xref: /dpdk/drivers/net/ena/ena_ethdev.c (revision f5057be340e44f3edc0fe90fa875eb89a4c49b4f)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
3  * All rights reserved.
4  */
5 
6 #include <rte_string_fns.h>
7 #include <rte_ether.h>
8 #include <rte_ethdev_driver.h>
9 #include <rte_ethdev_pci.h>
10 #include <rte_tcp.h>
11 #include <rte_atomic.h>
12 #include <rte_dev.h>
13 #include <rte_errno.h>
14 #include <rte_version.h>
15 #include <rte_net.h>
16 #include <rte_kvargs.h>
17 
18 #include "ena_ethdev.h"
19 #include "ena_logs.h"
20 #include "ena_platform.h"
21 #include "ena_com.h"
22 #include "ena_eth_com.h"
23 
24 #include <ena_common_defs.h>
25 #include <ena_regs_defs.h>
26 #include <ena_admin_defs.h>
27 #include <ena_eth_io_defs.h>
28 
29 #define DRV_MODULE_VER_MAJOR	2
30 #define DRV_MODULE_VER_MINOR	1
31 #define DRV_MODULE_VER_SUBMINOR	0
32 
33 #define ENA_IO_TXQ_IDX(q)	(2 * (q))
34 #define ENA_IO_RXQ_IDX(q)	(2 * (q) + 1)
35 /*reverse version of ENA_IO_RXQ_IDX*/
36 #define ENA_IO_RXQ_IDX_REV(q)	((q - 1) / 2)
37 
38 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
39 #define TEST_BIT(val, bit_shift) (val & (1UL << bit_shift))
40 
41 #define GET_L4_HDR_LEN(mbuf)					\
42 	((rte_pktmbuf_mtod_offset(mbuf,	struct rte_tcp_hdr *,	\
43 		mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
44 
45 #define ENA_RX_RSS_TABLE_LOG_SIZE  7
46 #define ENA_RX_RSS_TABLE_SIZE	(1 << ENA_RX_RSS_TABLE_LOG_SIZE)
47 #define ENA_HASH_KEY_SIZE	40
48 #define ETH_GSTRING_LEN	32
49 
50 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
51 
52 #define ENA_MIN_RING_DESC	128
53 
54 enum ethtool_stringset {
55 	ETH_SS_TEST             = 0,
56 	ETH_SS_STATS,
57 };
58 
59 struct ena_stats {
60 	char name[ETH_GSTRING_LEN];
61 	int stat_offset;
62 };
63 
64 #define ENA_STAT_ENTRY(stat, stat_type) { \
65 	.name = #stat, \
66 	.stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
67 }
68 
69 #define ENA_STAT_RX_ENTRY(stat) \
70 	ENA_STAT_ENTRY(stat, rx)
71 
72 #define ENA_STAT_TX_ENTRY(stat) \
73 	ENA_STAT_ENTRY(stat, tx)
74 
75 #define ENA_STAT_ENI_ENTRY(stat) \
76 	ENA_STAT_ENTRY(stat, eni)
77 
78 #define ENA_STAT_GLOBAL_ENTRY(stat) \
79 	ENA_STAT_ENTRY(stat, dev)
80 
81 /* Device arguments */
82 #define ENA_DEVARG_LARGE_LLQ_HDR "large_llq_hdr"
83 
84 /*
85  * Each rte_memzone should have unique name.
86  * To satisfy it, count number of allocation and add it to name.
87  */
88 rte_atomic32_t ena_alloc_cnt;
89 
90 static const struct ena_stats ena_stats_global_strings[] = {
91 	ENA_STAT_GLOBAL_ENTRY(wd_expired),
92 	ENA_STAT_GLOBAL_ENTRY(dev_start),
93 	ENA_STAT_GLOBAL_ENTRY(dev_stop),
94 	ENA_STAT_GLOBAL_ENTRY(tx_drops),
95 };
96 
97 static const struct ena_stats ena_stats_eni_strings[] = {
98 	ENA_STAT_ENI_ENTRY(bw_in_allowance_exceeded),
99 	ENA_STAT_ENI_ENTRY(bw_out_allowance_exceeded),
100 	ENA_STAT_ENI_ENTRY(pps_allowance_exceeded),
101 	ENA_STAT_ENI_ENTRY(conntrack_allowance_exceeded),
102 	ENA_STAT_ENI_ENTRY(linklocal_allowance_exceeded),
103 };
104 
105 static const struct ena_stats ena_stats_tx_strings[] = {
106 	ENA_STAT_TX_ENTRY(cnt),
107 	ENA_STAT_TX_ENTRY(bytes),
108 	ENA_STAT_TX_ENTRY(prepare_ctx_err),
109 	ENA_STAT_TX_ENTRY(linearize),
110 	ENA_STAT_TX_ENTRY(linearize_failed),
111 	ENA_STAT_TX_ENTRY(tx_poll),
112 	ENA_STAT_TX_ENTRY(doorbells),
113 	ENA_STAT_TX_ENTRY(bad_req_id),
114 	ENA_STAT_TX_ENTRY(available_desc),
115 };
116 
117 static const struct ena_stats ena_stats_rx_strings[] = {
118 	ENA_STAT_RX_ENTRY(cnt),
119 	ENA_STAT_RX_ENTRY(bytes),
120 	ENA_STAT_RX_ENTRY(refill_partial),
121 	ENA_STAT_RX_ENTRY(bad_csum),
122 	ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
123 	ENA_STAT_RX_ENTRY(bad_desc_num),
124 	ENA_STAT_RX_ENTRY(bad_req_id),
125 };
126 
127 #define ENA_STATS_ARRAY_GLOBAL	ARRAY_SIZE(ena_stats_global_strings)
128 #define ENA_STATS_ARRAY_ENI	ARRAY_SIZE(ena_stats_eni_strings)
129 #define ENA_STATS_ARRAY_TX	ARRAY_SIZE(ena_stats_tx_strings)
130 #define ENA_STATS_ARRAY_RX	ARRAY_SIZE(ena_stats_rx_strings)
131 
132 #define QUEUE_OFFLOADS (DEV_TX_OFFLOAD_TCP_CKSUM |\
133 			DEV_TX_OFFLOAD_UDP_CKSUM |\
134 			DEV_TX_OFFLOAD_IPV4_CKSUM |\
135 			DEV_TX_OFFLOAD_TCP_TSO)
136 #define MBUF_OFFLOADS (PKT_TX_L4_MASK |\
137 		       PKT_TX_IP_CKSUM |\
138 		       PKT_TX_TCP_SEG)
139 
140 /** Vendor ID used by Amazon devices */
141 #define PCI_VENDOR_ID_AMAZON 0x1D0F
142 /** Amazon devices */
143 #define PCI_DEVICE_ID_ENA_VF	0xEC20
144 #define PCI_DEVICE_ID_ENA_LLQ_VF	0xEC21
145 
146 #define	ENA_TX_OFFLOAD_MASK	(\
147 	PKT_TX_L4_MASK |         \
148 	PKT_TX_IPV6 |            \
149 	PKT_TX_IPV4 |            \
150 	PKT_TX_IP_CKSUM |        \
151 	PKT_TX_TCP_SEG)
152 
153 #define	ENA_TX_OFFLOAD_NOTSUP_MASK	\
154 	(PKT_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
155 
156 static const struct rte_pci_id pci_id_ena_map[] = {
157 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
158 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_LLQ_VF) },
159 	{ .device_id = 0 },
160 };
161 
162 static struct ena_aenq_handlers aenq_handlers;
163 
164 static int ena_device_init(struct ena_com_dev *ena_dev,
165 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
166 			   bool *wd_state);
167 static int ena_dev_configure(struct rte_eth_dev *dev);
168 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
169 	struct ena_tx_buffer *tx_info,
170 	struct rte_mbuf *mbuf,
171 	void **push_header,
172 	uint16_t *header_len);
173 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf);
174 static void ena_tx_cleanup(struct ena_ring *tx_ring);
175 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
176 				  uint16_t nb_pkts);
177 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
178 		uint16_t nb_pkts);
179 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
180 			      uint16_t nb_desc, unsigned int socket_id,
181 			      const struct rte_eth_txconf *tx_conf);
182 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
183 			      uint16_t nb_desc, unsigned int socket_id,
184 			      const struct rte_eth_rxconf *rx_conf,
185 			      struct rte_mempool *mp);
186 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len);
187 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
188 				    struct ena_com_rx_buf_info *ena_bufs,
189 				    uint32_t descs,
190 				    uint16_t *next_to_clean,
191 				    uint8_t offset);
192 static uint16_t eth_ena_recv_pkts(void *rx_queue,
193 				  struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
194 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
195 				  struct rte_mbuf *mbuf, uint16_t id);
196 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
197 static void ena_init_rings(struct ena_adapter *adapter,
198 			   bool disable_meta_caching);
199 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
200 static int ena_start(struct rte_eth_dev *dev);
201 static void ena_stop(struct rte_eth_dev *dev);
202 static int ena_close(struct rte_eth_dev *dev);
203 static int ena_dev_reset(struct rte_eth_dev *dev);
204 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
205 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
206 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
207 static void ena_rx_queue_release(void *queue);
208 static void ena_tx_queue_release(void *queue);
209 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
210 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
211 static int ena_link_update(struct rte_eth_dev *dev,
212 			   int wait_to_complete);
213 static int ena_create_io_queue(struct ena_ring *ring);
214 static void ena_queue_stop(struct ena_ring *ring);
215 static void ena_queue_stop_all(struct rte_eth_dev *dev,
216 			      enum ena_ring_type ring_type);
217 static int ena_queue_start(struct ena_ring *ring);
218 static int ena_queue_start_all(struct rte_eth_dev *dev,
219 			       enum ena_ring_type ring_type);
220 static void ena_stats_restart(struct rte_eth_dev *dev);
221 static int ena_infos_get(struct rte_eth_dev *dev,
222 			 struct rte_eth_dev_info *dev_info);
223 static int ena_rss_reta_update(struct rte_eth_dev *dev,
224 			       struct rte_eth_rss_reta_entry64 *reta_conf,
225 			       uint16_t reta_size);
226 static int ena_rss_reta_query(struct rte_eth_dev *dev,
227 			      struct rte_eth_rss_reta_entry64 *reta_conf,
228 			      uint16_t reta_size);
229 static void ena_interrupt_handler_rte(void *cb_arg);
230 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
231 static void ena_destroy_device(struct rte_eth_dev *eth_dev);
232 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
233 static int ena_xstats_get_names(struct rte_eth_dev *dev,
234 				struct rte_eth_xstat_name *xstats_names,
235 				unsigned int n);
236 static int ena_xstats_get(struct rte_eth_dev *dev,
237 			  struct rte_eth_xstat *stats,
238 			  unsigned int n);
239 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
240 				const uint64_t *ids,
241 				uint64_t *values,
242 				unsigned int n);
243 static int ena_process_bool_devarg(const char *key,
244 				   const char *value,
245 				   void *opaque);
246 static int ena_parse_devargs(struct ena_adapter *adapter,
247 			     struct rte_devargs *devargs);
248 static int ena_copy_eni_stats(struct ena_adapter *adapter);
249 
250 static const struct eth_dev_ops ena_dev_ops = {
251 	.dev_configure        = ena_dev_configure,
252 	.dev_infos_get        = ena_infos_get,
253 	.rx_queue_setup       = ena_rx_queue_setup,
254 	.tx_queue_setup       = ena_tx_queue_setup,
255 	.dev_start            = ena_start,
256 	.dev_stop             = ena_stop,
257 	.link_update          = ena_link_update,
258 	.stats_get            = ena_stats_get,
259 	.xstats_get_names     = ena_xstats_get_names,
260 	.xstats_get	      = ena_xstats_get,
261 	.xstats_get_by_id     = ena_xstats_get_by_id,
262 	.mtu_set              = ena_mtu_set,
263 	.rx_queue_release     = ena_rx_queue_release,
264 	.tx_queue_release     = ena_tx_queue_release,
265 	.dev_close            = ena_close,
266 	.dev_reset            = ena_dev_reset,
267 	.reta_update          = ena_rss_reta_update,
268 	.reta_query           = ena_rss_reta_query,
269 };
270 
271 void ena_rss_key_fill(void *key, size_t size)
272 {
273 	static bool key_generated;
274 	static uint8_t default_key[ENA_HASH_KEY_SIZE];
275 	size_t i;
276 
277 	RTE_ASSERT(size <= ENA_HASH_KEY_SIZE);
278 
279 	if (!key_generated) {
280 		for (i = 0; i < ENA_HASH_KEY_SIZE; ++i)
281 			default_key[i] = rte_rand() & 0xff;
282 		key_generated = true;
283 	}
284 
285 	rte_memcpy(key, default_key, size);
286 }
287 
288 static inline void ena_rx_mbuf_prepare(struct rte_mbuf *mbuf,
289 				       struct ena_com_rx_ctx *ena_rx_ctx)
290 {
291 	uint64_t ol_flags = 0;
292 	uint32_t packet_type = 0;
293 
294 	if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
295 		packet_type |= RTE_PTYPE_L4_TCP;
296 	else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
297 		packet_type |= RTE_PTYPE_L4_UDP;
298 
299 	if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4)
300 		packet_type |= RTE_PTYPE_L3_IPV4;
301 	else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6)
302 		packet_type |= RTE_PTYPE_L3_IPV6;
303 
304 	if (!ena_rx_ctx->l4_csum_checked)
305 		ol_flags |= PKT_RX_L4_CKSUM_UNKNOWN;
306 	else
307 		if (unlikely(ena_rx_ctx->l4_csum_err) && !ena_rx_ctx->frag)
308 			ol_flags |= PKT_RX_L4_CKSUM_BAD;
309 		else
310 			ol_flags |= PKT_RX_L4_CKSUM_UNKNOWN;
311 
312 	if (unlikely(ena_rx_ctx->l3_csum_err))
313 		ol_flags |= PKT_RX_IP_CKSUM_BAD;
314 
315 	mbuf->ol_flags = ol_flags;
316 	mbuf->packet_type = packet_type;
317 }
318 
319 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
320 				       struct ena_com_tx_ctx *ena_tx_ctx,
321 				       uint64_t queue_offloads,
322 				       bool disable_meta_caching)
323 {
324 	struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
325 
326 	if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
327 	    (queue_offloads & QUEUE_OFFLOADS)) {
328 		/* check if TSO is required */
329 		if ((mbuf->ol_flags & PKT_TX_TCP_SEG) &&
330 		    (queue_offloads & DEV_TX_OFFLOAD_TCP_TSO)) {
331 			ena_tx_ctx->tso_enable = true;
332 
333 			ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
334 		}
335 
336 		/* check if L3 checksum is needed */
