xref: /dpdk/drivers/net/ena/ena_ethdev.c (revision e9fd1ebf981f361844aea9ec94e17f4bda5e1479)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
3  * All rights reserved.
4  */
5 
6 #include <rte_string_fns.h>
7 #include <rte_errno.h>
8 #include <rte_version.h>
9 #include <rte_net.h>
10 #include <rte_kvargs.h>
11 
12 #include "ena_ethdev.h"
13 #include "ena_logs.h"
14 #include "ena_platform.h"
15 #include "ena_com.h"
16 #include "ena_eth_com.h"
17 
18 #include <ena_common_defs.h>
19 #include <ena_regs_defs.h>
20 #include <ena_admin_defs.h>
21 #include <ena_eth_io_defs.h>
22 
23 #define DRV_MODULE_VER_MAJOR	2
24 #define DRV_MODULE_VER_MINOR	8
25 #define DRV_MODULE_VER_SUBMINOR	0
26 
27 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
28 
29 #define GET_L4_HDR_LEN(mbuf)					\
30 	((rte_pktmbuf_mtod_offset(mbuf,	struct rte_tcp_hdr *,	\
31 		mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
32 
33 #define ETH_GSTRING_LEN	32
34 
35 #define ARRAY_SIZE(x) RTE_DIM(x)
36 
37 #define ENA_MIN_RING_DESC	128
38 
39 /*
40  * We should try to keep ENA_CLEANUP_BUF_SIZE lower than
41  * RTE_MEMPOOL_CACHE_MAX_SIZE, so we can fit this in mempool local cache.
42  */
43 #define ENA_CLEANUP_BUF_SIZE	256
44 
45 #define ENA_PTYPE_HAS_HASH	(RTE_PTYPE_L4_TCP | RTE_PTYPE_L4_UDP)
46 
47 struct ena_stats {
48 	char name[ETH_GSTRING_LEN];
49 	int stat_offset;
50 };
51 
52 #define ENA_STAT_ENTRY(stat, stat_type) { \
53 	.name = #stat, \
54 	.stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
55 }
56 
57 #define ENA_STAT_RX_ENTRY(stat) \
58 	ENA_STAT_ENTRY(stat, rx)
59 
60 #define ENA_STAT_TX_ENTRY(stat) \
61 	ENA_STAT_ENTRY(stat, tx)
62 
63 #define ENA_STAT_METRICS_ENTRY(stat) \
64 	ENA_STAT_ENTRY(stat, metrics)
65 
66 #define ENA_STAT_GLOBAL_ENTRY(stat) \
67 	ENA_STAT_ENTRY(stat, dev)
68 
69 #define ENA_STAT_ENA_SRD_ENTRY(stat) \
70 	ENA_STAT_ENTRY(stat, srd)
71 
72 /* Device arguments */
73 #define ENA_DEVARG_LARGE_LLQ_HDR "large_llq_hdr"
74 /* Timeout in seconds after which a single uncompleted Tx packet should be
75  * considered as a missing.
76  */
77 #define ENA_DEVARG_MISS_TXC_TO "miss_txc_to"
78 /*
79  * Controls whether LLQ should be used (if available). Enabled by default.
80  * NOTE: It's highly not recommended to disable the LLQ, as it may lead to a
81  * huge performance degradation on 6th generation AWS instances.
82  */
83 #define ENA_DEVARG_ENABLE_LLQ "enable_llq"
84 
85 /*
86  * Each rte_memzone should have unique name.
87  * To satisfy it, count number of allocation and add it to name.
88  */
89 rte_atomic64_t ena_alloc_cnt;
90 
91 static const struct ena_stats ena_stats_global_strings[] = {
92 	ENA_STAT_GLOBAL_ENTRY(wd_expired),
93 	ENA_STAT_GLOBAL_ENTRY(dev_start),
94 	ENA_STAT_GLOBAL_ENTRY(dev_stop),
95 	ENA_STAT_GLOBAL_ENTRY(tx_drops),
96 	ENA_STAT_GLOBAL_ENTRY(rx_overruns),
97 };
98 
99 /*
100  * The legacy metrics (also known as eni stats) consisted of 5 stats, while the reworked
101  * metrics (also known as customer metrics) support an additional stat.
102  */
103 static struct ena_stats ena_stats_metrics_strings[] = {
104 	ENA_STAT_METRICS_ENTRY(bw_in_allowance_exceeded),
105 	ENA_STAT_METRICS_ENTRY(bw_out_allowance_exceeded),
106 	ENA_STAT_METRICS_ENTRY(pps_allowance_exceeded),
107 	ENA_STAT_METRICS_ENTRY(conntrack_allowance_exceeded),
108 	ENA_STAT_METRICS_ENTRY(linklocal_allowance_exceeded),
109 	ENA_STAT_METRICS_ENTRY(conntrack_allowance_available),
110 };
111 
112 static const struct ena_stats ena_stats_srd_strings[] = {
113 	ENA_STAT_ENA_SRD_ENTRY(ena_srd_mode),
114 	ENA_STAT_ENA_SRD_ENTRY(ena_srd_tx_pkts),
115 	ENA_STAT_ENA_SRD_ENTRY(ena_srd_eligible_tx_pkts),
116 	ENA_STAT_ENA_SRD_ENTRY(ena_srd_rx_pkts),
117 	ENA_STAT_ENA_SRD_ENTRY(ena_srd_resource_utilization),
118 };
119 
120 static const struct ena_stats ena_stats_tx_strings[] = {
121 	ENA_STAT_TX_ENTRY(cnt),
122 	ENA_STAT_TX_ENTRY(bytes),
123 	ENA_STAT_TX_ENTRY(prepare_ctx_err),
124 	ENA_STAT_TX_ENTRY(tx_poll),
125 	ENA_STAT_TX_ENTRY(doorbells),
126 	ENA_STAT_TX_ENTRY(bad_req_id),
127 	ENA_STAT_TX_ENTRY(available_desc),
128 	ENA_STAT_TX_ENTRY(missed_tx),
129 };
130 
131 static const struct ena_stats ena_stats_rx_strings[] = {
132 	ENA_STAT_RX_ENTRY(cnt),
133 	ENA_STAT_RX_ENTRY(bytes),
134 	ENA_STAT_RX_ENTRY(refill_partial),
135 	ENA_STAT_RX_ENTRY(l3_csum_bad),
136 	ENA_STAT_RX_ENTRY(l4_csum_bad),
137 	ENA_STAT_RX_ENTRY(l4_csum_good),
138 	ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
139 	ENA_STAT_RX_ENTRY(bad_desc_num),
140 	ENA_STAT_RX_ENTRY(bad_req_id),
141 };
142 
143 #define ENA_STATS_ARRAY_GLOBAL	ARRAY_SIZE(ena_stats_global_strings)
144 #define ENA_STATS_ARRAY_METRICS	ARRAY_SIZE(ena_stats_metrics_strings)
145 #define ENA_STATS_ARRAY_METRICS_LEGACY	(ENA_STATS_ARRAY_METRICS - 1)
146 #define ENA_STATS_ARRAY_ENA_SRD	ARRAY_SIZE(ena_stats_srd_strings)
147 #define ENA_STATS_ARRAY_TX	ARRAY_SIZE(ena_stats_tx_strings)
148 #define ENA_STATS_ARRAY_RX	ARRAY_SIZE(ena_stats_rx_strings)
149 
150 #define QUEUE_OFFLOADS (RTE_ETH_TX_OFFLOAD_TCP_CKSUM |\
151 			RTE_ETH_TX_OFFLOAD_UDP_CKSUM |\
152 			RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |\
153 			RTE_ETH_TX_OFFLOAD_TCP_TSO)
154 #define MBUF_OFFLOADS (RTE_MBUF_F_TX_L4_MASK |\
155 		       RTE_MBUF_F_TX_IP_CKSUM |\
156 		       RTE_MBUF_F_TX_TCP_SEG)
157 
158 /** Vendor ID used by Amazon devices */
159 #define PCI_VENDOR_ID_AMAZON 0x1D0F
160 /** Amazon devices */
161 #define PCI_DEVICE_ID_ENA_VF		0xEC20
162 #define PCI_DEVICE_ID_ENA_VF_RSERV0	0xEC21
163 
164 #define	ENA_TX_OFFLOAD_MASK	(RTE_MBUF_F_TX_L4_MASK |         \
165 	RTE_MBUF_F_TX_IPV6 |            \
166 	RTE_MBUF_F_TX_IPV4 |            \
167 	RTE_MBUF_F_TX_IP_CKSUM |        \
168 	RTE_MBUF_F_TX_TCP_SEG)
169 
170 #define	ENA_TX_OFFLOAD_NOTSUP_MASK	\
171 	(RTE_MBUF_F_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
172 
173 /** HW specific offloads capabilities. */
174 /* IPv4 checksum offload. */
175 #define ENA_L3_IPV4_CSUM		0x0001
176 /* TCP/UDP checksum offload for IPv4 packets. */
177 #define ENA_L4_IPV4_CSUM		0x0002
178 /* TCP/UDP checksum offload for IPv4 packets with pseudo header checksum. */
179 #define ENA_L4_IPV4_CSUM_PARTIAL	0x0004
180 /* TCP/UDP checksum offload for IPv6 packets. */
181 #define ENA_L4_IPV6_CSUM		0x0008
182 /* TCP/UDP checksum offload for IPv6 packets with pseudo header checksum. */
183 #define ENA_L4_IPV6_CSUM_PARTIAL	0x0010
184 /* TSO support for IPv4 packets. */
185 #define ENA_IPV4_TSO			0x0020
186 
187 /* Device supports setting RSS hash. */
188 #define ENA_RX_RSS_HASH			0x0040
189 
190 static const struct rte_pci_id pci_id_ena_map[] = {
191 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
192 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF_RSERV0) },
193 	{ .device_id = 0 },
194 };
195 
196 static struct ena_aenq_handlers aenq_handlers;
197 
198 static int ena_device_init(struct ena_adapter *adapter,
199 			   struct rte_pci_device *pdev,
200 			   struct ena_com_dev_get_features_ctx *get_feat_ctx);
201 static int ena_dev_configure(struct rte_eth_dev *dev);
202 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
203 	struct ena_tx_buffer *tx_info,
204 	struct rte_mbuf *mbuf,
205 	void **push_header,
206 	uint16_t *header_len);
207 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf);
208 static int ena_tx_cleanup(void *txp, uint32_t free_pkt_cnt);
209 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
210 				  uint16_t nb_pkts);
211 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
212 		uint16_t nb_pkts);
213 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
214 			      uint16_t nb_desc, unsigned int socket_id,
215 			      const struct rte_eth_txconf *tx_conf);
216 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
217 			      uint16_t nb_desc, unsigned int socket_id,
218 			      const struct rte_eth_rxconf *rx_conf,
219 			      struct rte_mempool *mp);
220 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len);
221 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
222 				    struct ena_com_rx_buf_info *ena_bufs,
223 				    uint32_t descs,
224 				    uint16_t *next_to_clean,
225 				    uint8_t offset);
226 static uint16_t eth_ena_recv_pkts(void *rx_queue,
227 				  struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
228 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
229 				  struct rte_mbuf *mbuf, uint16_t id);
230 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
231 static void ena_init_rings(struct ena_adapter *adapter,
232 			   bool disable_meta_caching);
233 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
234 static int ena_start(struct rte_eth_dev *dev);
235 static int ena_stop(struct rte_eth_dev *dev);
236 static int ena_close(struct rte_eth_dev *dev);
237 static int ena_dev_reset(struct rte_eth_dev *dev);
238 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
239 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
240 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
241 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
242 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
243 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
244 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
245 static int ena_link_update(struct rte_eth_dev *dev,
246 			   int wait_to_complete);
247 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring);
248 static void ena_queue_stop(struct ena_ring *ring);
249 static void ena_queue_stop_all(struct rte_eth_dev *dev,
250 			      enum ena_ring_type ring_type);
251 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring);
252 static int ena_queue_start_all(struct rte_eth_dev *dev,
253 			       enum ena_ring_type ring_type);
254 static void ena_stats_restart(struct rte_eth_dev *dev);
255 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter);
256 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter);
257 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter);
258 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter);
259 static int ena_infos_get(struct rte_eth_dev *dev,
260 			 struct rte_eth_dev_info *dev_info);
261 static void ena_interrupt_handler_rte(void *cb_arg);
262 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
263 static void ena_destroy_device(struct rte_eth_dev *eth_dev);
264 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
265 static int ena_xstats_get_names(struct rte_eth_dev *dev,
266 				struct rte_eth_xstat_name *xstats_names,
267 				unsigned int n);
268 static int ena_xstats_get_names_by_id(struct rte_eth_dev *dev,
269 				      const uint64_t *ids,
270 				      struct rte_eth_xstat_name *xstats_names,
271 				      unsigned int size);
272 static int ena_xstats_get(struct rte_eth_dev *dev,
273 			  struct rte_eth_xstat *stats,
274 			  unsigned int n);
275 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
276 				const uint64_t *ids,
277 				uint64_t *values,
278 				unsigned int n);
279 static int ena_process_bool_devarg(const char *key,
280 				   const char *value,
281 				   void *opaque);
282 static int ena_parse_devargs(struct ena_adapter *adapter,
283 			     struct rte_devargs *devargs);
284 static void ena_copy_customer_metrics(struct ena_adapter *adapter,
285 					uint64_t *buf,
286 					size_t buf_size);
287 static void ena_copy_ena_srd_info(struct ena_adapter *adapter,
288 				  struct ena_stats_srd *srd_info);
289 static int ena_setup_rx_intr(struct rte_eth_dev *dev);
290 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
291 				    uint16_t queue_id);
292 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
293 				     uint16_t queue_id);
294 static int ena_configure_aenq(struct ena_adapter *adapter);
295 static int ena_mp_primary_handle(const struct rte_mp_msg *mp_msg,
296 				 const void *peer);
297 
298 static const struct eth_dev_ops ena_dev_ops = {
299 	.dev_configure          = ena_dev_configure,
300 	.dev_infos_get          = ena_infos_get,
301 	.rx_queue_setup         = ena_rx_queue_setup,
302 	.tx_queue_setup         = ena_tx_queue_setup,
303 	.dev_start              = ena_start,
304 	.dev_stop               = ena_stop,
305 	.link_update            = ena_link_update,
306 	.stats_get              = ena_stats_get,
307 	.xstats_get_names       = ena_xstats_get_names,
308 	.xstats_get_names_by_id = ena_xstats_get_names_by_id,
309 	.xstats_get             = ena_xstats_get,
310 	.xstats_get_by_id       = ena_xstats_get_by_id,
311 	.mtu_set                = ena_mtu_set,
312 	.rx_queue_release       = ena_rx_queue_release,
313 	.tx_queue_release       = ena_tx_queue_release,
314 	.dev_close              = ena_close,
315 	.dev_reset              = ena_dev_reset,
316 	.reta_update            = ena_rss_reta_update,
317 	.reta_query             = ena_rss_reta_query,
318 	.rx_queue_intr_enable   = ena_rx_queue_intr_enable,
319 	.rx_queue_intr_disable  = ena_rx_queue_intr_disable,
320 	.rss_hash_update        = ena_rss_hash_update,
321 	.rss_hash_conf_get      = ena_rss_hash_conf_get,
322 	.tx_done_cleanup        = ena_tx_cleanup,
323 };
324 
325 /*********************************************************************
326  *  Multi-Process communication bits
327  *********************************************************************/
328 /* rte_mp IPC message name */
329 #define ENA_MP_NAME	"net_ena_mp"
330 /* Request timeout in seconds */
331 #define ENA_MP_REQ_TMO	5
332 
333 /** Proxy request type */
334 enum ena_mp_req {
335 	ENA_MP_DEV_STATS_GET,
336 	ENA_MP_ENI_STATS_GET,
337 	ENA_MP_MTU_SET,
338 	ENA_MP_IND_TBL_GET,
339 	ENA_MP_IND_TBL_SET,
340 	ENA_MP_CUSTOMER_METRICS_GET,
341 	ENA_MP_SRD_STATS_GET,
342 };
343 
344 /** Proxy message body. Shared between requests and responses. */
345 struct ena_mp_body {
346 	/* Message type */
347 	enum ena_mp_req type;
348 	int port_id;
349 	/* Processing result. Set in replies. 0 if message succeeded, negative
350 	 * error code otherwise.
351 	 */
352 	int result;
353 	union {
354 		int mtu; /* For ENA_MP_MTU_SET */
355 	} args;
356 };
357 
358 /**
359  * Initialize IPC message.
360  *
361  * @param[out] msg
362  *   Pointer to the message to initialize.
363  * @param[in] type
364  *   Message type.
365  * @param[in] port_id
366  *   Port ID of target device.
367  *
368  */
369 static void
370 mp_msg_init(struct rte_mp_msg *msg, enum ena_mp_req type, int port_id)
371 {
372 	struct ena_mp_body *body = (struct ena_mp_body *)&msg->param;
373 
374 	memset(msg, 0, sizeof(*msg));
375 	strlcpy(msg->name, ENA_MP_NAME, sizeof(msg->name));
376 	msg->len_param = sizeof(*body);
377 	body->type = type;
378 	body->port_id = port_id;
379 }
380 
381 /*********************************************************************
382  *  Multi-Process communication PMD API
383  *********************************************************************/
384 /**
385  * Define proxy request descriptor
386  *
387  * Used to define all structures and functions required for proxying a given
388  * function to the primary process including the code to perform to prepare the
389  * request and process the response.
390  *
391  * @param[in] f
392  *   Name of the function to proxy
393  * @param[in] t
394  *   Message type to use
395  * @param[in] prep
396  *   Body of a function to prepare the request in form of a statement
397  *   expression. It is passed all the original function arguments along with two
398  *   extra ones:
399  *   - struct ena_adapter *adapter - PMD data of the device calling the proxy.
400  *   - struct ena_mp_body *req - body of a request to prepare.
401  * @param[in] proc
402  *   Body of a function to process the response in form of a statement
403  *   expression. It is passed all the original function arguments along with two
404  *   extra ones:
405  *   - struct ena_adapter *adapter - PMD data of the device calling the proxy.
406  *   - struct ena_mp_body *rsp - body of a response to process.
407  * @param ...
408  *   Proxied function's arguments
409  *
410  * @note Inside prep and proc any parameters which aren't used should be marked
411  *       as such (with ENA_TOUCH or __rte_unused).
412  */
413 #define ENA_PROXY_DESC(f, t, prep, proc, ...)			\
414 	static const enum ena_mp_req mp_type_ ## f =  t;	\
415 	static const char *mp_name_ ## f = #t;			\
416 	static void mp_prep_ ## f(struct ena_adapter *adapter,	\
417 				  struct ena_mp_body *req,	\
418 				  __VA_ARGS__)			\
419 	{							\
420 		prep;						\
421 	}							\
422 	static void mp_proc_ ## f(struct ena_adapter *adapter,	\
423 				  struct ena_mp_body *rsp,	\
424 				  __VA_ARGS__)			\
425 	{							\
426 		proc;						\
427 	}
428 
429 /**
430  * Proxy wrapper for calling primary functions in a secondary process.
431  *
432  * Depending on whether called in primary or secondary process, calls the
433  * @p func directly or proxies the call to the primary process via rte_mp IPC.
434  * This macro requires a proxy request descriptor to be defined for @p func
435  * using ENA_PROXY_DESC() macro.
436  *
437  * @param[in/out] a
438  *   Device PMD data. Used for sending the message and sharing message results
439  *   between primary and secondary.
440  * @param[in] f
441  *   Function to proxy.
442  * @param ...
443  *   Arguments of @p func.
444  *
445  * @return
446  *   - 0: Processing succeeded and response handler was called.
447  *   - -EPERM: IPC is unavailable on this platform. This means only primary
448  *             process may call the proxied function.
449  *   - -EIO:   IPC returned error on request send. Inspect rte_errno detailed
450  *             error code.
451  *   - Negative error code from the proxied function.
452  *
453  * @note This mechanism is geared towards control-path tasks. Avoid calling it
454  *       in fast-path unless unbound delays are allowed. This is due to the IPC
455  *       mechanism itself (socket based).
