xref: /dpdk/drivers/net/ena/ena_ethdev.c (revision db4e81351fb85ff623bd0438d1b5a8fb55fe9fee)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
3  * All rights reserved.
4  */
5 
6 #include <rte_string_fns.h>
7 #include <rte_ether.h>
8 #include <rte_ethdev_driver.h>
9 #include <rte_ethdev_pci.h>
10 #include <rte_tcp.h>
11 #include <rte_atomic.h>
12 #include <rte_dev.h>
13 #include <rte_errno.h>
14 #include <rte_version.h>
15 #include <rte_net.h>
16 #include <rte_kvargs.h>
17 
18 #include "ena_ethdev.h"
19 #include "ena_logs.h"
20 #include "ena_platform.h"
21 #include "ena_com.h"
22 #include "ena_eth_com.h"
23 
24 #include <ena_common_defs.h>
25 #include <ena_regs_defs.h>
26 #include <ena_admin_defs.h>
27 #include <ena_eth_io_defs.h>
28 
29 #define DRV_MODULE_VER_MAJOR	2
30 #define DRV_MODULE_VER_MINOR	1
31 #define DRV_MODULE_VER_SUBMINOR	0
32 
33 #define ENA_IO_TXQ_IDX(q)	(2 * (q))
34 #define ENA_IO_RXQ_IDX(q)	(2 * (q) + 1)
35 /*reverse version of ENA_IO_RXQ_IDX*/
36 #define ENA_IO_RXQ_IDX_REV(q)	((q - 1) / 2)
37 
38 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
39 #define TEST_BIT(val, bit_shift) (val & (1UL << bit_shift))
40 
41 #define GET_L4_HDR_LEN(mbuf)					\
42 	((rte_pktmbuf_mtod_offset(mbuf,	struct rte_tcp_hdr *,	\
43 		mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
44 
45 #define ENA_RX_RSS_TABLE_LOG_SIZE  7
46 #define ENA_RX_RSS_TABLE_SIZE	(1 << ENA_RX_RSS_TABLE_LOG_SIZE)
47 #define ENA_HASH_KEY_SIZE	40
48 #define ETH_GSTRING_LEN	32
49 
50 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
51 
52 #define ENA_MIN_RING_DESC	128
53 
54 enum ethtool_stringset {
55 	ETH_SS_TEST             = 0,
56 	ETH_SS_STATS,
57 };
58 
59 struct ena_stats {
60 	char name[ETH_GSTRING_LEN];
61 	int stat_offset;
62 };
63 
64 #define ENA_STAT_ENTRY(stat, stat_type) { \
65 	.name = #stat, \
66 	.stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
67 }
68 
69 #define ENA_STAT_RX_ENTRY(stat) \
70 	ENA_STAT_ENTRY(stat, rx)
71 
72 #define ENA_STAT_TX_ENTRY(stat) \
73 	ENA_STAT_ENTRY(stat, tx)
74 
75 #define ENA_STAT_GLOBAL_ENTRY(stat) \
76 	ENA_STAT_ENTRY(stat, dev)
77 
78 /* Device arguments */
79 #define ENA_DEVARG_LARGE_LLQ_HDR "large_llq_hdr"
80 
81 /*
82  * Each rte_memzone should have unique name.
83  * To satisfy it, count number of allocation and add it to name.
