xref: /dpdk/drivers/net/ena/ena_ethdev.c (revision eea9fc6a3d3bd6ed3ce27f50ae8b53443f3f494e)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
3  * All rights reserved.
4  */
5 
6 #include <rte_alarm.h>
7 #include <rte_string_fns.h>
8 #include <rte_errno.h>
9 #include <rte_version.h>
10 #include <rte_net.h>
11 #include <rte_kvargs.h>
12 
13 #include "ena_ethdev.h"
14 #include "ena_logs.h"
15 #include "ena_platform.h"
16 #include "ena_com.h"
17 #include "ena_eth_com.h"
18 
19 #include <ena_common_defs.h>
20 #include <ena_regs_defs.h>
21 #include <ena_admin_defs.h>
22 #include <ena_eth_io_defs.h>
23 
24 #define DRV_MODULE_VER_MAJOR	2
25 #define DRV_MODULE_VER_MINOR	9
26 #define DRV_MODULE_VER_SUBMINOR	0
27 
28 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
29 
30 #define GET_L4_HDR_LEN(mbuf)					\
31 	((rte_pktmbuf_mtod_offset(mbuf,	struct rte_tcp_hdr *,	\
32 		mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
33 
34 #define ETH_GSTRING_LEN	32
35 
36 #define ARRAY_SIZE(x) RTE_DIM(x)
37 
38 #define ENA_MIN_RING_DESC	128
39 
40 #define USEC_PER_MSEC		1000UL
41 
42 #define BITS_PER_BYTE 8
43 
44 #define BITS_PER_TYPE(type) (sizeof(type) * BITS_PER_BYTE)
45 
46 #define DECIMAL_BASE 10
47 
48 #define MAX_WIDE_LLQ_DEPTH_UNSUPPORTED 0
49 
50 /*
51  * We should try to keep ENA_CLEANUP_BUF_THRESH lower than
52  * RTE_MEMPOOL_CACHE_MAX_SIZE, so we can fit this in mempool local cache.
53  */
54 #define ENA_CLEANUP_BUF_THRESH	256
55 
56 #define ENA_PTYPE_HAS_HASH	(RTE_PTYPE_L4_TCP | RTE_PTYPE_L4_UDP)
57 
58 struct ena_stats {
59 	char name[ETH_GSTRING_LEN];
60 	int stat_offset;
61 };
62 
63 #define ENA_STAT_ENTRY(stat, stat_type) { \
64 	.name = #stat, \
65 	.stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
66 }
67 
68 #define ENA_STAT_RX_ENTRY(stat) \
69 	ENA_STAT_ENTRY(stat, rx)
70 
71 #define ENA_STAT_TX_ENTRY(stat) \
72 	ENA_STAT_ENTRY(stat, tx)
73 
74 #define ENA_STAT_METRICS_ENTRY(stat) \
75 	ENA_STAT_ENTRY(stat, metrics)
76 
77 #define ENA_STAT_GLOBAL_ENTRY(stat) \
78 	ENA_STAT_ENTRY(stat, dev)
79 
80 #define ENA_STAT_ENA_SRD_ENTRY(stat) \
81 	ENA_STAT_ENTRY(stat, srd)
82 
83 /* Device arguments */
84 #define ENA_DEVARG_LARGE_LLQ_HDR "large_llq_hdr"
85 #define ENA_DEVARG_NORMAL_LLQ_HDR "normal_llq_hdr"
86 /* Timeout in seconds after which a single uncompleted Tx packet should be
87  * considered as a missing.
88  */
89 #define ENA_DEVARG_MISS_TXC_TO "miss_txc_to"
90 /*
91  * Controls whether LLQ should be used (if available). Enabled by default.
92  * NOTE: It's highly not recommended to disable the LLQ, as it may lead to a
93  * huge performance degradation on 6th generation AWS instances.
94  */
95 #define ENA_DEVARG_ENABLE_LLQ "enable_llq"
96 /*
97  * Controls the period of time (in milliseconds) between two consecutive inspections of
98  * the control queues when the driver is in poll mode and not using interrupts.
99  * By default, this value is zero, indicating that the driver will not be in poll mode and will
100  * use interrupts. A non-zero value for this argument is mandatory when using uio_pci_generic
101  * driver.
102  */
103 #define ENA_DEVARG_CONTROL_PATH_POLL_INTERVAL "control_path_poll_interval"
104 
105 /*
106  * Each rte_memzone should have unique name.
107  * To satisfy it, count number of allocation and add it to name.
108  */
109 rte_atomic64_t ena_alloc_cnt;
110 
111 static const struct ena_stats ena_stats_global_strings[] = {
112 	ENA_STAT_GLOBAL_ENTRY(wd_expired),
113 	ENA_STAT_GLOBAL_ENTRY(dev_start),
114 	ENA_STAT_GLOBAL_ENTRY(dev_stop),
115 	ENA_STAT_GLOBAL_ENTRY(tx_drops),
116 };
117 
118 /*
119  * The legacy metrics (also known as eni stats) consisted of 5 stats, while the reworked
120  * metrics (also known as customer metrics) support an additional stat.
121  */
122 static struct ena_stats ena_stats_metrics_strings[] = {
123 	ENA_STAT_METRICS_ENTRY(bw_in_allowance_exceeded),
124 	ENA_STAT_METRICS_ENTRY(bw_out_allowance_exceeded),
125 	ENA_STAT_METRICS_ENTRY(pps_allowance_exceeded),
126 	ENA_STAT_METRICS_ENTRY(conntrack_allowance_exceeded),
127 	ENA_STAT_METRICS_ENTRY(linklocal_allowance_exceeded),
128 	ENA_STAT_METRICS_ENTRY(conntrack_allowance_available),
129 };
130 
131 static const struct ena_stats ena_stats_srd_strings[] = {
132 	ENA_STAT_ENA_SRD_ENTRY(ena_srd_mode),
133 	ENA_STAT_ENA_SRD_ENTRY(ena_srd_tx_pkts),
134 	ENA_STAT_ENA_SRD_ENTRY(ena_srd_eligible_tx_pkts),
135 	ENA_STAT_ENA_SRD_ENTRY(ena_srd_rx_pkts),
136 	ENA_STAT_ENA_SRD_ENTRY(ena_srd_resource_utilization),
137 };
138 
139 static const struct ena_stats ena_stats_tx_strings[] = {
140 	ENA_STAT_TX_ENTRY(cnt),
141 	ENA_STAT_TX_ENTRY(bytes),
142 	ENA_STAT_TX_ENTRY(prepare_ctx_err),
143 	ENA_STAT_TX_ENTRY(tx_poll),
144 	ENA_STAT_TX_ENTRY(doorbells),
145 	ENA_STAT_TX_ENTRY(bad_req_id),
146 	ENA_STAT_TX_ENTRY(available_desc),
147 	ENA_STAT_TX_ENTRY(missed_tx),
148 };
149 
150 static const struct ena_stats ena_stats_rx_strings[] = {
151 	ENA_STAT_RX_ENTRY(cnt),
152 	ENA_STAT_RX_ENTRY(bytes),
153 	ENA_STAT_RX_ENTRY(refill_partial),
154 	ENA_STAT_RX_ENTRY(l3_csum_bad),
155 	ENA_STAT_RX_ENTRY(l4_csum_bad),
156 	ENA_STAT_RX_ENTRY(l4_csum_good),
157 	ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
158 	ENA_STAT_RX_ENTRY(bad_desc_num),
159 	ENA_STAT_RX_ENTRY(bad_req_id),
160 };
161 
162 #define ENA_STATS_ARRAY_GLOBAL	ARRAY_SIZE(ena_stats_global_strings)
163 #define ENA_STATS_ARRAY_METRICS	ARRAY_SIZE(ena_stats_metrics_strings)
164 #define ENA_STATS_ARRAY_METRICS_LEGACY	(ENA_STATS_ARRAY_METRICS - 1)
165 #define ENA_STATS_ARRAY_ENA_SRD	ARRAY_SIZE(ena_stats_srd_strings)
166 #define ENA_STATS_ARRAY_TX	ARRAY_SIZE(ena_stats_tx_strings)
167 #define ENA_STATS_ARRAY_RX	ARRAY_SIZE(ena_stats_rx_strings)
168 
169 #define QUEUE_OFFLOADS (RTE_ETH_TX_OFFLOAD_TCP_CKSUM |\
170 			RTE_ETH_TX_OFFLOAD_UDP_CKSUM |\
171 			RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |\
172 			RTE_ETH_TX_OFFLOAD_TCP_TSO)
173 #define MBUF_OFFLOADS (RTE_MBUF_F_TX_L4_MASK |\
174 		       RTE_MBUF_F_TX_IP_CKSUM |\
175 		       RTE_MBUF_F_TX_TCP_SEG)
176 
177 /** Vendor ID used by Amazon devices */
178 #define PCI_VENDOR_ID_AMAZON 0x1D0F
179 /** Amazon devices */
180 #define PCI_DEVICE_ID_ENA_VF		0xEC20
181 #define PCI_DEVICE_ID_ENA_VF_RSERV0	0xEC21
182 
183 #define	ENA_TX_OFFLOAD_MASK	(RTE_MBUF_F_TX_L4_MASK |         \
184 	RTE_MBUF_F_TX_IPV6 |            \
185 	RTE_MBUF_F_TX_IPV4 |            \
186 	RTE_MBUF_F_TX_IP_CKSUM |        \
187 	RTE_MBUF_F_TX_TCP_SEG)
188 
189 #define	ENA_TX_OFFLOAD_NOTSUP_MASK	\
190 	(RTE_MBUF_F_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
191 
192 /** HW specific offloads capabilities. */
193 /* IPv4 checksum offload. */
194 #define ENA_L3_IPV4_CSUM		0x0001
195 /* TCP/UDP checksum offload for IPv4 packets. */
196 #define ENA_L4_IPV4_CSUM		0x0002
197 /* TCP/UDP checksum offload for IPv4 packets with pseudo header checksum. */
198 #define ENA_L4_IPV4_CSUM_PARTIAL	0x0004
199 /* TCP/UDP checksum offload for IPv6 packets. */
200 #define ENA_L4_IPV6_CSUM		0x0008
201 /* TCP/UDP checksum offload for IPv6 packets with pseudo header checksum. */
202 #define ENA_L4_IPV6_CSUM_PARTIAL	0x0010
203 /* TSO support for IPv4 packets. */
204 #define ENA_IPV4_TSO			0x0020
205 
206 /* Device supports setting RSS hash. */
207 #define ENA_RX_RSS_HASH			0x0040
208 
209 static const struct rte_pci_id pci_id_ena_map[] = {
210 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
211 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF_RSERV0) },
212 	{ .device_id = 0 },
213 };
214 
215 static struct ena_aenq_handlers aenq_handlers;
216 
217 static int ena_device_init(struct ena_adapter *adapter,
218 			   struct rte_pci_device *pdev,
219 			   struct ena_com_dev_get_features_ctx *get_feat_ctx);
220 static int ena_dev_configure(struct rte_eth_dev *dev);
221 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
222 	struct ena_tx_buffer *tx_info,
223 	struct rte_mbuf *mbuf,
224 	void **push_header,
225 	uint16_t *header_len);
226 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf);
227 static int ena_tx_cleanup(void *txp, uint32_t free_pkt_cnt);
228 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
229 				  uint16_t nb_pkts);
230 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
231 		uint16_t nb_pkts);
232 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
233 			      uint16_t nb_desc, unsigned int socket_id,
234 			      const struct rte_eth_txconf *tx_conf);
235 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
236 			      uint16_t nb_desc, unsigned int socket_id,
237 			      const struct rte_eth_rxconf *rx_conf,
238 			      struct rte_mempool *mp);
239 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len);
240 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
241 				    struct ena_com_rx_buf_info *ena_bufs,
242 				    uint32_t descs,
243 				    uint16_t *next_to_clean,
244 				    uint8_t offset);
245 static uint16_t eth_ena_recv_pkts(void *rx_queue,
246 				  struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
247 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
248 				  struct rte_mbuf *mbuf, uint16_t id);
249 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
250 static void ena_init_rings(struct ena_adapter *adapter,
251 			   bool disable_meta_caching);
252 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
253 static int ena_start(struct rte_eth_dev *dev);
254 static int ena_stop(struct rte_eth_dev *dev);
255 static int ena_close(struct rte_eth_dev *dev);
256 static int ena_dev_reset(struct rte_eth_dev *dev);
257 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
258 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
259 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
260 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
261 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
262 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
263 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
264 static int ena_link_update(struct rte_eth_dev *dev,
265 			   int wait_to_complete);
266 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring);
267 static void ena_queue_stop(struct ena_ring *ring);
268 static void ena_queue_stop_all(struct rte_eth_dev *dev,
269 			      enum ena_ring_type ring_type);
270 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring);
271 static int ena_queue_start_all(struct rte_eth_dev *dev,
272 			       enum ena_ring_type ring_type);
273 static void ena_stats_restart(struct rte_eth_dev *dev);
274 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter);
275 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter);
276 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter);
277 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter);
278 static int ena_infos_get(struct rte_eth_dev *dev,
279 			 struct rte_eth_dev_info *dev_info);
280 static void ena_control_path_handler(void *cb_arg);
281 static void ena_control_path_poll_handler(void *cb_arg);
282 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
283 static void ena_destroy_device(struct rte_eth_dev *eth_dev);
284 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
285 static int ena_xstats_get_names(struct rte_eth_dev *dev,
286 				struct rte_eth_xstat_name *xstats_names,
287 				unsigned int n);
288 static int ena_xstats_get_names_by_id(struct rte_eth_dev *dev,
289 				      const uint64_t *ids,
290 				      struct rte_eth_xstat_name *xstats_names,
291 				      unsigned int size);
292 static int ena_xstats_get(struct rte_eth_dev *dev,
293 			  struct rte_eth_xstat *stats,
294 			  unsigned int n);
295 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
296 				const uint64_t *ids,
297 				uint64_t *values,
298 				unsigned int n);
299 static int ena_process_bool_devarg(const char *key,
300 				   const char *value,
301 				   void *opaque);
302 static int ena_parse_devargs(struct ena_adapter *adapter,
303 			     struct rte_devargs *devargs);
304 static void ena_copy_customer_metrics(struct ena_adapter *adapter,
305 					uint64_t *buf,
306 					size_t buf_size);
307 static void ena_copy_ena_srd_info(struct ena_adapter *adapter,
308 				  struct ena_stats_srd *srd_info);
309 static int ena_setup_rx_intr(struct rte_eth_dev *dev);
310 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
311 				    uint16_t queue_id);
312 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
313 				     uint16_t queue_id);
314 static int ena_configure_aenq(struct ena_adapter *adapter);
315 static int ena_mp_primary_handle(const struct rte_mp_msg *mp_msg,
316 				 const void *peer);
317 static ena_llq_policy ena_define_llq_hdr_policy(struct ena_adapter *adapter);
318 static bool ena_use_large_llq_hdr(struct ena_adapter *adapter, uint8_t recommended_entry_size);
319 
320 static const struct eth_dev_ops ena_dev_ops = {
321 	.dev_configure          = ena_dev_configure,
322 	.dev_infos_get          = ena_infos_get,
323 	.rx_queue_setup         = ena_rx_queue_setup,
324 	.tx_queue_setup         = ena_tx_queue_setup,
325 	.dev_start              = ena_start,
326 	.dev_stop               = ena_stop,
327 	.link_update            = ena_link_update,
328 	.stats_get              = ena_stats_get,
329 	.xstats_get_names       = ena_xstats_get_names,
330 	.xstats_get_names_by_id = ena_xstats_get_names_by_id,
331 	.xstats_get             = ena_xstats_get,
332 	.xstats_get_by_id       = ena_xstats_get_by_id,
333 	.mtu_set                = ena_mtu_set,
334 	.rx_queue_release       = ena_rx_queue_release,
335 	.tx_queue_release       = ena_tx_queue_release,
336 	.dev_close              = ena_close,
337 	.dev_reset              = ena_dev_reset,
338 	.reta_update            = ena_rss_reta_update,
339 	.reta_query             = ena_rss_reta_query,
340 	.rx_queue_intr_enable   = ena_rx_queue_intr_enable,
341 	.rx_queue_intr_disable  = ena_rx_queue_intr_disable,
342 	.rss_hash_update        = ena_rss_hash_update,
343 	.rss_hash_conf_get      = ena_rss_hash_conf_get,
344 	.tx_done_cleanup        = ena_tx_cleanup,
345 };
346 
347 /*********************************************************************
348  *  Multi-Process communication bits
349  *********************************************************************/
350 /* rte_mp IPC message name */
351 #define ENA_MP_NAME	"net_ena_mp"
352 /* Request timeout in seconds */
353 #define ENA_MP_REQ_TMO	5
354 
355 /** Proxy request type */
356 enum ena_mp_req {
357 	ENA_MP_DEV_STATS_GET,
358 	ENA_MP_ENI_STATS_GET,
359 	ENA_MP_MTU_SET,
360 	ENA_MP_IND_TBL_GET,
361 	ENA_MP_IND_TBL_SET,
362 	ENA_MP_CUSTOMER_METRICS_GET,
363 	ENA_MP_SRD_STATS_GET,
364 };
365 
366 /** Proxy message body. Shared between requests and responses. */
367 struct ena_mp_body {
368 	/* Message type */
369 	enum ena_mp_req type;
370 	int port_id;
371 	/* Processing result. Set in replies. 0 if message succeeded, negative
372 	 * error code otherwise.
373 	 */
374 	int result;
375 	union {
376 		int mtu; /* For ENA_MP_MTU_SET */
377 	} args;
378 };
379 
380 /**
381  * Initialize IPC message.
382  *
383  * @param[out] msg
384  *   Pointer to the message to initialize.
385  * @param[in] type
386  *   Message type.
387  * @param[in] port_id
388  *   Port ID of target device.
389  *
390  */
391 static void
392 mp_msg_init(struct rte_mp_msg *msg, enum ena_mp_req type, int port_id)
393 {
394 	struct ena_mp_body *body = (struct ena_mp_body *)&msg->param;
395 
396 	memset(msg, 0, sizeof(*msg));
397 	strlcpy(msg->name, ENA_MP_NAME, sizeof(msg->name));
398 	msg->len_param = sizeof(*body);
399 	body->type = type;
400 	body->port_id = port_id;
401 }
402 
403 /*********************************************************************
404  *  Multi-Process communication PMD API
405  *********************************************************************/
406 /**
407  * Define proxy request descriptor
408  *
409  * Used to define all structures and functions required for proxying a given
410  * function to the primary process including the code to perform to prepare the
411  * request and process the response.
412  *
413  * @param[in] f
414  *   Name of the function to proxy
415  * @param[in] t
416  *   Message type to use
417  * @param[in] prep
418  *   Body of a function to prepare the request in form of a statement
419  *   expression. It is passed all the original function arguments along with two
420  *   extra ones:
421  *   - struct ena_adapter *adapter - PMD data of the device calling the proxy.
422  *   - struct ena_mp_body *req - body of a request to prepare.
423  * @param[in] proc
424  *   Body of a function to process the response in form of a statement
425  *   expression. It is passed all the original function arguments along with two
426  *   extra ones:
427  *   - struct ena_adapter *adapter - PMD data of the device calling the proxy.
428  *   - struct ena_mp_body *rsp - body of a response to process.
429  * @param ...
430  *   Proxied function's arguments
431  *
432  * @note Inside prep and proc any parameters which aren't used should be marked
433  *       as such (with ENA_TOUCH or __rte_unused).
434  */
435 #define ENA_PROXY_DESC(f, t, prep, proc, ...)			\
436 	static const enum ena_mp_req mp_type_ ## f =  t;	\
437 	static const char *mp_name_ ## f = #t;			\
438 	static void mp_prep_ ## f(struct ena_adapter *adapter,	\
439 				  struct ena_mp_body *req,	\
440 				  __VA_ARGS__)			\
441 	{							\
442 		prep;						\
443 	}							\
444 	static void mp_proc_ ## f(struct ena_adapter *adapter,	\
445 				  struct ena_mp_body *rsp,	\
446 				  __VA_ARGS__)			\
447 	{							\
448 		proc;						\
449 	}
450 
451 /**
452  * Proxy wrapper for calling primary functions in a secondary process.
453  *
454  * Depending on whether called in primary or secondary process, calls the
455  * @p func directly or proxies the call to the primary process via rte_mp IPC.
456  * This macro requires a proxy request descriptor to be defined for @p func
457  * using ENA_PROXY_DESC() macro.
458  *
459  * @param[in/out] a
460  *   Device PMD data. Used for sending the message and sharing message results
461  *   between primary and secondary.
462  * @param[in] f
463  *   Function to proxy.
464  * @param ...
465  *   Arguments of @p func.
466  *
467  * @return
468  *   - 0: Processing succeeded and response handler was called.
469  *   - -EPERM: IPC is unavailable on this platform. This means only primary
470  *             process may call the proxied function.
471  *   - -EIO:   IPC returned error on request send. Inspect rte_errno detailed
472  *             error code.
473  *   - Negative error code from the proxied function.
474  *
475  * @note This mechanism is geared towards control-path tasks. Avoid calling it
476  *       in fast-path unless unbound delays are allowed. This is due to the IPC
477  *       mechanism itself (socket based).
