xref: /dpdk/drivers/net/ena/ena_ethdev.c (revision c4f16ab009ad53446157c6fcde85435b1ca8c780)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
3  * All rights reserved.
4  */
5 
6 #include <rte_alarm.h>
7 #include <rte_string_fns.h>
8 #include <rte_errno.h>
9 #include <rte_version.h>
10 #include <rte_net.h>
11 #include <rte_kvargs.h>
12 
13 #include "ena_ethdev.h"
14 #include "ena_logs.h"
15 #include "ena_platform.h"
16 #include "ena_com.h"
17 #include "ena_eth_com.h"
18 
19 #include <ena_common_defs.h>
20 #include <ena_regs_defs.h>
21 #include <ena_admin_defs.h>
22 #include <ena_eth_io_defs.h>
23 
24 #define DRV_MODULE_VER_MAJOR	2
25 #define DRV_MODULE_VER_MINOR	11
26 #define DRV_MODULE_VER_SUBMINOR	0
27 
28 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
29 
30 #define GET_L4_HDR_LEN(mbuf)					\
31 	((rte_pktmbuf_mtod_offset(mbuf,	struct rte_tcp_hdr *,	\
32 		mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
33 
34 #define ETH_GSTRING_LEN	32
35 
36 #define ARRAY_SIZE(x) RTE_DIM(x)
37 
38 #define ENA_MIN_RING_DESC	128
39 
40 #define USEC_PER_MSEC		1000UL
41 
42 #define BITS_PER_BYTE 8
43 
44 #define BITS_PER_TYPE(type) (sizeof(type) * BITS_PER_BYTE)
45 
46 #define DECIMAL_BASE 10
47 
48 #define MAX_WIDE_LLQ_DEPTH_UNSUPPORTED 0
49 
50 /*
51  * We should try to keep ENA_CLEANUP_BUF_THRESH lower than
52  * RTE_MEMPOOL_CACHE_MAX_SIZE, so we can fit this in mempool local cache.
53  */
54 #define ENA_CLEANUP_BUF_THRESH	256
55 
56 struct ena_stats {
57 	char name[ETH_GSTRING_LEN];
58 	int stat_offset;
59 };
60 
61 #define ENA_STAT_ENTRY(stat, stat_type) { \
62 	.name = #stat, \
63 	.stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
64 }
65 
66 #define ENA_STAT_RX_ENTRY(stat) \
67 	ENA_STAT_ENTRY(stat, rx)
68 
69 #define ENA_STAT_TX_ENTRY(stat) \
70 	ENA_STAT_ENTRY(stat, tx)
71 
72 #define ENA_STAT_METRICS_ENTRY(stat) \
73 	ENA_STAT_ENTRY(stat, metrics)
74 
75 #define ENA_STAT_GLOBAL_ENTRY(stat) \
76 	ENA_STAT_ENTRY(stat, dev)
77 
78 #define ENA_STAT_ENA_SRD_ENTRY(stat) \
79 	ENA_STAT_ENTRY(stat, srd)
80 
81 /* Device arguments */
82 
83 /* llq_policy Controls whether to disable LLQ, use device recommended
84  * header policy or overriding the device recommendation.
85  * 0 - Disable LLQ. Use with extreme caution as it leads to a huge
86  *     performance degradation on AWS instances built with Nitro v4 onwards.
87  * 1 - Accept device recommended LLQ policy (Default).
88  *     Device can recommend normal or large LLQ policy.
89  * 2 - Enforce normal LLQ policy.
90  * 3 - Enforce large LLQ policy.
91  *     Required for packets with header that exceed 96 bytes on
92  *     AWS instances built with Nitro v2 and Nitro v1.
93  */
94 #define ENA_DEVARG_LLQ_POLICY "llq_policy"
95 
96 /* Timeout in seconds after which a single uncompleted Tx packet should be
97  * considered as a missing.
98  */
99 #define ENA_DEVARG_MISS_TXC_TO "miss_txc_to"
100 
101 /*
102  * Controls the period of time (in milliseconds) between two consecutive inspections of
103  * the control queues when the driver is in poll mode and not using interrupts.
104  * By default, this value is zero, indicating that the driver will not be in poll mode and will
105  * use interrupts. A non-zero value for this argument is mandatory when using uio_pci_generic
106  * driver.
107  */
108 #define ENA_DEVARG_CONTROL_PATH_POLL_INTERVAL "control_path_poll_interval"
109 
110 /*
111  * Each rte_memzone should have unique name.
112  * To satisfy it, count number of allocation and add it to name.
113  */
114 rte_atomic64_t ena_alloc_cnt;
115 
116 static const struct ena_stats ena_stats_global_strings[] = {
117 	ENA_STAT_GLOBAL_ENTRY(wd_expired),
118 	ENA_STAT_GLOBAL_ENTRY(dev_start),
119 	ENA_STAT_GLOBAL_ENTRY(dev_stop),
120 	ENA_STAT_GLOBAL_ENTRY(tx_drops),
121 };
122 
123 /*
124  * The legacy metrics (also known as eni stats) consisted of 5 stats, while the reworked
125  * metrics (also known as customer metrics) support an additional stat.
126  */
127 static struct ena_stats ena_stats_metrics_strings[] = {
128 	ENA_STAT_METRICS_ENTRY(bw_in_allowance_exceeded),
129 	ENA_STAT_METRICS_ENTRY(bw_out_allowance_exceeded),
130 	ENA_STAT_METRICS_ENTRY(pps_allowance_exceeded),
131 	ENA_STAT_METRICS_ENTRY(conntrack_allowance_exceeded),
132 	ENA_STAT_METRICS_ENTRY(linklocal_allowance_exceeded),
133 	ENA_STAT_METRICS_ENTRY(conntrack_allowance_available),
134 };
135 
136 static const struct ena_stats ena_stats_srd_strings[] = {
137 	ENA_STAT_ENA_SRD_ENTRY(ena_srd_mode),
138 	ENA_STAT_ENA_SRD_ENTRY(ena_srd_tx_pkts),
139 	ENA_STAT_ENA_SRD_ENTRY(ena_srd_eligible_tx_pkts),
140 	ENA_STAT_ENA_SRD_ENTRY(ena_srd_rx_pkts),
141 	ENA_STAT_ENA_SRD_ENTRY(ena_srd_resource_utilization),
142 };
143 
144 static const struct ena_stats ena_stats_tx_strings[] = {
145 	ENA_STAT_TX_ENTRY(cnt),
146 	ENA_STAT_TX_ENTRY(bytes),
147 	ENA_STAT_TX_ENTRY(prepare_ctx_err),
148 	ENA_STAT_TX_ENTRY(tx_poll),
149 	ENA_STAT_TX_ENTRY(doorbells),
150 	ENA_STAT_TX_ENTRY(bad_req_id),
151 	ENA_STAT_TX_ENTRY(available_desc),
152 	ENA_STAT_TX_ENTRY(missed_tx),
153 };
154 
155 static const struct ena_stats ena_stats_rx_strings[] = {
156 	ENA_STAT_RX_ENTRY(cnt),
157 	ENA_STAT_RX_ENTRY(bytes),
158 	ENA_STAT_RX_ENTRY(refill_partial),
159 	ENA_STAT_RX_ENTRY(l3_csum_bad),
160 	ENA_STAT_RX_ENTRY(l4_csum_bad),
161 	ENA_STAT_RX_ENTRY(l4_csum_good),
162 	ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
163 	ENA_STAT_RX_ENTRY(bad_desc_num),
164 	ENA_STAT_RX_ENTRY(bad_req_id),
165 	ENA_STAT_RX_ENTRY(bad_desc),
166 	ENA_STAT_RX_ENTRY(unknown_error),
167 };
168 
169 #define ENA_STATS_ARRAY_GLOBAL	ARRAY_SIZE(ena_stats_global_strings)
170 #define ENA_STATS_ARRAY_METRICS	ARRAY_SIZE(ena_stats_metrics_strings)
171 #define ENA_STATS_ARRAY_METRICS_LEGACY	(ENA_STATS_ARRAY_METRICS - 1)
172 #define ENA_STATS_ARRAY_ENA_SRD	ARRAY_SIZE(ena_stats_srd_strings)
173 #define ENA_STATS_ARRAY_TX	ARRAY_SIZE(ena_stats_tx_strings)
174 #define ENA_STATS_ARRAY_RX	ARRAY_SIZE(ena_stats_rx_strings)
175 
176 #define QUEUE_OFFLOADS (RTE_ETH_TX_OFFLOAD_TCP_CKSUM |\
177 			RTE_ETH_TX_OFFLOAD_UDP_CKSUM |\
178 			RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |\
179 			RTE_ETH_TX_OFFLOAD_TCP_TSO)
180 #define MBUF_OFFLOADS (RTE_MBUF_F_TX_L4_MASK |\
181 		       RTE_MBUF_F_TX_IP_CKSUM |\
182 		       RTE_MBUF_F_TX_TCP_SEG)
183 
184 /** Vendor ID used by Amazon devices */
185 #define PCI_VENDOR_ID_AMAZON 0x1D0F
186 /** Amazon devices */
187 #define PCI_DEVICE_ID_ENA_VF		0xEC20
188 #define PCI_DEVICE_ID_ENA_VF_RSERV0	0xEC21
189 
190 #define	ENA_TX_OFFLOAD_MASK	(RTE_MBUF_F_TX_L4_MASK |         \
191 	RTE_MBUF_F_TX_IPV6 |            \
192 	RTE_MBUF_F_TX_IPV4 |            \
193 	RTE_MBUF_F_TX_IP_CKSUM |        \
194 	RTE_MBUF_F_TX_TCP_SEG)
195 
196 #define	ENA_TX_OFFLOAD_NOTSUP_MASK	\
197 	(RTE_MBUF_F_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
198 
199 /** HW specific offloads capabilities. */
200 /* IPv4 checksum offload. */
201 #define ENA_L3_IPV4_CSUM		0x0001
202 /* TCP/UDP checksum offload for IPv4 packets. */
203 #define ENA_L4_IPV4_CSUM		0x0002
204 /* TCP/UDP checksum offload for IPv4 packets with pseudo header checksum. */
205 #define ENA_L4_IPV4_CSUM_PARTIAL	0x0004
206 /* TCP/UDP checksum offload for IPv6 packets. */
207 #define ENA_L4_IPV6_CSUM		0x0008
208 /* TCP/UDP checksum offload for IPv6 packets with pseudo header checksum. */
209 #define ENA_L4_IPV6_CSUM_PARTIAL	0x0010
210 /* TSO support for IPv4 packets. */
211 #define ENA_IPV4_TSO			0x0020
212 
213 /* Device supports setting RSS hash. */
214 #define ENA_RX_RSS_HASH			0x0040
215 
216 static const struct rte_pci_id pci_id_ena_map[] = {
217 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
218 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF_RSERV0) },
219 	{ .device_id = 0 },
220 };
221 
222 static struct ena_aenq_handlers aenq_handlers;
223 
224 static int ena_device_init(struct ena_adapter *adapter,
225 			   struct rte_pci_device *pdev,
226 			   struct ena_com_dev_get_features_ctx *get_feat_ctx);
227 static int ena_dev_configure(struct rte_eth_dev *dev);
228 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
229 	struct ena_tx_buffer *tx_info,
230 	struct rte_mbuf *mbuf,
231 	void **push_header,
232 	uint16_t *header_len);
233 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf);
234 static int ena_tx_cleanup(void *txp, uint32_t free_pkt_cnt);
235 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
236 				  uint16_t nb_pkts);
237 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
238 		uint16_t nb_pkts);
239 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
240 			      uint16_t nb_desc, unsigned int socket_id,
241 			      const struct rte_eth_txconf *tx_conf);
242 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
243 			      uint16_t nb_desc, unsigned int socket_id,
244 			      const struct rte_eth_rxconf *rx_conf,
245 			      struct rte_mempool *mp);
246 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len);
247 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
248 				    struct ena_com_rx_buf_info *ena_bufs,
249 				    uint32_t descs,
250 				    uint16_t *next_to_clean,
251 				    uint8_t offset);
252 static uint16_t eth_ena_recv_pkts(void *rx_queue,
253 				  struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
254 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
255 				  struct rte_mbuf *mbuf, uint16_t id);
256 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
257 static void ena_init_rings(struct ena_adapter *adapter,
258 			   bool disable_meta_caching);
259 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
260 static int ena_start(struct rte_eth_dev *dev);
261 static int ena_stop(struct rte_eth_dev *dev);
262 static int ena_close(struct rte_eth_dev *dev);
263 static int ena_dev_reset(struct rte_eth_dev *dev);
264 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
265 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
266 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
267 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
268 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
269 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
270 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
271 static int ena_link_update(struct rte_eth_dev *dev,
272 			   int wait_to_complete);
273 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring);
274 static void ena_queue_stop(struct ena_ring *ring);
275 static void ena_queue_stop_all(struct rte_eth_dev *dev,
276 			      enum ena_ring_type ring_type);
277 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring);
278 static int ena_queue_start_all(struct rte_eth_dev *dev,
279 			       enum ena_ring_type ring_type);
280 static void ena_stats_restart(struct rte_eth_dev *dev);
281 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter);
282 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter);
283 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter);
284 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter);
285 static int ena_infos_get(struct rte_eth_dev *dev,
286 			 struct rte_eth_dev_info *dev_info);
287 static void ena_control_path_handler(void *cb_arg);
288 static void ena_control_path_poll_handler(void *cb_arg);
289 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
290 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
291 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev);
292 static int ena_xstats_get_names(struct rte_eth_dev *dev,
293 				struct rte_eth_xstat_name *xstats_names,
294 				unsigned int n);
295 static int ena_xstats_get_names_by_id(struct rte_eth_dev *dev,
296 				      const uint64_t *ids,
297 				      struct rte_eth_xstat_name *xstats_names,
298 				      unsigned int size);
299 static int ena_xstats_get(struct rte_eth_dev *dev,
300 			  struct rte_eth_xstat *stats,
301 			  unsigned int n);
302 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
303 				const uint64_t *ids,
304 				uint64_t *values,
305 				unsigned int n);
306 static int ena_process_llq_policy_devarg(const char *key,
307 			const char *value,
308 			void *opaque);
309 static int ena_parse_devargs(struct ena_adapter *adapter,
310 			     struct rte_devargs *devargs);
311 static void ena_copy_customer_metrics(struct ena_adapter *adapter,
312 					uint64_t *buf,
313 					size_t buf_size);
314 static void ena_copy_ena_srd_info(struct ena_adapter *adapter,
315 				  struct ena_stats_srd *srd_info);
316 static int ena_setup_rx_intr(struct rte_eth_dev *dev);
317 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
318 				    uint16_t queue_id);
319 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
320 				     uint16_t queue_id);
321 static int ena_configure_aenq(struct ena_adapter *adapter);
322 static int ena_mp_primary_handle(const struct rte_mp_msg *mp_msg,
323 				 const void *peer);
324 static bool ena_use_large_llq_hdr(struct ena_adapter *adapter, uint8_t recommended_entry_size);
325 
326 static const struct eth_dev_ops ena_dev_ops = {
327 	.dev_configure          = ena_dev_configure,
328 	.dev_infos_get          = ena_infos_get,
329 	.rx_queue_setup         = ena_rx_queue_setup,
330 	.tx_queue_setup         = ena_tx_queue_setup,
331 	.dev_start              = ena_start,
332 	.dev_stop               = ena_stop,
333 	.link_update            = ena_link_update,
334 	.stats_get              = ena_stats_get,
335 	.xstats_get_names       = ena_xstats_get_names,
336 	.xstats_get_names_by_id = ena_xstats_get_names_by_id,
337 	.xstats_get             = ena_xstats_get,
338 	.xstats_get_by_id       = ena_xstats_get_by_id,
339 	.mtu_set                = ena_mtu_set,
340 	.rx_queue_release       = ena_rx_queue_release,
341 	.tx_queue_release       = ena_tx_queue_release,
342 	.dev_close              = ena_close,
343 	.dev_reset              = ena_dev_reset,
344 	.reta_update            = ena_rss_reta_update,
345 	.reta_query             = ena_rss_reta_query,
346 	.rx_queue_intr_enable   = ena_rx_queue_intr_enable,
347 	.rx_queue_intr_disable  = ena_rx_queue_intr_disable,
348 	.rss_hash_update        = ena_rss_hash_update,
349 	.rss_hash_conf_get      = ena_rss_hash_conf_get,
350 	.tx_done_cleanup        = ena_tx_cleanup,
351 };
352 
353 /*********************************************************************
354  *  Multi-Process communication bits
355  *********************************************************************/
356 /* rte_mp IPC message name */
357 #define ENA_MP_NAME	"net_ena_mp"
358 /* Request timeout in seconds */
359 #define ENA_MP_REQ_TMO	5
360 
361 /** Proxy request type */
362 enum ena_mp_req {
363 	ENA_MP_DEV_STATS_GET,
364 	ENA_MP_ENI_STATS_GET,
365 	ENA_MP_MTU_SET,
366 	ENA_MP_IND_TBL_GET,
367 	ENA_MP_IND_TBL_SET,
368 	ENA_MP_CUSTOMER_METRICS_GET,
369 	ENA_MP_SRD_STATS_GET,
370 };
371 
372 /** Proxy message body. Shared between requests and responses. */
373 struct ena_mp_body {
374 	/* Message type */
375 	enum ena_mp_req type;
376 	int port_id;
377 	/* Processing result. Set in replies. 0 if message succeeded, negative
378 	 * error code otherwise.
379 	 */
380 	int result;
381 	union {
382 		int mtu; /* For ENA_MP_MTU_SET */
383 	} args;
384 };
385 
386 /**
387  * Initialize IPC message.
388  *
389  * @param[out] msg
390  *   Pointer to the message to initialize.
391  * @param[in] type
392  *   Message type.
393  * @param[in] port_id
394  *   Port ID of target device.
395  *
396  */
397 static void
398 mp_msg_init(struct rte_mp_msg *msg, enum ena_mp_req type, int port_id)
399 {
400 	struct ena_mp_body *body = (struct ena_mp_body *)&msg->param;
401 
402 	memset(msg, 0, sizeof(*msg));
403 	strlcpy(msg->name, ENA_MP_NAME, sizeof(msg->name));
404 	msg->len_param = sizeof(*body);
405 	body->type = type;
406 	body->port_id = port_id;
407 }
408 
409 /*********************************************************************
410  *  Multi-Process communication PMD API
411  *********************************************************************/
412 /**
413  * Define proxy request descriptor
414  *
415  * Used to define all structures and functions required for proxying a given
416  * function to the primary process including the code to perform to prepare the
417  * request and process the response.
418  *
419  * @param[in] f
420  *   Name of the function to proxy
421  * @param[in] t
422  *   Message type to use
423  * @param[in] prep
424  *   Body of a function to prepare the request in form of a statement
425  *   expression. It is passed all the original function arguments along with two
426  *   extra ones:
427  *   - struct ena_adapter *adapter - PMD data of the device calling the proxy.
428  *   - struct ena_mp_body *req - body of a request to prepare.
429  * @param[in] proc
430  *   Body of a function to process the response in form of a statement
431  *   expression. It is passed all the original function arguments along with two
432  *   extra ones:
433  *   - struct ena_adapter *adapter - PMD data of the device calling the proxy.
434  *   - struct ena_mp_body *rsp - body of a response to process.
435  * @param ...
436  *   Proxied function's arguments
437  *
438  * @note Inside prep and proc any parameters which aren't used should be marked
439  *       as such (with ENA_TOUCH or __rte_unused).
440  */
441 #define ENA_PROXY_DESC(f, t, prep, proc, ...)			\
442 	static const enum ena_mp_req mp_type_ ## f =  t;	\
443 	static const char *mp_name_ ## f = #t;			\
444 	static void mp_prep_ ## f(struct ena_adapter *adapter,	\
445 				  struct ena_mp_body *req,	\
446 				  __VA_ARGS__)			\
447 	{							\
448 		prep;						\
449 	}							\
450 	static void mp_proc_ ## f(struct ena_adapter *adapter,	\
451 				  struct ena_mp_body *rsp,	\
452 				  __VA_ARGS__)			\
453 	{							\
454 		proc;						\
455 	}
456 
457 /**
458  * Proxy wrapper for calling primary functions in a secondary process.
459  *
460  * Depending on whether called in primary or secondary process, calls the
461  * @p func directly or proxies the call to the primary process via rte_mp IPC.
462  * This macro requires a proxy request descriptor to be defined for @p func
463  * using ENA_PROXY_DESC() macro.
464  *
465  * @param[in/out] a
466  *   Device PMD data. Used for sending the message and sharing message results
467  *   between primary and secondary.
468  * @param[in] f
469  *   Function to proxy.
470  * @param ...
471  *   Arguments of @p func.
472  *
473  * @return
474  *   - 0: Processing succeeded and response handler was called.
475  *   - -EPERM: IPC is unavailable on this platform. This means only primary
476  *             process may call the proxied function.
477  *   - -EIO:   IPC returned error on request send. Inspect rte_errno detailed
478  *             error code.
479  *   - Negative error code from the proxied function.