84  */
85 rte_atomic32_t ena_alloc_cnt;
86 
87 static const struct ena_stats ena_stats_global_strings[] = {
88 	ENA_STAT_GLOBAL_ENTRY(wd_expired),
89 	ENA_STAT_GLOBAL_ENTRY(dev_start),
90 	ENA_STAT_GLOBAL_ENTRY(dev_stop),
91 	ENA_STAT_GLOBAL_ENTRY(tx_drops),
92 };
93 
94 static const struct ena_stats ena_stats_tx_strings[] = {
95 	ENA_STAT_TX_ENTRY(cnt),
96 	ENA_STAT_TX_ENTRY(bytes),
97 	ENA_STAT_TX_ENTRY(prepare_ctx_err),
98 	ENA_STAT_TX_ENTRY(linearize),
99 	ENA_STAT_TX_ENTRY(linearize_failed),
100 	ENA_STAT_TX_ENTRY(tx_poll),
101 	ENA_STAT_TX_ENTRY(doorbells),
102 	ENA_STAT_TX_ENTRY(bad_req_id),
103 	ENA_STAT_TX_ENTRY(available_desc),
104 };
105 
106 static const struct ena_stats ena_stats_rx_strings[] = {
107 	ENA_STAT_RX_ENTRY(cnt),
108 	ENA_STAT_RX_ENTRY(bytes),
109 	ENA_STAT_RX_ENTRY(refill_partial),
110 	ENA_STAT_RX_ENTRY(bad_csum),
111 	ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
112 	ENA_STAT_RX_ENTRY(bad_desc_num),
113 	ENA_STAT_RX_ENTRY(bad_req_id),
114 };
115 
116 #define ENA_STATS_ARRAY_GLOBAL	ARRAY_SIZE(ena_stats_global_strings)
117 #define ENA_STATS_ARRAY_TX	ARRAY_SIZE(ena_stats_tx_strings)
118 #define ENA_STATS_ARRAY_RX	ARRAY_SIZE(ena_stats_rx_strings)
119 
120 #define QUEUE_OFFLOADS (DEV_TX_OFFLOAD_TCP_CKSUM |\
121 			DEV_TX_OFFLOAD_UDP_CKSUM |\
122 			DEV_TX_OFFLOAD_IPV4_CKSUM |\
123 			DEV_TX_OFFLOAD_TCP_TSO)
124 #define MBUF_OFFLOADS (PKT_TX_L4_MASK |\
125 		       PKT_TX_IP_CKSUM |\
126 		       PKT_TX_TCP_SEG)
127 
128 /** Vendor ID used by Amazon devices */
129 #define PCI_VENDOR_ID_AMAZON 0x1D0F
130 /** Amazon devices */
131 #define PCI_DEVICE_ID_ENA_VF	0xEC20
132 #define PCI_DEVICE_ID_ENA_LLQ_VF	0xEC21
133 
134 #define	ENA_TX_OFFLOAD_MASK	(\
135 	PKT_TX_L4_MASK |         \
136 	PKT_TX_IPV6 |            \
137 	PKT_TX_IPV4 |            \
138 	PKT_TX_IP_CKSUM |        \
139 	PKT_TX_TCP_SEG)
140 
141 #define	ENA_TX_OFFLOAD_NOTSUP_MASK	\
142 	(PKT_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
143 
144 static const struct rte_pci_id pci_id_ena_map[] = {
145 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
146 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_LLQ_VF) },
147 	{ .device_id = 0 },
148 };
149 
150 static struct ena_aenq_handlers aenq_handlers;
151 
152 static int ena_device_init(struct ena_com_dev *ena_dev,
153 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
154 			   bool *wd_state);
155 static int ena_dev_configure(struct rte_eth_dev *dev);
156 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
157 	struct ena_tx_buffer *tx_info,
158 	struct rte_mbuf *mbuf,
159 	void **push_header,
160 	uint16_t *header_len);
161 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf);
162 static void ena_tx_cleanup(struct ena_ring *tx_ring);
163 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
164 				  uint16_t nb_pkts);
165 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
166 		uint16_t nb_pkts);
167 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
168 			      uint16_t nb_desc, unsigned int socket_id,
169 			      const struct rte_eth_txconf *tx_conf);
170 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
171 			      uint16_t nb_desc, unsigned int socket_id,
172 			      const struct rte_eth_rxconf *rx_conf,
173 			      struct rte_mempool *mp);
174 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len);
175 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
176 				    struct ena_com_rx_buf_info *ena_bufs,
177 				    uint32_t descs,
178 				    uint16_t *next_to_clean,
179 				    uint8_t offset);
180 static uint16_t eth_ena_recv_pkts(void *rx_queue,
181 				  struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
182 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
183 				  struct rte_mbuf *mbuf, uint16_t id);
184 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
185 static void ena_init_rings(struct ena_adapter *adapter,
186 			   bool disable_meta_caching);
187 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
188 static int ena_start(struct rte_eth_dev *dev);
189 static void ena_stop(struct rte_eth_dev *dev);