478  * @note Due to IPC parameter size limitations the proxy logic shares call
479  *       results through the struct ena_adapter shared memory. This makes the
480  *       proxy mechanism strictly single-threaded. Therefore be sure to make all
481  *       calls to the same proxied function under the same lock.
482  */
483 #define ENA_PROXY(a, f, ...)						\
484 __extension__ ({							\
485 	struct ena_adapter *_a = (a);					\
486 	struct timespec ts = { .tv_sec = ENA_MP_REQ_TMO };		\
487 	struct ena_mp_body *req, *rsp;					\
488 	struct rte_mp_reply mp_rep;					\
489 	struct rte_mp_msg mp_req;					\
490 	int ret;							\
491 									\
492 	if (rte_eal_process_type() == RTE_PROC_PRIMARY) {		\
493 		ret = f(__VA_ARGS__);					\
494 	} else {							\
495 		/* Prepare and send request */				\
496 		req = (struct ena_mp_body *)&mp_req.param;		\
497 		mp_msg_init(&mp_req, mp_type_ ## f, _a->edev_data->port_id); \
498 		mp_prep_ ## f(_a, req, ## __VA_ARGS__);			\
499 									\
500 		ret = rte_mp_request_sync(&mp_req, &mp_rep, &ts);	\
501 		if (likely(!ret)) {					\
502 			RTE_ASSERT(mp_rep.nb_received == 1);		\
503 			rsp = (struct ena_mp_body *)&mp_rep.msgs[0].param; \
504 			ret = rsp->result;				\
505 			if (ret == 0) {					\
506 				mp_proc_##f(_a, rsp, ## __VA_ARGS__);	\
507 			} else {					\
508 				PMD_DRV_LOG(ERR,			\
509 					    "%s returned error: %d\n",	\
510 					    mp_name_ ## f, rsp->result);\
511 			}						\
512 			free(mp_rep.msgs);				\
513 		} else if (rte_errno == ENOTSUP) {			\
514 			PMD_DRV_LOG(ERR,				\
515 				    "No IPC, can't proxy to primary\n");\
516 			ret = -rte_errno;				\
517 		} else {						\
518 			PMD_DRV_LOG(ERR, "Request %s failed: %s\n",	\
519 				    mp_name_ ## f,			\
520 				    rte_strerror(rte_errno));		\
521 			ret = -EIO;					\
522 		}							\
523 	}								\
524 	ret;								\
525 })
526 
527 /*********************************************************************
528  *  Multi-Process communication request descriptors
529  *********************************************************************/
530 
531 ENA_PROXY_DESC(ena_com_get_dev_basic_stats, ENA_MP_DEV_STATS_GET,
532 __extension__ ({
533 	ENA_TOUCH(adapter);
534 	ENA_TOUCH(req);
535 	ENA_TOUCH(ena_dev);
536 	ENA_TOUCH(stats);
537 }),
538 __extension__ ({
539 	ENA_TOUCH(rsp);
540 	ENA_TOUCH(ena_dev);
541 	if (stats != &adapter->basic_stats)
542 		rte_memcpy(stats, &adapter->basic_stats, sizeof(*stats));
543 }),
544 	struct ena_com_dev *ena_dev, struct ena_admin_basic_stats *stats);
545 
546 ENA_PROXY_DESC(ena_com_get_eni_stats, ENA_MP_ENI_STATS_GET,
547 __extension__ ({
548 	ENA_TOUCH(adapter);
549 	ENA_TOUCH(req);
550 	ENA_TOUCH(ena_dev);
551 	ENA_TOUCH(stats);
552 }),
553 __extension__ ({
554 	ENA_TOUCH(rsp);
555 	ENA_TOUCH(ena_dev);
556 	if (stats != (struct ena_admin_eni_stats *)adapter->metrics_stats)
557 		rte_memcpy(stats, adapter->metrics_stats, sizeof(*stats));
558 }),
559 	struct ena_com_dev *ena_dev, struct ena_admin_eni_stats *stats);
560 
561 ENA_PROXY_DESC(ena_com_set_dev_mtu, ENA_MP_MTU_SET,
562 __extension__ ({
563 	ENA_TOUCH(adapter);
564 	ENA_TOUCH(ena_dev);
565 	req->args.mtu = mtu;
566 }),
567 __extension__ ({
568 	ENA_TOUCH(adapter);
569 	ENA_TOUCH(rsp);
570 	ENA_TOUCH(ena_dev);
571 	ENA_TOUCH(mtu);
572 }),
573 	struct ena_com_dev *ena_dev, int mtu);
574 
575 ENA_PROXY_DESC(ena_com_indirect_table_set, ENA_MP_IND_TBL_SET,
576 __extension__ ({
577 	ENA_TOUCH(adapter);
578 	ENA_TOUCH(req);
579 	ENA_TOUCH(ena_dev);
580 }),
581 __extension__ ({
582 	ENA_TOUCH(adapter);
583 	ENA_TOUCH(rsp);
584 	ENA_TOUCH(ena_dev);
585 }),
586 	struct ena_com_dev *ena_dev);
587 
588 ENA_PROXY_DESC(ena_com_indirect_table_get, ENA_MP_IND_TBL_GET,
589 __extension__ ({
590 	ENA_TOUCH(adapter);
591 	ENA_TOUCH(req);
592 	ENA_TOUCH(ena_dev);
593 	ENA_TOUCH(ind_tbl);
594 }),
595 __extension__ ({
596 	ENA_TOUCH(rsp);
597 	ENA_TOUCH(ena_dev);
598 	if (ind_tbl != adapter->indirect_table)
599 		rte_memcpy(ind_tbl, adapter->indirect_table,
600 			   sizeof(adapter->indirect_table));
601 }),
602 	struct ena_com_dev *ena_dev, u32 *ind_tbl);
603 
604 ENA_PROXY_DESC(ena_com_get_customer_metrics, ENA_MP_CUSTOMER_METRICS_GET,
605 __extension__ ({
606 	ENA_TOUCH(adapter);
607 	ENA_TOUCH(req);
608 	ENA_TOUCH(ena_dev);
609 	ENA_TOUCH(buf);
610 	ENA_TOUCH(buf_size);
611 }),
612 __extension__ ({
613 	ENA_TOUCH(rsp);
614 	ENA_TOUCH(ena_dev);
615 	if (buf != (char *)adapter->metrics_stats)
616 		rte_memcpy(buf, adapter->metrics_stats, buf_size);
617 }),
618 	struct ena_com_dev *ena_dev, char *buf, size_t buf_size);
619 
620 ENA_PROXY_DESC(ena_com_get_ena_srd_info, ENA_MP_SRD_STATS_GET,
621 __extension__ ({
622 	ENA_TOUCH(adapter);
623 	ENA_TOUCH(req);
624 	ENA_TOUCH(ena_dev);
625 	ENA_TOUCH(info);
626 }),
627 __extension__ ({
628 	ENA_TOUCH(rsp);
629 	ENA_TOUCH(ena_dev);
630 	if ((struct ena_stats_srd *)info != &adapter->srd_stats)
631 		rte_memcpy((struct ena_stats_srd *)info,
632 				&adapter->srd_stats,
633 				sizeof(struct ena_stats_srd));
634 }),
635 	struct ena_com_dev *ena_dev, struct ena_admin_ena_srd_info *info);
636 
637 static inline void ena_trigger_reset(struct ena_adapter *adapter,
638 				     enum ena_regs_reset_reason_types reason)
639 {
640 	if (likely(!adapter->trigger_reset)) {
641 		adapter->reset_reason = reason;
642 		adapter->trigger_reset = true;
643 	}
644 }
645 
646 static inline void ena_rx_mbuf_prepare(struct ena_ring *rx_ring,
647 				       struct rte_mbuf *mbuf,
648 				       struct ena_com_rx_ctx *ena_rx_ctx,
649 				       bool fill_hash)
650 {
651 	struct ena_stats_rx *rx_stats = &rx_ring->rx_stats;
652 	uint64_t ol_flags = 0;
653 	uint32_t packet_type = 0;
654 
655 	if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
656 		packet_type |= RTE_PTYPE_L4_TCP;
657 	else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
658 		packet_type |= RTE_PTYPE_L4_UDP;
659 
660 	if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
661 		packet_type |= RTE_PTYPE_L3_IPV4;
662 		if (unlikely(ena_rx_ctx->l3_csum_err)) {
663 			++rx_stats->l3_csum_bad;
664 			ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
665 		} else {
666 			ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
667 		}
668 	} else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
669 		packet_type |= RTE_PTYPE_L3_IPV6;
670 	}
671 
672 	if (!ena_rx_ctx->l4_csum_checked || ena_rx_ctx->frag) {
673 		ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN;
674 	} else {
675 		if (unlikely(ena_rx_ctx->l4_csum_err)) {
676 			++rx_stats->l4_csum_bad;
677 			/*
678 			 * For the L4 Rx checksum offload the HW may indicate
679 			 * bad checksum although it's valid. Because of that,
680 			 * we're setting the UNKNOWN flag to let the app
681 			 * re-verify the checksum.
682 			 */
683 			ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN;
684 		} else {
685 			++rx_stats->l4_csum_good;
686 			ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
687 		}
688 	}
689 
690 	if (fill_hash &&
691 	    likely((packet_type & ENA_PTYPE_HAS_HASH) && !ena_rx_ctx->frag)) {
692 		ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
693 		mbuf->hash.rss = ena_rx_ctx->hash;
694 	}
695 
696 	mbuf->ol_flags = ol_flags;
697 	mbuf->packet_type = packet_type;
698 }
699 
700 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
701 				       struct ena_com_tx_ctx *ena_tx_ctx,
702 				       uint64_t queue_offloads,
703 				       bool disable_meta_caching)
704 {
705 	struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
706 
707 	if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
708 	    (queue_offloads & QUEUE_OFFLOADS)) {
709 		/* check if TSO is required */
710 		if ((mbuf->ol_flags & RTE_MBUF_F_TX_TCP_SEG) &&
711 		    (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_TSO)) {
712 			ena_tx_ctx->tso_enable = true;
713 
714 			ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
715 		}
716 
717 		/* check if L3 checksum is needed */
718 		if ((mbuf->ol_flags & RTE_MBUF_F_TX_IP_CKSUM) &&
719 		    (queue_offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM))
720 			ena_tx_ctx->l3_csum_enable = true;
721 
722 		if (mbuf->ol_flags & RTE_MBUF_F_TX_IPV6) {
723 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
724 			/* For the IPv6 packets, DF always needs to be true. */
725 			ena_tx_ctx->df = 1;
726 		} else {
727 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
728 
729 			/* set don't fragment (DF) flag */
730 			if (mbuf->packet_type &
731 				(RTE_PTYPE_L4_NONFRAG
732 				 | RTE_PTYPE_INNER_L4_NONFRAG))
733 				ena_tx_ctx->df = 1;
734 		}
735 
736 		/* check if L4 checksum is needed */
737 		if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) == RTE_MBUF_F_TX_TCP_CKSUM) &&
738 		    (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) {
739 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
740 			ena_tx_ctx->l4_csum_enable = true;
741 		} else if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) ==
742 				RTE_MBUF_F_TX_UDP_CKSUM) &&
743 				(queue_offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM)) {
744 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
745 			ena_tx_ctx->l4_csum_enable = true;
746 		} else {
747 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
748 			ena_tx_ctx->l4_csum_enable = false;
749 		}
750 
751 		ena_meta->mss = mbuf->tso_segsz;
752 		ena_meta->l3_hdr_len = mbuf->l3_len;
753 		ena_meta->l3_hdr_offset = mbuf->l2_len;
754 
755 		ena_tx_ctx->meta_valid = true;
756 	} else if (disable_meta_caching) {
757 		memset(ena_meta, 0, sizeof(*ena_meta));
758 		ena_tx_ctx->meta_valid = true;
759 	} else {
760 		ena_tx_ctx->meta_valid = false;
761 	}
762 }
763 
764 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
765 {
766 	struct ena_tx_buffer *tx_info = NULL;
767 
768 	if (likely(req_id < tx_ring->ring_size)) {
769 		tx_info = &tx_ring->tx_buffer_info[req_id];
770 		if (likely(tx_info->mbuf))
771 			return 0;
772 	}
773 
774 	if (tx_info)
775 		PMD_TX_LOG(ERR, "tx_info doesn't have valid mbuf. queue %d:%d req_id %u\n",
776 			tx_ring->port_id, tx_ring->id, req_id);
777 	else
778 		PMD_TX_LOG(ERR, "Invalid req_id: %hu in queue %d:%d\n",
779 			req_id, tx_ring->port_id, tx_ring->id);
780 
781 	/* Trigger device reset */
782 	++tx_ring->tx_stats.bad_req_id;
783 	ena_trigger_reset(tx_ring->adapter, ENA_REGS_RESET_INV_TX_REQ_ID);
784 	return -EFAULT;
785 }
786 
787 static void ena_config_host_info(struct ena_com_dev *ena_dev)
788 {
789 	struct ena_admin_host_info *host_info;
790 	int rc;
791 
792 	/* Allocate only the host info */
793 	rc = ena_com_allocate_host_info(ena_dev);
794 	if (rc) {
795 		PMD_DRV_LOG(ERR, "Cannot allocate host info\n");
796 		return;
797 	}
798 
799 	host_info = ena_dev->host_attr.host_info;
800 
801 	host_info->os_type = ENA_ADMIN_OS_DPDK;
802 	host_info->kernel_ver = RTE_VERSION;
803 	strlcpy((char *)host_info->kernel_ver_str, rte_version(),
804 		sizeof(host_info->kernel_ver_str));
805 	host_info->os_dist = RTE_VERSION;
806 	strlcpy((char *)host_info->os_dist_str, rte_version(),
807 		sizeof(host_info->os_dist_str));
808 	host_info->driver_version =
809 		(DRV_MODULE_VER_MAJOR) |
810 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
811 		(DRV_MODULE_VER_SUBMINOR <<
812 			ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
813 	host_info->num_cpus = rte_lcore_count();
814 
815 	host_info->driver_supported_features =
816 		ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK |
817 		ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK;
818 
819 	rc = ena_com_set_host_attributes(ena_dev);
820 	if (rc) {
821 		if (rc == -ENA_COM_UNSUPPORTED)
822 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
823 		else
824 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
825 
826 		goto err;
827 	}
828 
829 	return;
830 
831 err:
832 	ena_com_delete_host_info(ena_dev);
833 }
834 
835 /* This function calculates the number of xstats based on the current config */
836 static unsigned int ena_xstats_calc_num(struct rte_eth_dev_data *data)
837 {
838 	struct ena_adapter *adapter = data->dev_private;
839 
840 	return ENA_STATS_ARRAY_GLOBAL +
841 		adapter->metrics_num +
842 		ENA_STATS_ARRAY_ENA_SRD +
843 		(data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
844 		(data->nb_rx_queues * ENA_STATS_ARRAY_RX);
845 }
846 
847 static void ena_config_debug_area(struct ena_adapter *adapter)
848 {
849 	u32 debug_area_size;
850 	int rc, ss_count;
851 
852 	ss_count = ena_xstats_calc_num(adapter->edev_data);
853 
854 	/* allocate 32 bytes for each string and 64bit for the value */
855 	debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
856 
857 	rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
858 	if (rc) {
859 		PMD_DRV_LOG(ERR, "Cannot allocate debug area\n");
860 		return;
861 	}
862 
863 	rc = ena_com_set_host_attributes(&adapter->ena_dev);
864 	if (rc) {
865 		if (rc == -ENA_COM_UNSUPPORTED)
866 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
867 		else
868 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
869 
870 		goto err;
871 	}
872 
873 	return;
874 err:
875 	ena_com_delete_debug_area(&adapter->ena_dev);
876 }
877 
878 static int ena_close(struct rte_eth_dev *dev)
879 {
880 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
881 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
882 	struct ena_adapter *adapter = dev->data->dev_private;
883 	int ret = 0;
884 	int rc;
885 
886 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
887 		return 0;
888 
889 	if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
890 		ret = ena_stop(dev);
891 	adapter->state = ENA_ADAPTER_STATE_CLOSED;
892 
893 	if (!adapter->control_path_poll_interval) {
894 		rte_intr_disable(intr_handle);
895 		rc = rte_intr_callback_unregister_sync(intr_handle, ena_control_path_handler, dev);
896 		if (unlikely(rc != 0))
897 			PMD_INIT_LOG(ERR, "Failed to unregister interrupt handler\n");
898 	} else {
899 		rte_eal_alarm_cancel(ena_control_path_poll_handler, dev);
900 	}
901 
902 	ena_rx_queue_release_all(dev);
903 	ena_tx_queue_release_all(dev);
904 
905 	rte_free(adapter->drv_stats);
906 	adapter->drv_stats = NULL;
907 
908 	/*
909 	 * MAC is not allocated dynamically. Setting NULL should prevent from
910 	 * release of the resource in the rte_eth_dev_release_port().
911 	 */
912 	dev->data->mac_addrs = NULL;
913 
914 	return ret;
915 }
916 
917 static int
918 ena_dev_reset(struct rte_eth_dev *dev)
919 {
920 	int rc = 0;
921 
922 	/* Cannot release memory in secondary process */
923 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
924 		PMD_DRV_LOG(WARNING, "dev_reset not supported in secondary.\n");
925 		return -EPERM;
926 	}
927 
928 	ena_destroy_device(dev);
929 	rc = eth_ena_dev_init(dev);
930 	if (rc)
931 		PMD_INIT_LOG(CRIT, "Cannot initialize device\n");
932 
933 	return rc;
934 }
935 
936 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
937 {
938 	int nb_queues = dev->data->nb_rx_queues;
939 	int i;
940 
941 	for (i = 0; i < nb_queues; i++)
942 		ena_rx_queue_release(dev, i);
943 }
944 
945 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
946 {
947 	int nb_queues = dev->data->nb_tx_queues;
948 	int i;
949 
950 	for (i = 0; i < nb_queues; i++)
951 		ena_tx_queue_release(dev, i);
952 }
953 
954 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
955 {
956 	struct ena_ring *ring = dev->data->rx_queues[qid];
957 
958 	/* Free ring resources */
959 	rte_free(ring->rx_buffer_info);
960 	ring->rx_buffer_info = NULL;
961 
962 	rte_free(ring->rx_refill_buffer);
963 	ring->rx_refill_buffer = NULL;
964 
965 	rte_free(ring->empty_rx_reqs);
966 	ring->empty_rx_reqs = NULL;
967 
968 	ring->configured = 0;
969 
970 	PMD_DRV_LOG(NOTICE, "Rx queue %d:%d released\n",
971 		ring->port_id, ring->id);
972 }
973 
974 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
975 {
976 	struct ena_ring *ring = dev->data->tx_queues[qid];
977 
978 	/* Free ring resources */
979 	rte_free(ring->push_buf_intermediate_buf);
980 
981 	rte_free(ring->tx_buffer_info);
982 
983 	rte_free(ring->empty_tx_reqs);
984 
985 	ring->empty_tx_reqs = NULL;
986 	ring->tx_buffer_info = NULL;
987 	ring->push_buf_intermediate_buf = NULL;
988 
989 	ring->configured = 0;
990 
991 	PMD_DRV_LOG(NOTICE, "Tx queue %d:%d released\n",
992 		ring->port_id, ring->id);
993 }
994 
995 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
996 {
997 	unsigned int i;
998 
999 	for (i = 0; i < ring->ring_size; ++i) {
1000 		struct ena_rx_buffer *rx_info = &ring->rx_buffer_info[i];
1001 		if (rx_info->mbuf) {
1002 			rte_mbuf_raw_free(rx_info->mbuf);
1003 			rx_info->mbuf = NULL;
1004 		}
1005 	}
1006 }
1007 
1008 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
1009 {
1010 	unsigned int i;
1011 
1012 	for (i = 0; i < ring->ring_size; ++i) {
1013 		struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
1014 
1015 		if (tx_buf->mbuf) {
1016 			rte_pktmbuf_free(tx_buf->mbuf);
1017 			tx_buf->mbuf = NULL;
1018 		}
1019 	}
1020 }
1021 
1022 static int ena_link_update(struct rte_eth_dev *dev,
1023 			   __rte_unused int wait_to_complete)
1024 {
1025 	struct rte_eth_link *link = &dev->data->dev_link;
1026 	struct ena_adapter *adapter = dev->data->dev_private;
1027 
1028 	link->link_status = adapter->link_status ? RTE_ETH_LINK_UP : RTE_ETH_LINK_DOWN;
1029 	link->link_speed = RTE_ETH_SPEED_NUM_NONE;
1030 	link->link_duplex = RTE_ETH_LINK_FULL_DUPLEX;
1031 
1032 	return 0;
1033 }
1034 
1035 static int ena_queue_start_all(struct rte_eth_dev *dev,
1036 			       enum ena_ring_type ring_type)
1037 {
1038 	struct ena_adapter *adapter = dev->data->dev_private;
1039 	struct ena_ring *queues = NULL;
1040 	int nb_queues;
1041 	int i = 0;
1042 	int rc = 0;
1043 
1044 	if (ring_type == ENA_RING_TYPE_RX) {
1045 		queues = adapter->rx_ring;
1046 		nb_queues = dev->data->nb_rx_queues;
1047 	} else {
1048 		queues = adapter->tx_ring;
1049 		nb_queues = dev->data->nb_tx_queues;
1050 	}
1051 	for (i = 0; i < nb_queues; i++) {
1052 		if (queues[i].configured) {
1053 			if (ring_type == ENA_RING_TYPE_RX) {
1054 				ena_assert_msg(
1055 					dev->data->rx_queues[i] == &queues[i],
1056 					"Inconsistent state of Rx queues\n");
1057 			} else {
1058 				ena_assert_msg(
1059 					dev->data->tx_queues[i] == &queues[i],
1060 					"Inconsistent state of Tx queues\n");
1061 			}
1062 
1063 			rc = ena_queue_start(dev, &queues[i]);
1064 
1065 			if (rc) {
1066 				PMD_INIT_LOG(ERR,
1067 					"Failed to start queue[%d] of type(%d)\n",
1068 					i, ring_type);
1069 				goto err;
1070 			}
1071 		}
1072 	}
1073 
1074 	return 0;
1075 
1076 err:
1077 	while (i--)
1078 		if (queues[i].configured)
1079 			ena_queue_stop(&queues[i]);
1080 
1081 	return rc;
1082 }
1083 
1084 static int
1085 ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx,
1086 		       bool use_large_llq_hdr)
1087 {
1088 	struct ena_admin_feature_llq_desc *dev = &ctx->get_feat_ctx->llq;
1089 	struct ena_com_dev *ena_dev = ctx->ena_dev;
1090 	uint32_t max_tx_queue_size;
1091 	uint32_t max_rx_queue_size;
1092 
1093 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1094 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1095 			&ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
1096 		max_rx_queue_size = RTE_MIN(max_queue_ext->max_rx_cq_depth,
1097 			max_queue_ext->max_rx_sq_depth);
1098 		max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
1099 
1100 		if (ena_dev->tx_mem_queue_type ==
1101 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1102 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1103 				dev->max_llq_depth);
1104 		} else {
1105 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1106 				max_queue_ext->max_tx_sq_depth);
1107 		}
1108 
1109 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1110 			max_queue_ext->max_per_packet_rx_descs);
1111 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1112 			max_queue_ext->max_per_packet_tx_descs);
1113 	} else {
1114 		struct ena_admin_queue_feature_desc *max_queues =
1115 			&ctx->get_feat_ctx->max_queues;
1116 		max_rx_queue_size = RTE_MIN(max_queues->max_cq_depth,
1117 			max_queues->max_sq_depth);
1118 		max_tx_queue_size = max_queues->max_cq_depth;
1119 
1120 		if (ena_dev->tx_mem_queue_type ==
1121 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1122 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1123 				dev->max_llq_depth);
1124 		} else {
1125 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1126 				max_queues->max_sq_depth);
1127 		}
1128 
1129 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1130 			max_queues->max_packet_rx_descs);
1131 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1132 			max_queues->max_packet_tx_descs);
1133 	}
1134 
1135 	/* Round down to the nearest power of 2 */
1136 	max_rx_queue_size = rte_align32prevpow2(max_rx_queue_size);
1137 	max_tx_queue_size = rte_align32prevpow2(max_tx_queue_size);
1138 
1139 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV && use_large_llq_hdr) {
1140 		/* intersection between driver configuration and device capabilities */
1141 		if (dev->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B) {
1142 			if (dev->max_wide_llq_depth == MAX_WIDE_LLQ_DEPTH_UNSUPPORTED) {
1143 				/* Devices that do not support the double-sized ENA memory BAR will
1144 				 * report max_wide_llq_depth as 0. In such case, driver halves the
1145 				 * queue depth when working in large llq policy.