337 		if ((mbuf->ol_flags & PKT_TX_IP_CKSUM) &&
338 		    (queue_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM))
339 			ena_tx_ctx->l3_csum_enable = true;
340 
341 		if (mbuf->ol_flags & PKT_TX_IPV6) {
342 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
343 		} else {
344 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
345 
346 			/* set don't fragment (DF) flag */
347 			if (mbuf->packet_type &
348 				(RTE_PTYPE_L4_NONFRAG
349 				 | RTE_PTYPE_INNER_L4_NONFRAG))
350 				ena_tx_ctx->df = true;
351 		}
352 
353 		/* check if L4 checksum is needed */
354 		if (((mbuf->ol_flags & PKT_TX_L4_MASK) == PKT_TX_TCP_CKSUM) &&
355 		    (queue_offloads & DEV_TX_OFFLOAD_TCP_CKSUM)) {
356 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
357 			ena_tx_ctx->l4_csum_enable = true;
358 		} else if (((mbuf->ol_flags & PKT_TX_L4_MASK) ==
359 				PKT_TX_UDP_CKSUM) &&
360 				(queue_offloads & DEV_TX_OFFLOAD_UDP_CKSUM)) {
361 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
362 			ena_tx_ctx->l4_csum_enable = true;
363 		} else {
364 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
365 			ena_tx_ctx->l4_csum_enable = false;
366 		}
367 
368 		ena_meta->mss = mbuf->tso_segsz;
369 		ena_meta->l3_hdr_len = mbuf->l3_len;
370 		ena_meta->l3_hdr_offset = mbuf->l2_len;
371 
372 		ena_tx_ctx->meta_valid = true;
373 	} else if (disable_meta_caching) {
374 		memset(ena_meta, 0, sizeof(*ena_meta));
375 		ena_tx_ctx->meta_valid = true;
376 	} else {
377 		ena_tx_ctx->meta_valid = false;
378 	}
379 }
380 
381 static inline int validate_rx_req_id(struct ena_ring *rx_ring, uint16_t req_id)
382 {
383 	if (likely(req_id < rx_ring->ring_size))
384 		return 0;
385 
386 	PMD_DRV_LOG(ERR, "Invalid rx req_id: %hu\n", req_id);
387 
388 	rx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID;
389 	rx_ring->adapter->trigger_reset = true;
390 	++rx_ring->rx_stats.bad_req_id;
391 
392 	return -EFAULT;
393 }
394 
395 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
396 {
397 	struct ena_tx_buffer *tx_info = NULL;
398 
399 	if (likely(req_id < tx_ring->ring_size)) {
400 		tx_info = &tx_ring->tx_buffer_info[req_id];
401 		if (likely(tx_info->mbuf))
402 			return 0;
403 	}
404 
405 	if (tx_info)
406 		PMD_DRV_LOG(ERR, "tx_info doesn't have valid mbuf\n");
407 	else
408 		PMD_DRV_LOG(ERR, "Invalid req_id: %hu\n", req_id);
409 
410 	/* Trigger device reset */
411 	++tx_ring->tx_stats.bad_req_id;
412 	tx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID;
413 	tx_ring->adapter->trigger_reset	= true;
414 	return -EFAULT;
415 }
416 
417 static void ena_config_host_info(struct ena_com_dev *ena_dev)
418 {
419 	struct ena_admin_host_info *host_info;
420 	int rc;
421 
422 	/* Allocate only the host info */
423 	rc = ena_com_allocate_host_info(ena_dev);
424 	if (rc) {
425 		PMD_DRV_LOG(ERR, "Cannot allocate host info\n");
426 		return;
427 	}
428 
429 	host_info = ena_dev->host_attr.host_info;
430 
431 	host_info->os_type = ENA_ADMIN_OS_DPDK;
432 	host_info->kernel_ver = RTE_VERSION;
433 	strlcpy((char *)host_info->kernel_ver_str, rte_version(),
434 		sizeof(host_info->kernel_ver_str));
435 	host_info->os_dist = RTE_VERSION;
436 	strlcpy((char *)host_info->os_dist_str, rte_version(),
437 		sizeof(host_info->os_dist_str));
438 	host_info->driver_version =
439 		(DRV_MODULE_VER_MAJOR) |
440 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
441 		(DRV_MODULE_VER_SUBMINOR <<
442 			ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
443 	host_info->num_cpus = rte_lcore_count();
444 
445 	host_info->driver_supported_features =
446 		ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK;
447 
448 	rc = ena_com_set_host_attributes(ena_dev);
449 	if (rc) {
450 		if (rc == -ENA_COM_UNSUPPORTED)
451 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
452 		else
453 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
454 
455 		goto err;
456 	}
457 
458 	return;
459 
460 err:
461 	ena_com_delete_host_info(ena_dev);
462 }
463 
464 /* This function calculates the number of xstats based on the current config */
465 static unsigned int ena_xstats_calc_num(struct rte_eth_dev *dev)
466 {
467 	return ENA_STATS_ARRAY_GLOBAL + ENA_STATS_ARRAY_ENI +
468 		(dev->data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
469 		(dev->data->nb_rx_queues * ENA_STATS_ARRAY_RX);
470 }
471 
472 static void ena_config_debug_area(struct ena_adapter *adapter)
473 {
474 	u32 debug_area_size;
475 	int rc, ss_count;
476 
477 	ss_count = ena_xstats_calc_num(adapter->rte_dev);
478 
479 	/* allocate 32 bytes for each string and 64bit for the value */
480 	debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
481 
482 	rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
483 	if (rc) {
484 		PMD_DRV_LOG(ERR, "Cannot allocate debug area\n");
485 		return;
486 	}
487 
488 	rc = ena_com_set_host_attributes(&adapter->ena_dev);
489 	if (rc) {
490 		if (rc == -ENA_COM_UNSUPPORTED)
491 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
492 		else
493 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
494 
495 		goto err;
496 	}
497 
498 	return;
499 err:
500 	ena_com_delete_debug_area(&adapter->ena_dev);
501 }
502 
503 static int ena_close(struct rte_eth_dev *dev)
504 {
505 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
506 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
507 	struct ena_adapter *adapter = dev->data->dev_private;
508 
509 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
510 		return 0;
511 
512 	if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
513 		ena_stop(dev);
514 	adapter->state = ENA_ADAPTER_STATE_CLOSED;
515 
516 	ena_rx_queue_release_all(dev);
517 	ena_tx_queue_release_all(dev);
518 
519 	rte_free(adapter->drv_stats);
520 	adapter->drv_stats = NULL;
521 
522 	rte_intr_disable(intr_handle);
523 	rte_intr_callback_unregister(intr_handle,
524 				     ena_interrupt_handler_rte,
525 				     adapter);
526 
527 	/*
528 	 * MAC is not allocated dynamically. Setting NULL should prevent from
529 	 * release of the resource in the rte_eth_dev_release_port().
530 	 */
531 	dev->data->mac_addrs = NULL;
532 
533 	return 0;
534 }
535 
536 static int
537 ena_dev_reset(struct rte_eth_dev *dev)
538 {
539 	int rc = 0;
540 
541 	ena_destroy_device(dev);
542 	rc = eth_ena_dev_init(dev);
543 	if (rc)
544 		PMD_INIT_LOG(CRIT, "Cannot initialize device");
545 
546 	return rc;
547 }
548 
549 static int ena_rss_reta_update(struct rte_eth_dev *dev,
550 			       struct rte_eth_rss_reta_entry64 *reta_conf,
551 			       uint16_t reta_size)
552 {
553 	struct ena_adapter *adapter = dev->data->dev_private;
554 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
555 	int rc, i;
556 	u16 entry_value;
557 	int conf_idx;
558 	int idx;
559 
560 	if ((reta_size == 0) || (reta_conf == NULL))
561 		return -EINVAL;
562 
563 	if (reta_size > ENA_RX_RSS_TABLE_SIZE) {
564 		PMD_DRV_LOG(WARNING,
565 			"indirection table %d is bigger than supported (%d)\n",
566 			reta_size, ENA_RX_RSS_TABLE_SIZE);
567 		return -EINVAL;
568 	}
569 
570 	for (i = 0 ; i < reta_size ; i++) {
571 		/* each reta_conf is for 64 entries.
572 		 * to support 128 we use 2 conf of 64
573 		 */
574 		conf_idx = i / RTE_RETA_GROUP_SIZE;
575 		idx = i % RTE_RETA_GROUP_SIZE;
576 		if (TEST_BIT(reta_conf[conf_idx].mask, idx)) {
577 			entry_value =
578 				ENA_IO_RXQ_IDX(reta_conf[conf_idx].reta[idx]);
579 
580 			rc = ena_com_indirect_table_fill_entry(ena_dev,
581 							       i,
582 							       entry_value);
583 			if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
584 				PMD_DRV_LOG(ERR,
585 					"Cannot fill indirect table\n");
586 				return rc;
587 			}
588 		}
589 	}
590 
591 	rte_spinlock_lock(&adapter->admin_lock);
592 	rc = ena_com_indirect_table_set(ena_dev);
593 	rte_spinlock_unlock(&adapter->admin_lock);
594 	if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
595 		PMD_DRV_LOG(ERR, "Cannot flush the indirect table\n");
596 		return rc;
597 	}
598 
599 	PMD_DRV_LOG(DEBUG, "%s(): RSS configured %d entries  for port %d\n",
600 		__func__, reta_size, adapter->rte_dev->data->port_id);
601 
602 	return 0;
603 }
604 
605 /* Query redirection table. */
606 static int ena_rss_reta_query(struct rte_eth_dev *dev,
607 			      struct rte_eth_rss_reta_entry64 *reta_conf,
608 			      uint16_t reta_size)
609 {
610 	struct ena_adapter *adapter = dev->data->dev_private;
611 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
612 	int rc;
613 	int i;
614 	u32 indirect_table[ENA_RX_RSS_TABLE_SIZE] = {0};
615 	int reta_conf_idx;
616 	int reta_idx;
617 
618 	if (reta_size == 0 || reta_conf == NULL ||
619 	    (reta_size > RTE_RETA_GROUP_SIZE && ((reta_conf + 1) == NULL)))
620 		return -EINVAL;
621 
622 	rte_spinlock_lock(&adapter->admin_lock);
623 	rc = ena_com_indirect_table_get(ena_dev, indirect_table);
624 	rte_spinlock_unlock(&adapter->admin_lock);
625 	if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
626 		PMD_DRV_LOG(ERR, "cannot get indirect table\n");
627 		return -ENOTSUP;
628 	}
629 
630 	for (i = 0 ; i < reta_size ; i++) {
631 		reta_conf_idx = i / RTE_RETA_GROUP_SIZE;
632 		reta_idx = i % RTE_RETA_GROUP_SIZE;
633 		if (TEST_BIT(reta_conf[reta_conf_idx].mask, reta_idx))
634 			reta_conf[reta_conf_idx].reta[reta_idx] =
635 				ENA_IO_RXQ_IDX_REV(indirect_table[i]);
636 	}
637 
638 	return 0;
639 }
640 
641 static int ena_rss_init_default(struct ena_adapter *adapter)
642 {
643 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
644 	uint16_t nb_rx_queues = adapter->rte_dev->data->nb_rx_queues;
645 	int rc, i;
646 	u32 val;
647 
648 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
649 	if (unlikely(rc)) {
650 		PMD_DRV_LOG(ERR, "Cannot init indirect table\n");
651 		goto err_rss_init;
652 	}
653 
654 	for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
655 		val = i % nb_rx_queues;
656 		rc = ena_com_indirect_table_fill_entry(ena_dev, i,
657 						       ENA_IO_RXQ_IDX(val));
658 		if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
659 			PMD_DRV_LOG(ERR, "Cannot fill indirect table\n");
660 			goto err_fill_indir;
661 		}
662 	}
663 
664 	rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL,
665 					ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
666 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
667 		PMD_DRV_LOG(INFO, "Cannot fill hash function\n");
668 		goto err_fill_indir;
669 	}
670 
671 	rc = ena_com_set_default_hash_ctrl(ena_dev);
672 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
673 		PMD_DRV_LOG(INFO, "Cannot fill hash control\n");
674 		goto err_fill_indir;
675 	}
676 
677 	rc = ena_com_indirect_table_set(ena_dev);
678 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
679 		PMD_DRV_LOG(ERR, "Cannot flush the indirect table\n");
680 		goto err_fill_indir;
681 	}
682 	PMD_DRV_LOG(DEBUG, "RSS configured for port %d\n",
683 		adapter->rte_dev->data->port_id);
684 
685 	return 0;
686 
687 err_fill_indir:
688 	ena_com_rss_destroy(ena_dev);
689 err_rss_init:
690 
691 	return rc;
692 }
693 
694 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
695 {
696 	struct ena_ring **queues = (struct ena_ring **)dev->data->rx_queues;
697 	int nb_queues = dev->data->nb_rx_queues;
698 	int i;
699 
700 	for (i = 0; i < nb_queues; i++)
701 		ena_rx_queue_release(queues[i]);
702 }
703 
704 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
705 {
706 	struct ena_ring **queues = (struct ena_ring **)dev->data->tx_queues;
707 	int nb_queues = dev->data->nb_tx_queues;
708 	int i;
709 
710 	for (i = 0; i < nb_queues; i++)
711 		ena_tx_queue_release(queues[i]);
712 }
713 
714 static void ena_rx_queue_release(void *queue)
715 {
716 	struct ena_ring *ring = (struct ena_ring *)queue;
717 
718 	/* Free ring resources */
719 	if (ring->rx_buffer_info)
720 		rte_free(ring->rx_buffer_info);
721 	ring->rx_buffer_info = NULL;
722 
723 	if (ring->rx_refill_buffer)
724 		rte_free(ring->rx_refill_buffer);
725 	ring->rx_refill_buffer = NULL;
726 
727 	if (ring->empty_rx_reqs)
728 		rte_free(ring->empty_rx_reqs);
729 	ring->empty_rx_reqs = NULL;
730 
731 	ring->configured = 0;
732 
733 	PMD_DRV_LOG(NOTICE, "RX Queue %d:%d released\n",
734 		ring->port_id, ring->id);
735 }
736 
737 static void ena_tx_queue_release(void *queue)
738 {