480  *
481  * @note This mechanism is geared towards control-path tasks. Avoid calling it
482  *       in fast-path unless unbound delays are allowed. This is due to the IPC
483  *       mechanism itself (socket based).
484  * @note Due to IPC parameter size limitations the proxy logic shares call
485  *       results through the struct ena_adapter shared memory. This makes the
486  *       proxy mechanism strictly single-threaded. Therefore be sure to make all
487  *       calls to the same proxied function under the same lock.
488  */
489 #define ENA_PROXY(a, f, ...)						\
490 __extension__ ({							\
491 	struct ena_adapter *_a = (a);					\
492 	struct timespec ts = { .tv_sec = ENA_MP_REQ_TMO };		\
493 	struct ena_mp_body *req, *rsp;					\
494 	struct rte_mp_reply mp_rep;					\
495 	struct rte_mp_msg mp_req;					\
496 	int ret;							\
497 									\
498 	if (rte_eal_process_type() == RTE_PROC_PRIMARY) {		\
499 		ret = f(__VA_ARGS__);					\
500 	} else {							\
501 		/* Prepare and send request */				\
502 		req = (struct ena_mp_body *)&mp_req.param;		\
503 		mp_msg_init(&mp_req, mp_type_ ## f, _a->edev_data->port_id); \
504 		mp_prep_ ## f(_a, req, ## __VA_ARGS__);			\
505 									\
506 		ret = rte_mp_request_sync(&mp_req, &mp_rep, &ts);	\
507 		if (likely(!ret)) {					\
508 			RTE_ASSERT(mp_rep.nb_received == 1);		\
509 			rsp = (struct ena_mp_body *)&mp_rep.msgs[0].param; \
510 			ret = rsp->result;				\
511 			if (ret == 0) {					\
512 				mp_proc_##f(_a, rsp, ## __VA_ARGS__);	\
513 			} else {					\
514 				PMD_DRV_LOG_LINE(ERR,			\
515 					    "%s returned error: %d",	\
516 					    mp_name_ ## f, rsp->result);\
517 			}						\
518 			free(mp_rep.msgs);				\
519 		} else if (rte_errno == ENOTSUP) {			\
520 			PMD_DRV_LOG_LINE(ERR,				\
521 				    "No IPC, can't proxy to primary");\
522 			ret = -rte_errno;				\
523 		} else {						\
524 			PMD_DRV_LOG_LINE(ERR, "Request %s failed: %s",	\
525 				    mp_name_ ## f,			\
526 				    rte_strerror(rte_errno));		\
527 			ret = -EIO;					\
528 		}							\
529 	}								\
530 	ret;								\
531 })
532 
533 /*********************************************************************
534  *  Multi-Process communication request descriptors
535  *********************************************************************/
536 
537 ENA_PROXY_DESC(ena_com_get_dev_basic_stats, ENA_MP_DEV_STATS_GET,
538 __extension__ ({
539 	ENA_TOUCH(adapter);
540 	ENA_TOUCH(req);
541 	ENA_TOUCH(ena_dev);
542 	ENA_TOUCH(stats);
543 }),
544 __extension__ ({
545 	ENA_TOUCH(rsp);
546 	ENA_TOUCH(ena_dev);
547 	if (stats != &adapter->basic_stats)
548 		rte_memcpy(stats, &adapter->basic_stats, sizeof(*stats));
549 }),
550 	struct ena_com_dev *ena_dev, struct ena_admin_basic_stats *stats);
551 
552 ENA_PROXY_DESC(ena_com_get_eni_stats, ENA_MP_ENI_STATS_GET,
553 __extension__ ({
554 	ENA_TOUCH(adapter);
555 	ENA_TOUCH(req);
556 	ENA_TOUCH(ena_dev);
557 	ENA_TOUCH(stats);
558 }),
559 __extension__ ({
560 	ENA_TOUCH(rsp);
561 	ENA_TOUCH(ena_dev);
562 	if (stats != (struct ena_admin_eni_stats *)adapter->metrics_stats)
563 		rte_memcpy(stats, adapter->metrics_stats, sizeof(*stats));
564 }),
565 	struct ena_com_dev *ena_dev, struct ena_admin_eni_stats *stats);
566 
567 ENA_PROXY_DESC(ena_com_set_dev_mtu, ENA_MP_MTU_SET,
568 __extension__ ({
569 	ENA_TOUCH(adapter);
570 	ENA_TOUCH(ena_dev);
571 	req->args.mtu = mtu;
572 }),
573 __extension__ ({
574 	ENA_TOUCH(adapter);
575 	ENA_TOUCH(rsp);
576 	ENA_TOUCH(ena_dev);
577 	ENA_TOUCH(mtu);
578 }),
579 	struct ena_com_dev *ena_dev, int mtu);
580 
581 ENA_PROXY_DESC(ena_com_indirect_table_set, ENA_MP_IND_TBL_SET,
582 __extension__ ({
583 	ENA_TOUCH(adapter);
584 	ENA_TOUCH(req);
585 	ENA_TOUCH(ena_dev);
586 }),
587 __extension__ ({
588 	ENA_TOUCH(adapter);
589 	ENA_TOUCH(rsp);
590 	ENA_TOUCH(ena_dev);
591 }),
592 	struct ena_com_dev *ena_dev);
593 
594 ENA_PROXY_DESC(ena_com_indirect_table_get, ENA_MP_IND_TBL_GET,
595 __extension__ ({
596 	ENA_TOUCH(adapter);
597 	ENA_TOUCH(req);
598 	ENA_TOUCH(ena_dev);
599 	ENA_TOUCH(ind_tbl);
600 }),
601 __extension__ ({
602 	ENA_TOUCH(rsp);
603 	ENA_TOUCH(ena_dev);
604 	if (ind_tbl != adapter->indirect_table)
605 		rte_memcpy(ind_tbl, adapter->indirect_table,
606 			   sizeof(adapter->indirect_table));
607 }),
608 	struct ena_com_dev *ena_dev, u32 *ind_tbl);
609 
610 ENA_PROXY_DESC(ena_com_get_customer_metrics, ENA_MP_CUSTOMER_METRICS_GET,
611 __extension__ ({
612 	ENA_TOUCH(adapter);
613 	ENA_TOUCH(req);
614 	ENA_TOUCH(ena_dev);
615 	ENA_TOUCH(buf);
616 	ENA_TOUCH(buf_size);
617 }),
618 __extension__ ({
619 	ENA_TOUCH(rsp);
620 	ENA_TOUCH(ena_dev);
621 	if (buf != (char *)adapter->metrics_stats)
622 		rte_memcpy(buf, adapter->metrics_stats, buf_size);
623 }),
624 	struct ena_com_dev *ena_dev, char *buf, size_t buf_size);
625 
626 ENA_PROXY_DESC(ena_com_get_ena_srd_info, ENA_MP_SRD_STATS_GET,
627 __extension__ ({
628 	ENA_TOUCH(adapter);
629 	ENA_TOUCH(req);
630 	ENA_TOUCH(ena_dev);
631 	ENA_TOUCH(info);
632 }),
633 __extension__ ({
634 	ENA_TOUCH(rsp);
635 	ENA_TOUCH(ena_dev);
636 	if ((struct ena_stats_srd *)info != &adapter->srd_stats)
637 		rte_memcpy((struct ena_stats_srd *)info,
638 				&adapter->srd_stats,
639 				sizeof(struct ena_stats_srd));
640 }),
641 	struct ena_com_dev *ena_dev, struct ena_admin_ena_srd_info *info);
642 
643 static inline void ena_trigger_reset(struct ena_adapter *adapter,
644 				     enum ena_regs_reset_reason_types reason)
645 {
646 	if (likely(!adapter->trigger_reset)) {
647 		adapter->reset_reason = reason;
648 		adapter->trigger_reset = true;
649 	}
650 }
651 
652 static inline void ena_rx_mbuf_prepare(struct ena_ring *rx_ring,
653 				       struct rte_mbuf *mbuf,
654 				       struct ena_com_rx_ctx *ena_rx_ctx)
655 {
656 	struct ena_stats_rx *rx_stats = &rx_ring->rx_stats;
657 	uint64_t ol_flags = 0;
658 	uint32_t packet_type = 0;
659 
660 	switch (ena_rx_ctx->l3_proto) {
661 	case ENA_ETH_IO_L3_PROTO_IPV4:
662 		packet_type |= RTE_PTYPE_L3_IPV4;
663 		if (unlikely(ena_rx_ctx->l3_csum_err)) {
664 			++rx_stats->l3_csum_bad;
665 			ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
666 		} else {
667 			ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
668 		}
669 		break;
670 	case ENA_ETH_IO_L3_PROTO_IPV6:
671 		packet_type |= RTE_PTYPE_L3_IPV6;
672 		break;
673 	default:
674 		break;
675 	}
676 
677 	switch (ena_rx_ctx->l4_proto) {
678 	case ENA_ETH_IO_L4_PROTO_TCP:
679 		packet_type |= RTE_PTYPE_L4_TCP;
680 		break;
681 	case ENA_ETH_IO_L4_PROTO_UDP:
682 		packet_type |= RTE_PTYPE_L4_UDP;
683 		break;
684 	default:
685 		break;
686 	}
687 
688 	/* L4 csum is relevant only for TCP/UDP packets */
689 	if ((packet_type & (RTE_PTYPE_L4_TCP | RTE_PTYPE_L4_UDP)) && !ena_rx_ctx->frag) {
690 		if (ena_rx_ctx->l4_csum_checked) {
691 			if (likely(!ena_rx_ctx->l4_csum_err)) {
692 				++rx_stats->l4_csum_good;
693 				ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
694 			} else {
695 				++rx_stats->l4_csum_bad;
696 				ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
697 			}
698 		} else {
699 			ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN;
700 		}
701 
702 		if (rx_ring->offloads & RTE_ETH_RX_OFFLOAD_RSS_HASH) {
703 			ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
704 			mbuf->hash.rss = ena_rx_ctx->hash;
705 		}
706 	} else {
707 		ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN;
708 	}
709 
710 	mbuf->ol_flags = ol_flags;
711 	mbuf->packet_type = packet_type;
712 }
713 
714 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
715 				       struct ena_com_tx_ctx *ena_tx_ctx,
716 				       uint64_t queue_offloads,
717 				       bool disable_meta_caching)
718 {
719 	struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
720 
721 	if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
722 	    (queue_offloads & QUEUE_OFFLOADS)) {
723 		/* check if TSO is required */
724 		if ((mbuf->ol_flags & RTE_MBUF_F_TX_TCP_SEG) &&
725 		    (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_TSO)) {
726 			ena_tx_ctx->tso_enable = true;
727 
728 			ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
729 		}
730 
731 		/* check if L3 checksum is needed */
732 		if ((mbuf->ol_flags & RTE_MBUF_F_TX_IP_CKSUM) &&
733 		    (queue_offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM))
734 			ena_tx_ctx->l3_csum_enable = true;
735 
736 		if (mbuf->ol_flags & RTE_MBUF_F_TX_IPV6) {
737 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
738 			/* For the IPv6 packets, DF always needs to be true. */
739 			ena_tx_ctx->df = 1;
740 		} else {
741 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
742 
743 			/* set don't fragment (DF) flag */
744 			if (mbuf->packet_type &
745 				(RTE_PTYPE_L4_NONFRAG
746 				 | RTE_PTYPE_INNER_L4_NONFRAG))
747 				ena_tx_ctx->df = 1;
748 		}
749 
750 		/* check if L4 checksum is needed */
751 		if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) == RTE_MBUF_F_TX_TCP_CKSUM) &&
752 		    (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) {
753 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
754 			ena_tx_ctx->l4_csum_enable = true;
755 		} else if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) ==
756 				RTE_MBUF_F_TX_UDP_CKSUM) &&
757 				(queue_offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM)) {
758 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
759 			ena_tx_ctx->l4_csum_enable = true;
760 		} else {
761 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
762 			ena_tx_ctx->l4_csum_enable = false;
763 		}
764 
765 		ena_meta->mss = mbuf->tso_segsz;
766 		ena_meta->l3_hdr_len = mbuf->l3_len;
767 		ena_meta->l3_hdr_offset = mbuf->l2_len;
768 
769 		ena_tx_ctx->meta_valid = true;
770 	} else if (disable_meta_caching) {
771 		memset(ena_meta, 0, sizeof(*ena_meta));
772 		ena_tx_ctx->meta_valid = true;
773 	} else {
774 		ena_tx_ctx->meta_valid = false;
775 	}
776 }
777 
778 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
779 {
780 	struct ena_tx_buffer *tx_info = NULL;
781 
782 	if (likely(req_id < tx_ring->ring_size)) {
783 		tx_info = &tx_ring->tx_buffer_info[req_id];
784 		if (likely(tx_info->mbuf))
785 			return 0;
786 	}
787 
788 	if (tx_info)
789 		PMD_TX_LOG_LINE(ERR, "tx_info doesn't have valid mbuf. queue %d:%d req_id %u",
790 			tx_ring->port_id, tx_ring->id, req_id);
791 	else
792 		PMD_TX_LOG_LINE(ERR, "Invalid req_id: %hu in queue %d:%d",
793 			req_id, tx_ring->port_id, tx_ring->id);
794 
795 	/* Trigger device reset */
796 	++tx_ring->tx_stats.bad_req_id;
797 	ena_trigger_reset(tx_ring->adapter, ENA_REGS_RESET_INV_TX_REQ_ID);
798 	return -EFAULT;
799 }
800 
801 static void ena_config_host_info(struct ena_com_dev *ena_dev)
802 {
803 	struct ena_admin_host_info *host_info;
804 	int rc;
805 
806 	/* Allocate only the host info */
807 	rc = ena_com_allocate_host_info(ena_dev);
808 	if (rc) {
809 		PMD_DRV_LOG_LINE(ERR, "Cannot allocate host info");
810 		return;
811 	}
812 
813 	host_info = ena_dev->host_attr.host_info;
814 
815 	host_info->os_type = ENA_ADMIN_OS_DPDK;
816 	host_info->kernel_ver = RTE_VERSION;
817 	strlcpy((char *)host_info->kernel_ver_str, rte_version(),
818 		sizeof(host_info->kernel_ver_str));
819 	host_info->os_dist = RTE_VERSION;
820 	strlcpy((char *)host_info->os_dist_str, rte_version(),
821 		sizeof(host_info->os_dist_str));
822 	host_info->driver_version =
823 		(DRV_MODULE_VER_MAJOR) |
824 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
825 		(DRV_MODULE_VER_SUBMINOR <<
826 			ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
827 	host_info->num_cpus = rte_lcore_count();
828 
829 	host_info->driver_supported_features =
830 		ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK |
831 		ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK;
832 
833 	rc = ena_com_set_host_attributes(ena_dev);
834 	if (rc) {
835 		if (rc == ENA_COM_UNSUPPORTED)
836 			PMD_DRV_LOG_LINE(WARNING, "Cannot set host attributes");
837 		else
838 			PMD_DRV_LOG_LINE(ERR, "Cannot set host attributes");
839 
840 		goto err;
841 	}
842 
843 	return;
844 
845 err:
846 	ena_com_delete_host_info(ena_dev);
847 }
848 
849 /* This function calculates the number of xstats based on the current config */
850 static unsigned int ena_xstats_calc_num(struct rte_eth_dev_data *data)
851 {
852 	struct ena_adapter *adapter = data->dev_private;
853 
854 	return ENA_STATS_ARRAY_GLOBAL +
855 		adapter->metrics_num +
856 		ENA_STATS_ARRAY_ENA_SRD +
857 		(data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
858 		(data->nb_rx_queues * ENA_STATS_ARRAY_RX);
859 }
860 
861 static void ena_config_debug_area(struct ena_adapter *adapter)
862 {
863 	u32 debug_area_size;
864 	int rc, ss_count;
865 
866 	ss_count = ena_xstats_calc_num(adapter->edev_data);
867 
868 	/* allocate 32 bytes for each string and 64bit for the value */
869 	debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
870 
871 	rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
872 	if (rc) {
873 		PMD_DRV_LOG_LINE(ERR, "Cannot allocate debug area");
874 		return;
875 	}
876 
877 	rc = ena_com_set_host_attributes(&adapter->ena_dev);
878 	if (rc) {
879 		if (rc == ENA_COM_UNSUPPORTED)
880 			PMD_DRV_LOG_LINE(WARNING, "Cannot set host attributes");
881 		else
882 			PMD_DRV_LOG_LINE(ERR, "Cannot set host attributes");
883 
884 		goto err;
885 	}
886 
887 	return;
888 err:
889 	ena_com_delete_debug_area(&adapter->ena_dev);
890 }
891 
892 static int ena_close(struct rte_eth_dev *dev)
893 {
894 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
895 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
896 	struct ena_adapter *adapter = dev->data->dev_private;
897 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
898 	int ret = 0;
899 	int rc;
900 
901 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
902 		return 0;
903 
904 	if (adapter->state == ENA_ADAPTER_STATE_CLOSED)
905 		return 0;
906 
907 	if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
908 		ret = ena_stop(dev);
909 	adapter->state = ENA_ADAPTER_STATE_CLOSED;
910 
911 	if (!adapter->control_path_poll_interval) {
912 		rte_intr_disable(intr_handle);
913 		rc = rte_intr_callback_unregister_sync(intr_handle, ena_control_path_handler, dev);
914 		if (unlikely(rc != 0))
915 			PMD_INIT_LOG_LINE(ERR, "Failed to unregister interrupt handler");
916 	} else {
917 		rte_eal_alarm_cancel(ena_control_path_poll_handler, dev);
918 	}
919 
920 	ena_rx_queue_release_all(dev);
921 	ena_tx_queue_release_all(dev);
922 
923 	rte_free(adapter->drv_stats);
924 	adapter->drv_stats = NULL;
925 
926 	ena_com_set_admin_running_state(ena_dev, false);
927 
928 	ena_com_rss_destroy(ena_dev);
929 
930 	ena_com_delete_debug_area(ena_dev);
931 	ena_com_delete_host_info(ena_dev);
932 
933 	ena_com_abort_admin_commands(ena_dev);
934 	ena_com_wait_for_abort_completion(ena_dev);
935 	ena_com_admin_destroy(ena_dev);
936 	ena_com_mmio_reg_read_request_destroy(ena_dev);
937 	ena_com_delete_customer_metrics_buffer(ena_dev);
938 
939 	/*
940 	 * MAC is not allocated dynamically. Setting NULL should prevent from
941 	 * release of the resource in the rte_eth_dev_release_port().
