstats_names
2651  *   Buffer to insert names into.
2652  * @param n
2653  *   Number of names.
2654  *
2655  * @return
2656  *   Number of xstats names.
2657  */
2658 static int ena_xstats_get_names(struct rte_eth_dev *dev,
2659 				struct rte_eth_xstat_name *xstats_names,
2660 				unsigned int n)
2661 {
2662 	unsigned int xstats_count = ena_xstats_calc_num(dev);
2663 	unsigned int stat, i, count = 0;
2664 
2665 	if (n < xstats_count || !xstats_names)
2666 		return xstats_count;
2667 
2668 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
2669 		strcpy(xstats_names[count].name,
2670 			ena_stats_global_strings[stat].name);
2671 
2672 	for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++)
2673 		strcpy(xstats_names[count].name,
2674 			ena_stats_eni_strings[stat].name);
2675 
2676 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
2677 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
2678 			snprintf(xstats_names[count].name,
2679 				sizeof(xstats_names[count].name),
2680 				"rx_q%d_%s", i,
2681 				ena_stats_rx_strings[stat].name);
2682 
2683 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
2684 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
2685 			snprintf(xstats_names[count].name,
2686 				sizeof(xstats_names[count].name),
2687 				"tx_q%d_%s", i,
2688 				ena_stats_tx_strings[stat].name);
2689 
2690 	return xstats_count;
2691 }
2692 
2693 /**
2694  * DPDK callback to get extended device statistics.
2695  *
2696  * @param dev
2697  *   Pointer to Ethernet device structure.
2698  * @param[out] stats
2699  *   Stats table output buffer.
2700  * @param n
2701  *   The size of the stats table.
2702  *
2703  * @return
2704  *   Number of xstats on success, negative on failure.
2705  */
2706 static int ena_xstats_get(struct rte_eth_dev *dev,
2707 			  struct rte_eth_xstat *xstats,
2708 			  unsigned int n)
2709 {
2710 	struct ena_adapter *adapter = dev->data->dev_private;
2711 	unsigned int xstats_count = ena_xstats_calc_num(dev);
2712 	unsigned int stat, i, count = 0;
2713 	int stat_offset;
2714 	void *stats_begin;
2715 
2716 	if (n < xstats_count)
2717 		return xstats_count;
2718 
2719 	if (!xstats)
2720 		return 0;
2721 
2722 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
2723 		stat_offset = ena_stats_rx_strings[stat].stat_offset;
2724 		stats_begin = &adapter->dev_stats;
2725 
2726 		xstats[count].id = count;
2727 		xstats[count].value = *((uint64_t *)
2728 			((char *)stats_begin + stat_offset));
2729 	}
2730 
2731 	/* Even if the function below fails, we should copy previous (or initial
2732 	 * values) to keep structure of rte_eth_xstat consistent.
2733 	 */
2734 	ena_copy_eni_stats(adapter);
2735 	for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++) {
2736 		stat_offset = ena_stats_eni_strings[stat].stat_offset;
2737 		stats_begin = &adapter->eni_stats;
2738 
2739 		xstats[count].id = count;
2740 		xstats[count].value = *((uint64_t *)
2741 		    ((char *)stats_begin + stat_offset));
2742 	}
2743 
2744 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
2745 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
2746 			stat_offset = ena_stats_rx_strings[stat].stat_offset;
2747 			stats_begin = &adapter->rx_ring[i].rx_stats;
2748 
2749 			xstats[count].id = count;
2750 			xstats[count].value = *((uint64_t *)
2751 				((char *)stats_begin + stat_offset));
2752 		}
2753 	}
2754 
2755 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
2756 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
2757 			stat_offset = ena_stats_tx_strings[stat].stat_offset;
2758 			stats_begin = &adapter->tx_ring[i].rx_stats;
2759 
2760 			xstats[count].id = count;
2761 			xstats[count].value = *((uint64_t *)
2762 				((char *)stats_begin + stat_offset));
2763 		}
2764 	}
2765 
2766 	return count;
2767 }
2768 
2769 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
2770 				const uint64_t *ids,
2771 				uint64_t *values,
2772 				unsigned int n)
2773 {
2774 	struct ena_adapter *adapter = dev->data->dev_private;
2775 	uint64_t id;
2776 	uint64_t rx_entries, tx_entries;
2777 	unsigned int i;
2778 	int qid;
2779 	int valid = 0;
2780 	bool was_eni_copied = false;
2781 
2782 	for (i = 0; i < n; ++i) {
2783 		id = ids[i];
2784 		/* Check if id belongs to global statistics */
2785 		if (id < ENA_STATS_ARRAY_GLOBAL) {
2786 			values[i] = *((uint64_t *)&adapter->dev_stats + id);
2787 			++valid;
2788 			continue;
2789 		}
2790 
2791 		/* Check if id belongs to ENI statistics */
2792 		id -= ENA_STATS_ARRAY_GLOBAL;
2793 		if (id < ENA_STATS_ARRAY_ENI) {
2794 			/* Avoid reading ENI stats multiple times in a single
2795 			 * function call, as it requires communication with the
2796 			 * admin queue.