739 	struct ena_ring *ring = (struct ena_ring *)queue;
740 
741 	/* Free ring resources */
742 	if (ring->push_buf_intermediate_buf)
743 		rte_free(ring->push_buf_intermediate_buf);
744 
745 	if (ring->tx_buffer_info)
746 		rte_free(ring->tx_buffer_info);
747 
748 	if (ring->empty_tx_reqs)
749 		rte_free(ring->empty_tx_reqs);
750 
751 	ring->empty_tx_reqs = NULL;
752 	ring->tx_buffer_info = NULL;
753 	ring->push_buf_intermediate_buf = NULL;
754 
755 	ring->configured = 0;
756 
757 	PMD_DRV_LOG(NOTICE, "TX Queue %d:%d released\n",
758 		ring->port_id, ring->id);
759 }
760 
761 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
762 {
763 	unsigned int i;
764 
765 	for (i = 0; i < ring->ring_size; ++i) {
766 		struct ena_rx_buffer *rx_info = &ring->rx_buffer_info[i];
767 		if (rx_info->mbuf) {
768 			rte_mbuf_raw_free(rx_info->mbuf);
769 			rx_info->mbuf = NULL;
770 		}
771 	}
772 }
773 
774 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
775 {
776 	unsigned int i;
777 
778 	for (i = 0; i < ring->ring_size; ++i) {
779 		struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
780 
781 		if (tx_buf->mbuf)
782 			rte_pktmbuf_free(tx_buf->mbuf);
783 	}
784 }
785 
786 static int ena_link_update(struct rte_eth_dev *dev,
787 			   __rte_unused int wait_to_complete)
788 {
789 	struct rte_eth_link *link = &dev->data->dev_link;
790 	struct ena_adapter *adapter = dev->data->dev_private;
791 
792 	link->link_status = adapter->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
793 	link->link_speed = ETH_SPEED_NUM_NONE;
794 	link->link_duplex = ETH_LINK_FULL_DUPLEX;
795 
796 	return 0;
797 }
798 
799 static int ena_queue_start_all(struct rte_eth_dev *dev,
800 			       enum ena_ring_type ring_type)
801 {
802 	struct ena_adapter *adapter = dev->data->dev_private;
803 	struct ena_ring *queues = NULL;
804 	int nb_queues;
805 	int i = 0;
806 	int rc = 0;
807 
808 	if (ring_type == ENA_RING_TYPE_RX) {
809 		queues = adapter->rx_ring;
810 		nb_queues = dev->data->nb_rx_queues;
811 	} else {
812 		queues = adapter->tx_ring;
813 		nb_queues = dev->data->nb_tx_queues;
814 	}
815 	for (i = 0; i < nb_queues; i++) {
816 		if (queues[i].configured) {
817 			if (ring_type == ENA_RING_TYPE_RX) {
818 				ena_assert_msg(
819 					dev->data->rx_queues[i] == &queues[i],
820 					"Inconsistent state of rx queues\n");
821 			} else {
822 				ena_assert_msg(
823 					dev->data->tx_queues[i] == &queues[i],
824 					"Inconsistent state of tx queues\n");
825 			}
826 
827 			rc = ena_queue_start(&queues[i]);
828 
829 			if (rc) {
830 				PMD_INIT_LOG(ERR,
831 					     "failed to start queue %d type(%d)",
832 					     i, ring_type);
833 				goto err;
834 			}
835 		}
836 	}
837 
838 	return 0;
839 
840 err:
841 	while (i--)
842 		if (queues[i].configured)
843 			ena_queue_stop(&queues[i]);
844 
845 	return rc;
846 }
847 
848 static uint32_t ena_get_mtu_conf(struct ena_adapter *adapter)
849 {
850 	uint32_t max_frame_len = adapter->max_mtu;
851 
852 	if (adapter->rte_eth_dev_data->dev_conf.rxmode.offloads &
853 	    DEV_RX_OFFLOAD_JUMBO_FRAME)
854 		max_frame_len =
855 			adapter->rte_eth_dev_data->dev_conf.rxmode.max_rx_pkt_len;
856 
857 	return max_frame_len;
858 }
859 
860 static int ena_check_valid_conf(struct ena_adapter *adapter)
861 {
862 	uint32_t max_frame_len = ena_get_mtu_conf(adapter);
863 
864 	if (max_frame_len > adapter->max_mtu || max_frame_len < ENA_MIN_MTU) {
865 		PMD_INIT_LOG(ERR, "Unsupported MTU of %d. "
866 				  "max mtu: %d, min mtu: %d",
867 			     max_frame_len, adapter->max_mtu, ENA_MIN_MTU);
868 		return ENA_COM_UNSUPPORTED;
869 	}
870 
871 	return 0;
872 }
873 
874 static int
875 ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx,
876 		       bool use_large_llq_hdr)
877 {
878 	struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
879 	struct ena_com_dev *ena_dev = ctx->ena_dev;
880 	uint32_t max_tx_queue_size;
881 	uint32_t max_rx_queue_size;
882 
883 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
884 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
885 			&ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
886 		max_rx_queue_size = RTE_MIN(max_queue_ext->max_rx_cq_depth,
887 			max_queue_ext->max_rx_sq_depth);
888 		max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
889 
890 		if (ena_dev->tx_mem_queue_type ==
891 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
892 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
893 				llq->max_llq_depth);
894 		} else {
895 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
896 				max_queue_ext->max_tx_sq_depth);
897 		}
898 
899 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
900 			max_queue_ext->max_per_packet_rx_descs);
901 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
902 			max_queue_ext->max_per_packet_tx_descs);
903 	} else {
904 		struct ena_admin_queue_feature_desc *max_queues =
905 			&ctx->get_feat_ctx->max_queues;
906 		max_rx_queue_size = RTE_MIN(max_queues->max_cq_depth,
907 			max_queues->max_sq_depth);
908 		max_tx_queue_size = max_queues->max_cq_depth;
909 
910 		if (ena_dev->tx_mem_queue_type ==
911 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
912 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
913 				llq->max_llq_depth);
914 		} else {
915 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
916 				max_queues->max_sq_depth);
917 		}
918 
919 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
920 			max_queues->max_packet_rx_descs);
921 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
922 			max_queues->max_packet_tx_descs);
923 	}
924 
925 	/* Round down to the nearest power of 2 */
926 	max_rx_queue_size = rte_align32prevpow2(max_rx_queue_size);
927 	max_tx_queue_size = rte_align32prevpow2(max_tx_queue_size);
928 
929 	if (use_large_llq_hdr) {
930 		if ((llq->entry_size_ctrl_supported &
931 		     ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
932 		    (ena_dev->tx_mem_queue_type ==
933 		     ENA_ADMIN_PLACEMENT_POLICY_DEV)) {
934 			max_tx_queue_size /= 2;
935 			PMD_INIT_LOG(INFO,
936 				"Forcing large headers and decreasing maximum TX queue size to %d\n",
937 				max_tx_queue_size);
938 		} else {
939 			PMD_INIT_LOG(ERR,
940 				"Forcing large headers failed: LLQ is disabled or device does not support large headers\n");
941 		}
942 	}
943 
944 	if (unlikely(max_rx_queue_size == 0 || max_tx_queue_size == 0)) {
945 		PMD_INIT_LOG(ERR, "Invalid queue size");
946 		return -EFAULT;
947 	}
948 
949 	ctx->max_tx_queue_size = max_tx_queue_size;
950 	ctx->max_rx_queue_size = max_rx_queue_size;
951 
952 	return 0;
953 }
954 
955 static void ena_stats_restart(struct rte_eth_dev *dev)
956 {
957 	struct ena_adapter *adapter = dev->data->dev_private;
958 
959 	rte_atomic64_init(&adapter->drv_stats->ierrors);
960 	rte_atomic64_init(&adapter->drv_stats->oerrors);
961 	rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
962 	adapter->drv_stats->rx_drops = 0;
963 }
964 
965 static int ena_stats_get(struct rte_eth_dev *dev,
966 			  struct rte_eth_stats *stats)
967 {
968 	struct ena_admin_basic_stats ena_stats;
969 	struct ena_adapter *adapter = dev->data->dev_private;
970 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
971 	int rc;
972 	int i;
973 	int max_rings_stats;
974 
975 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
976 		return -ENOTSUP;
977 
978 	memset(&ena_stats, 0, sizeof(ena_stats));
979 
980 	rte_spinlock_lock(&adapter->admin_lock);
981 	rc = ena_com_get_dev_basic_stats(ena_dev, &ena_stats);
982 	rte_spinlock_unlock(&adapter->admin_lock);
983 	if (unlikely(rc)) {
984 		PMD_DRV_LOG(ERR, "Could not retrieve statistics from ENA\n");
985 		return rc;
986 	}
987 
988 	/* Set of basic statistics from ENA */
989 	stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
990 					  ena_stats.rx_pkts_low);
991 	stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
992 					  ena_stats.tx_pkts_low);
993 	stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
994 					ena_stats.rx_bytes_low);
995 	stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
996 					ena_stats.tx_bytes_low);
997 
998 	/* Driver related stats */
999 	stats->imissed = adapter->drv_stats->rx_drops;
1000 	stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
1001 	stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
1002 	stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
1003 
1004 	max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
1005 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
1006 	for (i = 0; i < max_rings_stats; ++i) {
1007 		struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
1008 
1009 		stats->q_ibytes[i] = rx_stats->bytes;
1010 		stats->q_ipackets[i] = rx_stats->cnt;
1011 		stats->q_errors[i] = rx_stats->bad_desc_num +
1012 			rx_stats->bad_req_id;
1013 	}
1014 
1015 	max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
1016 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
1017 	for (i = 0; i < max_rings_stats; ++i) {
1018 		struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
1019 
1020 		stats->q_obytes[i] = tx_stats->bytes;
1021 		stats->q_opackets[i] = tx_stats->cnt;
1022 	}
1023 
1024 	return 0;
1025 }
1026 
1027 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1028 {
1029 	struct ena_adapter *adapter;
1030 	struct ena_com_dev *ena_dev;
1031 	int rc = 0;
1032 
1033 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
1034 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
1035 	adapter = dev->data->dev_private;
1036 
1037 	ena_dev = &adapter->ena_dev;
1038 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
1039 
1040 	if (mtu > ena_get_mtu_conf(adapter) || mtu < ENA_MIN_MTU) {
1041 		PMD_DRV_LOG(ERR,
1042 			"Invalid MTU setting. new_mtu: %d "
1043 			"max mtu: %d min mtu: %d\n",
1044 			mtu, ena_get_mtu_conf(adapter), ENA_MIN_MTU);
1045 		return -EINVAL;
1046 	}
1047 
1048 	rc = ena_com_set_dev_mtu(ena_dev, mtu);
1049 	if (rc)
1050 		PMD_DRV_LOG(ERR, "Could not set MTU: %d\n", mtu);
1051 	else
1052 		PMD_DRV_LOG(NOTICE, "Set MTU: %d\n", mtu);
1053 
1054 	return rc;
1055 }
1056 
1057 static int ena_start(struct rte_eth_dev *dev)
1058 {
1059 	struct ena_adapter *adapter = dev->data->dev_private;
1060 	uint64_t ticks;
1061 	int rc = 0;
1062 
1063 	rc = ena_check_valid_conf(adapter);
1064 	if (rc)
1065 		return rc;
1066 
1067 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
1068 	if (rc)
1069 		return rc;
1070 
1071 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
1072 	if (rc)
1073 		goto err_start_tx;
1074 
1075 	if (adapter->rte_dev->data->dev_conf.rxmode.mq_mode &
1076 	    ETH_MQ_RX_RSS_FLAG && adapter->rte_dev->data->nb_rx_queues > 0) {
1077 		rc = ena_rss_init_default(adapter);
1078 		if (rc)
1079 			goto err_rss_init;
1080 	}
1081 
1082 	ena_stats_restart(dev);
1083 
1084 	adapter->timestamp_wd = rte_get_timer_cycles();
1085 	adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
1086 
1087 	ticks = rte_get_timer_hz();
1088 	rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
1089 			ena_timer_wd_callback, adapter);
1090 
1091 	++adapter->dev_stats.dev_start;
1092 	adapter->state = ENA_ADAPTER_STATE_RUNNING;
1093 
1094 	return 0;
1095 
1096 err_rss_init:
1097 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1098 err_start_tx:
1099 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1100 	return rc;
1101 }
1102 
1103 static void ena_stop(struct rte_eth_dev *dev)
1104 {
1105 	struct ena_adapter *adapter = dev->data->dev_private;
1106 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1107 	int rc;
1108 
1109 	rte_timer_stop_sync(&adapter->timer_wd);
1110 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1111 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1112 
1113 	if (adapter->trigger_reset) {
1114 		rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
1115 		if (rc)
1116 			PMD_DRV_LOG(ERR, "Device reset failed rc=%d\n", rc);
1117 	}
1118 
1119 	++adapter->dev_stats.dev_stop;
1120 	adapter->state = ENA_ADAPTER_STATE_STOPPED;
1121 }
1122 
1123 static int ena_create_io_queue(struct ena_ring *ring)
1124 {
1125 	struct ena_adapter *adapter;
1126 	struct ena_com_dev *ena_dev;
1127 	struct ena_com_create_io_ctx ctx =
1128 		/* policy set to _HOST just to satisfy icc compiler */