942 	 */
943 	dev->data->mac_addrs = NULL;
944 
945 	return ret;
946 }
947 
948 static int
949 ena_dev_reset(struct rte_eth_dev *dev)
950 {
951 	int rc = 0;
952 
953 	/* Cannot release memory in secondary process */
954 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
955 		PMD_DRV_LOG_LINE(WARNING, "dev_reset not supported in secondary.");
956 		return -EPERM;
957 	}
958 
959 	rc = eth_ena_dev_uninit(dev);
960 	if (rc) {
961 		PMD_INIT_LOG_LINE(CRIT, "Failed to un-initialize device");
962 		return rc;
963 	}
964 
965 	rc = eth_ena_dev_init(dev);
966 	if (rc)
967 		PMD_INIT_LOG_LINE(CRIT, "Cannot initialize device");
968 
969 	return rc;
970 }
971 
972 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
973 {
974 	int nb_queues = dev->data->nb_rx_queues;
975 	int i;
976 
977 	for (i = 0; i < nb_queues; i++)
978 		ena_rx_queue_release(dev, i);
979 }
980 
981 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
982 {
983 	int nb_queues = dev->data->nb_tx_queues;
984 	int i;
985 
986 	for (i = 0; i < nb_queues; i++)
987 		ena_tx_queue_release(dev, i);
988 }
989 
990 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
991 {
992 	struct ena_ring *ring = dev->data->rx_queues[qid];
993 
994 	/* Free ring resources */
995 	rte_free(ring->rx_buffer_info);
996 	ring->rx_buffer_info = NULL;
997 
998 	rte_free(ring->rx_refill_buffer);
999 	ring->rx_refill_buffer = NULL;
1000 
1001 	rte_free(ring->empty_rx_reqs);
1002 	ring->empty_rx_reqs = NULL;
1003 
1004 	ring->configured = 0;
1005 
1006 	PMD_DRV_LOG_LINE(NOTICE, "Rx queue %d:%d released",
1007 		ring->port_id, ring->id);
1008 }
1009 
1010 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
1011 {
1012 	struct ena_ring *ring = dev->data->tx_queues[qid];
1013 
1014 	/* Free ring resources */
1015 	rte_free(ring->push_buf_intermediate_buf);
1016 
1017 	rte_free(ring->tx_buffer_info);
1018 
1019 	rte_free(ring->empty_tx_reqs);
1020 
1021 	ring->empty_tx_reqs = NULL;
1022 	ring->tx_buffer_info = NULL;
1023 	ring->push_buf_intermediate_buf = NULL;
1024 
1025 	ring->configured = 0;
1026 
1027 	PMD_DRV_LOG_LINE(NOTICE, "Tx queue %d:%d released",
1028 		ring->port_id, ring->id);
1029 }
1030 
1031 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
1032 {
1033 	unsigned int i;
1034 
1035 	for (i = 0; i < ring->ring_size; ++i) {
1036 		struct ena_rx_buffer *rx_info = &ring->rx_buffer_info[i];
1037 		if (rx_info->mbuf) {
1038 			rte_mbuf_raw_free(rx_info->mbuf);
1039 			rx_info->mbuf = NULL;
1040 		}
1041 	}
1042 }
1043 
1044 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
1045 {
1046 	unsigned int i;
1047 
1048 	for (i = 0; i < ring->ring_size; ++i) {
1049 		struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
1050 
1051 		if (tx_buf->mbuf) {
1052 			rte_pktmbuf_free(tx_buf->mbuf);
1053 			tx_buf->mbuf = NULL;
1054 		}
1055 	}
1056 }
1057 
1058 static int ena_link_update(struct rte_eth_dev *dev,
1059 			   __rte_unused int wait_to_complete)
1060 {
1061 	struct rte_eth_link *link = &dev->data->dev_link;
1062 	struct ena_adapter *adapter = dev->data->dev_private;
1063 
1064 	link->link_status = adapter->link_status ? RTE_ETH_LINK_UP : RTE_ETH_LINK_DOWN;
1065 	link->link_speed = RTE_ETH_SPEED_NUM_NONE;
1066 	link->link_duplex = RTE_ETH_LINK_FULL_DUPLEX;
1067 
1068 	return 0;
1069 }
1070 
1071 static int ena_queue_start_all(struct rte_eth_dev *dev,
1072 			       enum ena_ring_type ring_type)
1073 {
1074 	struct ena_adapter *adapter = dev->data->dev_private;
1075 	struct ena_ring *queues = NULL;
1076 	int nb_queues;
1077 	int i = 0;
1078 	int rc = 0;
1079 
1080 	if (ring_type == ENA_RING_TYPE_RX) {
1081 		queues = adapter->rx_ring;
1082 		nb_queues = dev->data->nb_rx_queues;
1083 	} else {
1084 		queues = adapter->tx_ring;
1085 		nb_queues = dev->data->nb_tx_queues;
1086 	}
1087 	for (i = 0; i < nb_queues; i++) {
1088 		if (queues[i].configured) {
1089 			if (ring_type == ENA_RING_TYPE_RX) {
1090 				ena_assert_msg(
1091 					dev->data->rx_queues[i] == &queues[i],
1092 					"Inconsistent state of Rx queues\n");
1093 			} else {
1094 				ena_assert_msg(
1095 					dev->data->tx_queues[i] == &queues[i],
1096 					"Inconsistent state of Tx queues\n");
1097 			}
1098 
1099 			rc = ena_queue_start(dev, &queues[i]);
1100 
1101 			if (rc) {
1102 				PMD_INIT_LOG_LINE(ERR,
1103 					"Failed to start queue[%d] of type(%d)",
1104 					i, ring_type);
1105 				goto err;
1106 			}
1107 		}
1108 	}
1109 
1110 	return 0;
1111 
1112 err:
1113 	while (i--)
1114 		if (queues[i].configured)
1115 			ena_queue_stop(&queues[i]);
1116 
1117 	return rc;
1118 }
1119 
1120 static int
1121 ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx,
1122 		       bool use_large_llq_hdr)
1123 {
1124 	struct ena_admin_feature_llq_desc *dev = &ctx->get_feat_ctx->llq;
1125 	struct ena_com_dev *ena_dev = ctx->ena_dev;
1126 	uint32_t max_tx_queue_size;
1127 	uint32_t max_rx_queue_size;
1128 
1129 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1130 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1131 			&ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
1132 		max_rx_queue_size = RTE_MIN(max_queue_ext->max_rx_cq_depth,
1133 			max_queue_ext->max_rx_sq_depth);
1134 		max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
1135 
1136 		if (ena_dev->tx_mem_queue_type ==
1137 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1138 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1139 				dev->max_llq_depth);
1140 		} else {
1141 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1142 				max_queue_ext->max_tx_sq_depth);
1143 		}
1144 
1145 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1146 			max_queue_ext->max_per_packet_rx_descs);
1147 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1148 			max_queue_ext->max_per_packet_tx_descs);
1149 	} else {
1150 		struct ena_admin_queue_feature_desc *max_queues =
1151 			&ctx->get_feat_ctx->max_queues;
1152 		max_rx_queue_size = RTE_MIN(max_queues->max_cq_depth,
1153 			max_queues->max_sq_depth);
1154 		max_tx_queue_size = max_queues->max_cq_depth;
1155 
1156 		if (ena_dev->tx_mem_queue_type ==
1157 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1158 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1159 				dev->max_llq_depth);
1160 		} else {
1161 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1162 				max_queues->max_sq_depth);
1163 		}
1164 
1165 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1166 			max_queues->max_packet_rx_descs);
1167 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1168 			max_queues->max_packet_tx_descs);
1169 	}
1170 
1171 	/* Round down to the nearest power of 2 */
1172 	max_rx_queue_size = rte_align32prevpow2(max_rx_queue_size);
1173 	max_tx_queue_size = rte_align32prevpow2(max_tx_queue_size);
1174 
1175 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV && use_large_llq_hdr) {
1176 		/* intersection between driver configuration and device capabilities */
1177 		if (dev->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B) {
1178 			if (dev->max_wide_llq_depth == MAX_WIDE_LLQ_DEPTH_UNSUPPORTED) {
1179 				/* Devices that do not support the double-sized ENA memory BAR will
1180 				 * report max_wide_llq_depth as 0. In such case, driver halves the
1181 				 * queue depth when working in large llq policy.
1182 				 */
1183 				max_tx_queue_size >>= 1;
1184 				PMD_INIT_LOG_LINE(INFO,
1185 					"large LLQ policy requires limiting Tx queue size to %u entries",
1186 				max_tx_queue_size);
1187 			} else if (dev->max_wide_llq_depth < max_tx_queue_size) {
1188 				/* In case the queue depth that the driver calculated exceeds
1189 				 * the maximal value that the device allows, it will be limited
1190 				 * to that maximal value
1191 				 */
1192 				max_tx_queue_size = dev->max_wide_llq_depth;
1193 			}
1194 		} else {
1195 			PMD_INIT_LOG_LINE(INFO,
1196 				"Forcing large LLQ headers failed since device lacks this support");
1197 		}
1198 	}
1199 
1200 	if (unlikely(max_rx_queue_size == 0 || max_tx_queue_size == 0)) {
1201 		PMD_INIT_LOG_LINE(ERR, "Invalid queue size");
1202 		return -EFAULT;
1203 	}
1204 
1205 	ctx->max_tx_queue_size = max_tx_queue_size;
1206 	ctx->max_rx_queue_size = max_rx_queue_size;
1207 
1208 	PMD_DRV_LOG_LINE(INFO, "tx queue size %u", max_tx_queue_size);
1209 	return 0;
1210 }
1211 
1212 static void ena_stats_restart(struct rte_eth_dev *dev)
1213 {
1214 	struct ena_adapter *adapter = dev->data->dev_private;
1215 
1216 	rte_atomic64_init(&adapter->drv_stats->ierrors);
1217 	rte_atomic64_init(&adapter->drv_stats->oerrors);
1218 	rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
1219 	adapter->drv_stats->rx_drops = 0;
1220 }
1221 
1222 static int ena_stats_get(struct rte_eth_dev *dev,
1223 			  struct rte_eth_stats *stats)
1224 {
1225 	struct ena_admin_basic_stats ena_stats;
1226 	struct ena_adapter *adapter = dev->data->dev_private;
1227 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1228 	int rc;
1229 	int i;
1230 	int max_rings_stats;
1231 
1232 	memset(&ena_stats, 0, sizeof(ena_stats));
1233 
1234 	rte_spinlock_lock(&adapter->admin_lock);
1235 	rc = ENA_PROXY(adapter, ena_com_get_dev_basic_stats, ena_dev,
1236 		       &ena_stats);
1237 	rte_spinlock_unlock(&adapter->admin_lock);
1238 	if (unlikely(rc)) {
1239 		PMD_DRV_LOG_LINE(ERR, "Could not retrieve statistics from ENA");
1240 		return rc;
1241 	}
1242 
1243 	/* Set of basic statistics from ENA */
1244 	stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
1245 					  ena_stats.rx_pkts_low);
1246 	stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
1247 					  ena_stats.tx_pkts_low);
1248 	stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
1249 					ena_stats.rx_bytes_low);
1250 	stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
1251 					ena_stats.tx_bytes_low);
1252 
1253 	/* Driver related stats */
1254 	stats->imissed = adapter->drv_stats->rx_drops;
1255 	stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
1256 	stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
1257 	stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
1258 
1259 	max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
1260 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
1261 	for (i = 0; i < max_rings_stats; ++i) {
1262 		struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
1263 
1264 		stats->q_ibytes[i] = rx_stats->bytes;
1265 		stats->q_ipackets[i] = rx_stats->cnt;
1266 		stats->q_errors[i] = rx_stats->bad_desc_num +
1267 			rx_stats->bad_req_id +
1268 			rx_stats->bad_desc +
1269 			rx_stats->unknown_error;
1270 	}
1271 
1272 	max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
1273 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
1274 	for (i = 0; i < max_rings_stats; ++i) {
1275 		struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
1276 
1277 		stats->q_obytes[i] = tx_stats->bytes;
1278 		stats->q_opackets[i] = tx_stats->cnt;
1279 	}
1280 
1281 	return 0;
1282 }
1283 
1284 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1285 {
1286 	struct ena_adapter *adapter;
1287 	struct ena_com_dev *ena_dev;
1288 	int rc = 0;
1289 
1290 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
1291 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
1292 	adapter = dev->data->dev_private;
1293 
1294 	ena_dev = &adapter->ena_dev;
1295 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
1296 
1297 	rc = ENA_PROXY(adapter, ena_com_set_dev_mtu, ena_dev, mtu);
1298 	if (rc)
1299 		PMD_DRV_LOG_LINE(ERR, "Could not set MTU: %d", mtu);
1300 	else
1301 		PMD_DRV_LOG_LINE(NOTICE, "MTU set to: %d", mtu);
1302 
1303 	return rc;
1304 }
1305 
1306 static int ena_start(struct rte_eth_dev *dev)
1307 {
1308 	struct ena_adapter *adapter = dev->data->dev_private;
1309 	uint64_t ticks;
1310 	int rc = 0;
1311 	uint16_t i;
1312 
1313 	/* Cannot allocate memory in secondary process */
1314 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1315 		PMD_DRV_LOG_LINE(WARNING, "dev_start not supported in secondary.");
1316 		return -EPERM;
1317 	}
1318 
1319 	rc = ena_setup_rx_intr(dev);
1320 	if (rc)
1321 		return rc;
1322 
1323 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
1324 	if (rc)
1325 		return rc;
1326 
1327 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
1328 	if (rc)
1329 		goto err_start_tx;
1330 
1331 	if (adapter->edev_data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG) {
1332 		rc = ena_rss_configure(adapter);
1333 		if (rc)
1334 			goto err_rss_init;
1335 	}
1336 
1337 	ena_stats_restart(dev);
1338 
1339 	adapter->timestamp_wd = rte_get_timer_cycles();
1340 	adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
1341 
1342 	ticks = rte_get_timer_hz();
1343 	rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
1344 			ena_timer_wd_callback, dev);
1345 
1346 	++adapter->dev_stats.dev_start;
1347 	adapter->state = ENA_ADAPTER_STATE_RUNNING;
1348 
1349 	for (i = 0; i < dev->data->nb_rx_queues; i++)
1350 		dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
1351 	for (i = 0; i < dev->data->nb_tx_queues; i++)
1352 		dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
1353 
1354 	return 0;
1355 
1356 err_rss_init:
1357 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1358 err_start_tx:
1359 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1360 	return rc;
1361 }
1362 
1363 static int ena_stop(struct rte_eth_dev *dev)
1364 {
1365 	struct ena_adapter *adapter = dev->data->dev_private;
1366 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1367 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1368 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
1369 	uint16_t i;
1370 	int rc;
1371 
1372 	/* Cannot free memory in secondary process */
1373 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1374 		PMD_DRV_LOG_LINE(WARNING, "dev_stop not supported in secondary.");
1375 		return -EPERM;
1376 	}
1377 
1378 	rte_timer_stop_sync(&adapter->timer_wd);
1379 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1380 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1381 
1382 	if (adapter->trigger_reset) {
1383 		rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
1384 		if (rc)
1385 			PMD_DRV_LOG_LINE(ERR, "Device reset failed, rc: %d", rc);
1386 	}
1387 
1388 	rte_intr_disable(intr_handle);
1389 
1390 	rte_intr_efd_disable(intr_handle);
1391 
1392 	/* Cleanup vector list */
1393 	rte_intr_vec_list_free(intr_handle);
1394 
1395 	rte_intr_enable(intr_handle);
1396 
1397 	++adapter->dev_stats.dev_stop;
1398 	adapter->state = ENA_ADAPTER_STATE_STOPPED;
1399 	dev->data->dev_started = 0;
1400 
1401 	for (i = 0; i < dev->data->nb_rx_queues; i++)
1402 		dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
1403 	for (i = 0; i < dev->data->nb_tx_queues; i++)
1404 		dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
1405 
1406 	return 0;
1407 }
1408 
1409 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring)
1410 {
1411 	struct ena_adapter *adapter = ring->adapter;
1412 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1413 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1414 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
1415 	struct ena_com_create_io_ctx ctx =
1416 		/* policy set to _HOST just to satisfy icc compiler */
1417 		{ ENA_ADMIN_PLACEMENT_POLICY_HOST,
1418 		  0, 0, 0, 0, 0 };
1419 	uint16_t ena_qid;
1420 	unsigned int i;
1421 	int rc;
1422 
1423 	ctx.msix_vector = -1;
1424 	if (ring->type == ENA_RING_TYPE_TX) {
1425 		ena_qid = ENA_IO_TXQ_IDX(ring->id);
1426 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1427 		ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1428 		for (i = 0; i < ring->ring_size; i++)
1429 			ring->empty_tx_reqs[i] = i;
1430 	} else {
1431 		ena_qid = ENA_IO_RXQ_IDX(ring->id);
1432 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1433 		if (rte_intr_dp_is_en(intr_handle))
1434 			ctx.msix_vector =
1435 				rte_intr_vec_list_index_get(intr_handle,
1436 								   ring->id);
1437 
1438 		for (i = 0; i < ring->ring_size; i++)
1439 			ring->empty_rx_reqs[i] = i;
1440 	}
1441 	ctx.queue_size = ring->ring_size;
1442 	ctx.qid = ena_qid;
1443 	ctx.numa_node = ring->numa_socket_id;
1444 
1445 	rc = ena_com_create_io_queue(ena_dev, &ctx);
1446 	if (rc) {
1447 		PMD_DRV_LOG_LINE(ERR,
1448 			"Failed to create IO queue[%d] (qid:%d), rc: %d",
1449 			ring->id, ena_qid, rc);
1450 		return rc;
1451 	}
1452 
1453 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1454 				     &ring->ena_com_io_sq,
1455 				     &ring->ena_com_io_cq);
1456 	if (rc) {
1457 		PMD_DRV_LOG_LINE(ERR,
1458 			"Failed to get IO queue[%d] handlers, rc: %d",
1459 			ring->id, rc);
1460 		ena_com_destroy_io_queue(ena_dev, ena_qid);
1461 		return rc;
1462 	}
1463 
1464 	if (ring->type == ENA_RING_TYPE_TX)
1465 		ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1466 
1467 	/* Start with Rx interrupts being masked. */
1468 	if (ring->type == ENA_RING_TYPE_RX && rte_intr_dp_is_en(intr_handle))
1469 		ena_rx_queue_intr_disable(dev, ring->id);
1470 
1471 	return 0;
1472 }
1473 
1474 static void ena_queue_stop(struct ena_ring *ring)
1475 {
1476 	struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
1477 
1478 	if (ring->type == ENA_RING_TYPE_RX) {
1479 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
1480 		ena_rx_queue_release_bufs(ring);
1481 	} else {
1482 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
1483 		ena_tx_queue_release_bufs(ring);
1484 	}
1485 }
1486 
1487 static void ena_queue_stop_all(struct rte_eth_dev *dev,
1488 			      enum ena_ring_type ring_type)
1489 {
1490 	struct ena_adapter *adapter = dev->data->dev_private;
1491 	struct ena_ring *queues = NULL;
1492 	uint16_t nb_queues, i;
1493 
1494 	if (ring_type == ENA_RING_TYPE_RX) {
1495 		queues = adapter->rx_ring;
1496 		nb_queues = dev->data->nb_rx_queues;
1497 	} else {
1498 		queues = adapter->tx_ring;
1499 		nb_queues = dev->data->nb_tx_queues;
1500 	}
1501 
1502 	for (i = 0; i < nb_queues; ++i)
1503 		if (queues[i].configured)
1504 			ena_queue_stop(&queues[i]);
1505 }
1506 
1507 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring)
1508 {
1509 	int rc, bufs_num;
1510 
1511 	ena_assert_msg(ring->configured == 1,
1512 		       "Trying to start unconfigured queue\n");
1513 
1514 	rc = ena_create_io_queue(dev, ring);
1515 	if (rc) {
1516 		PMD_INIT_LOG_LINE(ERR, "Failed to create IO queue");
1517 		return rc;
1518 	}
1519 
1520 	ring->next_to_clean = 0;
1521 	ring->next_to_use = 0;
1522 
1523 	if (ring->type == ENA_RING_TYPE_TX) {
1524 		ring->tx_stats.available_desc =
1525 			ena_com_free_q_entries(ring->ena_com_io_sq);
1526 		return 0;
1527 	}
1528 
1529 	bufs_num = ring->ring_size - 1;
1530 	rc = ena_populate_rx_queue(ring, bufs_num);
1531 	if (rc != bufs_num) {
1532 		ena_com_destroy_io_queue(&ring->adapter->ena_dev,
1533 					 ENA_IO_RXQ_IDX(ring->id));
1534 		PMD_INIT_LOG_LINE(ERR, "Failed to populate Rx ring");
1535 		return ENA_COM_FAULT;
1536 	}
1537 	/* Flush per-core RX buffers pools cache as they can be used on other
1538 	 * cores as well.