2797 			 */
2798 			if (!was_eni_copied) {
2799 				was_eni_copied = true;
2800 				ena_copy_eni_stats(adapter);
2801 			}
2802 			values[i] = *((uint64_t *)&adapter->eni_stats + id);
2803 			++valid;
2804 			continue;
2805 		}
2806 
2807 		/* Check if id belongs to rx queue statistics */
2808 		id -= ENA_STATS_ARRAY_ENI;
2809 		rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
2810 		if (id < rx_entries) {
2811 			qid = id % dev->data->nb_rx_queues;
2812 			id /= dev->data->nb_rx_queues;
2813 			values[i] = *((uint64_t *)
2814 				&adapter->rx_ring[qid].rx_stats + id);
2815 			++valid;
2816 			continue;
2817 		}
2818 				/* Check if id belongs to rx queue statistics */
2819 		id -= rx_entries;
2820 		tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
2821 		if (id < tx_entries) {
2822 			qid = id % dev->data->nb_tx_queues;
2823 			id /= dev->data->nb_tx_queues;
2824 			values[i] = *((uint64_t *)
2825 				&adapter->tx_ring[qid].tx_stats + id);
2826 			++valid;
2827 			continue;
2828 		}
2829 	}
2830 
2831 	return valid;
2832 }
2833 
2834 static int ena_process_bool_devarg(const char *key,
2835 				   const char *value,
2836 				   void *opaque)
2837 {
2838 	struct ena_adapter *adapter = opaque;
2839 	bool bool_value;
2840 
2841 	/* Parse the value. */
2842 	if (strcmp(value, "1") == 0) {
2843 		bool_value = true;
2844 	} else if (strcmp(value, "0") == 0) {
2845 		bool_value = false;
2846 	} else {
2847 		PMD_INIT_LOG(ERR,
2848 			"Invalid value: '%s' for key '%s'. Accepted: '0' or '1'\n",
2849 			value, key);
2850 		return -EINVAL;
2851 	}
2852 
2853 	/* Now, assign it to the proper adapter field. */
2854 	if (strcmp(key, ENA_DEVARG_LARGE_LLQ_HDR))
2855 		adapter->use_large_llq_hdr = bool_value;
2856 
2857 	return 0;
2858 }
2859 
2860 static int ena_parse_devargs(struct ena_adapter *adapter,
2861 			     struct rte_devargs *devargs)
2862 {
2863 	static const char * const allowed_args[] = {
2864 		ENA_DEVARG_LARGE_LLQ_HDR,
2865 	};
2866 	struct rte_kvargs *kvlist;
2867 	int rc;
2868 
2869 	if (devargs == NULL)
2870 		return 0;
2871 
2872 	kvlist = rte_kvargs_parse(devargs->args, allowed_args);
2873 	if (kvlist == NULL) {
2874 		PMD_INIT_LOG(ERR, "Invalid device arguments: %s\n",
2875 			devargs->args);
2876 		return -EINVAL;
2877 	}
2878 
2879 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_LARGE_LLQ_HDR,
2880 		ena_process_bool_devarg, adapter);
2881 
2882 	rte_kvargs_free(kvlist);
2883 
2884 	return rc;
2885 }
2886 
2887 /*********************************************************************
2888  *  PMD configuration
2889  *********************************************************************/
2890 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2891 	struct rte_pci_device *pci_dev)
2892 {
2893 	return rte_eth_dev_pci_generic_probe(pci_dev,
2894 		sizeof(struct ena_adapter), eth_ena_dev_init);
2895 }
2896 
2897 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
2898 {
2899 	return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
2900 }
2901 
2902 static struct rte_pci_driver rte_ena_pmd = {
2903 	.id_table = pci_id_ena_map,
2904 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
2905 		     RTE_PCI_DRV_WC_ACTIVATE,
2906 	.probe = eth_ena_pci_probe,
2907 	.remove = eth_ena_pci_remove,
2908 };
2909 
2910 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
2911 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
2912 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
2913 RTE_PMD_REGISTER_PARAM_STRING(net_ena, ENA_DEVARG_LARGE_LLQ_HDR "=<0|1>");