456  * @note Due to IPC parameter size limitations the proxy logic shares call
457  *       results through the struct ena_adapter shared memory. This makes the
458  *       proxy mechanism strictly single-threaded. Therefore be sure to make all
459  *       calls to the same proxied function under the same lock.
460  */
461 #define ENA_PROXY(a, f, ...)						\
462 __extension__ ({							\
463 	struct ena_adapter *_a = (a);					\
464 	struct timespec ts = { .tv_sec = ENA_MP_REQ_TMO };		\
465 	struct ena_mp_body *req, *rsp;					\
466 	struct rte_mp_reply mp_rep;					\
467 	struct rte_mp_msg mp_req;					\
468 	int ret;							\
469 									\
470 	if (rte_eal_process_type() == RTE_PROC_PRIMARY) {		\
471 		ret = f(__VA_ARGS__);					\
472 	} else {							\
473 		/* Prepare and send request */				\
474 		req = (struct ena_mp_body *)&mp_req.param;		\
475 		mp_msg_init(&mp_req, mp_type_ ## f, _a->edev_data->port_id); \
476 		mp_prep_ ## f(_a, req, ## __VA_ARGS__);			\
477 									\
478 		ret = rte_mp_request_sync(&mp_req, &mp_rep, &ts);	\
479 		if (likely(!ret)) {					\
480 			RTE_ASSERT(mp_rep.nb_received == 1);		\
481 			rsp = (struct ena_mp_body *)&mp_rep.msgs[0].param; \
482 			ret = rsp->result;				\
483 			if (ret == 0) {					\
484 				mp_proc_##f(_a, rsp, ## __VA_ARGS__);	\
485 			} else {					\
486 				PMD_DRV_LOG(ERR,			\
487 					    "%s returned error: %d\n",	\
488 					    mp_name_ ## f, rsp->result);\
489 			}						\
490 			free(mp_rep.msgs);				\
491 		} else if (rte_errno == ENOTSUP) {			\
492 			PMD_DRV_LOG(ERR,				\
493 				    "No IPC, can't proxy to primary\n");\
494 			ret = -rte_errno;				\
495 		} else {						\
496 			PMD_DRV_LOG(ERR, "Request %s failed: %s\n",	\
497 				    mp_name_ ## f,			\
498 				    rte_strerror(rte_errno));		\
499 			ret = -EIO;					\
500 		}							\
501 	}								\
502 	ret;								\
503 })
504 
505 /*********************************************************************
506  *  Multi-Process communication request descriptors
507  *********************************************************************/
508 
509 ENA_PROXY_DESC(ena_com_get_dev_basic_stats, ENA_MP_DEV_STATS_GET,
510 __extension__ ({
511 	ENA_TOUCH(adapter);
512 	ENA_TOUCH(req);
513 	ENA_TOUCH(ena_dev);
514 	ENA_TOUCH(stats);
515 }),
516 __extension__ ({
517 	ENA_TOUCH(rsp);
518 	ENA_TOUCH(ena_dev);
519 	if (stats != &adapter->basic_stats)
520 		rte_memcpy(stats, &adapter->basic_stats, sizeof(*stats));
521 }),
522 	struct ena_com_dev *ena_dev, struct ena_admin_basic_stats *stats);
523 
524 ENA_PROXY_DESC(ena_com_get_eni_stats, ENA_MP_ENI_STATS_GET,
525 __extension__ ({
526 	ENA_TOUCH(adapter);
527 	ENA_TOUCH(req);
528 	ENA_TOUCH(ena_dev);
529 	ENA_TOUCH(stats);
530 }),
531 __extension__ ({
532 	ENA_TOUCH(rsp);
533 	ENA_TOUCH(ena_dev);
534 	if (stats != (struct ena_admin_eni_stats *)&adapter->metrics_stats)
535 		rte_memcpy(stats, &adapter->metrics_stats, sizeof(*stats));
536 }),
537 	struct ena_com_dev *ena_dev, struct ena_admin_eni_stats *stats);
538 
539 ENA_PROXY_DESC(ena_com_set_dev_mtu, ENA_MP_MTU_SET,
540 __extension__ ({
541 	ENA_TOUCH(adapter);
542 	ENA_TOUCH(ena_dev);
543 	req->args.mtu = mtu;
544 }),
545 __extension__ ({
546 	ENA_TOUCH(adapter);
547 	ENA_TOUCH(rsp);
548 	ENA_TOUCH(ena_dev);
549 	ENA_TOUCH(mtu);
550 }),
551 	struct ena_com_dev *ena_dev, int mtu);
552 
553 ENA_PROXY_DESC(ena_com_indirect_table_set, ENA_MP_IND_TBL_SET,
554 __extension__ ({
555 	ENA_TOUCH(adapter);
556 	ENA_TOUCH(req);
557 	ENA_TOUCH(ena_dev);
558 }),
559 __extension__ ({
560 	ENA_TOUCH(adapter);
561 	ENA_TOUCH(rsp);
562 	ENA_TOUCH(ena_dev);
563 }),
564 	struct ena_com_dev *ena_dev);
565 
566 ENA_PROXY_DESC(ena_com_indirect_table_get, ENA_MP_IND_TBL_GET,
567 __extension__ ({
568 	ENA_TOUCH(adapter);
569 	ENA_TOUCH(req);
570 	ENA_TOUCH(ena_dev);
571 	ENA_TOUCH(ind_tbl);
572 }),
573 __extension__ ({
574 	ENA_TOUCH(rsp);
575 	ENA_TOUCH(ena_dev);
576 	if (ind_tbl != adapter->indirect_table)
577 		rte_memcpy(ind_tbl, adapter->indirect_table,
578 			   sizeof(adapter->indirect_table));
579 }),
580 	struct ena_com_dev *ena_dev, u32 *ind_tbl);
581 
582 ENA_PROXY_DESC(ena_com_get_customer_metrics, ENA_MP_CUSTOMER_METRICS_GET,
583 __extension__ ({
584 	ENA_TOUCH(adapter);
585 	ENA_TOUCH(req);
586 	ENA_TOUCH(ena_dev);
587 	ENA_TOUCH(buf);
588 	ENA_TOUCH(buf_size);
589 }),
590 __extension__ ({
591 	ENA_TOUCH(rsp);
592 	ENA_TOUCH(ena_dev);
593 	ENA_TOUCH(buf_size);
594 	if (buf != (char *)&adapter->metrics_stats)
595 		rte_memcpy(buf, &adapter->metrics_stats, adapter->metrics_num * sizeof(uint64_t));
596 }),
597 	struct ena_com_dev *ena_dev, char *buf, size_t buf_size);
598 
599 ENA_PROXY_DESC(ena_com_get_ena_srd_info, ENA_MP_SRD_STATS_GET,
600 __extension__ ({
601 	ENA_TOUCH(adapter);
602 	ENA_TOUCH(req);
603 	ENA_TOUCH(ena_dev);
604 	ENA_TOUCH(info);
605 }),
606 __extension__ ({
607 	ENA_TOUCH(rsp);
608 	ENA_TOUCH(ena_dev);
609 	if ((struct ena_stats_srd *)info != &adapter->srd_stats)
610 		rte_memcpy((struct ena_stats_srd *)info,
611 				&adapter->srd_stats,
612 				sizeof(struct ena_stats_srd));
613 }),
614 	struct ena_com_dev *ena_dev, struct ena_admin_ena_srd_info *info);
615 
616 static inline void ena_trigger_reset(struct ena_adapter *adapter,
617 				     enum ena_regs_reset_reason_types reason)
618 {
619 	if (likely(!adapter->trigger_reset)) {
620 		adapter->reset_reason = reason;
621 		adapter->trigger_reset = true;
622 	}
623 }
624 
625 static inline void ena_rx_mbuf_prepare(struct ena_ring *rx_ring,
626 				       struct rte_mbuf *mbuf,
627 				       struct ena_com_rx_ctx *ena_rx_ctx,
628 				       bool fill_hash)
629 {
630 	struct ena_stats_rx *rx_stats = &rx_ring->rx_stats;
631 	uint64_t ol_flags = 0;
632 	uint32_t packet_type = 0;
633 
634 	if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
635 		packet_type |= RTE_PTYPE_L4_TCP;
636 	else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
637 		packet_type |= RTE_PTYPE_L4_UDP;
638 
639 	if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
640 		packet_type |= RTE_PTYPE_L3_IPV4;
641 		if (unlikely(ena_rx_ctx->l3_csum_err)) {
642 			++rx_stats->l3_csum_bad;
643 			ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
644 		} else {
645 			ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
646 		}
647 	} else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
648 		packet_type |= RTE_PTYPE_L3_IPV6;
649 	}
650 
651 	if (!ena_rx_ctx->l4_csum_checked || ena_rx_ctx->frag) {
652 		ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN;
653 	} else {
654 		if (unlikely(ena_rx_ctx->l4_csum_err)) {
655 			++rx_stats->l4_csum_bad;
656 			/*
657 			 * For the L4 Rx checksum offload the HW may indicate
658 			 * bad checksum although it's valid. Because of that,
659 			 * we're setting the UNKNOWN flag to let the app
660 			 * re-verify the checksum.
661 			 */
662 			ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN;
663 		} else {
664 			++rx_stats->l4_csum_good;
665 			ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
666 		}
667 	}
668 
669 	if (fill_hash &&
670 	    likely((packet_type & ENA_PTYPE_HAS_HASH) && !ena_rx_ctx->frag)) {
671 		ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
672 		mbuf->hash.rss = ena_rx_ctx->hash;
673 	}
674 
675 	mbuf->ol_flags = ol_flags;
676 	mbuf->packet_type = packet_type;
677 }
678 
679 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
680 				       struct ena_com_tx_ctx *ena_tx_ctx,
681 				       uint64_t queue_offloads,
682 				       bool disable_meta_caching)
683 {
684 	struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
685 
686 	if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
687 	    (queue_offloads & QUEUE_OFFLOADS)) {
688 		/* check if TSO is required */
689 		if ((mbuf->ol_flags & RTE_MBUF_F_TX_TCP_SEG) &&
690 		    (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_TSO)) {
691 			ena_tx_ctx->tso_enable = true;
692 
693 			ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
694 		}
695 
696 		/* check if L3 checksum is needed */
697 		if ((mbuf->ol_flags & RTE_MBUF_F_TX_IP_CKSUM) &&
698 		    (queue_offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM))
699 			ena_tx_ctx->l3_csum_enable = true;
700 
701 		if (mbuf->ol_flags & RTE_MBUF_F_TX_IPV6) {
702 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
703 			/* For the IPv6 packets, DF always needs to be true. */
704 			ena_tx_ctx->df = 1;
705 		} else {
706 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
707 
708 			/* set don't fragment (DF) flag */
709 			if (mbuf->packet_type &
710 				(RTE_PTYPE_L4_NONFRAG
711 				 | RTE_PTYPE_INNER_L4_NONFRAG))
712 				ena_tx_ctx->df = 1;
713 		}
714 
715 		/* check if L4 checksum is needed */
716 		if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) == RTE_MBUF_F_TX_TCP_CKSUM) &&
717 		    (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) {
718 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
719 			ena_tx_ctx->l4_csum_enable = true;
720 		} else if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) ==
721 				RTE_MBUF_F_TX_UDP_CKSUM) &&
722 				(queue_offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM)) {
723 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
724 			ena_tx_ctx->l4_csum_enable = true;
725 		} else {
726 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
727 			ena_tx_ctx->l4_csum_enable = false;
728 		}
729 
730 		ena_meta->mss = mbuf->tso_segsz;
731 		ena_meta->l3_hdr_len = mbuf->l3_len;
732 		ena_meta->l3_hdr_offset = mbuf->l2_len;
733 
734 		ena_tx_ctx->meta_valid = true;
735 	} else if (disable_meta_caching) {
736 		memset(ena_meta, 0, sizeof(*ena_meta));
737 		ena_tx_ctx->meta_valid = true;
738 	} else {
739 		ena_tx_ctx->meta_valid = false;
740 	}
741 }
742 
743 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
744 {
745 	struct ena_tx_buffer *tx_info = NULL;
746 
747 	if (likely(req_id < tx_ring->ring_size)) {
748 		tx_info = &tx_ring->tx_buffer_info[req_id];
749 		if (likely(tx_info->mbuf))
750 			return 0;
751 	}
752 
753 	if (tx_info)
754 		PMD_TX_LOG(ERR, "tx_info doesn't have valid mbuf. queue %d:%d req_id %u\n",
755 			tx_ring->port_id, tx_ring->id, req_id);
756 	else
757 		PMD_TX_LOG(ERR, "Invalid req_id: %hu in queue %d:%d\n",
758 			req_id, tx_ring->port_id, tx_ring->id);
759 
760 	/* Trigger device reset */
761 	++tx_ring->tx_stats.bad_req_id;
762 	ena_trigger_reset(tx_ring->adapter, ENA_REGS_RESET_INV_TX_REQ_ID);
763 	return -EFAULT;
764 }
765 
766 static void ena_config_host_info(struct ena_com_dev *ena_dev)
767 {
768 	struct ena_admin_host_info *host_info;
769 	int rc;
770 
771 	/* Allocate only the host info */
772 	rc = ena_com_allocate_host_info(ena_dev);
773 	if (rc) {
774 		PMD_DRV_LOG(ERR, "Cannot allocate host info\n");
775 		return;
776 	}
777 
778 	host_info = ena_dev->host_attr.host_info;
779 
780 	host_info->os_type = ENA_ADMIN_OS_DPDK;
781 	host_info->kernel_ver = RTE_VERSION;
782 	strlcpy((char *)host_info->kernel_ver_str, rte_version(),
783 		sizeof(host_info->kernel_ver_str));
784 	host_info->os_dist = RTE_VERSION;
785 	strlcpy((char *)host_info->os_dist_str, rte_version(),
786 		sizeof(host_info->os_dist_str));
787 	host_info->driver_version =
788 		(DRV_MODULE_VER_MAJOR) |
789 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
790 		(DRV_MODULE_VER_SUBMINOR <<
791 			ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
792 	host_info->num_cpus = rte_lcore_count();
793 
794 	host_info->driver_supported_features =
795 		ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK |
796 		ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK;
797 
798 	rc = ena_com_set_host_attributes(ena_dev);
799 	if (rc) {
800 		if (rc == -ENA_COM_UNSUPPORTED)
801 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
802 		else
803 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
804 
805 		goto err;
806 	}
807 
808 	return;
809 
810 err:
811 	ena_com_delete_host_info(ena_dev);
812 }
813 
814 /* This function calculates the number of xstats based on the current config */
815 static unsigned int ena_xstats_calc_num(struct rte_eth_dev_data *data)
816 {
817 	struct ena_adapter *adapter = data->dev_private;
818 
819 	return ENA_STATS_ARRAY_GLOBAL +
820 		adapter->metrics_num +
821 		ENA_STATS_ARRAY_ENA_SRD +
822 		(data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
823 		(data->nb_rx_queues * ENA_STATS_ARRAY_RX);
824 }
825 
826 static void ena_config_debug_area(struct ena_adapter *adapter)
827 {
828 	u32 debug_area_size;
829 	int rc, ss_count;
830 
831 	ss_count = ena_xstats_calc_num(adapter->edev_data);
832 
833 	/* allocate 32 bytes for each string and 64bit for the value */
834 	debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
835 
836 	rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
837 	if (rc) {
838 		PMD_DRV_LOG(ERR, "Cannot allocate debug area\n");
839 		return;
840 	}
841 
842 	rc = ena_com_set_host_attributes(&adapter->ena_dev);
843 	if (rc) {
844 		if (rc == -ENA_COM_UNSUPPORTED)
845 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
846 		else
847 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
848 
849 		goto err;
850 	}
851 
852 	return;
853 err:
854 	ena_com_delete_debug_area(&adapter->ena_dev);
855 }
856 
857 static int ena_close(struct rte_eth_dev *dev)
858 {
859 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
860 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
861 	struct ena_adapter *adapter = dev->data->dev_private;
862 	int ret = 0;
863 
864 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
865 		return 0;
866 
867 	if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
868 		ret = ena_stop(dev);
869 	adapter->state = ENA_ADAPTER_STATE_CLOSED;
870 
871 	ena_rx_queue_release_all(dev);
872 	ena_tx_queue_release_all(dev);
873 
874 	rte_free(adapter->drv_stats);
875 	adapter->drv_stats = NULL;
876 
877 	rte_intr_disable(intr_handle);
878 	rte_intr_callback_unregister(intr_handle,
879 				     ena_interrupt_handler_rte,
880 				     dev);
881 
882 	/*
883 	 * MAC is not allocated dynamically. Setting NULL should prevent from
884 	 * release of the resource in the rte_eth_dev_release_port().