1146 				 */
1147 				max_tx_queue_size >>= 1;
1148 				PMD_INIT_LOG(INFO,
1149 					"large LLQ policy requires limiting Tx queue size to %u entries\n",
1150 				max_tx_queue_size);
1151 			} else if (dev->max_wide_llq_depth < max_tx_queue_size) {
1152 				/* In case the queue depth that the driver calculated exceeds
1153 				 * the maximal value that the device allows, it will be limited
1154 				 * to that maximal value
1155 				 */
1156 				max_tx_queue_size = dev->max_wide_llq_depth;
1157 			}
1158 		} else {
1159 			PMD_INIT_LOG(INFO,
1160 				"Forcing large LLQ headers failed since device lacks this support\n");
1161 		}
1162 	}
1163 
1164 	if (unlikely(max_rx_queue_size == 0 || max_tx_queue_size == 0)) {
1165 		PMD_INIT_LOG(ERR, "Invalid queue size\n");
1166 		return -EFAULT;
1167 	}
1168 
1169 	ctx->max_tx_queue_size = max_tx_queue_size;
1170 	ctx->max_rx_queue_size = max_rx_queue_size;
1171 
1172 	PMD_DRV_LOG(INFO, "tx queue size %u\n", max_tx_queue_size);
1173 	return 0;
1174 }
1175 
1176 static void ena_stats_restart(struct rte_eth_dev *dev)
1177 {
1178 	struct ena_adapter *adapter = dev->data->dev_private;
1179 
1180 	rte_atomic64_init(&adapter->drv_stats->ierrors);
1181 	rte_atomic64_init(&adapter->drv_stats->oerrors);
1182 	rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
1183 	adapter->drv_stats->rx_drops = 0;
1184 }
1185 
1186 static int ena_stats_get(struct rte_eth_dev *dev,
1187 			  struct rte_eth_stats *stats)
1188 {
1189 	struct ena_admin_basic_stats ena_stats;
1190 	struct ena_adapter *adapter = dev->data->dev_private;
1191 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1192 	int rc;
1193 	int i;
1194 	int max_rings_stats;
1195 
1196 	memset(&ena_stats, 0, sizeof(ena_stats));
1197 
1198 	rte_spinlock_lock(&adapter->admin_lock);
1199 	rc = ENA_PROXY(adapter, ena_com_get_dev_basic_stats, ena_dev,
1200 		       &ena_stats);
1201 	rte_spinlock_unlock(&adapter->admin_lock);
1202 	if (unlikely(rc)) {
1203 		PMD_DRV_LOG(ERR, "Could not retrieve statistics from ENA\n");
1204 		return rc;
1205 	}
1206 
1207 	/* Set of basic statistics from ENA */
1208 	stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
1209 					  ena_stats.rx_pkts_low);
1210 	stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
1211 					  ena_stats.tx_pkts_low);
1212 	stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
1213 					ena_stats.rx_bytes_low);
1214 	stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
1215 					ena_stats.tx_bytes_low);
1216 
1217 	/* Driver related stats */
1218 	stats->imissed = adapter->drv_stats->rx_drops;
1219 	stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
1220 	stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
1221 	stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
1222 
1223 	max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
1224 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
1225 	for (i = 0; i < max_rings_stats; ++i) {
1226 		struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
1227 
1228 		stats->q_ibytes[i] = rx_stats->bytes;
1229 		stats->q_ipackets[i] = rx_stats->cnt;
1230 		stats->q_errors[i] = rx_stats->bad_desc_num +
1231 			rx_stats->bad_req_id;
1232 	}
1233 
1234 	max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
1235 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
1236 	for (i = 0; i < max_rings_stats; ++i) {
1237 		struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
1238 
1239 		stats->q_obytes[i] = tx_stats->bytes;
1240 		stats->q_opackets[i] = tx_stats->cnt;
1241 	}
1242 
1243 	return 0;
1244 }
1245 
1246 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1247 {
1248 	struct ena_adapter *adapter;
1249 	struct ena_com_dev *ena_dev;
1250 	int rc = 0;
1251 
1252 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
1253 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
1254 	adapter = dev->data->dev_private;
1255 
1256 	ena_dev = &adapter->ena_dev;
1257 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
1258 
1259 	rc = ENA_PROXY(adapter, ena_com_set_dev_mtu, ena_dev, mtu);
1260 	if (rc)
1261 		PMD_DRV_LOG(ERR, "Could not set MTU: %d\n", mtu);
1262 	else
1263 		PMD_DRV_LOG(NOTICE, "MTU set to: %d\n", mtu);
1264 
1265 	return rc;
1266 }
1267 
1268 static int ena_start(struct rte_eth_dev *dev)
1269 {
1270 	struct ena_adapter *adapter = dev->data->dev_private;
1271 	uint64_t ticks;
1272 	int rc = 0;
1273 	uint16_t i;
1274 
1275 	/* Cannot allocate memory in secondary process */
1276 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1277 		PMD_DRV_LOG(WARNING, "dev_start not supported in secondary.\n");
1278 		return -EPERM;
1279 	}
1280 
1281 	rc = ena_setup_rx_intr(dev);
1282 	if (rc)
1283 		return rc;
1284 
1285 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
1286 	if (rc)
1287 		return rc;
1288 
1289 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
1290 	if (rc)
1291 		goto err_start_tx;
1292 
1293 	if (adapter->edev_data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG) {
1294 		rc = ena_rss_configure(adapter);
1295 		if (rc)
1296 			goto err_rss_init;
1297 	}
1298 
1299 	ena_stats_restart(dev);
1300 
1301 	adapter->timestamp_wd = rte_get_timer_cycles();
1302 	adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
1303 
1304 	ticks = rte_get_timer_hz();
1305 	rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
1306 			ena_timer_wd_callback, dev);
1307 
1308 	++adapter->dev_stats.dev_start;
1309 	adapter->state = ENA_ADAPTER_STATE_RUNNING;
1310 
1311 	for (i = 0; i < dev->data->nb_rx_queues; i++)
1312 		dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
1313 	for (i = 0; i < dev->data->nb_tx_queues; i++)
1314 		dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
1315 
1316 	return 0;
1317 
1318 err_rss_init:
1319 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1320 err_start_tx:
1321 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1322 	return rc;
1323 }
1324 
1325 static int ena_stop(struct rte_eth_dev *dev)
1326 {
1327 	struct ena_adapter *adapter = dev->data->dev_private;
1328 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1329 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1330 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
1331 	uint16_t i;
1332 	int rc;
1333 
1334 	/* Cannot free memory in secondary process */
1335 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1336 		PMD_DRV_LOG(WARNING, "dev_stop not supported in secondary.\n");
1337 		return -EPERM;
1338 	}
1339 
1340 	rte_timer_stop_sync(&adapter->timer_wd);
1341 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1342 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1343 
1344 	if (adapter->trigger_reset) {
1345 		rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
1346 		if (rc)
1347 			PMD_DRV_LOG(ERR, "Device reset failed, rc: %d\n", rc);
1348 	}
1349 
1350 	rte_intr_disable(intr_handle);
1351 
1352 	rte_intr_efd_disable(intr_handle);
1353 
1354 	/* Cleanup vector list */
1355 	rte_intr_vec_list_free(intr_handle);
1356 
1357 	rte_intr_enable(intr_handle);
1358 
1359 	++adapter->dev_stats.dev_stop;
1360 	adapter->state = ENA_ADAPTER_STATE_STOPPED;
1361 	dev->data->dev_started = 0;
1362 
1363 	for (i = 0; i < dev->data->nb_rx_queues; i++)
1364 		dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
1365 	for (i = 0; i < dev->data->nb_tx_queues; i++)
1366 		dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
1367 
1368 	return 0;
1369 }
1370 
1371 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring)
1372 {
1373 	struct ena_adapter *adapter = ring->adapter;
1374 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1375 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1376 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
1377 	struct ena_com_create_io_ctx ctx =
1378 		/* policy set to _HOST just to satisfy icc compiler */
1379 		{ ENA_ADMIN_PLACEMENT_POLICY_HOST,
1380 		  0, 0, 0, 0, 0 };
1381 	uint16_t ena_qid;
1382 	unsigned int i;
1383 	int rc;
1384 
1385 	ctx.msix_vector = -1;
1386 	if (ring->type == ENA_RING_TYPE_TX) {
1387 		ena_qid = ENA_IO_TXQ_IDX(ring->id);
1388 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1389 		ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1390 		for (i = 0; i < ring->ring_size; i++)
1391 			ring->empty_tx_reqs[i] = i;
1392 	} else {
1393 		ena_qid = ENA_IO_RXQ_IDX(ring->id);
1394 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1395 		if (rte_intr_dp_is_en(intr_handle))
1396 			ctx.msix_vector =
1397 				rte_intr_vec_list_index_get(intr_handle,
1398 								   ring->id);
1399 
1400 		for (i = 0; i < ring->ring_size; i++)
1401 			ring->empty_rx_reqs[i] = i;
1402 	}
1403 	ctx.queue_size = ring->ring_size;
1404 	ctx.qid = ena_qid;
1405 	ctx.numa_node = ring->numa_socket_id;
1406 
1407 	rc = ena_com_create_io_queue(ena_dev, &ctx);
1408 	if (rc) {
1409 		PMD_DRV_LOG(ERR,
1410 			"Failed to create IO queue[%d] (qid:%d), rc: %d\n",
1411 			ring->id, ena_qid, rc);
1412 		return rc;
1413 	}
1414 
1415 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1416 				     &ring->ena_com_io_sq,
1417 				     &ring->ena_com_io_cq);
1418 	if (rc) {
1419 		PMD_DRV_LOG(ERR,
1420 			"Failed to get IO queue[%d] handlers, rc: %d\n",
1421 			ring->id, rc);
1422 		ena_com_destroy_io_queue(ena_dev, ena_qid);
1423 		return rc;
1424 	}
1425 
1426 	if (ring->type == ENA_RING_TYPE_TX)
1427 		ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1428 
1429 	/* Start with Rx interrupts being masked. */
1430 	if (ring->type == ENA_RING_TYPE_RX && rte_intr_dp_is_en(intr_handle))
1431 		ena_rx_queue_intr_disable(dev, ring->id);
1432 
1433 	return 0;
1434 }
1435 
1436 static void ena_queue_stop(struct ena_ring *ring)
1437 {
1438 	struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
1439 
1440 	if (ring->type == ENA_RING_TYPE_RX) {
1441 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
1442 		ena_rx_queue_release_bufs(ring);
1443 	} else {
1444 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
1445 		ena_tx_queue_release_bufs(ring);
1446 	}
1447 }
1448 
1449 static void ena_queue_stop_all(struct rte_eth_dev *dev,
1450 			      enum ena_ring_type ring_type)
1451 {
1452 	struct ena_adapter *adapter = dev->data->dev_private;
1453 	struct ena_ring *queues = NULL;
1454 	uint16_t nb_queues, i;
1455 
1456 	if (ring_type == ENA_RING_TYPE_RX) {
1457 		queues = adapter->rx_ring;
1458 		nb_queues = dev->data->nb_rx_queues;
1459 	} else {
1460 		queues = adapter->tx_ring;
1461 		nb_queues = dev->data->nb_tx_queues;
1462 	}
1463 
1464 	for (i = 0; i < nb_queues; ++i)
1465 		if (queues[i].configured)
1466 			ena_queue_stop(&queues[i]);
1467 }
1468 
1469 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring)
1470 {
1471 	int rc, bufs_num;
1472 
1473 	ena_assert_msg(ring->configured == 1,
1474 		       "Trying to start unconfigured queue\n");
1475 
1476 	rc = ena_create_io_queue(dev, ring);
1477 	if (rc) {
1478 		PMD_INIT_LOG(ERR, "Failed to create IO queue\n");
1479 		return rc;
1480 	}
1481 
1482 	ring->next_to_clean = 0;
1483 	ring->next_to_use = 0;
1484 
1485 	if (ring->type == ENA_RING_TYPE_TX) {
1486 		ring->tx_stats.available_desc =
1487 			ena_com_free_q_entries(ring->ena_com_io_sq);
1488 		return 0;
1489 	}
1490 
1491 	bufs_num = ring->ring_size - 1;
1492 	rc = ena_populate_rx_queue(ring, bufs_num);
1493 	if (rc != bufs_num) {
1494 		ena_com_destroy_io_queue(&ring->adapter->ena_dev,
1495 					 ENA_IO_RXQ_IDX(ring->id));
1496 		PMD_INIT_LOG(ERR, "Failed to populate Rx ring\n");
1497 		return ENA_COM_FAULT;
1498 	}
1499 	/* Flush per-core RX buffers pools cache as they can be used on other
1500 	 * cores as well.