1539 	 */
1540 	rte_mempool_cache_flush(NULL, ring->mb_pool);
1541 
1542 	return 0;
1543 }
1544 
1545 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1546 			      uint16_t queue_idx,
1547 			      uint16_t nb_desc,
1548 			      unsigned int socket_id,
1549 			      const struct rte_eth_txconf *tx_conf)
1550 {
1551 	struct ena_ring *txq = NULL;
1552 	struct ena_adapter *adapter = dev->data->dev_private;
1553 	unsigned int i;
1554 	uint16_t dyn_thresh;
1555 
1556 	txq = &adapter->tx_ring[queue_idx];
1557 
1558 	if (txq->configured) {
1559 		PMD_DRV_LOG_LINE(CRIT,
1560 			"API violation. Queue[%d] is already configured",
1561 			queue_idx);
1562 		return ENA_COM_FAULT;
1563 	}
1564 
1565 	if (!rte_is_power_of_2(nb_desc)) {
1566 		PMD_DRV_LOG_LINE(ERR,
1567 			"Unsupported size of Tx queue: %d is not a power of 2.",
1568 			nb_desc);
1569 		return -EINVAL;
1570 	}
1571 
1572 	if (nb_desc > adapter->max_tx_ring_size) {
1573 		PMD_DRV_LOG_LINE(ERR,
1574 			"Unsupported size of Tx queue (max size: %d)",
1575 			adapter->max_tx_ring_size);
1576 		return -EINVAL;
1577 	}
1578 
1579 	txq->port_id = dev->data->port_id;
1580 	txq->next_to_clean = 0;
1581 	txq->next_to_use = 0;
1582 	txq->ring_size = nb_desc;
1583 	txq->size_mask = nb_desc - 1;
1584 	txq->numa_socket_id = socket_id;
1585 	txq->pkts_without_db = false;
1586 	txq->last_cleanup_ticks = 0;
1587 
1588 	txq->tx_buffer_info = rte_zmalloc_socket("txq->tx_buffer_info",
1589 		sizeof(struct ena_tx_buffer) * txq->ring_size,
1590 		RTE_CACHE_LINE_SIZE,
1591 		socket_id);
1592 	if (!txq->tx_buffer_info) {
1593 		PMD_DRV_LOG_LINE(ERR,
1594 			"Failed to allocate memory for Tx buffer info");
1595 		return -ENOMEM;
1596 	}
1597 
1598 	txq->empty_tx_reqs = rte_zmalloc_socket("txq->empty_tx_reqs",
1599 		sizeof(uint16_t) * txq->ring_size,
1600 		RTE_CACHE_LINE_SIZE,
1601 		socket_id);
1602 	if (!txq->empty_tx_reqs) {
1603 		PMD_DRV_LOG_LINE(ERR,
1604 			"Failed to allocate memory for empty Tx requests");
1605 		rte_free(txq->tx_buffer_info);
1606 		return -ENOMEM;
1607 	}
1608 
1609 	txq->push_buf_intermediate_buf =
1610 		rte_zmalloc_socket("txq->push_buf_intermediate_buf",
1611 			txq->tx_max_header_size,
1612 			RTE_CACHE_LINE_SIZE,
1613 			socket_id);
1614 	if (!txq->push_buf_intermediate_buf) {
1615 		PMD_DRV_LOG_LINE(ERR, "Failed to alloc push buffer for LLQ");
1616 		rte_free(txq->tx_buffer_info);
1617 		rte_free(txq->empty_tx_reqs);
1618 		return -ENOMEM;
1619 	}
1620 
1621 	for (i = 0; i < txq->ring_size; i++)
1622 		txq->empty_tx_reqs[i] = i;
1623 
1624 	txq->offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1625 
1626 	/* Check if caller provided the Tx cleanup threshold value. */
1627 	if (tx_conf->tx_free_thresh != 0) {
1628 		txq->tx_free_thresh = tx_conf->tx_free_thresh;
1629 	} else {
1630 		dyn_thresh = txq->ring_size -
1631 			txq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1632 		txq->tx_free_thresh = RTE_MAX(dyn_thresh,
1633 			txq->ring_size - ENA_REFILL_THRESH_PACKET);
1634 	}
1635 
1636 	txq->missing_tx_completion_threshold =
1637 		RTE_MIN(txq->ring_size / 2, ENA_DEFAULT_MISSING_COMP);
1638 
1639 	/* Store pointer to this queue in upper layer */
1640 	txq->configured = 1;
1641 	dev->data->tx_queues[queue_idx] = txq;
1642 
1643 	return 0;
1644 }
1645 
1646 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1647 			      uint16_t queue_idx,
1648 			      uint16_t nb_desc,
1649 			      unsigned int socket_id,
1650 			      const struct rte_eth_rxconf *rx_conf,
1651 			      struct rte_mempool *mp)
1652 {
1653 	struct ena_adapter *adapter = dev->data->dev_private;
1654 	struct ena_ring *rxq = NULL;
1655 	size_t buffer_size;
1656 	int i;
1657 	uint16_t dyn_thresh;
1658 
1659 	rxq = &adapter->rx_ring[queue_idx];
1660 	if (rxq->configured) {
1661 		PMD_DRV_LOG_LINE(CRIT,
1662 			"API violation. Queue[%d] is already configured",
1663 			queue_idx);
1664 		return ENA_COM_FAULT;
1665 	}
1666 
1667 	if (!rte_is_power_of_2(nb_desc)) {
1668 		PMD_DRV_LOG_LINE(ERR,
1669 			"Unsupported size of Rx queue: %d is not a power of 2.",
1670 			nb_desc);
1671 		return -EINVAL;
1672 	}
1673 
1674 	if (nb_desc > adapter->max_rx_ring_size) {
1675 		PMD_DRV_LOG_LINE(ERR,
1676 			"Unsupported size of Rx queue (max size: %d)",
1677 			adapter->max_rx_ring_size);
1678 		return -EINVAL;
1679 	}
1680 
1681 	/* ENA isn't supporting buffers smaller than 1400 bytes */
1682 	buffer_size = rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
1683 	if (buffer_size < ENA_RX_BUF_MIN_SIZE) {
1684 		PMD_DRV_LOG_LINE(ERR,
1685 			"Unsupported size of Rx buffer: %zu (min size: %d)",
1686 			buffer_size, ENA_RX_BUF_MIN_SIZE);
1687 		return -EINVAL;
1688 	}
1689 
1690 	rxq->port_id = dev->data->port_id;
1691 	rxq->next_to_clean = 0;
1692 	rxq->next_to_use = 0;
1693 	rxq->ring_size = nb_desc;
1694 	rxq->size_mask = nb_desc - 1;
1695 	rxq->numa_socket_id = socket_id;
1696 	rxq->mb_pool = mp;
1697 
1698 	rxq->rx_buffer_info = rte_zmalloc_socket("rxq->buffer_info",
1699 		sizeof(struct ena_rx_buffer) * nb_desc,
1700 		RTE_CACHE_LINE_SIZE,
1701 		socket_id);
1702 	if (!rxq->rx_buffer_info) {
1703 		PMD_DRV_LOG_LINE(ERR,
1704 			"Failed to allocate memory for Rx buffer info");
1705 		return -ENOMEM;
1706 	}
1707 
1708 	rxq->rx_refill_buffer = rte_zmalloc_socket("rxq->rx_refill_buffer",
1709 		sizeof(struct rte_mbuf *) * nb_desc,
1710 		RTE_CACHE_LINE_SIZE,
1711 		socket_id);
1712 	if (!rxq->rx_refill_buffer) {
1713 		PMD_DRV_LOG_LINE(ERR,
1714 			"Failed to allocate memory for Rx refill buffer");
1715 		rte_free(rxq->rx_buffer_info);
1716 		rxq->rx_buffer_info = NULL;
1717 		return -ENOMEM;
1718 	}
1719 
1720 	rxq->empty_rx_reqs = rte_zmalloc_socket("rxq->empty_rx_reqs",
1721 		sizeof(uint16_t) * nb_desc,
1722 		RTE_CACHE_LINE_SIZE,
1723 		socket_id);
1724 	if (!rxq->empty_rx_reqs) {
1725 		PMD_DRV_LOG_LINE(ERR,
1726 			"Failed to allocate memory for empty Rx requests");
1727 		rte_free(rxq->rx_buffer_info);
1728 		rxq->rx_buffer_info = NULL;
1729 		rte_free(rxq->rx_refill_buffer);
1730 		rxq->rx_refill_buffer = NULL;
1731 		return -ENOMEM;
1732 	}
1733 
1734 	for (i = 0; i < nb_desc; i++)
1735 		rxq->empty_rx_reqs[i] = i;
1736 
1737 	rxq->offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1738 
1739 	if (rx_conf->rx_free_thresh != 0) {
1740 		rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1741 	} else {
1742 		dyn_thresh = rxq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1743 		rxq->rx_free_thresh = RTE_MIN(dyn_thresh,
1744 			(uint16_t)(ENA_REFILL_THRESH_PACKET));
1745 	}
1746 
1747 	/* Store pointer to this queue in upper layer */
1748 	rxq->configured = 1;
1749 	dev->data->rx_queues[queue_idx] = rxq;
1750 
1751 	return 0;
1752 }
1753 
1754 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
1755 				  struct rte_mbuf *mbuf, uint16_t id)
1756 {
1757 	struct ena_com_buf ebuf;
1758 	int rc;
1759 
1760 	/* prepare physical address for DMA transaction */
1761 	ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1762 	ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1763 
1764 	/* pass resource to device */
1765 	rc = ena_com_add_single_rx_desc(io_sq, &ebuf, id);
1766 	if (unlikely(rc != 0))
1767 		PMD_RX_LOG_LINE(WARNING, "Failed adding Rx desc");
1768 
1769 	return rc;
1770 }
1771 
1772 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1773 {
1774 	unsigned int i;
1775 	int rc;
1776 	uint16_t next_to_use = rxq->next_to_use;
1777 	uint16_t req_id;
1778 #ifdef RTE_ETHDEV_DEBUG_RX
1779 	uint16_t in_use;
1780 #endif
1781 	struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1782 
1783 	if (unlikely(!count))
1784 		return 0;
1785 
1786 #ifdef RTE_ETHDEV_DEBUG_RX
1787 	in_use = rxq->ring_size - 1 -
1788 		ena_com_free_q_entries(rxq->ena_com_io_sq);
1789 	if (unlikely((in_use + count) >= rxq->ring_size))
1790 		PMD_RX_LOG_LINE(ERR, "Bad Rx ring state");
1791 #endif
1792 
1793 	/* get resources for incoming packets */
1794 	rc = rte_pktmbuf_alloc_bulk(rxq->mb_pool, mbufs, count);
1795 	if (unlikely(rc < 0)) {
1796 		rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1797 		++rxq->rx_stats.mbuf_alloc_fail;
1798 		PMD_RX_LOG_LINE(DEBUG, "There are not enough free buffers");
1799 		return 0;
1800 	}
1801 
1802 	for (i = 0; i < count; i++) {
1803 		struct rte_mbuf *mbuf = mbufs[i];
1804 		struct ena_rx_buffer *rx_info;
1805 
1806 		if (likely((i + 4) < count))
1807 			rte_prefetch0(mbufs[i + 4]);
1808 
1809 		req_id = rxq->empty_rx_reqs[next_to_use];
1810 		rx_info = &rxq->rx_buffer_info[req_id];
1811 
1812 		rc = ena_add_single_rx_desc(rxq->ena_com_io_sq, mbuf, req_id);
1813 		if (unlikely(rc != 0))
1814 			break;
1815 
1816 		rx_info->mbuf = mbuf;
1817 		next_to_use = ENA_IDX_NEXT_MASKED(next_to_use, rxq->size_mask);
1818 	}
1819 
1820 	if (unlikely(i < count)) {
1821 		PMD_RX_LOG_LINE(WARNING,
1822 			"Refilled Rx queue[%d] with only %d/%d buffers",
1823 			rxq->id, i, count);
1824 		rte_pktmbuf_free_bulk(&mbufs[i], count - i);
1825 		++rxq->rx_stats.refill_partial;
1826 	}
1827 
1828 	/* When we submitted free resources to device... */
1829 	if (likely(i > 0)) {
1830 		/* ...let HW know that it can fill buffers with data. */
1831 		ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1832 
1833 		rxq->next_to_use = next_to_use;
1834 	}
1835 
1836 	return i;
1837 }
1838 
1839 static size_t ena_get_metrics_entries(struct ena_adapter *adapter)
1840 {
1841 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1842 	size_t metrics_num = 0;
1843 
1844 	if (ena_com_get_cap(ena_dev, ENA_ADMIN_CUSTOMER_METRICS))
1845 		metrics_num = ENA_STATS_ARRAY_METRICS;
1846 	else if (ena_com_get_cap(ena_dev, ENA_ADMIN_ENI_STATS))
1847 		metrics_num = ENA_STATS_ARRAY_METRICS_LEGACY;
1848 	PMD_DRV_LOG_LINE(NOTICE, "0x%x customer metrics are supported", (unsigned int)metrics_num);
1849 	if (metrics_num > ENA_MAX_CUSTOMER_METRICS) {
1850 		PMD_DRV_LOG_LINE(NOTICE, "Not enough space for the requested customer metrics");
1851 		metrics_num = ENA_MAX_CUSTOMER_METRICS;
1852 	}
1853 	return metrics_num;
1854 }
1855 
1856 static int ena_device_init(struct ena_adapter *adapter,
1857 			   struct rte_pci_device *pdev,
1858 			   struct ena_com_dev_get_features_ctx *get_feat_ctx)
1859 {
1860 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1861 	uint32_t aenq_groups;
1862 	int rc;
1863 	bool readless_supported;
1864 
1865 	/* Initialize mmio registers */
1866 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
1867 	if (rc) {
1868 		PMD_DRV_LOG_LINE(ERR, "Failed to init MMIO read less");
1869 		return rc;
1870 	}
1871 
1872 	/* The PCIe configuration space revision id indicate if mmio reg
1873 	 * read is disabled.
1874 	 */
1875 	readless_supported = !(pdev->id.class_id & ENA_MMIO_DISABLE_REG_READ);
1876 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1877 
1878 	/* reset device */
1879 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1880 	if (rc) {
1881 		PMD_DRV_LOG_LINE(ERR, "Cannot reset device");
1882 		goto err_mmio_read_less;
1883 	}
1884 
1885 	/* check FW version */
1886 	rc = ena_com_validate_version(ena_dev);
1887 	if (rc) {
1888 		PMD_DRV_LOG_LINE(ERR, "Device version is too low");
1889 		goto err_mmio_read_less;
1890 	}
1891 
1892 	ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1893 
1894 	/* ENA device administration layer init */
1895 	rc = ena_com_admin_init(ena_dev, &aenq_handlers);
1896 	if (rc) {
1897 		PMD_DRV_LOG_LINE(ERR,
1898 			"Cannot initialize ENA admin queue");
1899 		goto err_mmio_read_less;
1900 	}
1901 
1902 	/* To enable the msix interrupts the driver needs to know the number
1903 	 * of queues. So the driver uses polling mode to retrieve this
1904 	 * information.
1905 	 */
1906 	ena_com_set_admin_polling_mode(ena_dev, true);
1907 
1908 	ena_config_host_info(ena_dev);
1909 
1910 	/* Get Device Attributes and features */
1911 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1912 	if (rc) {
1913 		PMD_DRV_LOG_LINE(ERR,
1914 			"Cannot get attribute for ENA device, rc: %d", rc);
1915 		goto err_admin_init;
1916 	}
1917 
1918 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1919 		      BIT(ENA_ADMIN_NOTIFICATION) |
1920 		      BIT(ENA_ADMIN_KEEP_ALIVE) |
1921 		      BIT(ENA_ADMIN_FATAL_ERROR) |
1922 		      BIT(ENA_ADMIN_WARNING) |
1923 		      BIT(ENA_ADMIN_CONF_NOTIFICATIONS);
1924 
1925 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
1926 
1927 	adapter->all_aenq_groups = aenq_groups;
1928 	/* The actual supported number of metrics is negotiated with the device at runtime */
1929 	adapter->metrics_num = ena_get_metrics_entries(adapter);
1930 
1931 	return 0;
1932 
1933 err_admin_init:
1934 	ena_com_admin_destroy(ena_dev);
1935 
1936 err_mmio_read_less:
1937 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1938 
1939 	return rc;
1940 }
1941 
1942 static void ena_control_path_handler(void *cb_arg)
1943 {
1944 	struct rte_eth_dev *dev = cb_arg;
1945 	struct ena_adapter *adapter = dev->data->dev_private;
1946 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1947 
1948 	if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED)) {
1949 		ena_com_admin_q_comp_intr_handler(ena_dev);
1950 		ena_com_aenq_intr_handler(ena_dev, dev);
1951 	}
1952 }
1953 
1954 static void ena_control_path_poll_handler(void *cb_arg)
1955 {
1956 	struct rte_eth_dev *dev = cb_arg;
1957 	struct ena_adapter *adapter = dev->data->dev_private;
1958 	int rc;
1959 
1960 	if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED)) {
1961 		ena_control_path_handler(cb_arg);
1962 		rc = rte_eal_alarm_set(adapter->control_path_poll_interval,
1963 				       ena_control_path_poll_handler, cb_arg);
1964 		if (unlikely(rc != 0)) {
1965 			PMD_DRV_LOG_LINE(ERR, "Failed to retrigger control path alarm");
1966 			ena_trigger_reset(adapter, ENA_REGS_RESET_GENERIC);
1967 		}
1968 	}
1969 }
1970 
1971 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1972 {
1973 	if (!(adapter->active_aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE)))
1974 		return;
1975 
1976 	if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1977 		return;
1978 
1979 	if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1980 	    adapter->keep_alive_timeout)) {
1981 		PMD_DRV_LOG_LINE(ERR, "Keep alive timeout");
1982 		ena_trigger_reset(adapter, ENA_REGS_RESET_KEEP_ALIVE_TO);
1983 		++adapter->dev_stats.wd_expired;
1984 	}
1985 }
1986 
1987 /* Check if admin queue is enabled */
1988 static void check_for_admin_com_state(struct ena_adapter *adapter)
1989 {
1990 	if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1991 		PMD_DRV_LOG_LINE(ERR, "ENA admin queue is not in running state");
1992 		ena_trigger_reset(adapter, ENA_REGS_RESET_ADMIN_TO);
1993 	}
1994 }
1995 
1996 static int check_for_tx_completion_in_queue(struct ena_adapter *adapter,
1997 					    struct ena_ring *tx_ring)
1998 {
1999 	struct ena_tx_buffer *tx_buf;
2000 	uint64_t timestamp;
2001 	uint64_t completion_delay;
2002 	uint32_t missed_tx = 0;
2003 	unsigned int i;
2004 	int rc = 0;
2005 
2006 	for (i = 0; i < tx_ring->ring_size; ++i) {
2007 		tx_buf = &tx_ring->tx_buffer_info[i];
2008 		timestamp = tx_buf->timestamp;
2009 
2010 		if (timestamp == 0)
2011 			continue;
2012 
2013 		completion_delay = rte_get_timer_cycles() - timestamp;
2014 		if (completion_delay > adapter->missing_tx_completion_to) {
2015 			if (unlikely(!tx_buf->print_once)) {
2016 				PMD_TX_LOG_LINE(WARNING,
2017 					"Found a Tx that wasn't completed on time, qid %d, index %d. "
2018 					"Missing Tx outstanding for %" PRIu64 " msecs.",
2019 					tx_ring->id, i,	completion_delay /
2020 					rte_get_timer_hz() * 1000);
2021 				tx_buf->print_once = true;
2022 			}
2023 			++missed_tx;
2024 		}
2025 	}
2026 
2027 	if (unlikely(missed_tx > tx_ring->missing_tx_completion_threshold)) {
2028 		PMD_DRV_LOG_LINE(ERR,
2029 			"The number of lost Tx completions is above the threshold (%d > %d). "
2030 			"Trigger the device reset.",
2031 			missed_tx,
2032 			tx_ring->missing_tx_completion_threshold);
2033 		adapter->reset_reason = ENA_REGS_RESET_MISS_TX_CMPL;
2034 		adapter->trigger_reset = true;
2035 		rc = -EIO;
2036 	}
2037 
2038 	tx_ring->tx_stats.missed_tx += missed_tx;
2039 
2040 	return rc;
2041 }
2042 
2043 static void check_for_tx_completions(struct ena_adapter *adapter)
2044 {
2045 	struct ena_ring *tx_ring;
2046 	uint64_t tx_cleanup_delay;
2047 	size_t qid;
2048 	int budget;
2049 	uint16_t nb_tx_queues = adapter->edev_data->nb_tx_queues;
2050 
2051 	if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT)
2052 		return;
2053 
2054 	nb_tx_queues = adapter->edev_data->nb_tx_queues;
2055 	budget = adapter->missing_tx_completion_budget;
2056 
2057 	qid = adapter->last_tx_comp_qid;
2058 	while (budget-- > 0) {
2059 		tx_ring = &adapter->tx_ring[qid];
2060 
2061 		/* Tx cleanup is called only by the burst function and can be
2062 		 * called dynamically by the application. Also cleanup is
2063 		 * limited by the threshold. To avoid false detection of the
2064 		 * missing HW Tx completion, get the delay since last cleanup
2065 		 * function was called.
