xref: /dpdk/drivers/net/ena/ena_ethdev.c (revision f6c6c686f134dac6a0b4540b1a6b85719991b6dc)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
3  * All rights reserved.
4  */
5 
6 #include <rte_string_fns.h>
7 #include <rte_errno.h>
8 #include <rte_version.h>
9 #include <rte_net.h>
10 #include <rte_kvargs.h>
11 
12 #include "ena_ethdev.h"
13 #include "ena_logs.h"
14 #include "ena_platform.h"
15 #include "ena_com.h"
16 #include "ena_eth_com.h"
17 
18 #include <ena_common_defs.h>
19 #include <ena_regs_defs.h>
20 #include <ena_admin_defs.h>
21 #include <ena_eth_io_defs.h>
22 
23 #define DRV_MODULE_VER_MAJOR	2
24 #define DRV_MODULE_VER_MINOR	5
25 #define DRV_MODULE_VER_SUBMINOR	0
26 
27 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
28 
29 #define GET_L4_HDR_LEN(mbuf)					\
30 	((rte_pktmbuf_mtod_offset(mbuf,	struct rte_tcp_hdr *,	\
31 		mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
32 
33 #define ETH_GSTRING_LEN	32
34 
35 #define ARRAY_SIZE(x) RTE_DIM(x)
36 
37 #define ENA_MIN_RING_DESC	128
38 
39 #define ENA_PTYPE_HAS_HASH	(RTE_PTYPE_L4_TCP | RTE_PTYPE_L4_UDP)
40 
41 enum ethtool_stringset {
42 	ETH_SS_TEST             = 0,
43 	ETH_SS_STATS,
44 };
45 
46 struct ena_stats {
47 	char name[ETH_GSTRING_LEN];
48 	int stat_offset;
49 };
50 
51 #define ENA_STAT_ENTRY(stat, stat_type) { \
52 	.name = #stat, \
53 	.stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
54 }
55 
56 #define ENA_STAT_RX_ENTRY(stat) \
57 	ENA_STAT_ENTRY(stat, rx)
58 
59 #define ENA_STAT_TX_ENTRY(stat) \
60 	ENA_STAT_ENTRY(stat, tx)
61 
62 #define ENA_STAT_ENI_ENTRY(stat) \
63 	ENA_STAT_ENTRY(stat, eni)
64 
65 #define ENA_STAT_GLOBAL_ENTRY(stat) \
66 	ENA_STAT_ENTRY(stat, dev)
67 
68 /* Device arguments */
69 #define ENA_DEVARG_LARGE_LLQ_HDR "large_llq_hdr"
70 
71 /*
72  * Each rte_memzone should have unique name.
73  * To satisfy it, count number of allocation and add it to name.
74  */
75 rte_atomic64_t ena_alloc_cnt;
76 
77 static const struct ena_stats ena_stats_global_strings[] = {
78 	ENA_STAT_GLOBAL_ENTRY(wd_expired),
79 	ENA_STAT_GLOBAL_ENTRY(dev_start),
80 	ENA_STAT_GLOBAL_ENTRY(dev_stop),
81 	ENA_STAT_GLOBAL_ENTRY(tx_drops),
82 };
83 
84 static const struct ena_stats ena_stats_eni_strings[] = {
85 	ENA_STAT_ENI_ENTRY(bw_in_allowance_exceeded),
86 	ENA_STAT_ENI_ENTRY(bw_out_allowance_exceeded),
87 	ENA_STAT_ENI_ENTRY(pps_allowance_exceeded),
88 	ENA_STAT_ENI_ENTRY(conntrack_allowance_exceeded),
89 	ENA_STAT_ENI_ENTRY(linklocal_allowance_exceeded),
90 };
91 
92 static const struct ena_stats ena_stats_tx_strings[] = {
93 	ENA_STAT_TX_ENTRY(cnt),
94 	ENA_STAT_TX_ENTRY(bytes),
95 	ENA_STAT_TX_ENTRY(prepare_ctx_err),
96 	ENA_STAT_TX_ENTRY(linearize),
97 	ENA_STAT_TX_ENTRY(linearize_failed),
98 	ENA_STAT_TX_ENTRY(tx_poll),
99 	ENA_STAT_TX_ENTRY(doorbells),
100 	ENA_STAT_TX_ENTRY(bad_req_id),
101 	ENA_STAT_TX_ENTRY(available_desc),
102 	ENA_STAT_TX_ENTRY(missed_tx),
103 };
104 
105 static const struct ena_stats ena_stats_rx_strings[] = {
106 	ENA_STAT_RX_ENTRY(cnt),
107 	ENA_STAT_RX_ENTRY(bytes),
108 	ENA_STAT_RX_ENTRY(refill_partial),
109 	ENA_STAT_RX_ENTRY(bad_csum),
110 	ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
111 	ENA_STAT_RX_ENTRY(bad_desc_num),
112 	ENA_STAT_RX_ENTRY(bad_req_id),
113 };
114 
115 #define ENA_STATS_ARRAY_GLOBAL	ARRAY_SIZE(ena_stats_global_strings)
116 #define ENA_STATS_ARRAY_ENI	ARRAY_SIZE(ena_stats_eni_strings)
117 #define ENA_STATS_ARRAY_TX	ARRAY_SIZE(ena_stats_tx_strings)
118 #define ENA_STATS_ARRAY_RX	ARRAY_SIZE(ena_stats_rx_strings)
119 
120 #define QUEUE_OFFLOADS (RTE_ETH_TX_OFFLOAD_TCP_CKSUM |\
121 			RTE_ETH_TX_OFFLOAD_UDP_CKSUM |\
122 			RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |\
123 			RTE_ETH_TX_OFFLOAD_TCP_TSO)
124 #define MBUF_OFFLOADS (RTE_MBUF_F_TX_L4_MASK |\
125 		       RTE_MBUF_F_TX_IP_CKSUM |\
126 		       RTE_MBUF_F_TX_TCP_SEG)
127 
128 /** Vendor ID used by Amazon devices */
129 #define PCI_VENDOR_ID_AMAZON 0x1D0F
130 /** Amazon devices */
131 #define PCI_DEVICE_ID_ENA_VF		0xEC20
132 #define PCI_DEVICE_ID_ENA_VF_RSERV0	0xEC21
133 
134 #define	ENA_TX_OFFLOAD_MASK	(RTE_MBUF_F_TX_L4_MASK |         \
135 	RTE_MBUF_F_TX_IPV6 |            \
136 	RTE_MBUF_F_TX_IPV4 |            \
137 	RTE_MBUF_F_TX_IP_CKSUM |        \
138 	RTE_MBUF_F_TX_TCP_SEG)
139 
140 #define	ENA_TX_OFFLOAD_NOTSUP_MASK	\
141 	(RTE_MBUF_F_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
142 
143 /** HW specific offloads capabilities. */
144 /* IPv4 checksum offload. */
145 #define ENA_L3_IPV4_CSUM		0x0001
146 /* TCP/UDP checksum offload for IPv4 packets. */
147 #define ENA_L4_IPV4_CSUM		0x0002
148 /* TCP/UDP checksum offload for IPv4 packets with pseudo header checksum. */
149 #define ENA_L4_IPV4_CSUM_PARTIAL	0x0004
150 /* TCP/UDP checksum offload for IPv6 packets. */
151 #define ENA_L4_IPV6_CSUM		0x0008
152 /* TCP/UDP checksum offload for IPv6 packets with pseudo header checksum. */
153 #define ENA_L4_IPV6_CSUM_PARTIAL	0x0010
154 /* TSO support for IPv4 packets. */
155 #define ENA_IPV4_TSO			0x0020
156 
157 /* Device supports setting RSS hash. */
158 #define ENA_RX_RSS_HASH			0x0040
159 
160 static const struct rte_pci_id pci_id_ena_map[] = {
161 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
162 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF_RSERV0) },
163 	{ .device_id = 0 },
164 };
165 
166 static struct ena_aenq_handlers aenq_handlers;
167 
168 static int ena_device_init(struct ena_com_dev *ena_dev,
169 			   struct rte_pci_device *pdev,
170 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
171 			   bool *wd_state);
172 static int ena_dev_configure(struct rte_eth_dev *dev);
173 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
174 	struct ena_tx_buffer *tx_info,
175 	struct rte_mbuf *mbuf,
176 	void **push_header,
177 	uint16_t *header_len);
178 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf);
179 static void ena_tx_cleanup(struct ena_ring *tx_ring);
180 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
181 				  uint16_t nb_pkts);
182 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
183 		uint16_t nb_pkts);
184 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
185 			      uint16_t nb_desc, unsigned int socket_id,
186 			      const struct rte_eth_txconf *tx_conf);
187 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
188 			      uint16_t nb_desc, unsigned int socket_id,
189 			      const struct rte_eth_rxconf *rx_conf,
190 			      struct rte_mempool *mp);
191 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len);
192 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
193 				    struct ena_com_rx_buf_info *ena_bufs,
194 				    uint32_t descs,
195 				    uint16_t *next_to_clean,
196 				    uint8_t offset);
197 static uint16_t eth_ena_recv_pkts(void *rx_queue,
198 				  struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
199 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
200 				  struct rte_mbuf *mbuf, uint16_t id);
201 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
202 static void ena_init_rings(struct ena_adapter *adapter,
203 			   bool disable_meta_caching);
204 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
205 static int ena_start(struct rte_eth_dev *dev);
206 static int ena_stop(struct rte_eth_dev *dev);
207 static int ena_close(struct rte_eth_dev *dev);
208 static int ena_dev_reset(struct rte_eth_dev *dev);
209 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
210 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
211 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
212 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
213 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
214 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
215 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
216 static int ena_link_update(struct rte_eth_dev *dev,
217 			   int wait_to_complete);
218 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring);
219 static void ena_queue_stop(struct ena_ring *ring);
220 static void ena_queue_stop_all(struct rte_eth_dev *dev,
221 			      enum ena_ring_type ring_type);
222 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring);
223 static int ena_queue_start_all(struct rte_eth_dev *dev,
224 			       enum ena_ring_type ring_type);
225 static void ena_stats_restart(struct rte_eth_dev *dev);
226 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter);
227 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter);
228 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter);
229 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter);
230 static int ena_infos_get(struct rte_eth_dev *dev,
231 			 struct rte_eth_dev_info *dev_info);
232 static void ena_interrupt_handler_rte(void *cb_arg);
233 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
234 static void ena_destroy_device(struct rte_eth_dev *eth_dev);
235 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
236 static int ena_xstats_get_names(struct rte_eth_dev *dev,
237 				struct rte_eth_xstat_name *xstats_names,
238 				unsigned int n);
239 static int ena_xstats_get(struct rte_eth_dev *dev,
240 			  struct rte_eth_xstat *stats,
241 			  unsigned int n);
242 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
243 				const uint64_t *ids,
244 				uint64_t *values,
245 				unsigned int n);
246 static int ena_process_bool_devarg(const char *key,
247 				   const char *value,
248 				   void *opaque);
249 static int ena_parse_devargs(struct ena_adapter *adapter,
250 			     struct rte_devargs *devargs);
251 static int ena_copy_eni_stats(struct ena_adapter *adapter);
252 static int ena_setup_rx_intr(struct rte_eth_dev *dev);
253 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
254 				    uint16_t queue_id);
255 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
256 				     uint16_t queue_id);
257 
258 static const struct eth_dev_ops ena_dev_ops = {
259 	.dev_configure        = ena_dev_configure,
260 	.dev_infos_get        = ena_infos_get,
261 	.rx_queue_setup       = ena_rx_queue_setup,
262 	.tx_queue_setup       = ena_tx_queue_setup,
263 	.dev_start            = ena_start,
264 	.dev_stop             = ena_stop,
265 	.link_update          = ena_link_update,
266 	.stats_get            = ena_stats_get,
267 	.xstats_get_names     = ena_xstats_get_names,
268 	.xstats_get	      = ena_xstats_get,
269 	.xstats_get_by_id     = ena_xstats_get_by_id,
270 	.mtu_set              = ena_mtu_set,
271 	.rx_queue_release     = ena_rx_queue_release,
272 	.tx_queue_release     = ena_tx_queue_release,
273 	.dev_close            = ena_close,
274 	.dev_reset            = ena_dev_reset,
275 	.reta_update          = ena_rss_reta_update,
276 	.reta_query           = ena_rss_reta_query,
277 	.rx_queue_intr_enable = ena_rx_queue_intr_enable,
278 	.rx_queue_intr_disable = ena_rx_queue_intr_disable,
279 	.rss_hash_update      = ena_rss_hash_update,
280 	.rss_hash_conf_get    = ena_rss_hash_conf_get,
281 };
282 
283 static inline void ena_rx_mbuf_prepare(struct rte_mbuf *mbuf,
284 				       struct ena_com_rx_ctx *ena_rx_ctx,
285 				       bool fill_hash)
286 {
287 	uint64_t ol_flags = 0;
288 	uint32_t packet_type = 0;
289 
290 	if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
291 		packet_type |= RTE_PTYPE_L4_TCP;
292 	else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
293 		packet_type |= RTE_PTYPE_L4_UDP;
294 
295 	if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
296 		packet_type |= RTE_PTYPE_L3_IPV4;
297 		if (unlikely(ena_rx_ctx->l3_csum_err))
298 			ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
299 		else
300 			ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
301 	} else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
302 		packet_type |= RTE_PTYPE_L3_IPV6;
303 	}
304 
305 	if (!ena_rx_ctx->l4_csum_checked || ena_rx_ctx->frag)
306 		ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN;
307 	else
308 		if (unlikely(ena_rx_ctx->l4_csum_err))
309 			ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
310 		else
311 			ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
312 
313 	if (fill_hash &&
314 	    likely((packet_type & ENA_PTYPE_HAS_HASH) && !ena_rx_ctx->frag)) {
315 		ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
316 		mbuf->hash.rss = ena_rx_ctx->hash;
317 	}
318 
319 	mbuf->ol_flags = ol_flags;
320 	mbuf->packet_type = packet_type;
321 }
322 
323 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
324 				       struct ena_com_tx_ctx *ena_tx_ctx,
325 				       uint64_t queue_offloads,
326 				       bool disable_meta_caching)
327 {
328 	struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
329 
330 	if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
331 	    (queue_offloads & QUEUE_OFFLOADS)) {
332 		/* check if TSO is required */
333 		if ((mbuf->ol_flags & RTE_MBUF_F_TX_TCP_SEG) &&
334 		    (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_TSO)) {
335 			ena_tx_ctx->tso_enable = true;
336 
337 			ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
338 		}
339 
340 		/* check if L3 checksum is needed */
341 		if ((mbuf->ol_flags & RTE_MBUF_F_TX_IP_CKSUM) &&
342 		    (queue_offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM))