1129 		{ ENA_ADMIN_PLACEMENT_POLICY_HOST,
1130 		  0, 0, 0, 0, 0 };
1131 	uint16_t ena_qid;
1132 	unsigned int i;
1133 	int rc;
1134 
1135 	adapter = ring->adapter;
1136 	ena_dev = &adapter->ena_dev;
1137 
1138 	if (ring->type == ENA_RING_TYPE_TX) {
1139 		ena_qid = ENA_IO_TXQ_IDX(ring->id);
1140 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1141 		ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1142 		for (i = 0; i < ring->ring_size; i++)
1143 			ring->empty_tx_reqs[i] = i;
1144 	} else {
1145 		ena_qid = ENA_IO_RXQ_IDX(ring->id);
1146 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1147 		for (i = 0; i < ring->ring_size; i++)
1148 			ring->empty_rx_reqs[i] = i;
1149 	}
1150 	ctx.queue_size = ring->ring_size;
1151 	ctx.qid = ena_qid;
1152 	ctx.msix_vector = -1; /* interrupts not used */
1153 	ctx.numa_node = ring->numa_socket_id;
1154 
1155 	rc = ena_com_create_io_queue(ena_dev, &ctx);
1156 	if (rc) {
1157 		PMD_DRV_LOG(ERR,
1158 			"failed to create io queue #%d (qid:%d) rc: %d\n",
1159 			ring->id, ena_qid, rc);
1160 		return rc;
1161 	}
1162 
1163 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1164 				     &ring->ena_com_io_sq,
1165 				     &ring->ena_com_io_cq);
1166 	if (rc) {
1167 		PMD_DRV_LOG(ERR,
1168 			"Failed to get io queue handlers. queue num %d rc: %d\n",
1169 			ring->id, rc);
1170 		ena_com_destroy_io_queue(ena_dev, ena_qid);
1171 		return rc;
1172 	}
1173 
1174 	if (ring->type == ENA_RING_TYPE_TX)
1175 		ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1176 
1177 	return 0;
1178 }
1179 
1180 static void ena_queue_stop(struct ena_ring *ring)
1181 {
1182 	struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
1183 
1184 	if (ring->type == ENA_RING_TYPE_RX) {
1185 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
1186 		ena_rx_queue_release_bufs(ring);
1187 	} else {
1188 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
1189 		ena_tx_queue_release_bufs(ring);
1190 	}
1191 }
1192 
1193 static void ena_queue_stop_all(struct rte_eth_dev *dev,
1194 			      enum ena_ring_type ring_type)
1195 {
1196 	struct ena_adapter *adapter = dev->data->dev_private;
1197 	struct ena_ring *queues = NULL;
1198 	uint16_t nb_queues, i;
1199 
1200 	if (ring_type == ENA_RING_TYPE_RX) {
1201 		queues = adapter->rx_ring;
1202 		nb_queues = dev->data->nb_rx_queues;
1203 	} else {
1204 		queues = adapter->tx_ring;
1205 		nb_queues = dev->data->nb_tx_queues;
1206 	}
1207 
1208 	for (i = 0; i < nb_queues; ++i)
1209 		if (queues[i].configured)
1210 			ena_queue_stop(&queues[i]);
1211 }
1212 
1213 static int ena_queue_start(struct ena_ring *ring)
1214 {
1215 	int rc, bufs_num;
1216 
1217 	ena_assert_msg(ring->configured == 1,
1218 		       "Trying to start unconfigured queue\n");
1219 
1220 	rc = ena_create_io_queue(ring);
1221 	if (rc) {
1222 		PMD_INIT_LOG(ERR, "Failed to create IO queue!");
1223 		return rc;
1224 	}
1225 
1226 	ring->next_to_clean = 0;
1227 	ring->next_to_use = 0;
1228 
1229 	if (ring->type == ENA_RING_TYPE_TX) {
1230 		ring->tx_stats.available_desc =
1231 			ena_com_free_q_entries(ring->ena_com_io_sq);
1232 		return 0;
1233 	}
1234 
1235 	bufs_num = ring->ring_size - 1;
1236 	rc = ena_populate_rx_queue(ring, bufs_num);
1237 	if (rc != bufs_num) {
1238 		ena_com_destroy_io_queue(&ring->adapter->ena_dev,
1239 					 ENA_IO_RXQ_IDX(ring->id));
1240 		PMD_INIT_LOG(ERR, "Failed to populate rx ring !");
1241 		return ENA_COM_FAULT;
1242 	}
1243 
1244 	return 0;
1245 }
1246 
1247 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1248 			      uint16_t queue_idx,
1249 			      uint16_t nb_desc,
1250 			      unsigned int socket_id,
1251 			      const struct rte_eth_txconf *tx_conf)
1252 {
1253 	struct ena_ring *txq = NULL;
1254 	struct ena_adapter *adapter = dev->data->dev_private;
1255 	unsigned int i;
1256 
1257 	txq = &adapter->tx_ring[queue_idx];
1258 
1259 	if (txq->configured) {
1260 		PMD_DRV_LOG(CRIT,
1261 			"API violation. Queue %d is already configured\n",
1262 			queue_idx);
1263 		return ENA_COM_FAULT;
1264 	}
1265 
1266 	if (!rte_is_power_of_2(nb_desc)) {
1267 		PMD_DRV_LOG(ERR,
1268 			"Unsupported size of TX queue: %d is not a power of 2.\n",
1269 			nb_desc);
1270 		return -EINVAL;
1271 	}
1272 
1273 	if (nb_desc > adapter->max_tx_ring_size) {
1274 		PMD_DRV_LOG(ERR,
1275 			"Unsupported size of TX queue (max size: %d)\n",
1276 			adapter->max_tx_ring_size);
1277 		return -EINVAL;
1278 	}
1279 
1280 	if (nb_desc == RTE_ETH_DEV_FALLBACK_TX_RINGSIZE)
1281 		nb_desc = adapter->max_tx_ring_size;
1282 
1283 	txq->port_id = dev->data->port_id;
1284 	txq->next_to_clean = 0;
1285 	txq->next_to_use = 0;
1286 	txq->ring_size = nb_desc;
1287 	txq->size_mask = nb_desc - 1;
1288 	txq->numa_socket_id = socket_id;
1289 
1290 	txq->tx_buffer_info = rte_zmalloc("txq->tx_buffer_info",
1291 					  sizeof(struct ena_tx_buffer) *
1292 					  txq->ring_size,
1293 					  RTE_CACHE_LINE_SIZE);
1294 	if (!txq->tx_buffer_info) {
1295 		PMD_DRV_LOG(ERR, "failed to alloc mem for tx buffer info\n");
1296 		return -ENOMEM;
1297 	}
1298 
1299 	txq->empty_tx_reqs = rte_zmalloc("txq->empty_tx_reqs",
1300 					 sizeof(u16) * txq->ring_size,
1301 					 RTE_CACHE_LINE_SIZE);
1302 	if (!txq->empty_tx_reqs) {
1303 		PMD_DRV_LOG(ERR, "failed to alloc mem for tx reqs\n");
1304 		rte_free(txq->tx_buffer_info);
1305 		return -ENOMEM;
1306 	}
1307 
1308 	txq->push_buf_intermediate_buf =
1309 		rte_zmalloc("txq->push_buf_intermediate_buf",
1310 			    txq->tx_max_header_size,
1311 			    RTE_CACHE_LINE_SIZE);
1312 	if (!txq->push_buf_intermediate_buf) {
1313 		PMD_DRV_LOG(ERR, "failed to alloc push buff for LLQ\n");
1314 		rte_free(txq->tx_buffer_info);
1315 		rte_free(txq->empty_tx_reqs);
1316 		return -ENOMEM;
1317 	}
1318 
1319 	for (i = 0; i < txq->ring_size; i++)
1320 		txq->empty_tx_reqs[i] = i;
1321 
1322 	if (tx_conf != NULL) {
1323 		txq->offloads =
1324 			tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1325 	}
1326 	/* Store pointer to this queue in upper layer */
1327 	txq->configured = 1;
1328 	dev->data->tx_queues[queue_idx] = txq;
1329 
1330 	return 0;
1331 }
1332 
1333 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1334 			      uint16_t queue_idx,
1335 			      uint16_t nb_desc,
1336 			      unsigned int socket_id,
1337 			      __rte_unused const struct rte_eth_rxconf *rx_conf,
1338 			      struct rte_mempool *mp)
1339 {
1340 	struct ena_adapter *adapter = dev->data->dev_private;
1341 	struct ena_ring *rxq = NULL;
1342 	size_t buffer_size;
1343 	int i;
1344 
1345 	rxq = &adapter->rx_ring[queue_idx];
1346 	if (rxq->configured) {
1347 		PMD_DRV_LOG(CRIT,
1348 			"API violation. Queue %d is already configured\n",
1349 			queue_idx);
1350 		return ENA_COM_FAULT;
1351 	}
1352 
1353 	if (nb_desc == RTE_ETH_DEV_FALLBACK_RX_RINGSIZE)
1354 		nb_desc = adapter->max_rx_ring_size;
1355 
1356 	if (!rte_is_power_of_2(nb_desc)) {
1357 		PMD_DRV_LOG(ERR,
1358 			"Unsupported size of RX queue: %d is not a power of 2.\n",
1359 			nb_desc);
1360 		return -EINVAL;
1361 	}
1362 
1363 	if (nb_desc > adapter->max_rx_ring_size) {
1364 		PMD_DRV_LOG(ERR,
1365 			"Unsupported size of RX queue (max size: %d)\n",
1366 			adapter->max_rx_ring_size);
1367 		return -EINVAL;
1368 	}
1369 
1370 	/* ENA isn't supporting buffers smaller than 1400 bytes */
1371 	buffer_size = rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
1372 	if (buffer_size < ENA_RX_BUF_MIN_SIZE) {
1373 		PMD_DRV_LOG(ERR,
1374 			"Unsupported size of RX buffer: %zu (min size: %d)\n",
1375 			buffer_size, ENA_RX_BUF_MIN_SIZE);
1376 		return -EINVAL;
1377 	}
1378 
1379 	rxq->port_id = dev->data->port_id;
1380 	rxq->next_to_clean = 0;
1381 	rxq->next_to_use = 0;
1382 	rxq->ring_size = nb_desc;
1383 	rxq->size_mask = nb_desc - 1;
1384 	rxq->numa_socket_id = socket_id;
1385 	rxq->mb_pool = mp;
1386 
1387 	rxq->rx_buffer_info = rte_zmalloc("rxq->buffer_info",
1388 		sizeof(struct ena_rx_buffer) * nb_desc,
1389 		RTE_CACHE_LINE_SIZE);
1390 	if (!rxq->rx_buffer_info) {
1391 		PMD_DRV_LOG(ERR, "failed to alloc mem for rx buffer info\n");
1392 		return -ENOMEM;
1393 	}
1394 
1395 	rxq->rx_refill_buffer = rte_zmalloc("rxq->rx_refill_buffer",
1396 					    sizeof(struct rte_mbuf *) * nb_desc,
1397 					    RTE_CACHE_LINE_SIZE);
1398 
1399 	if (!rxq->rx_refill_buffer) {
1400 		PMD_DRV_LOG(ERR, "failed to alloc mem for rx refill buffer\n");
1401 		rte_free(rxq->rx_buffer_info);
1402 		rxq->rx_buffer_info = NULL;
1403 		return -ENOMEM;
1404 	}
1405 
1406 	rxq->empty_rx_reqs = rte_zmalloc("rxq->empty_rx_reqs",
1407 					 sizeof(uint16_t) * nb_desc,
1408 					 RTE_CACHE_LINE_SIZE);
1409 	if (!rxq->empty_rx_reqs) {
1410 		PMD_DRV_LOG(ERR, "failed to alloc mem for empty rx reqs\n");
1411 		rte_free(rxq->rx_buffer_info);
1412 		rxq->rx_buffer_info = NULL;
1413 		rte_free(rxq->rx_refill_buffer);
1414 		rxq->rx_refill_buffer = NULL;
1415 		return -ENOMEM;
1416 	}
1417 
1418 	for (i = 0; i < nb_desc; i++)
1419 		rxq->empty_rx_reqs[i] = i;
1420 
1421 	/* Store pointer to this queue in upper layer */
1422 	rxq->configured = 1;
1423 	dev->data->rx_queues[queue_idx] = rxq;
1424 
1425 	return 0;
1426 }
1427 
1428 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
1429 				  struct rte_mbuf *mbuf, uint16_t id)
1430 {
1431 	struct ena_com_buf ebuf;
1432 	int rc;
1433 
1434 	/* prepare physical address for DMA transaction */
1435 	ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1436 	ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1437 
1438 	/* pass resource to device */
1439 	rc = ena_com_add_single_rx_desc(io_sq, &ebuf, id);
1440 	if (unlikely(rc != 0))
1441 		PMD_DRV_LOG(WARNING, "failed adding rx desc\n");
1442 
1443 	return rc;
1444 }
1445 
1446 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1447 {
1448 	unsigned int i;
1449 	int rc;
1450 	uint16_t next_to_use = rxq->next_to_use;
1451 	uint16_t in_use, req_id;
1452 	struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1453 
1454 	if (unlikely(!count))
1455 		return 0;
1456 
1457 	in_use = rxq->ring_size - 1 -
1458 		ena_com_free_q_entries(rxq->ena_com_io_sq);
1459 	ena_assert_msg(((in_use + count) < rxq->ring_size),
1460 		"bad ring state\n");
1461 
1462 	/* get resources for incoming packets */
1463 	rc = rte_mempool_get_bulk(rxq->mb_pool, (void **)mbufs, count);
1464 	if (unlikely(rc < 0)) {
1465 		rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1466 		++rxq->rx_stats.mbuf_alloc_fail;
1467 		PMD_RX_LOG(DEBUG, "there are no enough free buffers");
1468 		return 0;
1469 	}
1470 
1471 	for (i = 0; i < count; i++) {
1472 		struct rte_mbuf *mbuf = mbufs[i];
1473 		struct ena_rx_buffer *rx_info;
1474 
1475 		if (likely((i + 4) < count))
1476 			rte_prefetch0(mbufs[i + 4]);
1477 
1478 		req_id = rxq->empty_rx_reqs[next_to_use];
1479 		rc = validate_rx_req_id(rxq, req_id);
1480 		if (unlikely(rc))
1481 			break;
1482 
1483 		rx_info = &rxq->rx_buffer_info[req_id];
1484 
1485 		rc = ena_add_single_rx_desc(rxq->ena_com_io_sq, mbuf, req_id);
1486 		if (unlikely(rc != 0))
1487 			break;
1488 
1489 		rx_info->mbuf = mbuf;
1490 		next_to_use = ENA_IDX_NEXT_MASKED(next_to_use, rxq->size_mask);
1491 	}
1492 
1493 	if (unlikely(i < count)) {
1494 		PMD_DRV_LOG(WARNING, "refilled rx qid %d with only %d "
1495 			"buffers (from %d)\n", rxq->id, i, count);
1496 		rte_mempool_put_bulk(rxq->mb_pool, (void **)(&mbufs[i]),
1497 				     count - i);
1498 		++rxq->rx_stats.refill_partial;
1499 	}
1500 
1501 	/* When we submitted free recources to device... */
1502 	if (likely(i > 0)) {
1503 		/* ...let HW know that it can fill buffers with data. */
1504 		ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1505 
1506 		rxq->next_to_use = next_to_use;
1507 	}
1508 
1509 	return i;
1510 }
1511 
1512 static int ena_device_init(struct ena_com_dev *ena_dev,
1513 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
1514 			   bool *wd_state)
1515 {
1516 	uint32_t aenq_groups;
1517 	int rc;
1518 	bool readless_supported;
1519 
1520 	/* Initialize mmio registers */
1521 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
1522 	if (rc) {
1523 		PMD_DRV_LOG(ERR, "failed to init mmio read less\n");
1524 		return rc;
1525 	}
1526 
1527 	/* The PCIe configuration space revision id indicate if mmio reg
1528 	 * read is disabled.