2066 		 */
2067 		tx_cleanup_delay = rte_get_timer_cycles() -
2068 			tx_ring->last_cleanup_ticks;
2069 		if (tx_cleanup_delay < adapter->tx_cleanup_stall_delay)
2070 			check_for_tx_completion_in_queue(adapter, tx_ring);
2071 		qid = (qid + 1) % nb_tx_queues;
2072 	}
2073 
2074 	adapter->last_tx_comp_qid = qid;
2075 }
2076 
2077 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
2078 				  void *arg)
2079 {
2080 	struct rte_eth_dev *dev = arg;
2081 	struct ena_adapter *adapter = dev->data->dev_private;
2082 
2083 	if (unlikely(adapter->trigger_reset))
2084 		return;
2085 
2086 	check_for_missing_keep_alive(adapter);
2087 	check_for_admin_com_state(adapter);
2088 	check_for_tx_completions(adapter);
2089 
2090 	if (unlikely(adapter->trigger_reset)) {
2091 		PMD_DRV_LOG_LINE(ERR, "Trigger reset is on");
2092 		rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
2093 			NULL);
2094 	}
2095 }
2096 
2097 static inline void
2098 set_default_llq_configurations(struct ena_llq_configurations *llq_config,
2099 			       struct ena_admin_feature_llq_desc *llq,
2100 			       bool use_large_llq_hdr)
2101 {
2102 	llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
2103 	llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
2104 	llq_config->llq_num_decs_before_header =
2105 		ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
2106 
2107 	if (use_large_llq_hdr &&
2108 	    (llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B)) {
2109 		llq_config->llq_ring_entry_size =
2110 			ENA_ADMIN_LIST_ENTRY_SIZE_256B;
2111 		llq_config->llq_ring_entry_size_value = 256;
2112 	} else {
2113 		llq_config->llq_ring_entry_size =
2114 			ENA_ADMIN_LIST_ENTRY_SIZE_128B;
2115 		llq_config->llq_ring_entry_size_value = 128;
2116 	}
2117 }
2118 
2119 static int
2120 ena_set_queues_placement_policy(struct ena_adapter *adapter,
2121 				struct ena_com_dev *ena_dev,
2122 				struct ena_admin_feature_llq_desc *llq,
2123 				struct ena_llq_configurations *llq_default_configurations)
2124 {
2125 	int rc;
2126 	u32 llq_feature_mask;
2127 
2128 	if (adapter->llq_header_policy == ENA_LLQ_POLICY_DISABLED) {
2129 		PMD_DRV_LOG_LINE(WARNING,
2130 			"NOTE: LLQ has been disabled as per user's request. "
2131 			"This may lead to a huge performance degradation!");
2132 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
2133 		return 0;
2134 	}
2135 
2136 	llq_feature_mask = 1 << ENA_ADMIN_LLQ;
2137 	if (!(ena_dev->supported_features & llq_feature_mask)) {
2138 		PMD_DRV_LOG_LINE(INFO,
2139 			"LLQ is not supported. Fallback to host mode policy.");
2140 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
2141 		return 0;
2142 	}
2143 
2144 	if (adapter->dev_mem_base == NULL) {
2145 		PMD_DRV_LOG_LINE(ERR,
2146 			"LLQ is advertised as supported, but device doesn't expose mem bar");
2147 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
2148 		return 0;
2149 	}
2150 
2151 	rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
2152 	if (unlikely(rc)) {
2153 		PMD_INIT_LOG_LINE(WARNING,
2154 			"Failed to config dev mode. Fallback to host mode policy.");
2155 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
2156 		return 0;
2157 	}
2158 
2159 	/* Nothing to config, exit */
2160 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
2161 		return 0;
2162 
2163 	ena_dev->mem_bar = adapter->dev_mem_base;
2164 
2165 	return 0;
2166 }
2167 
2168 static uint32_t ena_calc_max_io_queue_num(struct ena_com_dev *ena_dev,
2169 	struct ena_com_dev_get_features_ctx *get_feat_ctx)
2170 {
2171 	uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
2172 
2173 	/* Regular queues capabilities */
2174 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
2175 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
2176 			&get_feat_ctx->max_queue_ext.max_queue_ext;
2177 		io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
2178 				    max_queue_ext->max_rx_cq_num);
2179 		io_tx_sq_num = max_queue_ext->max_tx_sq_num;
2180 		io_tx_cq_num = max_queue_ext->max_tx_cq_num;
2181 	} else {
2182 		struct ena_admin_queue_feature_desc *max_queues =
2183 			&get_feat_ctx->max_queues;
2184 		io_tx_sq_num = max_queues->max_sq_num;
2185 		io_tx_cq_num = max_queues->max_cq_num;
2186 		io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
2187 	}
2188 
2189 	/* In case of LLQ use the llq number in the get feature cmd */
2190 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
2191 		io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
2192 
2193 	max_num_io_queues = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
2194 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_sq_num);
2195 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_cq_num);
2196 
2197 	if (unlikely(max_num_io_queues == 0)) {
2198 		PMD_DRV_LOG_LINE(ERR, "Number of IO queues cannot not be 0");
2199 		return -EFAULT;
2200 	}
2201 
2202 	return max_num_io_queues;
2203 }
2204 
2205 static void
2206 ena_set_offloads(struct ena_offloads *offloads,
2207 		 struct ena_admin_feature_offload_desc *offload_desc)
2208 {
2209 	if (offload_desc->tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK)
2210 		offloads->tx_offloads |= ENA_IPV4_TSO;
2211 
2212 	/* Tx IPv4 checksum offloads */
2213 	if (offload_desc->tx &
2214 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)
2215 		offloads->tx_offloads |= ENA_L3_IPV4_CSUM;
2216 	if (offload_desc->tx &
2217 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK)
2218 		offloads->tx_offloads |= ENA_L4_IPV4_CSUM;
2219 	if (offload_desc->tx &
2220 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)
2221 		offloads->tx_offloads |= ENA_L4_IPV4_CSUM_PARTIAL;
2222 
2223 	/* Tx IPv6 checksum offloads */
2224 	if (offload_desc->tx &
2225 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK)
2226 		offloads->tx_offloads |= ENA_L4_IPV6_CSUM;
2227 	if (offload_desc->tx &
2228 	     ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)
2229 		offloads->tx_offloads |= ENA_L4_IPV6_CSUM_PARTIAL;
2230 
2231 	/* Rx IPv4 checksum offloads */
2232 	if (offload_desc->rx_supported &
2233 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)
2234 		offloads->rx_offloads |= ENA_L3_IPV4_CSUM;
2235 	if (offload_desc->rx_supported &
2236 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK)
2237 		offloads->rx_offloads |= ENA_L4_IPV4_CSUM;
2238 
2239 	/* Rx IPv6 checksum offloads */
2240 	if (offload_desc->rx_supported &
2241 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK)
2242 		offloads->rx_offloads |= ENA_L4_IPV6_CSUM;
2243 
2244 	if (offload_desc->rx_supported &
2245 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_HASH_MASK)
2246 		offloads->rx_offloads |= ENA_RX_RSS_HASH;
2247 }
2248 
2249 static int ena_init_once(void)
2250 {
2251 	static bool init_done;
2252 
2253 	if (init_done)
2254 		return 0;
2255 
2256 	if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
2257 		/* Init timer subsystem for the ENA timer service. */
2258 		rte_timer_subsystem_init();
2259 		/* Register handler for requests from secondary processes. */
2260 		rte_mp_action_register(ENA_MP_NAME, ena_mp_primary_handle);
2261 	}
2262 
2263 	init_done = true;
2264 	return 0;
2265 }
2266 
2267 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
2268 {
2269 	struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
2270 	struct rte_pci_device *pci_dev;
2271 	struct rte_intr_handle *intr_handle;
2272 	struct ena_adapter *adapter = eth_dev->data->dev_private;
2273 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
2274 	struct ena_com_dev_get_features_ctx get_feat_ctx;
2275 	struct ena_llq_configurations llq_config;
2276 	const char *queue_type_str;
2277 	uint32_t max_num_io_queues;
2278 	int rc;
2279 	static int adapters_found;
2280 	bool disable_meta_caching;
2281 
2282 	eth_dev->dev_ops = &ena_dev_ops;
2283 	eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
2284 	eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
2285 	eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
2286 
2287 	rc = ena_init_once();
2288 	if (rc != 0)
2289 		return rc;
2290 
2291 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2292 		return 0;
2293 
2294 	eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
2295 
2296 	memset(adapter, 0, sizeof(struct ena_adapter));
2297 	ena_dev = &adapter->ena_dev;
2298 
2299 	adapter->edev_data = eth_dev->data;
2300 
2301 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2302 
2303 	PMD_INIT_LOG_LINE(INFO, "Initializing " PCI_PRI_FMT,
2304 		     pci_dev->addr.domain,
2305 		     pci_dev->addr.bus,
2306 		     pci_dev->addr.devid,
2307 		     pci_dev->addr.function);
2308 
2309 	intr_handle = pci_dev->intr_handle;
2310 
2311 	adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
2312 	adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
2313 
2314 	if (!adapter->regs) {
2315 		PMD_INIT_LOG_LINE(CRIT, "Failed to access registers BAR(%d)",
2316 			     ENA_REGS_BAR);
2317 		return -ENXIO;
2318 	}
2319 
2320 	ena_dev->reg_bar = adapter->regs;
2321 	/* Pass device data as a pointer which can be passed to the IO functions
2322 	 * by the ena_com (for example - the memory allocation).
2323 	 */
2324 	ena_dev->dmadev = eth_dev->data;
2325 
2326 	adapter->id_number = adapters_found;
2327 
2328 	snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
2329 		 adapter->id_number);
2330 
2331 	/* Assign default devargs values */
2332 	adapter->missing_tx_completion_to = ENA_TX_TIMEOUT;
2333 	adapter->llq_header_policy = ENA_LLQ_POLICY_RECOMMENDED;
2334 
2335 	/* Get user bypass */
2336 	rc = ena_parse_devargs(adapter, pci_dev->device.devargs);
2337 	if (rc != 0) {
2338 		PMD_INIT_LOG_LINE(CRIT, "Failed to parse devargs");
2339 		goto err;
2340 	}
2341 	rc = ena_com_allocate_customer_metrics_buffer(ena_dev);
2342 	if (rc != 0) {
2343 		PMD_INIT_LOG_LINE(CRIT, "Failed to allocate customer metrics buffer");
2344 		goto err;
2345 	}
2346 
2347 	/* device specific initialization routine */
2348 	rc = ena_device_init(adapter, pci_dev, &get_feat_ctx);
2349 	if (rc) {
2350 		PMD_INIT_LOG_LINE(CRIT, "Failed to init ENA device");
2351 		goto err_metrics_delete;
2352 	}
2353 
2354 	/* Check if device supports LSC */
2355 	if (!(adapter->all_aenq_groups & BIT(ENA_ADMIN_LINK_CHANGE)))
2356 		adapter->edev_data->dev_flags &= ~RTE_ETH_DEV_INTR_LSC;
2357 
2358 	bool use_large_llq_hdr = ena_use_large_llq_hdr(adapter,
2359 						       get_feat_ctx.llq.entry_size_recommended);
2360 	set_default_llq_configurations(&llq_config, &get_feat_ctx.llq, use_large_llq_hdr);
2361 	rc = ena_set_queues_placement_policy(adapter, ena_dev,
2362 					     &get_feat_ctx.llq, &llq_config);
2363 	if (unlikely(rc)) {
2364 		PMD_INIT_LOG_LINE(CRIT, "Failed to set placement policy");
2365 		return rc;
2366 	}
2367 
2368 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST) {
2369 		queue_type_str = "Regular";
2370 	} else {
2371 		queue_type_str = "Low latency";
2372 		PMD_DRV_LOG_LINE(INFO, "LLQ entry size %uB", llq_config.llq_ring_entry_size_value);
2373 	}
2374 	PMD_DRV_LOG_LINE(INFO, "Placement policy: %s", queue_type_str);
2375 
2376 	calc_queue_ctx.ena_dev = ena_dev;
2377 	calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
2378 
2379 	max_num_io_queues = ena_calc_max_io_queue_num(ena_dev, &get_feat_ctx);
2380 	rc = ena_calc_io_queue_size(&calc_queue_ctx, use_large_llq_hdr);
2381 	if (unlikely((rc != 0) || (max_num_io_queues == 0))) {
2382 		rc = -EFAULT;
2383 		goto err_device_destroy;
2384 	}
2385 
2386 	adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
2387 	adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
2388 	adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
2389 	adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
2390 	adapter->max_num_io_queues = max_num_io_queues;
2391 
2392 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2393 		disable_meta_caching =
2394 			!!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
2395 			BIT(ENA_ADMIN_DISABLE_META_CACHING));
2396 	} else {
2397 		disable_meta_caching = false;
2398 	}
2399 
2400 	/* prepare ring structures */
2401 	ena_init_rings(adapter, disable_meta_caching);
2402 
2403 	ena_config_debug_area(adapter);
2404 
2405 	/* Set max MTU for this device */
2406 	adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
2407 
2408 	ena_set_offloads(&adapter->offloads, &get_feat_ctx.offload);
2409 
2410 	/* Copy MAC address and point DPDK to it */
2411 	eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr;
2412 	rte_ether_addr_copy((struct rte_ether_addr *)
2413 			get_feat_ctx.dev_attr.mac_addr,
2414 			(struct rte_ether_addr *)adapter->mac_addr);
2415 
2416 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
2417 	if (unlikely(rc != 0)) {
2418 		PMD_DRV_LOG_LINE(ERR, "Failed to initialize RSS in ENA device");
2419 		goto err_delete_debug_area;
2420 	}
2421 
2422 	adapter->drv_stats = rte_zmalloc("adapter stats",
2423 					 sizeof(*adapter->drv_stats),
2424 					 RTE_CACHE_LINE_SIZE);
2425 	if (!adapter->drv_stats) {
2426 		PMD_DRV_LOG_LINE(ERR,
2427 			"Failed to allocate memory for adapter statistics");
2428 		rc = -ENOMEM;
2429 		goto err_rss_destroy;
2430 	}
2431 
2432 	rte_spinlock_init(&adapter->admin_lock);
2433 
2434 	if (!adapter->control_path_poll_interval) {
2435 		/* Control path interrupt mode */
2436 		rte_intr_callback_register(intr_handle, ena_control_path_handler, eth_dev);
2437 		rte_intr_enable(intr_handle);
2438 		ena_com_set_admin_polling_mode(ena_dev, false);
2439 	} else {
2440 		/* Control path polling mode */
2441 		rc = rte_eal_alarm_set(adapter->control_path_poll_interval,
2442 				       ena_control_path_poll_handler, eth_dev);
2443 		if (unlikely(rc != 0)) {
2444 			PMD_DRV_LOG_LINE(ERR, "Failed to set control path alarm");
2445 			goto err_control_path_destroy;
2446 		}
2447 	}
2448 	ena_com_admin_aenq_enable(ena_dev);
2449 	rte_timer_init(&adapter->timer_wd);
2450 
2451 	adapters_found++;
2452 	adapter->state = ENA_ADAPTER_STATE_INIT;
2453 
2454 	return 0;
2455 err_control_path_destroy:
2456 	rte_free(adapter->drv_stats);
2457 err_rss_destroy:
2458 	ena_com_rss_destroy(ena_dev);
2459 err_delete_debug_area:
2460 	ena_com_delete_debug_area(ena_dev);
2461 
2462 err_device_destroy:
2463 	ena_com_delete_host_info(ena_dev);
2464 	ena_com_admin_destroy(ena_dev);
2465 err_metrics_delete:
2466 	ena_com_delete_customer_metrics_buffer(ena_dev);
2467 err:
2468 	return rc;
2469 }
2470 
2471 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
2472 {
2473 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2474 		return 0;
2475 
2476 	ena_close(eth_dev);
2477 
2478 	return 0;
2479 }
2480 
2481 static int ena_dev_configure(struct rte_eth_dev *dev)
2482 {
2483 	struct ena_adapter *adapter = dev->data->dev_private;
2484 	int rc;
2485 
2486 	adapter->state = ENA_ADAPTER_STATE_CONFIG;
2487 
2488 	if (dev->data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG)
2489 		dev->data->dev_conf.rxmode.offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2490 	dev->data->dev_conf.txmode.offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2491 
2492 	/* Scattered Rx cannot be turned off in the HW, so this capability must
2493 	 * be forced.
2494 	 */
2495 	dev->data->scattered_rx = 1;
2496 
2497 	adapter->last_tx_comp_qid = 0;
2498 
2499 	adapter->missing_tx_completion_budget =
2500 		RTE_MIN(ENA_MONITORED_TX_QUEUES, dev->data->nb_tx_queues);
2501 
2502 	/* To avoid detection of the spurious Tx completion timeout due to
2503 	 * application not calling the Tx cleanup function, set timeout for the
2504 	 * Tx queue which should be half of the missing completion timeout for a
2505 	 * safety. If there will be a lot of missing Tx completions in the
2506 	 * queue, they will be detected sooner or later.
2507 	 */
2508 	adapter->tx_cleanup_stall_delay = adapter->missing_tx_completion_to / 2;
2509 
2510 	rc = ena_configure_aenq(adapter);
2511 
2512 	return rc;
2513 }
2514 
2515 static void ena_init_rings(struct ena_adapter *adapter,
2516 			   bool disable_meta_caching)
2517 {
2518 	size_t i;
2519 
2520 	for (i = 0; i < adapter->max_num_io_queues; i++) {
2521 		struct ena_ring *ring = &adapter->tx_ring[i];
2522 
2523 		ring->configured = 0;
2524 		ring->type = ENA_RING_TYPE_TX;
2525 		ring->adapter = adapter;
2526 		ring->id = i;
2527 		ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
2528 		ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
2529 		ring->sgl_size = adapter->max_tx_sgl_size;
2530 		ring->disable_meta_caching = disable_meta_caching;
2531 	}
2532 
2533 	for (i = 0; i < adapter->max_num_io_queues; i++) {
2534 		struct ena_ring *ring = &adapter->rx_ring[i];
2535 
2536 		ring->configured = 0;
2537 		ring->type = ENA_RING_TYPE_RX;
2538 		ring->adapter = adapter;
2539 		ring->id = i;
2540 		ring->sgl_size = adapter->max_rx_sgl_size;
2541 	}
2542 }
2543 
2544 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter)
2545 {
2546 	uint64_t port_offloads = 0;
2547 
2548 	if (adapter->offloads.rx_offloads & ENA_L3_IPV4_CSUM)
2549 		port_offloads |= RTE_ETH_RX_OFFLOAD_IPV4_CKSUM;
2550 
2551 	if (adapter->offloads.rx_offloads &
2552 	    (ENA_L4_IPV4_CSUM | ENA_L4_IPV6_CSUM))
2553 		port_offloads |=
2554 			RTE_ETH_RX_OFFLOAD_UDP_CKSUM | RTE_ETH_RX_OFFLOAD_TCP_CKSUM;
2555 
2556 	if (adapter->offloads.rx_offloads & ENA_RX_RSS_HASH)
2557 		port_offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2558 
2559 	port_offloads |= RTE_ETH_RX_OFFLOAD_SCATTER;
2560 
2561 	return port_offloads;
2562 }
2563 
2564 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter)
2565 {
2566 	uint64_t port_offloads = 0;
2567 
2568 	if (adapter->offloads.tx_offloads & ENA_IPV4_TSO)
2569 		port_offloads |= RTE_ETH_TX_OFFLOAD_TCP_TSO;
2570 
2571 	if (adapter->offloads.tx_offloads & ENA_L3_IPV4_CSUM)
2572 		port_offloads |= RTE_ETH_TX_OFFLOAD_IPV4_CKSUM;
2573 	if (adapter->offloads.tx_offloads &
2574 	    (ENA_L4_IPV4_CSUM_PARTIAL | ENA_L4_IPV4_CSUM |
2575 	     ENA_L4_IPV6_CSUM | ENA_L4_IPV6_CSUM_PARTIAL))
2576 		port_offloads |=
2577 			RTE_ETH_TX_OFFLOAD_UDP_CKSUM | RTE_ETH_TX_OFFLOAD_TCP_CKSUM;
2578 
2579 	port_offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2580 
2581 	port_offloads |= RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
2582 
2583 	return port_offloads;
2584 }
2585 
2586 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter)
2587 {
2588 	RTE_SET_USED(adapter);
2589 
2590 	return 0;
2591 }
2592 
2593 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter)
2594 {
2595 	uint64_t queue_offloads = 0;
2596 	RTE_SET_USED(adapter);
2597 
2598 	queue_offloads |= RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
2599 
2600 	return queue_offloads;
2601 }
2602 
2603 static int ena_infos_get(struct rte_eth_dev *dev,
2604 			  struct rte_eth_dev_info *dev_info)
2605 {
2606 	struct ena_adapter *adapter;
2607 	struct ena_com_dev *ena_dev;
2608 
2609 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
2610 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
2611 	adapter = dev->data->dev_private;
2612 
2613 	ena_dev = &adapter->ena_dev;
2614 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
2615 
2616 	dev_info->speed_capa =
2617 			RTE_ETH_LINK_SPEED_1G   |
2618 			RTE_ETH_LINK_SPEED_2_5G |
2619 			RTE_ETH_LINK_SPEED_5G   |
2620 			RTE_ETH_LINK_SPEED_10G  |
2621 			RTE_ETH_LINK_SPEED_25G  |
2622 			RTE_ETH_LINK_SPEED_40G  |
2623 			RTE_ETH_LINK_SPEED_50G  |
2624 			RTE_ETH_LINK_SPEED_100G |
2625 			RTE_ETH_LINK_SPEED_200G |
2626 			RTE_ETH_LINK_SPEED_400G;
2627 
2628 	/* Inform framework about available features */
2629 	dev_info->rx_offload_capa = ena_get_rx_port_offloads(adapter);
2630 	dev_info->tx_offload_capa = ena_get_tx_port_offloads(adapter);
2631 	dev_info->rx_queue_offload_capa = ena_get_rx_queue_offloads(adapter);
2632 	dev_info->tx_queue_offload_capa = ena_get_tx_queue_offloads(adapter);
2633 
2634 	dev_info->flow_type_rss_offloads = ENA_ALL_RSS_HF;
2635 	dev_info->hash_key_size = ENA_HASH_KEY_SIZE;
2636 
2637 	dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
2638 	dev_info->max_rx_pktlen  = adapter->max_mtu + RTE_ETHER_HDR_LEN +
2639 		RTE_ETHER_CRC_LEN;
2640 	dev_info->min_mtu = ENA_MIN_MTU;
2641 	dev_info->max_mtu = adapter->max_mtu;
2642 	dev_info->max_mac_addrs = 1;
2643 
2644 	dev_info->max_rx_queues = adapter->max_num_io_queues;
2645 	dev_info->max_tx_queues = adapter->max_num_io_queues;
2646 	dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
2647 
2648 	dev_info->rx_desc_lim.nb_max = adapter->max_rx_ring_size;
2649 	dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2650 	dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2651 					adapter->max_rx_sgl_size);
2652 	dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2653 					adapter->max_rx_sgl_size);
2654 
2655 	dev_info->tx_desc_lim.nb_max = adapter->max_tx_ring_size;
2656 	dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2657 	dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2658 					adapter->max_tx_sgl_size);
2659 	dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2660 					adapter->max_tx_sgl_size);
2661 
2662 	dev_info->default_rxportconf.ring_size = RTE_MIN(ENA_DEFAULT_RING_SIZE,
2663 							 dev_info->rx_desc_lim.nb_max);
2664 	dev_info->default_txportconf.ring_size = RTE_MIN(ENA_DEFAULT_RING_SIZE,
2665 							 dev_info->tx_desc_lim.nb_max);
2666 
2667 	dev_info->err_handle_mode = RTE_ETH_ERROR_HANDLE_MODE_PASSIVE;
2668 
2669 	return 0;
2670 }
2671 
2672 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len)
2673 {
2674 	mbuf->data_len = len;
2675 	mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2676 	mbuf->refcnt = 1;
2677 	mbuf->next = NULL;
2678 }
2679 
2680 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
2681 				    struct ena_com_rx_buf_info *ena_bufs,
2682 				    uint32_t descs,
2683 				    uint16_t *next_to_clean,
2684 				    uint8_t offset)
2685 {
2686 	struct rte_mbuf *mbuf;
2687 	struct rte_mbuf *mbuf_head;
2688 	struct ena_rx_buffer *rx_info;
2689 	int rc;
2690 	uint16_t ntc, len, req_id, buf = 0;
2691 
2692 	if (unlikely(descs == 0))
2693 		return NULL;
2694 
2695 	ntc = *next_to_clean;
2696 
2697 	len = ena_bufs[buf].len;
2698 	req_id = ena_bufs[buf].req_id;
2699 
2700 	rx_info = &rx_ring->rx_buffer_info[req_id];
2701 
2702 	mbuf = rx_info->mbuf;
2703 	RTE_ASSERT(mbuf != NULL);
2704 
2705 	ena_init_rx_mbuf(mbuf, len);
2706 
2707 	/* Fill the mbuf head with the data specific for 1st segment. */
2708 	mbuf_head = mbuf;
2709 	mbuf_head->nb_segs = descs;
2710 	mbuf_head->port = rx_ring->port_id;
2711 	mbuf_head->pkt_len = len;
2712 	mbuf_head->data_off += offset;
2713 
2714 	rx_info->mbuf = NULL;
2715 	rx_ring->empty_rx_reqs[ntc] = req_id;
2716 	ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2717 
2718 	while (--descs) {
2719 		++buf;
2720 		len = ena_bufs[buf].len;
2721 		req_id = ena_bufs[buf].req_id;
2722 
2723 		rx_info = &rx_ring->rx_buffer_info[req_id];
2724 		RTE_ASSERT(rx_info->mbuf != NULL);
2725 
2726 		if (unlikely(len == 0)) {
2727 			/*
2728 			 * Some devices can pass descriptor with the length 0.