885 	 */
886 	dev->data->mac_addrs = NULL;
887 
888 	return ret;
889 }
890 
891 static int
892 ena_dev_reset(struct rte_eth_dev *dev)
893 {
894 	int rc = 0;
895 
896 	/* Cannot release memory in secondary process */
897 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
898 		PMD_DRV_LOG(WARNING, "dev_reset not supported in secondary.\n");
899 		return -EPERM;
900 	}
901 
902 	ena_destroy_device(dev);
903 	rc = eth_ena_dev_init(dev);
904 	if (rc)
905 		PMD_INIT_LOG(CRIT, "Cannot initialize device\n");
906 
907 	return rc;
908 }
909 
910 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
911 {
912 	int nb_queues = dev->data->nb_rx_queues;
913 	int i;
914 
915 	for (i = 0; i < nb_queues; i++)
916 		ena_rx_queue_release(dev, i);
917 }
918 
919 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
920 {
921 	int nb_queues = dev->data->nb_tx_queues;
922 	int i;
923 
924 	for (i = 0; i < nb_queues; i++)
925 		ena_tx_queue_release(dev, i);
926 }
927 
928 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
929 {
930 	struct ena_ring *ring = dev->data->rx_queues[qid];
931 
932 	/* Free ring resources */
933 	rte_free(ring->rx_buffer_info);
934 	ring->rx_buffer_info = NULL;
935 
936 	rte_free(ring->rx_refill_buffer);
937 	ring->rx_refill_buffer = NULL;
938 
939 	rte_free(ring->empty_rx_reqs);
940 	ring->empty_rx_reqs = NULL;
941 
942 	ring->configured = 0;
943 
944 	PMD_DRV_LOG(NOTICE, "Rx queue %d:%d released\n",
945 		ring->port_id, ring->id);
946 }
947 
948 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
949 {
950 	struct ena_ring *ring = dev->data->tx_queues[qid];
951 
952 	/* Free ring resources */
953 	rte_free(ring->push_buf_intermediate_buf);
954 
955 	rte_free(ring->tx_buffer_info);
956 
957 	rte_free(ring->empty_tx_reqs);
958 
959 	ring->empty_tx_reqs = NULL;
960 	ring->tx_buffer_info = NULL;
961 	ring->push_buf_intermediate_buf = NULL;
962 
963 	ring->configured = 0;
964 
965 	PMD_DRV_LOG(NOTICE, "Tx queue %d:%d released\n",
966 		ring->port_id, ring->id);
967 }
968 
969 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
970 {
971 	unsigned int i;
972 
973 	for (i = 0; i < ring->ring_size; ++i) {
974 		struct ena_rx_buffer *rx_info = &ring->rx_buffer_info[i];
975 		if (rx_info->mbuf) {
976 			rte_mbuf_raw_free(rx_info->mbuf);
977 			rx_info->mbuf = NULL;
978 		}
979 	}
980 }
981 
982 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
983 {
984 	unsigned int i;
985 
986 	for (i = 0; i < ring->ring_size; ++i) {
987 		struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
988 
989 		if (tx_buf->mbuf) {
990 			rte_pktmbuf_free(tx_buf->mbuf);
991 			tx_buf->mbuf = NULL;
992 		}
993 	}
994 }
995 
996 static int ena_link_update(struct rte_eth_dev *dev,
997 			   __rte_unused int wait_to_complete)
998 {
999 	struct rte_eth_link *link = &dev->data->dev_link;
1000 	struct ena_adapter *adapter = dev->data->dev_private;
1001 
1002 	link->link_status = adapter->link_status ? RTE_ETH_LINK_UP : RTE_ETH_LINK_DOWN;
1003 	link->link_speed = RTE_ETH_SPEED_NUM_NONE;
1004 	link->link_duplex = RTE_ETH_LINK_FULL_DUPLEX;
1005 
1006 	return 0;
1007 }
1008 
1009 static int ena_queue_start_all(struct rte_eth_dev *dev,
1010 			       enum ena_ring_type ring_type)
1011 {
1012 	struct ena_adapter *adapter = dev->data->dev_private;
1013 	struct ena_ring *queues = NULL;
1014 	int nb_queues;
1015 	int i = 0;
1016 	int rc = 0;
1017 
1018 	if (ring_type == ENA_RING_TYPE_RX) {
1019 		queues = adapter->rx_ring;
1020 		nb_queues = dev->data->nb_rx_queues;
1021 	} else {
1022 		queues = adapter->tx_ring;
1023 		nb_queues = dev->data->nb_tx_queues;
1024 	}
1025 	for (i = 0; i < nb_queues; i++) {
1026 		if (queues[i].configured) {
1027 			if (ring_type == ENA_RING_TYPE_RX) {
1028 				ena_assert_msg(
1029 					dev->data->rx_queues[i] == &queues[i],
1030 					"Inconsistent state of Rx queues\n");
1031 			} else {
1032 				ena_assert_msg(
1033 					dev->data->tx_queues[i] == &queues[i],
1034 					"Inconsistent state of Tx queues\n");
1035 			}
1036 
1037 			rc = ena_queue_start(dev, &queues[i]);
1038 
1039 			if (rc) {
1040 				PMD_INIT_LOG(ERR,
1041 					"Failed to start queue[%d] of type(%d)\n",
1042 					i, ring_type);
1043 				goto err;
1044 			}
1045 		}
1046 	}
1047 
1048 	return 0;
1049 
1050 err:
1051 	while (i--)
1052 		if (queues[i].configured)
1053 			ena_queue_stop(&queues[i]);
1054 
1055 	return rc;
1056 }
1057 
1058 static int
1059 ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx,
1060 		       bool use_large_llq_hdr)
1061 {
1062 	struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
1063 	struct ena_com_dev *ena_dev = ctx->ena_dev;
1064 	uint32_t max_tx_queue_size;
1065 	uint32_t max_rx_queue_size;
1066 
1067 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1068 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1069 			&ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
1070 		max_rx_queue_size = RTE_MIN(max_queue_ext->max_rx_cq_depth,
1071 			max_queue_ext->max_rx_sq_depth);
1072 		max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
1073 
1074 		if (ena_dev->tx_mem_queue_type ==
1075 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1076 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1077 				llq->max_llq_depth);
1078 		} else {
1079 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1080 				max_queue_ext->max_tx_sq_depth);
1081 		}
1082 
1083 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1084 			max_queue_ext->max_per_packet_rx_descs);
1085 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1086 			max_queue_ext->max_per_packet_tx_descs);
1087 	} else {
1088 		struct ena_admin_queue_feature_desc *max_queues =
1089 			&ctx->get_feat_ctx->max_queues;
1090 		max_rx_queue_size = RTE_MIN(max_queues->max_cq_depth,
1091 			max_queues->max_sq_depth);
1092 		max_tx_queue_size = max_queues->max_cq_depth;
1093 
1094 		if (ena_dev->tx_mem_queue_type ==
1095 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1096 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1097 				llq->max_llq_depth);
1098 		} else {
1099 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1100 				max_queues->max_sq_depth);
1101 		}
1102 
1103 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1104 			max_queues->max_packet_rx_descs);
1105 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1106 			max_queues->max_packet_tx_descs);
1107 	}
1108 
1109 	/* Round down to the nearest power of 2 */
1110 	max_rx_queue_size = rte_align32prevpow2(max_rx_queue_size);
1111 	max_tx_queue_size = rte_align32prevpow2(max_tx_queue_size);
1112 
1113 	if (use_large_llq_hdr) {
1114 		if ((llq->entry_size_ctrl_supported &
1115 		     ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
1116 		    (ena_dev->tx_mem_queue_type ==
1117 		     ENA_ADMIN_PLACEMENT_POLICY_DEV)) {
1118 			max_tx_queue_size /= 2;
1119 			PMD_INIT_LOG(INFO,
1120 				"Forcing large headers and decreasing maximum Tx queue size to %d\n",
1121 				max_tx_queue_size);
1122 		} else {
1123 			PMD_INIT_LOG(ERR,
1124 				"Forcing large headers failed: LLQ is disabled or device does not support large headers\n");
1125 		}
1126 	}
1127 
1128 	if (unlikely(max_rx_queue_size == 0 || max_tx_queue_size == 0)) {
1129 		PMD_INIT_LOG(ERR, "Invalid queue size\n");
1130 		return -EFAULT;
1131 	}
1132 
1133 	ctx->max_tx_queue_size = max_tx_queue_size;
1134 	ctx->max_rx_queue_size = max_rx_queue_size;
1135 
1136 	return 0;
1137 }
1138 
1139 static void ena_stats_restart(struct rte_eth_dev *dev)
1140 {
1141 	struct ena_adapter *adapter = dev->data->dev_private;
1142 
1143 	rte_atomic64_init(&adapter->drv_stats->ierrors);
1144 	rte_atomic64_init(&adapter->drv_stats->oerrors);
1145 	rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
1146 	adapter->drv_stats->rx_drops = 0;
1147 }
1148 
1149 static int ena_stats_get(struct rte_eth_dev *dev,
1150 			  struct rte_eth_stats *stats)
1151 {
1152 	struct ena_admin_basic_stats ena_stats;
1153 	struct ena_adapter *adapter = dev->data->dev_private;
1154 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1155 	int rc;
1156 	int i;
1157 	int max_rings_stats;
1158 
1159 	memset(&ena_stats, 0, sizeof(ena_stats));
1160 
1161 	rte_spinlock_lock(&adapter->admin_lock);
1162 	rc = ENA_PROXY(adapter, ena_com_get_dev_basic_stats, ena_dev,
1163 		       &ena_stats);
1164 	rte_spinlock_unlock(&adapter->admin_lock);
1165 	if (unlikely(rc)) {
1166 		PMD_DRV_LOG(ERR, "Could not retrieve statistics from ENA\n");
1167 		return rc;
1168 	}
1169 
1170 	/* Set of basic statistics from ENA */
1171 	stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
1172 					  ena_stats.rx_pkts_low);
1173 	stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
1174 					  ena_stats.tx_pkts_low);
1175 	stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
1176 					ena_stats.rx_bytes_low);
1177 	stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
1178 					ena_stats.tx_bytes_low);
1179 
1180 	/* Driver related stats */
1181 	stats->imissed = adapter->drv_stats->rx_drops;
1182 	stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
1183 	stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
1184 	stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
1185 
1186 	max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
1187 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
1188 	for (i = 0; i < max_rings_stats; ++i) {
1189 		struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
1190 
1191 		stats->q_ibytes[i] = rx_stats->bytes;
1192 		stats->q_ipackets[i] = rx_stats->cnt;
1193 		stats->q_errors[i] = rx_stats->bad_desc_num +
1194 			rx_stats->bad_req_id;
1195 	}
1196 
1197 	max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
1198 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
1199 	for (i = 0; i < max_rings_stats; ++i) {
1200 		struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
1201 
1202 		stats->q_obytes[i] = tx_stats->bytes;
1203 		stats->q_opackets[i] = tx_stats->cnt;
1204 	}
1205 
1206 	return 0;
1207 }
1208 
1209 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1210 {
1211 	struct ena_adapter *adapter;
1212 	struct ena_com_dev *ena_dev;
1213 	int rc = 0;
1214 
1215 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
1216 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
1217 	adapter = dev->data->dev_private;
1218 
1219 	ena_dev = &adapter->ena_dev;
1220 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
1221 
1222 	rc = ENA_PROXY(adapter, ena_com_set_dev_mtu, ena_dev, mtu);
1223 	if (rc)
1224 		PMD_DRV_LOG(ERR, "Could not set MTU: %d\n", mtu);
1225 	else
1226 		PMD_DRV_LOG(NOTICE, "MTU set to: %d\n", mtu);
1227 
1228 	return rc;
1229 }
1230 
1231 static int ena_start(struct rte_eth_dev *dev)
1232 {
1233 	struct ena_adapter *adapter = dev->data->dev_private;
1234 	uint64_t ticks;
1235 	int rc = 0;
1236 	uint16_t i;
1237 
1238 	/* Cannot allocate memory in secondary process */
1239 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1240 		PMD_DRV_LOG(WARNING, "dev_start not supported in secondary.\n");
1241 		return -EPERM;
1242 	}
1243 
1244 	rc = ena_setup_rx_intr(dev);
1245 	if (rc)
1246 		return rc;
1247 
1248 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
1249 	if (rc)
1250 		return rc;
1251 
1252 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
1253 	if (rc)
1254 		goto err_start_tx;
1255 
1256 	if (adapter->edev_data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG) {
1257 		rc = ena_rss_configure(adapter);
1258 		if (rc)
1259 			goto err_rss_init;
1260 	}
1261 
1262 	ena_stats_restart(dev);
1263 
1264 	adapter->timestamp_wd = rte_get_timer_cycles();
1265 	adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
1266 
1267 	ticks = rte_get_timer_hz();
1268 	rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
1269 			ena_timer_wd_callback, dev);
1270 
1271 	++adapter->dev_stats.dev_start;
1272 	adapter->state = ENA_ADAPTER_STATE_RUNNING;
1273 
1274 	for (i = 0; i < dev->data->nb_rx_queues; i++)
1275 		dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
1276 	for (i = 0; i < dev->data->nb_tx_queues; i++)
1277 		dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
1278 
1279 	return 0;
1280 
1281 err_rss_init:
1282 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1283 err_start_tx:
1284 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1285 	return rc;
1286 }
1287 
1288 static int ena_stop(struct rte_eth_dev *dev)
1289 {
1290 	struct ena_adapter *adapter = dev->data->dev_private;
1291 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1292 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1293 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
1294 	uint16_t i;
1295 	int rc;
1296 
1297 	/* Cannot free memory in secondary process */
1298 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1299 		PMD_DRV_LOG(WARNING, "dev_stop not supported in secondary.\n");
1300 		return -EPERM;
1301 	}
1302 
1303 	rte_timer_stop_sync(&adapter->timer_wd);
1304 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1305 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1306 
1307 	if (adapter->trigger_reset) {
1308 		rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
1309 		if (rc)
1310 			PMD_DRV_LOG(ERR, "Device reset failed, rc: %d\n", rc);
1311 	}
1312 
1313 	rte_intr_disable(intr_handle);
1314 
1315 	rte_intr_efd_disable(intr_handle);
1316 
1317 	/* Cleanup vector list */
1318 	rte_intr_vec_list_free(intr_handle);
1319 
1320 	rte_intr_enable(intr_handle);
1321 
1322 	++adapter->dev_stats.dev_stop;
1323 	adapter->state = ENA_ADAPTER_STATE_STOPPED;
1324 	dev->data->dev_started = 0;
1325 
1326 	for (i = 0; i < dev->data->nb_rx_queues; i++)
1327 		dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
1328 	for (i = 0; i < dev->data->nb_tx_queues; i++)
1329 		dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
1330 
1331 	return 0;
1332 }
1333 
1334 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring)
1335 {
1336 	struct ena_adapter *adapter = ring->adapter;
1337 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1338 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1339 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
1340 	struct ena_com_create_io_ctx ctx =
1341 		/* policy set to _HOST just to satisfy icc compiler */
1342 		{ ENA_ADMIN_PLACEMENT_POLICY_HOST,
1343 		  0, 0, 0, 0, 0 };
1344 	uint16_t ena_qid;
1345 	unsigned int i;
1346 	int rc;
1347 
1348 	ctx.msix_vector = -1;
1349 	if (ring->type == ENA_RING_TYPE_TX) {
1350 		ena_qid = ENA_IO_TXQ_IDX(ring->id);
1351 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1352 		ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1353 		for (i = 0; i < ring->ring_size; i++)
1354 			ring->empty_tx_reqs[i] = i;
1355 	} else {
1356 		ena_qid = ENA_IO_RXQ_IDX(ring->id);
1357 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1358 		if (rte_intr_dp_is_en(intr_handle))
1359 			ctx.msix_vector =
1360 				rte_intr_vec_list_index_get(intr_handle,
1361 								   ring->id);
1362 
1363 		for (i = 0; i < ring->ring_size; i++)
1364 			ring->empty_rx_reqs[i] = i;
1365 	}
1366 	ctx.queue_size = ring->ring_size;
1367 	ctx.qid = ena_qid;
1368 	ctx.numa_node = ring->numa_socket_id;
1369 
1370 	rc = ena_com_create_io_queue(ena_dev, &ctx);
1371 	if (rc) {
1372 		PMD_DRV_LOG(ERR,
1373 			"Failed to create IO queue[%d] (qid:%d), rc: %d\n",
1374 			ring->id, ena_qid, rc);
1375 		return rc;
1376 	}
1377 
1378 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1379 				     &ring->ena_com_io_sq,
1380 				     &ring->ena_com_io_cq);
1381 	if (rc) {
1382 		PMD_DRV_LOG(ERR,
1383 			"Failed to get IO queue[%d] handlers, rc: %d\n",
1384 			ring->id, rc);
1385 		ena_com_destroy_io_queue(ena_dev, ena_qid);
1386 		return rc;
1387 	}
1388 
1389 	if (ring->type == ENA_RING_TYPE_TX)
1390 		ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1391 
1392 	/* Start with Rx interrupts being masked. */
1393 	if (ring->type == ENA_RING_TYPE_RX && rte_intr_dp_is_en(intr_handle))
1394 		ena_rx_queue_intr_disable(dev, ring->id);
1395 
1396 	return 0;
1397 }
1398 
1399 static void ena_queue_stop(struct ena_ring *ring)
1400 {
1401 	struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
1402 
1403 	if (ring->type == ENA_RING_TYPE_RX) {
1404 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
1405 		ena_rx_queue_release_bufs(ring);
1406 	} else {
1407 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
1408 		ena_tx_queue_release_bufs(ring);
1409 	}
1410 }
1411 
1412 static void ena_queue_stop_all(struct rte_eth_dev *dev,
1413 			      enum ena_ring_type ring_type)
1414 {
1415 	struct ena_adapter *adapter = dev->data->dev_private;
1416 	struct ena_ring *queues = NULL;
1417 	uint16_t nb_queues, i;
1418 
1419 	if (ring_type == ENA_RING_TYPE_RX) {
1420 		queues = adapter->rx_ring;
1421 		nb_queues = dev->data->nb_rx_queues;
1422 	} else {
1423 		queues = adapter->tx_ring;
1424 		nb_queues = dev->data->nb_tx_queues;
1425 	}
1426 
1427 	for (i = 0; i < nb_queues; ++i)
1428 		if (queues[i].configured)
1429 			ena_queue_stop(&queues[i]);
1430 }
1431 
1432 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring)
1433 {
1434 	int rc, bufs_num;
1435 
1436 	ena_assert_msg(ring->configured == 1,
1437 		       "Trying to start unconfigured queue\n");
1438 
1439 	rc = ena_create_io_queue(dev, ring);
1440 	if (rc) {
1441 		PMD_INIT_LOG(ERR, "Failed to create IO queue\n");
1442 		return rc;
1443 	}
1444 
1445 	ring->next_to_clean = 0;
1446 	ring->next_to_use = 0;
1447 
1448 	if (ring->type == ENA_RING_TYPE_TX) {
1449 		ring->tx_stats.available_desc =
1450 			ena_com_free_q_entries(ring->ena_com_io_sq);
1451 		return 0;
1452 	}
1453 
1454 	bufs_num = ring->ring_size - 1;
1455 	rc = ena_populate_rx_queue(ring, bufs_num);
1456 	if (rc != bufs_num) {
1457 		ena_com_destroy_io_queue(&ring->adapter->ena_dev,
1458 					 ENA_IO_RXQ_IDX(ring->id));
1459 		PMD_INIT_LOG(ERR, "Failed to populate Rx ring\n");
1460 		return ENA_COM_FAULT;
1461 	}
1462 	/* Flush per-core RX buffers pools cache as they can be used on other
1463 	 * cores as well.