1501 	 */
1502 	rte_mempool_cache_flush(NULL, ring->mb_pool);
1503 
1504 	return 0;
1505 }
1506 
1507 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1508 			      uint16_t queue_idx,
1509 			      uint16_t nb_desc,
1510 			      unsigned int socket_id,
1511 			      const struct rte_eth_txconf *tx_conf)
1512 {
1513 	struct ena_ring *txq = NULL;
1514 	struct ena_adapter *adapter = dev->data->dev_private;
1515 	unsigned int i;
1516 	uint16_t dyn_thresh;
1517 
1518 	txq = &adapter->tx_ring[queue_idx];
1519 
1520 	if (txq->configured) {
1521 		PMD_DRV_LOG(CRIT,
1522 			"API violation. Queue[%d] is already configured\n",
1523 			queue_idx);
1524 		return ENA_COM_FAULT;
1525 	}
1526 
1527 	if (!rte_is_power_of_2(nb_desc)) {
1528 		PMD_DRV_LOG(ERR,
1529 			"Unsupported size of Tx queue: %d is not a power of 2.\n",
1530 			nb_desc);
1531 		return -EINVAL;
1532 	}
1533 
1534 	if (nb_desc > adapter->max_tx_ring_size) {
1535 		PMD_DRV_LOG(ERR,
1536 			"Unsupported size of Tx queue (max size: %d)\n",
1537 			adapter->max_tx_ring_size);
1538 		return -EINVAL;
1539 	}
1540 
1541 	txq->port_id = dev->data->port_id;
1542 	txq->next_to_clean = 0;
1543 	txq->next_to_use = 0;
1544 	txq->ring_size = nb_desc;
1545 	txq->size_mask = nb_desc - 1;
1546 	txq->numa_socket_id = socket_id;
1547 	txq->pkts_without_db = false;
1548 	txq->last_cleanup_ticks = 0;
1549 
1550 	txq->tx_buffer_info = rte_zmalloc_socket("txq->tx_buffer_info",
1551 		sizeof(struct ena_tx_buffer) * txq->ring_size,
1552 		RTE_CACHE_LINE_SIZE,
1553 		socket_id);
1554 	if (!txq->tx_buffer_info) {
1555 		PMD_DRV_LOG(ERR,
1556 			"Failed to allocate memory for Tx buffer info\n");
1557 		return -ENOMEM;
1558 	}
1559 
1560 	txq->empty_tx_reqs = rte_zmalloc_socket("txq->empty_tx_reqs",
1561 		sizeof(uint16_t) * txq->ring_size,
1562 		RTE_CACHE_LINE_SIZE,
1563 		socket_id);
1564 	if (!txq->empty_tx_reqs) {
1565 		PMD_DRV_LOG(ERR,
1566 			"Failed to allocate memory for empty Tx requests\n");
1567 		rte_free(txq->tx_buffer_info);
1568 		return -ENOMEM;
1569 	}
1570 
1571 	txq->push_buf_intermediate_buf =
1572 		rte_zmalloc_socket("txq->push_buf_intermediate_buf",
1573 			txq->tx_max_header_size,
1574 			RTE_CACHE_LINE_SIZE,
1575 			socket_id);
1576 	if (!txq->push_buf_intermediate_buf) {
1577 		PMD_DRV_LOG(ERR, "Failed to alloc push buffer for LLQ\n");
1578 		rte_free(txq->tx_buffer_info);
1579 		rte_free(txq->empty_tx_reqs);
1580 		return -ENOMEM;
1581 	}
1582 
1583 	for (i = 0; i < txq->ring_size; i++)
1584 		txq->empty_tx_reqs[i] = i;
1585 
1586 	txq->offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1587 
1588 	/* Check if caller provided the Tx cleanup threshold value. */
1589 	if (tx_conf->tx_free_thresh != 0) {
1590 		txq->tx_free_thresh = tx_conf->tx_free_thresh;
1591 	} else {
1592 		dyn_thresh = txq->ring_size -
1593 			txq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1594 		txq->tx_free_thresh = RTE_MAX(dyn_thresh,
1595 			txq->ring_size - ENA_REFILL_THRESH_PACKET);
1596 	}
1597 
1598 	txq->missing_tx_completion_threshold =
1599 		RTE_MIN(txq->ring_size / 2, ENA_DEFAULT_MISSING_COMP);
1600 
1601 	/* Store pointer to this queue in upper layer */
1602 	txq->configured = 1;
1603 	dev->data->tx_queues[queue_idx] = txq;
1604 
1605 	return 0;
1606 }
1607 
1608 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1609 			      uint16_t queue_idx,
1610 			      uint16_t nb_desc,
1611 			      unsigned int socket_id,
1612 			      const struct rte_eth_rxconf *rx_conf,
1613 			      struct rte_mempool *mp)
1614 {
1615 	struct ena_adapter *adapter = dev->data->dev_private;
1616 	struct ena_ring *rxq = NULL;
1617 	size_t buffer_size;
1618 	int i;
1619 	uint16_t dyn_thresh;
1620 
1621 	rxq = &adapter->rx_ring[queue_idx];
1622 	if (rxq->configured) {
1623 		PMD_DRV_LOG(CRIT,
1624 			"API violation. Queue[%d] is already configured\n",
1625 			queue_idx);
1626 		return ENA_COM_FAULT;
1627 	}
1628 
1629 	if (!rte_is_power_of_2(nb_desc)) {
1630 		PMD_DRV_LOG(ERR,
1631 			"Unsupported size of Rx queue: %d is not a power of 2.\n",
1632 			nb_desc);
1633 		return -EINVAL;
1634 	}
1635 
1636 	if (nb_desc > adapter->max_rx_ring_size) {
1637 		PMD_DRV_LOG(ERR,
1638 			"Unsupported size of Rx queue (max size: %d)\n",
1639 			adapter->max_rx_ring_size);
1640 		return -EINVAL;
1641 	}
1642 
1643 	/* ENA isn't supporting buffers smaller than 1400 bytes */
1644 	buffer_size = rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
1645 	if (buffer_size < ENA_RX_BUF_MIN_SIZE) {
1646 		PMD_DRV_LOG(ERR,
1647 			"Unsupported size of Rx buffer: %zu (min size: %d)\n",
1648 			buffer_size, ENA_RX_BUF_MIN_SIZE);
1649 		return -EINVAL;
1650 	}
1651 
1652 	rxq->port_id = dev->data->port_id;
1653 	rxq->next_to_clean = 0;
1654 	rxq->next_to_use = 0;
1655 	rxq->ring_size = nb_desc;
1656 	rxq->size_mask = nb_desc - 1;
1657 	rxq->numa_socket_id = socket_id;
1658 	rxq->mb_pool = mp;
1659 
1660 	rxq->rx_buffer_info = rte_zmalloc_socket("rxq->buffer_info",
1661 		sizeof(struct ena_rx_buffer) * nb_desc,
1662 		RTE_CACHE_LINE_SIZE,
1663 		socket_id);
1664 	if (!rxq->rx_buffer_info) {
1665 		PMD_DRV_LOG(ERR,
1666 			"Failed to allocate memory for Rx buffer info\n");
1667 		return -ENOMEM;
1668 	}
1669 
1670 	rxq->rx_refill_buffer = rte_zmalloc_socket("rxq->rx_refill_buffer",
1671 		sizeof(struct rte_mbuf *) * nb_desc,
1672 		RTE_CACHE_LINE_SIZE,
1673 		socket_id);
1674 	if (!rxq->rx_refill_buffer) {
1675 		PMD_DRV_LOG(ERR,
1676 			"Failed to allocate memory for Rx refill buffer\n");
1677 		rte_free(rxq->rx_buffer_info);
1678 		rxq->rx_buffer_info = NULL;
1679 		return -ENOMEM;
1680 	}
1681 
1682 	rxq->empty_rx_reqs = rte_zmalloc_socket("rxq->empty_rx_reqs",
1683 		sizeof(uint16_t) * nb_desc,
1684 		RTE_CACHE_LINE_SIZE,
1685 		socket_id);
1686 	if (!rxq->empty_rx_reqs) {
1687 		PMD_DRV_LOG(ERR,
1688 			"Failed to allocate memory for empty Rx requests\n");
1689 		rte_free(rxq->rx_buffer_info);
1690 		rxq->rx_buffer_info = NULL;
1691 		rte_free(rxq->rx_refill_buffer);
1692 		rxq->rx_refill_buffer = NULL;
1693 		return -ENOMEM;
1694 	}
1695 
1696 	for (i = 0; i < nb_desc; i++)
1697 		rxq->empty_rx_reqs[i] = i;
1698 
1699 	rxq->offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1700 
1701 	if (rx_conf->rx_free_thresh != 0) {
1702 		rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1703 	} else {
1704 		dyn_thresh = rxq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1705 		rxq->rx_free_thresh = RTE_MIN(dyn_thresh,
1706 			(uint16_t)(ENA_REFILL_THRESH_PACKET));
1707 	}
1708 
1709 	/* Store pointer to this queue in upper layer */
1710 	rxq->configured = 1;
1711 	dev->data->rx_queues[queue_idx] = rxq;
1712 
1713 	return 0;
1714 }
1715 
1716 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
1717 				  struct rte_mbuf *mbuf, uint16_t id)
1718 {
1719 	struct ena_com_buf ebuf;
1720 	int rc;
1721 
1722 	/* prepare physical address for DMA transaction */
1723 	ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1724 	ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1725 
1726 	/* pass resource to device */
1727 	rc = ena_com_add_single_rx_desc(io_sq, &ebuf, id);
1728 	if (unlikely(rc != 0))
1729 		PMD_RX_LOG(WARNING, "Failed adding Rx desc\n");
1730 
1731 	return rc;
1732 }
1733 
1734 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1735 {
1736 	unsigned int i;
1737 	int rc;
1738 	uint16_t next_to_use = rxq->next_to_use;
1739 	uint16_t req_id;
1740 #ifdef RTE_ETHDEV_DEBUG_RX
1741 	uint16_t in_use;
1742 #endif
1743 	struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1744 
1745 	if (unlikely(!count))
1746 		return 0;
1747 
1748 #ifdef RTE_ETHDEV_DEBUG_RX
1749 	in_use = rxq->ring_size - 1 -
1750 		ena_com_free_q_entries(rxq->ena_com_io_sq);
1751 	if (unlikely((in_use + count) >= rxq->ring_size))
1752 		PMD_RX_LOG(ERR, "Bad Rx ring state\n");
1753 #endif
1754 
1755 	/* get resources for incoming packets */
1756 	rc = rte_pktmbuf_alloc_bulk(rxq->mb_pool, mbufs, count);
1757 	if (unlikely(rc < 0)) {
1758 		rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1759 		++rxq->rx_stats.mbuf_alloc_fail;
1760 		PMD_RX_LOG(DEBUG, "There are not enough free buffers\n");
1761 		return 0;
1762 	}
1763 
1764 	for (i = 0; i < count; i++) {
1765 		struct rte_mbuf *mbuf = mbufs[i];
1766 		struct ena_rx_buffer *rx_info;
1767 
1768 		if (likely((i + 4) < count))
1769 			rte_prefetch0(mbufs[i + 4]);
1770 
1771 		req_id = rxq->empty_rx_reqs[next_to_use];
1772 		rx_info = &rxq->rx_buffer_info[req_id];
1773 
1774 		rc = ena_add_single_rx_desc(rxq->ena_com_io_sq, mbuf, req_id);
1775 		if (unlikely(rc != 0))
1776 			break;
1777 
1778 		rx_info->mbuf = mbuf;
1779 		next_to_use = ENA_IDX_NEXT_MASKED(next_to_use, rxq->size_mask);
1780 	}
1781 
1782 	if (unlikely(i < count)) {
1783 		PMD_RX_LOG(WARNING,
1784 			"Refilled Rx queue[%d] with only %d/%d buffers\n",
1785 			rxq->id, i, count);
1786 		rte_pktmbuf_free_bulk(&mbufs[i], count - i);
1787 		++rxq->rx_stats.refill_partial;
1788 	}
1789 
1790 	/* When we submitted free resources to device... */
1791 	if (likely(i > 0)) {
1792 		/* ...let HW know that it can fill buffers with data. */
1793 		ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1794 
1795 		rxq->next_to_use = next_to_use;
1796 	}
1797 
1798 	return i;
1799 }
1800 
1801 static size_t ena_get_metrics_entries(struct ena_adapter *adapter)
1802 {
1803 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1804 	size_t metrics_num = 0;
1805 
1806 	if (ena_com_get_cap(ena_dev, ENA_ADMIN_CUSTOMER_METRICS))
1807 		metrics_num = ENA_STATS_ARRAY_METRICS;
1808 	else if (ena_com_get_cap(ena_dev, ENA_ADMIN_ENI_STATS))
1809 		metrics_num = ENA_STATS_ARRAY_METRICS_LEGACY;
1810 	PMD_DRV_LOG(NOTICE, "0x%x customer metrics are supported\n", (unsigned int)metrics_num);
1811 	if (metrics_num > ENA_MAX_CUSTOMER_METRICS) {
1812 		PMD_DRV_LOG(NOTICE, "Not enough space for the requested customer metrics\n");
1813 		metrics_num = ENA_MAX_CUSTOMER_METRICS;
1814 	}
1815 	return metrics_num;
1816 }
1817 
1818 static int ena_device_init(struct ena_adapter *adapter,
1819 			   struct rte_pci_device *pdev,
1820 			   struct ena_com_dev_get_features_ctx *get_feat_ctx)
1821 {
1822 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1823 	uint32_t aenq_groups;
1824 	int rc;
1825 	bool readless_supported;
1826 
1827 	/* Initialize mmio registers */
1828 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
1829 	if (rc) {
1830 		PMD_DRV_LOG(ERR, "Failed to init MMIO read less\n");
1831 		return rc;
1832 	}
1833 
1834 	/* The PCIe configuration space revision id indicate if mmio reg
1835 	 * read is disabled.
1836 	 */
1837 	readless_supported = !(pdev->id.class_id & ENA_MMIO_DISABLE_REG_READ);
1838 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1839 
1840 	/* reset device */
1841 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1842 	if (rc) {
1843 		PMD_DRV_LOG(ERR, "Cannot reset device\n");
1844 		goto err_mmio_read_less;
1845 	}
1846 
1847 	/* check FW version */
1848 	rc = ena_com_validate_version(ena_dev);
1849 	if (rc) {
1850 		PMD_DRV_LOG(ERR, "Device version is too low\n");
1851 		goto err_mmio_read_less;
1852 	}
1853 
1854 	ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1855 
1856 	/* ENA device administration layer init */
1857 	rc = ena_com_admin_init(ena_dev, &aenq_handlers);
1858 	if (rc) {
1859 		PMD_DRV_LOG(ERR,
1860 			"Cannot initialize ENA admin queue\n");
1861 		goto err_mmio_read_less;
1862 	}
1863 
1864 	/* To enable the msix interrupts the driver needs to know the number
1865 	 * of queues. So the driver uses polling mode to retrieve this
1866 	 * information.
1867 	 */
1868 	ena_com_set_admin_polling_mode(ena_dev, true);
1869 
1870 	ena_config_host_info(ena_dev);
1871 
1872 	/* Get Device Attributes and features */
1873 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1874 	if (rc) {
1875 		PMD_DRV_LOG(ERR,
1876 			"Cannot get attribute for ENA device, rc: %d\n", rc);
1877 		goto err_admin_init;
1878 	}
1879 
1880 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1881 		      BIT(ENA_ADMIN_NOTIFICATION) |
1882 		      BIT(ENA_ADMIN_KEEP_ALIVE) |
1883 		      BIT(ENA_ADMIN_FATAL_ERROR) |
1884 		      BIT(ENA_ADMIN_WARNING) |
1885 		      BIT(ENA_ADMIN_CONF_NOTIFICATIONS);
1886 
1887 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
1888 
1889 	adapter->all_aenq_groups = aenq_groups;
1890 	/* The actual supported number of metrics is negotiated with the device at runtime */
1891 	adapter->metrics_num = ena_get_metrics_entries(adapter);
1892 
1893 	return 0;
1894 
1895 err_admin_init:
1896 	ena_com_admin_destroy(ena_dev);
1897 
1898 err_mmio_read_less:
1899 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1900 
1901 	return rc;
1902 }
1903 
1904 static void ena_control_path_handler(void *cb_arg)
1905 {
1906 	struct rte_eth_dev *dev = cb_arg;
1907 	struct ena_adapter *adapter = dev->data->dev_private;
1908 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1909 
1910 	if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED)) {
1911 		ena_com_admin_q_comp_intr_handler(ena_dev);
1912 		ena_com_aenq_intr_handler(ena_dev, dev);
1913 	}
1914 }
1915 
1916 static void ena_control_path_poll_handler(void *cb_arg)
1917 {
1918 	struct rte_eth_dev *dev = cb_arg;
1919 	struct ena_adapter *adapter = dev->data->dev_private;
1920 	int rc;
1921 
1922 	if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED)) {
1923 		ena_control_path_handler(cb_arg);
1924 		rc = rte_eal_alarm_set(adapter->control_path_poll_interval,
1925 				       ena_control_path_poll_handler, cb_arg);
1926 		if (unlikely(rc != 0)) {
1927 			PMD_DRV_LOG(ERR, "Failed to retrigger control path alarm\n");
1928 			ena_trigger_reset(adapter, ENA_REGS_RESET_GENERIC);
1929 		}
1930 	}
1931 }
1932 
1933 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1934 {
1935 	if (!(adapter->active_aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE)))
1936 		return;
1937 
1938 	if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1939 		return;
1940 
1941 	if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1942 	    adapter->keep_alive_timeout)) {
1943 		PMD_DRV_LOG(ERR, "Keep alive timeout\n");
1944 		ena_trigger_reset(adapter, ENA_REGS_RESET_KEEP_ALIVE_TO);
1945 		++adapter->dev_stats.wd_expired;
1946 	}
1947 }
1948 
1949 /* Check if admin queue is enabled */
1950 static void check_for_admin_com_state(struct ena_adapter *adapter)
1951 {
1952 	if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1953 		PMD_DRV_LOG(ERR, "ENA admin queue is not in running state\n");
1954 		ena_trigger_reset(adapter, ENA_REGS_RESET_ADMIN_TO);
1955 	}
1956 }
1957 
1958 static int check_for_tx_completion_in_queue(struct ena_adapter *adapter,
1959 					    struct ena_ring *tx_ring)
1960 {
1961 	struct ena_tx_buffer *tx_buf;
1962 	uint64_t timestamp;
1963 	uint64_t completion_delay;
1964 	uint32_t missed_tx = 0;
1965 	unsigned int i;
1966 	int rc = 0;
1967 
1968 	for (i = 0; i < tx_ring->ring_size; ++i) {
1969 		tx_buf = &tx_ring->tx_buffer_info[i];
1970 		timestamp = tx_buf->timestamp;
1971 
1972 		if (timestamp == 0)
1973 			continue;
1974 
1975 		completion_delay = rte_get_timer_cycles() - timestamp;
1976 		if (completion_delay > adapter->missing_tx_completion_to) {
1977 			if (unlikely(!tx_buf->print_once)) {
1978 				PMD_TX_LOG(WARNING,
1979 					"Found a Tx that wasn't completed on time, qid %d, index %d. "
1980 					"Missing Tx outstanding for %" PRIu64 " msecs.\n",
1981 					tx_ring->id, i,	completion_delay /
1982 					rte_get_timer_hz() * 1000);
1983 				tx_buf->print_once = true;
1984 			}
1985 			++missed_tx;
1986 		}
1987 	}
1988 
1989 	if (unlikely(missed_tx > tx_ring->missing_tx_completion_threshold)) {
1990 		PMD_DRV_LOG(ERR,
1991 			"The number of lost Tx completions is above the threshold (%d > %d). "
1992 			"Trigger the device reset.\n",
1993 			missed_tx,
1994 			tx_ring->missing_tx_completion_threshold);
1995 		adapter->reset_reason = ENA_REGS_RESET_MISS_TX_CMPL;
1996 		adapter->trigger_reset = true;
1997 		rc = -EIO;
1998 	}
1999 
2000 	tx_ring->tx_stats.missed_tx += missed_tx;
2001 
2002 	return rc;
2003 }
2004 
2005 static void check_for_tx_completions(struct ena_adapter *adapter)
2006 {
2007 	struct ena_ring *tx_ring;
2008 	uint64_t tx_cleanup_delay;
2009 	size_t qid;
2010 	int budget;
2011 	uint16_t nb_tx_queues = adapter->edev_data->nb_tx_queues;
2012 
2013 	if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT)
2014 		return;
2015 
2016 	nb_tx_queues = adapter->edev_data->nb_tx_queues;
2017 	budget = adapter->missing_tx_completion_budget;
2018 
2019 	qid = adapter->last_tx_comp_qid;
2020 	while (budget-- > 0) {
2021 		tx_ring = &adapter->tx_ring[qid];
2022 
2023 		/* Tx cleanup is called only by the burst function and can be
2024 		 * called dynamically by the application. Also cleanup is
2025 		 * limited by the threshold. To avoid false detection of the
2026 		 * missing HW Tx completion, get the delay since last cleanup
2027 		 * function was called.
2028 		 */
2029 		tx_cleanup_delay = rte_get_timer_cycles() -
2030 			tx_ring->last_cleanup_ticks;
2031 		if (tx_cleanup_delay < adapter->tx_cleanup_stall_delay)
2032 			check_for_tx_completion_in_queue(adapter, tx_ring);
2033 		qid = (qid + 1) % nb_tx_queues;
2034 	}
2035 
2036 	adapter->last_tx_comp_qid = qid;
2037 }
2038 
2039 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
2040 				  void *arg)
2041 {
2042 	struct rte_eth_dev *dev = arg;
2043 	struct ena_adapter *adapter = dev->data->dev_private;
2044 
2045 	if (unlikely(adapter->trigger_reset))
2046 		return;
2047 
2048 	check_for_missing_keep_alive(adapter);
2049 	check_for_admin_com_state(adapter);
2050 	check_for_tx_completions(adapter);
2051 
2052 	if (unlikely(adapter->trigger_reset)) {
2053 		PMD_DRV_LOG(ERR, "Trigger reset is on\n");
2054 		rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
2055 			NULL);
2056 	}
2057 }
2058 
2059 static inline void
2060 set_default_llq_configurations(struct ena_llq_configurations *llq_config,
2061 			       struct ena_admin_feature_llq_desc *llq,
2062 			       bool use_large_llq_hdr)
2063 {
2064 	llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
2065 	llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
2066 	llq_config->llq_num_decs_before_header =
2067 		ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
2068 
2069 	if (use_large_llq_hdr &&
2070 	    (llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B)) {
2071 		llq_config->llq_ring_entry_size =
2072 			ENA_ADMIN_LIST_ENTRY_SIZE_256B;
2073 		llq_config->llq_ring_entry_size_value = 256;
2074 	} else {
2075 		llq_config->llq_ring_entry_size =
2076 			ENA_ADMIN_LIST_ENTRY_SIZE_128B;
2077 		llq_config->llq_ring_entry_size_value = 128;
2078 	}
2079 }
2080 
2081 static int
2082 ena_set_queues_placement_policy(struct ena_adapter *adapter,
2083 				struct ena_com_dev *ena_dev,
2084 				struct ena_admin_feature_llq_desc *llq,
2085 				struct ena_llq_configurations *llq_default_configurations)
2086 {
2087 	int rc;
2088 	u32 llq_feature_mask;
2089 
2090 	if (adapter->llq_header_policy == ENA_LLQ_POLICY_DISABLED) {
2091 		PMD_DRV_LOG(WARNING,
2092 			"NOTE: LLQ has been disabled as per user's request. "
2093 			"This may lead to a huge performance degradation!\n");
2094 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
2095 		return 0;
2096 	}
2097 
2098 	llq_feature_mask = 1 << ENA_ADMIN_LLQ;
2099 	if (!(ena_dev->supported_features & llq_feature_mask)) {
2100 		PMD_DRV_LOG(INFO,
2101 			"LLQ is not supported. Fallback to host mode policy.\n");
2102 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
2103 		return 0;
2104 	}
2105 
2106 	if (adapter->dev_mem_base == NULL) {
2107 		PMD_DRV_LOG(ERR,
2108 			"LLQ is advertised as supported, but device doesn't expose mem bar\n");
2109 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
2110 		return 0;
2111 	}
2112 
2113 	rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
2114 	if (unlikely(rc)) {
2115 		PMD_INIT_LOG(WARNING,
2116 			"Failed to config dev mode. Fallback to host mode policy.\n");
2117 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
2118 		return 0;
2119 	}
2120 
2121 	/* Nothing to config, exit */
2122 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
2123 		return 0;
2124 
2125 	ena_dev->mem_bar = adapter->dev_mem_base;
2126 
2127 	return 0;
2128 }
2129 
2130 static uint32_t ena_calc_max_io_queue_num(struct ena_com_dev *ena_dev,
2131 	struct ena_com_dev_get_features_ctx *get_feat_ctx)
2132 {
2133 	uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
2134 
2135 	/* Regular queues capabilities */
2136 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
2137 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
2138 			&get_feat_ctx->max_queue_ext.max_queue_ext;
2139 		io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
2140 				    max_queue_ext->max_rx_cq_num);
2141 		io_tx_sq_num = max_queue_ext->max_tx_sq_num;
2142 		io_tx_cq_num = max_queue_ext->max_tx_cq_num;
2143 	} else {
2144 		struct ena_admin_queue_feature_desc *max_queues =
2145 			&get_feat_ctx->max_queues;
2146 		io_tx_sq_num = max_queues->max_sq_num;
2147 		io_tx_cq_num = max_queues->max_cq_num;
2148 		io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
2149 	}
2150 
2151 	/* In case of LLQ use the llq number in the get feature cmd */
2152 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
2153 		io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
2154 
2155 	max_num_io_queues = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
2156 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_sq_num);
2157 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_cq_num);
2158 
2159 	if (unlikely(max_num_io_queues == 0)) {
2160 		PMD_DRV_LOG(ERR, "Number of IO queues cannot not be 0\n");
2161 		return -EFAULT;
2162 	}
2163 
2164 	return max_num_io_queues;
2165 }
2166 
2167 static void
2168 ena_set_offloads(struct ena_offloads *offloads,
2169 		 struct ena_admin_feature_offload_desc *offload_desc)
2170 {
2171 	if (offload_desc->tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK)
2172 		offloads->tx_offloads |= ENA_IPV4_TSO;
2173 
2174 	/* Tx IPv4 checksum offloads */
2175 	if (offload_desc->tx &
2176 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)
2177 		offloads->tx_offloads |= ENA_L3_IPV4_CSUM;
2178 	if (offload_desc->tx &
2179 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK)
2180 		offloads->tx_offloads |= ENA_L4_IPV4_CSUM;
2181 	if (offload_desc->tx &
2182 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)
2183 		offloads->tx_offloads |= ENA_L4_IPV4_CSUM_PARTIAL;
2184 
2185 	/* Tx IPv6 checksum offloads */
2186 	if (offload_desc->tx &
2187 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK)
2188 		offloads->tx_offloads |= ENA_L4_IPV6_CSUM;
2189 	if (offload_desc->tx &
2190 	     ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)
2191 		offloads->tx_offloads |= ENA_L4_IPV6_CSUM_PARTIAL;
2192 
2193 	/* Rx IPv4 checksum offloads */
2194 	if (offload_desc->rx_supported &
2195 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)
2196 		offloads->rx_offloads |= ENA_L3_IPV4_CSUM;
2197 	if (offload_desc->rx_supported &
2198 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK)
2199 		offloads->rx_offloads |= ENA_L4_IPV4_CSUM;
2200 
2201 	/* Rx IPv6 checksum offloads */
2202 	if (offload_desc->rx_supported &
2203 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK)
2204 		offloads->rx_offloads |= ENA_L4_IPV6_CSUM;
2205 
2206 	if (offload_desc->rx_supported &
2207 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_HASH_MASK)
2208 		offloads->rx_offloads |= ENA_RX_RSS_HASH;
2209 }
2210 
2211 static int ena_init_once(void)
2212 {
2213 	static bool init_done;
2214 
2215 	if (init_done)
2216 		return 0;
2217 
2218 	if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
2219 		/* Init timer subsystem for the ENA timer service. */
2220 		rte_timer_subsystem_init();
2221 		/* Register handler for requests from secondary processes. */
2222 		rte_mp_action_register(ENA_MP_NAME, ena_mp_primary_handle);
2223 	}
2224 
2225 	init_done = true;
2226 	return 0;
2227 }
2228 
2229 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
2230 {
2231 	struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
2232 	struct rte_pci_device *pci_dev;
2233 	struct rte_intr_handle *intr_handle;
2234 	struct ena_adapter *adapter = eth_dev->data->dev_private;
2235 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
2236 	struct ena_com_dev_get_features_ctx get_feat_ctx;
2237 	struct ena_llq_configurations llq_config;
2238 	const char *queue_type_str;
2239 	uint32_t max_num_io_queues;
2240 	int rc;
2241 	static int adapters_found;
2242 	bool disable_meta_caching;
2243 
2244 	eth_dev->dev_ops = &ena_dev_ops;
2245 	eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
2246 	eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
2247 	eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
2248 
2249 	rc = ena_init_once();
2250 	if (rc != 0)
2251 		return rc;
2252 
2253 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2254 		return 0;
2255 
2256 	eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
2257 
2258 	memset(adapter, 0, sizeof(struct ena_adapter));
2259 	ena_dev = &adapter->ena_dev;
2260 
2261 	adapter->edev_data = eth_dev->data;
2262 
2263 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2264 
2265 	PMD_INIT_LOG(INFO, "Initializing " PCI_PRI_FMT "\n",
2266 		     pci_dev->addr.domain,
2267 		     pci_dev->addr.bus,
2268 		     pci_dev->addr.devid,
2269 		     pci_dev->addr.function);
2270 
2271 	intr_handle = pci_dev->intr_handle;
2272 
2273 	adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
2274 	adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
2275 
2276 	if (!adapter->regs) {
2277 		PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)\n",
2278 			     ENA_REGS_BAR);
2279 		return -ENXIO;
2280 	}
2281 
2282 	ena_dev->reg_bar = adapter->regs;
2283 	/* Pass device data as a pointer which can be passed to the IO functions
2284 	 * by the ena_com (for example - the memory allocation).