2729 			 * To avoid confusion, the PMD is simply putting the
2730 			 * descriptor back, as it was never used. We'll avoid
2731 			 * mbuf allocation that way.
2732 			 */
2733 			rc = ena_add_single_rx_desc(rx_ring->ena_com_io_sq,
2734 				rx_info->mbuf, req_id);
2735 			if (unlikely(rc != 0)) {
2736 				/* Free the mbuf in case of an error. */
2737 				rte_mbuf_raw_free(rx_info->mbuf);
2738 			} else {
2739 				/*
2740 				 * If there was no error, just exit the loop as
2741 				 * 0 length descriptor is always the last one.
2742 				 */
2743 				break;
2744 			}
2745 		} else {
2746 			/* Create an mbuf chain. */
2747 			mbuf->next = rx_info->mbuf;
2748 			mbuf = mbuf->next;
2749 
2750 			ena_init_rx_mbuf(mbuf, len);
2751 			mbuf_head->pkt_len += len;
2752 		}
2753 
2754 		/*
2755 		 * Mark the descriptor as depleted and perform necessary
2756 		 * cleanup.
2757 		 * This code will execute in two cases:
2758 		 *  1. Descriptor len was greater than 0 - normal situation.
2759 		 *  2. Descriptor len was 0 and we failed to add the descriptor
2760 		 *     to the device. In that situation, we should try to add
2761 		 *     the mbuf again in the populate routine and mark the
2762 		 *     descriptor as used up by the device.
2763 		 */
2764 		rx_info->mbuf = NULL;
2765 		rx_ring->empty_rx_reqs[ntc] = req_id;
2766 		ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2767 	}
2768 
2769 	*next_to_clean = ntc;
2770 
2771 	return mbuf_head;
2772 }
2773 
2774 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
2775 				  uint16_t nb_pkts)
2776 {
2777 	struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
2778 	unsigned int free_queue_entries;
2779 	uint16_t next_to_clean = rx_ring->next_to_clean;
2780 	enum ena_regs_reset_reason_types reset_reason;
2781 	uint16_t descs_in_use;
2782 	struct rte_mbuf *mbuf;
2783 	uint16_t completed;
2784 	struct ena_com_rx_ctx ena_rx_ctx;
2785 	int i, rc = 0;
2786 
2787 #ifdef RTE_ETHDEV_DEBUG_RX
2788 	/* Check adapter state */
2789 	if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2790 		PMD_RX_LOG_LINE(ALERT,
2791 			"Trying to receive pkts while device is NOT running");
2792 		return 0;
2793 	}
2794 #endif
2795 
2796 	descs_in_use = rx_ring->ring_size -
2797 		ena_com_free_q_entries(rx_ring->ena_com_io_sq) - 1;
2798 	nb_pkts = RTE_MIN(descs_in_use, nb_pkts);
2799 
2800 	for (completed = 0; completed < nb_pkts; completed++) {
2801 		ena_rx_ctx.max_bufs = rx_ring->sgl_size;
2802 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
2803 		ena_rx_ctx.descs = 0;
2804 		ena_rx_ctx.pkt_offset = 0;
2805 		/* receive packet context */
2806 		rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
2807 				    rx_ring->ena_com_io_sq,
2808 				    &ena_rx_ctx);
2809 		if (unlikely(rc)) {
2810 			PMD_RX_LOG_LINE(ERR,
2811 				"Failed to get the packet from the device, rc: %d",
2812 				rc);
2813 			switch (rc) {
2814 			case ENA_COM_NO_SPACE:
2815 				++rx_ring->rx_stats.bad_desc_num;
2816 				reset_reason = ENA_REGS_RESET_TOO_MANY_RX_DESCS;
2817 				break;
2818 			case ENA_COM_FAULT:
2819 				++rx_ring->rx_stats.bad_desc;
2820 				reset_reason = ENA_REGS_RESET_RX_DESCRIPTOR_MALFORMED;
2821 				break;
2822 			case ENA_COM_EIO:
2823 				++rx_ring->rx_stats.bad_req_id;
2824 				reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID;
2825 				break;
2826 			default:
2827 				++rx_ring->rx_stats.unknown_error;
2828 				reset_reason = ENA_REGS_RESET_DRIVER_INVALID_STATE;
2829 				break;
2830 			}
2831 			ena_trigger_reset(rx_ring->adapter, reset_reason);
2832 			return 0;
2833 		}
2834 
2835 		mbuf = ena_rx_mbuf(rx_ring,
2836 			ena_rx_ctx.ena_bufs,
2837 			ena_rx_ctx.descs,
2838 			&next_to_clean,
2839 			ena_rx_ctx.pkt_offset);
2840 		if (unlikely(mbuf == NULL)) {
2841 			for (i = 0; i < ena_rx_ctx.descs; ++i) {
2842 				rx_ring->empty_rx_reqs[next_to_clean] =
2843 					rx_ring->ena_bufs[i].req_id;
2844 				next_to_clean = ENA_IDX_NEXT_MASKED(
2845 					next_to_clean, rx_ring->size_mask);
2846 			}
2847 			break;
2848 		}
2849 
2850 		/* fill mbuf attributes if any */
2851 		ena_rx_mbuf_prepare(rx_ring, mbuf, &ena_rx_ctx);
2852 
2853 		if (unlikely(mbuf->ol_flags &
2854 				(RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD)))
2855 			rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors);
2856 
2857 		rx_pkts[completed] = mbuf;
2858 		rx_ring->rx_stats.bytes += mbuf->pkt_len;
2859 	}
2860 
2861 	rx_ring->rx_stats.cnt += completed;
2862 	rx_ring->next_to_clean = next_to_clean;
2863 
2864 	free_queue_entries = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
2865 
2866 	/* Burst refill to save doorbells, memory barriers, const interval */
2867 	if (free_queue_entries >= rx_ring->rx_free_thresh) {
2868 		ena_populate_rx_queue(rx_ring, free_queue_entries);
2869 	}
2870 
2871 	return completed;
2872 }
2873 
2874 static uint16_t
2875 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2876 		uint16_t nb_pkts)
2877 {
2878 	int32_t ret;
2879 	uint32_t i;
2880 	struct rte_mbuf *m;
2881 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2882 	struct ena_adapter *adapter = tx_ring->adapter;
2883 	struct rte_ipv4_hdr *ip_hdr;
2884 	uint64_t ol_flags;
2885 	uint64_t l4_csum_flag;
2886 	uint64_t dev_offload_capa;
2887 	uint16_t frag_field;
2888 	bool need_pseudo_csum;
2889 
2890 	dev_offload_capa = adapter->offloads.tx_offloads;
2891 	for (i = 0; i != nb_pkts; i++) {
2892 		m = tx_pkts[i];
2893 		ol_flags = m->ol_flags;
2894 
2895 		/* Check if any offload flag was set */
2896 		if (ol_flags == 0)
2897 			continue;
2898 
2899 		l4_csum_flag = ol_flags & RTE_MBUF_F_TX_L4_MASK;
2900 		/* SCTP checksum offload is not supported by the ENA. */
2901 		if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) ||
2902 		    l4_csum_flag == RTE_MBUF_F_TX_SCTP_CKSUM) {
2903 			PMD_TX_LOG_LINE(DEBUG,
2904 				"mbuf[%" PRIu32 "] has unsupported offloads flags set: 0x%" PRIu64,
2905 				i, ol_flags);
2906 			rte_errno = ENOTSUP;
2907 			return i;
2908 		}
2909 
2910 		if (unlikely(m->nb_segs >= tx_ring->sgl_size &&
2911 		    !(tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
2912 		      m->nb_segs == tx_ring->sgl_size &&
2913 		      m->data_len < tx_ring->tx_max_header_size))) {
2914 			PMD_TX_LOG_LINE(DEBUG,
2915 				"mbuf[%" PRIu32 "] has too many segments: %" PRIu16,
2916 				i, m->nb_segs);
2917 			rte_errno = EINVAL;
2918 			return i;
2919 		}
2920 
2921 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2922 		/* Check if requested offload is also enabled for the queue */
2923 		if ((ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
2924 		     !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM)) ||
2925 		    (l4_csum_flag == RTE_MBUF_F_TX_TCP_CKSUM &&
2926 		     !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) ||
2927 		    (l4_csum_flag == RTE_MBUF_F_TX_UDP_CKSUM &&
2928 		     !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM))) {
2929 			PMD_TX_LOG_LINE(DEBUG,
2930 				"mbuf[%" PRIu32 "]: requested offloads: %" PRIu16 " are not enabled for the queue[%u]",
2931 				i, m->nb_segs, tx_ring->id);
2932 			rte_errno = EINVAL;
2933 			return i;
2934 		}
2935 
2936 		/* The caller is obligated to set l2 and l3 len if any cksum
2937 		 * offload is enabled.
2938 		 */
2939 		if (unlikely(ol_flags & (RTE_MBUF_F_TX_IP_CKSUM | RTE_MBUF_F_TX_L4_MASK) &&
2940 		    (m->l2_len == 0 || m->l3_len == 0))) {
2941 			PMD_TX_LOG_LINE(DEBUG,
2942 				"mbuf[%" PRIu32 "]: l2_len or l3_len values are 0 while the offload was requested",
2943 				i);
2944 			rte_errno = EINVAL;
2945 			return i;
2946 		}
2947 		ret = rte_validate_tx_offload(m);
2948 		if (ret != 0) {
2949 			rte_errno = -ret;
2950 			return i;
2951 		}
2952 #endif
2953 
2954 		/* Verify HW support for requested offloads and determine if
2955 		 * pseudo header checksum is needed.
2956 		 */
2957 		need_pseudo_csum = false;
2958 		if (ol_flags & RTE_MBUF_F_TX_IPV4) {
2959 			if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
2960 			    !(dev_offload_capa & ENA_L3_IPV4_CSUM)) {
2961 				rte_errno = ENOTSUP;
2962 				return i;
2963 			}
2964 
2965 			if (ol_flags & RTE_MBUF_F_TX_TCP_SEG &&
2966 			    !(dev_offload_capa & ENA_IPV4_TSO)) {
2967 				rte_errno = ENOTSUP;
2968 				return i;
2969 			}
2970 
2971 			/* Check HW capabilities and if pseudo csum is needed
2972 			 * for L4 offloads.
2973 			 */
2974 			if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
2975 			    !(dev_offload_capa & ENA_L4_IPV4_CSUM)) {
2976 				if (dev_offload_capa &
2977 				    ENA_L4_IPV4_CSUM_PARTIAL) {
2978 					need_pseudo_csum = true;
2979 				} else {
2980 					rte_errno = ENOTSUP;
2981 					return i;
2982 				}
2983 			}
2984 
2985 			/* Parse the DF flag */
2986 			ip_hdr = rte_pktmbuf_mtod_offset(m,
2987 				struct rte_ipv4_hdr *, m->l2_len);
2988 			frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
2989 			if (frag_field & RTE_IPV4_HDR_DF_FLAG) {
2990 				m->packet_type |= RTE_PTYPE_L4_NONFRAG;
2991 			} else if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2992 				/* In case we are supposed to TSO and have DF
2993 				 * not set (DF=0) hardware must be provided with
2994 				 * partial checksum.
2995 				 */
2996 				need_pseudo_csum = true;
2997 			}
2998 		} else if (ol_flags & RTE_MBUF_F_TX_IPV6) {
2999 			/* There is no support for IPv6 TSO as for now. */
3000 			if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
3001 				rte_errno = ENOTSUP;
3002 				return i;
3003 			}
3004 
3005 			/* Check HW capabilities and if pseudo csum is needed */
3006 			if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
3007 			    !(dev_offload_capa & ENA_L4_IPV6_CSUM)) {
3008 				if (dev_offload_capa &
3009 				    ENA_L4_IPV6_CSUM_PARTIAL) {
3010 					need_pseudo_csum = true;
3011 				} else {
3012 					rte_errno = ENOTSUP;
3013 					return i;
3014 				}
3015 			}
3016 		}
3017 
3018 		if (need_pseudo_csum) {
3019 			ret = rte_net_intel_cksum_flags_prepare(m, ol_flags);
3020 			if (ret != 0) {
3021 				rte_errno = -ret;
3022 				return i;
3023 			}
3024 		}
3025 	}
3026 
3027 	return i;
3028 }
3029 
3030 static void ena_update_hints(struct ena_adapter *adapter,
3031 			     struct ena_admin_ena_hw_hints *hints)
3032 {
3033 	if (hints->admin_completion_tx_timeout)
3034 		adapter->ena_dev.admin_queue.completion_timeout =
3035 			hints->admin_completion_tx_timeout * 1000;
3036 
3037 	if (hints->mmio_read_timeout)
3038 		/* convert to usec */
3039 		adapter->ena_dev.mmio_read.reg_read_to =
3040 			hints->mmio_read_timeout * 1000;
3041 
3042 	if (hints->driver_watchdog_timeout) {
3043 		if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
3044 			adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
3045 		else
3046 			// Convert msecs to ticks
3047 			adapter->keep_alive_timeout =
3048 				(hints->driver_watchdog_timeout *
3049 				rte_get_timer_hz()) / 1000;
3050 	}
3051 }
3052 
3053 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
3054 	struct ena_tx_buffer *tx_info,
3055 	struct rte_mbuf *mbuf,
3056 	void **push_header,
3057 	uint16_t *header_len)
3058 {
3059 	struct ena_com_buf *ena_buf;
3060 	uint16_t delta, seg_len, push_len;
3061 
3062 	delta = 0;
3063 	seg_len = mbuf->data_len;
3064 
3065 	tx_info->mbuf = mbuf;
3066 	ena_buf = tx_info->bufs;
3067 
3068 	if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
3069 		/*
3070 		 * Tx header might be (and will be in most cases) smaller than
3071 		 * tx_max_header_size. But it's not an issue to send more data
3072 		 * to the device, than actually needed if the mbuf size is
3073 		 * greater than tx_max_header_size.
3074 		 */
3075 		push_len = RTE_MIN(mbuf->pkt_len, tx_ring->tx_max_header_size);
3076 		*header_len = push_len;
3077 
3078 		if (likely(push_len <= seg_len)) {
3079 			/* If the push header is in the single segment, then
3080 			 * just point it to the 1st mbuf data.
3081 			 */
3082 			*push_header = rte_pktmbuf_mtod(mbuf, uint8_t *);
3083 		} else {
3084 			/* If the push header lays in the several segments, copy
3085 			 * it to the intermediate buffer.