343 			ena_tx_ctx->l3_csum_enable = true;
344 
345 		if (mbuf->ol_flags & RTE_MBUF_F_TX_IPV6) {
346 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
347 		} else {
348 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
349 
350 			/* set don't fragment (DF) flag */
351 			if (mbuf->packet_type &
352 				(RTE_PTYPE_L4_NONFRAG
353 				 | RTE_PTYPE_INNER_L4_NONFRAG))
354 				ena_tx_ctx->df = true;
355 		}
356 
357 		/* check if L4 checksum is needed */
358 		if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) == RTE_MBUF_F_TX_TCP_CKSUM) &&
359 		    (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) {
360 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
361 			ena_tx_ctx->l4_csum_enable = true;
362 		} else if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) ==
363 				RTE_MBUF_F_TX_UDP_CKSUM) &&
364 				(queue_offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM)) {
365 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
366 			ena_tx_ctx->l4_csum_enable = true;
367 		} else {
368 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
369 			ena_tx_ctx->l4_csum_enable = false;
370 		}
371 
372 		ena_meta->mss = mbuf->tso_segsz;
373 		ena_meta->l3_hdr_len = mbuf->l3_len;
374 		ena_meta->l3_hdr_offset = mbuf->l2_len;
375 
376 		ena_tx_ctx->meta_valid = true;
377 	} else if (disable_meta_caching) {
378 		memset(ena_meta, 0, sizeof(*ena_meta));
379 		ena_tx_ctx->meta_valid = true;
380 	} else {
381 		ena_tx_ctx->meta_valid = false;
382 	}
383 }
384 
385 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
386 {
387 	struct ena_tx_buffer *tx_info = NULL;
388 
389 	if (likely(req_id < tx_ring->ring_size)) {
390 		tx_info = &tx_ring->tx_buffer_info[req_id];
391 		if (likely(tx_info->mbuf))
392 			return 0;
393 	}
394 
395 	if (tx_info)
396 		PMD_TX_LOG(ERR, "tx_info doesn't have valid mbuf\n");
397 	else
398 		PMD_TX_LOG(ERR, "Invalid req_id: %hu\n", req_id);
399 
400 	/* Trigger device reset */
401 	++tx_ring->tx_stats.bad_req_id;
402 	tx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID;
403 	tx_ring->adapter->trigger_reset	= true;
404 	return -EFAULT;
405 }
406 
407 static void ena_config_host_info(struct ena_com_dev *ena_dev)
408 {
409 	struct ena_admin_host_info *host_info;
410 	int rc;
411 
412 	/* Allocate only the host info */
413 	rc = ena_com_allocate_host_info(ena_dev);
414 	if (rc) {
415 		PMD_DRV_LOG(ERR, "Cannot allocate host info\n");
416 		return;
417 	}
418 
419 	host_info = ena_dev->host_attr.host_info;
420 
421 	host_info->os_type = ENA_ADMIN_OS_DPDK;
422 	host_info->kernel_ver = RTE_VERSION;
423 	strlcpy((char *)host_info->kernel_ver_str, rte_version(),
424 		sizeof(host_info->kernel_ver_str));
425 	host_info->os_dist = RTE_VERSION;
426 	strlcpy((char *)host_info->os_dist_str, rte_version(),
427 		sizeof(host_info->os_dist_str));
428 	host_info->driver_version =
429 		(DRV_MODULE_VER_MAJOR) |
430 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
431 		(DRV_MODULE_VER_SUBMINOR <<
432 			ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
433 	host_info->num_cpus = rte_lcore_count();
434 
435 	host_info->driver_supported_features =
436 		ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK |
437 		ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK;
438 
439 	rc = ena_com_set_host_attributes(ena_dev);
440 	if (rc) {
441 		if (rc == -ENA_COM_UNSUPPORTED)
442 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
443 		else
444 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
445 
446 		goto err;
447 	}
448 
449 	return;
450 
451 err:
452 	ena_com_delete_host_info(ena_dev);
453 }
454 
455 /* This function calculates the number of xstats based on the current config */
456 static unsigned int ena_xstats_calc_num(struct rte_eth_dev_data *data)
457 {
458 	return ENA_STATS_ARRAY_GLOBAL + ENA_STATS_ARRAY_ENI +
459 		(data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
460 		(data->nb_rx_queues * ENA_STATS_ARRAY_RX);
461 }
462 
463 static void ena_config_debug_area(struct ena_adapter *adapter)
464 {
465 	u32 debug_area_size;
466 	int rc, ss_count;
467 
468 	ss_count = ena_xstats_calc_num(adapter->edev_data);
469 
470 	/* allocate 32 bytes for each string and 64bit for the value */
471 	debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
472 
473 	rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
474 	if (rc) {
475 		PMD_DRV_LOG(ERR, "Cannot allocate debug area\n");
476 		return;
477 	}
478 
479 	rc = ena_com_set_host_attributes(&adapter->ena_dev);
480 	if (rc) {
481 		if (rc == -ENA_COM_UNSUPPORTED)
482 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
483 		else
484 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
485 
486 		goto err;
487 	}
488 
489 	return;
490 err:
491 	ena_com_delete_debug_area(&adapter->ena_dev);
492 }
493 
494 static int ena_close(struct rte_eth_dev *dev)
495 {
496 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
497 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
498 	struct ena_adapter *adapter = dev->data->dev_private;
499 	int ret = 0;
500 
501 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
502 		return 0;
503 
504 	if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
505 		ret = ena_stop(dev);
506 	adapter->state = ENA_ADAPTER_STATE_CLOSED;
507 
508 	ena_rx_queue_release_all(dev);
509 	ena_tx_queue_release_all(dev);
510 
511 	rte_free(adapter->drv_stats);
512 	adapter->drv_stats = NULL;
513 
514 	rte_intr_disable(intr_handle);
515 	rte_intr_callback_unregister(intr_handle,
516 				     ena_interrupt_handler_rte,
517 				     dev);
518 
519 	/*
520 	 * MAC is not allocated dynamically. Setting NULL should prevent from
521 	 * release of the resource in the rte_eth_dev_release_port().
522 	 */
523 	dev->data->mac_addrs = NULL;
524 
525 	return ret;
526 }
527 
528 static int
529 ena_dev_reset(struct rte_eth_dev *dev)
530 {
531 	int rc = 0;
532 
533 	/* Cannot release memory in secondary process */
534 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
535 		PMD_DRV_LOG(WARNING, "dev_reset not supported in secondary.\n");
536 		return -EPERM;
537 	}
538 
539 	ena_destroy_device(dev);
540 	rc = eth_ena_dev_init(dev);
541 	if (rc)
542 		PMD_INIT_LOG(CRIT, "Cannot initialize device\n");
543 
544 	return rc;
545 }
546 
547 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
548 {
549 	int nb_queues = dev->data->nb_rx_queues;
550 	int i;
551 
552 	for (i = 0; i < nb_queues; i++)
553 		ena_rx_queue_release(dev, i);
554 }
555 
556 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
557 {
558 	int nb_queues = dev->data->nb_tx_queues;
559 	int i;
560 
561 	for (i = 0; i < nb_queues; i++)
562 		ena_tx_queue_release(dev, i);
563 }
564 
565 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
566 {
567 	struct ena_ring *ring = dev->data->rx_queues[qid];
568 
569 	/* Free ring resources */
570 	if (ring->rx_buffer_info)
571 		rte_free(ring->rx_buffer_info);
572 	ring->rx_buffer_info = NULL;
573 
574 	if (ring->rx_refill_buffer)
575 		rte_free(ring->rx_refill_buffer);
576 	ring->rx_refill_buffer = NULL;
577 
578 	if (ring->empty_rx_reqs)
579 		rte_free(ring->empty_rx_reqs);
580 	ring->empty_rx_reqs = NULL;
581 
582 	ring->configured = 0;
583 
584 	PMD_DRV_LOG(NOTICE, "Rx queue %d:%d released\n",
585 		ring->port_id, ring->id);
586 }
587 
588 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
589 {
590 	struct ena_ring *ring = dev->data->tx_queues[qid];
591 
592 	/* Free ring resources */
593 	if (ring->push_buf_intermediate_buf)
594 		rte_free(ring->push_buf_intermediate_buf);
595 
596 	if (ring->tx_buffer_info)
597 		rte_free(ring->tx_buffer_info);
598 
599 	if (ring->empty_tx_reqs)
600 		rte_free(ring->empty_tx_reqs);
601 
602 	ring->empty_tx_reqs = NULL;
603 	ring->tx_buffer_info = NULL;
604 	ring->push_buf_intermediate_buf = NULL;
605 
606 	ring->configured = 0;
607 
608 	PMD_DRV_LOG(NOTICE, "Tx queue %d:%d released\n",
609 		ring->port_id, ring->id);
610 }
611 
612 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
613 {
614 	unsigned int i;
615 
616 	for (i = 0; i < ring->ring_size; ++i) {
617 		struct ena_rx_buffer *rx_info = &ring->rx_buffer_info[i];
618 		if (rx_info->mbuf) {
619 			rte_mbuf_raw_free(rx_info->mbuf);
620 			rx_info->mbuf = NULL;
621 		}
622 	}
623 }
624 
625 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
626 {
627 	unsigned int i;
628 
629 	for (i = 0; i < ring->ring_size; ++i) {
630 		struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
631 
632 		if (tx_buf->mbuf) {
633 			rte_pktmbuf_free(tx_buf->mbuf);
634 			tx_buf->mbuf = NULL;
635 		}
636 	}
637 }
638 
639 static int ena_link_update(struct rte_eth_dev *dev,
640 			   __rte_unused int wait_to_complete)
641 {
642 	struct rte_eth_link *link = &dev->data->dev_link;
643 	struct ena_adapter *adapter = dev->data->dev_private;
644 
645 	link->link_status = adapter->link_status ? RTE_ETH_LINK_UP : RTE_ETH_LINK_DOWN;
646 	link->link_speed = RTE_ETH_SPEED_NUM_NONE;
647 	link->link_duplex = RTE_ETH_LINK_FULL_DUPLEX;
648 
649 	return 0;
650 }
651 
652 static int ena_queue_start_all(struct rte_eth_dev *dev,
653 			       enum ena_ring_type ring_type)
654 {
655 	struct ena_adapter *adapter = dev->data->dev_private;
656 	struct ena_ring *queues = NULL;
657 	int nb_queues;
658 	int i = 0;
659 	int rc = 0;
660 
661 	if (ring_type == ENA_RING_TYPE_RX) {
662 		queues = adapter->rx_ring;
663 		nb_queues = dev->data->nb_rx_queues;
664 	} else {
665 		queues = adapter->tx_ring;
666 		nb_queues = dev->data->nb_tx_queues;
667 	}
668 	for (i = 0; i < nb_queues; i++) {
669 		if (queues[i].configured) {
670 			if (ring_type == ENA_RING_TYPE_RX) {
671 				ena_assert_msg(
672 					dev->data->rx_queues[i] == &queues[i],
673 					"Inconsistent state of Rx queues\n");
674 			} else {
675 				ena_assert_msg(
676 					dev->data->tx_queues[i] == &queues[i],
677 					"Inconsistent state of Tx queues\n");
678 			}
679 
680 			rc = ena_queue_start(dev, &queues[i]);
681 
682 			if (rc) {
683 				PMD_INIT_LOG(ERR,
684 					"Failed to start queue[%d] of type(%d)\n",
685 					i, ring_type);
686 				goto err;
687 			}
688 		}
689 	}
690 
691 	return 0;
692 
693 err:
694 	while (i--)
695 		if (queues[i].configured)
696 			ena_queue_stop(&queues[i]);
697 
698 	return rc;
699 }
700 
701 static int ena_check_valid_conf(struct ena_adapter *adapter)
702 {
703 	uint32_t mtu = adapter->edev_data->mtu;
704 
705 	if (mtu > adapter->max_mtu || mtu < ENA_MIN_MTU) {
706 		PMD_INIT_LOG(ERR,
707 			"Unsupported MTU of %d. Max MTU: %d, min MTU: %d\n",
708 			mtu, adapter->max_mtu, ENA_MIN_MTU);
709 		return ENA_COM_UNSUPPORTED;
710 	}
711 
712 	return 0;
713 }
714 
715 static int
716 ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx,
717 		       bool use_large_llq_hdr)
718 {
719 	struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
720 	struct ena_com_dev *ena_dev = ctx->ena_dev;
721 	uint32_t max_tx_queue_size;
722 	uint32_t max_rx_queue_size;
723 
724 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
725 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
726 			&ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
727 		max_rx_queue_size = RTE_MIN(max_queue_ext->max_rx_cq_depth,
728 			max_queue_ext->max_rx_sq_depth);
729 		max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
730 
731 		if (ena_dev->tx_mem_queue_type ==
732 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
733 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
734 				llq->max_llq_depth);
735 		} else {
736 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
737 				max_queue_ext->max_tx_sq_depth);
738 		}
739 
740 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
741 			max_queue_ext->max_per_packet_rx_descs);
742 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
743 			max_queue_ext->max_per_packet_tx_descs);
744 	} else {
745 		struct ena_admin_queue_feature_desc *max_queues =
746 			&ctx->get_feat_ctx->max_queues;
747 		max_rx_queue_size = RTE_MIN(max_queues->max_cq_depth,
748 			max_queues->max_sq_depth);
749 		max_tx_queue_size = max_queues->max_cq_depth;
750 
751 		if (ena_dev->tx_mem_queue_type ==
752 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
753 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
754 				llq->max_llq_depth);
755 		} else {
756 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
757 				max_queues->max_sq_depth);
758 		}
759 
760 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
761 			max_queues->max_packet_rx_descs);
762 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
763 			max_queues->max_packet_tx_descs);
764 	}
765 
766 	/* Round down to the nearest power of 2 */
767 	max_rx_queue_size = rte_align32prevpow2(max_rx_queue_size);
768 	max_tx_queue_size = rte_align32prevpow2(max_tx_queue_size);
769 
770 	if (use_large_llq_hdr) {
771 		if ((llq->entry_size_ctrl_supported &
772 		     ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
773 		    (ena_dev->tx_mem_queue_type ==
774 		     ENA_ADMIN_PLACEMENT_POLICY_DEV)) {
775 			max_tx_queue_size /= 2;
776 			PMD_INIT_LOG(INFO,
777 				"Forcing large headers and decreasing maximum Tx queue size to %d\n",
778 				max_tx_queue_size);