2285 	 */
2286 	ena_dev->dmadev = eth_dev->data;
2287 
2288 	adapter->id_number = adapters_found;
2289 
2290 	snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
2291 		 adapter->id_number);
2292 
2293 	/* Assign default devargs values */
2294 	adapter->missing_tx_completion_to = ENA_TX_TIMEOUT;
2295 	adapter->enable_llq = true;
2296 	adapter->use_large_llq_hdr = false;
2297 	adapter->use_normal_llq_hdr = false;
2298 
2299 	/* Get user bypass */
2300 	rc = ena_parse_devargs(adapter, pci_dev->device.devargs);
2301 	if (rc != 0) {
2302 		PMD_INIT_LOG(CRIT, "Failed to parse devargs\n");
2303 		goto err;
2304 	}
2305 	adapter->llq_header_policy = ena_define_llq_hdr_policy(adapter);
2306 
2307 	rc = ena_com_allocate_customer_metrics_buffer(ena_dev);
2308 	if (rc != 0) {
2309 		PMD_INIT_LOG(CRIT, "Failed to allocate customer metrics buffer\n");
2310 		goto err;
2311 	}
2312 
2313 	/* device specific initialization routine */
2314 	rc = ena_device_init(adapter, pci_dev, &get_feat_ctx);
2315 	if (rc) {
2316 		PMD_INIT_LOG(CRIT, "Failed to init ENA device\n");
2317 		goto err_metrics_delete;
2318 	}
2319 
2320 	/* Check if device supports LSC */
2321 	if (!(adapter->all_aenq_groups & BIT(ENA_ADMIN_LINK_CHANGE)))
2322 		adapter->edev_data->dev_flags &= ~RTE_ETH_DEV_INTR_LSC;
2323 
2324 	bool use_large_llq_hdr = ena_use_large_llq_hdr(adapter,
2325 						       get_feat_ctx.llq.entry_size_recommended);
2326 	set_default_llq_configurations(&llq_config, &get_feat_ctx.llq, use_large_llq_hdr);
2327 	rc = ena_set_queues_placement_policy(adapter, ena_dev,
2328 					     &get_feat_ctx.llq, &llq_config);
2329 	if (unlikely(rc)) {
2330 		PMD_INIT_LOG(CRIT, "Failed to set placement policy\n");
2331 		return rc;
2332 	}
2333 
2334 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST) {
2335 		queue_type_str = "Regular";
2336 	} else {
2337 		queue_type_str = "Low latency";
2338 		PMD_DRV_LOG(INFO, "LLQ entry size %uB\n", llq_config.llq_ring_entry_size_value);
2339 	}
2340 	PMD_DRV_LOG(INFO, "Placement policy: %s\n", queue_type_str);
2341 
2342 	calc_queue_ctx.ena_dev = ena_dev;
2343 	calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
2344 
2345 	max_num_io_queues = ena_calc_max_io_queue_num(ena_dev, &get_feat_ctx);
2346 	rc = ena_calc_io_queue_size(&calc_queue_ctx, use_large_llq_hdr);
2347 	if (unlikely((rc != 0) || (max_num_io_queues == 0))) {
2348 		rc = -EFAULT;
2349 		goto err_device_destroy;
2350 	}
2351 
2352 	adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
2353 	adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
2354 	adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
2355 	adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
2356 	adapter->max_num_io_queues = max_num_io_queues;
2357 
2358 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2359 		disable_meta_caching =
2360 			!!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
2361 			BIT(ENA_ADMIN_DISABLE_META_CACHING));
2362 	} else {
2363 		disable_meta_caching = false;
2364 	}
2365 
2366 	/* prepare ring structures */
2367 	ena_init_rings(adapter, disable_meta_caching);
2368 
2369 	ena_config_debug_area(adapter);
2370 
2371 	/* Set max MTU for this device */
2372 	adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
2373 
2374 	ena_set_offloads(&adapter->offloads, &get_feat_ctx.offload);
2375 
2376 	/* Copy MAC address and point DPDK to it */
2377 	eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr;
2378 	rte_ether_addr_copy((struct rte_ether_addr *)
2379 			get_feat_ctx.dev_attr.mac_addr,
2380 			(struct rte_ether_addr *)adapter->mac_addr);
2381 
2382 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
2383 	if (unlikely(rc != 0)) {
2384 		PMD_DRV_LOG(ERR, "Failed to initialize RSS in ENA device\n");
2385 		goto err_delete_debug_area;
2386 	}
2387 
2388 	adapter->drv_stats = rte_zmalloc("adapter stats",
2389 					 sizeof(*adapter->drv_stats),
2390 					 RTE_CACHE_LINE_SIZE);
2391 	if (!adapter->drv_stats) {
2392 		PMD_DRV_LOG(ERR,
2393 			"Failed to allocate memory for adapter statistics\n");
2394 		rc = -ENOMEM;
2395 		goto err_rss_destroy;
2396 	}
2397 
2398 	rte_spinlock_init(&adapter->admin_lock);
2399 
2400 	if (!adapter->control_path_poll_interval) {
2401 		/* Control path interrupt mode */
2402 		rte_intr_callback_register(intr_handle, ena_control_path_handler, eth_dev);
2403 		rte_intr_enable(intr_handle);
2404 		ena_com_set_admin_polling_mode(ena_dev, false);
2405 	} else {
2406 		/* Control path polling mode */
2407 		rc = rte_eal_alarm_set(adapter->control_path_poll_interval,
2408 				       ena_control_path_poll_handler, eth_dev);
2409 		if (unlikely(rc != 0)) {
2410 			PMD_DRV_LOG(ERR, "Failed to set control path alarm\n");
2411 			goto err_control_path_destroy;
2412 		}
2413 	}
2414 	ena_com_admin_aenq_enable(ena_dev);
2415 	rte_timer_init(&adapter->timer_wd);
2416 
2417 	adapters_found++;
2418 	adapter->state = ENA_ADAPTER_STATE_INIT;
2419 
2420 	return 0;
2421 err_control_path_destroy:
2422 	rte_free(adapter->drv_stats);
2423 err_rss_destroy:
2424 	ena_com_rss_destroy(ena_dev);
2425 err_delete_debug_area:
2426 	ena_com_delete_debug_area(ena_dev);
2427 
2428 err_device_destroy:
2429 	ena_com_delete_host_info(ena_dev);
2430 	ena_com_admin_destroy(ena_dev);
2431 err_metrics_delete:
2432 	ena_com_delete_customer_metrics_buffer(ena_dev);
2433 err:
2434 	return rc;
2435 }
2436 
2437 static void ena_destroy_device(struct rte_eth_dev *eth_dev)
2438 {
2439 	struct ena_adapter *adapter = eth_dev->data->dev_private;
2440 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
2441 
2442 	if (adapter->state == ENA_ADAPTER_STATE_FREE)
2443 		return;
2444 
2445 	ena_com_set_admin_running_state(ena_dev, false);
2446 
2447 	if (adapter->state != ENA_ADAPTER_STATE_CLOSED)
2448 		ena_close(eth_dev);
2449 
2450 	ena_com_rss_destroy(ena_dev);
2451 
2452 	ena_com_delete_debug_area(ena_dev);
2453 	ena_com_delete_host_info(ena_dev);
2454 
2455 	ena_com_abort_admin_commands(ena_dev);
2456 	ena_com_wait_for_abort_completion(ena_dev);
2457 	ena_com_admin_destroy(ena_dev);
2458 	ena_com_mmio_reg_read_request_destroy(ena_dev);
2459 	ena_com_delete_customer_metrics_buffer(ena_dev);
2460 
2461 	adapter->state = ENA_ADAPTER_STATE_FREE;
2462 }
2463 
2464 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
2465 {
2466 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2467 		return 0;
2468 
2469 	ena_destroy_device(eth_dev);
2470 
2471 	return 0;
2472 }
2473 
2474 static int ena_dev_configure(struct rte_eth_dev *dev)
2475 {
2476 	struct ena_adapter *adapter = dev->data->dev_private;
2477 	int rc;
2478 
2479 	adapter->state = ENA_ADAPTER_STATE_CONFIG;
2480 
2481 	if (dev->data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG)
2482 		dev->data->dev_conf.rxmode.offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2483 	dev->data->dev_conf.txmode.offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2484 
2485 	/* Scattered Rx cannot be turned off in the HW, so this capability must
2486 	 * be forced.
2487 	 */
2488 	dev->data->scattered_rx = 1;
2489 
2490 	adapter->last_tx_comp_qid = 0;
2491 
2492 	adapter->missing_tx_completion_budget =
2493 		RTE_MIN(ENA_MONITORED_TX_QUEUES, dev->data->nb_tx_queues);
2494 
2495 	/* To avoid detection of the spurious Tx completion timeout due to
2496 	 * application not calling the Tx cleanup function, set timeout for the
2497 	 * Tx queue which should be half of the missing completion timeout for a
2498 	 * safety. If there will be a lot of missing Tx completions in the
2499 	 * queue, they will be detected sooner or later.
2500 	 */
2501 	adapter->tx_cleanup_stall_delay = adapter->missing_tx_completion_to / 2;
2502 
2503 	rc = ena_configure_aenq(adapter);
2504 
2505 	return rc;
2506 }
2507 
2508 static void ena_init_rings(struct ena_adapter *adapter,
2509 			   bool disable_meta_caching)
2510 {
2511 	size_t i;
2512 
2513 	for (i = 0; i < adapter->max_num_io_queues; i++) {
2514 		struct ena_ring *ring = &adapter->tx_ring[i];
2515 
2516 		ring->configured = 0;
2517 		ring->type = ENA_RING_TYPE_TX;
2518 		ring->adapter = adapter;
2519 		ring->id = i;
2520 		ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
2521 		ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
2522 		ring->sgl_size = adapter->max_tx_sgl_size;
2523 		ring->disable_meta_caching = disable_meta_caching;
2524 	}
2525 
2526 	for (i = 0; i < adapter->max_num_io_queues; i++) {
2527 		struct ena_ring *ring = &adapter->rx_ring[i];
2528 
2529 		ring->configured = 0;
2530 		ring->type = ENA_RING_TYPE_RX;
2531 		ring->adapter = adapter;
2532 		ring->id = i;
2533 		ring->sgl_size = adapter->max_rx_sgl_size;
2534 	}
2535 }
2536 
2537 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter)
2538 {
2539 	uint64_t port_offloads = 0;
2540 
2541 	if (adapter->offloads.rx_offloads & ENA_L3_IPV4_CSUM)
2542 		port_offloads |= RTE_ETH_RX_OFFLOAD_IPV4_CKSUM;
2543 
2544 	if (adapter->offloads.rx_offloads &
2545 	    (ENA_L4_IPV4_CSUM | ENA_L4_IPV6_CSUM))
2546 		port_offloads |=
2547 			RTE_ETH_RX_OFFLOAD_UDP_CKSUM | RTE_ETH_RX_OFFLOAD_TCP_CKSUM;
2548 
2549 	if (adapter->offloads.rx_offloads & ENA_RX_RSS_HASH)
2550 		port_offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2551 
2552 	port_offloads |= RTE_ETH_RX_OFFLOAD_SCATTER;
2553 
2554 	return port_offloads;
2555 }
2556 
2557 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter)
2558 {
2559 	uint64_t port_offloads = 0;
2560 
2561 	if (adapter->offloads.tx_offloads & ENA_IPV4_TSO)
2562 		port_offloads |= RTE_ETH_TX_OFFLOAD_TCP_TSO;
2563 
2564 	if (adapter->offloads.tx_offloads & ENA_L3_IPV4_CSUM)
2565 		port_offloads |= RTE_ETH_TX_OFFLOAD_IPV4_CKSUM;
2566 	if (adapter->offloads.tx_offloads &
2567 	    (ENA_L4_IPV4_CSUM_PARTIAL | ENA_L4_IPV4_CSUM |
2568 	     ENA_L4_IPV6_CSUM | ENA_L4_IPV6_CSUM_PARTIAL))
2569 		port_offloads |=
2570 			RTE_ETH_TX_OFFLOAD_UDP_CKSUM | RTE_ETH_TX_OFFLOAD_TCP_CKSUM;
2571 
2572 	port_offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2573 
2574 	port_offloads |= RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
2575 
2576 	return port_offloads;
2577 }
2578 
2579 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter)
2580 {
2581 	RTE_SET_USED(adapter);
2582 
2583 	return 0;
2584 }
2585 
2586 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter)
2587 {
2588 	uint64_t queue_offloads = 0;
2589 	RTE_SET_USED(adapter);
2590 
2591 	queue_offloads |= RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
2592 
2593 	return queue_offloads;
2594 }
2595 
2596 static int ena_infos_get(struct rte_eth_dev *dev,
2597 			  struct rte_eth_dev_info *dev_info)
2598 {
2599 	struct ena_adapter *adapter;
2600 	struct ena_com_dev *ena_dev;
2601 
2602 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
2603 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
2604 	adapter = dev->data->dev_private;
2605 
2606 	ena_dev = &adapter->ena_dev;
2607 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
2608 
2609 	dev_info->speed_capa =
2610 			RTE_ETH_LINK_SPEED_1G   |
2611 			RTE_ETH_LINK_SPEED_2_5G |
2612 			RTE_ETH_LINK_SPEED_5G   |
2613 			RTE_ETH_LINK_SPEED_10G  |
2614 			RTE_ETH_LINK_SPEED_25G  |
2615 			RTE_ETH_LINK_SPEED_40G  |
2616 			RTE_ETH_LINK_SPEED_50G  |
2617 			RTE_ETH_LINK_SPEED_100G |
2618 			RTE_ETH_LINK_SPEED_200G |
2619 			RTE_ETH_LINK_SPEED_400G;
2620 
2621 	/* Inform framework about available features */
2622 	dev_info->rx_offload_capa = ena_get_rx_port_offloads(adapter);
2623 	dev_info->tx_offload_capa = ena_get_tx_port_offloads(adapter);
2624 	dev_info->rx_queue_offload_capa = ena_get_rx_queue_offloads(adapter);
2625 	dev_info->tx_queue_offload_capa = ena_get_tx_queue_offloads(adapter);
2626 
2627 	dev_info->flow_type_rss_offloads = ENA_ALL_RSS_HF;
2628 	dev_info->hash_key_size = ENA_HASH_KEY_SIZE;
2629 
2630 	dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
2631 	dev_info->max_rx_pktlen  = adapter->max_mtu + RTE_ETHER_HDR_LEN +
2632 		RTE_ETHER_CRC_LEN;
2633 	dev_info->min_mtu = ENA_MIN_MTU;
2634 	dev_info->max_mtu = adapter->max_mtu;
2635 	dev_info->max_mac_addrs = 1;
2636 
2637 	dev_info->max_rx_queues = adapter->max_num_io_queues;
2638 	dev_info->max_tx_queues = adapter->max_num_io_queues;
2639 	dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
2640 
2641 	dev_info->rx_desc_lim.nb_max = adapter->max_rx_ring_size;
2642 	dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2643 	dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2644 					adapter->max_rx_sgl_size);
2645 	dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2646 					adapter->max_rx_sgl_size);
2647 
2648 	dev_info->tx_desc_lim.nb_max = adapter->max_tx_ring_size;
2649 	dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2650 	dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2651 					adapter->max_tx_sgl_size);
2652 	dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2653 					adapter->max_tx_sgl_size);
2654 
2655 	dev_info->default_rxportconf.ring_size = RTE_MIN(ENA_DEFAULT_RING_SIZE,
2656 							 dev_info->rx_desc_lim.nb_max);
2657 	dev_info->default_txportconf.ring_size = RTE_MIN(ENA_DEFAULT_RING_SIZE,
2658 							 dev_info->tx_desc_lim.nb_max);
2659 
2660 	dev_info->err_handle_mode = RTE_ETH_ERROR_HANDLE_MODE_PASSIVE;
2661 
2662 	return 0;
2663 }
2664 
2665 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len)
2666 {
2667 	mbuf->data_len = len;
2668 	mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2669 	mbuf->refcnt = 1;
2670 	mbuf->next = NULL;
2671 }
2672 
2673 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
2674 				    struct ena_com_rx_buf_info *ena_bufs,
2675 				    uint32_t descs,
2676 				    uint16_t *next_to_clean,
2677 				    uint8_t offset)
2678 {
2679 	struct rte_mbuf *mbuf;
2680 	struct rte_mbuf *mbuf_head;
2681 	struct ena_rx_buffer *rx_info;
2682 	int rc;
2683 	uint16_t ntc, len, req_id, buf = 0;
2684 
2685 	if (unlikely(descs == 0))
2686 		return NULL;
2687 
2688 	ntc = *next_to_clean;
2689 
2690 	len = ena_bufs[buf].len;
2691 	req_id = ena_bufs[buf].req_id;
2692 
2693 	rx_info = &rx_ring->rx_buffer_info[req_id];
2694 
2695 	mbuf = rx_info->mbuf;
2696 	RTE_ASSERT(mbuf != NULL);
2697 
2698 	ena_init_rx_mbuf(mbuf, len);
2699 
2700 	/* Fill the mbuf head with the data specific for 1st segment. */
2701 	mbuf_head = mbuf;
2702 	mbuf_head->nb_segs = descs;
2703 	mbuf_head->port = rx_ring->port_id;
2704 	mbuf_head->pkt_len = len;
2705 	mbuf_head->data_off += offset;
2706 
2707 	rx_info->mbuf = NULL;
2708 	rx_ring->empty_rx_reqs[ntc] = req_id;
2709 	ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2710 
2711 	while (--descs) {
2712 		++buf;
2713 		len = ena_bufs[buf].len;
2714 		req_id = ena_bufs[buf].req_id;
2715 
2716 		rx_info = &rx_ring->rx_buffer_info[req_id];
2717 		RTE_ASSERT(rx_info->mbuf != NULL);
2718 
2719 		if (unlikely(len == 0)) {
2720 			/*
2721 			 * Some devices can pass descriptor with the length 0.