3086 			 */
3087 			rte_pktmbuf_read(mbuf, 0, push_len,
3088 				tx_ring->push_buf_intermediate_buf);
3089 			*push_header = tx_ring->push_buf_intermediate_buf;
3090 			delta = push_len - seg_len;
3091 		}
3092 	} else {
3093 		*push_header = NULL;
3094 		*header_len = 0;
3095 		push_len = 0;
3096 	}
3097 
3098 	/* Process first segment taking into consideration pushed header */
3099 	if (seg_len > push_len) {
3100 		ena_buf->paddr = mbuf->buf_iova +
3101 				mbuf->data_off +
3102 				push_len;
3103 		ena_buf->len = seg_len - push_len;
3104 		ena_buf++;
3105 		tx_info->num_of_bufs++;
3106 	}
3107 
3108 	while ((mbuf = mbuf->next) != NULL) {
3109 		seg_len = mbuf->data_len;
3110 
3111 		/* Skip mbufs if whole data is pushed as a header */
3112 		if (unlikely(delta > seg_len)) {
3113 			delta -= seg_len;
3114 			continue;
3115 		}
3116 
3117 		ena_buf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
3118 		ena_buf->len = seg_len - delta;
3119 		ena_buf++;
3120 		tx_info->num_of_bufs++;
3121 
3122 		delta = 0;
3123 	}
3124 }
3125 
3126 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf)
3127 {
3128 	struct ena_tx_buffer *tx_info;
3129 	struct ena_com_tx_ctx ena_tx_ctx = { { 0 } };
3130 	uint16_t next_to_use;
3131 	uint16_t header_len;
3132 	uint16_t req_id;
3133 	void *push_header;
3134 	int nb_hw_desc;
3135 	int rc;
3136 
3137 	/* Checking for space for 2 additional metadata descriptors due to
3138 	 * possible header split and metadata descriptor
3139 	 */
3140 	if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
3141 					  mbuf->nb_segs + 2)) {
3142 		PMD_TX_LOG_LINE(DEBUG, "Not enough space in the tx queue");
3143 		return ENA_COM_NO_MEM;
3144 	}
3145 
3146 	next_to_use = tx_ring->next_to_use;
3147 
3148 	req_id = tx_ring->empty_tx_reqs[next_to_use];
3149 	tx_info = &tx_ring->tx_buffer_info[req_id];
3150 	tx_info->num_of_bufs = 0;
3151 	RTE_ASSERT(tx_info->mbuf == NULL);
3152 
3153 	ena_tx_map_mbuf(tx_ring, tx_info, mbuf, &push_header, &header_len);
3154 
3155 	ena_tx_ctx.ena_bufs = tx_info->bufs;
3156 	ena_tx_ctx.push_header = push_header;
3157 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
3158 	ena_tx_ctx.req_id = req_id;
3159 	ena_tx_ctx.header_len = header_len;
3160 
3161 	/* Set Tx offloads flags, if applicable */
3162 	ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads,
3163 		tx_ring->disable_meta_caching);
3164 
3165 	if (unlikely(ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
3166 			&ena_tx_ctx))) {
3167 		PMD_TX_LOG_LINE(DEBUG,
3168 			"LLQ Tx max burst size of queue %d achieved, writing doorbell to send burst",
3169 			tx_ring->id);
3170 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
3171 		tx_ring->tx_stats.doorbells++;
3172 		tx_ring->pkts_without_db = false;
3173 	}
3174 
3175 	/* prepare the packet's descriptors to dma engine */
3176 	rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq,	&ena_tx_ctx,
3177 		&nb_hw_desc);
3178 	if (unlikely(rc)) {
3179 		PMD_DRV_LOG_LINE(ERR, "Failed to prepare Tx buffers, rc: %d", rc);
3180 		++tx_ring->tx_stats.prepare_ctx_err;
3181 		ena_trigger_reset(tx_ring->adapter,
3182 			ENA_REGS_RESET_DRIVER_INVALID_STATE);
3183 		return rc;
3184 	}
3185 
3186 	tx_info->tx_descs = nb_hw_desc;
3187 	tx_info->timestamp = rte_get_timer_cycles();
3188 
3189 	tx_ring->tx_stats.cnt++;
3190 	tx_ring->tx_stats.bytes += mbuf->pkt_len;
3191 
3192 	tx_ring->next_to_use = ENA_IDX_NEXT_MASKED(next_to_use,
3193 		tx_ring->size_mask);
3194 
3195 	return 0;
3196 }
3197 
3198 static int ena_tx_cleanup(void *txp, uint32_t free_pkt_cnt)
3199 {
3200 	struct rte_mbuf *pkts_to_clean[ENA_CLEANUP_BUF_THRESH];
3201 	struct ena_ring *tx_ring = (struct ena_ring *)txp;
3202 	size_t mbuf_cnt = 0;
3203 	size_t pkt_cnt = 0;
3204 	unsigned int total_tx_descs = 0;
3205 	unsigned int total_tx_pkts = 0;
3206 	uint16_t cleanup_budget;
3207 	uint16_t next_to_clean = tx_ring->next_to_clean;
3208 	bool fast_free = tx_ring->offloads & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
3209 
3210 	/*
3211 	 * If free_pkt_cnt is equal to 0, it means that the user requested
3212 	 * full cleanup, so attempt to release all Tx descriptors
3213 	 * (ring_size - 1 -> size_mask)
3214 	 */
3215 	cleanup_budget = (free_pkt_cnt == 0) ? tx_ring->size_mask : free_pkt_cnt;
3216 
3217 	while (likely(total_tx_pkts < cleanup_budget)) {
3218 		struct rte_mbuf *mbuf;
3219 		struct ena_tx_buffer *tx_info;
3220 		uint16_t req_id;
3221 
3222 		if (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) != 0)
3223 			break;
3224 
3225 		if (unlikely(validate_tx_req_id(tx_ring, req_id) != 0))
3226 			break;
3227 
3228 		/* Get Tx info & store how many descs were processed  */
3229 		tx_info = &tx_ring->tx_buffer_info[req_id];
3230 		tx_info->timestamp = 0;
3231 
3232 		mbuf = tx_info->mbuf;
3233 		if (fast_free) {
3234 			pkts_to_clean[pkt_cnt++] = mbuf;
3235 			mbuf_cnt += mbuf->nb_segs;
3236 			if (mbuf_cnt >= ENA_CLEANUP_BUF_THRESH) {
3237 				rte_pktmbuf_free_bulk(pkts_to_clean, pkt_cnt);
3238 				mbuf_cnt = 0;
3239 				pkt_cnt = 0;
3240 			}
3241 		} else {
3242 			rte_pktmbuf_free(mbuf);
3243 		}
3244 
3245 		tx_info->mbuf = NULL;
3246 		tx_ring->empty_tx_reqs[next_to_clean] = req_id;
3247 
3248 		total_tx_descs += tx_info->tx_descs;
3249 		total_tx_pkts++;
3250 
3251 		/* Put back descriptor to the ring for reuse */
3252 		next_to_clean = ENA_IDX_NEXT_MASKED(next_to_clean,
3253 			tx_ring->size_mask);
3254 	}
3255 
3256 	if (likely(total_tx_descs > 0)) {
3257 		/* acknowledge completion of sent packets */
3258 		tx_ring->next_to_clean = next_to_clean;
3259 		ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
3260 	}
3261 
3262 	if (mbuf_cnt != 0)
3263 		rte_pktmbuf_free_bulk(pkts_to_clean, pkt_cnt);
3264 
3265 	/* Notify completion handler that full cleanup was performed */
3266 	if (free_pkt_cnt == 0 || total_tx_pkts < cleanup_budget)
3267 		tx_ring->last_cleanup_ticks = rte_get_timer_cycles();
3268 
3269 	return total_tx_pkts;
3270 }
3271 
3272 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
3273 				  uint16_t nb_pkts)
3274 {
3275 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
3276 	int available_desc;
3277 	uint16_t sent_idx = 0;
3278 
3279 #ifdef RTE_ETHDEV_DEBUG_TX
3280 	/* Check adapter state */
3281 	if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
3282 		PMD_TX_LOG_LINE(ALERT,
3283 			"Trying to xmit pkts while device is NOT running");
3284 		return 0;
3285 	}
3286 #endif
3287 
3288 	available_desc = ena_com_free_q_entries(tx_ring->ena_com_io_sq);
3289 	if (available_desc < tx_ring->tx_free_thresh)
3290 		ena_tx_cleanup((void *)tx_ring, 0);
3291 
3292 	for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
3293 		if (ena_xmit_mbuf(tx_ring, tx_pkts[sent_idx]))
3294 			break;
3295 		tx_ring->pkts_without_db = true;
3296 		rte_prefetch0(tx_pkts[ENA_IDX_ADD_MASKED(sent_idx, 4,
3297 			tx_ring->size_mask)]);
3298 	}
3299 
3300 	/* If there are ready packets to be xmitted... */
3301 	if (likely(tx_ring->pkts_without_db)) {
3302 		/* ...let HW do its best :-) */
3303 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
3304 		tx_ring->tx_stats.doorbells++;
3305 		tx_ring->pkts_without_db = false;
3306 	}
3307 
3308 	tx_ring->tx_stats.available_desc =
3309 		ena_com_free_q_entries(tx_ring->ena_com_io_sq);
3310 	tx_ring->tx_stats.tx_poll++;
3311 
3312 	return sent_idx;
3313 }
3314 
3315 static void ena_copy_customer_metrics(struct ena_adapter *adapter, uint64_t *buf,
3316 					     size_t num_metrics)
3317 {
3318 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
3319 	int rc;
3320 
3321 	if (ena_com_get_cap(ena_dev, ENA_ADMIN_CUSTOMER_METRICS)) {
3322 		if (num_metrics != ENA_STATS_ARRAY_METRICS) {
3323 			PMD_DRV_LOG_LINE(ERR, "Detected discrepancy in the number of customer metrics");
3324 			return;
3325 		}
3326 		rte_spinlock_lock(&adapter->admin_lock);
3327 		rc = ENA_PROXY(adapter,
3328 					ena_com_get_customer_metrics,
3329 					&adapter->ena_dev,
3330 					(char *)buf,
3331 					num_metrics * sizeof(uint64_t));
3332 		rte_spinlock_unlock(&adapter->admin_lock);
3333 		if (rc != 0) {
3334 			PMD_DRV_LOG_LINE(WARNING, "Failed to get customer metrics, rc: %d", rc);
3335 			return;
3336 		}
3337 
3338 	} else if (ena_com_get_cap(ena_dev, ENA_ADMIN_ENI_STATS)) {
3339 		if (num_metrics != ENA_STATS_ARRAY_METRICS_LEGACY) {
3340 			PMD_DRV_LOG_LINE(ERR, "Detected discrepancy in the number of legacy metrics");
3341 			return;
3342 		}
3343 
3344 		rte_spinlock_lock(&adapter->admin_lock);
3345 		rc = ENA_PROXY(adapter,
3346 			       ena_com_get_eni_stats,
3347 			       &adapter->ena_dev,
3348 			       (struct ena_admin_eni_stats *)buf);
3349 		rte_spinlock_unlock(&adapter->admin_lock);
3350 		if (rc != 0) {
3351 			PMD_DRV_LOG_LINE(WARNING,
3352 				"Failed to get ENI metrics, rc: %d", rc);
3353 			return;
3354 		}
3355 	}
3356 }
3357 
3358 static void ena_copy_ena_srd_info(struct ena_adapter *adapter,
3359 		struct ena_stats_srd *srd_info)
3360 {
3361 	int rc;
3362 
3363 	if (!ena_com_get_cap(&adapter->ena_dev, ENA_ADMIN_ENA_SRD_INFO))
3364 		return;
3365 
3366 	rte_spinlock_lock(&adapter->admin_lock);
3367 	rc = ENA_PROXY(adapter,
3368 		       ena_com_get_ena_srd_info,
3369 		       &adapter->ena_dev,
3370 		       (struct ena_admin_ena_srd_info *)srd_info);
3371 	rte_spinlock_unlock(&adapter->admin_lock);
3372 	if (rc != ENA_COM_OK && rc != ENA_COM_UNSUPPORTED) {
3373 		PMD_DRV_LOG_LINE(WARNING,
3374 				"Failed to get ENA express srd info, rc: %d", rc);
3375 		return;
3376 	}
3377 }
3378 
3379 /**
3380  * DPDK callback to retrieve names of extended device statistics
3381  *
3382  * @param dev
3383  *   Pointer to Ethernet device structure.
3384  * @param[out] xstats_names
3385  *   Buffer to insert names into.
3386  * @param n
3387  *   Number of names.
3388  *
3389  * @return
3390  *   Number of xstats names.
3391  */
3392 static int ena_xstats_get_names(struct rte_eth_dev *dev,
3393 				struct rte_eth_xstat_name *xstats_names,
3394 				unsigned int n)
3395 {
3396 	struct ena_adapter *adapter = dev->data->dev_private;
3397 	unsigned int xstats_count = ena_xstats_calc_num(dev->data);
3398 	unsigned int stat, i, count = 0;
3399 
3400 	if (n < xstats_count || !xstats_names)
3401 		return xstats_count;
3402 
3403 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
3404 		strcpy(xstats_names[count].name,
3405 			ena_stats_global_strings[stat].name);
3406 
3407 	for (stat = 0; stat < adapter->metrics_num; stat++, count++)
3408 		rte_strscpy(xstats_names[count].name,
3409 			    ena_stats_metrics_strings[stat].name,
3410 			    RTE_ETH_XSTATS_NAME_SIZE);
3411 	for (stat = 0; stat < ENA_STATS_ARRAY_ENA_SRD; stat++, count++)
3412 		rte_strscpy(xstats_names[count].name,
3413 			    ena_stats_srd_strings[stat].name,
3414 			    RTE_ETH_XSTATS_NAME_SIZE);
3415 
3416 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
3417 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
3418 			snprintf(xstats_names[count].name,
3419 				sizeof(xstats_names[count].name),
3420 				"rx_q%d_%s", i,
3421 				ena_stats_rx_strings[stat].name);
3422 
3423 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
3424 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
3425 			snprintf(xstats_names[count].name,
3426 				sizeof(xstats_names[count].name),
3427 				"tx_q%d_%s", i,
3428 				ena_stats_tx_strings[stat].name);
3429 
3430 	return xstats_count;
3431 }
3432 
3433 /**
3434  * DPDK callback to retrieve names of extended device statistics for the given
3435  * ids.
3436  *
3437  * @param dev
3438  *   Pointer to Ethernet device structure.
3439  * @param[out] xstats_names
3440  *   Buffer to insert names into.
3441  * @param ids
3442  *   IDs array for which the names should be retrieved.
3443  * @param size
3444  *   Number of ids.
3445  *
3446  * @return
3447  *   Positive value: number of xstats names. Negative value: error code.
3448  */
3449 static int ena_xstats_get_names_by_id(struct rte_eth_dev *dev,
3450 				      const uint64_t *ids,
3451 				      struct rte_eth_xstat_name *xstats_names,
3452 				      unsigned int size)
3453 {
3454 	struct ena_adapter *adapter = dev->data->dev_private;
3455 	uint64_t xstats_count = ena_xstats_calc_num(dev->data);
3456 	uint64_t id, qid;
3457 	unsigned int i;
3458 
3459 	if (xstats_names == NULL)
3460 		return xstats_count;
3461 
3462 	for (i = 0; i < size; ++i) {
3463 		id = ids[i];
3464 		if (id > xstats_count) {
3465 			PMD_DRV_LOG_LINE(ERR,
3466 				"ID value out of range: id=%" PRIu64 ", xstats_num=%" PRIu64,
3467 				 id, xstats_count);
3468 			return -EINVAL;
3469 		}
3470 
3471 		if (id < ENA_STATS_ARRAY_GLOBAL) {
3472 			strcpy(xstats_names[i].name,
3473 			       ena_stats_global_strings[id].name);
3474 			continue;
3475 		}
3476 
3477 		id -= ENA_STATS_ARRAY_GLOBAL;
3478 		if (id < adapter->metrics_num) {
3479 			rte_strscpy(xstats_names[i].name,
3480 				    ena_stats_metrics_strings[id].name,
3481 				    RTE_ETH_XSTATS_NAME_SIZE);
3482 			continue;
3483 		}
3484 
3485 		id -= adapter->metrics_num;
3486 
3487 		if (id < ENA_STATS_ARRAY_ENA_SRD) {
3488 			rte_strscpy(xstats_names[i].name,
3489 				    ena_stats_srd_strings[id].name,
3490 				    RTE_ETH_XSTATS_NAME_SIZE);
3491 			continue;
3492 		}
3493 		id -= ENA_STATS_ARRAY_ENA_SRD;
3494 
3495 		if (id < ENA_STATS_ARRAY_RX) {
3496 			qid = id / dev->data->nb_rx_queues;
3497 			id %= dev->data->nb_rx_queues;
3498 			snprintf(xstats_names[i].name,
3499 				 sizeof(xstats_names[i].name),
3500 				 "rx_q%" PRIu64 "d_%s",
3501 				 qid, ena_stats_rx_strings[id].name);
3502 			continue;
3503 		}
3504 
3505 		id -= ENA_STATS_ARRAY_RX;
3506 		/* Although this condition is not needed, it was added for
3507 		 * compatibility if new xstat structure would be ever added.
3508 		 */
3509 		if (id < ENA_STATS_ARRAY_TX) {
3510 			qid = id / dev->data->nb_tx_queues;
3511 			id %= dev->data->nb_tx_queues;
3512 			snprintf(xstats_names[i].name,
3513 				 sizeof(xstats_names[i].name),
3514 				 "tx_q%" PRIu64 "_%s",
3515 				 qid, ena_stats_tx_strings[id].name);
3516 			continue;
3517 		}
3518 	}
3519 
3520 	return i;
3521 }
3522 
3523 /**
3524  * DPDK callback to get extended device statistics.
3525  *
3526  * @param dev
3527  *   Pointer to Ethernet device structure.
3528  * @param[out] stats
3529  *   Stats table output buffer.
3530  * @param n
3531  *   The size of the stats table.
3532  *
3533  * @return
3534  *   Number of xstats on success, negative on failure.
3535  */
3536 static int ena_xstats_get(struct rte_eth_dev *dev,
3537 			  struct rte_eth_xstat *xstats,
3538 			  unsigned int n)
3539 {
3540 	struct ena_adapter *adapter = dev->data->dev_private;
3541 	unsigned int xstats_count = ena_xstats_calc_num(dev->data);
3542 	unsigned int stat, i, count = 0;
3543 	int stat_offset;
3544 	void *stats_begin;
3545 	uint64_t metrics_stats[ENA_MAX_CUSTOMER_METRICS];
3546 	struct ena_stats_srd srd_info = {0};
3547 
3548 	if (n < xstats_count)
3549 		return xstats_count;
3550 
3551 	if (!xstats)
3552 		return 0;
3553 
3554 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
3555 		stat_offset = ena_stats_global_strings[stat].stat_offset;
3556 		stats_begin = &adapter->dev_stats;
3557 
3558 		xstats[count].id = count;
3559 		xstats[count].value = *((uint64_t *)
3560 			((char *)stats_begin + stat_offset));
3561 	}
3562 
3563 	ena_copy_customer_metrics(adapter, metrics_stats, adapter->metrics_num);
3564 	stats_begin = metrics_stats;
3565 	for (stat = 0; stat < adapter->metrics_num; stat++, count++) {
3566 		stat_offset = ena_stats_metrics_strings[stat].stat_offset;
3567 
3568 		xstats[count].id = count;
3569 		xstats[count].value = *((uint64_t *)
3570 		    ((char *)stats_begin + stat_offset));
3571 	}
3572 
3573 	ena_copy_ena_srd_info(adapter, &srd_info);
3574 	stats_begin = &srd_info;
3575 	for (stat = 0; stat < ENA_STATS_ARRAY_ENA_SRD; stat++, count++) {
3576 		stat_offset = ena_stats_srd_strings[stat].stat_offset;
3577 		xstats[count].id = count;
3578 		xstats[count].value = *((uint64_t *)
3579 		    ((char *)stats_begin + stat_offset));
3580 	}
3581 
3582 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
3583 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
3584 			stat_offset = ena_stats_rx_strings[stat].stat_offset;
3585 			stats_begin = &adapter->rx_ring[i].rx_stats;
3586 
3587 			xstats[count].id = count;
3588 			xstats[count].value = *((uint64_t *)
3589 				((char *)stats_begin + stat_offset));
3590 		}
3591 	}
3592 
3593 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
3594 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
3595 			stat_offset = ena_stats_tx_strings[stat].stat_offset;
3596 			stats_begin = &adapter->tx_ring[i].rx_stats;
3597 
3598 			xstats[count].id = count;
3599 			xstats[count].value = *((uint64_t *)
3600 				((char *)stats_begin + stat_offset));
3601 		}
3602 	}
3603 
3604 	return count;
3605 }
3606 
3607 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
3608 				const uint64_t *ids,
3609 				uint64_t *values,
3610 				unsigned int n)
3611 {
3612 	struct ena_adapter *adapter = dev->data->dev_private;
3613 	uint64_t id;
3614 	uint64_t rx_entries, tx_entries;
3615 	unsigned int i;
3616 	int qid;
3617 	int valid = 0;
3618 	bool were_metrics_copied = false;
3619 	bool was_srd_info_copied = false;
3620 	uint64_t metrics_stats[ENA_MAX_CUSTOMER_METRICS];
3621 	struct ena_stats_srd srd_info = {0};
3622 
3623 	for (i = 0; i < n; ++i) {
3624 		id = ids[i];
3625 		/* Check if id belongs to global statistics */
3626 		if (id < ENA_STATS_ARRAY_GLOBAL) {
3627 			values[i] = *((uint64_t *)&adapter->dev_stats + id);
3628 			++valid;
3629 			continue;
3630 		}
3631 
3632 		/* Check if id belongs to ENI statistics */
3633 		id -= ENA_STATS_ARRAY_GLOBAL;
3634 		if (id < adapter->metrics_num) {
3635 			/* Avoid reading metrics multiple times in a single
3636 			 * function call, as it requires communication with the
3637 			 * admin queue.
3638 			 */
3639 			if (!were_metrics_copied) {
3640 				were_metrics_copied = true;
3641 				ena_copy_customer_metrics(adapter,
3642 						metrics_stats,
3643 						adapter->metrics_num);
3644 			}
3645 
3646 			values[i] = *((uint64_t *)&metrics_stats + id);
3647 			++valid;
3648 			continue;
3649 		}
3650 
3651 		/* Check if id belongs to SRD info statistics */
3652 		id -= adapter->metrics_num;
3653 
3654 		if (id < ENA_STATS_ARRAY_ENA_SRD) {
3655 			/*
3656 			 * Avoid reading srd info multiple times in a single
3657 			 * function call, as it requires communication with the
3658 			 * admin queue.