779 		} else {
780 			PMD_INIT_LOG(ERR,
781 				"Forcing large headers failed: LLQ is disabled or device does not support large headers\n");
782 		}
783 	}
784 
785 	if (unlikely(max_rx_queue_size == 0 || max_tx_queue_size == 0)) {
786 		PMD_INIT_LOG(ERR, "Invalid queue size\n");
787 		return -EFAULT;
788 	}
789 
790 	ctx->max_tx_queue_size = max_tx_queue_size;
791 	ctx->max_rx_queue_size = max_rx_queue_size;
792 
793 	return 0;
794 }
795 
796 static void ena_stats_restart(struct rte_eth_dev *dev)
797 {
798 	struct ena_adapter *adapter = dev->data->dev_private;
799 
800 	rte_atomic64_init(&adapter->drv_stats->ierrors);
801 	rte_atomic64_init(&adapter->drv_stats->oerrors);
802 	rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
803 	adapter->drv_stats->rx_drops = 0;
804 }
805 
806 static int ena_stats_get(struct rte_eth_dev *dev,
807 			  struct rte_eth_stats *stats)
808 {
809 	struct ena_admin_basic_stats ena_stats;
810 	struct ena_adapter *adapter = dev->data->dev_private;
811 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
812 	int rc;
813 	int i;
814 	int max_rings_stats;
815 
816 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
817 		return -ENOTSUP;
818 
819 	memset(&ena_stats, 0, sizeof(ena_stats));
820 
821 	rte_spinlock_lock(&adapter->admin_lock);
822 	rc = ena_com_get_dev_basic_stats(ena_dev, &ena_stats);
823 	rte_spinlock_unlock(&adapter->admin_lock);
824 	if (unlikely(rc)) {
825 		PMD_DRV_LOG(ERR, "Could not retrieve statistics from ENA\n");
826 		return rc;
827 	}
828 
829 	/* Set of basic statistics from ENA */
830 	stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
831 					  ena_stats.rx_pkts_low);
832 	stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
833 					  ena_stats.tx_pkts_low);
834 	stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
835 					ena_stats.rx_bytes_low);
836 	stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
837 					ena_stats.tx_bytes_low);
838 
839 	/* Driver related stats */
840 	stats->imissed = adapter->drv_stats->rx_drops;
841 	stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
842 	stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
843 	stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
844 
845 	max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
846 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
847 	for (i = 0; i < max_rings_stats; ++i) {
848 		struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
849 
850 		stats->q_ibytes[i] = rx_stats->bytes;
851 		stats->q_ipackets[i] = rx_stats->cnt;
852 		stats->q_errors[i] = rx_stats->bad_desc_num +
853 			rx_stats->bad_req_id;
854 	}
855 
856 	max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
857 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
858 	for (i = 0; i < max_rings_stats; ++i) {
859 		struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
860 
861 		stats->q_obytes[i] = tx_stats->bytes;
862 		stats->q_opackets[i] = tx_stats->cnt;
863 	}
864 
865 	return 0;
866 }
867 
868 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
869 {
870 	struct ena_adapter *adapter;
871 	struct ena_com_dev *ena_dev;
872 	int rc = 0;
873 
874 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
875 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
876 	adapter = dev->data->dev_private;
877 
878 	ena_dev = &adapter->ena_dev;
879 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
880 
881 	if (mtu > adapter->max_mtu || mtu < ENA_MIN_MTU) {
882 		PMD_DRV_LOG(ERR,
883 			"Invalid MTU setting. New MTU: %d, max MTU: %d, min MTU: %d\n",
884 			mtu, adapter->max_mtu, ENA_MIN_MTU);
885 		return -EINVAL;
886 	}
887 
888 	rc = ena_com_set_dev_mtu(ena_dev, mtu);
889 	if (rc)
890 		PMD_DRV_LOG(ERR, "Could not set MTU: %d\n", mtu);
891 	else
892 		PMD_DRV_LOG(NOTICE, "MTU set to: %d\n", mtu);
893 
894 	return rc;
895 }
896 
897 static int ena_start(struct rte_eth_dev *dev)
898 {
899 	struct ena_adapter *adapter = dev->data->dev_private;
900 	uint64_t ticks;
901 	int rc = 0;
902 
903 	/* Cannot allocate memory in secondary process */
904 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
905 		PMD_DRV_LOG(WARNING, "dev_start not supported in secondary.\n");
906 		return -EPERM;
907 	}
908 
909 	rc = ena_check_valid_conf(adapter);
910 	if (rc)
911 		return rc;
912 
913 	rc = ena_setup_rx_intr(dev);
914 	if (rc)
915 		return rc;
916 
917 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
918 	if (rc)
919 		return rc;
920 
921 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
922 	if (rc)
923 		goto err_start_tx;
924 
925 	if (adapter->edev_data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG) {
926 		rc = ena_rss_configure(adapter);
927 		if (rc)
928 			goto err_rss_init;
929 	}
930 
931 	ena_stats_restart(dev);
932 
933 	adapter->timestamp_wd = rte_get_timer_cycles();
934 	adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
935 
936 	ticks = rte_get_timer_hz();
937 	rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
938 			ena_timer_wd_callback, dev);
939 
940 	++adapter->dev_stats.dev_start;
941 	adapter->state = ENA_ADAPTER_STATE_RUNNING;
942 
943 	return 0;
944 
945 err_rss_init:
946 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
947 err_start_tx:
948 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
949 	return rc;
950 }
951 
952 static int ena_stop(struct rte_eth_dev *dev)
953 {
954 	struct ena_adapter *adapter = dev->data->dev_private;
955 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
956 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
957 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
958 	int rc;
959 
960 	/* Cannot free memory in secondary process */
961 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
962 		PMD_DRV_LOG(WARNING, "dev_stop not supported in secondary.\n");
963 		return -EPERM;
964 	}
965 
966 	rte_timer_stop_sync(&adapter->timer_wd);
967 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
968 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
969 
970 	if (adapter->trigger_reset) {
971 		rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
972 		if (rc)
973 			PMD_DRV_LOG(ERR, "Device reset failed, rc: %d\n", rc);
974 	}
975 
976 	rte_intr_disable(intr_handle);
977 
978 	rte_intr_efd_disable(intr_handle);
979 	if (intr_handle->intr_vec != NULL) {
980 		rte_free(intr_handle->intr_vec);
981 		intr_handle->intr_vec = NULL;
982 	}
983 
984 	rte_intr_enable(intr_handle);
985 
986 	++adapter->dev_stats.dev_stop;
987 	adapter->state = ENA_ADAPTER_STATE_STOPPED;
988 	dev->data->dev_started = 0;
989 
990 	return 0;
991 }
992 
993 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring)
994 {
995 	struct ena_adapter *adapter = ring->adapter;
996 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
997 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
998 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
999 	struct ena_com_create_io_ctx ctx =
1000 		/* policy set to _HOST just to satisfy icc compiler */
1001 		{ ENA_ADMIN_PLACEMENT_POLICY_HOST,
1002 		  0, 0, 0, 0, 0 };
1003 	uint16_t ena_qid;
1004 	unsigned int i;
1005 	int rc;
1006 
1007 	ctx.msix_vector = -1;
1008 	if (ring->type == ENA_RING_TYPE_TX) {
1009 		ena_qid = ENA_IO_TXQ_IDX(ring->id);
1010 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1011 		ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1012 		for (i = 0; i < ring->ring_size; i++)
1013 			ring->empty_tx_reqs[i] = i;
1014 	} else {
1015 		ena_qid = ENA_IO_RXQ_IDX(ring->id);
1016 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1017 		if (rte_intr_dp_is_en(intr_handle))
1018 			ctx.msix_vector = intr_handle->intr_vec[ring->id];
1019 		for (i = 0; i < ring->ring_size; i++)
1020 			ring->empty_rx_reqs[i] = i;
1021 	}
1022 	ctx.queue_size = ring->ring_size;
1023 	ctx.qid = ena_qid;
1024 	ctx.numa_node = ring->numa_socket_id;
1025 
1026 	rc = ena_com_create_io_queue(ena_dev, &ctx);
1027 	if (rc) {
1028 		PMD_DRV_LOG(ERR,
1029 			"Failed to create IO queue[%d] (qid:%d), rc: %d\n",
1030 			ring->id, ena_qid, rc);
1031 		return rc;
1032 	}
1033 
1034 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1035 				     &ring->ena_com_io_sq,
1036 				     &ring->ena_com_io_cq);
1037 	if (rc) {
1038 		PMD_DRV_LOG(ERR,
1039 			"Failed to get IO queue[%d] handlers, rc: %d\n",
1040 			ring->id, rc);
1041 		ena_com_destroy_io_queue(ena_dev, ena_qid);
1042 		return rc;
1043 	}
1044 
1045 	if (ring->type == ENA_RING_TYPE_TX)
1046 		ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1047 
1048 	/* Start with Rx interrupts being masked. */
1049 	if (ring->type == ENA_RING_TYPE_RX && rte_intr_dp_is_en(intr_handle))
1050 		ena_rx_queue_intr_disable(dev, ring->id);
1051 
1052 	return 0;
1053 }
1054 
1055 static void ena_queue_stop(struct ena_ring *ring)
1056 {
1057 	struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
1058 
1059 	if (ring->type == ENA_RING_TYPE_RX) {
1060 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
1061 		ena_rx_queue_release_bufs(ring);
1062 	} else {
1063 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
1064 		ena_tx_queue_release_bufs(ring);
1065 	}
1066 }
1067 
1068 static void ena_queue_stop_all(struct rte_eth_dev *dev,
1069 			      enum ena_ring_type ring_type)
1070 {
1071 	struct ena_adapter *adapter = dev->data->dev_private;
1072 	struct ena_ring *queues = NULL;
1073 	uint16_t nb_queues, i;
1074 
1075 	if (ring_type == ENA_RING_TYPE_RX) {
1076 		queues = adapter->rx_ring;
1077 		nb_queues = dev->data->nb_rx_queues;
1078 	} else {
1079 		queues = adapter->tx_ring;
1080 		nb_queues = dev->data->nb_tx_queues;
1081 	}
1082 
1083 	for (i = 0; i < nb_queues; ++i)
1084 		if (queues[i].configured)
1085 			ena_queue_stop(&queues[i]);
1086 }
1087 
1088 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring)
1089 {
1090 	int rc, bufs_num;
1091 
1092 	ena_assert_msg(ring->configured == 1,
1093 		       "Trying to start unconfigured queue\n");
1094 
1095 	rc = ena_create_io_queue(dev, ring);
1096 	if (rc) {
1097 		PMD_INIT_LOG(ERR, "Failed to create IO queue\n");
1098 		return rc;
1099 	}
1100 
1101 	ring->next_to_clean = 0;
1102 	ring->next_to_use = 0;
1103 
1104 	if (ring->type == ENA_RING_TYPE_TX) {
1105 		ring->tx_stats.available_desc =
1106 			ena_com_free_q_entries(ring->ena_com_io_sq);
1107 		return 0;
1108 	}
1109 
1110 	bufs_num = ring->ring_size - 1;
1111 	rc = ena_populate_rx_queue(ring, bufs_num);
1112 	if (rc != bufs_num) {
1113 		ena_com_destroy_io_queue(&ring->adapter->ena_dev,
1114 					 ENA_IO_RXQ_IDX(ring->id));
1115 		PMD_INIT_LOG(ERR, "Failed to populate Rx ring\n");
1116 		return ENA_COM_FAULT;
1117 	}
1118 	/* Flush per-core RX buffers pools cache as they can be used on other
1119 	 * cores as well.
1120 	 */
1121 	rte_mempool_cache_flush(NULL, ring->mb_pool);
1122 
1123 	return 0;
1124 }
1125 
1126 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1127 			      uint16_t queue_idx,
1128 			      uint16_t nb_desc,
1129 			      unsigned int socket_id,
1130 			      const struct rte_eth_txconf *tx_conf)
1131 {
1132 	struct ena_ring *txq = NULL;
1133 	struct ena_adapter *adapter = dev->data->dev_private;
1134 	unsigned int i;
1135 	uint16_t dyn_thresh;
1136 
1137 	txq = &adapter->tx_ring[queue_idx];
1138 
1139 	if (txq->configured) {
1140 		PMD_DRV_LOG(CRIT,
1141 			"API violation. Queue[%d] is already configured\n",
1142 			queue_idx);
1143 		return ENA_COM_FAULT;
1144 	}
1145 
1146 	if (!rte_is_power_of_2(nb_desc)) {
1147 		PMD_DRV_LOG(ERR,
1148 			"Unsupported size of Tx queue: %d is not a power of 2.\n",
1149 			nb_desc);
1150 		return -EINVAL;
1151 	}
1152 
1153 	if (nb_desc > adapter->max_tx_ring_size) {
1154 		PMD_DRV_LOG(ERR,
1155 			"Unsupported size of Tx queue (max size: %d)\n",
1156 			adapter->max_tx_ring_size);
1157 		return -EINVAL;
1158 	}
1159 
1160 	txq->port_id = dev->data->port_id;
1161 	txq->next_to_clean = 0;
1162 	txq->next_to_use = 0;
1163 	txq->ring_size = nb_desc;
1164 	txq->size_mask = nb_desc - 1;
1165 	txq->numa_socket_id = socket_id;
1166 	txq->pkts_without_db = false;
1167 	txq->last_cleanup_ticks = 0;
1168 
1169 	txq->tx_buffer_info = rte_zmalloc_socket("txq->tx_buffer_info",
1170 		sizeof(struct ena_tx_buffer) * txq->ring_size,
1171 		RTE_CACHE_LINE_SIZE,
1172 		socket_id);
1173 	if (!txq->tx_buffer_info) {
1174 		PMD_DRV_LOG(ERR,
1175 			"Failed to allocate memory for Tx buffer info\n");
1176 		return -ENOMEM;
1177 	}
1178 
1179 	txq->empty_tx_reqs = rte_zmalloc_socket("txq->empty_tx_reqs",
1180 		sizeof(uint16_t) * txq->ring_size,
1181 		RTE_CACHE_LINE_SIZE,
1182 		socket_id);
1183 	if (!txq->empty_tx_reqs) {
1184 		PMD_DRV_LOG(ERR,
1185 			"Failed to allocate memory for empty Tx requests\n");
1186 		rte_free(txq->tx_buffer_info);
1187 		return -ENOMEM;
1188 	}
1189 
1190 	txq->push_buf_intermediate_buf =
1191 		rte_zmalloc_socket("txq->push_buf_intermediate_buf",
1192 			txq->tx_max_header_size,
1193 			RTE_CACHE_LINE_SIZE,
1194 			socket_id);
1195 	if (!txq->push_buf_intermediate_buf) {
1196 		PMD_DRV_LOG(ERR, "Failed to alloc push buffer for LLQ\n");
1197 		rte_free(txq->tx_buffer_info);
1198 		rte_free(txq->empty_tx_reqs);
1199 		return -ENOMEM;
1200 	}
1201 