1464 	 */
1465 	rte_mempool_cache_flush(NULL, ring->mb_pool);
1466 
1467 	return 0;
1468 }
1469 
1470 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1471 			      uint16_t queue_idx,
1472 			      uint16_t nb_desc,
1473 			      unsigned int socket_id,
1474 			      const struct rte_eth_txconf *tx_conf)
1475 {
1476 	struct ena_ring *txq = NULL;
1477 	struct ena_adapter *adapter = dev->data->dev_private;
1478 	unsigned int i;
1479 	uint16_t dyn_thresh;
1480 
1481 	txq = &adapter->tx_ring[queue_idx];
1482 
1483 	if (txq->configured) {
1484 		PMD_DRV_LOG(CRIT,
1485 			"API violation. Queue[%d] is already configured\n",
1486 			queue_idx);
1487 		return ENA_COM_FAULT;
1488 	}
1489 
1490 	if (!rte_is_power_of_2(nb_desc)) {
1491 		PMD_DRV_LOG(ERR,
1492 			"Unsupported size of Tx queue: %d is not a power of 2.\n",
1493 			nb_desc);
1494 		return -EINVAL;
1495 	}
1496 
1497 	if (nb_desc > adapter->max_tx_ring_size) {
1498 		PMD_DRV_LOG(ERR,
1499 			"Unsupported size of Tx queue (max size: %d)\n",
1500 			adapter->max_tx_ring_size);
1501 		return -EINVAL;
1502 	}
1503 
1504 	txq->port_id = dev->data->port_id;
1505 	txq->next_to_clean = 0;
1506 	txq->next_to_use = 0;
1507 	txq->ring_size = nb_desc;
1508 	txq->size_mask = nb_desc - 1;
1509 	txq->numa_socket_id = socket_id;
1510 	txq->pkts_without_db = false;
1511 	txq->last_cleanup_ticks = 0;
1512 
1513 	txq->tx_buffer_info = rte_zmalloc_socket("txq->tx_buffer_info",
1514 		sizeof(struct ena_tx_buffer) * txq->ring_size,
1515 		RTE_CACHE_LINE_SIZE,
1516 		socket_id);
1517 	if (!txq->tx_buffer_info) {
1518 		PMD_DRV_LOG(ERR,
1519 			"Failed to allocate memory for Tx buffer info\n");
1520 		return -ENOMEM;
1521 	}
1522 
1523 	txq->empty_tx_reqs = rte_zmalloc_socket("txq->empty_tx_reqs",
1524 		sizeof(uint16_t) * txq->ring_size,
1525 		RTE_CACHE_LINE_SIZE,
1526 		socket_id);
1527 	if (!txq->empty_tx_reqs) {
1528 		PMD_DRV_LOG(ERR,
1529 			"Failed to allocate memory for empty Tx requests\n");
1530 		rte_free(txq->tx_buffer_info);
1531 		return -ENOMEM;
1532 	}
1533 
1534 	txq->push_buf_intermediate_buf =
1535 		rte_zmalloc_socket("txq->push_buf_intermediate_buf",
1536 			txq->tx_max_header_size,
1537 			RTE_CACHE_LINE_SIZE,
1538 			socket_id);
1539 	if (!txq->push_buf_intermediate_buf) {
1540 		PMD_DRV_LOG(ERR, "Failed to alloc push buffer for LLQ\n");
1541 		rte_free(txq->tx_buffer_info);
1542 		rte_free(txq->empty_tx_reqs);
1543 		return -ENOMEM;
1544 	}
1545 
1546 	for (i = 0; i < txq->ring_size; i++)
1547 		txq->empty_tx_reqs[i] = i;
1548 
1549 	txq->offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1550 
1551 	/* Check if caller provided the Tx cleanup threshold value. */
1552 	if (tx_conf->tx_free_thresh != 0) {
1553 		txq->tx_free_thresh = tx_conf->tx_free_thresh;
1554 	} else {
1555 		dyn_thresh = txq->ring_size -
1556 			txq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1557 		txq->tx_free_thresh = RTE_MAX(dyn_thresh,
1558 			txq->ring_size - ENA_REFILL_THRESH_PACKET);
1559 	}
1560 
1561 	txq->missing_tx_completion_threshold =
1562 		RTE_MIN(txq->ring_size / 2, ENA_DEFAULT_MISSING_COMP);
1563 
1564 	/* Store pointer to this queue in upper layer */
1565 	txq->configured = 1;
1566 	dev->data->tx_queues[queue_idx] = txq;
1567 
1568 	return 0;
1569 }
1570 
1571 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1572 			      uint16_t queue_idx,
1573 			      uint16_t nb_desc,
1574 			      unsigned int socket_id,
1575 			      const struct rte_eth_rxconf *rx_conf,
1576 			      struct rte_mempool *mp)
1577 {
1578 	struct ena_adapter *adapter = dev->data->dev_private;
1579 	struct ena_ring *rxq = NULL;
1580 	size_t buffer_size;
1581 	int i;
1582 	uint16_t dyn_thresh;
1583 
1584 	rxq = &adapter->rx_ring[queue_idx];
1585 	if (rxq->configured) {
1586 		PMD_DRV_LOG(CRIT,
1587 			"API violation. Queue[%d] is already configured\n",
1588 			queue_idx);
1589 		return ENA_COM_FAULT;
1590 	}
1591 
1592 	if (!rte_is_power_of_2(nb_desc)) {
1593 		PMD_DRV_LOG(ERR,
1594 			"Unsupported size of Rx queue: %d is not a power of 2.\n",
1595 			nb_desc);
1596 		return -EINVAL;
1597 	}
1598 
1599 	if (nb_desc > adapter->max_rx_ring_size) {
1600 		PMD_DRV_LOG(ERR,
1601 			"Unsupported size of Rx queue (max size: %d)\n",
1602 			adapter->max_rx_ring_size);
1603 		return -EINVAL;
1604 	}
1605 
1606 	/* ENA isn't supporting buffers smaller than 1400 bytes */
1607 	buffer_size = rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
1608 	if (buffer_size < ENA_RX_BUF_MIN_SIZE) {
1609 		PMD_DRV_LOG(ERR,
1610 			"Unsupported size of Rx buffer: %zu (min size: %d)\n",
1611 			buffer_size, ENA_RX_BUF_MIN_SIZE);
1612 		return -EINVAL;
1613 	}
1614 
1615 	rxq->port_id = dev->data->port_id;
1616 	rxq->next_to_clean = 0;
1617 	rxq->next_to_use = 0;
1618 	rxq->ring_size = nb_desc;
1619 	rxq->size_mask = nb_desc - 1;
1620 	rxq->numa_socket_id = socket_id;
1621 	rxq->mb_pool = mp;
1622 
1623 	rxq->rx_buffer_info = rte_zmalloc_socket("rxq->buffer_info",
1624 		sizeof(struct ena_rx_buffer) * nb_desc,
1625 		RTE_CACHE_LINE_SIZE,
1626 		socket_id);
1627 	if (!rxq->rx_buffer_info) {
1628 		PMD_DRV_LOG(ERR,
1629 			"Failed to allocate memory for Rx buffer info\n");
1630 		return -ENOMEM;
1631 	}
1632 
1633 	rxq->rx_refill_buffer = rte_zmalloc_socket("rxq->rx_refill_buffer",
1634 		sizeof(struct rte_mbuf *) * nb_desc,
1635 		RTE_CACHE_LINE_SIZE,
1636 		socket_id);
1637 	if (!rxq->rx_refill_buffer) {
1638 		PMD_DRV_LOG(ERR,
1639 			"Failed to allocate memory for Rx refill buffer\n");
1640 		rte_free(rxq->rx_buffer_info);
1641 		rxq->rx_buffer_info = NULL;
1642 		return -ENOMEM;
1643 	}
1644 
1645 	rxq->empty_rx_reqs = rte_zmalloc_socket("rxq->empty_rx_reqs",
1646 		sizeof(uint16_t) * nb_desc,
1647 		RTE_CACHE_LINE_SIZE,
1648 		socket_id);
1649 	if (!rxq->empty_rx_reqs) {
1650 		PMD_DRV_LOG(ERR,
1651 			"Failed to allocate memory for empty Rx requests\n");
1652 		rte_free(rxq->rx_buffer_info);
1653 		rxq->rx_buffer_info = NULL;
1654 		rte_free(rxq->rx_refill_buffer);
1655 		rxq->rx_refill_buffer = NULL;
1656 		return -ENOMEM;
1657 	}
1658 
1659 	for (i = 0; i < nb_desc; i++)
1660 		rxq->empty_rx_reqs[i] = i;
1661 
1662 	rxq->offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1663 
1664 	if (rx_conf->rx_free_thresh != 0) {
1665 		rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1666 	} else {
1667 		dyn_thresh = rxq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1668 		rxq->rx_free_thresh = RTE_MIN(dyn_thresh,
1669 			(uint16_t)(ENA_REFILL_THRESH_PACKET));
1670 	}
1671 
1672 	/* Store pointer to this queue in upper layer */
1673 	rxq->configured = 1;
1674 	dev->data->rx_queues[queue_idx] = rxq;
1675 
1676 	return 0;
1677 }
1678 
1679 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
1680 				  struct rte_mbuf *mbuf, uint16_t id)
1681 {
1682 	struct ena_com_buf ebuf;
1683 	int rc;
1684 
1685 	/* prepare physical address for DMA transaction */
1686 	ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1687 	ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1688 
1689 	/* pass resource to device */
1690 	rc = ena_com_add_single_rx_desc(io_sq, &ebuf, id);
1691 	if (unlikely(rc != 0))
1692 		PMD_RX_LOG(WARNING, "Failed adding Rx desc\n");
1693 
1694 	return rc;
1695 }
1696 
1697 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1698 {
1699 	unsigned int i;
1700 	int rc;
1701 	uint16_t next_to_use = rxq->next_to_use;
1702 	uint16_t req_id;
1703 #ifdef RTE_ETHDEV_DEBUG_RX
1704 	uint16_t in_use;
1705 #endif
1706 	struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1707 
1708 	if (unlikely(!count))
1709 		return 0;
1710 
1711 #ifdef RTE_ETHDEV_DEBUG_RX
1712 	in_use = rxq->ring_size - 1 -
1713 		ena_com_free_q_entries(rxq->ena_com_io_sq);
1714 	if (unlikely((in_use + count) >= rxq->ring_size))
1715 		PMD_RX_LOG(ERR, "Bad Rx ring state\n");
1716 #endif
1717 
1718 	/* get resources for incoming packets */
1719 	rc = rte_pktmbuf_alloc_bulk(rxq->mb_pool, mbufs, count);
1720 	if (unlikely(rc < 0)) {
1721 		rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1722 		++rxq->rx_stats.mbuf_alloc_fail;
1723 		PMD_RX_LOG(DEBUG, "There are not enough free buffers\n");
1724 		return 0;
1725 	}
1726 
1727 	for (i = 0; i < count; i++) {
1728 		struct rte_mbuf *mbuf = mbufs[i];
1729 		struct ena_rx_buffer *rx_info;
1730 
1731 		if (likely((i + 4) < count))
1732 			rte_prefetch0(mbufs[i + 4]);
1733 
1734 		req_id = rxq->empty_rx_reqs[next_to_use];
1735 		rx_info = &rxq->rx_buffer_info[req_id];
1736 
1737 		rc = ena_add_single_rx_desc(rxq->ena_com_io_sq, mbuf, req_id);
1738 		if (unlikely(rc != 0))
1739 			break;
1740 
1741 		rx_info->mbuf = mbuf;
1742 		next_to_use = ENA_IDX_NEXT_MASKED(next_to_use, rxq->size_mask);
1743 	}
1744 
1745 	if (unlikely(i < count)) {
1746 		PMD_RX_LOG(WARNING,
1747 			"Refilled Rx queue[%d] with only %d/%d buffers\n",
1748 			rxq->id, i, count);
1749 		rte_pktmbuf_free_bulk(&mbufs[i], count - i);
1750 		++rxq->rx_stats.refill_partial;
1751 	}
1752 
1753 	/* When we submitted free resources to device... */
1754 	if (likely(i > 0)) {
1755 		/* ...let HW know that it can fill buffers with data. */
1756 		ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1757 
1758 		rxq->next_to_use = next_to_use;
1759 	}
1760 
1761 	return i;
1762 }
1763 
1764 static size_t ena_get_metrics_entries(struct ena_adapter *adapter)
1765 {
1766 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1767 	size_t metrics_num = 0;
1768 
1769 	if (ena_com_get_cap(ena_dev, ENA_ADMIN_CUSTOMER_METRICS))
1770 		metrics_num = ENA_STATS_ARRAY_METRICS;
1771 	else if (ena_com_get_cap(ena_dev, ENA_ADMIN_ENI_STATS))
1772 		metrics_num = ENA_STATS_ARRAY_METRICS_LEGACY;
1773 	PMD_DRV_LOG(NOTICE, "0x%x customer metrics are supported\n", (unsigned int)metrics_num);
1774 	if (metrics_num > ENA_MAX_CUSTOMER_METRICS) {
1775 		PMD_DRV_LOG(NOTICE, "Not enough space for the requested customer metrics\n");
1776 		metrics_num = ENA_MAX_CUSTOMER_METRICS;
1777 	}
1778 	return metrics_num;
1779 }
1780 
1781 static int ena_device_init(struct ena_adapter *adapter,
1782 			   struct rte_pci_device *pdev,
1783 			   struct ena_com_dev_get_features_ctx *get_feat_ctx)
1784 {
1785 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1786 	uint32_t aenq_groups;
1787 	int rc;
1788 	bool readless_supported;
1789 
1790 	/* Initialize mmio registers */
1791 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
1792 	if (rc) {
1793 		PMD_DRV_LOG(ERR, "Failed to init MMIO read less\n");
1794 		return rc;
1795 	}
1796 
1797 	/* The PCIe configuration space revision id indicate if mmio reg
1798 	 * read is disabled.
1799 	 */
1800 	readless_supported = !(pdev->id.class_id & ENA_MMIO_DISABLE_REG_READ);
1801 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1802 
1803 	/* reset device */
1804 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1805 	if (rc) {
1806 		PMD_DRV_LOG(ERR, "Cannot reset device\n");
1807 		goto err_mmio_read_less;
1808 	}
1809 
1810 	/* check FW version */
1811 	rc = ena_com_validate_version(ena_dev);
1812 	if (rc) {
1813 		PMD_DRV_LOG(ERR, "Device version is too low\n");
1814 		goto err_mmio_read_less;
1815 	}
1816 
1817 	ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1818 
1819 	/* ENA device administration layer init */
1820 	rc = ena_com_admin_init(ena_dev, &aenq_handlers);
1821 	if (rc) {
1822 		PMD_DRV_LOG(ERR,
1823 			"Cannot initialize ENA admin queue\n");
1824 		goto err_mmio_read_less;
1825 	}
1826 
1827 	/* To enable the msix interrupts the driver needs to know the number
1828 	 * of queues. So the driver uses polling mode to retrieve this
1829 	 * information.
1830 	 */
1831 	ena_com_set_admin_polling_mode(ena_dev, true);
1832 
1833 	ena_config_host_info(ena_dev);
1834 
1835 	/* Get Device Attributes and features */
1836 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1837 	if (rc) {
1838 		PMD_DRV_LOG(ERR,
1839 			"Cannot get attribute for ENA device, rc: %d\n", rc);
1840 		goto err_admin_init;
1841 	}
1842 
1843 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1844 		      BIT(ENA_ADMIN_NOTIFICATION) |
1845 		      BIT(ENA_ADMIN_KEEP_ALIVE) |
1846 		      BIT(ENA_ADMIN_FATAL_ERROR) |
1847 		      BIT(ENA_ADMIN_WARNING);
1848 
1849 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
1850 
1851 	adapter->all_aenq_groups = aenq_groups;
1852 	/* The actual supported number of metrics is negotiated with the device at runtime */
1853 	adapter->metrics_num = ena_get_metrics_entries(adapter);
1854 
1855 	return 0;
1856 
1857 err_admin_init:
1858 	ena_com_admin_destroy(ena_dev);
1859 
1860 err_mmio_read_less:
1861 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1862 
1863 	return rc;
1864 }
1865 
1866 static void ena_interrupt_handler_rte(void *cb_arg)
1867 {
1868 	struct rte_eth_dev *dev = cb_arg;
1869 	struct ena_adapter *adapter = dev->data->dev_private;
1870 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1871 
1872 	ena_com_admin_q_comp_intr_handler(ena_dev);
1873 	if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED))
1874 		ena_com_aenq_intr_handler(ena_dev, dev);
1875 }
1876 
1877 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1878 {
1879 	if (!(adapter->active_aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE)))
1880 		return;
1881 
1882 	if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1883 		return;
1884 
1885 	if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1886 	    adapter->keep_alive_timeout)) {
1887 		PMD_DRV_LOG(ERR, "Keep alive timeout\n");
1888 		ena_trigger_reset(adapter, ENA_REGS_RESET_KEEP_ALIVE_TO);
1889 		++adapter->dev_stats.wd_expired;
1890 	}
1891 }
1892 
1893 /* Check if admin queue is enabled */
1894 static void check_for_admin_com_state(struct ena_adapter *adapter)
1895 {
1896 	if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1897 		PMD_DRV_LOG(ERR, "ENA admin queue is not in running state\n");
1898 		ena_trigger_reset(adapter, ENA_REGS_RESET_ADMIN_TO);
1899 	}
1900 }
1901 
1902 static int check_for_tx_completion_in_queue(struct ena_adapter *adapter,
1903 					    struct ena_ring *tx_ring)
1904 {
1905 	struct ena_tx_buffer *tx_buf;
1906 	uint64_t timestamp;
1907 	uint64_t completion_delay;
1908 	uint32_t missed_tx = 0;
1909 	unsigned int i;
1910 	int rc = 0;
1911 
1912 	for (i = 0; i < tx_ring->ring_size; ++i) {
1913 		tx_buf = &tx_ring->tx_buffer_info[i];
1914 		timestamp = tx_buf->timestamp;
1915 
1916 		if (timestamp == 0)
1917 			continue;
1918 
1919 		completion_delay = rte_get_timer_cycles() - timestamp;
1920 		if (completion_delay > adapter->missing_tx_completion_to) {
1921 			if (unlikely(!tx_buf->print_once)) {
1922 				PMD_TX_LOG(WARNING,
1923 					"Found a Tx that wasn't completed on time, qid %d, index %d. "
1924 					"Missing Tx outstanding for %" PRIu64 " msecs.\n",
1925 					tx_ring->id, i,	completion_delay /
1926 					rte_get_timer_hz() * 1000);
1927 				tx_buf->print_once = true;
1928 			}
1929 			++missed_tx;
1930 		}
1931 	}
1932 
1933 	if (unlikely(missed_tx > tx_ring->missing_tx_completion_threshold)) {
1934 		PMD_DRV_LOG(ERR,
1935 			"The number of lost Tx completions is above the threshold (%d > %d). "
1936 			"Trigger the device reset.\n",
1937 			missed_tx,
1938 			tx_ring->missing_tx_completion_threshold);
1939 		adapter->reset_reason = ENA_REGS_RESET_MISS_TX_CMPL;
1940 		adapter->trigger_reset = true;
1941 		rc = -EIO;
1942 	}
1943 
1944 	tx_ring->tx_stats.missed_tx += missed_tx;
1945 
1946 	return rc;
1947 }
1948 
1949 static void check_for_tx_completions(struct ena_adapter *adapter)
1950 {
1951 	struct ena_ring *tx_ring;
1952 	uint64_t tx_cleanup_delay;
1953 	size_t qid;
1954 	int budget;
1955 	uint16_t nb_tx_queues = adapter->edev_data->nb_tx_queues;
1956 
1957 	if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT)
1958 		return;
1959 
1960 	nb_tx_queues = adapter->edev_data->nb_tx_queues;
1961 	budget = adapter->missing_tx_completion_budget;
1962 
1963 	qid = adapter->last_tx_comp_qid;
1964 	while (budget-- > 0) {
1965 		tx_ring = &adapter->tx_ring[qid];
1966 
1967 		/* Tx cleanup is called only by the burst function and can be
1968 		 * called dynamically by the application. Also cleanup is
1969 		 * limited by the threshold. To avoid false detection of the
1970 		 * missing HW Tx completion, get the delay since last cleanup
1971 		 * function was called.