1529 	 */
1530 	readless_supported =
1531 		!(((struct rte_pci_device *)ena_dev->dmadev)->id.class_id
1532 			       & ENA_MMIO_DISABLE_REG_READ);
1533 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1534 
1535 	/* reset device */
1536 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1537 	if (rc) {
1538 		PMD_DRV_LOG(ERR, "cannot reset device\n");
1539 		goto err_mmio_read_less;
1540 	}
1541 
1542 	/* check FW version */
1543 	rc = ena_com_validate_version(ena_dev);
1544 	if (rc) {
1545 		PMD_DRV_LOG(ERR, "device version is too low\n");
1546 		goto err_mmio_read_less;
1547 	}
1548 
1549 	ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1550 
1551 	/* ENA device administration layer init */
1552 	rc = ena_com_admin_init(ena_dev, &aenq_handlers);
1553 	if (rc) {
1554 		PMD_DRV_LOG(ERR,
1555 			"cannot initialize ena admin queue with device\n");
1556 		goto err_mmio_read_less;
1557 	}
1558 
1559 	/* To enable the msix interrupts the driver needs to know the number
1560 	 * of queues. So the driver uses polling mode to retrieve this
1561 	 * information.
1562 	 */
1563 	ena_com_set_admin_polling_mode(ena_dev, true);
1564 
1565 	ena_config_host_info(ena_dev);
1566 
1567 	/* Get Device Attributes and features */
1568 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1569 	if (rc) {
1570 		PMD_DRV_LOG(ERR,
1571 			"cannot get attribute for ena device rc= %d\n", rc);
1572 		goto err_admin_init;
1573 	}
1574 
1575 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1576 		      BIT(ENA_ADMIN_NOTIFICATION) |
1577 		      BIT(ENA_ADMIN_KEEP_ALIVE) |
1578 		      BIT(ENA_ADMIN_FATAL_ERROR) |
1579 		      BIT(ENA_ADMIN_WARNING);
1580 
1581 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
1582 	rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
1583 	if (rc) {
1584 		PMD_DRV_LOG(ERR, "Cannot configure aenq groups rc: %d\n", rc);
1585 		goto err_admin_init;
1586 	}
1587 
1588 	*wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
1589 
1590 	return 0;
1591 
1592 err_admin_init:
1593 	ena_com_admin_destroy(ena_dev);
1594 
1595 err_mmio_read_less:
1596 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1597 
1598 	return rc;
1599 }
1600 
1601 static void ena_interrupt_handler_rte(void *cb_arg)
1602 {
1603 	struct ena_adapter *adapter = cb_arg;
1604 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1605 
1606 	ena_com_admin_q_comp_intr_handler(ena_dev);
1607 	if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED))
1608 		ena_com_aenq_intr_handler(ena_dev, adapter);
1609 }
1610 
1611 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1612 {
1613 	if (!adapter->wd_state)
1614 		return;
1615 
1616 	if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1617 		return;
1618 
1619 	if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1620 	    adapter->keep_alive_timeout)) {
1621 		PMD_DRV_LOG(ERR, "Keep alive timeout\n");
1622 		adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
1623 		adapter->trigger_reset = true;
1624 		++adapter->dev_stats.wd_expired;
1625 	}
1626 }
1627 
1628 /* Check if admin queue is enabled */
1629 static void check_for_admin_com_state(struct ena_adapter *adapter)
1630 {
1631 	if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1632 		PMD_DRV_LOG(ERR, "ENA admin queue is not in running state!\n");
1633 		adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
1634 		adapter->trigger_reset = true;
1635 	}
1636 }
1637 
1638 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
1639 				  void *arg)
1640 {
1641 	struct ena_adapter *adapter = arg;
1642 	struct rte_eth_dev *dev = adapter->rte_dev;
1643 
1644 	check_for_missing_keep_alive(adapter);
1645 	check_for_admin_com_state(adapter);
1646 
1647 	if (unlikely(adapter->trigger_reset)) {
1648 		PMD_DRV_LOG(ERR, "Trigger reset is on\n");
1649 		rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
1650 			NULL);
1651 	}
1652 }
1653 
1654 static inline void
1655 set_default_llq_configurations(struct ena_llq_configurations *llq_config,
1656 			       struct ena_admin_feature_llq_desc *llq,
1657 			       bool use_large_llq_hdr)
1658 {
1659 	llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
1660 	llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
1661 	llq_config->llq_num_decs_before_header =
1662 		ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
1663 
1664 	if (use_large_llq_hdr &&
1665 	    (llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B)) {
1666 		llq_config->llq_ring_entry_size =
1667 			ENA_ADMIN_LIST_ENTRY_SIZE_256B;
1668 		llq_config->llq_ring_entry_size_value = 256;
1669 	} else {
1670 		llq_config->llq_ring_entry_size =
1671 			ENA_ADMIN_LIST_ENTRY_SIZE_128B;
1672 		llq_config->llq_ring_entry_size_value = 128;
1673 	}
1674 }
1675 
1676 static int
1677 ena_set_queues_placement_policy(struct ena_adapter *adapter,
1678 				struct ena_com_dev *ena_dev,
1679 				struct ena_admin_feature_llq_desc *llq,
1680 				struct ena_llq_configurations *llq_default_configurations)
1681 {
1682 	int rc;
1683 	u32 llq_feature_mask;
1684 
1685 	llq_feature_mask = 1 << ENA_ADMIN_LLQ;
1686 	if (!(ena_dev->supported_features & llq_feature_mask)) {
1687 		PMD_DRV_LOG(INFO,
1688 			"LLQ is not supported. Fallback to host mode policy.\n");
1689 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1690 		return 0;
1691 	}
1692 
1693 	rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
1694 	if (unlikely(rc)) {
1695 		PMD_INIT_LOG(WARNING, "Failed to config dev mode. "
1696 			"Fallback to host mode policy.");
1697 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1698 		return 0;
1699 	}
1700 
1701 	/* Nothing to config, exit */
1702 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1703 		return 0;
1704 
1705 	if (!adapter->dev_mem_base) {
1706 		PMD_DRV_LOG(ERR, "Unable to access LLQ bar resource. "
1707 			"Fallback to host mode policy.\n.");
1708 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1709 		return 0;
1710 	}
1711 
1712 	ena_dev->mem_bar = adapter->dev_mem_base;
1713 
1714 	return 0;
1715 }
1716 
1717 static uint32_t ena_calc_max_io_queue_num(struct ena_com_dev *ena_dev,
1718 	struct ena_com_dev_get_features_ctx *get_feat_ctx)
1719 {
1720 	uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
1721 
1722 	/* Regular queues capabilities */
1723 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1724 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1725 			&get_feat_ctx->max_queue_ext.max_queue_ext;
1726 		io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
1727 				    max_queue_ext->max_rx_cq_num);
1728 		io_tx_sq_num = max_queue_ext->max_tx_sq_num;
1729 		io_tx_cq_num = max_queue_ext->max_tx_cq_num;
1730 	} else {
1731 		struct ena_admin_queue_feature_desc *max_queues =
1732 			&get_feat_ctx->max_queues;
1733 		io_tx_sq_num = max_queues->max_sq_num;
1734 		io_tx_cq_num = max_queues->max_cq_num;
1735 		io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
1736 	}
1737 
1738 	/* In case of LLQ use the llq number in the get feature cmd */
1739 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
1740 		io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
1741 
1742 	max_num_io_queues = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
1743 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_sq_num);
1744 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_cq_num);
1745 
1746 	if (unlikely(max_num_io_queues == 0)) {
1747 		PMD_DRV_LOG(ERR, "Number of IO queues should not be 0\n");
1748 		return -EFAULT;
1749 	}
1750 
1751 	return max_num_io_queues;
1752 }
1753 
1754 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
1755 {
1756 	struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
1757 	struct rte_pci_device *pci_dev;
1758 	struct rte_intr_handle *intr_handle;
1759 	struct ena_adapter *adapter = eth_dev->data->dev_private;
1760 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1761 	struct ena_com_dev_get_features_ctx get_feat_ctx;
1762 	struct ena_llq_configurations llq_config;
1763 	const char *queue_type_str;
1764 	uint32_t max_num_io_queues;
1765 	int rc;
1766 	static int adapters_found;
1767 	bool disable_meta_caching;
1768 	bool wd_state = false;
1769 
1770 	eth_dev->dev_ops = &ena_dev_ops;
1771 	eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
1772 	eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
1773 	eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
1774 
1775 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1776 		return 0;
1777 
1778 	memset(adapter, 0, sizeof(struct ena_adapter));
1779 	ena_dev = &adapter->ena_dev;
1780 
1781 	adapter->rte_eth_dev_data = eth_dev->data;
1782 	adapter->rte_dev = eth_dev;
1783 
1784 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1785 	adapter->pdev = pci_dev;
1786 
1787 	PMD_INIT_LOG(INFO, "Initializing %x:%x:%x.%d",
1788 		     pci_dev->addr.domain,
1789 		     pci_dev->addr.bus,
1790 		     pci_dev->addr.devid,
1791 		     pci_dev->addr.function);
1792 
1793 	intr_handle = &pci_dev->intr_handle;
1794 
1795 	adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
1796 	adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
1797 
1798 	if (!adapter->regs) {
1799 		PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)",
1800 			     ENA_REGS_BAR);
1801 		return -ENXIO;
1802 	}
1803 
1804 	ena_dev->reg_bar = adapter->regs;
1805 	ena_dev->dmadev = adapter->pdev;
1806 
1807 	adapter->id_number = adapters_found;
1808 
1809 	snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
1810 		 adapter->id_number);
1811 
1812 	rc = ena_parse_devargs(adapter, pci_dev->device.devargs);
1813 	if (rc != 0) {
1814 		PMD_INIT_LOG(CRIT, "Failed to parse devargs\n");
1815 		goto err;
1816 	}
1817 
1818 	/* device specific initialization routine */
1819 	rc = ena_device_init(ena_dev, &get_feat_ctx, &wd_state);
1820 	if (rc) {
1821 		PMD_INIT_LOG(CRIT, "Failed to init ENA device");
1822 		goto err;
1823 	}
1824 	adapter->wd_state = wd_state;
1825 
1826 	set_default_llq_configurations(&llq_config, &get_feat_ctx.llq,
1827 		adapter->use_large_llq_hdr);
1828 	rc = ena_set_queues_placement_policy(adapter, ena_dev,
1829 					     &get_feat_ctx.llq, &llq_config);
1830 	if (unlikely(rc)) {
1831 		PMD_INIT_LOG(CRIT, "Failed to set placement policy");
1832 		return rc;
1833 	}
1834 
1835 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1836 		queue_type_str = "Regular";
1837 	else
1838 		queue_type_str = "Low latency";
1839 	PMD_DRV_LOG(INFO, "Placement policy: %s\n", queue_type_str);
1840 
1841 	calc_queue_ctx.ena_dev = ena_dev;
1842 	calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
1843 
1844 	max_num_io_queues = ena_calc_max_io_queue_num(ena_dev, &get_feat_ctx);
1845 	rc = ena_calc_io_queue_size(&calc_queue_ctx,
1846 		adapter->use_large_llq_hdr);
1847 	if (unlikely((rc != 0) || (max_num_io_queues == 0))) {
1848 		rc = -EFAULT;
1849 		goto err_device_destroy;
1850 	}
1851 
1852 	adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
1853 	adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
1854 	adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
1855 	adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
1856 	adapter->max_num_io_queues = max_num_io_queues;
1857 
1858 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1859 		disable_meta_caching =
1860 			!!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
1861 			BIT(ENA_ADMIN_DISABLE_META_CACHING));
1862 	} else {
1863 		disable_meta_caching = false;
1864 	}
1865 
1866 	/* prepare ring structures */
1867 	ena_init_rings(adapter, disable_meta_caching);
1868 
1869 	ena_config_debug_area(adapter);
1870 
1871 	/* Set max MTU for this device */
1872 	adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
1873 
1874 	/* set device support for offloads */
1875 	adapter->offloads.tso4_supported = (get_feat_ctx.offload.tx &
1876 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) != 0;
1877 	adapter->offloads.tx_csum_supported = (get_feat_ctx.offload.tx &
1878 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK) != 0;
1879 	adapter->offloads.rx_csum_supported =
1880 		(get_feat_ctx.offload.rx_supported &
1881 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK) != 0;
1882 
1883 	/* Copy MAC address and point DPDK to it */
1884 	eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr;
1885 	rte_ether_addr_copy((struct rte_ether_addr *)
1886 			get_feat_ctx.dev_attr.mac_addr,
1887 			(struct rte_ether_addr *)adapter->mac_addr);
1888 
1889 	adapter->drv_stats = rte_zmalloc("adapter stats",
1890 					 sizeof(*adapter->drv_stats),
1891 					 RTE_CACHE_LINE_SIZE);
1892 	if (!adapter->drv_stats) {
1893 		PMD_DRV_LOG(ERR, "failed to alloc mem for adapter stats\n");
1894 		rc = -ENOMEM;
1895 		goto err_delete_debug_area;
1896 	}
1897 
1898 	rte_spinlock_init(&adapter->admin_lock);