1202 	for (i = 0; i < txq->ring_size; i++)
1203 		txq->empty_tx_reqs[i] = i;
1204 
1205 	txq->offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1206 
1207 	/* Check if caller provided the Tx cleanup threshold value. */
1208 	if (tx_conf->tx_free_thresh != 0) {
1209 		txq->tx_free_thresh = tx_conf->tx_free_thresh;
1210 	} else {
1211 		dyn_thresh = txq->ring_size -
1212 			txq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1213 		txq->tx_free_thresh = RTE_MAX(dyn_thresh,
1214 			txq->ring_size - ENA_REFILL_THRESH_PACKET);
1215 	}
1216 
1217 	txq->missing_tx_completion_threshold =
1218 		RTE_MIN(txq->ring_size / 2, ENA_DEFAULT_MISSING_COMP);
1219 
1220 	/* Store pointer to this queue in upper layer */
1221 	txq->configured = 1;
1222 	dev->data->tx_queues[queue_idx] = txq;
1223 
1224 	return 0;
1225 }
1226 
1227 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1228 			      uint16_t queue_idx,
1229 			      uint16_t nb_desc,
1230 			      unsigned int socket_id,
1231 			      const struct rte_eth_rxconf *rx_conf,
1232 			      struct rte_mempool *mp)
1233 {
1234 	struct ena_adapter *adapter = dev->data->dev_private;
1235 	struct ena_ring *rxq = NULL;
1236 	size_t buffer_size;
1237 	int i;
1238 	uint16_t dyn_thresh;
1239 
1240 	rxq = &adapter->rx_ring[queue_idx];
1241 	if (rxq->configured) {
1242 		PMD_DRV_LOG(CRIT,
1243 			"API violation. Queue[%d] is already configured\n",
1244 			queue_idx);
1245 		return ENA_COM_FAULT;
1246 	}
1247 
1248 	if (!rte_is_power_of_2(nb_desc)) {
1249 		PMD_DRV_LOG(ERR,
1250 			"Unsupported size of Rx queue: %d is not a power of 2.\n",
1251 			nb_desc);
1252 		return -EINVAL;
1253 	}
1254 
1255 	if (nb_desc > adapter->max_rx_ring_size) {
1256 		PMD_DRV_LOG(ERR,
1257 			"Unsupported size of Rx queue (max size: %d)\n",
1258 			adapter->max_rx_ring_size);
1259 		return -EINVAL;
1260 	}
1261 
1262 	/* ENA isn't supporting buffers smaller than 1400 bytes */
1263 	buffer_size = rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
1264 	if (buffer_size < ENA_RX_BUF_MIN_SIZE) {
1265 		PMD_DRV_LOG(ERR,
1266 			"Unsupported size of Rx buffer: %zu (min size: %d)\n",
1267 			buffer_size, ENA_RX_BUF_MIN_SIZE);
1268 		return -EINVAL;
1269 	}
1270 
1271 	rxq->port_id = dev->data->port_id;
1272 	rxq->next_to_clean = 0;
1273 	rxq->next_to_use = 0;
1274 	rxq->ring_size = nb_desc;
1275 	rxq->size_mask = nb_desc - 1;
1276 	rxq->numa_socket_id = socket_id;
1277 	rxq->mb_pool = mp;
1278 
1279 	rxq->rx_buffer_info = rte_zmalloc_socket("rxq->buffer_info",
1280 		sizeof(struct ena_rx_buffer) * nb_desc,
1281 		RTE_CACHE_LINE_SIZE,
1282 		socket_id);
1283 	if (!rxq->rx_buffer_info) {
1284 		PMD_DRV_LOG(ERR,
1285 			"Failed to allocate memory for Rx buffer info\n");
1286 		return -ENOMEM;
1287 	}
1288 
1289 	rxq->rx_refill_buffer = rte_zmalloc_socket("rxq->rx_refill_buffer",
1290 		sizeof(struct rte_mbuf *) * nb_desc,
1291 		RTE_CACHE_LINE_SIZE,
1292 		socket_id);
1293 	if (!rxq->rx_refill_buffer) {
1294 		PMD_DRV_LOG(ERR,
1295 			"Failed to allocate memory for Rx refill buffer\n");
1296 		rte_free(rxq->rx_buffer_info);
1297 		rxq->rx_buffer_info = NULL;
1298 		return -ENOMEM;
1299 	}
1300 
1301 	rxq->empty_rx_reqs = rte_zmalloc_socket("rxq->empty_rx_reqs",
1302 		sizeof(uint16_t) * nb_desc,
1303 		RTE_CACHE_LINE_SIZE,
1304 		socket_id);
1305 	if (!rxq->empty_rx_reqs) {
1306 		PMD_DRV_LOG(ERR,
1307 			"Failed to allocate memory for empty Rx requests\n");
1308 		rte_free(rxq->rx_buffer_info);
1309 		rxq->rx_buffer_info = NULL;
1310 		rte_free(rxq->rx_refill_buffer);
1311 		rxq->rx_refill_buffer = NULL;
1312 		return -ENOMEM;
1313 	}
1314 
1315 	for (i = 0; i < nb_desc; i++)
1316 		rxq->empty_rx_reqs[i] = i;
1317 
1318 	rxq->offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1319 
1320 	if (rx_conf->rx_free_thresh != 0) {
1321 		rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1322 	} else {
1323 		dyn_thresh = rxq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1324 		rxq->rx_free_thresh = RTE_MIN(dyn_thresh,
1325 			(uint16_t)(ENA_REFILL_THRESH_PACKET));
1326 	}
1327 
1328 	/* Store pointer to this queue in upper layer */
1329 	rxq->configured = 1;
1330 	dev->data->rx_queues[queue_idx] = rxq;
1331 
1332 	return 0;
1333 }
1334 
1335 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
1336 				  struct rte_mbuf *mbuf, uint16_t id)
1337 {
1338 	struct ena_com_buf ebuf;
1339 	int rc;
1340 
1341 	/* prepare physical address for DMA transaction */
1342 	ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1343 	ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1344 
1345 	/* pass resource to device */
1346 	rc = ena_com_add_single_rx_desc(io_sq, &ebuf, id);
1347 	if (unlikely(rc != 0))
1348 		PMD_RX_LOG(WARNING, "Failed adding Rx desc\n");
1349 
1350 	return rc;
1351 }
1352 
1353 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1354 {
1355 	unsigned int i;
1356 	int rc;
1357 	uint16_t next_to_use = rxq->next_to_use;
1358 	uint16_t req_id;
1359 #ifdef RTE_ETHDEV_DEBUG_RX
1360 	uint16_t in_use;
1361 #endif
1362 	struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1363 
1364 	if (unlikely(!count))
1365 		return 0;
1366 
1367 #ifdef RTE_ETHDEV_DEBUG_RX
1368 	in_use = rxq->ring_size - 1 -
1369 		ena_com_free_q_entries(rxq->ena_com_io_sq);
1370 	if (unlikely((in_use + count) >= rxq->ring_size))
1371 		PMD_RX_LOG(ERR, "Bad Rx ring state\n");
1372 #endif
1373 
1374 	/* get resources for incoming packets */
1375 	rc = rte_pktmbuf_alloc_bulk(rxq->mb_pool, mbufs, count);
1376 	if (unlikely(rc < 0)) {
1377 		rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1378 		++rxq->rx_stats.mbuf_alloc_fail;
1379 		PMD_RX_LOG(DEBUG, "There are not enough free buffers\n");
1380 		return 0;
1381 	}
1382 
1383 	for (i = 0; i < count; i++) {
1384 		struct rte_mbuf *mbuf = mbufs[i];
1385 		struct ena_rx_buffer *rx_info;
1386 
1387 		if (likely((i + 4) < count))
1388 			rte_prefetch0(mbufs[i + 4]);
1389 
1390 		req_id = rxq->empty_rx_reqs[next_to_use];
1391 		rx_info = &rxq->rx_buffer_info[req_id];
1392 
1393 		rc = ena_add_single_rx_desc(rxq->ena_com_io_sq, mbuf, req_id);
1394 		if (unlikely(rc != 0))
1395 			break;
1396 
1397 		rx_info->mbuf = mbuf;
1398 		next_to_use = ENA_IDX_NEXT_MASKED(next_to_use, rxq->size_mask);
1399 	}
1400 
1401 	if (unlikely(i < count)) {
1402 		PMD_RX_LOG(WARNING,
1403 			"Refilled Rx queue[%d] with only %d/%d buffers\n",
1404 			rxq->id, i, count);
1405 		rte_pktmbuf_free_bulk(&mbufs[i], count - i);
1406 		++rxq->rx_stats.refill_partial;
1407 	}
1408 
1409 	/* When we submitted free recources to device... */
1410 	if (likely(i > 0)) {
1411 		/* ...let HW know that it can fill buffers with data. */
1412 		ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1413 
1414 		rxq->next_to_use = next_to_use;
1415 	}
1416 
1417 	return i;
1418 }
1419 
1420 static int ena_device_init(struct ena_com_dev *ena_dev,
1421 			   struct rte_pci_device *pdev,
1422 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
1423 			   bool *wd_state)
1424 {
1425 	uint32_t aenq_groups;
1426 	int rc;
1427 	bool readless_supported;
1428 
1429 	/* Initialize mmio registers */
1430 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
1431 	if (rc) {
1432 		PMD_DRV_LOG(ERR, "Failed to init MMIO read less\n");
1433 		return rc;
1434 	}
1435 
1436 	/* The PCIe configuration space revision id indicate if mmio reg
1437 	 * read is disabled.
1438 	 */
1439 	readless_supported = !(pdev->id.class_id & ENA_MMIO_DISABLE_REG_READ);
1440 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1441 
1442 	/* reset device */
1443 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1444 	if (rc) {
1445 		PMD_DRV_LOG(ERR, "Cannot reset device\n");
1446 		goto err_mmio_read_less;
1447 	}
1448 
1449 	/* check FW version */
1450 	rc = ena_com_validate_version(ena_dev);
1451 	if (rc) {
1452 		PMD_DRV_LOG(ERR, "Device version is too low\n");
1453 		goto err_mmio_read_less;
1454 	}
1455 
1456 	ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1457 
1458 	/* ENA device administration layer init */
1459 	rc = ena_com_admin_init(ena_dev, &aenq_handlers);
1460 	if (rc) {
1461 		PMD_DRV_LOG(ERR,
1462 			"Cannot initialize ENA admin queue\n");
1463 		goto err_mmio_read_less;
1464 	}
1465 
1466 	/* To enable the msix interrupts the driver needs to know the number
1467 	 * of queues. So the driver uses polling mode to retrieve this
1468 	 * information.
1469 	 */
1470 	ena_com_set_admin_polling_mode(ena_dev, true);
1471 
1472 	ena_config_host_info(ena_dev);
1473 
1474 	/* Get Device Attributes and features */
1475 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1476 	if (rc) {
1477 		PMD_DRV_LOG(ERR,
1478 			"Cannot get attribute for ENA device, rc: %d\n", rc);
1479 		goto err_admin_init;
1480 	}
1481 
1482 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1483 		      BIT(ENA_ADMIN_NOTIFICATION) |
1484 		      BIT(ENA_ADMIN_KEEP_ALIVE) |
1485 		      BIT(ENA_ADMIN_FATAL_ERROR) |
1486 		      BIT(ENA_ADMIN_WARNING);
1487 
1488 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
1489 	rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
1490 	if (rc) {
1491 		PMD_DRV_LOG(ERR, "Cannot configure AENQ groups, rc: %d\n", rc);
1492 		goto err_admin_init;
1493 	}
1494 
1495 	*wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
1496 
1497 	return 0;
1498 
1499 err_admin_init:
1500 	ena_com_admin_destroy(ena_dev);
1501 
1502 err_mmio_read_less:
1503 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1504 
1505 	return rc;
1506 }
1507 
1508 static void ena_interrupt_handler_rte(void *cb_arg)
1509 {
1510 	struct rte_eth_dev *dev = cb_arg;
1511 	struct ena_adapter *adapter = dev->data->dev_private;
1512 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1513 
1514 	ena_com_admin_q_comp_intr_handler(ena_dev);
1515 	if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED))
1516 		ena_com_aenq_intr_handler(ena_dev, dev);
1517 }
1518 
1519 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1520 {
1521 	if (!adapter->wd_state)
1522 		return;
1523 
1524 	if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1525 		return;
1526 
1527 	if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1528 	    adapter->keep_alive_timeout)) {
1529 		PMD_DRV_LOG(ERR, "Keep alive timeout\n");
1530 		adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
1531 		adapter->trigger_reset = true;
1532 		++adapter->dev_stats.wd_expired;
1533 	}
1534 }
1535 
1536 /* Check if admin queue is enabled */
1537 static void check_for_admin_com_state(struct ena_adapter *adapter)
1538 {
1539 	if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1540 		PMD_DRV_LOG(ERR, "ENA admin queue is not in running state\n");
1541 		adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
1542 		adapter->trigger_reset = true;
1543 	}
1544 }
1545 
1546 static int check_for_tx_completion_in_queue(struct ena_adapter *adapter,
1547 					    struct ena_ring *tx_ring)
1548 {
1549 	struct ena_tx_buffer *tx_buf;
1550 	uint64_t timestamp;
1551 	uint64_t completion_delay;
1552 	uint32_t missed_tx = 0;
1553 	unsigned int i;
1554 	int rc = 0;
1555 
1556 	for (i = 0; i < tx_ring->ring_size; ++i) {
1557 		tx_buf = &tx_ring->tx_buffer_info[i];
1558 		timestamp = tx_buf->timestamp;
1559 
1560 		if (timestamp == 0)
1561 			continue;
1562 
1563 		completion_delay = rte_get_timer_cycles() - timestamp;
1564 		if (completion_delay > adapter->missing_tx_completion_to) {
1565 			if (unlikely(!tx_buf->print_once)) {
1566 				PMD_TX_LOG(WARNING,
1567 					"Found a Tx that wasn't completed on time, qid %d, index %d. "
1568 					"Missing Tx outstanding for %" PRIu64 " msecs.\n",
1569 					tx_ring->id, i,	completion_delay /
1570 					rte_get_timer_hz() * 1000);
1571 				tx_buf->print_once = true;
1572 			}
1573 			++missed_tx;
1574 		}
1575 	}
1576 
1577 	if (unlikely(missed_tx > tx_ring->missing_tx_completion_threshold)) {
1578 		PMD_DRV_LOG(ERR,
1579 			"The number of lost Tx completions is above the threshold (%d > %d). "
1580 			"Trigger the device reset.\n",
1581 			missed_tx,
1582 			tx_ring->missing_tx_completion_threshold);
1583 		adapter->reset_reason = ENA_REGS_RESET_MISS_TX_CMPL;
1584 		adapter->trigger_reset = true;
1585 		rc = -EIO;
1586 	}
1587 
1588 	tx_ring->tx_stats.missed_tx += missed_tx;
1589 
1590 	return rc;
1591 }
1592 
1593 static void check_for_tx_completions(struct ena_adapter *adapter)
1594 {
1595 	struct ena_ring *tx_ring;
1596 	uint64_t tx_cleanup_delay;
1597 	size_t qid;
1598 	int budget;
1599 	uint16_t nb_tx_queues = adapter->edev_data->nb_tx_queues;
1600 
1601 	if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT)
1602 		return;
1603 
1604 	nb_tx_queues = adapter->edev_data->nb_tx_queues;
1605 	budget = adapter->missing_tx_completion_budget;
1606 
1607 	qid = adapter->last_tx_comp_qid;
1608 	while (budget-- > 0) {
1609 		tx_ring = &adapter->tx_ring[qid];
1610 
1611 		/* Tx cleanup is called only by the burst function and can be
1612 		 * called dynamically by the application. Also cleanup is
1613 		 * limited by the threshold. To avoid false detection of the
1614 		 * missing HW Tx completion, get the delay since last cleanup
1615 		 * function was called.