190 static void ena_close(struct rte_eth_dev *dev);
191 static int ena_dev_reset(struct rte_eth_dev *dev);
192 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
193 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
194 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
195 static void ena_rx_queue_release(void *queue);
196 static void ena_tx_queue_release(void *queue);
197 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
198 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
199 static int ena_link_update(struct rte_eth_dev *dev,
200 			   int wait_to_complete);
201 static int ena_create_io_queue(struct ena_ring *ring);
202 static void ena_queue_stop(struct ena_ring *ring);
203 static void ena_queue_stop_all(struct rte_eth_dev *dev,
204 			      enum ena_ring_type ring_type);
205 static int ena_queue_start(struct ena_ring *ring);
206 static int ena_queue_start_all(struct rte_eth_dev *dev,
207 			       enum ena_ring_type ring_type);
208 static void ena_stats_restart(struct rte_eth_dev *dev);
209 static int ena_infos_get(struct rte_eth_dev *dev,
210 			 struct rte_eth_dev_info *dev_info);
211 static int ena_rss_reta_update(struct rte_eth_dev *dev,
212 			       struct rte_eth_rss_reta_entry64 *reta_conf,
213 			       uint16_t reta_size);
214 static int ena_rss_reta_query(struct rte_eth_dev *dev,
215 			      struct rte_eth_rss_reta_entry64 *reta_conf,
216 			      uint16_t reta_size);
217 static void ena_interrupt_handler_rte(void *cb_arg);
218 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
219 static void ena_destroy_device(struct rte_eth_dev *eth_dev);
220 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
221 static int ena_xstats_get_names(struct rte_eth_dev *dev,
222 				struct rte_eth_xstat_name *xstats_names,
223 				unsigned int n);
224 static int ena_xstats_get(struct rte_eth_dev *dev,
225 			  struct rte_eth_xstat *stats,
226 			  unsigned int n);
227 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
228 				const uint64_t *ids,
229 				uint64_t *values,
230 				unsigned int n);
231 static int ena_process_bool_devarg(const char *key,
232 				   const char *value,
233 				   void *opaque);
234 static int ena_parse_devargs(struct ena_adapter *adapter,
235 			     struct rte_devargs *devargs);
236 
237 static const struct eth_dev_ops ena_dev_ops = {
238 	.dev_configure        = ena_dev_configure,
239 	.dev_infos_get        = ena_infos_get,
240 	.rx_queue_setup       = ena_rx_queue_setup,
241 	.tx_queue_setup       = ena_tx_queue_setup,
242 	.dev_start            = ena_start,
243 	.dev_stop             = ena_stop,
244 	.link_update          = ena_link_update,
245 	.stats_get            = ena_stats_get,
246 	.xstats_get_names     = ena_xstats_get_names,
247 	.xstats_get	      = ena_xstats_get,
248 	.xstats_get_by_id     = ena_xstats_get_by_id,
249 	.mtu_set              = ena_mtu_set,
250 	.rx_queue_release     = ena_rx_queue_release,
251 	.tx_queue_release     = ena_tx_queue_release,
252 	.dev_close            = ena_close,
253 	.dev_reset            = ena_dev_reset,
254 	.reta_update          = ena_rss_reta_update,
255 	.reta_query           = ena_rss_reta_query,
256 };
257 
258 void ena_rss_key_fill(void *key, size_t size)
259 {
260 	static bool key_generated;
261 	static uint8_t default_key[ENA_HASH_KEY_SIZE];
262 	size_t i;
263 
264 	RTE_ASSERT(size <= ENA_HASH_KEY_SIZE);
265 
266 	if (!key_generated) {
267 		for (i = 0; i < ENA_HASH_KEY_SIZE; ++i)
268 			default_key[i] = rte_rand() & 0xff;
269 		key_generated = true;
270 	}
271 
272 	rte_memcpy(key, default_key, size);
273 }
274 
275 static inline void ena_rx_mbuf_prepare(struct rte_mbuf *mbuf,
276 				       struct ena_com_rx_ctx *ena_rx_ctx)
277 {
278 	uint64_t ol_flags = 0;
279 	uint32_t packet_type = 0;
280 
281 	if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
282 		packet_type |= RTE_PTYPE_L4_TCP;
283 	else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
284 		packet_type |= RTE_PTYPE_L4_UDP;
285 
286 	if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4)
287 		packet_type |= RTE_PTYPE_L3_IPV4;