1899 
1900 	rte_intr_callback_register(intr_handle,
1901 				   ena_interrupt_handler_rte,
1902 				   adapter);
1903 	rte_intr_enable(intr_handle);
1904 	ena_com_set_admin_polling_mode(ena_dev, false);
1905 	ena_com_admin_aenq_enable(ena_dev);
1906 
1907 	if (adapters_found == 0)
1908 		rte_timer_subsystem_init();
1909 	rte_timer_init(&adapter->timer_wd);
1910 
1911 	adapters_found++;
1912 	adapter->state = ENA_ADAPTER_STATE_INIT;
1913 
1914 	return 0;
1915 
1916 err_delete_debug_area:
1917 	ena_com_delete_debug_area(ena_dev);
1918 
1919 err_device_destroy:
1920 	ena_com_delete_host_info(ena_dev);
1921 	ena_com_admin_destroy(ena_dev);
1922 
1923 err:
1924 	return rc;
1925 }
1926 
1927 static void ena_destroy_device(struct rte_eth_dev *eth_dev)
1928 {
1929 	struct ena_adapter *adapter = eth_dev->data->dev_private;
1930 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1931 
1932 	if (adapter->state == ENA_ADAPTER_STATE_FREE)
1933 		return;
1934 
1935 	ena_com_set_admin_running_state(ena_dev, false);
1936 
1937 	if (adapter->state != ENA_ADAPTER_STATE_CLOSED)
1938 		ena_close(eth_dev);
1939 
1940 	ena_com_delete_debug_area(ena_dev);
1941 	ena_com_delete_host_info(ena_dev);
1942 
1943 	ena_com_abort_admin_commands(ena_dev);
1944 	ena_com_wait_for_abort_completion(ena_dev);
1945 	ena_com_admin_destroy(ena_dev);
1946 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1947 
1948 	adapter->state = ENA_ADAPTER_STATE_FREE;
1949 }
1950 
1951 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
1952 {
1953 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1954 		return 0;
1955 
1956 	ena_destroy_device(eth_dev);
1957 
1958 	eth_dev->dev_ops = NULL;
1959 	eth_dev->rx_pkt_burst = NULL;
1960 	eth_dev->tx_pkt_burst = NULL;
1961 	eth_dev->tx_pkt_prepare = NULL;
1962 
1963 	return 0;
1964 }
1965 
1966 static int ena_dev_configure(struct rte_eth_dev *dev)
1967 {
1968 	struct ena_adapter *adapter = dev->data->dev_private;
1969 
1970 	adapter->state = ENA_ADAPTER_STATE_CONFIG;
1971 
1972 	adapter->tx_selected_offloads = dev->data->dev_conf.txmode.offloads;
1973 	adapter->rx_selected_offloads = dev->data->dev_conf.rxmode.offloads;
1974 	return 0;
1975 }
1976 
1977 static void ena_init_rings(struct ena_adapter *adapter,
1978 			   bool disable_meta_caching)
1979 {
1980 	size_t i;
1981 
1982 	for (i = 0; i < adapter->max_num_io_queues; i++) {
1983 		struct ena_ring *ring = &adapter->tx_ring[i];
1984 
1985 		ring->configured = 0;
1986 		ring->type = ENA_RING_TYPE_TX;
1987 		ring->adapter = adapter;
1988 		ring->id = i;
1989 		ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
1990 		ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
1991 		ring->sgl_size = adapter->max_tx_sgl_size;
1992 		ring->disable_meta_caching = disable_meta_caching;
1993 	}
1994 
1995 	for (i = 0; i < adapter->max_num_io_queues; i++) {
1996 		struct ena_ring *ring = &adapter->rx_ring[i];
1997 
1998 		ring->configured = 0;
1999 		ring->type = ENA_RING_TYPE_RX;
2000 		ring->adapter = adapter;
2001 		ring->id = i;
2002 		ring->sgl_size = adapter->max_rx_sgl_size;
2003 	}
2004 }
2005 
2006 static int ena_infos_get(struct rte_eth_dev *dev,
2007 			  struct rte_eth_dev_info *dev_info)
2008 {
2009 	struct ena_adapter *adapter;
2010 	struct ena_com_dev *ena_dev;
2011 	uint64_t rx_feat = 0, tx_feat = 0;
2012 
2013 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
2014 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
2015 	adapter = dev->data->dev_private;
2016 
2017 	ena_dev = &adapter->ena_dev;
2018 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
2019 
2020 	dev_info->speed_capa =
2021 			ETH_LINK_SPEED_1G   |
2022 			ETH_LINK_SPEED_2_5G |
2023 			ETH_LINK_SPEED_5G   |
2024 			ETH_LINK_SPEED_10G  |
2025 			ETH_LINK_SPEED_25G  |
2026 			ETH_LINK_SPEED_40G  |
2027 			ETH_LINK_SPEED_50G  |
2028 			ETH_LINK_SPEED_100G;
2029 
2030 	/* Set Tx & Rx features available for device */
2031 	if (adapter->offloads.tso4_supported)
2032 		tx_feat	|= DEV_TX_OFFLOAD_TCP_TSO;
2033 
2034 	if (adapter->offloads.tx_csum_supported)
2035 		tx_feat |= DEV_TX_OFFLOAD_IPV4_CKSUM |
2036 			DEV_TX_OFFLOAD_UDP_CKSUM |
2037 			DEV_TX_OFFLOAD_TCP_CKSUM;
2038 
2039 	if (adapter->offloads.rx_csum_supported)
2040 		rx_feat |= DEV_RX_OFFLOAD_IPV4_CKSUM |
2041 			DEV_RX_OFFLOAD_UDP_CKSUM  |
2042 			DEV_RX_OFFLOAD_TCP_CKSUM;
2043 
2044 	rx_feat |= DEV_RX_OFFLOAD_JUMBO_FRAME;
2045 
2046 	/* Inform framework about available features */
2047 	dev_info->rx_offload_capa = rx_feat;
2048 	dev_info->rx_queue_offload_capa = rx_feat;
2049 	dev_info->tx_offload_capa = tx_feat;
2050 	dev_info->tx_queue_offload_capa = tx_feat;
2051 
2052 	dev_info->flow_type_rss_offloads = ETH_RSS_IP | ETH_RSS_TCP |
2053 					   ETH_RSS_UDP;
2054 
2055 	dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
2056 	dev_info->max_rx_pktlen  = adapter->max_mtu;
2057 	dev_info->max_mac_addrs = 1;
2058 
2059 	dev_info->max_rx_queues = adapter->max_num_io_queues;
2060 	dev_info->max_tx_queues = adapter->max_num_io_queues;
2061 	dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
2062 
2063 	adapter->tx_supported_offloads = tx_feat;
2064 	adapter->rx_supported_offloads = rx_feat;
2065 
2066 	dev_info->rx_desc_lim.nb_max = adapter->max_rx_ring_size;
2067 	dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2068 	dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2069 					adapter->max_rx_sgl_size);
2070 	dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2071 					adapter->max_rx_sgl_size);
2072 
2073 	dev_info->tx_desc_lim.nb_max = adapter->max_tx_ring_size;
2074 	dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2075 	dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2076 					adapter->max_tx_sgl_size);
2077 	dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2078 					adapter->max_tx_sgl_size);
2079 
2080 	return 0;
2081 }
2082 
2083 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len)
2084 {
2085 	mbuf->data_len = len;
2086 	mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2087 	mbuf->refcnt = 1;
2088 	mbuf->next = NULL;
2089 }
2090 
2091 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
2092 				    struct ena_com_rx_buf_info *ena_bufs,
2093 				    uint32_t descs,
2094 				    uint16_t *next_to_clean,
2095 				    uint8_t offset)
2096 {
2097 	struct rte_mbuf *mbuf;
2098 	struct rte_mbuf *mbuf_head;
2099 	struct ena_rx_buffer *rx_info;
2100 	int rc;
2101 	uint16_t ntc, len, req_id, buf = 0;
2102 
2103 	if (unlikely(descs == 0))
2104 		return NULL;
2105 
2106 	ntc = *next_to_clean;
2107 
2108 	len = ena_bufs[buf].len;
2109 	req_id = ena_bufs[buf].req_id;
2110 	if (unlikely(validate_rx_req_id(rx_ring, req_id)))
2111 		return NULL;
2112 
2113 	rx_info = &rx_ring->rx_buffer_info[req_id];
2114 
2115 	mbuf = rx_info->mbuf;
2116 	RTE_ASSERT(mbuf != NULL);
2117 
2118 	ena_init_rx_mbuf(mbuf, len);
2119 
2120 	/* Fill the mbuf head with the data specific for 1st segment. */
2121 	mbuf_head = mbuf;
2122 	mbuf_head->nb_segs = descs;
2123 	mbuf_head->port = rx_ring->port_id;
2124 	mbuf_head->pkt_len = len;
2125 	mbuf_head->data_off += offset;
2126 
2127 	rx_info->mbuf = NULL;
2128 	rx_ring->empty_rx_reqs[ntc] = req_id;
2129 	ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2130 
2131 	while (--descs) {
2132 		++buf;
2133 		len = ena_bufs[buf].len;
2134 		req_id = ena_bufs[buf].req_id;
2135 		if (unlikely(validate_rx_req_id(rx_ring, req_id))) {
2136 			rte_mbuf_raw_free(mbuf_head);
2137 			return NULL;
2138 		}
2139 
2140 		rx_info = &rx_ring->rx_buffer_info[req_id];
2141 		RTE_ASSERT(rx_info->mbuf != NULL);
2142 
2143 		if (unlikely(len == 0)) {
2144 			/*
2145 			 * Some devices can pass descriptor with the length 0.
2146 			 * To avoid confusion, the PMD is simply putting the
2147 			 * descriptor back, as it was never used. We'll avoid
2148 			 * mbuf allocation that way.
2149 			 */
2150 			rc = ena_add_single_rx_desc(rx_ring->ena_com_io_sq,
2151 				rx_info->mbuf, req_id);
2152 			if (unlikely(rc != 0)) {
2153 				/* Free the mbuf in case of an error. */
2154 				rte_mbuf_raw_free(rx_info->mbuf);
2155 			} else {
2156 				/*
2157 				 * If there was no error, just exit the loop as
2158 				 * 0 length descriptor is always the last one.
2159 				 */
2160 				break;
2161 			}
2162 		} else {
2163 			/* Create an mbuf chain. */
2164 			mbuf->next = rx_info->mbuf;
2165 			mbuf = mbuf->next;
2166 
2167 			ena_init_rx_mbuf(mbuf, len);
2168 			mbuf_head->pkt_len += len;
2169 		}
2170 
2171 		/*
2172 		 * Mark the descriptor as depleted and perform necessary
2173 		 * cleanup.
2174 		 * This code will execute in two cases:
2175 		 *  1. Descriptor len was greater than 0 - normal situation.
2176 		 *  2. Descriptor len was 0 and we failed to add the descriptor
2177 		 *     to the device. In that situation, we should try to add
2178 		 *     the mbuf again in the populate routine and mark the
2179 		 *     descriptor as used up by the device.
2180 		 */
2181 		rx_info->mbuf = NULL;
2182 		rx_ring->empty_rx_reqs[ntc] = req_id;
2183 		ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2184 	}
2185 
2186 	*next_to_clean = ntc;
2187 
2188 	return mbuf_head;
2189 }
2190 
2191 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
2192 				  uint16_t nb_pkts)
2193 {
2194 	struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
2195 	unsigned int free_queue_entries;
2196 	unsigned int refill_threshold;
2197 	uint16_t next_to_clean = rx_ring->next_to_clean;
2198 	uint16_t descs_in_use;
2199 	struct rte_mbuf *mbuf;
2200 	uint16_t completed;
2201 	struct ena_com_rx_ctx ena_rx_ctx;
2202 	int i, rc = 0;
2203 
2204 	/* Check adapter state */
2205 	if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2206 		PMD_DRV_LOG(ALERT,
2207 			"Trying to receive pkts while device is NOT running\n");
2208 		return 0;
2209 	}
2210 
2211 	descs_in_use = rx_ring->ring_size -
2212 		ena_com_free_q_entries(rx_ring->ena_com_io_sq) - 1;
2213 	nb_pkts = RTE_MIN(descs_in_use, nb_pkts);
2214 
2215 	for (completed = 0; completed < nb_pkts; completed++) {
2216 		ena_rx_ctx.max_bufs = rx_ring->sgl_size;
2217 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
2218 		ena_rx_ctx.descs = 0;
2219 		ena_rx_ctx.pkt_offset = 0;
2220 		/* receive packet context */
2221 		rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
2222 				    rx_ring->ena_com_io_sq,
2223 				    &ena_rx_ctx);
2224 		if (unlikely(rc)) {
2225 			PMD_DRV_LOG(ERR, "ena_com_rx_pkt error %d\n", rc);
2226 			rx_ring->adapter->reset_reason =
2227 				ENA_REGS_RESET_TOO_MANY_RX_DESCS;
2228 			rx_ring->adapter->trigger_reset = true;
2229 			++rx_ring->rx_stats.bad_desc_num;
2230 			return 0;
2231 		}
2232 
2233 		mbuf = ena_rx_mbuf(rx_ring,
2234 			ena_rx_ctx.ena_bufs,
2235 			ena_rx_ctx.descs,
2236 			&next_to_clean,
2237 			ena_rx_ctx.pkt_offset);
2238 		if (unlikely(mbuf == NULL)) {
2239 			for (i = 0; i < ena_rx_ctx.descs; ++i) {
2240 				rx_ring->empty_rx_reqs[next_to_clean] =
2241 					rx_ring->ena_bufs[i].req_id;
2242 				next_to_clean = ENA_IDX_NEXT_MASKED(
2243 					next_to_clean, rx_ring->size_mask);
2244 			}
2245 			break;
2246 		}
2247 
2248 		/* fill mbuf attributes if any */
2249 		ena_rx_mbuf_prepare(mbuf, &ena_rx_ctx);
2250 
2251 		if (unlikely(mbuf->ol_flags &
2252 				(PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD))) {
2253 			rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors);
2254 			++rx_ring->rx_stats.bad_csum;
2255 		}
2256 
2257 		mbuf->hash.rss = ena_rx_ctx.hash;
2258 
2259 		rx_pkts[completed] = mbuf;
2260 		rx_ring->rx_stats.bytes += mbuf->pkt_len;
2261 	}
2262 
2263 	rx_ring->rx_stats.cnt += completed;
2264 	rx_ring->next_to_clean = next_to_clean;
2265 
2266 	free_queue_entries = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
2267 	refill_threshold =
2268 		RTE_MIN(rx_ring->ring_size / ENA_REFILL_THRESH_DIVIDER,
2269 		(unsigned int)ENA_REFILL_THRESH_PACKET);
2270 
2271 	/* Burst refill to save doorbells, memory barriers, const interval */
2272 	if (free_queue_entries > refill_threshold) {
2273 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
2274 		ena_populate_rx_queue(rx_ring, free_queue_entries);
2275 	}
2276 
2277 	return completed;
2278 }
2279 
2280 static uint16_t
2281 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2282 		uint16_t nb_pkts)
2283 {
2284 	int32_t ret;
2285 	uint32_t i;
2286 	struct rte_mbuf *m;
2287 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2288 	struct rte_ipv4_hdr *ip_hdr;
2289 	uint64_t ol_flags;
2290 	uint16_t frag_field;
2291 
2292 	for (i = 0; i != nb_pkts; i++) {
2293 		m = tx_pkts[i];
2294 		ol_flags = m->ol_flags;
2295 
2296 		if (!(ol_flags & PKT_TX_IPV4))
2297 			continue;
2298 
2299 		/* If there was not L2 header length specified, assume it is
2300 		 * length of the ethernet header.