1972 		 */
1973 		tx_cleanup_delay = rte_get_timer_cycles() -
1974 			tx_ring->last_cleanup_ticks;
1975 		if (tx_cleanup_delay < adapter->tx_cleanup_stall_delay)
1976 			check_for_tx_completion_in_queue(adapter, tx_ring);
1977 		qid = (qid + 1) % nb_tx_queues;
1978 	}
1979 
1980 	adapter->last_tx_comp_qid = qid;
1981 }
1982 
1983 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
1984 				  void *arg)
1985 {
1986 	struct rte_eth_dev *dev = arg;
1987 	struct ena_adapter *adapter = dev->data->dev_private;
1988 
1989 	if (unlikely(adapter->trigger_reset))
1990 		return;
1991 
1992 	check_for_missing_keep_alive(adapter);
1993 	check_for_admin_com_state(adapter);
1994 	check_for_tx_completions(adapter);
1995 
1996 	if (unlikely(adapter->trigger_reset)) {
1997 		PMD_DRV_LOG(ERR, "Trigger reset is on\n");
1998 		rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
1999 			NULL);
2000 	}
2001 }
2002 
2003 static inline void
2004 set_default_llq_configurations(struct ena_llq_configurations *llq_config,
2005 			       struct ena_admin_feature_llq_desc *llq,
2006 			       bool use_large_llq_hdr)
2007 {
2008 	llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
2009 	llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
2010 	llq_config->llq_num_decs_before_header =
2011 		ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
2012 
2013 	if (use_large_llq_hdr &&
2014 	    (llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B)) {
2015 		llq_config->llq_ring_entry_size =
2016 			ENA_ADMIN_LIST_ENTRY_SIZE_256B;
2017 		llq_config->llq_ring_entry_size_value = 256;
2018 	} else {
2019 		llq_config->llq_ring_entry_size =
2020 			ENA_ADMIN_LIST_ENTRY_SIZE_128B;
2021 		llq_config->llq_ring_entry_size_value = 128;
2022 	}
2023 }
2024 
2025 static int
2026 ena_set_queues_placement_policy(struct ena_adapter *adapter,
2027 				struct ena_com_dev *ena_dev,
2028 				struct ena_admin_feature_llq_desc *llq,
2029 				struct ena_llq_configurations *llq_default_configurations)
2030 {
2031 	int rc;
2032 	u32 llq_feature_mask;
2033 
2034 	if (!adapter->enable_llq) {
2035 		PMD_DRV_LOG(WARNING,
2036 			"NOTE: LLQ has been disabled as per user's request. "
2037 			"This may lead to a huge performance degradation!\n");
2038 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
2039 		return 0;
2040 	}
2041 
2042 	llq_feature_mask = 1 << ENA_ADMIN_LLQ;
2043 	if (!(ena_dev->supported_features & llq_feature_mask)) {
2044 		PMD_DRV_LOG(INFO,
2045 			"LLQ is not supported. Fallback to host mode policy.\n");
2046 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
2047 		return 0;
2048 	}
2049 
2050 	if (adapter->dev_mem_base == NULL) {
2051 		PMD_DRV_LOG(ERR,
2052 			"LLQ is advertised as supported, but device doesn't expose mem bar\n");
2053 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
2054 		return 0;
2055 	}
2056 
2057 	rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
2058 	if (unlikely(rc)) {
2059 		PMD_INIT_LOG(WARNING,
2060 			"Failed to config dev mode. Fallback to host mode policy.\n");
2061 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
2062 		return 0;
2063 	}
2064 
2065 	/* Nothing to config, exit */
2066 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
2067 		return 0;
2068 
2069 	ena_dev->mem_bar = adapter->dev_mem_base;
2070 
2071 	return 0;
2072 }
2073 
2074 static uint32_t ena_calc_max_io_queue_num(struct ena_com_dev *ena_dev,
2075 	struct ena_com_dev_get_features_ctx *get_feat_ctx)
2076 {
2077 	uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
2078 
2079 	/* Regular queues capabilities */
2080 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
2081 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
2082 			&get_feat_ctx->max_queue_ext.max_queue_ext;
2083 		io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
2084 				    max_queue_ext->max_rx_cq_num);
2085 		io_tx_sq_num = max_queue_ext->max_tx_sq_num;
2086 		io_tx_cq_num = max_queue_ext->max_tx_cq_num;
2087 	} else {
2088 		struct ena_admin_queue_feature_desc *max_queues =
2089 			&get_feat_ctx->max_queues;
2090 		io_tx_sq_num = max_queues->max_sq_num;
2091 		io_tx_cq_num = max_queues->max_cq_num;
2092 		io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
2093 	}
2094 
2095 	/* In case of LLQ use the llq number in the get feature cmd */
2096 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
2097 		io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
2098 
2099 	max_num_io_queues = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
2100 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_sq_num);
2101 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_cq_num);
2102 
2103 	if (unlikely(max_num_io_queues == 0)) {
2104 		PMD_DRV_LOG(ERR, "Number of IO queues cannot not be 0\n");
2105 		return -EFAULT;
2106 	}
2107 
2108 	return max_num_io_queues;
2109 }
2110 
2111 static void
2112 ena_set_offloads(struct ena_offloads *offloads,
2113 		 struct ena_admin_feature_offload_desc *offload_desc)
2114 {
2115 	if (offload_desc->tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK)
2116 		offloads->tx_offloads |= ENA_IPV4_TSO;
2117 
2118 	/* Tx IPv4 checksum offloads */
2119 	if (offload_desc->tx &
2120 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)
2121 		offloads->tx_offloads |= ENA_L3_IPV4_CSUM;
2122 	if (offload_desc->tx &
2123 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK)
2124 		offloads->tx_offloads |= ENA_L4_IPV4_CSUM;
2125 	if (offload_desc->tx &
2126 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)
2127 		offloads->tx_offloads |= ENA_L4_IPV4_CSUM_PARTIAL;
2128 
2129 	/* Tx IPv6 checksum offloads */
2130 	if (offload_desc->tx &
2131 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK)
2132 		offloads->tx_offloads |= ENA_L4_IPV6_CSUM;
2133 	if (offload_desc->tx &
2134 	     ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)
2135 		offloads->tx_offloads |= ENA_L4_IPV6_CSUM_PARTIAL;
2136 
2137 	/* Rx IPv4 checksum offloads */
2138 	if (offload_desc->rx_supported &
2139 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)
2140 		offloads->rx_offloads |= ENA_L3_IPV4_CSUM;
2141 	if (offload_desc->rx_supported &
2142 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK)
2143 		offloads->rx_offloads |= ENA_L4_IPV4_CSUM;
2144 
2145 	/* Rx IPv6 checksum offloads */
2146 	if (offload_desc->rx_supported &
2147 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK)
2148 		offloads->rx_offloads |= ENA_L4_IPV6_CSUM;
2149 
2150 	if (offload_desc->rx_supported &
2151 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_HASH_MASK)
2152 		offloads->rx_offloads |= ENA_RX_RSS_HASH;
2153 }
2154 
2155 static int ena_init_once(void)
2156 {
2157 	static bool init_done;
2158 
2159 	if (init_done)
2160 		return 0;
2161 
2162 	if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
2163 		/* Init timer subsystem for the ENA timer service. */
2164 		rte_timer_subsystem_init();
2165 		/* Register handler for requests from secondary processes. */
2166 		rte_mp_action_register(ENA_MP_NAME, ena_mp_primary_handle);
2167 	}
2168 
2169 	init_done = true;
2170 	return 0;
2171 }
2172 
2173 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
2174 {
2175 	struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
2176 	struct rte_pci_device *pci_dev;
2177 	struct rte_intr_handle *intr_handle;
2178 	struct ena_adapter *adapter = eth_dev->data->dev_private;
2179 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
2180 	struct ena_com_dev_get_features_ctx get_feat_ctx;
2181 	struct ena_llq_configurations llq_config;
2182 	const char *queue_type_str;
2183 	uint32_t max_num_io_queues;
2184 	int rc;
2185 	static int adapters_found;
2186 	bool disable_meta_caching;
2187 
2188 	eth_dev->dev_ops = &ena_dev_ops;
2189 	eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
2190 	eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
2191 	eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
2192 
2193 	rc = ena_init_once();
2194 	if (rc != 0)
2195 		return rc;
2196 
2197 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2198 		return 0;
2199 
2200 	eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
2201 
2202 	memset(adapter, 0, sizeof(struct ena_adapter));
2203 	ena_dev = &adapter->ena_dev;
2204 
2205 	adapter->edev_data = eth_dev->data;
2206 
2207 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2208 
2209 	PMD_INIT_LOG(INFO, "Initializing " PCI_PRI_FMT "\n",
2210 		     pci_dev->addr.domain,
2211 		     pci_dev->addr.bus,
2212 		     pci_dev->addr.devid,
2213 		     pci_dev->addr.function);
2214 
2215 	intr_handle = pci_dev->intr_handle;
2216 
2217 	adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
2218 	adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
2219 
2220 	if (!adapter->regs) {
2221 		PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)\n",
2222 			     ENA_REGS_BAR);
2223 		return -ENXIO;
2224 	}
2225 
2226 	ena_dev->reg_bar = adapter->regs;
2227 	/* Pass device data as a pointer which can be passed to the IO functions
2228 	 * by the ena_com (for example - the memory allocation).
2229 	 */
2230 	ena_dev->dmadev = eth_dev->data;
2231 
2232 	adapter->id_number = adapters_found;
2233 
2234 	snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
2235 		 adapter->id_number);
2236 
2237 	/* Assign default devargs values */
2238 	adapter->missing_tx_completion_to = ENA_TX_TIMEOUT;
2239 	adapter->enable_llq = true;
2240 	adapter->use_large_llq_hdr = false;
2241 
2242 	rc = ena_parse_devargs(adapter, pci_dev->device.devargs);
2243 	if (rc != 0) {
2244 		PMD_INIT_LOG(CRIT, "Failed to parse devargs\n");
2245 		goto err;
2246 	}
2247 	rc = ena_com_allocate_customer_metrics_buffer(ena_dev);
2248 	if (rc != 0) {
2249 		PMD_INIT_LOG(CRIT, "Failed to allocate customer metrics buffer\n");
2250 		goto err;
2251 	}
2252 
2253 	/* device specific initialization routine */
2254 	rc = ena_device_init(adapter, pci_dev, &get_feat_ctx);
2255 	if (rc) {
2256 		PMD_INIT_LOG(CRIT, "Failed to init ENA device\n");
2257 		goto err_metrics_delete;
2258 	}
2259 
2260 	/* Check if device supports LSC */
2261 	if (!(adapter->all_aenq_groups & BIT(ENA_ADMIN_LINK_CHANGE)))
2262 		adapter->edev_data->dev_flags &= ~RTE_ETH_DEV_INTR_LSC;
2263 
2264 	set_default_llq_configurations(&llq_config, &get_feat_ctx.llq,
2265 		adapter->use_large_llq_hdr);
2266 	rc = ena_set_queues_placement_policy(adapter, ena_dev,
2267 					     &get_feat_ctx.llq, &llq_config);
2268 	if (unlikely(rc)) {
2269 		PMD_INIT_LOG(CRIT, "Failed to set placement policy\n");
2270 		return rc;
2271 	}
2272 
2273 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
2274 		queue_type_str = "Regular";
2275 	else
2276 		queue_type_str = "Low latency";
2277 	PMD_DRV_LOG(INFO, "Placement policy: %s\n", queue_type_str);
2278 
2279 	calc_queue_ctx.ena_dev = ena_dev;
2280 	calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
2281 
2282 	max_num_io_queues = ena_calc_max_io_queue_num(ena_dev, &get_feat_ctx);
2283 	rc = ena_calc_io_queue_size(&calc_queue_ctx,
2284 		adapter->use_large_llq_hdr);
2285 	if (unlikely((rc != 0) || (max_num_io_queues == 0))) {
2286 		rc = -EFAULT;
2287 		goto err_device_destroy;
2288 	}
2289 
2290 	adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
2291 	adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
2292 	adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
2293 	adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
2294 	adapter->max_num_io_queues = max_num_io_queues;
2295 
2296 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2297 		disable_meta_caching =
2298 			!!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
2299 			BIT(ENA_ADMIN_DISABLE_META_CACHING));
2300 	} else {
2301 		disable_meta_caching = false;
2302 	}
2303 
2304 	/* prepare ring structures */
2305 	ena_init_rings(adapter, disable_meta_caching);
2306 
2307 	ena_config_debug_area(adapter);
2308 
2309 	/* Set max MTU for this device */
2310 	adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
2311 
2312 	ena_set_offloads(&adapter->offloads, &get_feat_ctx.offload);
2313 
2314 	/* Copy MAC address and point DPDK to it */
2315 	eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr;
2316 	rte_ether_addr_copy((struct rte_ether_addr *)
2317 			get_feat_ctx.dev_attr.mac_addr,
2318 			(struct rte_ether_addr *)adapter->mac_addr);
2319 
2320 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
2321 	if (unlikely(rc != 0)) {
2322 		PMD_DRV_LOG(ERR, "Failed to initialize RSS in ENA device\n");
2323 		goto err_delete_debug_area;
2324 	}
2325 
2326 	adapter->drv_stats = rte_zmalloc("adapter stats",
2327 					 sizeof(*adapter->drv_stats),
2328 					 RTE_CACHE_LINE_SIZE);
2329 	if (!adapter->drv_stats) {
2330 		PMD_DRV_LOG(ERR,
2331 			"Failed to allocate memory for adapter statistics\n");
2332 		rc = -ENOMEM;
2333 		goto err_rss_destroy;
2334 	}
2335 
2336 	rte_spinlock_init(&adapter->admin_lock);
2337 
2338 	rte_intr_callback_register(intr_handle,
2339 				   ena_interrupt_handler_rte,
2340 				   eth_dev);
2341 	rte_intr_enable(intr_handle);
2342 	ena_com_set_admin_polling_mode(ena_dev, false);
2343 	ena_com_admin_aenq_enable(ena_dev);
2344 
2345 	rte_timer_init(&adapter->timer_wd);
2346 
2347 	adapters_found++;
2348 	adapter->state = ENA_ADAPTER_STATE_INIT;
2349 
2350 	return 0;
2351 
2352 err_rss_destroy:
2353 	ena_com_rss_destroy(ena_dev);
2354 err_delete_debug_area:
2355 	ena_com_delete_debug_area(ena_dev);
2356 
2357 err_device_destroy:
2358 	ena_com_delete_host_info(ena_dev);
2359 	ena_com_admin_destroy(ena_dev);
2360 err_metrics_delete:
2361 	ena_com_delete_customer_metrics_buffer(ena_dev);
2362 err:
2363 	return rc;
2364 }
2365 
2366 static void ena_destroy_device(struct rte_eth_dev *eth_dev)
2367 {
2368 	struct ena_adapter *adapter = eth_dev->data->dev_private;
2369 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
2370 
2371 	if (adapter->state == ENA_ADAPTER_STATE_FREE)
2372 		return;
2373 
2374 	ena_com_set_admin_running_state(ena_dev, false);
2375 
2376 	if (adapter->state != ENA_ADAPTER_STATE_CLOSED)
2377 		ena_close(eth_dev);
2378 
2379 	ena_com_rss_destroy(ena_dev);
2380 
2381 	ena_com_delete_debug_area(ena_dev);
2382 	ena_com_delete_host_info(ena_dev);
2383 
2384 	ena_com_abort_admin_commands(ena_dev);
2385 	ena_com_wait_for_abort_completion(ena_dev);
2386 	ena_com_admin_destroy(ena_dev);
2387 	ena_com_mmio_reg_read_request_destroy(ena_dev);
2388 	ena_com_delete_customer_metrics_buffer(ena_dev);
2389 
2390 	adapter->state = ENA_ADAPTER_STATE_FREE;
2391 }
2392 
2393 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
2394 {
2395 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2396 		return 0;
2397 
2398 	ena_destroy_device(eth_dev);
2399 
2400 	return 0;
2401 }
2402 
2403 static int ena_dev_configure(struct rte_eth_dev *dev)
2404 {
2405 	struct ena_adapter *adapter = dev->data->dev_private;
2406 	int rc;
2407 
2408 	adapter->state = ENA_ADAPTER_STATE_CONFIG;
2409 
2410 	if (dev->data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG)
2411 		dev->data->dev_conf.rxmode.offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2412 	dev->data->dev_conf.txmode.offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2413 
2414 	/* Scattered Rx cannot be turned off in the HW, so this capability must
2415 	 * be forced.
2416 	 */
2417 	dev->data->scattered_rx = 1;
2418 
2419 	adapter->last_tx_comp_qid = 0;
2420 
2421 	adapter->missing_tx_completion_budget =
2422 		RTE_MIN(ENA_MONITORED_TX_QUEUES, dev->data->nb_tx_queues);
2423 
2424 	/* To avoid detection of the spurious Tx completion timeout due to
2425 	 * application not calling the Tx cleanup function, set timeout for the
2426 	 * Tx queue which should be half of the missing completion timeout for a
2427 	 * safety. If there will be a lot of missing Tx completions in the
2428 	 * queue, they will be detected sooner or later.
2429 	 */
2430 	adapter->tx_cleanup_stall_delay = adapter->missing_tx_completion_to / 2;
2431 
2432 	rc = ena_configure_aenq(adapter);
2433 
2434 	return rc;
2435 }
2436 
2437 static void ena_init_rings(struct ena_adapter *adapter,
2438 			   bool disable_meta_caching)
2439 {
2440 	size_t i;
2441 
2442 	for (i = 0; i < adapter->max_num_io_queues; i++) {
2443 		struct ena_ring *ring = &adapter->tx_ring[i];
2444 
2445 		ring->configured = 0;
2446 		ring->type = ENA_RING_TYPE_TX;
2447 		ring->adapter = adapter;
2448 		ring->id = i;
2449 		ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
2450 		ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
2451 		ring->sgl_size = adapter->max_tx_sgl_size;
2452 		ring->disable_meta_caching = disable_meta_caching;
2453 	}
2454 
2455 	for (i = 0; i < adapter->max_num_io_queues; i++) {
2456 		struct ena_ring *ring = &adapter->rx_ring[i];
2457 
2458 		ring->configured = 0;
2459 		ring->type = ENA_RING_TYPE_RX;
2460 		ring->adapter = adapter;
2461 		ring->id = i;
2462 		ring->sgl_size = adapter->max_rx_sgl_size;
2463 	}
2464 }
2465 
2466 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter)
2467 {
2468 	uint64_t port_offloads = 0;
2469 
2470 	if (adapter->offloads.rx_offloads & ENA_L3_IPV4_CSUM)
2471 		port_offloads |= RTE_ETH_RX_OFFLOAD_IPV4_CKSUM;
2472 
2473 	if (adapter->offloads.rx_offloads &
2474 	    (ENA_L4_IPV4_CSUM | ENA_L4_IPV6_CSUM))
2475 		port_offloads |=
2476 			RTE_ETH_RX_OFFLOAD_UDP_CKSUM | RTE_ETH_RX_OFFLOAD_TCP_CKSUM;
2477 
2478 	if (adapter->offloads.rx_offloads & ENA_RX_RSS_HASH)
2479 		port_offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2480 
2481 	port_offloads |= RTE_ETH_RX_OFFLOAD_SCATTER;
2482 
2483 	return port_offloads;
2484 }
2485 
2486 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter)
2487 {
2488 	uint64_t port_offloads = 0;
2489 
2490 	if (adapter->offloads.tx_offloads & ENA_IPV4_TSO)
2491 		port_offloads |= RTE_ETH_TX_OFFLOAD_TCP_TSO;
2492 
2493 	if (adapter->offloads.tx_offloads & ENA_L3_IPV4_CSUM)
2494 		port_offloads |= RTE_ETH_TX_OFFLOAD_IPV4_CKSUM;
2495 	if (adapter->offloads.tx_offloads &
2496 	    (ENA_L4_IPV4_CSUM_PARTIAL | ENA_L4_IPV4_CSUM |
2497 	     ENA_L4_IPV6_CSUM | ENA_L4_IPV6_CSUM_PARTIAL))
2498 		port_offloads |=
2499 			RTE_ETH_TX_OFFLOAD_UDP_CKSUM | RTE_ETH_TX_OFFLOAD_TCP_CKSUM;
2500 
2501 	port_offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2502 
2503 	port_offloads |= RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
2504 
2505 	return port_offloads;
2506 }
2507 
2508 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter)
2509 {
2510 	RTE_SET_USED(adapter);
2511 
2512 	return 0;
2513 }
2514 
2515 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter)
2516 {
2517 	uint64_t queue_offloads = 0;
2518 	RTE_SET_USED(adapter);
2519 
2520 	queue_offloads |= RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
2521 
2522 	return queue_offloads;
2523 }
2524 
2525 static int ena_infos_get(struct rte_eth_dev *dev,
2526 			  struct rte_eth_dev_info *dev_info)
2527 {
2528 	struct ena_adapter *adapter;
2529 	struct ena_com_dev *ena_dev;
2530 
2531 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
2532 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
2533 	adapter = dev->data->dev_private;
2534 
2535 	ena_dev = &adapter->ena_dev;
2536 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
2537 
2538 	dev_info->speed_capa =
2539 			RTE_ETH_LINK_SPEED_1G   |
2540 			RTE_ETH_LINK_SPEED_2_5G |
2541 			RTE_ETH_LINK_SPEED_5G   |
2542 			RTE_ETH_LINK_SPEED_10G  |
2543 			RTE_ETH_LINK_SPEED_25G  |
2544 			RTE_ETH_LINK_SPEED_40G  |
2545 			RTE_ETH_LINK_SPEED_50G  |
2546 			RTE_ETH_LINK_SPEED_100G;
2547 
2548 	/* Inform framework about available features */
2549 	dev_info->rx_offload_capa = ena_get_rx_port_offloads(adapter);
2550 	dev_info->tx_offload_capa = ena_get_tx_port_offloads(adapter);
2551 	dev_info->rx_queue_offload_capa = ena_get_rx_queue_offloads(adapter);
2552 	dev_info->tx_queue_offload_capa = ena_get_tx_queue_offloads(adapter);
2553 
2554 	dev_info->flow_type_rss_offloads = ENA_ALL_RSS_HF;
2555 	dev_info->hash_key_size = ENA_HASH_KEY_SIZE;
2556 
2557 	dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
2558 	dev_info->max_rx_pktlen  = adapter->max_mtu + RTE_ETHER_HDR_LEN +
2559 		RTE_ETHER_CRC_LEN;
2560 	dev_info->min_mtu = ENA_MIN_MTU;
2561 	dev_info->max_mtu = adapter->max_mtu;
2562 	dev_info->max_mac_addrs = 1;
2563 
2564 	dev_info->max_rx_queues = adapter->max_num_io_queues;
2565 	dev_info->max_tx_queues = adapter->max_num_io_queues;
2566 	dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
2567 
2568 	dev_info->rx_desc_lim.nb_max = adapter->max_rx_ring_size;
2569 	dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2570 	dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2571 					adapter->max_rx_sgl_size);
2572 	dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2573 					adapter->max_rx_sgl_size);
2574 
2575 	dev_info->tx_desc_lim.nb_max = adapter->max_tx_ring_size;
2576 	dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2577 	dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2578 					adapter->max_tx_sgl_size);
2579 	dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2580 					adapter->max_tx_sgl_size);
2581 
2582 	dev_info->default_rxportconf.ring_size = ENA_DEFAULT_RING_SIZE;
2583 	dev_info->default_txportconf.ring_size = ENA_DEFAULT_RING_SIZE;
2584 
2585 	dev_info->err_handle_mode = RTE_ETH_ERROR_HANDLE_MODE_PASSIVE;
2586 
2587 	return 0;
2588 }
2589 
2590 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len)
2591 {
2592 	mbuf->data_len = len;
2593 	mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2594 	mbuf->refcnt = 1;
2595 	mbuf->next = NULL;
2596 }
2597 
2598 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
2599 				    struct ena_com_rx_buf_info *ena_bufs,
2600 				    uint32_t descs,
2601 				    uint16_t *next_to_clean,
2602 				    uint8_t offset)
2603 {
2604 	struct rte_mbuf *mbuf;
2605 	struct rte_mbuf *mbuf_head;
2606 	struct ena_rx_buffer *rx_info;
2607 	int rc;
2608 	uint16_t ntc, len, req_id, buf = 0;
2609 
2610 	if (unlikely(descs == 0))
2611 		return NULL;
2612 
2613 	ntc = *next_to_clean;
2614 
2615 	len = ena_bufs[buf].len;
2616 	req_id = ena_bufs[buf].req_id;
2617 
2618 	rx_info = &rx_ring->rx_buffer_info[req_id];
2619 
2620 	mbuf = rx_info->mbuf;
2621 	RTE_ASSERT(mbuf != NULL);
2622 
2623 	ena_init_rx_mbuf(mbuf, len);
2624 
2625 	/* Fill the mbuf head with the data specific for 1st segment. */
2626 	mbuf_head = mbuf;
2627 	mbuf_head->nb_segs = descs;
2628 	mbuf_head->port = rx_ring->port_id;
2629 	mbuf_head->pkt_len = len;
2630 	mbuf_head->data_off += offset;
2631 
2632 	rx_info->mbuf = NULL;
2633 	rx_ring->empty_rx_reqs[ntc] = req_id;
2634 	ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2635 
2636 	while (--descs) {
2637 		++buf;
2638 		len = ena_bufs[buf].len;
2639 		req_id = ena_bufs[buf].req_id;
2640 
2641 		rx_info = &rx_ring->rx_buffer_info[req_id];
2642 		RTE_ASSERT(rx_info->mbuf != NULL);
2643 
2644 		if (unlikely(len == 0)) {
2645 			/*
2646 			 * Some devices can pass descriptor with the length 0.