2722 			 * To avoid confusion, the PMD is simply putting the
2723 			 * descriptor back, as it was never used. We'll avoid
2724 			 * mbuf allocation that way.
2725 			 */
2726 			rc = ena_add_single_rx_desc(rx_ring->ena_com_io_sq,
2727 				rx_info->mbuf, req_id);
2728 			if (unlikely(rc != 0)) {
2729 				/* Free the mbuf in case of an error. */
2730 				rte_mbuf_raw_free(rx_info->mbuf);
2731 			} else {
2732 				/*
2733 				 * If there was no error, just exit the loop as
2734 				 * 0 length descriptor is always the last one.
2735 				 */
2736 				break;
2737 			}
2738 		} else {
2739 			/* Create an mbuf chain. */
2740 			mbuf->next = rx_info->mbuf;
2741 			mbuf = mbuf->next;
2742 
2743 			ena_init_rx_mbuf(mbuf, len);
2744 			mbuf_head->pkt_len += len;
2745 		}
2746 
2747 		/*
2748 		 * Mark the descriptor as depleted and perform necessary
2749 		 * cleanup.
2750 		 * This code will execute in two cases:
2751 		 *  1. Descriptor len was greater than 0 - normal situation.
2752 		 *  2. Descriptor len was 0 and we failed to add the descriptor
2753 		 *     to the device. In that situation, we should try to add
2754 		 *     the mbuf again in the populate routine and mark the
2755 		 *     descriptor as used up by the device.
2756 		 */
2757 		rx_info->mbuf = NULL;
2758 		rx_ring->empty_rx_reqs[ntc] = req_id;
2759 		ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2760 	}
2761 
2762 	*next_to_clean = ntc;
2763 
2764 	return mbuf_head;
2765 }
2766 
2767 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
2768 				  uint16_t nb_pkts)
2769 {
2770 	struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
2771 	unsigned int free_queue_entries;
2772 	uint16_t next_to_clean = rx_ring->next_to_clean;
2773 	uint16_t descs_in_use;
2774 	struct rte_mbuf *mbuf;
2775 	uint16_t completed;
2776 	struct ena_com_rx_ctx ena_rx_ctx;
2777 	int i, rc = 0;
2778 	bool fill_hash;
2779 
2780 #ifdef RTE_ETHDEV_DEBUG_RX
2781 	/* Check adapter state */
2782 	if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2783 		PMD_RX_LOG(ALERT,
2784 			"Trying to receive pkts while device is NOT running\n");
2785 		return 0;
2786 	}
2787 #endif
2788 
2789 	fill_hash = rx_ring->offloads & RTE_ETH_RX_OFFLOAD_RSS_HASH;
2790 
2791 	descs_in_use = rx_ring->ring_size -
2792 		ena_com_free_q_entries(rx_ring->ena_com_io_sq) - 1;
2793 	nb_pkts = RTE_MIN(descs_in_use, nb_pkts);
2794 
2795 	for (completed = 0; completed < nb_pkts; completed++) {
2796 		ena_rx_ctx.max_bufs = rx_ring->sgl_size;
2797 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
2798 		ena_rx_ctx.descs = 0;
2799 		ena_rx_ctx.pkt_offset = 0;
2800 		/* receive packet context */
2801 		rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
2802 				    rx_ring->ena_com_io_sq,
2803 				    &ena_rx_ctx);
2804 		if (unlikely(rc)) {
2805 			PMD_RX_LOG(ERR,
2806 				"Failed to get the packet from the device, rc: %d\n",
2807 				rc);
2808 			if (rc == ENA_COM_NO_SPACE) {
2809 				++rx_ring->rx_stats.bad_desc_num;
2810 				ena_trigger_reset(rx_ring->adapter,
2811 					ENA_REGS_RESET_TOO_MANY_RX_DESCS);
2812 			} else {
2813 				++rx_ring->rx_stats.bad_req_id;
2814 				ena_trigger_reset(rx_ring->adapter,
2815 					ENA_REGS_RESET_INV_RX_REQ_ID);
2816 			}
2817 			return 0;
2818 		}
2819 
2820 		mbuf = ena_rx_mbuf(rx_ring,
2821 			ena_rx_ctx.ena_bufs,
2822 			ena_rx_ctx.descs,
2823 			&next_to_clean,
2824 			ena_rx_ctx.pkt_offset);
2825 		if (unlikely(mbuf == NULL)) {
2826 			for (i = 0; i < ena_rx_ctx.descs; ++i) {
2827 				rx_ring->empty_rx_reqs[next_to_clean] =
2828 					rx_ring->ena_bufs[i].req_id;
2829 				next_to_clean = ENA_IDX_NEXT_MASKED(
2830 					next_to_clean, rx_ring->size_mask);
2831 			}
2832 			break;
2833 		}
2834 
2835 		/* fill mbuf attributes if any */
2836 		ena_rx_mbuf_prepare(rx_ring, mbuf, &ena_rx_ctx, fill_hash);
2837 
2838 		if (unlikely(mbuf->ol_flags &
2839 				(RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD)))
2840 			rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors);
2841 
2842 		rx_pkts[completed] = mbuf;
2843 		rx_ring->rx_stats.bytes += mbuf->pkt_len;
2844 	}
2845 
2846 	rx_ring->rx_stats.cnt += completed;
2847 	rx_ring->next_to_clean = next_to_clean;
2848 
2849 	free_queue_entries = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
2850 
2851 	/* Burst refill to save doorbells, memory barriers, const interval */
2852 	if (free_queue_entries >= rx_ring->rx_free_thresh) {
2853 		ena_populate_rx_queue(rx_ring, free_queue_entries);
2854 	}
2855 
2856 	return completed;
2857 }
2858 
2859 static uint16_t
2860 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2861 		uint16_t nb_pkts)
2862 {
2863 	int32_t ret;
2864 	uint32_t i;
2865 	struct rte_mbuf *m;
2866 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2867 	struct ena_adapter *adapter = tx_ring->adapter;
2868 	struct rte_ipv4_hdr *ip_hdr;
2869 	uint64_t ol_flags;
2870 	uint64_t l4_csum_flag;
2871 	uint64_t dev_offload_capa;
2872 	uint16_t frag_field;
2873 	bool need_pseudo_csum;
2874 
2875 	dev_offload_capa = adapter->offloads.tx_offloads;
2876 	for (i = 0; i != nb_pkts; i++) {
2877 		m = tx_pkts[i];
2878 		ol_flags = m->ol_flags;
2879 
2880 		/* Check if any offload flag was set */
2881 		if (ol_flags == 0)
2882 			continue;
2883 
2884 		l4_csum_flag = ol_flags & RTE_MBUF_F_TX_L4_MASK;
2885 		/* SCTP checksum offload is not supported by the ENA. */
2886 		if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) ||
2887 		    l4_csum_flag == RTE_MBUF_F_TX_SCTP_CKSUM) {
2888 			PMD_TX_LOG(DEBUG,
2889 				"mbuf[%" PRIu32 "] has unsupported offloads flags set: 0x%" PRIu64 "\n",
2890 				i, ol_flags);
2891 			rte_errno = ENOTSUP;
2892 			return i;
2893 		}
2894 
2895 		if (unlikely(m->nb_segs >= tx_ring->sgl_size &&
2896 		    !(tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
2897 		      m->nb_segs == tx_ring->sgl_size &&
2898 		      m->data_len < tx_ring->tx_max_header_size))) {
2899 			PMD_TX_LOG(DEBUG,
2900 				"mbuf[%" PRIu32 "] has too many segments: %" PRIu16 "\n",
2901 				i, m->nb_segs);
2902 			rte_errno = EINVAL;
2903 			return i;
2904 		}
2905 
2906 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2907 		/* Check if requested offload is also enabled for the queue */
2908 		if ((ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
2909 		     !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM)) ||
2910 		    (l4_csum_flag == RTE_MBUF_F_TX_TCP_CKSUM &&
2911 		     !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) ||
2912 		    (l4_csum_flag == RTE_MBUF_F_TX_UDP_CKSUM &&
2913 		     !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM))) {
2914 			PMD_TX_LOG(DEBUG,
2915 				"mbuf[%" PRIu32 "]: requested offloads: %" PRIu16 " are not enabled for the queue[%u]\n",
2916 				i, m->nb_segs, tx_ring->id);
2917 			rte_errno = EINVAL;
2918 			return i;
2919 		}
2920 
2921 		/* The caller is obligated to set l2 and l3 len if any cksum
2922 		 * offload is enabled.
2923 		 */
2924 		if (unlikely(ol_flags & (RTE_MBUF_F_TX_IP_CKSUM | RTE_MBUF_F_TX_L4_MASK) &&
2925 		    (m->l2_len == 0 || m->l3_len == 0))) {
2926 			PMD_TX_LOG(DEBUG,
2927 				"mbuf[%" PRIu32 "]: l2_len or l3_len values are 0 while the offload was requested\n",
2928 				i);
2929 			rte_errno = EINVAL;
2930 			return i;
2931 		}
2932 		ret = rte_validate_tx_offload(m);
2933 		if (ret != 0) {
2934 			rte_errno = -ret;
2935 			return i;
2936 		}
2937 #endif
2938 
2939 		/* Verify HW support for requested offloads and determine if
2940 		 * pseudo header checksum is needed.
2941 		 */
2942 		need_pseudo_csum = false;
2943 		if (ol_flags & RTE_MBUF_F_TX_IPV4) {
2944 			if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
2945 			    !(dev_offload_capa & ENA_L3_IPV4_CSUM)) {
2946 				rte_errno = ENOTSUP;
2947 				return i;
2948 			}
2949 
2950 			if (ol_flags & RTE_MBUF_F_TX_TCP_SEG &&
2951 			    !(dev_offload_capa & ENA_IPV4_TSO)) {
2952 				rte_errno = ENOTSUP;
2953 				return i;
2954 			}
2955 
2956 			/* Check HW capabilities and if pseudo csum is needed
2957 			 * for L4 offloads.
2958 			 */
2959 			if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
2960 			    !(dev_offload_capa & ENA_L4_IPV4_CSUM)) {
2961 				if (dev_offload_capa &
2962 				    ENA_L4_IPV4_CSUM_PARTIAL) {
2963 					need_pseudo_csum = true;
2964 				} else {
2965 					rte_errno = ENOTSUP;
2966 					return i;
2967 				}
2968 			}
2969 
2970 			/* Parse the DF flag */
2971 			ip_hdr = rte_pktmbuf_mtod_offset(m,
2972 				struct rte_ipv4_hdr *, m->l2_len);
2973 			frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
2974 			if (frag_field & RTE_IPV4_HDR_DF_FLAG) {
2975 				m->packet_type |= RTE_PTYPE_L4_NONFRAG;
2976 			} else if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2977 				/* In case we are supposed to TSO and have DF
2978 				 * not set (DF=0) hardware must be provided with
2979 				 * partial checksum.
2980 				 */
2981 				need_pseudo_csum = true;
2982 			}
2983 		} else if (ol_flags & RTE_MBUF_F_TX_IPV6) {
2984 			/* There is no support for IPv6 TSO as for now. */
2985 			if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2986 				rte_errno = ENOTSUP;
2987 				return i;
2988 			}
2989 
2990 			/* Check HW capabilities and if pseudo csum is needed */
2991 			if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
2992 			    !(dev_offload_capa & ENA_L4_IPV6_CSUM)) {
2993 				if (dev_offload_capa &
2994 				    ENA_L4_IPV6_CSUM_PARTIAL) {
2995 					need_pseudo_csum = true;
2996 				} else {
2997 					rte_errno = ENOTSUP;
2998 					return i;
2999 				}
3000 			}
3001 		}
3002 
3003 		if (need_pseudo_csum) {
3004 			ret = rte_net_intel_cksum_flags_prepare(m, ol_flags);
3005 			if (ret != 0) {
3006 				rte_errno = -ret;
3007 				return i;
3008 			}
3009 		}
3010 	}
3011 
3012 	return i;
3013 }
3014 
3015 static void ena_update_hints(struct ena_adapter *adapter,
3016 			     struct ena_admin_ena_hw_hints *hints)
3017 {
3018 	if (hints->admin_completion_tx_timeout)
3019 		adapter->ena_dev.admin_queue.completion_timeout =
3020 			hints->admin_completion_tx_timeout * 1000;
3021 
3022 	if (hints->mmio_read_timeout)
3023 		/* convert to usec */
3024 		adapter->ena_dev.mmio_read.reg_read_to =
3025 			hints->mmio_read_timeout * 1000;
3026 
3027 	if (hints->driver_watchdog_timeout) {
3028 		if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
3029 			adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
3030 		else
3031 			// Convert msecs to ticks
3032 			adapter->keep_alive_timeout =
3033 				(hints->driver_watchdog_timeout *
3034 				rte_get_timer_hz()) / 1000;
3035 	}
3036 }
3037 
3038 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
3039 	struct ena_tx_buffer *tx_info,
3040 	struct rte_mbuf *mbuf,
3041 	void **push_header,
3042 	uint16_t *header_len)
3043 {
3044 	struct ena_com_buf *ena_buf;
3045 	uint16_t delta, seg_len, push_len;
3046 
3047 	delta = 0;
3048 	seg_len = mbuf->data_len;
3049 
3050 	tx_info->mbuf = mbuf;
3051 	ena_buf = tx_info->bufs;
3052 
3053 	if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
3054 		/*
3055 		 * Tx header might be (and will be in most cases) smaller than
3056 		 * tx_max_header_size. But it's not an issue to send more data
3057 		 * to the device, than actually needed if the mbuf size is
3058 		 * greater than tx_max_header_size.
3059 		 */
3060 		push_len = RTE_MIN(mbuf->pkt_len, tx_ring->tx_max_header_size);
3061 		*header_len = push_len;
3062 
3063 		if (likely(push_len <= seg_len)) {
3064 			/* If the push header is in the single segment, then
3065 			 * just point it to the 1st mbuf data.
3066 			 */
3067 			*push_header = rte_pktmbuf_mtod(mbuf, uint8_t *);
3068 		} else {
3069 			/* If the push header lays in the several segments, copy
3070 			 * it to the intermediate buffer.