2301 		 */
2302 		if (unlikely(m->l2_len == 0))
2303 			m->l2_len = sizeof(struct rte_ether_hdr);
2304 
2305 		ip_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *,
2306 						 m->l2_len);
2307 		frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
2308 
2309 		if ((frag_field & RTE_IPV4_HDR_DF_FLAG) != 0) {
2310 			m->packet_type |= RTE_PTYPE_L4_NONFRAG;
2311 
2312 			/* If IPv4 header has DF flag enabled and TSO support is
2313 			 * disabled, partial chcecksum should not be calculated.
2314 			 */
2315 			if (!tx_ring->adapter->offloads.tso4_supported)
2316 				continue;
2317 		}
2318 
2319 		if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) != 0 ||
2320 				(ol_flags & PKT_TX_L4_MASK) ==
2321 				PKT_TX_SCTP_CKSUM) {
2322 			rte_errno = ENOTSUP;
2323 			return i;
2324 		}
2325 
2326 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2327 		ret = rte_validate_tx_offload(m);
2328 		if (ret != 0) {
2329 			rte_errno = -ret;
2330 			return i;
2331 		}
2332 #endif
2333 
2334 		/* In case we are supposed to TSO and have DF not set (DF=0)
2335 		 * hardware must be provided with partial checksum, otherwise
2336 		 * it will take care of necessary calculations.
2337 		 */
2338 
2339 		ret = rte_net_intel_cksum_flags_prepare(m,
2340 			ol_flags & ~PKT_TX_TCP_SEG);
2341 		if (ret != 0) {
2342 			rte_errno = -ret;
2343 			return i;
2344 		}
2345 	}
2346 
2347 	return i;
2348 }
2349 
2350 static void ena_update_hints(struct ena_adapter *adapter,
2351 			     struct ena_admin_ena_hw_hints *hints)
2352 {
2353 	if (hints->admin_completion_tx_timeout)
2354 		adapter->ena_dev.admin_queue.completion_timeout =
2355 			hints->admin_completion_tx_timeout * 1000;
2356 
2357 	if (hints->mmio_read_timeout)
2358 		/* convert to usec */
2359 		adapter->ena_dev.mmio_read.reg_read_to =
2360 			hints->mmio_read_timeout * 1000;
2361 
2362 	if (hints->driver_watchdog_timeout) {
2363 		if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
2364 			adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
2365 		else
2366 			// Convert msecs to ticks
2367 			adapter->keep_alive_timeout =
2368 				(hints->driver_watchdog_timeout *
2369 				rte_get_timer_hz()) / 1000;
2370 	}
2371 }
2372 
2373 static int ena_check_and_linearize_mbuf(struct ena_ring *tx_ring,
2374 					struct rte_mbuf *mbuf)
2375 {
2376 	struct ena_com_dev *ena_dev;
2377 	int num_segments, header_len, rc;
2378 
2379 	ena_dev = &tx_ring->adapter->ena_dev;
2380 	num_segments = mbuf->nb_segs;
2381 	header_len = mbuf->data_len;
2382 
2383 	if (likely(num_segments < tx_ring->sgl_size))
2384 		return 0;
2385 
2386 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
2387 	    (num_segments == tx_ring->sgl_size) &&
2388 	    (header_len < tx_ring->tx_max_header_size))
2389 		return 0;
2390 
2391 	++tx_ring->tx_stats.linearize;
2392 	rc = rte_pktmbuf_linearize(mbuf);
2393 	if (unlikely(rc)) {
2394 		PMD_DRV_LOG(WARNING, "Mbuf linearize failed\n");
2395 		rte_atomic64_inc(&tx_ring->adapter->drv_stats->ierrors);
2396 		++tx_ring->tx_stats.linearize_failed;
2397 		return rc;
2398 	}
2399 
2400 	return rc;
2401 }
2402 
2403 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
2404 	struct ena_tx_buffer *tx_info,
2405 	struct rte_mbuf *mbuf,
2406 	void **push_header,
2407 	uint16_t *header_len)
2408 {
2409 	struct ena_com_buf *ena_buf;
2410 	uint16_t delta, seg_len, push_len;
2411 
2412 	delta = 0;
2413 	seg_len = mbuf->data_len;
2414 
2415 	tx_info->mbuf = mbuf;
2416 	ena_buf = tx_info->bufs;
2417 
2418 	if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2419 		/*
2420 		 * Tx header might be (and will be in most cases) smaller than
2421 		 * tx_max_header_size. But it's not an issue to send more data
2422 		 * to the device, than actually needed if the mbuf size is
2423 		 * greater than tx_max_header_size.
2424 		 */
2425 		push_len = RTE_MIN(mbuf->pkt_len, tx_ring->tx_max_header_size);
2426 		*header_len = push_len;
2427 
2428 		if (likely(push_len <= seg_len)) {
2429 			/* If the push header is in the single segment, then
2430 			 * just point it to the 1st mbuf data.
2431 			 */
2432 			*push_header = rte_pktmbuf_mtod(mbuf, uint8_t *);
2433 		} else {
2434 			/* If the push header lays in the several segments, copy
2435 			 * it to the intermediate buffer.
2436 			 */
2437 			rte_pktmbuf_read(mbuf, 0, push_len,
2438 				tx_ring->push_buf_intermediate_buf);
2439 			*push_header = tx_ring->push_buf_intermediate_buf;
2440 			delta = push_len - seg_len;
2441 		}
2442 	} else {
2443 		*push_header = NULL;
2444 		*header_len = 0;
2445 		push_len = 0;
2446 	}
2447 
2448 	/* Process first segment taking into consideration pushed header */
2449 	if (seg_len > push_len) {
2450 		ena_buf->paddr = mbuf->buf_iova +
2451 				mbuf->data_off +
2452 				push_len;
2453 		ena_buf->len = seg_len - push_len;
2454 		ena_buf++;
2455 		tx_info->num_of_bufs++;
2456 	}
2457 
2458 	while ((mbuf = mbuf->next) != NULL) {
2459 		seg_len = mbuf->data_len;
2460 
2461 		/* Skip mbufs if whole data is pushed as a header */
2462 		if (unlikely(delta > seg_len)) {
2463 			delta -= seg_len;
2464 			continue;
2465 		}
2466 
2467 		ena_buf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
2468 		ena_buf->len = seg_len - delta;
2469 		ena_buf++;
2470 		tx_info->num_of_bufs++;
2471 
2472 		delta = 0;
2473 	}
2474 }
2475 
2476 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf)
2477 {
2478 	struct ena_tx_buffer *tx_info;
2479 	struct ena_com_tx_ctx ena_tx_ctx = { { 0 } };
2480 	uint16_t next_to_use;
2481 	uint16_t header_len;
2482 	uint16_t req_id;
2483 	void *push_header;
2484 	int nb_hw_desc;
2485 	int rc;
2486 
2487 	rc = ena_check_and_linearize_mbuf(tx_ring, mbuf);
2488 	if (unlikely(rc))
2489 		return rc;
2490 
2491 	next_to_use = tx_ring->next_to_use;
2492 
2493 	req_id = tx_ring->empty_tx_reqs[next_to_use];
2494 	tx_info = &tx_ring->tx_buffer_info[req_id];
2495 	tx_info->num_of_bufs = 0;
2496 
2497 	ena_tx_map_mbuf(tx_ring, tx_info, mbuf, &push_header, &header_len);
2498 
2499 	ena_tx_ctx.ena_bufs = tx_info->bufs;
2500 	ena_tx_ctx.push_header = push_header;
2501 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2502 	ena_tx_ctx.req_id = req_id;
2503 	ena_tx_ctx.header_len = header_len;
2504 
2505 	/* Set Tx offloads flags, if applicable */
2506 	ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads,
2507 		tx_ring->disable_meta_caching);
2508 
2509 	if (unlikely(ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
2510 			&ena_tx_ctx))) {
2511 		PMD_DRV_LOG(DEBUG,
2512 			"llq tx max burst size of queue %d achieved, writing doorbell to send burst\n",
2513 			tx_ring->id);
2514 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2515 	}
2516 
2517 	/* prepare the packet's descriptors to dma engine */
2518 	rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq,	&ena_tx_ctx,
2519 		&nb_hw_desc);
2520 	if (unlikely(rc)) {
2521 		++tx_ring->tx_stats.prepare_ctx_err;
2522 		return rc;
2523 	}
2524 
2525 	tx_info->tx_descs = nb_hw_desc;
2526 
2527 	tx_ring->tx_stats.cnt++;
2528 	tx_ring->tx_stats.bytes += mbuf->pkt_len;
2529 
2530 	tx_ring->next_to_use = ENA_IDX_NEXT_MASKED(next_to_use,
2531 		tx_ring->size_mask);
2532 
2533 	return 0;
2534 }
2535 
2536 static void ena_tx_cleanup(struct ena_ring *tx_ring)
2537 {
2538 	unsigned int cleanup_budget;
2539 	unsigned int total_tx_descs = 0;
2540 	uint16_t next_to_clean = tx_ring->next_to_clean;
2541 
2542 	cleanup_budget = RTE_MIN(tx_ring->ring_size / ENA_REFILL_THRESH_DIVIDER,
2543 		(unsigned int)ENA_REFILL_THRESH_PACKET);
2544 
2545 	while (likely(total_tx_descs < cleanup_budget)) {
2546 		struct rte_mbuf *mbuf;
2547 		struct ena_tx_buffer *tx_info;
2548 		uint16_t req_id;
2549 
2550 		if (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) != 0)
2551 			break;
2552 
2553 		if (unlikely(validate_tx_req_id(tx_ring, req_id) != 0))
2554 			break;
2555 
2556 		/* Get Tx info & store how many descs were processed  */
2557 		tx_info = &tx_ring->tx_buffer_info[req_id];
2558 
2559 		mbuf = tx_info->mbuf;
2560 		rte_pktmbuf_free(mbuf);
2561 
2562 		tx_info->mbuf = NULL;
2563 		tx_ring->empty_tx_reqs[next_to_clean] = req_id;
2564 
2565 		total_tx_descs += tx_info->tx_descs;
2566 
2567 		/* Put back descriptor to the ring for reuse */
2568 		next_to_clean = ENA_IDX_NEXT_MASKED(next_to_clean,
2569 			tx_ring->size_mask);
2570 	}
2571 
2572 	if (likely(total_tx_descs > 0)) {
2573 		/* acknowledge completion of sent packets */
2574 		tx_ring->next_to_clean = next_to_clean;
2575 		ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
2576 		ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
2577 	}
2578 }
2579 
2580 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2581 				  uint16_t nb_pkts)
2582 {
2583 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2584 	uint16_t sent_idx = 0;
2585 
2586 	/* Check adapter state */
2587 	if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2588 		PMD_DRV_LOG(ALERT,
2589 			"Trying to xmit pkts while device is NOT running\n");
2590 		return 0;
2591 	}
2592 
2593 	nb_pkts = RTE_MIN(ena_com_free_q_entries(tx_ring->ena_com_io_sq),
2594 		nb_pkts);
2595 
2596 	for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
2597 		if (ena_xmit_mbuf(tx_ring, tx_pkts[sent_idx]))
2598 			break;
2599 
2600 		rte_prefetch0(tx_pkts[ENA_IDX_ADD_MASKED(sent_idx, 4,
2601 			tx_ring->size_mask)]);
2602 	}
2603 
2604 	tx_ring->tx_stats.available_desc =
2605 		ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2606 
2607 	/* If there are ready packets to be xmitted... */
2608 	if (sent_idx > 0) {
2609 		/* ...let HW do its best :-) */
2610 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2611 		tx_ring->tx_stats.doorbells++;
2612 	}
2613 
2614 	ena_tx_cleanup(tx_ring);
2615 
2616 	tx_ring->tx_stats.available_desc =
2617 		ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2618 	tx_ring->tx_stats.tx_poll++;
2619 
2620 	return sent_idx;
2621 }
2622 
2623 int ena_copy_eni_stats(struct ena_adapter *adapter)
2624 {
2625 	struct ena_admin_eni_stats admin_eni_stats;
2626 	int rc;
2627 
2628 	rte_spinlock_lock(&adapter->admin_lock);
2629 	rc = ena_com_get_eni_stats(&adapter->ena_dev, &admin_eni_stats);
2630 	rte_spinlock_unlock(&adapter->admin_lock);
2631 	if (rc != 0) {
2632 		if (rc == ENA_COM_UNSUPPORTED) {
2633 			PMD_DRV_LOG(DEBUG,
2634 				"Retrieving ENI metrics is not supported.\n");
2635 		} else {
2636 			PMD_DRV_LOG(WARNING,
2637 				"Failed to get ENI metrics: %d\n", rc);
2638 		}
2639 		return rc;
2640 	}
2641 
2642 	rte_memcpy(&adapter->eni_stats, &admin_eni_stats,
2643 		sizeof(struct ena_stats_eni));
2644 
2645 	return 0;
2646 }
2647 
2648 /**
2649  * DPDK callback to retrieve names of extended device statistics
2650  *
2651  * @param dev
2652  *   Pointer to Ethernet device structure.