288 	else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6)
289 		packet_type |= RTE_PTYPE_L3_IPV6;
290 
291 	if (!ena_rx_ctx->l4_csum_checked)
292 		ol_flags |= PKT_RX_L4_CKSUM_UNKNOWN;
293 	else
294 		if (unlikely(ena_rx_ctx->l4_csum_err) && !ena_rx_ctx->frag)
295 			ol_flags |= PKT_RX_L4_CKSUM_BAD;
296 		else
297 			ol_flags |= PKT_RX_L4_CKSUM_UNKNOWN;
298 
299 	if (unlikely(ena_rx_ctx->l3_csum_err))
300 		ol_flags |= PKT_RX_IP_CKSUM_BAD;
301 
302 	mbuf->ol_flags = ol_flags;
303 	mbuf->packet_type = packet_type;
304 }
305 
306 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
307 				       struct ena_com_tx_ctx *ena_tx_ctx,
308 				       uint64_t queue_offloads,
309 				       bool disable_meta_caching)
310 {
311 	struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
312 
313 	if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
314 	    (queue_offloads & QUEUE_OFFLOADS)) {
315 		/* check if TSO is required */
316 		if ((mbuf->ol_flags & PKT_TX_TCP_SEG) &&
317 		    (queue_offloads & DEV_TX_OFFLOAD_TCP_TSO)) {
318 			ena_tx_ctx->tso_enable = true;
319 
320 			ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
321 		}
322 
323 		/* check if L3 checksum is needed */
324 		if ((mbuf->ol_flags & PKT_TX_IP_CKSUM) &&
325 		    (queue_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM))
326 			ena_tx_ctx->l3_csum_enable = true;
327 
328 		if (mbuf->ol_flags & PKT_TX_IPV6) {
329 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
330 		} else {
331 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
332 
333 			/* set don't fragment (DF) flag */
334 			if (mbuf->packet_type &
335 				(RTE_PTYPE_L4_NONFRAG
336 				 | RTE_PTYPE_INNER_L4_NONFRAG))
337 				ena_tx_ctx->df = true;
338 		}
339 
340 		/* check if L4 checksum is needed */
341 		if (((mbuf->ol_flags & PKT_TX_L4_MASK) == PKT_TX_TCP_CKSUM) &&
342 		    (queue_offloads & DEV_TX_OFFLOAD_TCP_CKSUM)) {
343 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
344 			ena_tx_ctx->l4_csum_enable = true;
345 		} else if (((mbuf->ol_flags & PKT_TX_L4_MASK) ==
346 				PKT_TX_UDP_CKSUM) &&
347 				(queue_offloads & DEV_TX_OFFLOAD_UDP_CKSUM)) {
348 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
349 			ena_tx_ctx->l4_csum_enable = true;
350 		} else {
351 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
352 			ena_tx_ctx->l4_csum_enable = false;
353 		}
354 
355 		ena_meta->mss = mbuf->tso_segsz;
356 		ena_meta->l3_hdr_len = mbuf->l3_len;
357 		ena_meta->l3_hdr_offset = mbuf->l2_len;
358 
359 		ena_tx_ctx->meta_valid = true;
360 	} else if (disable_meta_caching) {
361 		memset(ena_meta, 0, sizeof(*ena_meta));
362 		ena_tx_ctx->meta_valid = true;
363 	} else {
364 		ena_tx_ctx->meta_valid = false;
365 	}
366 }
367 
368 static inline int validate_rx_req_id(struct ena_ring *rx_ring, uint16_t req_id)
369 {
370 	if (likely(req_id < rx_ring->ring_size))
371 		return 0;
372 
373 	PMD_DRV_LOG(ERR, "Invalid rx req_id: %hu\n", req_id);
374 
375 	rx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID;
376 	rx_ring->adapter->trigger_reset = true;
377 	++rx_ring->rx_stats.bad_req_id;
378 
379 	return -EFAULT;
380 }
381 
382 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
383 {
384 	struct ena_tx_buffer *tx_info = NULL;
385 
386 	if (likely(req_id < tx_ring->ring_size)) {
387 		tx_info = &tx_ring->tx_buffer_info[req_id];
388 		if (likely(tx_info->mbuf))
389 			return 0;
390 	}
391 
392 	if (tx_info)
393 		PMD_DRV_LOG(ERR, "tx_info doesn't have valid mbuf\n");
394 	else
395 		PMD_DRV_LOG(ERR, "Invalid req_id: %hu\n", req_id);
396 
397 	/* Trigger device reset */
398 	++tx_ring->tx_stats.bad_req_id;
399 	tx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID;
400 	tx_ring->adapter->trigger_reset	= true;
401 	return -EFAULT;
402 }
403 
404 static void ena_config_host_info(struct ena_com_dev *ena_dev)
405 {
406 	struct ena_admin_host_info *host_info;
407 	int rc;
408 
409 	/* Allocate only the host info */
410 	rc = ena_com_allocate_host_info(ena_dev);
411 	if (rc) {
412 		PMD_DRV_LOG(ERR, "Cannot allocate host info\n");
413 		return;
414 	}
415 