3071 			 */
3072 			rte_pktmbuf_read(mbuf, 0, push_len,
3073 				tx_ring->push_buf_intermediate_buf);
3074 			*push_header = tx_ring->push_buf_intermediate_buf;
3075 			delta = push_len - seg_len;
3076 		}
3077 	} else {
3078 		*push_header = NULL;
3079 		*header_len = 0;
3080 		push_len = 0;
3081 	}
3082 
3083 	/* Process first segment taking into consideration pushed header */
3084 	if (seg_len > push_len) {
3085 		ena_buf->paddr = mbuf->buf_iova +
3086 				mbuf->data_off +
3087 				push_len;
3088 		ena_buf->len = seg_len - push_len;
3089 		ena_buf++;
3090 		tx_info->num_of_bufs++;
3091 	}
3092 
3093 	while ((mbuf = mbuf->next) != NULL) {
3094 		seg_len = mbuf->data_len;
3095 
3096 		/* Skip mbufs if whole data is pushed as a header */
3097 		if (unlikely(delta > seg_len)) {
3098 			delta -= seg_len;
3099 			continue;
3100 		}
3101 
3102 		ena_buf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
3103 		ena_buf->len = seg_len - delta;
3104 		ena_buf++;
3105 		tx_info->num_of_bufs++;
3106 
3107 		delta = 0;
3108 	}
3109 }
3110 
3111 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf)
3112 {
3113 	struct ena_tx_buffer *tx_info;
3114 	struct ena_com_tx_ctx ena_tx_ctx = { { 0 } };
3115 	uint16_t next_to_use;
3116 	uint16_t header_len;
3117 	uint16_t req_id;
3118 	void *push_header;
3119 	int nb_hw_desc;
3120 	int rc;
3121 
3122 	/* Checking for space for 2 additional metadata descriptors due to
3123 	 * possible header split and metadata descriptor
3124 	 */
3125 	if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
3126 					  mbuf->nb_segs + 2)) {
3127 		PMD_TX_LOG(DEBUG, "Not enough space in the tx queue\n");
3128 		return ENA_COM_NO_MEM;
3129 	}
3130 
3131 	next_to_use = tx_ring->next_to_use;
3132 
3133 	req_id = tx_ring->empty_tx_reqs[next_to_use];
3134 	tx_info = &tx_ring->tx_buffer_info[req_id];
3135 	tx_info->num_of_bufs = 0;
3136 	RTE_ASSERT(tx_info->mbuf == NULL);
3137 
3138 	ena_tx_map_mbuf(tx_ring, tx_info, mbuf, &push_header, &header_len);
3139 
3140 	ena_tx_ctx.ena_bufs = tx_info->bufs;
3141 	ena_tx_ctx.push_header = push_header;
3142 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
3143 	ena_tx_ctx.req_id = req_id;
3144 	ena_tx_ctx.header_len = header_len;
3145 
3146 	/* Set Tx offloads flags, if applicable */
3147 	ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads,
3148 		tx_ring->disable_meta_caching);
3149 
3150 	if (unlikely(ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
3151 			&ena_tx_ctx))) {
3152 		PMD_TX_LOG(DEBUG,
3153 			"LLQ Tx max burst size of queue %d achieved, writing doorbell to send burst\n",
3154 			tx_ring->id);
3155 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
3156 		tx_ring->tx_stats.doorbells++;
3157 		tx_ring->pkts_without_db = false;
3158 	}
3159 
3160 	/* prepare the packet's descriptors to dma engine */
3161 	rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq,	&ena_tx_ctx,
3162 		&nb_hw_desc);
3163 	if (unlikely(rc)) {
3164 		PMD_DRV_LOG(ERR, "Failed to prepare Tx buffers, rc: %d\n", rc);
3165 		++tx_ring->tx_stats.prepare_ctx_err;
3166 		ena_trigger_reset(tx_ring->adapter,
3167 			ENA_REGS_RESET_DRIVER_INVALID_STATE);
3168 		return rc;
3169 	}
3170 
3171 	tx_info->tx_descs = nb_hw_desc;
3172 	tx_info->timestamp = rte_get_timer_cycles();
3173 
3174 	tx_ring->tx_stats.cnt++;
3175 	tx_ring->tx_stats.bytes += mbuf->pkt_len;
3176 
3177 	tx_ring->next_to_use = ENA_IDX_NEXT_MASKED(next_to_use,
3178 		tx_ring->size_mask);
3179 
3180 	return 0;
3181 }
3182 
3183 static int ena_tx_cleanup(void *txp, uint32_t free_pkt_cnt)
3184 {
3185 	struct rte_mbuf *pkts_to_clean[ENA_CLEANUP_BUF_THRESH];
3186 	struct ena_ring *tx_ring = (struct ena_ring *)txp;
3187 	size_t mbuf_cnt = 0;
3188 	size_t pkt_cnt = 0;
3189 	unsigned int total_tx_descs = 0;
3190 	unsigned int total_tx_pkts = 0;
3191 	uint16_t cleanup_budget;
3192 	uint16_t next_to_clean = tx_ring->next_to_clean;
3193 	bool fast_free = tx_ring->offloads & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
3194 
3195 	/*
3196 	 * If free_pkt_cnt is equal to 0, it means that the user requested
3197 	 * full cleanup, so attempt to release all Tx descriptors
3198 	 * (ring_size - 1 -> size_mask)
3199 	 */
3200 	cleanup_budget = (free_pkt_cnt == 0) ? tx_ring->size_mask : free_pkt_cnt;
3201 
3202 	while (likely(total_tx_pkts < cleanup_budget)) {
3203 		struct rte_mbuf *mbuf;
3204 		struct ena_tx_buffer *tx_info;
3205 		uint16_t req_id;
3206 
3207 		if (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) != 0)
3208 			break;
3209 
3210 		if (unlikely(validate_tx_req_id(tx_ring, req_id) != 0))
3211 			break;
3212 
3213 		/* Get Tx info & store how many descs were processed  */
3214 		tx_info = &tx_ring->tx_buffer_info[req_id];
3215 		tx_info->timestamp = 0;
3216 
3217 		mbuf = tx_info->mbuf;
3218 		if (fast_free) {
3219 			pkts_to_clean[pkt_cnt++] = mbuf;
3220 			mbuf_cnt += mbuf->nb_segs;
3221 			if (mbuf_cnt >= ENA_CLEANUP_BUF_THRESH) {
3222 				rte_pktmbuf_free_bulk(pkts_to_clean, pkt_cnt);
3223 				mbuf_cnt = 0;
3224 				pkt_cnt = 0;
3225 			}
3226 		} else {
3227 			rte_pktmbuf_free(mbuf);
3228 		}
3229 
3230 		tx_info->mbuf = NULL;
3231 		tx_ring->empty_tx_reqs[next_to_clean] = req_id;
3232 
3233 		total_tx_descs += tx_info->tx_descs;
3234 		total_tx_pkts++;
3235 
3236 		/* Put back descriptor to the ring for reuse */
3237 		next_to_clean = ENA_IDX_NEXT_MASKED(next_to_clean,
3238 			tx_ring->size_mask);
3239 	}
3240 
3241 	if (likely(total_tx_descs > 0)) {
3242 		/* acknowledge completion of sent packets */
3243 		tx_ring->next_to_clean = next_to_clean;
3244 		ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
3245 	}
3246 
3247 	if (mbuf_cnt != 0)
3248 		rte_pktmbuf_free_bulk(pkts_to_clean, pkt_cnt);
3249 
3250 	/* Notify completion handler that full cleanup was performed */
3251 	if (free_pkt_cnt == 0 || total_tx_pkts < cleanup_budget)
3252 		tx_ring->last_cleanup_ticks = rte_get_timer_cycles();
3253 
3254 	return total_tx_pkts;
3255 }
3256 
3257 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
3258 				  uint16_t nb_pkts)
3259 {
3260 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
3261 	int available_desc;
3262 	uint16_t sent_idx = 0;
3263 
3264 #ifdef RTE_ETHDEV_DEBUG_TX
3265 	/* Check adapter state */
3266 	if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
3267 		PMD_TX_LOG(ALERT,
3268 			"Trying to xmit pkts while device is NOT running\n");
3269 		return 0;
3270 	}
3271 #endif
3272 
3273 	available_desc = ena_com_free_q_entries(tx_ring->ena_com_io_sq);
3274 	if (available_desc < tx_ring->tx_free_thresh)
3275 		ena_tx_cleanup((void *)tx_ring, 0);
3276 
3277 	for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
3278 		if (ena_xmit_mbuf(tx_ring, tx_pkts[sent_idx]))
3279 			break;
3280 		tx_ring->pkts_without_db = true;
3281 		rte_prefetch0(tx_pkts[ENA_IDX_ADD_MASKED(sent_idx, 4,
3282 			tx_ring->size_mask)]);
3283 	}
3284 
3285 	/* If there are ready packets to be xmitted... */
3286 	if (likely(tx_ring->pkts_without_db)) {
3287 		/* ...let HW do its best :-) */
3288 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
3289 		tx_ring->tx_stats.doorbells++;
3290 		tx_ring->pkts_without_db = false;
3291 	}
3292 
3293 	tx_ring->tx_stats.available_desc =
3294 		ena_com_free_q_entries(tx_ring->ena_com_io_sq);
3295 	tx_ring->tx_stats.tx_poll++;
3296 
3297 	return sent_idx;
3298 }
3299 
3300 static void ena_copy_customer_metrics(struct ena_adapter *adapter, uint64_t *buf,
3301 					     size_t num_metrics)
3302 {
3303 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
3304 	int rc;
3305 
3306 	if (ena_com_get_cap(ena_dev, ENA_ADMIN_CUSTOMER_METRICS)) {
3307 		if (num_metrics != ENA_STATS_ARRAY_METRICS) {
3308 			PMD_DRV_LOG(ERR, "Detected discrepancy in the number of customer metrics");
3309 			return;
3310 		}
3311 		rte_spinlock_lock(&adapter->admin_lock);
3312 		rc = ENA_PROXY(adapter,
3313 					ena_com_get_customer_metrics,
3314 					&adapter->ena_dev,
3315 					(char *)buf,
3316 					num_metrics * sizeof(uint64_t));
3317 		rte_spinlock_unlock(&adapter->admin_lock);
3318 		if (rc != 0) {
3319 			PMD_DRV_LOG(WARNING, "Failed to get customer metrics, rc: %d\n", rc);
3320 			return;
3321 		}
3322 
3323 	} else if (ena_com_get_cap(ena_dev, ENA_ADMIN_ENI_STATS)) {
3324 		if (num_metrics != ENA_STATS_ARRAY_METRICS_LEGACY) {
3325 			PMD_DRV_LOG(ERR, "Detected discrepancy in the number of legacy metrics");
3326 			return;
3327 		}
3328 
3329 		rte_spinlock_lock(&adapter->admin_lock);
3330 		rc = ENA_PROXY(adapter,
3331 			       ena_com_get_eni_stats,
3332 			       &adapter->ena_dev,
3333 			       (struct ena_admin_eni_stats *)buf);
3334 		rte_spinlock_unlock(&adapter->admin_lock);
3335 		if (rc != 0) {
3336 			PMD_DRV_LOG(WARNING,
3337 				"Failed to get ENI metrics, rc: %d\n", rc);
3338 			return;
3339 		}
3340 	}
3341 }
3342 
3343 static void ena_copy_ena_srd_info(struct ena_adapter *adapter,
3344 		struct ena_stats_srd *srd_info)
3345 {
3346 	int rc;
3347 
3348 	if (!ena_com_get_cap(&adapter->ena_dev, ENA_ADMIN_ENA_SRD_INFO))
3349 		return;
3350 
3351 	rte_spinlock_lock(&adapter->admin_lock);
3352 	rc = ENA_PROXY(adapter,
3353 		       ena_com_get_ena_srd_info,
3354 		       &adapter->ena_dev,
3355 		       (struct ena_admin_ena_srd_info *)srd_info);
3356 	rte_spinlock_unlock(&adapter->admin_lock);
3357 	if (rc != ENA_COM_OK && rc != ENA_COM_UNSUPPORTED) {
3358 		PMD_DRV_LOG(WARNING,
3359 				"Failed to get ENA express srd info, rc: %d\n", rc);
3360 		return;
3361 	}
3362 }
3363 
3364 /**
3365  * DPDK callback to retrieve names of extended device statistics
3366  *
3367  * @param dev
3368  *   Pointer to Ethernet device structure.
3369  * @param[out] xstats_names
3370  *   Buffer to insert names into.
3371  * @param n
3372  *   Number of names.
3373  *
3374  * @return
3375  *   Number of xstats names.
3376  */
3377 static int ena_xstats_get_names(struct rte_eth_dev *dev,
3378 				struct rte_eth_xstat_name *xstats_names,
3379 				unsigned int n)
3380 {
3381 	struct ena_adapter *adapter = dev->data->dev_private;
3382 	unsigned int xstats_count = ena_xstats_calc_num(dev->data);
3383 	unsigned int stat, i, count = 0;
3384 
3385 	if (n < xstats_count || !xstats_names)
3386 		return xstats_count;
3387 
3388 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
3389 		strcpy(xstats_names[count].name,
3390 			ena_stats_global_strings[stat].name);
3391 
3392 	for (stat = 0; stat < adapter->metrics_num; stat++, count++)
3393 		rte_strscpy(xstats_names[count].name,
3394 			    ena_stats_metrics_strings[stat].name,
3395 			    RTE_ETH_XSTATS_NAME_SIZE);
3396 	for (stat = 0; stat < ENA_STATS_ARRAY_ENA_SRD; stat++, count++)
3397 		rte_strscpy(xstats_names[count].name,
3398 			    ena_stats_srd_strings[stat].name,
3399 			    RTE_ETH_XSTATS_NAME_SIZE);
3400 
3401 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
3402 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
3403 			snprintf(xstats_names[count].name,
3404 				sizeof(xstats_names[count].name),
3405 				"rx_q%d_%s", i,
3406 				ena_stats_rx_strings[stat].name);
3407 
3408 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
3409 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
3410 			snprintf(xstats_names[count].name,
3411 				sizeof(xstats_names[count].name),
3412 				"tx_q%d_%s", i,
3413 				ena_stats_tx_strings[stat].name);
3414 
3415 	return xstats_count;
3416 }
3417 
3418 /**
3419  * DPDK callback to retrieve names of extended device statistics for the given
3420  * ids.
3421  *
3422  * @param dev
3423  *   Pointer to Ethernet device structure.
3424  * @param[out] xstats_names
3425  *   Buffer to insert names into.
3426  * @param ids
3427  *   IDs array for which the names should be retrieved.
3428  * @param size
3429  *   Number of ids.
3430  *
3431  * @return
3432  *   Positive value: number of xstats names. Negative value: error code.
3433  */
3434 static int ena_xstats_get_names_by_id(struct rte_eth_dev *dev,
3435 				      const uint64_t *ids,
3436 				      struct rte_eth_xstat_name *xstats_names,
3437 				      unsigned int size)
3438 {
3439 	struct ena_adapter *adapter = dev->data->dev_private;
3440 	uint64_t xstats_count = ena_xstats_calc_num(dev->data);
3441 	uint64_t id, qid;
3442 	unsigned int i;
3443 
3444 	if (xstats_names == NULL)
3445 		return xstats_count;
3446 
3447 	for (i = 0; i < size; ++i) {
3448 		id = ids[i];
3449 		if (id > xstats_count) {
3450 			PMD_DRV_LOG(ERR,
3451 				"ID value out of range: id=%" PRIu64 ", xstats_num=%" PRIu64 "\n",
3452 				 id, xstats_count);
3453 			return -EINVAL;
3454 		}
3455 
3456 		if (id < ENA_STATS_ARRAY_GLOBAL) {
3457 			strcpy(xstats_names[i].name,
3458 			       ena_stats_global_strings[id].name);
3459 			continue;
3460 		}
3461 
3462 		id -= ENA_STATS_ARRAY_GLOBAL;
3463 		if (id < adapter->metrics_num) {
3464 			rte_strscpy(xstats_names[i].name,
3465 				    ena_stats_metrics_strings[id].name,
3466 				    RTE_ETH_XSTATS_NAME_SIZE);
3467 			continue;
3468 		}
3469 
3470 		id -= adapter->metrics_num;
3471 
3472 		if (id < ENA_STATS_ARRAY_ENA_SRD) {
3473 			rte_strscpy(xstats_names[i].name,
3474 				    ena_stats_srd_strings[id].name,
3475 				    RTE_ETH_XSTATS_NAME_SIZE);
3476 			continue;
3477 		}
3478 		id -= ENA_STATS_ARRAY_ENA_SRD;
3479 
3480 		if (id < ENA_STATS_ARRAY_RX) {
3481 			qid = id / dev->data->nb_rx_queues;
3482 			id %= dev->data->nb_rx_queues;
3483 			snprintf(xstats_names[i].name,
3484 				 sizeof(xstats_names[i].name),
3485 				 "rx_q%" PRIu64 "d_%s",
3486 				 qid, ena_stats_rx_strings[id].name);
3487 			continue;
3488 		}
3489 
3490 		id -= ENA_STATS_ARRAY_RX;
3491 		/* Although this condition is not needed, it was added for
3492 		 * compatibility if new xstat structure would be ever added.
3493 		 */
3494 		if (id < ENA_STATS_ARRAY_TX) {
3495 			qid = id / dev->data->nb_tx_queues;
3496 			id %= dev->data->nb_tx_queues;
3497 			snprintf(xstats_names[i].name,
3498 				 sizeof(xstats_names[i].name),
3499 				 "tx_q%" PRIu64 "_%s",
3500 				 qid, ena_stats_tx_strings[id].name);
3501 			continue;
3502 		}
3503 	}
3504 
3505 	return i;
3506 }
3507 
3508 /**
3509  * DPDK callback to get extended device statistics.
3510  *
3511  * @param dev
3512  *   Pointer to Ethernet device structure.
3513  * @param[out] stats
3514  *   Stats table output buffer.
3515  * @param n
3516  *   The size of the stats table.
3517  *
3518  * @return
3519  *   Number of xstats on success, negative on failure.
3520  */
3521 static int ena_xstats_get(struct rte_eth_dev *dev,
3522 			  struct rte_eth_xstat *xstats,
3523 			  unsigned int n)
3524 {
3525 	struct ena_adapter *adapter = dev->data->dev_private;
3526 	unsigned int xstats_count = ena_xstats_calc_num(dev->data);
3527 	unsigned int stat, i, count = 0;
3528 	int stat_offset;
3529 	void *stats_begin;
3530 	uint64_t metrics_stats[ENA_MAX_CUSTOMER_METRICS];
3531 	struct ena_stats_srd srd_info = {0};
3532 
3533 	if (n < xstats_count)
3534 		return xstats_count;
3535 
3536 	if (!xstats)
3537 		return 0;
3538 
3539 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
3540 		stat_offset = ena_stats_global_strings[stat].stat_offset;
3541 		stats_begin = &adapter->dev_stats;
3542 
3543 		xstats[count].id = count;
3544 		xstats[count].value = *((uint64_t *)
3545 			((char *)stats_begin + stat_offset));
3546 	}
3547 
3548 	ena_copy_customer_metrics(adapter, metrics_stats, adapter->metrics_num);
3549 	stats_begin = metrics_stats;
3550 	for (stat = 0; stat < adapter->metrics_num; stat++, count++) {
3551 		stat_offset = ena_stats_metrics_strings[stat].stat_offset;
3552 
3553 		xstats[count].id = count;
3554 		xstats[count].value = *((uint64_t *)
3555 		    ((char *)stats_begin + stat_offset));
3556 	}
3557 
3558 	ena_copy_ena_srd_info(adapter, &srd_info);
3559 	stats_begin = &srd_info;
3560 	for (stat = 0; stat < ENA_STATS_ARRAY_ENA_SRD; stat++, count++) {
3561 		stat_offset = ena_stats_srd_strings[stat].stat_offset;
3562 		xstats[count].id = count;
3563 		xstats[count].value = *((uint64_t *)
3564 		    ((char *)stats_begin + stat_offset));
3565 	}
3566 
3567 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
3568 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
3569 			stat_offset = ena_stats_rx_strings[stat].stat_offset;
3570 			stats_begin = &adapter->rx_ring[i].rx_stats;
3571 
3572 			xstats[count].id = count;
3573 			xstats[count].value = *((uint64_t *)
3574 				((char *)stats_begin + stat_offset));
3575 		}
3576 	}
3577 
3578 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
3579 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
3580 			stat_offset = ena_stats_tx_strings[stat].stat_offset;
3581 			stats_begin = &adapter->tx_ring[i].rx_stats;
3582 
3583 			xstats[count].id = count;
3584 			xstats[count].value = *((uint64_t *)
3585 				((char *)stats_begin + stat_offset));
3586 		}
3587 	}
3588 
3589 	return count;
3590 }
3591 
3592 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
3593 				const uint64_t *ids,
3594 				uint64_t *values,
3595 				unsigned int n)
3596 {
3597 	struct ena_adapter *adapter = dev->data->dev_private;
3598 	uint64_t id;
3599 	uint64_t rx_entries, tx_entries;
3600 	unsigned int i;
3601 	int qid;
3602 	int valid = 0;
3603 	bool were_metrics_copied = false;
3604 	bool was_srd_info_copied = false;
3605 	uint64_t metrics_stats[ENA_MAX_CUSTOMER_METRICS];
3606 	struct ena_stats_srd srd_info = {0};
3607 
3608 	for (i = 0; i < n; ++i) {
3609 		id = ids[i];
3610 		/* Check if id belongs to global statistics */
3611 		if (id < ENA_STATS_ARRAY_GLOBAL) {
3612 			values[i] = *((uint64_t *)&adapter->dev_stats + id);
3613 			++valid;
3614 			continue;
3615 		}
3616 
3617 		/* Check if id belongs to ENI statistics */
3618 		id -= ENA_STATS_ARRAY_GLOBAL;
3619 		if (id < adapter->metrics_num) {
3620 			/* Avoid reading metrics multiple times in a single
3621 			 * function call, as it requires communication with the
3622 			 * admin queue.
3623 			 */
3624 			if (!were_metrics_copied) {
3625 				were_metrics_copied = true;
3626 				ena_copy_customer_metrics(adapter,
3627 						metrics_stats,
3628 						adapter->metrics_num);
3629 			}
3630 
3631 			values[i] = *((uint64_t *)&metrics_stats + id);
3632 			++valid;
3633 			continue;
3634 		}
3635 
3636 		/* Check if id belongs to SRD info statistics */
3637 		id -= adapter->metrics_num;
3638 
3639 		if (id < ENA_STATS_ARRAY_ENA_SRD) {
3640 			/*
3641 			 * Avoid reading srd info multiple times in a single
3642 			 * function call, as it requires communication with the
3643 			 * admin queue.