1616 		 */
1617 		tx_cleanup_delay = rte_get_timer_cycles() -
1618 			tx_ring->last_cleanup_ticks;
1619 		if (tx_cleanup_delay < adapter->tx_cleanup_stall_delay)
1620 			check_for_tx_completion_in_queue(adapter, tx_ring);
1621 		qid = (qid + 1) % nb_tx_queues;
1622 	}
1623 
1624 	adapter->last_tx_comp_qid = qid;
1625 }
1626 
1627 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
1628 				  void *arg)
1629 {
1630 	struct rte_eth_dev *dev = arg;
1631 	struct ena_adapter *adapter = dev->data->dev_private;
1632 
1633 	check_for_missing_keep_alive(adapter);
1634 	check_for_admin_com_state(adapter);
1635 	check_for_tx_completions(adapter);
1636 
1637 	if (unlikely(adapter->trigger_reset)) {
1638 		PMD_DRV_LOG(ERR, "Trigger reset is on\n");
1639 		rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
1640 			NULL);
1641 	}
1642 }
1643 
1644 static inline void
1645 set_default_llq_configurations(struct ena_llq_configurations *llq_config,
1646 			       struct ena_admin_feature_llq_desc *llq,
1647 			       bool use_large_llq_hdr)
1648 {
1649 	llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
1650 	llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
1651 	llq_config->llq_num_decs_before_header =
1652 		ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
1653 
1654 	if (use_large_llq_hdr &&
1655 	    (llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B)) {
1656 		llq_config->llq_ring_entry_size =
1657 			ENA_ADMIN_LIST_ENTRY_SIZE_256B;
1658 		llq_config->llq_ring_entry_size_value = 256;
1659 	} else {
1660 		llq_config->llq_ring_entry_size =
1661 			ENA_ADMIN_LIST_ENTRY_SIZE_128B;
1662 		llq_config->llq_ring_entry_size_value = 128;
1663 	}
1664 }
1665 
1666 static int
1667 ena_set_queues_placement_policy(struct ena_adapter *adapter,
1668 				struct ena_com_dev *ena_dev,
1669 				struct ena_admin_feature_llq_desc *llq,
1670 				struct ena_llq_configurations *llq_default_configurations)
1671 {
1672 	int rc;
1673 	u32 llq_feature_mask;
1674 
1675 	llq_feature_mask = 1 << ENA_ADMIN_LLQ;
1676 	if (!(ena_dev->supported_features & llq_feature_mask)) {
1677 		PMD_DRV_LOG(INFO,
1678 			"LLQ is not supported. Fallback to host mode policy.\n");
1679 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1680 		return 0;
1681 	}
1682 
1683 	rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
1684 	if (unlikely(rc)) {
1685 		PMD_INIT_LOG(WARNING,
1686 			"Failed to config dev mode. Fallback to host mode policy.\n");
1687 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1688 		return 0;
1689 	}
1690 
1691 	/* Nothing to config, exit */
1692 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1693 		return 0;
1694 
1695 	if (!adapter->dev_mem_base) {
1696 		PMD_DRV_LOG(ERR,
1697 			"Unable to access LLQ BAR resource. Fallback to host mode policy.\n");
1698 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1699 		return 0;
1700 	}
1701 
1702 	ena_dev->mem_bar = adapter->dev_mem_base;
1703 
1704 	return 0;
1705 }
1706 
1707 static uint32_t ena_calc_max_io_queue_num(struct ena_com_dev *ena_dev,
1708 	struct ena_com_dev_get_features_ctx *get_feat_ctx)
1709 {
1710 	uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
1711 
1712 	/* Regular queues capabilities */
1713 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1714 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1715 			&get_feat_ctx->max_queue_ext.max_queue_ext;
1716 		io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
1717 				    max_queue_ext->max_rx_cq_num);
1718 		io_tx_sq_num = max_queue_ext->max_tx_sq_num;
1719 		io_tx_cq_num = max_queue_ext->max_tx_cq_num;
1720 	} else {
1721 		struct ena_admin_queue_feature_desc *max_queues =
1722 			&get_feat_ctx->max_queues;
1723 		io_tx_sq_num = max_queues->max_sq_num;
1724 		io_tx_cq_num = max_queues->max_cq_num;
1725 		io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
1726 	}
1727 
1728 	/* In case of LLQ use the llq number in the get feature cmd */
1729 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
1730 		io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
1731 
1732 	max_num_io_queues = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
1733 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_sq_num);
1734 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_cq_num);
1735 
1736 	if (unlikely(max_num_io_queues == 0)) {
1737 		PMD_DRV_LOG(ERR, "Number of IO queues cannot not be 0\n");
1738 		return -EFAULT;
1739 	}
1740 
1741 	return max_num_io_queues;
1742 }
1743 
1744 static void
1745 ena_set_offloads(struct ena_offloads *offloads,
1746 		 struct ena_admin_feature_offload_desc *offload_desc)
1747 {
1748 	if (offload_desc->tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK)
1749 		offloads->tx_offloads |= ENA_IPV4_TSO;
1750 
1751 	/* Tx IPv4 checksum offloads */
1752 	if (offload_desc->tx &
1753 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)
1754 		offloads->tx_offloads |= ENA_L3_IPV4_CSUM;
1755 	if (offload_desc->tx &
1756 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK)
1757 		offloads->tx_offloads |= ENA_L4_IPV4_CSUM;
1758 	if (offload_desc->tx &
1759 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)
1760 		offloads->tx_offloads |= ENA_L4_IPV4_CSUM_PARTIAL;
1761 
1762 	/* Tx IPv6 checksum offloads */
1763 	if (offload_desc->tx &
1764 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK)
1765 		offloads->tx_offloads |= ENA_L4_IPV6_CSUM;
1766 	if (offload_desc->tx &
1767 	     ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)
1768 		offloads->tx_offloads |= ENA_L4_IPV6_CSUM_PARTIAL;
1769 
1770 	/* Rx IPv4 checksum offloads */
1771 	if (offload_desc->rx_supported &
1772 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)
1773 		offloads->rx_offloads |= ENA_L3_IPV4_CSUM;
1774 	if (offload_desc->rx_supported &
1775 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK)
1776 		offloads->rx_offloads |= ENA_L4_IPV4_CSUM;
1777 
1778 	/* Rx IPv6 checksum offloads */
1779 	if (offload_desc->rx_supported &
1780 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK)
1781 		offloads->rx_offloads |= ENA_L4_IPV6_CSUM;
1782 
1783 	if (offload_desc->rx_supported &
1784 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_HASH_MASK)
1785 		offloads->rx_offloads |= ENA_RX_RSS_HASH;
1786 }
1787 
1788 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
1789 {
1790 	struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
1791 	struct rte_pci_device *pci_dev;
1792 	struct rte_intr_handle *intr_handle;
1793 	struct ena_adapter *adapter = eth_dev->data->dev_private;
1794 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1795 	struct ena_com_dev_get_features_ctx get_feat_ctx;
1796 	struct ena_llq_configurations llq_config;
1797 	const char *queue_type_str;
1798 	uint32_t max_num_io_queues;
1799 	int rc;
1800 	static int adapters_found;
1801 	bool disable_meta_caching;
1802 	bool wd_state = false;
1803 
1804 	eth_dev->dev_ops = &ena_dev_ops;
1805 	eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
1806 	eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
1807 	eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
1808 
1809 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1810 		return 0;
1811 
1812 	eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
1813 
1814 	memset(adapter, 0, sizeof(struct ena_adapter));
1815 	ena_dev = &adapter->ena_dev;
1816 
1817 	adapter->edev_data = eth_dev->data;
1818 
1819 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1820 
1821 	PMD_INIT_LOG(INFO, "Initializing %x:%x:%x.%d\n",
1822 		     pci_dev->addr.domain,
1823 		     pci_dev->addr.bus,
1824 		     pci_dev->addr.devid,
1825 		     pci_dev->addr.function);
1826 
1827 	intr_handle = &pci_dev->intr_handle;
1828 
1829 	adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
1830 	adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
1831 
1832 	if (!adapter->regs) {
1833 		PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)\n",
1834 			     ENA_REGS_BAR);
1835 		return -ENXIO;
1836 	}
1837 
1838 	ena_dev->reg_bar = adapter->regs;
1839 	/* This is a dummy pointer for ena_com functions. */
1840 	ena_dev->dmadev = adapter;
1841 
1842 	adapter->id_number = adapters_found;
1843 
1844 	snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
1845 		 adapter->id_number);
1846 
1847 	rc = ena_parse_devargs(adapter, pci_dev->device.devargs);
1848 	if (rc != 0) {
1849 		PMD_INIT_LOG(CRIT, "Failed to parse devargs\n");
1850 		goto err;
1851 	}
1852 
1853 	/* device specific initialization routine */
1854 	rc = ena_device_init(ena_dev, pci_dev, &get_feat_ctx, &wd_state);
1855 	if (rc) {
1856 		PMD_INIT_LOG(CRIT, "Failed to init ENA device\n");
1857 		goto err;
1858 	}
1859 	adapter->wd_state = wd_state;
1860 
1861 	set_default_llq_configurations(&llq_config, &get_feat_ctx.llq,
1862 		adapter->use_large_llq_hdr);
1863 	rc = ena_set_queues_placement_policy(adapter, ena_dev,
1864 					     &get_feat_ctx.llq, &llq_config);
1865 	if (unlikely(rc)) {
1866 		PMD_INIT_LOG(CRIT, "Failed to set placement policy\n");
1867 		return rc;
1868 	}
1869 
1870 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1871 		queue_type_str = "Regular";
1872 	else
1873 		queue_type_str = "Low latency";
1874 	PMD_DRV_LOG(INFO, "Placement policy: %s\n", queue_type_str);
1875 
1876 	calc_queue_ctx.ena_dev = ena_dev;
1877 	calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
1878 
1879 	max_num_io_queues = ena_calc_max_io_queue_num(ena_dev, &get_feat_ctx);
1880 	rc = ena_calc_io_queue_size(&calc_queue_ctx,
1881 		adapter->use_large_llq_hdr);
1882 	if (unlikely((rc != 0) || (max_num_io_queues == 0))) {
1883 		rc = -EFAULT;
1884 		goto err_device_destroy;
1885 	}
1886 
1887 	adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
1888 	adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
1889 	adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
1890 	adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
1891 	adapter->max_num_io_queues = max_num_io_queues;
1892 
1893 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1894 		disable_meta_caching =
1895 			!!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
1896 			BIT(ENA_ADMIN_DISABLE_META_CACHING));
1897 	} else {
1898 		disable_meta_caching = false;
1899 	}
1900 
1901 	/* prepare ring structures */
1902 	ena_init_rings(adapter, disable_meta_caching);
1903 
1904 	ena_config_debug_area(adapter);
1905 
1906 	/* Set max MTU for this device */
1907 	adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
1908 
1909 	ena_set_offloads(&adapter->offloads, &get_feat_ctx.offload);
1910 
1911 	/* Copy MAC address and point DPDK to it */
1912 	eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr;
1913 	rte_ether_addr_copy((struct rte_ether_addr *)
1914 			get_feat_ctx.dev_attr.mac_addr,
1915 			(struct rte_ether_addr *)adapter->mac_addr);
1916 
1917 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
1918 	if (unlikely(rc != 0)) {
1919 		PMD_DRV_LOG(ERR, "Failed to initialize RSS in ENA device\n");
1920 		goto err_delete_debug_area;
1921 	}
1922 
1923 	adapter->drv_stats = rte_zmalloc("adapter stats",
1924 					 sizeof(*adapter->drv_stats),
1925 					 RTE_CACHE_LINE_SIZE);
1926 	if (!adapter->drv_stats) {
1927 		PMD_DRV_LOG(ERR,
1928 			"Failed to allocate memory for adapter statistics\n");
1929 		rc = -ENOMEM;
1930 		goto err_rss_destroy;
1931 	}
1932 
1933 	rte_spinlock_init(&adapter->admin_lock);
1934 
1935 	rte_intr_callback_register(intr_handle,
1936 				   ena_interrupt_handler_rte,
1937 				   eth_dev);
1938 	rte_intr_enable(intr_handle);
1939 	ena_com_set_admin_polling_mode(ena_dev, false);
1940 	ena_com_admin_aenq_enable(ena_dev);
1941 
1942 	if (adapters_found == 0)
1943 		rte_timer_subsystem_init();
1944 	rte_timer_init(&adapter->timer_wd);
1945 
1946 	adapters_found++;
1947 	adapter->state = ENA_ADAPTER_STATE_INIT;
1948 
1949 	return 0;
1950 
1951 err_rss_destroy:
1952 	ena_com_rss_destroy(ena_dev);
1953 err_delete_debug_area:
1954 	ena_com_delete_debug_area(ena_dev);
1955 
1956 err_device_destroy:
1957 	ena_com_delete_host_info(ena_dev);
1958 	ena_com_admin_destroy(ena_dev);
1959 
1960 err:
1961 	return rc;
1962 }
1963 
1964 static void ena_destroy_device(struct rte_eth_dev *eth_dev)
1965 {
1966 	struct ena_adapter *adapter = eth_dev->data->dev_private;
1967 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1968 
1969 	if (adapter->state == ENA_ADAPTER_STATE_FREE)
1970 		return;
1971 
1972 	ena_com_set_admin_running_state(ena_dev, false);
1973 
1974 	if (adapter->state != ENA_ADAPTER_STATE_CLOSED)
1975 		ena_close(eth_dev);
1976 
1977 	ena_com_rss_destroy(ena_dev);
1978 
1979 	ena_com_delete_debug_area(ena_dev);
1980 	ena_com_delete_host_info(ena_dev);
1981 
1982 	ena_com_abort_admin_commands(ena_dev);
1983 	ena_com_wait_for_abort_completion(ena_dev);
1984 	ena_com_admin_destroy(ena_dev);
1985 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1986 
1987 	adapter->state = ENA_ADAPTER_STATE_FREE;
1988 }
1989 
1990 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
1991 {
1992 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1993 		return 0;
1994 
1995 	ena_destroy_device(eth_dev);
1996 
1997 	return 0;
1998 }
1999 
2000 static int ena_dev_configure(struct rte_eth_dev *dev)
2001 {
2002 	struct ena_adapter *adapter = dev->data->dev_private;
2003 
2004 	adapter->state = ENA_ADAPTER_STATE_CONFIG;
2005 
2006 	if (dev->data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG)
2007 		dev->data->dev_conf.rxmode.offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2008 	dev->data->dev_conf.txmode.offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2009 
2010 	/* Scattered Rx cannot be turned off in the HW, so this capability must
2011 	 * be forced.
2012 	 */
2013 	dev->data->scattered_rx = 1;
2014 
2015 	adapter->last_tx_comp_qid = 0;
2016 
2017 	adapter->missing_tx_completion_budget =
2018 		RTE_MIN(ENA_MONITORED_TX_QUEUES, dev->data->nb_tx_queues);
2019 
2020 	adapter->missing_tx_completion_to = ENA_TX_TIMEOUT;
2021 	/* To avoid detection of the spurious Tx completion timeout due to
2022 	 * application not calling the Tx cleanup function, set timeout for the
2023 	 * Tx queue which should be half of the missing completion timeout for a
2024 	 * safety. If there will be a lot of missing Tx completions in the
2025 	 * queue, they will be detected sooner or later.