2653  * @param[out] xstats_names
2654  *   Buffer to insert names into.
2655  * @param n
2656  *   Number of names.
2657  *
2658  * @return
2659  *   Number of xstats names.
2660  */
2661 static int ena_xstats_get_names(struct rte_eth_dev *dev,
2662 				struct rte_eth_xstat_name *xstats_names,
2663 				unsigned int n)
2664 {
2665 	unsigned int xstats_count = ena_xstats_calc_num(dev);
2666 	unsigned int stat, i, count = 0;
2667 
2668 	if (n < xstats_count || !xstats_names)
2669 		return xstats_count;
2670 
2671 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
2672 		strcpy(xstats_names[count].name,
2673 			ena_stats_global_strings[stat].name);
2674 
2675 	for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++)
2676 		strcpy(xstats_names[count].name,
2677 			ena_stats_eni_strings[stat].name);
2678 
2679 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
2680 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
2681 			snprintf(xstats_names[count].name,
2682 				sizeof(xstats_names[count].name),
2683 				"rx_q%d_%s", i,
2684 				ena_stats_rx_strings[stat].name);
2685 
2686 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
2687 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
2688 			snprintf(xstats_names[count].name,
2689 				sizeof(xstats_names[count].name),
2690 				"tx_q%d_%s", i,
2691 				ena_stats_tx_strings[stat].name);
2692 
2693 	return xstats_count;
2694 }
2695 
2696 /**
2697  * DPDK callback to get extended device statistics.
2698  *
2699  * @param dev
2700  *   Pointer to Ethernet device structure.
2701  * @param[out] stats
2702  *   Stats table output buffer.
2703  * @param n
2704  *   The size of the stats table.
2705  *
2706  * @return
2707  *   Number of xstats on success, negative on failure.
2708  */
2709 static int ena_xstats_get(struct rte_eth_dev *dev,
2710 			  struct rte_eth_xstat *xstats,
2711 			  unsigned int n)
2712 {
2713 	struct ena_adapter *adapter = dev->data->dev_private;
2714 	unsigned int xstats_count = ena_xstats_calc_num(dev);
2715 	unsigned int stat, i, count = 0;
2716 	int stat_offset;
2717 	void *stats_begin;
2718 
2719 	if (n < xstats_count)
2720 		return xstats_count;
2721 
2722 	if (!xstats)
2723 		return 0;
2724 
2725 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
2726 		stat_offset = ena_stats_rx_strings[stat].stat_offset;
2727 		stats_begin = &adapter->dev_stats;
2728 
2729 		xstats[count].id = count;
2730 		xstats[count].value = *((uint64_t *)
2731 			((char *)stats_begin + stat_offset));
2732 	}
2733 
2734 	/* Even if the function below fails, we should copy previous (or initial
2735 	 * values) to keep structure of rte_eth_xstat consistent.
2736 	 */
2737 	ena_copy_eni_stats(adapter);
2738 	for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++) {
2739 		stat_offset = ena_stats_eni_strings[stat].stat_offset;
2740 		stats_begin = &adapter->eni_stats;
2741 
2742 		xstats[count].id = count;
2743 		xstats[count].value = *((uint64_t *)
2744 		    ((char *)stats_begin + stat_offset));
2745 	}
2746 
2747 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
2748 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
2749 			stat_offset = ena_stats_rx_strings[stat].stat_offset;
2750 			stats_begin = &adapter->rx_ring[i].rx_stats;
2751 
2752 			xstats[count].id = count;
2753 			xstats[count].value = *((uint64_t *)
2754 				((char *)stats_begin + stat_offset));
2755 		}
2756 	}
2757 
2758 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
2759 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
2760 			stat_offset = ena_stats_tx_strings[stat].stat_offset;
2761 			stats_begin = &adapter->tx_ring[i].rx_stats;
2762 
2763 			xstats[count].id = count;
2764 			xstats[count].value = *((uint64_t *)
2765 				((char *)stats_begin + stat_offset));
2766 		}
2767 	}
2768 
2769 	return count;
2770 }
2771 
2772 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
2773 				const uint64_t *ids,
2774 				uint64_t *values,
2775 				unsigned int n)
2776 {
2777 	struct ena_adapter *adapter = dev->data->dev_private;
2778 	uint64_t id;
2779 	uint64_t rx_entries, tx_entries;
2780 	unsigned int i;
2781 	int qid;
2782 	int valid = 0;
2783 	bool was_eni_copied = false;
2784 
2785 	for (i = 0; i < n; ++i) {
2786 		id = ids[i];
2787 		/* Check if id belongs to global statistics */
2788 		if (id < ENA_STATS_ARRAY_GLOBAL) {
2789 			values[i] = *((uint64_t *)&adapter->dev_stats + id);
2790 			++valid;
2791 			continue;
2792 		}
2793 
2794 		/* Check if id belongs to ENI statistics */
2795 		id -= ENA_STATS_ARRAY_GLOBAL;
2796 		if (id < ENA_STATS_ARRAY_ENI) {
2797 			/* Avoid reading ENI stats multiple times in a single
2798 			 * function call, as it requires communication with the
2799 			 * admin queue.
2800 			 */
2801 			if (!was_eni_copied) {
2802 				was_eni_copied = true;
2803 				ena_copy_eni_stats(adapter);
2804 			}
2805 			values[i] = *((uint64_t *)&adapter->eni_stats + id);
2806 			++valid;
2807 			continue;
2808 		}
2809 
2810 		/* Check if id belongs to rx queue statistics */
2811 		id -= ENA_STATS_ARRAY_ENI;
2812 		rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
2813 		if (id < rx_entries) {
2814 			qid = id % dev->data->nb_rx_queues;
2815 			id /= dev->data->nb_rx_queues;
2816 			values[i] = *((uint64_t *)
2817 				&adapter->rx_ring[qid].rx_stats + id);
2818 			++valid;
2819 			continue;
2820 		}
2821 				/* Check if id belongs to rx queue statistics */
2822 		id -= rx_entries;
2823 		tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
2824 		if (id < tx_entries) {
2825 			qid = id % dev->data->nb_tx_queues;
2826 			id /= dev->data->nb_tx_queues;
2827 			values[i] = *((uint64_t *)
2828 				&adapter->tx_ring[qid].tx_stats + id);
2829 			++valid;
2830 			continue;
2831 		}
2832 	}
2833 
2834 	return valid;
2835 }
2836 
2837 static int ena_process_bool_devarg(const char *key,
2838 				   const char *value,
2839 				   void *opaque)
2840 {
2841 	struct ena_adapter *adapter = opaque;
2842 	bool bool_value;
2843 
2844 	/* Parse the value. */
2845 	if (strcmp(value, "1") == 0) {
2846 		bool_value = true;
2847 	} else if (strcmp(value, "0") == 0) {
2848 		bool_value = false;
2849 	} else {
2850 		PMD_INIT_LOG(ERR,
2851 			"Invalid value: '%s' for key '%s'. Accepted: '0' or '1'\n",
2852 			value, key);
2853 		return -EINVAL;
2854 	}
2855 
2856 	/* Now, assign it to the proper adapter field. */
2857 	if (strcmp(key, ENA_DEVARG_LARGE_LLQ_HDR))
2858 		adapter->use_large_llq_hdr = bool_value;
2859 
2860 	return 0;
2861 }
2862 
2863 static int ena_parse_devargs(struct ena_adapter *adapter,
2864 			     struct rte_devargs *devargs)
2865 {
2866 	static const char * const allowed_args[] = {
2867 		ENA_DEVARG_LARGE_LLQ_HDR,
2868 	};
2869 	struct rte_kvargs *kvlist;
2870 	int rc;
2871 
2872 	if (devargs == NULL)
2873 		return 0;
2874 
2875 	kvlist = rte_kvargs_parse(devargs->args, allowed_args);
2876 	if (kvlist == NULL) {
2877 		PMD_INIT_LOG(ERR, "Invalid device arguments: %s\n",
2878 			devargs->args);
2879 		return -EINVAL;
2880 	}
2881 
2882 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_LARGE_LLQ_HDR,
2883 		ena_process_bool_devarg, adapter);
2884 
2885 	rte_kvargs_free(kvlist);
2886 
2887 	return rc;
2888 }
2889 
2890 /*********************************************************************
2891  *  PMD configuration
2892  *********************************************************************/
2893 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2894 	struct rte_pci_device *pci_dev)
2895 {
2896 	return rte_eth_dev_pci_generic_probe(pci_dev,
2897 		sizeof(struct ena_adapter), eth_ena_dev_init);
2898 }
2899 
2900 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
2901 {
2902 	return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
2903 }
2904 
2905 static struct rte_pci_driver rte_ena_pmd = {
2906 	.id_table = pci_id_ena_map,
2907 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
2908 		     RTE_PCI_DRV_WC_ACTIVATE,
2909 	.probe = eth_ena_pci_probe,
2910 	.remove = eth_ena_pci_remove,
2911 };
2912 
2913 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
2914 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
2915 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
2916 RTE_PMD_REGISTER_PARAM_STRING(net_ena, ENA_DEVARG_LARGE_LLQ_HDR "=<0|1>");
2917 RTE_LOG_REGISTER(ena_logtype_init, pmd.net.ena.init, NOTICE);
2918 RTE_LOG_REGISTER(ena_logtype_driver, pmd.net.ena.driver, NOTICE);
2919 #ifdef RTE_LIBRTE_ENA_DEBUG_RX
2920 RTE_LOG_REGISTER(ena_logtype_rx, pmd.net.ena.rx, NOTICE);
2921 #endif
2922 #ifdef RTE_LIBRTE_ENA_DEBUG_TX
2923 RTE_LOG_REGISTER(ena_logtype_tx, pmd.net.ena.tx, NOTICE);
2924 #endif
2925 #ifdef RTE_LIBRTE_ENA_DEBUG_TX_FREE
2926 RTE_LOG_REGISTER(ena_logtype_tx_free, pmd.net.ena.tx_free, NOTICE);
2927 #endif
2928 #ifdef RTE_LIBRTE_ENA_COM_DEBUG
2929 RTE_LOG_REGISTER(ena_logtype_com, pmd.net.ena.com, NOTICE);
2930 #endif
2931 
2932 /******************************************************************************
2933  ******************************** AENQ Handlers *******************************
2934  *****************************************************************************/
2935 static void ena_update_on_link_change(void *adapter_data,
2936 				      struct ena_admin_aenq_entry *aenq_e)
2937 {
2938 	struct rte_eth_dev *eth_dev;
2939 	struct ena_adapter *adapter;
2940 	struct ena_admin_aenq_link_change_desc *aenq_link_desc;
2941 	uint32_t status;
2942 
2943 	adapter = adapter_data;
2944 	aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
2945 	eth_dev = adapter->rte_dev;
2946 
2947 	status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
2948 	adapter->link_status = status;
2949 
2950 	ena_link_update(eth_dev, 0);
2951 	rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
2952 }
2953 
2954 static void ena_notification(void *data,
2955 			     struct ena_admin_aenq_entry *aenq_e)
2956 {
2957 	struct ena_adapter *adapter = data;
2958 	struct ena_admin_ena_hw_hints *hints;
2959 
2960 	if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
2961 		PMD_DRV_LOG(WARNING, "Invalid group(%x) expected %x\n",
2962 			aenq_e->aenq_common_desc.group,
2963 			ENA_ADMIN_NOTIFICATION);
2964 
2965 	switch (aenq_e->aenq_common_desc.syndrom) {
2966 	case ENA_ADMIN_UPDATE_HINTS:
2967 		hints = (struct ena_admin_ena_hw_hints *)
2968 			(&aenq_e->inline_data_w4);
2969 		ena_update_hints(adapter, hints);
2970 		break;
2971 	default:
2972 		PMD_DRV_LOG(ERR, "Invalid aenq notification link state %d\n",
2973 			aenq_e->aenq_common_desc.syndrom);
2974 	}
2975 }
2976 
2977 static void ena_keep_alive(void *adapter_data,
2978 			   __rte_unused struct ena_admin_aenq_entry *aenq_e)
2979 {
2980 	struct ena_adapter *adapter = adapter_data;
2981 	struct ena_admin_aenq_keep_alive_desc *desc;
2982 	uint64_t rx_drops;
2983 	uint64_t tx_drops;
2984 
2985 	adapter->timestamp_wd = rte_get_timer_cycles();
2986 
2987 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
2988 	rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
2989 	tx_drops = ((uint64_t)desc->tx_drops_high << 32) | desc->tx_drops_low;
2990 
2991 	adapter->drv_stats->rx_drops = rx_drops;
2992 	adapter->dev_stats.tx_drops = tx_drops;
2993 }
2994 
2995 /**
2996  * This handler will called for unknown event group or unimplemented handlers
2997  **/
2998 static void unimplemented_aenq_handler(__rte_unused void *data,
2999 				       __rte_unused struct ena_admin_aenq_entry *aenq_e)
3000 {
3001 	PMD_DRV_LOG(ERR, "Unknown event was received or event with "
3002 			  "unimplemented handler\n");
3003 }
3004 
3005 static struct ena_aenq_handlers aenq_handlers = {
3006 	.handlers = {
3007 		[ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
3008 		[ENA_ADMIN_NOTIFICATION] = ena_notification,
3009 		[ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive
3010 	},
3011 	.unimplemented_handler = unimplemented_aenq_handler
3012 };
3013