2914 RTE_LOG_REGISTER(ena_logtype_init, pmd.net.ena.init, NOTICE);
2915 RTE_LOG_REGISTER(ena_logtype_driver, pmd.net.ena.driver, NOTICE);
2916 #ifdef RTE_LIBRTE_ENA_DEBUG_RX
2917 RTE_LOG_REGISTER(ena_logtype_rx, pmd.net.ena.rx, NOTICE);
2918 #endif
2919 #ifdef RTE_LIBRTE_ENA_DEBUG_TX
2920 RTE_LOG_REGISTER(ena_logtype_tx, pmd.net.ena.tx, NOTICE);
2921 #endif
2922 #ifdef RTE_LIBRTE_ENA_DEBUG_TX_FREE
2923 RTE_LOG_REGISTER(ena_logtype_tx_free, pmd.net.ena.tx_free, NOTICE);
2924 #endif
2925 #ifdef RTE_LIBRTE_ENA_COM_DEBUG
2926 RTE_LOG_REGISTER(ena_logtype_com, pmd.net.ena.com, NOTICE);
2927 #endif
2928 
2929 /******************************************************************************
2930  ******************************** AENQ Handlers *******************************
2931  *****************************************************************************/
2932 static void ena_update_on_link_change(void *adapter_data,
2933 				      struct ena_admin_aenq_entry *aenq_e)
2934 {
2935 	struct rte_eth_dev *eth_dev;
2936 	struct ena_adapter *adapter;
2937 	struct ena_admin_aenq_link_change_desc *aenq_link_desc;
2938 	uint32_t status;
2939 
2940 	adapter = adapter_data;
2941 	aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
2942 	eth_dev = adapter->rte_dev;
2943 
2944 	status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
2945 	adapter->link_status = status;
2946 
2947 	ena_link_update(eth_dev, 0);
2948 	rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
2949 }
2950 
2951 static void ena_notification(void *data,
2952 			     struct ena_admin_aenq_entry *aenq_e)
2953 {
2954 	struct ena_adapter *adapter = data;
2955 	struct ena_admin_ena_hw_hints *hints;
2956 
2957 	if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
2958 		PMD_DRV_LOG(WARNING, "Invalid group(%x) expected %x\n",
2959 			aenq_e->aenq_common_desc.group,
2960 			ENA_ADMIN_NOTIFICATION);
2961 
2962 	switch (aenq_e->aenq_common_desc.syndrom) {
2963 	case ENA_ADMIN_UPDATE_HINTS:
2964 		hints = (struct ena_admin_ena_hw_hints *)
2965 			(&aenq_e->inline_data_w4);
2966 		ena_update_hints(adapter, hints);
2967 		break;
2968 	default:
2969 		PMD_DRV_LOG(ERR, "Invalid aenq notification link state %d\n",
2970 			aenq_e->aenq_common_desc.syndrom);
2971 	}
2972 }
2973 
2974 static void ena_keep_alive(void *adapter_data,
2975 			   __rte_unused struct ena_admin_aenq_entry *aenq_e)
2976 {
2977 	struct ena_adapter *adapter = adapter_data;
2978 	struct ena_admin_aenq_keep_alive_desc *desc;
2979 	uint64_t rx_drops;
2980 	uint64_t tx_drops;
2981 
2982 	adapter->timestamp_wd = rte_get_timer_cycles();
2983 
2984 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
2985 	rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
2986 	tx_drops = ((uint64_t)desc->tx_drops_high << 32) | desc->tx_drops_low;
2987 
2988 	adapter->drv_stats->rx_drops = rx_drops;
2989 	adapter->dev_stats.tx_drops = tx_drops;
2990 }
2991 
2992 /**
2993  * This handler will called for unknown event group or unimplemented handlers
2994  **/
2995 static void unimplemented_aenq_handler(__rte_unused void *data,
2996 				       __rte_unused struct ena_admin_aenq_entry *aenq_e)
2997 {
2998 	PMD_DRV_LOG(ERR, "Unknown event was received or event with "
2999 			  "unimplemented handler\n");
3000 }
3001 
3002 static struct ena_aenq_handlers aenq_handlers = {
3003 	.handlers = {
3004 		[ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
3005 		[ENA_ADMIN_NOTIFICATION] = ena_notification,
3006 		[ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive
3007 	},
3008 	.unimplemented_handler = unimplemented_aenq_handler
3009 };
3010