2026 	 */
2027 	adapter->tx_cleanup_stall_delay = adapter->missing_tx_completion_to / 2;
2028 
2029 	adapter->tx_selected_offloads = dev->data->dev_conf.txmode.offloads;
2030 	adapter->rx_selected_offloads = dev->data->dev_conf.rxmode.offloads;
2031 
2032 	return 0;
2033 }
2034 
2035 static void ena_init_rings(struct ena_adapter *adapter,
2036 			   bool disable_meta_caching)
2037 {
2038 	size_t i;
2039 
2040 	for (i = 0; i < adapter->max_num_io_queues; i++) {
2041 		struct ena_ring *ring = &adapter->tx_ring[i];
2042 
2043 		ring->configured = 0;
2044 		ring->type = ENA_RING_TYPE_TX;
2045 		ring->adapter = adapter;
2046 		ring->id = i;
2047 		ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
2048 		ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
2049 		ring->sgl_size = adapter->max_tx_sgl_size;
2050 		ring->disable_meta_caching = disable_meta_caching;
2051 	}
2052 
2053 	for (i = 0; i < adapter->max_num_io_queues; i++) {
2054 		struct ena_ring *ring = &adapter->rx_ring[i];
2055 
2056 		ring->configured = 0;
2057 		ring->type = ENA_RING_TYPE_RX;
2058 		ring->adapter = adapter;
2059 		ring->id = i;
2060 		ring->sgl_size = adapter->max_rx_sgl_size;
2061 	}
2062 }
2063 
2064 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter)
2065 {
2066 	uint64_t port_offloads = 0;
2067 
2068 	if (adapter->offloads.rx_offloads & ENA_L3_IPV4_CSUM)
2069 		port_offloads |= RTE_ETH_RX_OFFLOAD_IPV4_CKSUM;
2070 
2071 	if (adapter->offloads.rx_offloads &
2072 	    (ENA_L4_IPV4_CSUM | ENA_L4_IPV6_CSUM))
2073 		port_offloads |=
2074 			RTE_ETH_RX_OFFLOAD_UDP_CKSUM | RTE_ETH_RX_OFFLOAD_TCP_CKSUM;
2075 
2076 	if (adapter->offloads.rx_offloads & ENA_RX_RSS_HASH)
2077 		port_offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2078 
2079 	port_offloads |= RTE_ETH_RX_OFFLOAD_SCATTER;
2080 
2081 	return port_offloads;
2082 }
2083 
2084 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter)
2085 {
2086 	uint64_t port_offloads = 0;
2087 
2088 	if (adapter->offloads.tx_offloads & ENA_IPV4_TSO)
2089 		port_offloads |= RTE_ETH_TX_OFFLOAD_TCP_TSO;
2090 
2091 	if (adapter->offloads.tx_offloads & ENA_L3_IPV4_CSUM)
2092 		port_offloads |= RTE_ETH_TX_OFFLOAD_IPV4_CKSUM;
2093 	if (adapter->offloads.tx_offloads &
2094 	    (ENA_L4_IPV4_CSUM_PARTIAL | ENA_L4_IPV4_CSUM |
2095 	     ENA_L4_IPV6_CSUM | ENA_L4_IPV6_CSUM_PARTIAL))
2096 		port_offloads |=
2097 			RTE_ETH_TX_OFFLOAD_UDP_CKSUM | RTE_ETH_TX_OFFLOAD_TCP_CKSUM;
2098 
2099 	port_offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2100 
2101 	return port_offloads;
2102 }
2103 
2104 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter)
2105 {
2106 	RTE_SET_USED(adapter);
2107 
2108 	return 0;
2109 }
2110 
2111 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter)
2112 {
2113 	RTE_SET_USED(adapter);
2114 
2115 	return 0;
2116 }
2117 
2118 static int ena_infos_get(struct rte_eth_dev *dev,
2119 			  struct rte_eth_dev_info *dev_info)
2120 {
2121 	struct ena_adapter *adapter;
2122 	struct ena_com_dev *ena_dev;
2123 
2124 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
2125 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
2126 	adapter = dev->data->dev_private;
2127 
2128 	ena_dev = &adapter->ena_dev;
2129 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
2130 
2131 	dev_info->speed_capa =
2132 			RTE_ETH_LINK_SPEED_1G   |
2133 			RTE_ETH_LINK_SPEED_2_5G |
2134 			RTE_ETH_LINK_SPEED_5G   |
2135 			RTE_ETH_LINK_SPEED_10G  |
2136 			RTE_ETH_LINK_SPEED_25G  |
2137 			RTE_ETH_LINK_SPEED_40G  |
2138 			RTE_ETH_LINK_SPEED_50G  |
2139 			RTE_ETH_LINK_SPEED_100G;
2140 
2141 	/* Inform framework about available features */
2142 	dev_info->rx_offload_capa = ena_get_rx_port_offloads(adapter);
2143 	dev_info->tx_offload_capa = ena_get_tx_port_offloads(adapter);
2144 	dev_info->rx_queue_offload_capa = ena_get_rx_queue_offloads(adapter);
2145 	dev_info->tx_queue_offload_capa = ena_get_tx_queue_offloads(adapter);
2146 
2147 	dev_info->flow_type_rss_offloads = ENA_ALL_RSS_HF;
2148 	dev_info->hash_key_size = ENA_HASH_KEY_SIZE;
2149 
2150 	dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
2151 	dev_info->max_rx_pktlen  = adapter->max_mtu + RTE_ETHER_HDR_LEN +
2152 		RTE_ETHER_CRC_LEN;
2153 	dev_info->min_mtu = ENA_MIN_MTU;
2154 	dev_info->max_mtu = adapter->max_mtu;
2155 	dev_info->max_mac_addrs = 1;
2156 
2157 	dev_info->max_rx_queues = adapter->max_num_io_queues;
2158 	dev_info->max_tx_queues = adapter->max_num_io_queues;
2159 	dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
2160 
2161 	dev_info->rx_desc_lim.nb_max = adapter->max_rx_ring_size;
2162 	dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2163 	dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2164 					adapter->max_rx_sgl_size);
2165 	dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2166 					adapter->max_rx_sgl_size);
2167 
2168 	dev_info->tx_desc_lim.nb_max = adapter->max_tx_ring_size;
2169 	dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2170 	dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2171 					adapter->max_tx_sgl_size);
2172 	dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2173 					adapter->max_tx_sgl_size);
2174 
2175 	dev_info->default_rxportconf.ring_size = ENA_DEFAULT_RING_SIZE;
2176 	dev_info->default_txportconf.ring_size = ENA_DEFAULT_RING_SIZE;
2177 
2178 	return 0;
2179 }
2180 
2181 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len)
2182 {
2183 	mbuf->data_len = len;
2184 	mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2185 	mbuf->refcnt = 1;
2186 	mbuf->next = NULL;
2187 }
2188 
2189 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
2190 				    struct ena_com_rx_buf_info *ena_bufs,
2191 				    uint32_t descs,
2192 				    uint16_t *next_to_clean,
2193 				    uint8_t offset)
2194 {
2195 	struct rte_mbuf *mbuf;
2196 	struct rte_mbuf *mbuf_head;
2197 	struct ena_rx_buffer *rx_info;
2198 	int rc;
2199 	uint16_t ntc, len, req_id, buf = 0;
2200 
2201 	if (unlikely(descs == 0))
2202 		return NULL;
2203 
2204 	ntc = *next_to_clean;
2205 
2206 	len = ena_bufs[buf].len;
2207 	req_id = ena_bufs[buf].req_id;
2208 
2209 	rx_info = &rx_ring->rx_buffer_info[req_id];
2210 
2211 	mbuf = rx_info->mbuf;
2212 	RTE_ASSERT(mbuf != NULL);
2213 
2214 	ena_init_rx_mbuf(mbuf, len);
2215 
2216 	/* Fill the mbuf head with the data specific for 1st segment. */
2217 	mbuf_head = mbuf;
2218 	mbuf_head->nb_segs = descs;
2219 	mbuf_head->port = rx_ring->port_id;
2220 	mbuf_head->pkt_len = len;
2221 	mbuf_head->data_off += offset;
2222 
2223 	rx_info->mbuf = NULL;
2224 	rx_ring->empty_rx_reqs[ntc] = req_id;
2225 	ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2226 
2227 	while (--descs) {
2228 		++buf;
2229 		len = ena_bufs[buf].len;
2230 		req_id = ena_bufs[buf].req_id;
2231 
2232 		rx_info = &rx_ring->rx_buffer_info[req_id];
2233 		RTE_ASSERT(rx_info->mbuf != NULL);
2234 
2235 		if (unlikely(len == 0)) {
2236 			/*
2237 			 * Some devices can pass descriptor with the length 0.
2238 			 * To avoid confusion, the PMD is simply putting the
2239 			 * descriptor back, as it was never used. We'll avoid
2240 			 * mbuf allocation that way.
2241 			 */
2242 			rc = ena_add_single_rx_desc(rx_ring->ena_com_io_sq,
2243 				rx_info->mbuf, req_id);
2244 			if (unlikely(rc != 0)) {
2245 				/* Free the mbuf in case of an error. */
2246 				rte_mbuf_raw_free(rx_info->mbuf);
2247 			} else {
2248 				/*
2249 				 * If there was no error, just exit the loop as
2250 				 * 0 length descriptor is always the last one.
2251 				 */
2252 				break;
2253 			}
2254 		} else {
2255 			/* Create an mbuf chain. */
2256 			mbuf->next = rx_info->mbuf;
2257 			mbuf = mbuf->next;
2258 
2259 			ena_init_rx_mbuf(mbuf, len);
2260 			mbuf_head->pkt_len += len;
2261 		}
2262 
2263 		/*
2264 		 * Mark the descriptor as depleted and perform necessary
2265 		 * cleanup.
2266 		 * This code will execute in two cases:
2267 		 *  1. Descriptor len was greater than 0 - normal situation.
2268 		 *  2. Descriptor len was 0 and we failed to add the descriptor
2269 		 *     to the device. In that situation, we should try to add
2270 		 *     the mbuf again in the populate routine and mark the
2271 		 *     descriptor as used up by the device.
2272 		 */
2273 		rx_info->mbuf = NULL;
2274 		rx_ring->empty_rx_reqs[ntc] = req_id;
2275 		ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2276 	}
2277 
2278 	*next_to_clean = ntc;
2279 
2280 	return mbuf_head;
2281 }
2282 
2283 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
2284 				  uint16_t nb_pkts)
2285 {
2286 	struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
2287 	unsigned int free_queue_entries;
2288 	uint16_t next_to_clean = rx_ring->next_to_clean;
2289 	uint16_t descs_in_use;
2290 	struct rte_mbuf *mbuf;
2291 	uint16_t completed;
2292 	struct ena_com_rx_ctx ena_rx_ctx;
2293 	int i, rc = 0;
2294 	bool fill_hash;
2295 
2296 #ifdef RTE_ETHDEV_DEBUG_RX
2297 	/* Check adapter state */
2298 	if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2299 		PMD_RX_LOG(ALERT,
2300 			"Trying to receive pkts while device is NOT running\n");
2301 		return 0;
2302 	}
2303 #endif
2304 
2305 	fill_hash = rx_ring->offloads & RTE_ETH_RX_OFFLOAD_RSS_HASH;
2306 
2307 	descs_in_use = rx_ring->ring_size -
2308 		ena_com_free_q_entries(rx_ring->ena_com_io_sq) - 1;
2309 	nb_pkts = RTE_MIN(descs_in_use, nb_pkts);
2310 
2311 	for (completed = 0; completed < nb_pkts; completed++) {
2312 		ena_rx_ctx.max_bufs = rx_ring->sgl_size;
2313 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
2314 		ena_rx_ctx.descs = 0;
2315 		ena_rx_ctx.pkt_offset = 0;
2316 		/* receive packet context */
2317 		rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
2318 				    rx_ring->ena_com_io_sq,
2319 				    &ena_rx_ctx);
2320 		if (unlikely(rc)) {
2321 			PMD_RX_LOG(ERR,
2322 				"Failed to get the packet from the device, rc: %d\n",
2323 				rc);
2324 			if (rc == ENA_COM_NO_SPACE) {
2325 				++rx_ring->rx_stats.bad_desc_num;
2326 				rx_ring->adapter->reset_reason =
2327 					ENA_REGS_RESET_TOO_MANY_RX_DESCS;
2328 			} else {
2329 				++rx_ring->rx_stats.bad_req_id;
2330 				rx_ring->adapter->reset_reason =
2331 					ENA_REGS_RESET_INV_RX_REQ_ID;
2332 			}
2333 			rx_ring->adapter->trigger_reset = true;
2334 			return 0;
2335 		}
2336 
2337 		mbuf = ena_rx_mbuf(rx_ring,
2338 			ena_rx_ctx.ena_bufs,
2339 			ena_rx_ctx.descs,
2340 			&next_to_clean,
2341 			ena_rx_ctx.pkt_offset);
2342 		if (unlikely(mbuf == NULL)) {
2343 			for (i = 0; i < ena_rx_ctx.descs; ++i) {
2344 				rx_ring->empty_rx_reqs[next_to_clean] =
2345 					rx_ring->ena_bufs[i].req_id;
2346 				next_to_clean = ENA_IDX_NEXT_MASKED(
2347 					next_to_clean, rx_ring->size_mask);
2348 			}
2349 			break;
2350 		}
2351 
2352 		/* fill mbuf attributes if any */
2353 		ena_rx_mbuf_prepare(mbuf, &ena_rx_ctx, fill_hash);
2354 
2355 		if (unlikely(mbuf->ol_flags &
2356 				(RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD))) {
2357 			rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors);
2358 			++rx_ring->rx_stats.bad_csum;
2359 		}
2360 
2361 		rx_pkts[completed] = mbuf;
2362 		rx_ring->rx_stats.bytes += mbuf->pkt_len;
2363 	}
2364 
2365 	rx_ring->rx_stats.cnt += completed;
2366 	rx_ring->next_to_clean = next_to_clean;
2367 
2368 	free_queue_entries = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
2369 
2370 	/* Burst refill to save doorbells, memory barriers, const interval */
2371 	if (free_queue_entries >= rx_ring->rx_free_thresh) {
2372 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
2373 		ena_populate_rx_queue(rx_ring, free_queue_entries);
2374 	}
2375 
2376 	return completed;
2377 }
2378 
2379 static uint16_t
2380 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2381 		uint16_t nb_pkts)
2382 {
2383 	int32_t ret;
2384 	uint32_t i;
2385 	struct rte_mbuf *m;
2386 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2387 	struct ena_adapter *adapter = tx_ring->adapter;
2388 	struct rte_ipv4_hdr *ip_hdr;
2389 	uint64_t ol_flags;
2390 	uint64_t l4_csum_flag;
2391 	uint64_t dev_offload_capa;
2392 	uint16_t frag_field;
2393 	bool need_pseudo_csum;
2394 
2395 	dev_offload_capa = adapter->offloads.tx_offloads;
2396 	for (i = 0; i != nb_pkts; i++) {
2397 		m = tx_pkts[i];
2398 		ol_flags = m->ol_flags;
2399 
2400 		/* Check if any offload flag was set */
2401 		if (ol_flags == 0)
2402 			continue;
2403 
2404 		l4_csum_flag = ol_flags & RTE_MBUF_F_TX_L4_MASK;
2405 		/* SCTP checksum offload is not supported by the ENA. */
2406 		if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) ||
2407 		    l4_csum_flag == RTE_MBUF_F_TX_SCTP_CKSUM) {
2408 			PMD_TX_LOG(DEBUG,
2409 				"mbuf[%" PRIu32 "] has unsupported offloads flags set: 0x%" PRIu64 "\n",
2410 				i, ol_flags);
2411 			rte_errno = ENOTSUP;
2412 			return i;
2413 		}
2414 
2415 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2416 		/* Check if requested offload is also enabled for the queue */
2417 		if ((ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
2418 		     !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM)) ||
2419 		    (l4_csum_flag == RTE_MBUF_F_TX_TCP_CKSUM &&
2420 		     !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) ||
2421 		    (l4_csum_flag == RTE_MBUF_F_TX_UDP_CKSUM &&
2422 		     !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM))) {
2423 			PMD_TX_LOG(DEBUG,
2424 				"mbuf[%" PRIu32 "]: requested offloads: %" PRIu16 " are not enabled for the queue[%u]\n",
2425 				i, m->nb_segs, tx_ring->id);
2426 			rte_errno = EINVAL;
2427 			return i;
2428 		}
2429 
2430 		/* The caller is obligated to set l2 and l3 len if any cksum
2431 		 * offload is enabled.
2432 		 */
2433 		if (unlikely(ol_flags & (RTE_MBUF_F_TX_IP_CKSUM | RTE_MBUF_F_TX_L4_MASK) &&
2434 		    (m->l2_len == 0 || m->l3_len == 0))) {
2435 			PMD_TX_LOG(DEBUG,
2436 				"mbuf[%" PRIu32 "]: l2_len or l3_len values are 0 while the offload was requested\n",
2437 				i);
2438 			rte_errno = EINVAL;
2439 			return i;
2440 		}
2441 		ret = rte_validate_tx_offload(m);
2442 		if (ret != 0) {
2443 			rte_errno = -ret;
2444 			return i;
2445 		}
2446 #endif
2447 
2448 		/* Verify HW support for requested offloads and determine if
2449 		 * pseudo header checksum is needed.
2450 		 */
2451 		need_pseudo_csum = false;
2452 		if (ol_flags & RTE_MBUF_F_TX_IPV4) {
2453 			if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
2454 			    !(dev_offload_capa & ENA_L3_IPV4_CSUM)) {
2455 				rte_errno = ENOTSUP;
2456 				return i;
2457 			}
2458 
2459 			if (ol_flags & RTE_MBUF_F_TX_TCP_SEG &&
2460 			    !(dev_offload_capa & ENA_IPV4_TSO)) {
2461 				rte_errno = ENOTSUP;
2462 				return i;
2463 			}
2464 
2465 			/* Check HW capabilities and if pseudo csum is needed
2466 			 * for L4 offloads.
2467 			 */
2468 			if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
2469 			    !(dev_offload_capa & ENA_L4_IPV4_CSUM)) {
2470 				if (dev_offload_capa &
2471 				    ENA_L4_IPV4_CSUM_PARTIAL) {
2472 					need_pseudo_csum = true;
2473 				} else {
2474 					rte_errno = ENOTSUP;
2475 					return i;
2476 				}
2477 			}
2478 
2479 			/* Parse the DF flag */
2480 			ip_hdr = rte_pktmbuf_mtod_offset(m,
2481 				struct rte_ipv4_hdr *, m->l2_len);
2482 			frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
2483 			if (frag_field & RTE_IPV4_HDR_DF_FLAG) {
2484 				m->packet_type |= RTE_PTYPE_L4_NONFRAG;
2485 			} else if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2486 				/* In case we are supposed to TSO and have DF
2487 				 * not set (DF=0) hardware must be provided with
2488 				 * partial checksum.