3644 			 */
3645 			if (!was_srd_info_copied) {
3646 				was_srd_info_copied = true;
3647 				ena_copy_ena_srd_info(adapter, &srd_info);
3648 			}
3649 			values[i] = *((uint64_t *)&adapter->srd_stats + id);
3650 			++valid;
3651 			continue;
3652 		}
3653 
3654 		/* Check if id belongs to rx queue statistics */
3655 		id -= ENA_STATS_ARRAY_ENA_SRD;
3656 
3657 		rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
3658 		if (id < rx_entries) {
3659 			qid = id % dev->data->nb_rx_queues;
3660 			id /= dev->data->nb_rx_queues;
3661 			values[i] = *((uint64_t *)
3662 				&adapter->rx_ring[qid].rx_stats + id);
3663 			++valid;
3664 			continue;
3665 		}
3666 				/* Check if id belongs to rx queue statistics */
3667 		id -= rx_entries;
3668 		tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
3669 		if (id < tx_entries) {
3670 			qid = id % dev->data->nb_tx_queues;
3671 			id /= dev->data->nb_tx_queues;
3672 			values[i] = *((uint64_t *)
3673 				&adapter->tx_ring[qid].tx_stats + id);
3674 			++valid;
3675 			continue;
3676 		}
3677 	}
3678 
3679 	return valid;
3680 }
3681 
3682 static int ena_process_uint_devarg(const char *key,
3683 				  const char *value,
3684 				  void *opaque)
3685 {
3686 	struct ena_adapter *adapter = opaque;
3687 	char *str_end;
3688 	uint64_t uint64_value;
3689 
3690 	uint64_value = strtoull(value, &str_end, DECIMAL_BASE);
3691 	if (value == str_end) {
3692 		PMD_INIT_LOG(ERR,
3693 			"Invalid value for key '%s'. Only uint values are accepted.\n",
3694 			key);
3695 		return -EINVAL;
3696 	}
3697 
3698 	if (strcmp(key, ENA_DEVARG_MISS_TXC_TO) == 0) {
3699 		if (uint64_value > ENA_MAX_TX_TIMEOUT_SECONDS) {
3700 			PMD_INIT_LOG(ERR,
3701 				"Tx timeout too high: %" PRIu64 " sec. Maximum allowed: %d sec.\n",
3702 				uint64_value, ENA_MAX_TX_TIMEOUT_SECONDS);
3703 			return -EINVAL;
3704 		} else if (uint64_value == 0) {
3705 			PMD_INIT_LOG(INFO,
3706 				"Check for missing Tx completions has been disabled.\n");
3707 			adapter->missing_tx_completion_to =
3708 				ENA_HW_HINTS_NO_TIMEOUT;
3709 		} else {
3710 			PMD_INIT_LOG(INFO,
3711 				"Tx packet completion timeout set to %" PRIu64 " seconds.\n",
3712 				uint64_value);
3713 			adapter->missing_tx_completion_to =
3714 				uint64_value * rte_get_timer_hz();
3715 		}
3716 	} else if (strcmp(key, ENA_DEVARG_CONTROL_PATH_POLL_INTERVAL) == 0) {
3717 		if (uint64_value > ENA_MAX_CONTROL_PATH_POLL_INTERVAL_MSEC) {
3718 			PMD_INIT_LOG(ERR,
3719 				"Control path polling interval is too long: %" PRIu64 " msecs. "
3720 				"Maximum allowed: %d msecs.\n",
3721 				uint64_value, ENA_MAX_CONTROL_PATH_POLL_INTERVAL_MSEC);
3722 			return -EINVAL;
3723 		} else if (uint64_value == 0) {
3724 			PMD_INIT_LOG(INFO,
3725 				"Control path polling interval is set to zero. Operating in "
3726 				"interrupt mode.\n");
3727 				adapter->control_path_poll_interval = 0;
3728 		} else {
3729 			PMD_INIT_LOG(INFO,
3730 				"Control path polling interval is set to %" PRIu64 " msecs.\n",
3731 				uint64_value);
3732 				adapter->control_path_poll_interval = uint64_value * USEC_PER_MSEC;
3733 		}
3734 	}
3735 
3736 	return 0;
3737 }
3738 
3739 static int ena_process_bool_devarg(const char *key,
3740 				   const char *value,
3741 				   void *opaque)
3742 {
3743 	struct ena_adapter *adapter = opaque;
3744 	bool bool_value;
3745 
3746 	/* Parse the value. */
3747 	if (strcmp(value, "1") == 0) {
3748 		bool_value = true;
3749 	} else if (strcmp(value, "0") == 0) {
3750 		bool_value = false;
3751 	} else {
3752 		PMD_INIT_LOG(ERR,
3753 			"Invalid value: '%s' for key '%s'. Accepted: '0' or '1'\n",
3754 			value, key);
3755 		return -EINVAL;
3756 	}
3757 
3758 	/* Now, assign it to the proper adapter field. */
3759 	if (strcmp(key, ENA_DEVARG_LARGE_LLQ_HDR) == 0)
3760 		adapter->use_large_llq_hdr = bool_value;
3761 	else if (strcmp(key, ENA_DEVARG_NORMAL_LLQ_HDR) == 0)
3762 		adapter->use_normal_llq_hdr = bool_value;
3763 	else if (strcmp(key, ENA_DEVARG_ENABLE_LLQ) == 0)
3764 		adapter->enable_llq = bool_value;
3765 
3766 	return 0;
3767 }
3768 
3769 static int ena_parse_devargs(struct ena_adapter *adapter,
3770 			     struct rte_devargs *devargs)
3771 {
3772 	static const char * const allowed_args[] = {
3773 		ENA_DEVARG_LARGE_LLQ_HDR,
3774 		ENA_DEVARG_NORMAL_LLQ_HDR,
3775 		ENA_DEVARG_MISS_TXC_TO,
3776 		ENA_DEVARG_ENABLE_LLQ,
3777 		ENA_DEVARG_CONTROL_PATH_POLL_INTERVAL,
3778 		NULL,
3779 	};
3780 	struct rte_kvargs *kvlist;
3781 	int rc;
3782 
3783 	if (devargs == NULL)
3784 		return 0;
3785 
3786 	kvlist = rte_kvargs_parse(devargs->args, allowed_args);
3787 	if (kvlist == NULL) {
3788 		PMD_INIT_LOG(ERR, "Invalid device arguments: %s\n",
3789 			devargs->args);
3790 		return -EINVAL;
3791 	}
3792 
3793 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_LARGE_LLQ_HDR,
3794 		ena_process_bool_devarg, adapter);
3795 	if (rc != 0)
3796 		goto exit;
3797 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_NORMAL_LLQ_HDR,
3798 		ena_process_bool_devarg, adapter);
3799 	if (rc != 0)
3800 		goto exit;
3801 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_MISS_TXC_TO,
3802 		ena_process_uint_devarg, adapter);
3803 	if (rc != 0)
3804 		goto exit;
3805 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_ENABLE_LLQ,
3806 		ena_process_bool_devarg, adapter);
3807 	if (rc != 0)
3808 		goto exit;
3809 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_CONTROL_PATH_POLL_INTERVAL,
3810 		ena_process_uint_devarg, adapter);
3811 	if (rc != 0)
3812 		goto exit;
3813 
3814 exit:
3815 	rte_kvargs_free(kvlist);
3816 
3817 	return rc;
3818 }
3819 
3820 static int ena_setup_rx_intr(struct rte_eth_dev *dev)
3821 {
3822 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3823 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
3824 	int rc;
3825 	uint16_t vectors_nb, i;
3826 	bool rx_intr_requested = dev->data->dev_conf.intr_conf.rxq;
3827 
3828 	if (!rx_intr_requested)
3829 		return 0;
3830 
3831 	if (!rte_intr_cap_multiple(intr_handle)) {
3832 		PMD_DRV_LOG(ERR,
3833 			"Rx interrupt requested, but it isn't supported by the PCI driver\n");
3834 		return -ENOTSUP;
3835 	}
3836 
3837 	/* Disable interrupt mapping before the configuration starts. */
3838 	rte_intr_disable(intr_handle);
3839 
3840 	/* Verify if there are enough vectors available. */
3841 	vectors_nb = dev->data->nb_rx_queues;
3842 	if (vectors_nb > RTE_MAX_RXTX_INTR_VEC_ID) {
3843 		PMD_DRV_LOG(ERR,
3844 			"Too many Rx interrupts requested, maximum number: %d\n",
3845 			RTE_MAX_RXTX_INTR_VEC_ID);
3846 		rc = -ENOTSUP;
3847 		goto enable_intr;
3848 	}
3849 
3850 	/* Allocate the vector list */
3851 	if (rte_intr_vec_list_alloc(intr_handle, "intr_vec",
3852 					   dev->data->nb_rx_queues)) {
3853 		PMD_DRV_LOG(ERR,
3854 			"Failed to allocate interrupt vector for %d queues\n",
3855 			dev->data->nb_rx_queues);
3856 		rc = -ENOMEM;
3857 		goto enable_intr;
3858 	}
3859 
3860 	rc = rte_intr_efd_enable(intr_handle, vectors_nb);
3861 	if (rc != 0)
3862 		goto free_intr_vec;
3863 
3864 	if (!rte_intr_allow_others(intr_handle)) {
3865 		PMD_DRV_LOG(ERR,
3866 			"Not enough interrupts available to use both ENA Admin and Rx interrupts\n");
3867 		goto disable_intr_efd;
3868 	}
3869 
3870 	for (i = 0; i < vectors_nb; ++i)
3871 		if (rte_intr_vec_list_index_set(intr_handle, i,
3872 					   RTE_INTR_VEC_RXTX_OFFSET + i))
3873 			goto disable_intr_efd;
3874 
3875 	rte_intr_enable(intr_handle);
3876 	return 0;
3877 
3878 disable_intr_efd:
3879 	rte_intr_efd_disable(intr_handle);
3880 free_intr_vec:
3881 	rte_intr_vec_list_free(intr_handle);
3882 enable_intr:
3883 	rte_intr_enable(intr_handle);
3884 	return rc;
3885 }
3886 
3887 static void ena_rx_queue_intr_set(struct rte_eth_dev *dev,
3888 				 uint16_t queue_id,
3889 				 bool unmask)
3890 {
3891 	struct ena_adapter *adapter = dev->data->dev_private;
3892 	struct ena_ring *rxq = &adapter->rx_ring[queue_id];
3893 	struct ena_eth_io_intr_reg intr_reg;
3894 
3895 	ena_com_update_intr_reg(&intr_reg, 0, 0, unmask, 1);
3896 	ena_com_unmask_intr(rxq->ena_com_io_cq, &intr_reg);
3897 }
3898 
3899 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
3900 				    uint16_t queue_id)
3901 {
3902 	ena_rx_queue_intr_set(dev, queue_id, true);
3903 
3904 	return 0;
3905 }
3906 
3907 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
3908 				     uint16_t queue_id)
3909 {
3910 	ena_rx_queue_intr_set(dev, queue_id, false);
3911 
3912 	return 0;
3913 }
3914 
3915 static int ena_configure_aenq(struct ena_adapter *adapter)
3916 {
3917 	uint32_t aenq_groups = adapter->all_aenq_groups;
3918 	int rc;
3919 
3920 	/* All_aenq_groups holds all AENQ functions supported by the device and
3921 	 * the HW, so at first we need to be sure the LSC request is valid.
3922 	 */
3923 	if (adapter->edev_data->dev_conf.intr_conf.lsc != 0) {
3924 		if (!(aenq_groups & BIT(ENA_ADMIN_LINK_CHANGE))) {
3925 			PMD_DRV_LOG(ERR,
3926 				"LSC requested, but it's not supported by the AENQ\n");
3927 			return -EINVAL;
3928 		}
3929 	} else {
3930 		/* If LSC wasn't enabled by the app, let's enable all supported
3931 		 * AENQ procedures except the LSC.
3932 		 */
3933 		aenq_groups &= ~BIT(ENA_ADMIN_LINK_CHANGE);
3934 	}
3935 
3936 	rc = ena_com_set_aenq_config(&adapter->ena_dev, aenq_groups);
3937 	if (rc != 0) {
3938 		PMD_DRV_LOG(ERR, "Cannot configure AENQ groups, rc=%d\n", rc);
3939 		return rc;
3940 	}
3941 
3942 	adapter->active_aenq_groups = aenq_groups;
3943 
3944 	return 0;
3945 }
3946 
3947 int ena_mp_indirect_table_set(struct ena_adapter *adapter)
3948 {
3949 	return ENA_PROXY(adapter, ena_com_indirect_table_set, &adapter->ena_dev);
3950 }
3951 
3952 int ena_mp_indirect_table_get(struct ena_adapter *adapter,
3953 			      uint32_t *indirect_table)
3954 {
3955 	return ENA_PROXY(adapter, ena_com_indirect_table_get, &adapter->ena_dev,
3956 		indirect_table);
3957 }
3958 
3959 /*********************************************************************
3960  *  ena_plat_dpdk.h functions implementations
3961  *********************************************************************/
3962 
3963 const struct rte_memzone *
3964 ena_mem_alloc_coherent(struct rte_eth_dev_data *data, size_t size,
3965 		       int socket_id, unsigned int alignment, void **virt_addr,
3966 		       dma_addr_t *phys_addr)
3967 {
3968 	char z_name[RTE_MEMZONE_NAMESIZE];
3969 	struct ena_adapter *adapter = data->dev_private;
3970 	const struct rte_memzone *memzone;
3971 	int rc;
3972 
3973 	rc = snprintf(z_name, RTE_MEMZONE_NAMESIZE, "ena_p%d_mz%" PRIu64 "",
3974 		data->port_id, adapter->memzone_cnt);
3975 	if (rc >= RTE_MEMZONE_NAMESIZE) {
3976 		PMD_DRV_LOG(ERR,
3977 			"Name for the ena_com memzone is too long. Port: %d, mz_num: %" PRIu64 "\n",
3978 			data->port_id, adapter->memzone_cnt);
3979 		goto error;
3980 	}
3981 	adapter->memzone_cnt++;
3982 
3983 	memzone = rte_memzone_reserve_aligned(z_name, size, socket_id,
3984 		RTE_MEMZONE_IOVA_CONTIG, alignment);
3985 	if (memzone == NULL) {
3986 		PMD_DRV_LOG(ERR, "Failed to allocate ena_com memzone: %s\n",
3987 			z_name);
3988 		goto error;
3989 	}
3990 
3991 	memset(memzone->addr, 0, size);
3992 	*virt_addr = memzone->addr;
3993 	*phys_addr = memzone->iova;
3994 
3995 	return memzone;
3996 
3997 error:
3998 	*virt_addr = NULL;
3999 	*phys_addr = 0;
4000 
4001 	return NULL;
4002 }
4003 
4004 
4005 /*********************************************************************
4006  *  PMD configuration
4007  *********************************************************************/
4008 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
4009 	struct rte_pci_device *pci_dev)
4010 {
4011 	return rte_eth_dev_pci_generic_probe(pci_dev,
4012 		sizeof(struct ena_adapter), eth_ena_dev_init);
4013 }
4014 
4015 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
4016 {
4017 	return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
4018 }
4019 
4020 static struct rte_pci_driver rte_ena_pmd = {
4021 	.id_table = pci_id_ena_map,
4022 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
4023 		     RTE_PCI_DRV_WC_ACTIVATE,
4024 	.probe = eth_ena_pci_probe,
4025 	.remove = eth_ena_pci_remove,
4026 };
4027 
4028 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
4029 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
4030 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
4031 RTE_PMD_REGISTER_PARAM_STRING(net_ena,
4032 	ENA_DEVARG_LARGE_LLQ_HDR "=<0|1> "
4033 	ENA_DEVARG_NORMAL_LLQ_HDR "=<0|1> "
4034 	ENA_DEVARG_ENABLE_LLQ "=<0|1> "
4035 	ENA_DEVARG_MISS_TXC_TO "=<uint>"
4036 	ENA_DEVARG_CONTROL_PATH_POLL_INTERVAL "=<0-1000>");
4037 RTE_LOG_REGISTER_SUFFIX(ena_logtype_init, init, NOTICE);
4038 RTE_LOG_REGISTER_SUFFIX(ena_logtype_driver, driver, NOTICE);
4039 #ifdef RTE_ETHDEV_DEBUG_RX
4040 RTE_LOG_REGISTER_SUFFIX(ena_logtype_rx, rx, DEBUG);
4041 #endif
4042 #ifdef RTE_ETHDEV_DEBUG_TX
4043 RTE_LOG_REGISTER_SUFFIX(ena_logtype_tx, tx, DEBUG);
4044 #endif
4045 RTE_LOG_REGISTER_SUFFIX(ena_logtype_com, com, WARNING);
4046 
4047 /******************************************************************************
4048  ******************************** AENQ Handlers *******************************
4049  *****************************************************************************/
4050 static void ena_update_on_link_change(void *adapter_data,
4051 				      struct ena_admin_aenq_entry *aenq_e)
4052 {
4053 	struct rte_eth_dev *eth_dev = adapter_data;
4054 	struct ena_adapter *adapter = eth_dev->data->dev_private;
4055 	struct ena_admin_aenq_link_change_desc *aenq_link_desc;
4056 	uint32_t status;
4057 
4058 	aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
4059 
4060 	status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
4061 	adapter->link_status = status;
4062 
4063 	ena_link_update(eth_dev, 0);
4064 	rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
4065 }
4066 
4067 static void ena_notification(void *adapter_data,
4068 			     struct ena_admin_aenq_entry *aenq_e)
4069 {
4070 	struct rte_eth_dev *eth_dev = adapter_data;
4071 	struct ena_adapter *adapter = eth_dev->data->dev_private;
4072 	struct ena_admin_ena_hw_hints *hints;
4073 
4074 	if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
4075 		PMD_DRV_LOG(WARNING, "Invalid AENQ group: %x. Expected: %x\n",
4076 			aenq_e->aenq_common_desc.group,
4077 			ENA_ADMIN_NOTIFICATION);
4078 
4079 	switch (aenq_e->aenq_common_desc.syndrome) {
4080 	case ENA_ADMIN_UPDATE_HINTS:
4081 		hints = (struct ena_admin_ena_hw_hints *)
4082 			(&aenq_e->inline_data_w4);
4083 		ena_update_hints(adapter, hints);
4084 		break;
4085 	default:
4086 		PMD_DRV_LOG(ERR, "Invalid AENQ notification link state: %d\n",
4087 			aenq_e->aenq_common_desc.syndrome);
4088 	}
4089 }
4090 
4091 static void ena_keep_alive(void *adapter_data,
4092 			   __rte_unused struct ena_admin_aenq_entry *aenq_e)
4093 {
4094 	struct rte_eth_dev *eth_dev = adapter_data;
4095 	struct ena_adapter *adapter = eth_dev->data->dev_private;
4096 	struct ena_admin_aenq_keep_alive_desc *desc;
4097 	uint64_t rx_drops;
4098 	uint64_t tx_drops;
4099 	uint64_t rx_overruns;
4100 
4101 	adapter->timestamp_wd = rte_get_timer_cycles();
4102 
4103 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
4104 	rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
4105 	tx_drops = ((uint64_t)desc->tx_drops_high << 32) | desc->tx_drops_low;
4106 	rx_overruns = ((uint64_t)desc->rx_overruns_high << 32) | desc->rx_overruns_low;
4107 
4108 	/*
4109 	 * Depending on its acceleration support, the device updates a different statistic when
4110 	 * Rx packet is dropped because there are no available buffers to accommodate it.
4111 	 */
4112 	adapter->drv_stats->rx_drops = rx_drops + rx_overruns;
4113 	adapter->dev_stats.tx_drops = tx_drops;
4114 }
4115 
4116 static void ena_suboptimal_configuration(__rte_unused void *adapter_data,
4117 					 struct ena_admin_aenq_entry *aenq_e)
4118 {
4119 	struct ena_admin_aenq_conf_notifications_desc *desc;
4120 	int bit, num_bits;
4121 
4122 	desc = (struct ena_admin_aenq_conf_notifications_desc *)aenq_e;
4123 	num_bits = BITS_PER_TYPE(desc->notifications_bitmap);
4124 	for (bit = 0; bit < num_bits; bit++) {
4125 		if (desc->notifications_bitmap & RTE_BIT64(bit)) {
4126 			PMD_DRV_LOG(WARNING,
4127 				"Sub-optimal configuration notification code: %d\n", bit + 1);
4128 		}
4129 	}
4130 }
4131 
4132 /**
4133  * This handler will called for unknown event group or unimplemented handlers
4134  **/
4135 static void unimplemented_aenq_handler(__rte_unused void *data,
4136 				       __rte_unused struct ena_admin_aenq_entry *aenq_e)
4137 {
4138 	PMD_DRV_LOG(ERR,
4139 		"Unknown event was received or event with unimplemented handler\n");
4140 }
4141 
4142 static struct ena_aenq_handlers aenq_handlers = {
4143 	.handlers = {
4144 		[ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
4145 		[ENA_ADMIN_NOTIFICATION] = ena_notification,
4146 		[ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive,
4147 		[ENA_ADMIN_CONF_NOTIFICATIONS] = ena_suboptimal_configuration
4148 	},
4149 	.unimplemented_handler = unimplemented_aenq_handler
4150 };
4151 
4152 /*********************************************************************
4153  *  Multi-Process communication request handling (in primary)
4154  *********************************************************************/
4155 static int
4156 ena_mp_primary_handle(const struct rte_mp_msg *mp_msg, const void *peer)
4157 {
4158 	const struct ena_mp_body *req =
4159 		(const struct ena_mp_body *)mp_msg->param;
4160 	struct ena_adapter *adapter;
4161 	struct ena_com_dev *ena_dev;
4162 	struct ena_mp_body *rsp;
4163 	struct rte_mp_msg mp_rsp;
4164 	struct rte_eth_dev *dev;
4165 	int res = 0;
4166 
4167 	rsp = (struct ena_mp_body *)&mp_rsp.param;
4168 	mp_msg_init(&mp_rsp, req->type, req->port_id);
4169 
4170 	if (!rte_eth_dev_is_valid_port(req->port_id)) {
4171 		rte_errno = ENODEV;
4172 		res = -rte_errno;
4173 		PMD_DRV_LOG(ERR, "Unknown port %d in request %d\n",
4174 			    req->port_id, req->type);
4175 		goto end;
4176 	}
4177 	dev = &rte_eth_devices[req->port_id];
4178 	adapter = dev->data->dev_private;
4179 	ena_dev = &adapter->ena_dev;
4180 
4181 	switch (req->type) {
4182 	case ENA_MP_DEV_STATS_GET:
4183 		res = ena_com_get_dev_basic_stats(ena_dev,
4184 						  &adapter->basic_stats);
4185 		break;
4186 	case ENA_MP_ENI_STATS_GET:
4187 		res = ena_com_get_eni_stats(ena_dev,
4188 			(struct ena_admin_eni_stats *)&adapter->metrics_stats);
4189 		break;
4190 	case ENA_MP_MTU_SET:
4191 		res = ena_com_set_dev_mtu(ena_dev, req->args.mtu);
4192 		break;
4193 	case ENA_MP_IND_TBL_GET:
4194 		res = ena_com_indirect_table_get(ena_dev,
4195 						 adapter->indirect_table);
4196 		break;
4197 	case ENA_MP_IND_TBL_SET:
4198 		res = ena_com_indirect_table_set(ena_dev);
4199 		break;
4200 	case ENA_MP_CUSTOMER_METRICS_GET:
4201 		res = ena_com_get_customer_metrics(ena_dev,
4202 				(char *)adapter->metrics_stats,
4203 				adapter->metrics_num * sizeof(uint64_t));
4204 		break;
4205 	case ENA_MP_SRD_STATS_GET:
4206 		res = ena_com_get_ena_srd_info(ena_dev,
4207 				(struct ena_admin_ena_srd_info *)&adapter->srd_stats);
4208 		break;
4209 	default:
4210 		PMD_DRV_LOG(ERR, "Unknown request type %d\n", req->type);
4211 		res = -EINVAL;
4212 		break;
4213 	}
4214 
4215 end:
4216 	/* Save processing result in the reply */
4217 	rsp->result = res;
4218 	/* Return just IPC processing status */
4219 	return rte_mp_reply(&mp_rsp, peer);
4220 }
4221 
4222 static ena_llq_policy ena_define_llq_hdr_policy(struct ena_adapter *adapter)
4223 {
4224 	if (!adapter->enable_llq)
4225 		return ENA_LLQ_POLICY_DISABLED;
4226 	if (adapter->use_large_llq_hdr)
4227 		return ENA_LLQ_POLICY_LARGE;
4228 	if (adapter->use_normal_llq_hdr)
4229 		return ENA_LLQ_POLICY_NORMAL;
4230 	return ENA_LLQ_POLICY_RECOMMENDED;
4231 }
4232 
4233 static bool ena_use_large_llq_hdr(struct ena_adapter *adapter, uint8_t recommended_entry_size)
4234 {
4235 	if (adapter->llq_header_policy == ENA_LLQ_POLICY_LARGE) {
4236 		return true;
4237 	} else if (adapter->llq_header_policy == ENA_LLQ_POLICY_RECOMMENDED) {
4238 		PMD_DRV_LOG(INFO, "Recommended device entry size policy %u\n",
4239 			recommended_entry_size);
4240 		if (recommended_entry_size == ENA_ADMIN_LIST_ENTRY_SIZE_256B)
4241 			return true;
4242 	}
4243 	return false;
4244 }
4245