2647 			 * To avoid confusion, the PMD is simply putting the
2648 			 * descriptor back, as it was never used. We'll avoid
2649 			 * mbuf allocation that way.
2650 			 */
2651 			rc = ena_add_single_rx_desc(rx_ring->ena_com_io_sq,
2652 				rx_info->mbuf, req_id);
2653 			if (unlikely(rc != 0)) {
2654 				/* Free the mbuf in case of an error. */
2655 				rte_mbuf_raw_free(rx_info->mbuf);
2656 			} else {
2657 				/*
2658 				 * If there was no error, just exit the loop as
2659 				 * 0 length descriptor is always the last one.
2660 				 */
2661 				break;
2662 			}
2663 		} else {
2664 			/* Create an mbuf chain. */
2665 			mbuf->next = rx_info->mbuf;
2666 			mbuf = mbuf->next;
2667 
2668 			ena_init_rx_mbuf(mbuf, len);
2669 			mbuf_head->pkt_len += len;
2670 		}
2671 
2672 		/*
2673 		 * Mark the descriptor as depleted and perform necessary
2674 		 * cleanup.
2675 		 * This code will execute in two cases:
2676 		 *  1. Descriptor len was greater than 0 - normal situation.
2677 		 *  2. Descriptor len was 0 and we failed to add the descriptor
2678 		 *     to the device. In that situation, we should try to add
2679 		 *     the mbuf again in the populate routine and mark the
2680 		 *     descriptor as used up by the device.
2681 		 */
2682 		rx_info->mbuf = NULL;
2683 		rx_ring->empty_rx_reqs[ntc] = req_id;
2684 		ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2685 	}
2686 
2687 	*next_to_clean = ntc;
2688 
2689 	return mbuf_head;
2690 }
2691 
2692 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
2693 				  uint16_t nb_pkts)
2694 {
2695 	struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
2696 	unsigned int free_queue_entries;
2697 	uint16_t next_to_clean = rx_ring->next_to_clean;
2698 	uint16_t descs_in_use;
2699 	struct rte_mbuf *mbuf;
2700 	uint16_t completed;
2701 	struct ena_com_rx_ctx ena_rx_ctx;
2702 	int i, rc = 0;
2703 	bool fill_hash;
2704 
2705 #ifdef RTE_ETHDEV_DEBUG_RX
2706 	/* Check adapter state */
2707 	if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2708 		PMD_RX_LOG(ALERT,
2709 			"Trying to receive pkts while device is NOT running\n");
2710 		return 0;
2711 	}
2712 #endif
2713 
2714 	fill_hash = rx_ring->offloads & RTE_ETH_RX_OFFLOAD_RSS_HASH;
2715 
2716 	descs_in_use = rx_ring->ring_size -
2717 		ena_com_free_q_entries(rx_ring->ena_com_io_sq) - 1;
2718 	nb_pkts = RTE_MIN(descs_in_use, nb_pkts);
2719 
2720 	for (completed = 0; completed < nb_pkts; completed++) {
2721 		ena_rx_ctx.max_bufs = rx_ring->sgl_size;
2722 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
2723 		ena_rx_ctx.descs = 0;
2724 		ena_rx_ctx.pkt_offset = 0;
2725 		/* receive packet context */
2726 		rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
2727 				    rx_ring->ena_com_io_sq,
2728 				    &ena_rx_ctx);
2729 		if (unlikely(rc)) {
2730 			PMD_RX_LOG(ERR,
2731 				"Failed to get the packet from the device, rc: %d\n",
2732 				rc);
2733 			if (rc == ENA_COM_NO_SPACE) {
2734 				++rx_ring->rx_stats.bad_desc_num;
2735 				ena_trigger_reset(rx_ring->adapter,
2736 					ENA_REGS_RESET_TOO_MANY_RX_DESCS);
2737 			} else {
2738 				++rx_ring->rx_stats.bad_req_id;
2739 				ena_trigger_reset(rx_ring->adapter,
2740 					ENA_REGS_RESET_INV_RX_REQ_ID);
2741 			}
2742 			return 0;
2743 		}
2744 
2745 		mbuf = ena_rx_mbuf(rx_ring,
2746 			ena_rx_ctx.ena_bufs,
2747 			ena_rx_ctx.descs,
2748 			&next_to_clean,
2749 			ena_rx_ctx.pkt_offset);
2750 		if (unlikely(mbuf == NULL)) {
2751 			for (i = 0; i < ena_rx_ctx.descs; ++i) {
2752 				rx_ring->empty_rx_reqs[next_to_clean] =
2753 					rx_ring->ena_bufs[i].req_id;
2754 				next_to_clean = ENA_IDX_NEXT_MASKED(
2755 					next_to_clean, rx_ring->size_mask);
2756 			}
2757 			break;
2758 		}
2759 
2760 		/* fill mbuf attributes if any */
2761 		ena_rx_mbuf_prepare(rx_ring, mbuf, &ena_rx_ctx, fill_hash);
2762 
2763 		if (unlikely(mbuf->ol_flags &
2764 				(RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD)))
2765 			rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors);
2766 
2767 		rx_pkts[completed] = mbuf;
2768 		rx_ring->rx_stats.bytes += mbuf->pkt_len;
2769 	}
2770 
2771 	rx_ring->rx_stats.cnt += completed;
2772 	rx_ring->next_to_clean = next_to_clean;
2773 
2774 	free_queue_entries = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
2775 
2776 	/* Burst refill to save doorbells, memory barriers, const interval */
2777 	if (free_queue_entries >= rx_ring->rx_free_thresh) {
2778 		ena_populate_rx_queue(rx_ring, free_queue_entries);
2779 	}
2780 
2781 	return completed;
2782 }
2783 
2784 static uint16_t
2785 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2786 		uint16_t nb_pkts)
2787 {
2788 	int32_t ret;
2789 	uint32_t i;
2790 	struct rte_mbuf *m;
2791 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2792 	struct ena_adapter *adapter = tx_ring->adapter;
2793 	struct rte_ipv4_hdr *ip_hdr;
2794 	uint64_t ol_flags;
2795 	uint64_t l4_csum_flag;
2796 	uint64_t dev_offload_capa;
2797 	uint16_t frag_field;
2798 	bool need_pseudo_csum;
2799 
2800 	dev_offload_capa = adapter->offloads.tx_offloads;
2801 	for (i = 0; i != nb_pkts; i++) {
2802 		m = tx_pkts[i];
2803 		ol_flags = m->ol_flags;
2804 
2805 		/* Check if any offload flag was set */
2806 		if (ol_flags == 0)
2807 			continue;
2808 
2809 		l4_csum_flag = ol_flags & RTE_MBUF_F_TX_L4_MASK;
2810 		/* SCTP checksum offload is not supported by the ENA. */
2811 		if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) ||
2812 		    l4_csum_flag == RTE_MBUF_F_TX_SCTP_CKSUM) {
2813 			PMD_TX_LOG(DEBUG,
2814 				"mbuf[%" PRIu32 "] has unsupported offloads flags set: 0x%" PRIu64 "\n",
2815 				i, ol_flags);
2816 			rte_errno = ENOTSUP;
2817 			return i;
2818 		}
2819 
2820 		if (unlikely(m->nb_segs >= tx_ring->sgl_size &&
2821 		    !(tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
2822 		      m->nb_segs == tx_ring->sgl_size &&
2823 		      m->data_len < tx_ring->tx_max_header_size))) {
2824 			PMD_TX_LOG(DEBUG,
2825 				"mbuf[%" PRIu32 "] has too many segments: %" PRIu16 "\n",
2826 				i, m->nb_segs);
2827 			rte_errno = EINVAL;
2828 			return i;
2829 		}
2830 
2831 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2832 		/* Check if requested offload is also enabled for the queue */
2833 		if ((ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
2834 		     !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM)) ||
2835 		    (l4_csum_flag == RTE_MBUF_F_TX_TCP_CKSUM &&
2836 		     !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) ||
2837 		    (l4_csum_flag == RTE_MBUF_F_TX_UDP_CKSUM &&
2838 		     !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM))) {
2839 			PMD_TX_LOG(DEBUG,
2840 				"mbuf[%" PRIu32 "]: requested offloads: %" PRIu16 " are not enabled for the queue[%u]\n",
2841 				i, m->nb_segs, tx_ring->id);
2842 			rte_errno = EINVAL;
2843 			return i;
2844 		}
2845 
2846 		/* The caller is obligated to set l2 and l3 len if any cksum
2847 		 * offload is enabled.
2848 		 */
2849 		if (unlikely(ol_flags & (RTE_MBUF_F_TX_IP_CKSUM | RTE_MBUF_F_TX_L4_MASK) &&
2850 		    (m->l2_len == 0 || m->l3_len == 0))) {
2851 			PMD_TX_LOG(DEBUG,
2852 				"mbuf[%" PRIu32 "]: l2_len or l3_len values are 0 while the offload was requested\n",
2853 				i);
2854 			rte_errno = EINVAL;
2855 			return i;
2856 		}
2857 		ret = rte_validate_tx_offload(m);
2858 		if (ret != 0) {
2859 			rte_errno = -ret;
2860 			return i;
2861 		}
2862 #endif
2863 
2864 		/* Verify HW support for requested offloads and determine if
2865 		 * pseudo header checksum is needed.
2866 		 */
2867 		need_pseudo_csum = false;
2868 		if (ol_flags & RTE_MBUF_F_TX_IPV4) {
2869 			if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
2870 			    !(dev_offload_capa & ENA_L3_IPV4_CSUM)) {
2871 				rte_errno = ENOTSUP;
2872 				return i;
2873 			}
2874 
2875 			if (ol_flags & RTE_MBUF_F_TX_TCP_SEG &&
2876 			    !(dev_offload_capa & ENA_IPV4_TSO)) {
2877 				rte_errno = ENOTSUP;
2878 				return i;
2879 			}
2880 
2881 			/* Check HW capabilities and if pseudo csum is needed
2882 			 * for L4 offloads.
2883 			 */
2884 			if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
2885 			    !(dev_offload_capa & ENA_L4_IPV4_CSUM)) {
2886 				if (dev_offload_capa &
2887 				    ENA_L4_IPV4_CSUM_PARTIAL) {
2888 					need_pseudo_csum = true;
2889 				} else {
2890 					rte_errno = ENOTSUP;
2891 					return i;
2892 				}
2893 			}
2894 
2895 			/* Parse the DF flag */
2896 			ip_hdr = rte_pktmbuf_mtod_offset(m,
2897 				struct rte_ipv4_hdr *, m->l2_len);
2898 			frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
2899 			if (frag_field & RTE_IPV4_HDR_DF_FLAG) {
2900 				m->packet_type |= RTE_PTYPE_L4_NONFRAG;
2901 			} else if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2902 				/* In case we are supposed to TSO and have DF
2903 				 * not set (DF=0) hardware must be provided with
2904 				 * partial checksum.
2905 				 */
2906 				need_pseudo_csum = true;
2907 			}
2908 		} else if (ol_flags & RTE_MBUF_F_TX_IPV6) {
2909 			/* There is no support for IPv6 TSO as for now. */
2910 			if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2911 				rte_errno = ENOTSUP;
2912 				return i;
2913 			}
2914 
2915 			/* Check HW capabilities and if pseudo csum is needed */
2916 			if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
2917 			    !(dev_offload_capa & ENA_L4_IPV6_CSUM)) {
2918 				if (dev_offload_capa &
2919 				    ENA_L4_IPV6_CSUM_PARTIAL) {
2920 					need_pseudo_csum = true;
2921 				} else {
2922 					rte_errno = ENOTSUP;
2923 					return i;
2924 				}
2925 			}
2926 		}
2927 
2928 		if (need_pseudo_csum) {
2929 			ret = rte_net_intel_cksum_flags_prepare(m, ol_flags);
2930 			if (ret != 0) {
2931 				rte_errno = -ret;
2932 				return i;
2933 			}
2934 		}
2935 	}
2936 
2937 	return i;
2938 }
2939 
2940 static void ena_update_hints(struct ena_adapter *adapter,
2941 			     struct ena_admin_ena_hw_hints *hints)
2942 {
2943 	if (hints->admin_completion_tx_timeout)
2944 		adapter->ena_dev.admin_queue.completion_timeout =
2945 			hints->admin_completion_tx_timeout * 1000;
2946 
2947 	if (hints->mmio_read_timeout)
2948 		/* convert to usec */
2949 		adapter->ena_dev.mmio_read.reg_read_to =
2950 			hints->mmio_read_timeout * 1000;
2951 
2952 	if (hints->driver_watchdog_timeout) {
2953 		if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
2954 			adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
2955 		else
2956 			// Convert msecs to ticks
2957 			adapter->keep_alive_timeout =
2958 				(hints->driver_watchdog_timeout *
2959 				rte_get_timer_hz()) / 1000;
2960 	}
2961 }
2962 
2963 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
2964 	struct ena_tx_buffer *tx_info,
2965 	struct rte_mbuf *mbuf,
2966 	void **push_header,
2967 	uint16_t *header_len)
2968 {
2969 	struct ena_com_buf *ena_buf;
2970 	uint16_t delta, seg_len, push_len;
2971 
2972 	delta = 0;
2973 	seg_len = mbuf->data_len;
2974 
2975 	tx_info->mbuf = mbuf;
2976 	ena_buf = tx_info->bufs;
2977 
2978 	if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2979 		/*
2980 		 * Tx header might be (and will be in most cases) smaller than
2981 		 * tx_max_header_size. But it's not an issue to send more data
2982 		 * to the device, than actually needed if the mbuf size is
2983 		 * greater than tx_max_header_size.
2984 		 */
2985 		push_len = RTE_MIN(mbuf->pkt_len, tx_ring->tx_max_header_size);
2986 		*header_len = push_len;
2987 
2988 		if (likely(push_len <= seg_len)) {
2989 			/* If the push header is in the single segment, then
2990 			 * just point it to the 1st mbuf data.
2991 			 */
2992 			*push_header = rte_pktmbuf_mtod(mbuf, uint8_t *);
2993 		} else {
2994 			/* If the push header lays in the several segments, copy
2995 			 * it to the intermediate buffer.