3659 			 */
3660 			if (!was_srd_info_copied) {
3661 				was_srd_info_copied = true;
3662 				ena_copy_ena_srd_info(adapter, &srd_info);
3663 			}
3664 			values[i] = *((uint64_t *)&adapter->srd_stats + id);
3665 			++valid;
3666 			continue;
3667 		}
3668 
3669 		/* Check if id belongs to rx queue statistics */
3670 		id -= ENA_STATS_ARRAY_ENA_SRD;
3671 
3672 		rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
3673 		if (id < rx_entries) {
3674 			qid = id % dev->data->nb_rx_queues;
3675 			id /= dev->data->nb_rx_queues;
3676 			values[i] = *((uint64_t *)
3677 				&adapter->rx_ring[qid].rx_stats + id);
3678 			++valid;
3679 			continue;
3680 		}
3681 				/* Check if id belongs to rx queue statistics */
3682 		id -= rx_entries;
3683 		tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
3684 		if (id < tx_entries) {
3685 			qid = id % dev->data->nb_tx_queues;
3686 			id /= dev->data->nb_tx_queues;
3687 			values[i] = *((uint64_t *)
3688 				&adapter->tx_ring[qid].tx_stats + id);
3689 			++valid;
3690 			continue;
3691 		}
3692 	}
3693 
3694 	return valid;
3695 }
3696 
3697 static int ena_process_uint_devarg(const char *key,
3698 				  const char *value,
3699 				  void *opaque)
3700 {
3701 	struct ena_adapter *adapter = opaque;
3702 	char *str_end;
3703 	uint64_t uint64_value;
3704 
3705 	uint64_value = strtoull(value, &str_end, DECIMAL_BASE);
3706 	if (value == str_end) {
3707 		PMD_INIT_LOG_LINE(ERR,
3708 			"Invalid value for key '%s'. Only uint values are accepted.",
3709 			key);
3710 		return -EINVAL;
3711 	}
3712 
3713 	if (strcmp(key, ENA_DEVARG_MISS_TXC_TO) == 0) {
3714 		if (uint64_value > ENA_MAX_TX_TIMEOUT_SECONDS) {
3715 			PMD_INIT_LOG_LINE(ERR,
3716 				"Tx timeout too high: %" PRIu64 " sec. Maximum allowed: %d sec.",
3717 				uint64_value, ENA_MAX_TX_TIMEOUT_SECONDS);
3718 			return -EINVAL;
3719 		} else if (uint64_value == 0) {
3720 			PMD_INIT_LOG_LINE(INFO,
3721 				"Check for missing Tx completions has been disabled.");
3722 			adapter->missing_tx_completion_to =
3723 				ENA_HW_HINTS_NO_TIMEOUT;
3724 		} else {
3725 			PMD_INIT_LOG_LINE(INFO,
3726 				"Tx packet completion timeout set to %" PRIu64 " seconds.",
3727 				uint64_value);
3728 			adapter->missing_tx_completion_to =
3729 				uint64_value * rte_get_timer_hz();
3730 		}
3731 	} else if (strcmp(key, ENA_DEVARG_CONTROL_PATH_POLL_INTERVAL) == 0) {
3732 		if (uint64_value > ENA_MAX_CONTROL_PATH_POLL_INTERVAL_MSEC) {
3733 			PMD_INIT_LOG_LINE(ERR,
3734 				"Control path polling interval is too long: %" PRIu64 " msecs. "
3735 				"Maximum allowed: %d msecs.",
3736 				uint64_value, ENA_MAX_CONTROL_PATH_POLL_INTERVAL_MSEC);
3737 			return -EINVAL;
3738 		} else if (uint64_value == 0) {
3739 			PMD_INIT_LOG_LINE(INFO,
3740 				"Control path polling interval is set to zero. Operating in "
3741 				"interrupt mode.");
3742 				adapter->control_path_poll_interval = 0;
3743 		} else {
3744 			PMD_INIT_LOG_LINE(INFO,
3745 				"Control path polling interval is set to %" PRIu64 " msecs.",
3746 				uint64_value);
3747 				adapter->control_path_poll_interval = uint64_value * USEC_PER_MSEC;
3748 		}
3749 	}
3750 
3751 	return 0;
3752 }
3753 
3754 static int ena_process_llq_policy_devarg(const char *key, const char *value, void *opaque)
3755 {
3756 	struct ena_adapter *adapter = opaque;
3757 	uint32_t policy;
3758 
3759 	policy = strtoul(value, NULL, DECIMAL_BASE);
3760 	if (policy < ENA_LLQ_POLICY_LAST) {
3761 		adapter->llq_header_policy = policy;
3762 	} else {
3763 		PMD_INIT_LOG_LINE(ERR,
3764 			"Invalid value: '%s' for key '%s'. valid [0-3]",
3765 			value, key);
3766 		return -EINVAL;
3767 	}
3768 	PMD_INIT_LOG_LINE(INFO,
3769 		"LLQ policy is %u [0 - disabled, 1 - device recommended, 2 - normal, 3 - large]",
3770 		adapter->llq_header_policy);
3771 	return 0;
3772 }
3773 
3774 static int ena_parse_devargs(struct ena_adapter *adapter, struct rte_devargs *devargs)
3775 {
3776 	static const char * const allowed_args[] = {
3777 		ENA_DEVARG_LLQ_POLICY,
3778 		ENA_DEVARG_MISS_TXC_TO,
3779 		ENA_DEVARG_CONTROL_PATH_POLL_INTERVAL,
3780 		NULL,
3781 	};
3782 	struct rte_kvargs *kvlist;
3783 	int rc;
3784 
3785 	if (devargs == NULL)
3786 		return 0;
3787 
3788 	kvlist = rte_kvargs_parse(devargs->args, allowed_args);
3789 	if (kvlist == NULL) {
3790 		PMD_INIT_LOG_LINE(ERR, "Invalid device arguments: %s",
3791 			devargs->args);
3792 		return -EINVAL;
3793 	}
3794 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_LLQ_POLICY,
3795 			ena_process_llq_policy_devarg, adapter);
3796 	if (rc != 0)
3797 		goto exit;
3798 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_MISS_TXC_TO,
3799 		ena_process_uint_devarg, adapter);
3800 	if (rc != 0)
3801 		goto exit;
3802 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_CONTROL_PATH_POLL_INTERVAL,
3803 		ena_process_uint_devarg, adapter);
3804 	if (rc != 0)
3805 		goto exit;
3806 
3807 exit:
3808 	rte_kvargs_free(kvlist);
3809 
3810 	return rc;
3811 }
3812 
3813 static int ena_setup_rx_intr(struct rte_eth_dev *dev)
3814 {
3815 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3816 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
3817 	int rc;
3818 	uint16_t vectors_nb, i;
3819 	bool rx_intr_requested = dev->data->dev_conf.intr_conf.rxq;
3820 
3821 	if (!rx_intr_requested)
3822 		return 0;
3823 
3824 	if (!rte_intr_cap_multiple(intr_handle)) {
3825 		PMD_DRV_LOG_LINE(ERR,
3826 			"Rx interrupt requested, but it isn't supported by the PCI driver");
3827 		return -ENOTSUP;
3828 	}
3829 
3830 	/* Disable interrupt mapping before the configuration starts. */
3831 	rte_intr_disable(intr_handle);
3832 
3833 	/* Verify if there are enough vectors available. */
3834 	vectors_nb = dev->data->nb_rx_queues;
3835 	if (vectors_nb > RTE_MAX_RXTX_INTR_VEC_ID) {
3836 		PMD_DRV_LOG_LINE(ERR,
3837 			"Too many Rx interrupts requested, maximum number: %d",
3838 			RTE_MAX_RXTX_INTR_VEC_ID);
3839 		rc = -ENOTSUP;
3840 		goto enable_intr;
3841 	}
3842 
3843 	/* Allocate the vector list */
3844 	if (rte_intr_vec_list_alloc(intr_handle, "intr_vec",
3845 					   dev->data->nb_rx_queues)) {
3846 		PMD_DRV_LOG_LINE(ERR,
3847 			"Failed to allocate interrupt vector for %d queues",
3848 			dev->data->nb_rx_queues);
3849 		rc = -ENOMEM;
3850 		goto enable_intr;
3851 	}
3852 
3853 	rc = rte_intr_efd_enable(intr_handle, vectors_nb);
3854 	if (rc != 0)
3855 		goto free_intr_vec;
3856 
3857 	if (!rte_intr_allow_others(intr_handle)) {
3858 		PMD_DRV_LOG_LINE(ERR,
3859 			"Not enough interrupts available to use both ENA Admin and Rx interrupts");
3860 		goto disable_intr_efd;
3861 	}
3862 
3863 	for (i = 0; i < vectors_nb; ++i)
3864 		if (rte_intr_vec_list_index_set(intr_handle, i,
3865 					   RTE_INTR_VEC_RXTX_OFFSET + i))
3866 			goto disable_intr_efd;
3867 
3868 	rte_intr_enable(intr_handle);
3869 	return 0;
3870 
3871 disable_intr_efd:
3872 	rte_intr_efd_disable(intr_handle);
3873 free_intr_vec:
3874 	rte_intr_vec_list_free(intr_handle);
3875 enable_intr:
3876 	rte_intr_enable(intr_handle);
3877 	return rc;
3878 }
3879 
3880 static void ena_rx_queue_intr_set(struct rte_eth_dev *dev,
3881 				 uint16_t queue_id,
3882 				 bool unmask)
3883 {
3884 	struct ena_adapter *adapter = dev->data->dev_private;
3885 	struct ena_ring *rxq = &adapter->rx_ring[queue_id];
3886 	struct ena_eth_io_intr_reg intr_reg;
3887 
3888 	ena_com_update_intr_reg(&intr_reg, 0, 0, unmask, 1);
3889 	ena_com_unmask_intr(rxq->ena_com_io_cq, &intr_reg);
3890 }
3891 
3892 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
3893 				    uint16_t queue_id)
3894 {
3895 	ena_rx_queue_intr_set(dev, queue_id, true);
3896 
3897 	return 0;
3898 }
3899 
3900 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
3901 				     uint16_t queue_id)
3902 {
3903 	ena_rx_queue_intr_set(dev, queue_id, false);
3904 
3905 	return 0;
3906 }
3907 
3908 static int ena_configure_aenq(struct ena_adapter *adapter)
3909 {
3910 	uint32_t aenq_groups = adapter->all_aenq_groups;
3911 	int rc;
3912 
3913 	/* All_aenq_groups holds all AENQ functions supported by the device and
3914 	 * the HW, so at first we need to be sure the LSC request is valid.
3915 	 */
3916 	if (adapter->edev_data->dev_conf.intr_conf.lsc != 0) {
3917 		if (!(aenq_groups & BIT(ENA_ADMIN_LINK_CHANGE))) {
3918 			PMD_DRV_LOG_LINE(ERR,
3919 				"LSC requested, but it's not supported by the AENQ");
3920 			return -EINVAL;
3921 		}
3922 	} else {
3923 		/* If LSC wasn't enabled by the app, let's enable all supported
3924 		 * AENQ procedures except the LSC.
3925 		 */
3926 		aenq_groups &= ~BIT(ENA_ADMIN_LINK_CHANGE);
3927 	}
3928 
3929 	rc = ena_com_set_aenq_config(&adapter->ena_dev, aenq_groups);
3930 	if (rc != 0) {
3931 		PMD_DRV_LOG_LINE(ERR, "Cannot configure AENQ groups, rc=%d", rc);
3932 		return rc;
3933 	}
3934 
3935 	adapter->active_aenq_groups = aenq_groups;
3936 
3937 	return 0;
3938 }
3939 
3940 int ena_mp_indirect_table_set(struct ena_adapter *adapter)
3941 {
3942 	return ENA_PROXY(adapter, ena_com_indirect_table_set, &adapter->ena_dev);
3943 }
3944 
3945 int ena_mp_indirect_table_get(struct ena_adapter *adapter,
3946 			      uint32_t *indirect_table)
3947 {
3948 	return ENA_PROXY(adapter, ena_com_indirect_table_get, &adapter->ena_dev,
3949 		indirect_table);
3950 }
3951 
3952 /*********************************************************************
3953  *  ena_plat_dpdk.h functions implementations
3954  *********************************************************************/
3955 
3956 const struct rte_memzone *
3957 ena_mem_alloc_coherent(struct rte_eth_dev_data *data, size_t size,
3958 		       int socket_id, unsigned int alignment, void **virt_addr,
3959 		       dma_addr_t *phys_addr)
3960 {
3961 	char z_name[RTE_MEMZONE_NAMESIZE];
3962 	struct ena_adapter *adapter = data->dev_private;
3963 	const struct rte_memzone *memzone;
3964 	int rc;
3965 
3966 	rc = snprintf(z_name, RTE_MEMZONE_NAMESIZE, "ena_p%d_mz%" PRIu64 "",
3967 		data->port_id, adapter->memzone_cnt);
3968 	if (rc >= RTE_MEMZONE_NAMESIZE) {
3969 		PMD_DRV_LOG_LINE(ERR,
3970 			"Name for the ena_com memzone is too long. Port: %d, mz_num: %" PRIu64,
3971 			data->port_id, adapter->memzone_cnt);
3972 		goto error;
3973 	}
3974 	adapter->memzone_cnt++;
3975 
3976 	memzone = rte_memzone_reserve_aligned(z_name, size, socket_id,
3977 		RTE_MEMZONE_IOVA_CONTIG, alignment);
3978 	if (memzone == NULL) {
3979 		PMD_DRV_LOG_LINE(ERR, "Failed to allocate ena_com memzone: %s",
3980 			z_name);
3981 		goto error;
3982 	}
3983 
3984 	memset(memzone->addr, 0, size);
3985 	*virt_addr = memzone->addr;
3986 	*phys_addr = memzone->iova;
3987 
3988 	return memzone;
3989 
3990 error:
3991 	*virt_addr = NULL;
3992 	*phys_addr = 0;
3993 
3994 	return NULL;
3995 }
3996 
3997 
3998 /*********************************************************************
3999  *  PMD configuration
4000  *********************************************************************/
4001 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
4002 	struct rte_pci_device *pci_dev)
4003 {
4004 	return rte_eth_dev_pci_generic_probe(pci_dev,
4005 		sizeof(struct ena_adapter), eth_ena_dev_init);
4006 }
4007 
4008 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
4009 {
4010 	return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
4011 }
4012 
4013 static struct rte_pci_driver rte_ena_pmd = {
4014 	.id_table = pci_id_ena_map,
4015 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
4016 		     RTE_PCI_DRV_WC_ACTIVATE,
4017 	.probe = eth_ena_pci_probe,
4018 	.remove = eth_ena_pci_remove,
4019 };
4020 
4021 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
4022 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
4023 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
4024 RTE_PMD_REGISTER_PARAM_STRING(net_ena,
4025 	ENA_DEVARG_LLQ_POLICY "=<0|1|2|3> "
4026 	ENA_DEVARG_MISS_TXC_TO "=<uint>"
4027 	ENA_DEVARG_CONTROL_PATH_POLL_INTERVAL "=<0-1000>");
4028 RTE_LOG_REGISTER_SUFFIX(ena_logtype_init, init, NOTICE);
4029 RTE_LOG_REGISTER_SUFFIX(ena_logtype_driver, driver, NOTICE);
4030 #ifdef RTE_ETHDEV_DEBUG_RX
4031 RTE_LOG_REGISTER_SUFFIX(ena_logtype_rx, rx, DEBUG);
4032 #endif
4033 #ifdef RTE_ETHDEV_DEBUG_TX
4034 RTE_LOG_REGISTER_SUFFIX(ena_logtype_tx, tx, DEBUG);
4035 #endif
4036 RTE_LOG_REGISTER_SUFFIX(ena_logtype_com, com, WARNING);
4037 
4038 /******************************************************************************
4039  ******************************** AENQ Handlers *******************************
4040  *****************************************************************************/
4041 static void ena_update_on_link_change(void *adapter_data,
4042 				      struct ena_admin_aenq_entry *aenq_e)
4043 {
4044 	struct rte_eth_dev *eth_dev = adapter_data;
4045 	struct ena_adapter *adapter = eth_dev->data->dev_private;
4046 	struct ena_admin_aenq_link_change_desc *aenq_link_desc;
4047 	uint32_t status;
4048 
4049 	aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
4050 
4051 	status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
4052 	adapter->link_status = status;
4053 
4054 	ena_link_update(eth_dev, 0);
4055 	rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
4056 }
4057 
4058 static void ena_notification(void *adapter_data,
4059 			     struct ena_admin_aenq_entry *aenq_e)
4060 {
4061 	struct rte_eth_dev *eth_dev = adapter_data;
4062 	struct ena_adapter *adapter = eth_dev->data->dev_private;
4063 	struct ena_admin_ena_hw_hints *hints;
4064 
4065 	if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
4066 		PMD_DRV_LOG_LINE(WARNING, "Invalid AENQ group: %x. Expected: %x",
4067 			aenq_e->aenq_common_desc.group,
4068 			ENA_ADMIN_NOTIFICATION);
4069 
4070 	switch (aenq_e->aenq_common_desc.syndrome) {
4071 	case ENA_ADMIN_UPDATE_HINTS:
4072 		hints = (struct ena_admin_ena_hw_hints *)
4073 			(&aenq_e->inline_data_w4);
4074 		ena_update_hints(adapter, hints);
4075 		break;
4076 	default:
4077 		PMD_DRV_LOG_LINE(ERR, "Invalid AENQ notification link state: %d",
4078 			aenq_e->aenq_common_desc.syndrome);
4079 	}
4080 }
4081 
4082 static void ena_keep_alive(void *adapter_data,
4083 			   __rte_unused struct ena_admin_aenq_entry *aenq_e)
4084 {
4085 	struct rte_eth_dev *eth_dev = adapter_data;
4086 	struct ena_adapter *adapter = eth_dev->data->dev_private;
4087 	struct ena_admin_aenq_keep_alive_desc *desc;
4088 	uint64_t rx_drops;
4089 	uint64_t tx_drops;
4090 	uint64_t rx_overruns;
4091 
4092 	adapter->timestamp_wd = rte_get_timer_cycles();
4093 
4094 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
4095 	rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
4096 	tx_drops = ((uint64_t)desc->tx_drops_high << 32) | desc->tx_drops_low;
4097 	rx_overruns = ((uint64_t)desc->rx_overruns_high << 32) | desc->rx_overruns_low;
4098 
4099 	/*
4100 	 * Depending on its acceleration support, the device updates a different statistic when
4101 	 * Rx packet is dropped because there are no available buffers to accommodate it.
4102 	 */
4103 	adapter->drv_stats->rx_drops = rx_drops + rx_overruns;
4104 	adapter->dev_stats.tx_drops = tx_drops;
4105 }
4106 
4107 static void ena_suboptimal_configuration(__rte_unused void *adapter_data,
4108 					 struct ena_admin_aenq_entry *aenq_e)
4109 {
4110 	struct ena_admin_aenq_conf_notifications_desc *desc;
4111 	int bit, num_bits;
4112 
4113 	desc = (struct ena_admin_aenq_conf_notifications_desc *)aenq_e;
4114 	num_bits = BITS_PER_TYPE(desc->notifications_bitmap);
4115 	for (bit = 0; bit < num_bits; bit++) {
4116 		if (desc->notifications_bitmap & RTE_BIT64(bit)) {
4117 			PMD_DRV_LOG_LINE(WARNING,
4118 				"Sub-optimal configuration notification code: %d", bit + 1);
4119 		}
4120 	}
4121 }
4122 
4123 /**
4124  * This handler will called for unknown event group or unimplemented handlers
4125  **/
4126 static void unimplemented_aenq_handler(__rte_unused void *data,
4127 				       __rte_unused struct ena_admin_aenq_entry *aenq_e)
4128 {
4129 	PMD_DRV_LOG_LINE(ERR,
4130 		"Unknown event was received or event with unimplemented handler");
4131 }
4132 
4133 static struct ena_aenq_handlers aenq_handlers = {
4134 	.handlers = {
4135 		[ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
4136 		[ENA_ADMIN_NOTIFICATION] = ena_notification,
4137 		[ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive,
4138 		[ENA_ADMIN_CONF_NOTIFICATIONS] = ena_suboptimal_configuration
4139 	},
4140 	.unimplemented_handler = unimplemented_aenq_handler
4141 };
4142 
4143 /*********************************************************************
4144  *  Multi-Process communication request handling (in primary)
4145  *********************************************************************/
4146 static int
4147 ena_mp_primary_handle(const struct rte_mp_msg *mp_msg, const void *peer)
4148 {
4149 	const struct ena_mp_body *req =
4150 		(const struct ena_mp_body *)mp_msg->param;
4151 	struct ena_adapter *adapter;
4152 	struct ena_com_dev *ena_dev;
4153 	struct ena_mp_body *rsp;
4154 	struct rte_mp_msg mp_rsp;
4155 	struct rte_eth_dev *dev;
4156 	int res = 0;
4157 
4158 	rsp = (struct ena_mp_body *)&mp_rsp.param;
4159 	mp_msg_init(&mp_rsp, req->type, req->port_id);
4160 
4161 	if (!rte_eth_dev_is_valid_port(req->port_id)) {
4162 		rte_errno = ENODEV;
4163 		res = -rte_errno;
4164 		PMD_DRV_LOG_LINE(ERR, "Unknown port %d in request %d",
4165 			    req->port_id, req->type);
4166 		goto end;
4167 	}
4168 	dev = &rte_eth_devices[req->port_id];
4169 	adapter = dev->data->dev_private;
4170 	ena_dev = &adapter->ena_dev;
4171 
4172 	switch (req->type) {
4173 	case ENA_MP_DEV_STATS_GET:
4174 		res = ena_com_get_dev_basic_stats(ena_dev,
4175 						  &adapter->basic_stats);
4176 		break;
4177 	case ENA_MP_ENI_STATS_GET:
4178 		res = ena_com_get_eni_stats(ena_dev,
4179 			(struct ena_admin_eni_stats *)&adapter->metrics_stats);
4180 		break;
4181 	case ENA_MP_MTU_SET:
4182 		res = ena_com_set_dev_mtu(ena_dev, req->args.mtu);
4183 		break;
4184 	case ENA_MP_IND_TBL_GET:
4185 		res = ena_com_indirect_table_get(ena_dev,
4186 						 adapter->indirect_table);
4187 		break;
4188 	case ENA_MP_IND_TBL_SET:
4189 		res = ena_com_indirect_table_set(ena_dev);
4190 		break;
4191 	case ENA_MP_CUSTOMER_METRICS_GET:
4192 		res = ena_com_get_customer_metrics(ena_dev,
4193 				(char *)adapter->metrics_stats,
4194 				adapter->metrics_num * sizeof(uint64_t));
4195 		break;
4196 	case ENA_MP_SRD_STATS_GET:
4197 		res = ena_com_get_ena_srd_info(ena_dev,
4198 				(struct ena_admin_ena_srd_info *)&adapter->srd_stats);
4199 		break;
4200 	default:
4201 		PMD_DRV_LOG_LINE(ERR, "Unknown request type %d", req->type);
4202 		res = -EINVAL;
4203 		break;
4204 	}
4205 
4206 end:
4207 	/* Save processing result in the reply */
4208 	rsp->result = res;
4209 	/* Return just IPC processing status */
4210 	return rte_mp_reply(&mp_rsp, peer);
4211 }
4212 
4213 static bool ena_use_large_llq_hdr(struct ena_adapter *adapter, uint8_t recommended_entry_size)
4214 {
4215 	if (adapter->llq_header_policy == ENA_LLQ_POLICY_LARGE) {
4216 		return true;
4217 	} else if (adapter->llq_header_policy == ENA_LLQ_POLICY_RECOMMENDED) {
4218 		PMD_DRV_LOG_LINE(INFO, "Recommended device entry size policy %u",
4219 			recommended_entry_size);
4220 		if (recommended_entry_size == ENA_ADMIN_LIST_ENTRY_SIZE_256B)
4221 			return true;
4222 	}
4223 	return false;
4224 }
4225