2489 				 */
2490 				need_pseudo_csum = true;
2491 			}
2492 		} else if (ol_flags & RTE_MBUF_F_TX_IPV6) {
2493 			/* There is no support for IPv6 TSO as for now. */
2494 			if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2495 				rte_errno = ENOTSUP;
2496 				return i;
2497 			}
2498 
2499 			/* Check HW capabilities and if pseudo csum is needed */
2500 			if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
2501 			    !(dev_offload_capa & ENA_L4_IPV6_CSUM)) {
2502 				if (dev_offload_capa &
2503 				    ENA_L4_IPV6_CSUM_PARTIAL) {
2504 					need_pseudo_csum = true;
2505 				} else {
2506 					rte_errno = ENOTSUP;
2507 					return i;
2508 				}
2509 			}
2510 		}
2511 
2512 		if (need_pseudo_csum) {
2513 			ret = rte_net_intel_cksum_flags_prepare(m, ol_flags);
2514 			if (ret != 0) {
2515 				rte_errno = -ret;
2516 				return i;
2517 			}
2518 		}
2519 	}
2520 
2521 	return i;
2522 }
2523 
2524 static void ena_update_hints(struct ena_adapter *adapter,
2525 			     struct ena_admin_ena_hw_hints *hints)
2526 {
2527 	if (hints->admin_completion_tx_timeout)
2528 		adapter->ena_dev.admin_queue.completion_timeout =
2529 			hints->admin_completion_tx_timeout * 1000;
2530 
2531 	if (hints->mmio_read_timeout)
2532 		/* convert to usec */
2533 		adapter->ena_dev.mmio_read.reg_read_to =
2534 			hints->mmio_read_timeout * 1000;
2535 
2536 	if (hints->missing_tx_completion_timeout) {
2537 		if (hints->missing_tx_completion_timeout ==
2538 		    ENA_HW_HINTS_NO_TIMEOUT) {
2539 			adapter->missing_tx_completion_to =
2540 				ENA_HW_HINTS_NO_TIMEOUT;
2541 		} else {
2542 			/* Convert from msecs to ticks */
2543 			adapter->missing_tx_completion_to = rte_get_timer_hz() *
2544 				hints->missing_tx_completion_timeout / 1000;
2545 			adapter->tx_cleanup_stall_delay =
2546 				adapter->missing_tx_completion_to / 2;
2547 		}
2548 	}
2549 
2550 	if (hints->driver_watchdog_timeout) {
2551 		if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
2552 			adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
2553 		else
2554 			// Convert msecs to ticks
2555 			adapter->keep_alive_timeout =
2556 				(hints->driver_watchdog_timeout *
2557 				rte_get_timer_hz()) / 1000;
2558 	}
2559 }
2560 
2561 static int ena_check_space_and_linearize_mbuf(struct ena_ring *tx_ring,
2562 					      struct rte_mbuf *mbuf)
2563 {
2564 	struct ena_com_dev *ena_dev;
2565 	int num_segments, header_len, rc;
2566 
2567 	ena_dev = &tx_ring->adapter->ena_dev;
2568 	num_segments = mbuf->nb_segs;
2569 	header_len = mbuf->data_len;
2570 
2571 	if (likely(num_segments < tx_ring->sgl_size))
2572 		goto checkspace;
2573 
2574 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
2575 	    (num_segments == tx_ring->sgl_size) &&
2576 	    (header_len < tx_ring->tx_max_header_size))
2577 		goto checkspace;
2578 
2579 	/* Checking for space for 2 additional metadata descriptors due to
2580 	 * possible header split and metadata descriptor. Linearization will
2581 	 * be needed so we reduce the segments number from num_segments to 1
2582 	 */
2583 	if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 3)) {
2584 		PMD_TX_LOG(DEBUG, "Not enough space in the Tx queue\n");
2585 		return ENA_COM_NO_MEM;
2586 	}
2587 	++tx_ring->tx_stats.linearize;
2588 	rc = rte_pktmbuf_linearize(mbuf);
2589 	if (unlikely(rc)) {
2590 		PMD_TX_LOG(WARNING, "Mbuf linearize failed\n");
2591 		rte_atomic64_inc(&tx_ring->adapter->drv_stats->ierrors);
2592 		++tx_ring->tx_stats.linearize_failed;
2593 		return rc;
2594 	}
2595 
2596 	return 0;
2597 
2598 checkspace:
2599 	/* Checking for space for 2 additional metadata descriptors due to
2600 	 * possible header split and metadata descriptor
2601 	 */
2602 	if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
2603 					  num_segments + 2)) {
2604 		PMD_TX_LOG(DEBUG, "Not enough space in the Tx queue\n");
2605 		return ENA_COM_NO_MEM;
2606 	}
2607 
2608 	return 0;
2609 }
2610 
2611 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
2612 	struct ena_tx_buffer *tx_info,
2613 	struct rte_mbuf *mbuf,
2614 	void **push_header,
2615 	uint16_t *header_len)
2616 {
2617 	struct ena_com_buf *ena_buf;
2618 	uint16_t delta, seg_len, push_len;
2619 
2620 	delta = 0;
2621 	seg_len = mbuf->data_len;
2622 
2623 	tx_info->mbuf = mbuf;
2624 	ena_buf = tx_info->bufs;
2625 
2626 	if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2627 		/*
2628 		 * Tx header might be (and will be in most cases) smaller than
2629 		 * tx_max_header_size. But it's not an issue to send more data
2630 		 * to the device, than actually needed if the mbuf size is
2631 		 * greater than tx_max_header_size.
2632 		 */
2633 		push_len = RTE_MIN(mbuf->pkt_len, tx_ring->tx_max_header_size);
2634 		*header_len = push_len;
2635 
2636 		if (likely(push_len <= seg_len)) {
2637 			/* If the push header is in the single segment, then
2638 			 * just point it to the 1st mbuf data.
2639 			 */
2640 			*push_header = rte_pktmbuf_mtod(mbuf, uint8_t *);
2641 		} else {
2642 			/* If the push header lays in the several segments, copy
2643 			 * it to the intermediate buffer.
2644 			 */
2645 			rte_pktmbuf_read(mbuf, 0, push_len,
2646 				tx_ring->push_buf_intermediate_buf);
2647 			*push_header = tx_ring->push_buf_intermediate_buf;
2648 			delta = push_len - seg_len;
2649 		}
2650 	} else {
2651 		*push_header = NULL;
2652 		*header_len = 0;
2653 		push_len = 0;
2654 	}
2655 
2656 	/* Process first segment taking into consideration pushed header */
2657 	if (seg_len > push_len) {
2658 		ena_buf->paddr = mbuf->buf_iova +
2659 				mbuf->data_off +
2660 				push_len;
2661 		ena_buf->len = seg_len - push_len;
2662 		ena_buf++;
2663 		tx_info->num_of_bufs++;
2664 	}
2665 
2666 	while ((mbuf = mbuf->next) != NULL) {
2667 		seg_len = mbuf->data_len;
2668 
2669 		/* Skip mbufs if whole data is pushed as a header */
2670 		if (unlikely(delta > seg_len)) {
2671 			delta -= seg_len;
2672 			continue;
2673 		}
2674 
2675 		ena_buf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
2676 		ena_buf->len = seg_len - delta;
2677 		ena_buf++;
2678 		tx_info->num_of_bufs++;
2679 
2680 		delta = 0;
2681 	}
2682 }
2683 
2684 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf)
2685 {
2686 	struct ena_tx_buffer *tx_info;
2687 	struct ena_com_tx_ctx ena_tx_ctx = { { 0 } };
2688 	uint16_t next_to_use;
2689 	uint16_t header_len;
2690 	uint16_t req_id;
2691 	void *push_header;
2692 	int nb_hw_desc;
2693 	int rc;
2694 
2695 	rc = ena_check_space_and_linearize_mbuf(tx_ring, mbuf);
2696 	if (unlikely(rc))
2697 		return rc;
2698 
2699 	next_to_use = tx_ring->next_to_use;
2700 
2701 	req_id = tx_ring->empty_tx_reqs[next_to_use];
2702 	tx_info = &tx_ring->tx_buffer_info[req_id];
2703 	tx_info->num_of_bufs = 0;
2704 
2705 	ena_tx_map_mbuf(tx_ring, tx_info, mbuf, &push_header, &header_len);
2706 
2707 	ena_tx_ctx.ena_bufs = tx_info->bufs;
2708 	ena_tx_ctx.push_header = push_header;
2709 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2710 	ena_tx_ctx.req_id = req_id;
2711 	ena_tx_ctx.header_len = header_len;
2712 
2713 	/* Set Tx offloads flags, if applicable */
2714 	ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads,
2715 		tx_ring->disable_meta_caching);
2716 
2717 	if (unlikely(ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
2718 			&ena_tx_ctx))) {
2719 		PMD_TX_LOG(DEBUG,
2720 			"LLQ Tx max burst size of queue %d achieved, writing doorbell to send burst\n",
2721 			tx_ring->id);
2722 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2723 		tx_ring->tx_stats.doorbells++;
2724 		tx_ring->pkts_without_db = false;
2725 	}
2726 
2727 	/* prepare the packet's descriptors to dma engine */
2728 	rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq,	&ena_tx_ctx,
2729 		&nb_hw_desc);
2730 	if (unlikely(rc)) {
2731 		PMD_DRV_LOG(ERR, "Failed to prepare Tx buffers, rc: %d\n", rc);
2732 		++tx_ring->tx_stats.prepare_ctx_err;
2733 		tx_ring->adapter->reset_reason =
2734 		    ENA_REGS_RESET_DRIVER_INVALID_STATE;
2735 		tx_ring->adapter->trigger_reset = true;
2736 		return rc;
2737 	}
2738 
2739 	tx_info->tx_descs = nb_hw_desc;
2740 	tx_info->timestamp = rte_get_timer_cycles();
2741 
2742 	tx_ring->tx_stats.cnt++;
2743 	tx_ring->tx_stats.bytes += mbuf->pkt_len;
2744 
2745 	tx_ring->next_to_use = ENA_IDX_NEXT_MASKED(next_to_use,
2746 		tx_ring->size_mask);
2747 
2748 	return 0;
2749 }
2750 
2751 static void ena_tx_cleanup(struct ena_ring *tx_ring)
2752 {
2753 	unsigned int total_tx_descs = 0;
2754 	uint16_t cleanup_budget;
2755 	uint16_t next_to_clean = tx_ring->next_to_clean;
2756 
2757 	/* Attempt to release all Tx descriptors (ring_size - 1 -> size_mask) */
2758 	cleanup_budget = tx_ring->size_mask;
2759 
2760 	while (likely(total_tx_descs < cleanup_budget)) {
2761 		struct rte_mbuf *mbuf;
2762 		struct ena_tx_buffer *tx_info;
2763 		uint16_t req_id;
2764 
2765 		if (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) != 0)
2766 			break;
2767 
2768 		if (unlikely(validate_tx_req_id(tx_ring, req_id) != 0))
2769 			break;
2770 
2771 		/* Get Tx info & store how many descs were processed  */
2772 		tx_info = &tx_ring->tx_buffer_info[req_id];
2773 		tx_info->timestamp = 0;
2774 
2775 		mbuf = tx_info->mbuf;
2776 		rte_pktmbuf_free(mbuf);
2777 
2778 		tx_info->mbuf = NULL;
2779 		tx_ring->empty_tx_reqs[next_to_clean] = req_id;
2780 
2781 		total_tx_descs += tx_info->tx_descs;
2782 
2783 		/* Put back descriptor to the ring for reuse */
2784 		next_to_clean = ENA_IDX_NEXT_MASKED(next_to_clean,
2785 			tx_ring->size_mask);
2786 	}
2787 
2788 	if (likely(total_tx_descs > 0)) {
2789 		/* acknowledge completion of sent packets */
2790 		tx_ring->next_to_clean = next_to_clean;
2791 		ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
2792 		ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
2793 	}
2794 
2795 	/* Notify completion handler that the cleanup was just called */
2796 	tx_ring->last_cleanup_ticks = rte_get_timer_cycles();
2797 }
2798 
2799 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2800 				  uint16_t nb_pkts)
2801 {
2802 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2803 	int available_desc;
2804 	uint16_t sent_idx = 0;
2805 
2806 #ifdef RTE_ETHDEV_DEBUG_TX
2807 	/* Check adapter state */
2808 	if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2809 		PMD_TX_LOG(ALERT,
2810 			"Trying to xmit pkts while device is NOT running\n");
2811 		return 0;
2812 	}
2813 #endif
2814 
2815 	for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
2816 		if (ena_xmit_mbuf(tx_ring, tx_pkts[sent_idx]))
2817 			break;
2818 		tx_ring->pkts_without_db = true;
2819 		rte_prefetch0(tx_pkts[ENA_IDX_ADD_MASKED(sent_idx, 4,
2820 			tx_ring->size_mask)]);
2821 	}
2822 
2823 	available_desc = ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2824 	tx_ring->tx_stats.available_desc = available_desc;
2825 
2826 	/* If there are ready packets to be xmitted... */
2827 	if (likely(tx_ring->pkts_without_db)) {
2828 		/* ...let HW do its best :-) */
2829 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2830 		tx_ring->tx_stats.doorbells++;
2831 		tx_ring->pkts_without_db = false;
2832 	}
2833 
2834 	if (available_desc < tx_ring->tx_free_thresh)
2835 		ena_tx_cleanup(tx_ring);
2836 
2837 	tx_ring->tx_stats.available_desc =
2838 		ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2839 	tx_ring->tx_stats.tx_poll++;
2840 
2841 	return sent_idx;
2842 }
2843 
2844 int ena_copy_eni_stats(struct ena_adapter *adapter)
2845 {
2846 	struct ena_admin_eni_stats admin_eni_stats;
2847 	int rc;
2848 
2849 	rte_spinlock_lock(&adapter->admin_lock);
2850 	rc = ena_com_get_eni_stats(&adapter->ena_dev, &admin_eni_stats);
2851 	rte_spinlock_unlock(&adapter->admin_lock);
2852 	if (rc != 0) {
2853 		if (rc == ENA_COM_UNSUPPORTED) {
2854 			PMD_DRV_LOG(DEBUG,
2855 				"Retrieving ENI metrics is not supported\n");
2856 		} else {
2857 			PMD_DRV_LOG(WARNING,
2858 				"Failed to get ENI metrics, rc: %d\n", rc);
2859 		}
2860 		return rc;
2861 	}
2862 
2863 	rte_memcpy(&adapter->eni_stats, &admin_eni_stats,
2864 		sizeof(struct ena_stats_eni));
2865 
2866 	return 0;
2867 }
2868 
2869 /**
2870  * DPDK callback to retrieve names of extended device statistics
2871  *
2872  * @param dev
2873  *   Pointer to Ethernet device structure.
2874  * @param[out] xstats_names
2875  *   Buffer to insert names into.
2876  * @param n
2877  *   Number of names.
2878  *
2879  * @return
2880  *   Number of xstats names.
2881  */
2882 static int ena_xstats_get_names(struct rte_eth_dev *dev,
2883 				struct rte_eth_xstat_name *xstats_names,
2884 				unsigned int n)
2885 {
2886 	unsigned int xstats_count = ena_xstats_calc_num(dev->data);
2887 	unsigned int stat, i, count = 0;
2888 
2889 	if (n < xstats_count || !xstats_names)
2890 		return xstats_count;
2891 
2892 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
2893 		strcpy(xstats_names[count].name,
2894 			ena_stats_global_strings[stat].name);
2895 
2896 	for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++)
2897 		strcpy(xstats_names[count].name,
2898 			ena_stats_eni_strings[stat].name);
2899 
2900 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
2901 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
2902 			snprintf(xstats_names[count].name,
2903 				sizeof(xstats_names[count].name),
2904 				"rx_q%d_%s", i,
2905 				ena_stats_rx_strings[stat].name);
2906 
2907 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
2908 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
2909 			snprintf(xstats_names[count].name,
2910 				sizeof(xstats_names[count].name),
2911 				"tx_q%d_%s", i,
2912 				ena_stats_tx_strings[stat].name);
2913 
2914 	return xstats_count;
2915 }
2916 
2917 /**
2918  * DPDK callback to get extended device statistics.