2996 			 */
2997 			rte_pktmbuf_read(mbuf, 0, push_len,
2998 				tx_ring->push_buf_intermediate_buf);
2999 			*push_header = tx_ring->push_buf_intermediate_buf;
3000 			delta = push_len - seg_len;
3001 		}
3002 	} else {
3003 		*push_header = NULL;
3004 		*header_len = 0;
3005 		push_len = 0;
3006 	}
3007 
3008 	/* Process first segment taking into consideration pushed header */
3009 	if (seg_len > push_len) {
3010 		ena_buf->paddr = mbuf->buf_iova +
3011 				mbuf->data_off +
3012 				push_len;
3013 		ena_buf->len = seg_len - push_len;
3014 		ena_buf++;
3015 		tx_info->num_of_bufs++;
3016 	}
3017 
3018 	while ((mbuf = mbuf->next) != NULL) {
3019 		seg_len = mbuf->data_len;
3020 
3021 		/* Skip mbufs if whole data is pushed as a header */
3022 		if (unlikely(delta > seg_len)) {
3023 			delta -= seg_len;
3024 			continue;
3025 		}
3026 
3027 		ena_buf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
3028 		ena_buf->len = seg_len - delta;
3029 		ena_buf++;
3030 		tx_info->num_of_bufs++;
3031 
3032 		delta = 0;
3033 	}
3034 }
3035 
3036 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf)
3037 {
3038 	struct ena_tx_buffer *tx_info;
3039 	struct ena_com_tx_ctx ena_tx_ctx = { { 0 } };
3040 	uint16_t next_to_use;
3041 	uint16_t header_len;
3042 	uint16_t req_id;
3043 	void *push_header;
3044 	int nb_hw_desc;
3045 	int rc;
3046 
3047 	/* Checking for space for 2 additional metadata descriptors due to
3048 	 * possible header split and metadata descriptor
3049 	 */
3050 	if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
3051 					  mbuf->nb_segs + 2)) {
3052 		PMD_DRV_LOG(DEBUG, "Not enough space in the tx queue\n");
3053 		return ENA_COM_NO_MEM;
3054 	}
3055 
3056 	next_to_use = tx_ring->next_to_use;
3057 
3058 	req_id = tx_ring->empty_tx_reqs[next_to_use];
3059 	tx_info = &tx_ring->tx_buffer_info[req_id];
3060 	tx_info->num_of_bufs = 0;
3061 	RTE_ASSERT(tx_info->mbuf == NULL);
3062 
3063 	ena_tx_map_mbuf(tx_ring, tx_info, mbuf, &push_header, &header_len);
3064 
3065 	ena_tx_ctx.ena_bufs = tx_info->bufs;
3066 	ena_tx_ctx.push_header = push_header;
3067 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
3068 	ena_tx_ctx.req_id = req_id;
3069 	ena_tx_ctx.header_len = header_len;
3070 
3071 	/* Set Tx offloads flags, if applicable */
3072 	ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads,
3073 		tx_ring->disable_meta_caching);
3074 
3075 	if (unlikely(ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
3076 			&ena_tx_ctx))) {
3077 		PMD_TX_LOG(DEBUG,
3078 			"LLQ Tx max burst size of queue %d achieved, writing doorbell to send burst\n",
3079 			tx_ring->id);
3080 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
3081 		tx_ring->tx_stats.doorbells++;
3082 		tx_ring->pkts_without_db = false;
3083 	}
3084 
3085 	/* prepare the packet's descriptors to dma engine */
3086 	rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq,	&ena_tx_ctx,
3087 		&nb_hw_desc);
3088 	if (unlikely(rc)) {
3089 		PMD_DRV_LOG(ERR, "Failed to prepare Tx buffers, rc: %d\n", rc);
3090 		++tx_ring->tx_stats.prepare_ctx_err;
3091 		ena_trigger_reset(tx_ring->adapter,
3092 			ENA_REGS_RESET_DRIVER_INVALID_STATE);
3093 		return rc;
3094 	}
3095 
3096 	tx_info->tx_descs = nb_hw_desc;
3097 	tx_info->timestamp = rte_get_timer_cycles();
3098 
3099 	tx_ring->tx_stats.cnt++;
3100 	tx_ring->tx_stats.bytes += mbuf->pkt_len;
3101 
3102 	tx_ring->next_to_use = ENA_IDX_NEXT_MASKED(next_to_use,
3103 		tx_ring->size_mask);
3104 
3105 	return 0;
3106 }
3107 
3108 static __rte_always_inline size_t
3109 ena_tx_cleanup_mbuf_fast(struct rte_mbuf **mbufs_to_clean,
3110 			 struct rte_mbuf *mbuf,
3111 			 size_t mbuf_cnt,
3112 			 size_t buf_size)
3113 {
3114 	struct rte_mbuf *m_next;
3115 
3116 	while (mbuf != NULL) {
3117 		m_next = mbuf->next;
3118 		mbufs_to_clean[mbuf_cnt++] = mbuf;
3119 		if (mbuf_cnt == buf_size) {
3120 			rte_mempool_put_bulk(mbufs_to_clean[0]->pool, (void **)mbufs_to_clean,
3121 				(unsigned int)mbuf_cnt);
3122 			mbuf_cnt = 0;
3123 		}
3124 		mbuf = m_next;
3125 	}
3126 
3127 	return mbuf_cnt;
3128 }
3129 
3130 static int ena_tx_cleanup(void *txp, uint32_t free_pkt_cnt)
3131 {
3132 	struct rte_mbuf *mbufs_to_clean[ENA_CLEANUP_BUF_SIZE];
3133 	struct ena_ring *tx_ring = (struct ena_ring *)txp;
3134 	size_t mbuf_cnt = 0;
3135 	unsigned int total_tx_descs = 0;
3136 	unsigned int total_tx_pkts = 0;
3137 	uint16_t cleanup_budget;
3138 	uint16_t next_to_clean = tx_ring->next_to_clean;
3139 	bool fast_free = tx_ring->offloads & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
3140 
3141 	/*
3142 	 * If free_pkt_cnt is equal to 0, it means that the user requested
3143 	 * full cleanup, so attempt to release all Tx descriptors
3144 	 * (ring_size - 1 -> size_mask)
3145 	 */
3146 	cleanup_budget = (free_pkt_cnt == 0) ? tx_ring->size_mask : free_pkt_cnt;
3147 
3148 	while (likely(total_tx_pkts < cleanup_budget)) {
3149 		struct rte_mbuf *mbuf;
3150 		struct ena_tx_buffer *tx_info;
3151 		uint16_t req_id;
3152 
3153 		if (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) != 0)
3154 			break;
3155 
3156 		if (unlikely(validate_tx_req_id(tx_ring, req_id) != 0))
3157 			break;
3158 
3159 		/* Get Tx info & store how many descs were processed  */
3160 		tx_info = &tx_ring->tx_buffer_info[req_id];
3161 		tx_info->timestamp = 0;
3162 
3163 		mbuf = tx_info->mbuf;
3164 		if (fast_free) {
3165 			mbuf_cnt = ena_tx_cleanup_mbuf_fast(mbufs_to_clean, mbuf, mbuf_cnt,
3166 				ENA_CLEANUP_BUF_SIZE);
3167 		} else {
3168 			rte_pktmbuf_free(mbuf);
3169 		}
3170 
3171 		tx_info->mbuf = NULL;
3172 		tx_ring->empty_tx_reqs[next_to_clean] = req_id;
3173 
3174 		total_tx_descs += tx_info->tx_descs;
3175 		total_tx_pkts++;
3176 
3177 		/* Put back descriptor to the ring for reuse */
3178 		next_to_clean = ENA_IDX_NEXT_MASKED(next_to_clean,
3179 			tx_ring->size_mask);
3180 	}
3181 
3182 	if (likely(total_tx_descs > 0)) {
3183 		/* acknowledge completion of sent packets */
3184 		tx_ring->next_to_clean = next_to_clean;
3185 		ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
3186 	}
3187 
3188 	if (mbuf_cnt != 0)
3189 		rte_mempool_put_bulk(mbufs_to_clean[0]->pool,
3190 			(void **)mbufs_to_clean, mbuf_cnt);
3191 
3192 	/* Notify completion handler that full cleanup was performed */
3193 	if (free_pkt_cnt == 0 || total_tx_pkts < cleanup_budget)
3194 		tx_ring->last_cleanup_ticks = rte_get_timer_cycles();
3195 
3196 	return total_tx_pkts;
3197 }
3198 
3199 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
3200 				  uint16_t nb_pkts)
3201 {
3202 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
3203 	int available_desc;
3204 	uint16_t sent_idx = 0;
3205 
3206 #ifdef RTE_ETHDEV_DEBUG_TX
3207 	/* Check adapter state */
3208 	if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
3209 		PMD_TX_LOG(ALERT,
3210 			"Trying to xmit pkts while device is NOT running\n");
3211 		return 0;
3212 	}
3213 #endif
3214 
3215 	available_desc = ena_com_free_q_entries(tx_ring->ena_com_io_sq);
3216 	if (available_desc < tx_ring->tx_free_thresh)
3217 		ena_tx_cleanup((void *)tx_ring, 0);
3218 
3219 	for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
3220 		if (ena_xmit_mbuf(tx_ring, tx_pkts[sent_idx]))
3221 			break;
3222 		tx_ring->pkts_without_db = true;
3223 		rte_prefetch0(tx_pkts[ENA_IDX_ADD_MASKED(sent_idx, 4,
3224 			tx_ring->size_mask)]);
3225 	}
3226 
3227 	/* If there are ready packets to be xmitted... */
3228 	if (likely(tx_ring->pkts_without_db)) {
3229 		/* ...let HW do its best :-) */
3230 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
3231 		tx_ring->tx_stats.doorbells++;
3232 		tx_ring->pkts_without_db = false;
3233 	}
3234 
3235 	tx_ring->tx_stats.available_desc =
3236 		ena_com_free_q_entries(tx_ring->ena_com_io_sq);
3237 	tx_ring->tx_stats.tx_poll++;
3238 
3239 	return sent_idx;
3240 }
3241 
3242 static void ena_copy_customer_metrics(struct ena_adapter *adapter, uint64_t *buf,
3243 					     size_t num_metrics)
3244 {
3245 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
3246 	int rc;
3247 
3248 	if (ena_com_get_cap(ena_dev, ENA_ADMIN_CUSTOMER_METRICS)) {
3249 		if (num_metrics != ENA_STATS_ARRAY_METRICS) {
3250 			PMD_DRV_LOG(ERR, "Detected discrepancy in the number of customer metrics");
3251 			return;
3252 		}
3253 		rte_spinlock_lock(&adapter->admin_lock);
3254 		rc = ENA_PROXY(adapter,
3255 					ena_com_get_customer_metrics,
3256 					&adapter->ena_dev,
3257 					(char *)buf,
3258 					num_metrics * sizeof(uint64_t));
3259 		rte_spinlock_unlock(&adapter->admin_lock);
3260 		if (rc != 0) {
3261 			PMD_DRV_LOG(WARNING, "Failed to get customer metrics, rc: %d\n", rc);
3262 			return;
3263 		}
3264 
3265 	} else if (ena_com_get_cap(ena_dev, ENA_ADMIN_ENI_STATS)) {
3266 		if (num_metrics != ENA_STATS_ARRAY_METRICS_LEGACY) {
3267 			PMD_DRV_LOG(ERR, "Detected discrepancy in the number of legacy metrics");
3268 			return;
3269 		}
3270 
3271 		rte_spinlock_lock(&adapter->admin_lock);
3272 		rc = ENA_PROXY(adapter,
3273 			       ena_com_get_eni_stats,
3274 			       &adapter->ena_dev,
3275 			       (struct ena_admin_eni_stats *)buf);
3276 		rte_spinlock_unlock(&adapter->admin_lock);
3277 		if (rc != 0) {
3278 			PMD_DRV_LOG(WARNING,
3279 				"Failed to get ENI metrics, rc: %d\n", rc);
3280 			return;
3281 		}
3282 	}
3283 }
3284 
3285 static void ena_copy_ena_srd_info(struct ena_adapter *adapter,
3286 		struct ena_stats_srd *srd_info)
3287 {
3288 	int rc;
3289 
3290 	if (!ena_com_get_cap(&adapter->ena_dev, ENA_ADMIN_ENA_SRD_INFO))
3291 		return;
3292 
3293 	rte_spinlock_lock(&adapter->admin_lock);
3294 	rc = ENA_PROXY(adapter,
3295 		       ena_com_get_ena_srd_info,
3296 		       &adapter->ena_dev,
3297 		       (struct ena_admin_ena_srd_info *)srd_info);
3298 	rte_spinlock_unlock(&adapter->admin_lock);
3299 	if (rc != ENA_COM_OK && rc != ENA_COM_UNSUPPORTED) {
3300 		PMD_DRV_LOG(WARNING,
3301 				"Failed to get ENA express srd info, rc: %d\n", rc);
3302 		return;
3303 	}
3304 }
3305 
3306 /**
3307  * DPDK callback to retrieve names of extended device statistics
3308  *
3309  * @param dev
3310  *   Pointer to Ethernet device structure.
3311  * @param[out] xstats_names
3312  *   Buffer to insert names into.
3313  * @param n
3314  *   Number of names.
3315  *
3316  * @return
3317  *   Number of xstats names.
3318  */
3319 static int ena_xstats_get_names(struct rte_eth_dev *dev,
3320 				struct rte_eth_xstat_name *xstats_names,
3321 				unsigned int n)
3322 {
3323 	struct ena_adapter *adapter = dev->data->dev_private;
3324 	unsigned int xstats_count = ena_xstats_calc_num(dev->data);
3325 	unsigned int stat, i, count = 0;
3326 
3327 	if (n < xstats_count || !xstats_names)
3328 		return xstats_count;
3329 
3330 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
3331 		strcpy(xstats_names[count].name,
3332 			ena_stats_global_strings[stat].name);
3333 
3334 	for (stat = 0; stat < adapter->metrics_num; stat++, count++)
3335 		rte_strscpy(xstats_names[count].name,
3336 			    ena_stats_metrics_strings[stat].name,
3337 			    RTE_ETH_XSTATS_NAME_SIZE);
3338 	for (stat = 0; stat < ENA_STATS_ARRAY_ENA_SRD; stat++, count++)
3339 		rte_strscpy(xstats_names[count].name,
3340 			    ena_stats_srd_strings[stat].name,
3341 			    RTE_ETH_XSTATS_NAME_SIZE);
3342 
3343 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
3344 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
3345 			snprintf(xstats_names[count].name,
3346 				sizeof(xstats_names[count].name),
3347 				"rx_q%d_%s", i,
3348 				ena_stats_rx_strings[stat].name);
3349 
3350 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
3351 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
3352 			snprintf(xstats_names[count].name,
3353 				sizeof(xstats_names[count].name),
3354 				"tx_q%d_%s", i,
3355 				ena_stats_tx_strings[stat].name);
3356 
3357 	return xstats_count;
3358 }
3359 
3360 /**
3361  * DPDK callback to retrieve names of extended device statistics for the given
3362  * ids.
3363  *
3364  * @param dev
3365  *   Pointer to Ethernet device structure.
3366  * @param[out] xstats_names
3367  *   Buffer to insert names into.
3368  * @param ids
3369  *   IDs array for which the names should be retrieved.
3370  * @param size
3371  *   Number of ids.
3372  *
3373  * @return
3374  *   Positive value: number of xstats names. Negative value: error code.
3375  */
3376 static int ena_xstats_get_names_by_id(struct rte_eth_dev *dev,
3377 				      const uint64_t *ids,
3378 				      struct rte_eth_xstat_name *xstats_names,
3379 				      unsigned int size)
3380 {
3381 	struct ena_adapter *adapter = dev->data->dev_private;
3382 	uint64_t xstats_count = ena_xstats_calc_num(dev->data);
3383 	uint64_t id, qid;
3384 	unsigned int i;
3385 
3386 	if (xstats_names == NULL)
3387 		return xstats_count;
3388 
3389 	for (i = 0; i < size; ++i) {
3390 		id = ids[i];
3391 		if (id > xstats_count) {
3392 			PMD_DRV_LOG(ERR,
3393 				"ID value out of range: id=%" PRIu64 ", xstats_num=%" PRIu64 "\n",
3394 				 id, xstats_count);
3395 			return -EINVAL;
3396 		}
3397 
3398 		if (id < ENA_STATS_ARRAY_GLOBAL) {
3399 			strcpy(xstats_names[i].name,
3400 			       ena_stats_global_strings[id].name);
3401 			continue;
3402 		}
3403 
3404 		id -= ENA_STATS_ARRAY_GLOBAL;
3405 		if (id < adapter->metrics_num) {
3406 			rte_strscpy(xstats_names[i].name,
3407 				    ena_stats_metrics_strings[id].name,
3408 				    RTE_ETH_XSTATS_NAME_SIZE);
3409 			continue;
3410 		}
3411 
3412 		id -= adapter->metrics_num;
3413 
3414 		if (id < ENA_STATS_ARRAY_ENA_SRD) {
3415 			rte_strscpy(xstats_names[i].name,
3416 				    ena_stats_srd_strings[id].name,
3417 				    RTE_ETH_XSTATS_NAME_SIZE);
3418 			continue;
3419 		}
3420 		id -= ENA_STATS_ARRAY_ENA_SRD;
3421 
3422 		if (id < ENA_STATS_ARRAY_RX) {
3423 			qid = id / dev->data->nb_rx_queues;
3424 			id %= dev->data->nb_rx_queues;
3425 			snprintf(xstats_names[i].name,
3426 				 sizeof(xstats_names[i].name),
3427 				 "rx_q%" PRIu64 "d_%s",
3428 				 qid, ena_stats_rx_strings[id].name);
3429 			continue;
3430 		}
3431 
3432 		id -= ENA_STATS_ARRAY_RX;
3433 		/* Although this condition is not needed, it was added for
3434 		 * compatibility if new xstat structure would be ever added.
3435 		 */
3436 		if (id < ENA_STATS_ARRAY_TX) {
3437 			qid = id / dev->data->nb_tx_queues;
3438 			id %= dev->data->nb_tx_queues;
3439 			snprintf(xstats_names[i].name,
3440 				 sizeof(xstats_names[i].name),
3441 				 "tx_q%" PRIu64 "_%s",
3442 				 qid, ena_stats_tx_strings[id].name);
3443 			continue;
3444 		}
3445 	}
3446 
3447 	return i;
3448 }
3449 
3450 /**
3451  * DPDK callback to get extended device statistics.
3452  *
3453  * @param dev
3454  *   Pointer to Ethernet device structure.
3455  * @param[out] stats
3456  *   Stats table output buffer.
3457  * @param n
3458  *   The size of the stats table.
3459  *
3460  * @return
3461  *   Number of xstats on success, negative on failure.
3462  */
3463 static int ena_xstats_get(struct rte_eth_dev *dev,
3464 			  struct rte_eth_xstat *xstats,
3465 			  unsigned int n)
3466 {
3467 	struct ena_adapter *adapter = dev->data->dev_private;
3468 	unsigned int xstats_count = ena_xstats_calc_num(dev->data);
3469 	unsigned int stat, i, count = 0;
3470 	int stat_offset;
3471 	void *stats_begin;
3472 	uint64_t metrics_stats[ENA_MAX_CUSTOMER_METRICS];
3473 	struct ena_stats_srd srd_info = {0};
3474 
3475 	if (n < xstats_count)
3476 		return xstats_count;
3477 
3478 	if (!xstats)
3479 		return 0;
3480 
3481 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
3482 		stat_offset = ena_stats_global_strings[stat].stat_offset;
3483 		stats_begin = &adapter->dev_stats;
3484 
3485 		xstats[count].id = count;
3486 		xstats[count].value = *((uint64_t *)
3487 			((char *)stats_begin + stat_offset));
3488 	}
3489 
3490 	ena_copy_customer_metrics(adapter, metrics_stats, adapter->metrics_num);
3491 	stats_begin = metrics_stats;
3492 	for (stat = 0; stat < adapter->metrics_num; stat++, count++) {
3493 		stat_offset = ena_stats_metrics_strings[stat].stat_offset;
3494 
3495 		xstats[count].id = count;
3496 		xstats[count].value = *((uint64_t *)
3497 		    ((char *)stats_begin + stat_offset));
3498 	}
3499 
3500 	ena_copy_ena_srd_info(adapter, &srd_info);
3501 	stats_begin = &srd_info;
3502 	for (stat = 0; stat < ENA_STATS_ARRAY_ENA_SRD; stat++, count++) {
3503 		stat_offset = ena_stats_srd_strings[stat].stat_offset;
3504 		xstats[count].id = count;
3505 		xstats[count].value = *((uint64_t *)
3506 		    ((char *)stats_begin + stat_offset));
3507 	}
3508 
3509 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
3510 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
3511 			stat_offset = ena_stats_rx_strings[stat].stat_offset;
3512 			stats_begin = &adapter->rx_ring[i].rx_stats;
3513 
3514 			xstats[count].id = count;
3515 			xstats[count].value = *((uint64_t *)
3516 				((char *)stats_begin + stat_offset));
3517 		}
3518 	}
3519 
3520 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
3521 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
3522 			stat_offset = ena_stats_tx_strings[stat].stat_offset;
3523 			stats_begin = &adapter->tx_ring[i].rx_stats;
3524 
3525 			xstats[count].id = count;
3526 			xstats[count].value = *((uint64_t *)
3527 				((char *)stats_begin + stat_offset));
3528 		}
3529 	}
3530 
3531 	return count;
3532 }
3533 
3534 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
3535 				const uint64_t *ids,
3536 				uint64_t *values,
3537 				unsigned int n)
3538 {
3539 	struct ena_adapter *adapter = dev->data->dev_private;
3540 	uint64_t id;
3541 	uint64_t rx_entries, tx_entries;
3542 	unsigned int i;
3543 	int qid;
3544 	int valid = 0;
3545 	bool were_metrics_copied = false;
3546 	bool was_srd_info_copied = false;
3547 	uint64_t metrics_stats[ENA_MAX_CUSTOMER_METRICS];
3548 	struct ena_stats_srd srd_info = {0};
3549 
3550 	for (i = 0; i < n; ++i) {
3551 		id = ids[i];
3552 		/* Check if id belongs to global statistics */
3553 		if (id < ENA_STATS_ARRAY_GLOBAL) {
3554 			values[i] = *((uint64_t *)&adapter->dev_stats + id);
3555 			++valid;
3556 			continue;
3557 		}
3558 
3559 		/* Check if id belongs to ENI statistics */
3560 		id -= ENA_STATS_ARRAY_GLOBAL;
3561 		if (id < adapter->metrics_num) {
3562 			/* Avoid reading metrics multiple times in a single
3563 			 * function call, as it requires communication with the
3564 			 * admin queue.
3565 			 */
3566 			if (!were_metrics_copied) {
3567 				were_metrics_copied = true;
3568 				ena_copy_customer_metrics(adapter,
3569 						metrics_stats,
3570 						adapter->metrics_num);
3571 			}
3572 
3573 			values[i] = *((uint64_t *)&metrics_stats + id);
3574 			++valid;
3575 			continue;
3576 		}
3577 
3578 		/* Check if id belongs to SRD info statistics */
3579 		id -= adapter->metrics_num;
3580 
3581 		if (id < ENA_STATS_ARRAY_ENA_SRD) {
3582 			/*
3583 			 * Avoid reading srd info multiple times in a single
3584 			 * function call, as it requires communication with the
3585 			 * admin queue.