416 	host_info = ena_dev->host_attr.host_info;
417 
418 	host_info->os_type = ENA_ADMIN_OS_DPDK;
419 	host_info->kernel_ver = RTE_VERSION;
420 	strlcpy((char *)host_info->kernel_ver_str, rte_version(),
421 		sizeof(host_info->kernel_ver_str));
422 	host_info->os_dist = RTE_VERSION;
423 	strlcpy((char *)host_info->os_dist_str, rte_version(),
424 		sizeof(host_info->os_dist_str));
425 	host_info->driver_version =
426 		(DRV_MODULE_VER_MAJOR) |
427 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
428 		(DRV_MODULE_VER_SUBMINOR <<
429 			ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
430 	host_info->num_cpus = rte_lcore_count();
431 
432 	host_info->driver_supported_features =
433 		ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK;
434 
435 	rc = ena_com_set_host_attributes(ena_dev);
436 	if (rc) {
437 		if (rc == -ENA_COM_UNSUPPORTED)
438 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
439 		else
440 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
441 
442 		goto err;
443 	}
444 
445 	return;
446 
447 err:
448 	ena_com_delete_host_info(ena_dev);
449 }
450 
451 /* This function calculates the number of xstats based on the current config */
452 static unsigned int ena_xstats_calc_num(struct rte_eth_dev *dev)
453 {
454 	return ENA_STATS_ARRAY_GLOBAL +
455 		(dev->data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
456 		(dev->data->nb_rx_queues * ENA_STATS_ARRAY_RX);
457 }
458 
459 static void ena_config_debug_area(struct ena_adapter *adapter)
460 {
461 	u32 debug_area_size;
462 	int rc, ss_count;
463 
464 	ss_count = ena_xstats_calc_num(adapter->rte_dev);
465 
466 	/* allocate 32 bytes for each string and 64bit for the value */
467 	debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
468 
469 	rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
470 	if (rc) {
471 		PMD_DRV_LOG(ERR, "Cannot allocate debug area\n");
472 		return;
473 	}
474 
475 	rc = ena_com_set_host_attributes(&adapter->ena_dev);
476 	if (rc) {
477 		if (rc == -ENA_COM_UNSUPPORTED)
478 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
479 		else
480 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
481 
482 		goto err;
483 	}
484 
485 	return;
486 err:
487 	ena_com_delete_debug_area(&adapter->ena_dev);
488 }
489 
490 static void ena_close(struct rte_eth_dev *dev)
491 {
492 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
493 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
494 	struct ena_adapter *adapter = dev->data->dev_private;
495 
496 	if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
497 		ena_stop(dev);
498 	adapter->state = ENA_ADAPTER_STATE_CLOSED;
499 
500 	ena_rx_queue_release_all(dev);
501 	ena_tx_queue_release_all(dev);
502 
503 	rte_free(adapter->drv_stats);
504 	adapter->drv_stats = NULL;
505 
506 	rte_intr_disable(intr_handle);
507 	rte_intr_callback_unregister(intr_handle,
508 				     ena_interrupt_handler_rte,
509 				     adapter);
510 
511 	/*
512 	 * MAC is not allocated dynamically. Setting NULL should prevent from
513 	 * release of the resource in the rte_eth_dev_release_port().
514 	 */
515 	dev->data->mac_addrs = NULL;
516 }
517 
518 static int
519 ena_dev_reset(struct rte_eth_dev *dev)
520 {
521 	int rc = 0;
522 
523 	ena_destroy_device(dev);
524 	rc = eth_ena_dev_init(dev);
525 	if (rc)
526 		PMD_INIT_LOG(CRIT, "Cannot initialize device");
527 
528 	return rc;
529 }
530 
531 static int ena_rss_reta_update(struct rte_eth_dev *dev,
532 			       struct rte_eth_rss_reta_entry64 *reta_conf,
533 			       uint16_t reta_size)
534 {
535 	struct ena_adapter *adapter = dev->data->dev_private;
536 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
537 	int rc, i;
538 	u16 entry_value;
539 	int conf_idx;
540 	int idx;
541 
542 	if ((reta_size == 0) || (reta_conf == NULL))
543 		return -EINVAL;
544 
545 	if (reta_size > ENA_RX_RSS_TABLE_SIZE) {
546 		PMD_DRV_LOG(WARNING,
547 			"indirection table %d is bigger than supported (%d)\n",
548 			reta_size, ENA_RX_RSS_TABLE_SIZE);
549 		return -EINVAL;
550 	}
551 
552 	for (i = 0 ; i < reta_size ; i++) {
553 		/* each reta_conf is for 64 entries.