2919  *
2920  * @param dev
2921  *   Pointer to Ethernet device structure.
2922  * @param[out] stats
2923  *   Stats table output buffer.
2924  * @param n
2925  *   The size of the stats table.
2926  *
2927  * @return
2928  *   Number of xstats on success, negative on failure.
2929  */
2930 static int ena_xstats_get(struct rte_eth_dev *dev,
2931 			  struct rte_eth_xstat *xstats,
2932 			  unsigned int n)
2933 {
2934 	struct ena_adapter *adapter = dev->data->dev_private;
2935 	unsigned int xstats_count = ena_xstats_calc_num(dev->data);
2936 	unsigned int stat, i, count = 0;
2937 	int stat_offset;
2938 	void *stats_begin;
2939 
2940 	if (n < xstats_count)
2941 		return xstats_count;
2942 
2943 	if (!xstats)
2944 		return 0;
2945 
2946 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
2947 		stat_offset = ena_stats_global_strings[stat].stat_offset;
2948 		stats_begin = &adapter->dev_stats;
2949 
2950 		xstats[count].id = count;
2951 		xstats[count].value = *((uint64_t *)
2952 			((char *)stats_begin + stat_offset));
2953 	}
2954 
2955 	/* Even if the function below fails, we should copy previous (or initial
2956 	 * values) to keep structure of rte_eth_xstat consistent.
2957 	 */
2958 	ena_copy_eni_stats(adapter);
2959 	for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++) {
2960 		stat_offset = ena_stats_eni_strings[stat].stat_offset;
2961 		stats_begin = &adapter->eni_stats;
2962 
2963 		xstats[count].id = count;
2964 		xstats[count].value = *((uint64_t *)
2965 		    ((char *)stats_begin + stat_offset));
2966 	}
2967 
2968 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
2969 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
2970 			stat_offset = ena_stats_rx_strings[stat].stat_offset;
2971 			stats_begin = &adapter->rx_ring[i].rx_stats;
2972 
2973 			xstats[count].id = count;
2974 			xstats[count].value = *((uint64_t *)
2975 				((char *)stats_begin + stat_offset));
2976 		}
2977 	}
2978 
2979 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
2980 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
2981 			stat_offset = ena_stats_tx_strings[stat].stat_offset;
2982 			stats_begin = &adapter->tx_ring[i].rx_stats;
2983 
2984 			xstats[count].id = count;
2985 			xstats[count].value = *((uint64_t *)
2986 				((char *)stats_begin + stat_offset));
2987 		}
2988 	}
2989 
2990 	return count;
2991 }
2992 
2993 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
2994 				const uint64_t *ids,
2995 				uint64_t *values,
2996 				unsigned int n)
2997 {
2998 	struct ena_adapter *adapter = dev->data->dev_private;
2999 	uint64_t id;
3000 	uint64_t rx_entries, tx_entries;
3001 	unsigned int i;
3002 	int qid;
3003 	int valid = 0;
3004 	bool was_eni_copied = false;
3005 
3006 	for (i = 0; i < n; ++i) {
3007 		id = ids[i];
3008 		/* Check if id belongs to global statistics */
3009 		if (id < ENA_STATS_ARRAY_GLOBAL) {
3010 			values[i] = *((uint64_t *)&adapter->dev_stats + id);
3011 			++valid;
3012 			continue;
3013 		}
3014 
3015 		/* Check if id belongs to ENI statistics */
3016 		id -= ENA_STATS_ARRAY_GLOBAL;
3017 		if (id < ENA_STATS_ARRAY_ENI) {
3018 			/* Avoid reading ENI stats multiple times in a single
3019 			 * function call, as it requires communication with the
3020 			 * admin queue.
3021 			 */
3022 			if (!was_eni_copied) {
3023 				was_eni_copied = true;
3024 				ena_copy_eni_stats(adapter);
3025 			}
3026 			values[i] = *((uint64_t *)&adapter->eni_stats + id);
3027 			++valid;
3028 			continue;
3029 		}
3030 
3031 		/* Check if id belongs to rx queue statistics */
3032 		id -= ENA_STATS_ARRAY_ENI;
3033 		rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
3034 		if (id < rx_entries) {
3035 			qid = id % dev->data->nb_rx_queues;
3036 			id /= dev->data->nb_rx_queues;
3037 			values[i] = *((uint64_t *)
3038 				&adapter->rx_ring[qid].rx_stats + id);
3039 			++valid;
3040 			continue;
3041 		}
3042 				/* Check if id belongs to rx queue statistics */
3043 		id -= rx_entries;
3044 		tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
3045 		if (id < tx_entries) {
3046 			qid = id % dev->data->nb_tx_queues;
3047 			id /= dev->data->nb_tx_queues;
3048 			values[i] = *((uint64_t *)
3049 				&adapter->tx_ring[qid].tx_stats + id);
3050 			++valid;
3051 			continue;
3052 		}
3053 	}
3054 
3055 	return valid;
3056 }
3057 
3058 static int ena_process_bool_devarg(const char *key,
3059 				   const char *value,
3060 				   void *opaque)
3061 {
3062 	struct ena_adapter *adapter = opaque;
3063 	bool bool_value;
3064 
3065 	/* Parse the value. */
3066 	if (strcmp(value, "1") == 0) {
3067 		bool_value = true;
3068 	} else if (strcmp(value, "0") == 0) {
3069 		bool_value = false;
3070 	} else {
3071 		PMD_INIT_LOG(ERR,
3072 			"Invalid value: '%s' for key '%s'. Accepted: '0' or '1'\n",
3073 			value, key);
3074 		return -EINVAL;
3075 	}
3076 
3077 	/* Now, assign it to the proper adapter field. */
3078 	if (strcmp(key, ENA_DEVARG_LARGE_LLQ_HDR) == 0)
3079 		adapter->use_large_llq_hdr = bool_value;
3080 
3081 	return 0;
3082 }
3083 
3084 static int ena_parse_devargs(struct ena_adapter *adapter,
3085 			     struct rte_devargs *devargs)
3086 {
3087 	static const char * const allowed_args[] = {
3088 		ENA_DEVARG_LARGE_LLQ_HDR,
3089 		NULL,
3090 	};
3091 	struct rte_kvargs *kvlist;
3092 	int rc;
3093 
3094 	if (devargs == NULL)
3095 		return 0;
3096 
3097 	kvlist = rte_kvargs_parse(devargs->args, allowed_args);
3098 	if (kvlist == NULL) {
3099 		PMD_INIT_LOG(ERR, "Invalid device arguments: %s\n",
3100 			devargs->args);
3101 		return -EINVAL;
3102 	}
3103 
3104 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_LARGE_LLQ_HDR,
3105 		ena_process_bool_devarg, adapter);
3106 
3107 	rte_kvargs_free(kvlist);
3108 
3109 	return rc;
3110 }
3111 
3112 static int ena_setup_rx_intr(struct rte_eth_dev *dev)
3113 {
3114 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3115 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
3116 	int rc;
3117 	uint16_t vectors_nb, i;
3118 	bool rx_intr_requested = dev->data->dev_conf.intr_conf.rxq;
3119 
3120 	if (!rx_intr_requested)
3121 		return 0;
3122 
3123 	if (!rte_intr_cap_multiple(intr_handle)) {
3124 		PMD_DRV_LOG(ERR,
3125 			"Rx interrupt requested, but it isn't supported by the PCI driver\n");
3126 		return -ENOTSUP;
3127 	}
3128 
3129 	/* Disable interrupt mapping before the configuration starts. */
3130 	rte_intr_disable(intr_handle);
3131 
3132 	/* Verify if there are enough vectors available. */
3133 	vectors_nb = dev->data->nb_rx_queues;
3134 	if (vectors_nb > RTE_MAX_RXTX_INTR_VEC_ID) {
3135 		PMD_DRV_LOG(ERR,
3136 			"Too many Rx interrupts requested, maximum number: %d\n",
3137 			RTE_MAX_RXTX_INTR_VEC_ID);
3138 		rc = -ENOTSUP;
3139 		goto enable_intr;
3140 	}
3141 
3142 	intr_handle->intr_vec =	rte_zmalloc("intr_vec",
3143 		dev->data->nb_rx_queues * sizeof(*intr_handle->intr_vec), 0);
3144 	if (intr_handle->intr_vec == NULL) {
3145 		PMD_DRV_LOG(ERR,
3146 			"Failed to allocate interrupt vector for %d queues\n",
3147 			dev->data->nb_rx_queues);
3148 		rc = -ENOMEM;
3149 		goto enable_intr;
3150 	}
3151 
3152 	rc = rte_intr_efd_enable(intr_handle, vectors_nb);
3153 	if (rc != 0)
3154 		goto free_intr_vec;
3155 
3156 	if (!rte_intr_allow_others(intr_handle)) {
3157 		PMD_DRV_LOG(ERR,
3158 			"Not enough interrupts available to use both ENA Admin and Rx interrupts\n");
3159 		goto disable_intr_efd;
3160 	}
3161 
3162 	for (i = 0; i < vectors_nb; ++i)
3163 		intr_handle->intr_vec[i] = RTE_INTR_VEC_RXTX_OFFSET + i;
3164 
3165 	rte_intr_enable(intr_handle);
3166 	return 0;
3167 
3168 disable_intr_efd:
3169 	rte_intr_efd_disable(intr_handle);
3170 free_intr_vec:
3171 	rte_free(intr_handle->intr_vec);
3172 	intr_handle->intr_vec = NULL;
3173 enable_intr:
3174 	rte_intr_enable(intr_handle);
3175 	return rc;
3176 }
3177 
3178 static void ena_rx_queue_intr_set(struct rte_eth_dev *dev,
3179 				 uint16_t queue_id,
3180 				 bool unmask)
3181 {
3182 	struct ena_adapter *adapter = dev->data->dev_private;
3183 	struct ena_ring *rxq = &adapter->rx_ring[queue_id];
3184 	struct ena_eth_io_intr_reg intr_reg;
3185 
3186 	ena_com_update_intr_reg(&intr_reg, 0, 0, unmask);
3187 	ena_com_unmask_intr(rxq->ena_com_io_cq, &intr_reg);
3188 }
3189 
3190 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
3191 				    uint16_t queue_id)
3192 {
3193 	ena_rx_queue_intr_set(dev, queue_id, true);
3194 
3195 	return 0;
3196 }
3197 
3198 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
3199 				     uint16_t queue_id)
3200 {
3201 	ena_rx_queue_intr_set(dev, queue_id, false);
3202 
3203 	return 0;
3204 }
3205 
3206 /*********************************************************************
3207  *  PMD configuration
3208  *********************************************************************/
3209 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
3210 	struct rte_pci_device *pci_dev)
3211 {
3212 	return rte_eth_dev_pci_generic_probe(pci_dev,
3213 		sizeof(struct ena_adapter), eth_ena_dev_init);
3214 }
3215 
3216 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
3217 {
3218 	return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
3219 }
3220 
3221 static struct rte_pci_driver rte_ena_pmd = {
3222 	.id_table = pci_id_ena_map,
3223 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
3224 		     RTE_PCI_DRV_WC_ACTIVATE,
3225 	.probe = eth_ena_pci_probe,
3226 	.remove = eth_ena_pci_remove,
3227 };
3228 
3229 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
3230 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
3231 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
3232 RTE_PMD_REGISTER_PARAM_STRING(net_ena, ENA_DEVARG_LARGE_LLQ_HDR "=<0|1>");
3233 RTE_LOG_REGISTER_SUFFIX(ena_logtype_init, init, NOTICE);
3234 RTE_LOG_REGISTER_SUFFIX(ena_logtype_driver, driver, NOTICE);
3235 #ifdef RTE_ETHDEV_DEBUG_RX
3236 RTE_LOG_REGISTER_SUFFIX(ena_logtype_rx, rx, DEBUG);
3237 #endif
3238 #ifdef RTE_ETHDEV_DEBUG_TX
3239 RTE_LOG_REGISTER_SUFFIX(ena_logtype_tx, tx, DEBUG);
3240 #endif
3241 RTE_LOG_REGISTER_SUFFIX(ena_logtype_com, com, WARNING);
3242 
3243 /******************************************************************************
3244  ******************************** AENQ Handlers *******************************
3245  *****************************************************************************/
3246 static void ena_update_on_link_change(void *adapter_data,
3247 				      struct ena_admin_aenq_entry *aenq_e)
3248 {
3249 	struct rte_eth_dev *eth_dev = adapter_data;
3250 	struct ena_adapter *adapter = eth_dev->data->dev_private;
3251 	struct ena_admin_aenq_link_change_desc *aenq_link_desc;
3252 	uint32_t status;
3253 
3254 	aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
3255 
3256 	status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
3257 	adapter->link_status = status;
3258 
3259 	ena_link_update(eth_dev, 0);
3260 	rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
3261 }
3262 
3263 static void ena_notification(void *adapter_data,
3264 			     struct ena_admin_aenq_entry *aenq_e)
3265 {
3266 	struct rte_eth_dev *eth_dev = adapter_data;
3267 	struct ena_adapter *adapter = eth_dev->data->dev_private;
3268 	struct ena_admin_ena_hw_hints *hints;
3269 
3270 	if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
3271 		PMD_DRV_LOG(WARNING, "Invalid AENQ group: %x. Expected: %x\n",
3272 			aenq_e->aenq_common_desc.group,
3273 			ENA_ADMIN_NOTIFICATION);
3274 
3275 	switch (aenq_e->aenq_common_desc.syndrome) {
3276 	case ENA_ADMIN_UPDATE_HINTS:
3277 		hints = (struct ena_admin_ena_hw_hints *)
3278 			(&aenq_e->inline_data_w4);
3279 		ena_update_hints(adapter, hints);
3280 		break;
3281 	default:
3282 		PMD_DRV_LOG(ERR, "Invalid AENQ notification link state: %d\n",
3283 			aenq_e->aenq_common_desc.syndrome);
3284 	}
3285 }
3286 
3287 static void ena_keep_alive(void *adapter_data,
3288 			   __rte_unused struct ena_admin_aenq_entry *aenq_e)
3289 {
3290 	struct rte_eth_dev *eth_dev = adapter_data;
3291 	struct ena_adapter *adapter = eth_dev->data->dev_private;
3292 	struct ena_admin_aenq_keep_alive_desc *desc;
3293 	uint64_t rx_drops;
3294 	uint64_t tx_drops;
3295 
3296 	adapter->timestamp_wd = rte_get_timer_cycles();
3297 
3298 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
3299 	rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
3300 	tx_drops = ((uint64_t)desc->tx_drops_high << 32) | desc->tx_drops_low;
3301 
3302 	adapter->drv_stats->rx_drops = rx_drops;
3303 	adapter->dev_stats.tx_drops = tx_drops;
3304 }
3305 
3306 /**
3307  * This handler will called for unknown event group or unimplemented handlers
3308  **/
3309 static void unimplemented_aenq_handler(__rte_unused void *data,
3310 				       __rte_unused struct ena_admin_aenq_entry *aenq_e)
3311 {
3312 	PMD_DRV_LOG(ERR,
3313 		"Unknown event was received or event with unimplemented handler\n");
3314 }
3315 
3316 static struct ena_aenq_handlers aenq_handlers = {
3317 	.handlers = {
3318 		[ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
3319 		[ENA_ADMIN_NOTIFICATION] = ena_notification,
3320 		[ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive
3321 	},
3322 	.unimplemented_handler = unimplemented_aenq_handler
3323 };
3324