3586 			 */
3587 			if (!was_srd_info_copied) {
3588 				was_srd_info_copied = true;
3589 				ena_copy_ena_srd_info(adapter, &srd_info);
3590 			}
3591 			values[i] = *((uint64_t *)&adapter->srd_stats + id);
3592 			++valid;
3593 			continue;
3594 		}
3595 
3596 		/* Check if id belongs to rx queue statistics */
3597 		id -= ENA_STATS_ARRAY_ENA_SRD;
3598 
3599 		rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
3600 		if (id < rx_entries) {
3601 			qid = id % dev->data->nb_rx_queues;
3602 			id /= dev->data->nb_rx_queues;
3603 			values[i] = *((uint64_t *)
3604 				&adapter->rx_ring[qid].rx_stats + id);
3605 			++valid;
3606 			continue;
3607 		}
3608 				/* Check if id belongs to rx queue statistics */
3609 		id -= rx_entries;
3610 		tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
3611 		if (id < tx_entries) {
3612 			qid = id % dev->data->nb_tx_queues;
3613 			id /= dev->data->nb_tx_queues;
3614 			values[i] = *((uint64_t *)
3615 				&adapter->tx_ring[qid].tx_stats + id);
3616 			++valid;
3617 			continue;
3618 		}
3619 	}
3620 
3621 	return valid;
3622 }
3623 
3624 static int ena_process_uint_devarg(const char *key,
3625 				  const char *value,
3626 				  void *opaque)
3627 {
3628 	struct ena_adapter *adapter = opaque;
3629 	char *str_end;
3630 	uint64_t uint_value;
3631 
3632 	uint_value = strtoull(value, &str_end, 10);
3633 	if (value == str_end) {
3634 		PMD_INIT_LOG(ERR,
3635 			"Invalid value for key '%s'. Only uint values are accepted.\n",
3636 			key);
3637 		return -EINVAL;
3638 	}
3639 
3640 	if (strcmp(key, ENA_DEVARG_MISS_TXC_TO) == 0) {
3641 		if (uint_value > ENA_MAX_TX_TIMEOUT_SECONDS) {
3642 			PMD_INIT_LOG(ERR,
3643 				"Tx timeout too high: %" PRIu64 " sec. Maximum allowed: %d sec.\n",
3644 				uint_value, ENA_MAX_TX_TIMEOUT_SECONDS);
3645 			return -EINVAL;
3646 		} else if (uint_value == 0) {
3647 			PMD_INIT_LOG(INFO,
3648 				"Check for missing Tx completions has been disabled.\n");
3649 			adapter->missing_tx_completion_to =
3650 				ENA_HW_HINTS_NO_TIMEOUT;
3651 		} else {
3652 			PMD_INIT_LOG(INFO,
3653 				"Tx packet completion timeout set to %" PRIu64 " seconds.\n",
3654 				uint_value);
3655 			adapter->missing_tx_completion_to =
3656 				uint_value * rte_get_timer_hz();
3657 		}
3658 	}
3659 
3660 	return 0;
3661 }
3662 
3663 static int ena_process_bool_devarg(const char *key,
3664 				   const char *value,
3665 				   void *opaque)
3666 {
3667 	struct ena_adapter *adapter = opaque;
3668 	bool bool_value;
3669 
3670 	/* Parse the value. */
3671 	if (strcmp(value, "1") == 0) {
3672 		bool_value = true;
3673 	} else if (strcmp(value, "0") == 0) {
3674 		bool_value = false;
3675 	} else {
3676 		PMD_INIT_LOG(ERR,
3677 			"Invalid value: '%s' for key '%s'. Accepted: '0' or '1'\n",
3678 			value, key);
3679 		return -EINVAL;
3680 	}
3681 
3682 	/* Now, assign it to the proper adapter field. */
3683 	if (strcmp(key, ENA_DEVARG_LARGE_LLQ_HDR) == 0)
3684 		adapter->use_large_llq_hdr = bool_value;
3685 	else if (strcmp(key, ENA_DEVARG_ENABLE_LLQ) == 0)
3686 		adapter->enable_llq = bool_value;
3687 
3688 	return 0;
3689 }
3690 
3691 static int ena_parse_devargs(struct ena_adapter *adapter,
3692 			     struct rte_devargs *devargs)
3693 {
3694 	static const char * const allowed_args[] = {
3695 		ENA_DEVARG_LARGE_LLQ_HDR,
3696 		ENA_DEVARG_MISS_TXC_TO,
3697 		ENA_DEVARG_ENABLE_LLQ,
3698 		NULL,
3699 	};
3700 	struct rte_kvargs *kvlist;
3701 	int rc;
3702 
3703 	if (devargs == NULL)
3704 		return 0;
3705 
3706 	kvlist = rte_kvargs_parse(devargs->args, allowed_args);
3707 	if (kvlist == NULL) {
3708 		PMD_INIT_LOG(ERR, "Invalid device arguments: %s\n",
3709 			devargs->args);
3710 		return -EINVAL;
3711 	}
3712 
3713 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_LARGE_LLQ_HDR,
3714 		ena_process_bool_devarg, adapter);
3715 	if (rc != 0)
3716 		goto exit;
3717 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_MISS_TXC_TO,
3718 		ena_process_uint_devarg, adapter);
3719 	if (rc != 0)
3720 		goto exit;
3721 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_ENABLE_LLQ,
3722 		ena_process_bool_devarg, adapter);
3723 
3724 exit:
3725 	rte_kvargs_free(kvlist);
3726 
3727 	return rc;
3728 }
3729 
3730 static int ena_setup_rx_intr(struct rte_eth_dev *dev)
3731 {
3732 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3733 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
3734 	int rc;
3735 	uint16_t vectors_nb, i;
3736 	bool rx_intr_requested = dev->data->dev_conf.intr_conf.rxq;
3737 
3738 	if (!rx_intr_requested)
3739 		return 0;
3740 
3741 	if (!rte_intr_cap_multiple(intr_handle)) {
3742 		PMD_DRV_LOG(ERR,
3743 			"Rx interrupt requested, but it isn't supported by the PCI driver\n");
3744 		return -ENOTSUP;
3745 	}
3746 
3747 	/* Disable interrupt mapping before the configuration starts. */
3748 	rte_intr_disable(intr_handle);
3749 
3750 	/* Verify if there are enough vectors available. */
3751 	vectors_nb = dev->data->nb_rx_queues;
3752 	if (vectors_nb > RTE_MAX_RXTX_INTR_VEC_ID) {
3753 		PMD_DRV_LOG(ERR,
3754 			"Too many Rx interrupts requested, maximum number: %d\n",
3755 			RTE_MAX_RXTX_INTR_VEC_ID);
3756 		rc = -ENOTSUP;
3757 		goto enable_intr;
3758 	}
3759 
3760 	/* Allocate the vector list */
3761 	if (rte_intr_vec_list_alloc(intr_handle, "intr_vec",
3762 					   dev->data->nb_rx_queues)) {
3763 		PMD_DRV_LOG(ERR,
3764 			"Failed to allocate interrupt vector for %d queues\n",
3765 			dev->data->nb_rx_queues);
3766 		rc = -ENOMEM;
3767 		goto enable_intr;
3768 	}
3769 
3770 	rc = rte_intr_efd_enable(intr_handle, vectors_nb);
3771 	if (rc != 0)
3772 		goto free_intr_vec;
3773 
3774 	if (!rte_intr_allow_others(intr_handle)) {
3775 		PMD_DRV_LOG(ERR,
3776 			"Not enough interrupts available to use both ENA Admin and Rx interrupts\n");
3777 		goto disable_intr_efd;
3778 	}
3779 
3780 	for (i = 0; i < vectors_nb; ++i)
3781 		if (rte_intr_vec_list_index_set(intr_handle, i,
3782 					   RTE_INTR_VEC_RXTX_OFFSET + i))
3783 			goto disable_intr_efd;
3784 
3785 	rte_intr_enable(intr_handle);
3786 	return 0;
3787 
3788 disable_intr_efd:
3789 	rte_intr_efd_disable(intr_handle);
3790 free_intr_vec:
3791 	rte_intr_vec_list_free(intr_handle);
3792 enable_intr:
3793 	rte_intr_enable(intr_handle);
3794 	return rc;
3795 }
3796 
3797 static void ena_rx_queue_intr_set(struct rte_eth_dev *dev,
3798 				 uint16_t queue_id,
3799 				 bool unmask)
3800 {
3801 	struct ena_adapter *adapter = dev->data->dev_private;
3802 	struct ena_ring *rxq = &adapter->rx_ring[queue_id];
3803 	struct ena_eth_io_intr_reg intr_reg;
3804 
3805 	ena_com_update_intr_reg(&intr_reg, 0, 0, unmask, 1);
3806 	ena_com_unmask_intr(rxq->ena_com_io_cq, &intr_reg);
3807 }
3808 
3809 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
3810 				    uint16_t queue_id)
3811 {
3812 	ena_rx_queue_intr_set(dev, queue_id, true);
3813 
3814 	return 0;
3815 }
3816 
3817 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
3818 				     uint16_t queue_id)
3819 {
3820 	ena_rx_queue_intr_set(dev, queue_id, false);
3821 
3822 	return 0;
3823 }
3824 
3825 static int ena_configure_aenq(struct ena_adapter *adapter)
3826 {
3827 	uint32_t aenq_groups = adapter->all_aenq_groups;
3828 	int rc;
3829 
3830 	/* All_aenq_groups holds all AENQ functions supported by the device and
3831 	 * the HW, so at first we need to be sure the LSC request is valid.
3832 	 */
3833 	if (adapter->edev_data->dev_conf.intr_conf.lsc != 0) {
3834 		if (!(aenq_groups & BIT(ENA_ADMIN_LINK_CHANGE))) {
3835 			PMD_DRV_LOG(ERR,
3836 				"LSC requested, but it's not supported by the AENQ\n");
3837 			return -EINVAL;
3838 		}
3839 	} else {
3840 		/* If LSC wasn't enabled by the app, let's enable all supported
3841 		 * AENQ procedures except the LSC.
3842 		 */
3843 		aenq_groups &= ~BIT(ENA_ADMIN_LINK_CHANGE);
3844 	}
3845 
3846 	rc = ena_com_set_aenq_config(&adapter->ena_dev, aenq_groups);
3847 	if (rc != 0) {
3848 		PMD_DRV_LOG(ERR, "Cannot configure AENQ groups, rc=%d\n", rc);
3849 		return rc;
3850 	}
3851 
3852 	adapter->active_aenq_groups = aenq_groups;
3853 
3854 	return 0;
3855 }
3856 
3857 int ena_mp_indirect_table_set(struct ena_adapter *adapter)
3858 {
3859 	return ENA_PROXY(adapter, ena_com_indirect_table_set, &adapter->ena_dev);
3860 }
3861 
3862 int ena_mp_indirect_table_get(struct ena_adapter *adapter,
3863 			      uint32_t *indirect_table)
3864 {
3865 	return ENA_PROXY(adapter, ena_com_indirect_table_get, &adapter->ena_dev,
3866 		indirect_table);
3867 }
3868 
3869 /*********************************************************************
3870  *  ena_plat_dpdk.h functions implementations
3871  *********************************************************************/
3872 
3873 const struct rte_memzone *
3874 ena_mem_alloc_coherent(struct rte_eth_dev_data *data, size_t size,
3875 		       int socket_id, unsigned int alignment, void **virt_addr,
3876 		       dma_addr_t *phys_addr)
3877 {
3878 	char z_name[RTE_MEMZONE_NAMESIZE];
3879 	struct ena_adapter *adapter = data->dev_private;
3880 	const struct rte_memzone *memzone;
3881 	int rc;
3882 
3883 	rc = snprintf(z_name, RTE_MEMZONE_NAMESIZE, "ena_p%d_mz%" PRIu64 "",
3884 		data->port_id, adapter->memzone_cnt);
3885 	if (rc >= RTE_MEMZONE_NAMESIZE) {
3886 		PMD_DRV_LOG(ERR,
3887 			"Name for the ena_com memzone is too long. Port: %d, mz_num: %" PRIu64 "\n",
3888 			data->port_id, adapter->memzone_cnt);
3889 		goto error;
3890 	}
3891 	adapter->memzone_cnt++;
3892 
3893 	memzone = rte_memzone_reserve_aligned(z_name, size, socket_id,
3894 		RTE_MEMZONE_IOVA_CONTIG, alignment);
3895 	if (memzone == NULL) {
3896 		PMD_DRV_LOG(ERR, "Failed to allocate ena_com memzone: %s\n",
3897 			z_name);
3898 		goto error;
3899 	}
3900 
3901 	memset(memzone->addr, 0, size);
3902 	*virt_addr = memzone->addr;
3903 	*phys_addr = memzone->iova;
3904 
3905 	return memzone;
3906 
3907 error:
3908 	*virt_addr = NULL;
3909 	*phys_addr = 0;
3910 
3911 	return NULL;
3912 }
3913 
3914 
3915 /*********************************************************************
3916  *  PMD configuration
3917  *********************************************************************/
3918 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
3919 	struct rte_pci_device *pci_dev)
3920 {
3921 	return rte_eth_dev_pci_generic_probe(pci_dev,
3922 		sizeof(struct ena_adapter), eth_ena_dev_init);
3923 }
3924 
3925 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
3926 {
3927 	return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
3928 }
3929 
3930 static struct rte_pci_driver rte_ena_pmd = {
3931 	.id_table = pci_id_ena_map,
3932 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
3933 		     RTE_PCI_DRV_WC_ACTIVATE,
3934 	.probe = eth_ena_pci_probe,
3935 	.remove = eth_ena_pci_remove,
3936 };
3937 
3938 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
3939 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
3940 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
3941 RTE_PMD_REGISTER_PARAM_STRING(net_ena,
3942 	ENA_DEVARG_LARGE_LLQ_HDR "=<0|1> "
3943 	ENA_DEVARG_ENABLE_LLQ "=<0|1> "
3944 	ENA_DEVARG_MISS_TXC_TO "=<uint>");
3945 RTE_LOG_REGISTER_SUFFIX(ena_logtype_init, init, NOTICE);
3946 RTE_LOG_REGISTER_SUFFIX(ena_logtype_driver, driver, NOTICE);
3947 #ifdef RTE_ETHDEV_DEBUG_RX
3948 RTE_LOG_REGISTER_SUFFIX(ena_logtype_rx, rx, DEBUG);
3949 #endif
3950 #ifdef RTE_ETHDEV_DEBUG_TX
3951 RTE_LOG_REGISTER_SUFFIX(ena_logtype_tx, tx, DEBUG);
3952 #endif
3953 RTE_LOG_REGISTER_SUFFIX(ena_logtype_com, com, WARNING);
3954 
3955 /******************************************************************************
3956  ******************************** AENQ Handlers *******************************
3957  *****************************************************************************/
3958 static void ena_update_on_link_change(void *adapter_data,
3959 				      struct ena_admin_aenq_entry *aenq_e)
3960 {
3961 	struct rte_eth_dev *eth_dev = adapter_data;
3962 	struct ena_adapter *adapter = eth_dev->data->dev_private;
3963 	struct ena_admin_aenq_link_change_desc *aenq_link_desc;
3964 	uint32_t status;
3965 
3966 	aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
3967 
3968 	status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
3969 	adapter->link_status = status;
3970 
3971 	ena_link_update(eth_dev, 0);
3972 	rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
3973 }
3974 
3975 static void ena_notification(void *adapter_data,
3976 			     struct ena_admin_aenq_entry *aenq_e)
3977 {
3978 	struct rte_eth_dev *eth_dev = adapter_data;
3979 	struct ena_adapter *adapter = eth_dev->data->dev_private;
3980 	struct ena_admin_ena_hw_hints *hints;
3981 
3982 	if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
3983 		PMD_DRV_LOG(WARNING, "Invalid AENQ group: %x. Expected: %x\n",
3984 			aenq_e->aenq_common_desc.group,
3985 			ENA_ADMIN_NOTIFICATION);
3986 
3987 	switch (aenq_e->aenq_common_desc.syndrome) {
3988 	case ENA_ADMIN_UPDATE_HINTS:
3989 		hints = (struct ena_admin_ena_hw_hints *)
3990 			(&aenq_e->inline_data_w4);
3991 		ena_update_hints(adapter, hints);
3992 		break;
3993 	default:
3994 		PMD_DRV_LOG(ERR, "Invalid AENQ notification link state: %d\n",
3995 			aenq_e->aenq_common_desc.syndrome);
3996 	}
3997 }
3998 
3999 static void ena_keep_alive(void *adapter_data,
4000 			   __rte_unused struct ena_admin_aenq_entry *aenq_e)
4001 {
4002 	struct rte_eth_dev *eth_dev = adapter_data;
4003 	struct ena_adapter *adapter = eth_dev->data->dev_private;
4004 	struct ena_admin_aenq_keep_alive_desc *desc;
4005 	uint64_t rx_drops;
4006 	uint64_t tx_drops;
4007 	uint64_t rx_overruns;
4008 
4009 	adapter->timestamp_wd = rte_get_timer_cycles();
4010 
4011 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
4012 	rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
4013 	tx_drops = ((uint64_t)desc->tx_drops_high << 32) | desc->tx_drops_low;
4014 	rx_overruns = ((uint64_t)desc->rx_overruns_high << 32) | desc->rx_overruns_low;
4015 
4016 	adapter->drv_stats->rx_drops = rx_drops;
4017 	adapter->dev_stats.tx_drops = tx_drops;
4018 	adapter->dev_stats.rx_overruns = rx_overruns;
4019 }
4020 
4021 /**
4022  * This handler will called for unknown event group or unimplemented handlers
4023  **/
4024 static void unimplemented_aenq_handler(__rte_unused void *data,
4025 				       __rte_unused struct ena_admin_aenq_entry *aenq_e)
4026 {
4027 	PMD_DRV_LOG(ERR,
4028 		"Unknown event was received or event with unimplemented handler\n");
4029 }
4030 
4031 static struct ena_aenq_handlers aenq_handlers = {
4032 	.handlers = {
4033 		[ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
4034 		[ENA_ADMIN_NOTIFICATION] = ena_notification,
4035 		[ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive
4036 	},
4037 	.unimplemented_handler = unimplemented_aenq_handler
4038 };
4039 
4040 /*********************************************************************
4041  *  Multi-Process communication request handling (in primary)
4042  *********************************************************************/
4043 static int
4044 ena_mp_primary_handle(const struct rte_mp_msg *mp_msg, const void *peer)
4045 {
4046 	const struct ena_mp_body *req =
4047 		(const struct ena_mp_body *)mp_msg->param;
4048 	struct ena_adapter *adapter;
4049 	struct ena_com_dev *ena_dev;
4050 	struct ena_mp_body *rsp;
4051 	struct rte_mp_msg mp_rsp;
4052 	struct rte_eth_dev *dev;
4053 	int res = 0;
4054 
4055 	rsp = (struct ena_mp_body *)&mp_rsp.param;
4056 	mp_msg_init(&mp_rsp, req->type, req->port_id);
4057 
4058 	if (!rte_eth_dev_is_valid_port(req->port_id)) {
4059 		rte_errno = ENODEV;
4060 		res = -rte_errno;
4061 		PMD_DRV_LOG(ERR, "Unknown port %d in request %d\n",
4062 			    req->port_id, req->type);
4063 		goto end;
4064 	}
4065 	dev = &rte_eth_devices[req->port_id];
4066 	adapter = dev->data->dev_private;
4067 	ena_dev = &adapter->ena_dev;
4068 
4069 	switch (req->type) {
4070 	case ENA_MP_DEV_STATS_GET:
4071 		res = ena_com_get_dev_basic_stats(ena_dev,
4072 						  &adapter->basic_stats);
4073 		break;
4074 	case ENA_MP_ENI_STATS_GET:
4075 		res = ena_com_get_eni_stats(ena_dev,
4076 			(struct ena_admin_eni_stats *)&adapter->metrics_stats);
4077 		break;
4078 	case ENA_MP_MTU_SET:
4079 		res = ena_com_set_dev_mtu(ena_dev, req->args.mtu);
4080 		break;
4081 	case ENA_MP_IND_TBL_GET:
4082 		res = ena_com_indirect_table_get(ena_dev,
4083 						 adapter->indirect_table);
4084 		break;
4085 	case ENA_MP_IND_TBL_SET:
4086 		res = ena_com_indirect_table_set(ena_dev);
4087 		break;
4088 	case ENA_MP_CUSTOMER_METRICS_GET:
4089 		res = ena_com_get_customer_metrics(ena_dev,
4090 				(char *)adapter->metrics_stats,
4091 				sizeof(uint64_t) * adapter->metrics_num);
4092 		break;
4093 	case ENA_MP_SRD_STATS_GET:
4094 		res = ena_com_get_ena_srd_info(ena_dev,
4095 				(struct ena_admin_ena_srd_info *)&adapter->srd_stats);
4096 		break;
4097 	default:
4098 		PMD_DRV_LOG(ERR, "Unknown request type %d\n", req->type);
4099 		res = -EINVAL;
4100 		break;
4101 	}
4102 
4103 end:
4104 	/* Save processing result in the reply */
4105 	rsp->result = res;
4106 	/* Return just IPC processing status */
4107 	return rte_mp_reply(&mp_rsp, peer);
4108 }
4109