554 		 * to support 128 we use 2 conf of 64
555 		 */
556 		conf_idx = i / RTE_RETA_GROUP_SIZE;
557 		idx = i % RTE_RETA_GROUP_SIZE;
558 		if (TEST_BIT(reta_conf[conf_idx].mask, idx)) {
559 			entry_value =
560 				ENA_IO_RXQ_IDX(reta_conf[conf_idx].reta[idx]);
561 
562 			rc = ena_com_indirect_table_fill_entry(ena_dev,
563 							       i,
564 							       entry_value);
565 			if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
566 				PMD_DRV_LOG(ERR,
567 					"Cannot fill indirect table\n");
568 				return rc;
569 			}
570 		}
571 	}
572 
573 	rc = ena_com_indirect_table_set(ena_dev);
574 	if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
575 		PMD_DRV_LOG(ERR, "Cannot flush the indirect table\n");
576 		return rc;
577 	}
578 
579 	PMD_DRV_LOG(DEBUG, "%s(): RSS configured %d entries  for port %d\n",
580 		__func__, reta_size, adapter->rte_dev->data->port_id);
581 
582 	return 0;
583 }
584 
585 /* Query redirection table. */
586 static int ena_rss_reta_query(struct rte_eth_dev *dev,
587 			      struct rte_eth_rss_reta_entry64 *reta_conf,
588 			      uint16_t reta_size)
589 {
590 	struct ena_adapter *adapter = dev->data->dev_private;
591 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
592 	int rc;
593 	int i;
594 	u32 indirect_table[ENA_RX_RSS_TABLE_SIZE] = {0};
595 	int reta_conf_idx;
596 	int reta_idx;
597 
598 	if (reta_size == 0 || reta_conf == NULL ||
599 	    (reta_size > RTE_RETA_GROUP_SIZE && ((reta_conf + 1) == NULL)))
600 		return -EINVAL;
601 
602 	rc = ena_com_indirect_table_get(ena_dev, indirect_table);
603 	if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
604 		PMD_DRV_LOG(ERR, "cannot get indirect table\n");
605 		return -ENOTSUP;
606 	}
607 
608 	for (i = 0 ; i < reta_size ; i++) {
609 		reta_conf_idx = i / RTE_RETA_GROUP_SIZE;
610 		reta_idx = i % RTE_RETA_GROUP_SIZE;
611 		if (TEST_BIT(reta_conf[reta_conf_idx].mask, reta_idx))
612 			reta_conf[reta_conf_idx].reta[reta_idx] =
613 				ENA_IO_RXQ_IDX_REV(indirect_table[i]);
614 	}
615 
616 	return 0;
617 }
618 
619 static int ena_rss_init_default(struct ena_adapter *adapter)
620 {
621 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
622 	uint16_t nb_rx_queues = adapter->rte_dev->data->nb_rx_queues;
623 	int rc, i;
624 	u32 val;
625 
626 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
627 	if (unlikely(rc)) {
628 		PMD_DRV_LOG(ERR, "Cannot init indirect table\n");
629 		goto err_rss_init;
630 	}
631 
632 	for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
633 		val = i % nb_rx_queues;
634 		rc = ena_com_indirect_table_fill_entry(ena_dev, i,
635 						       ENA_IO_RXQ_IDX(val));
636 		if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
637 			PMD_DRV_LOG(ERR, "Cannot fill indirect table\n");
638 			goto err_fill_indir;
639 		}
640 	}
641 
642 	rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL,
643 					ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
644 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
645 		PMD_DRV_LOG(INFO, "Cannot fill hash function\n");
646 		goto err_fill_indir;
647 	}
648 
649 	rc = ena_com_set_default_hash_ctrl(ena_dev);
650 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
651 		PMD_DRV_LOG(INFO, "Cannot fill hash control\n");
652 		goto err_fill_indir;
653 	}
654 
655 	rc = ena_com_indirect_table_set(ena_dev);
656 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
657 		PMD_DRV_LOG(ERR, "Cannot flush the indirect table\n");
658 		goto err_fill_indir;
659 	}
660 	PMD_DRV_LOG(DEBUG, "RSS configured for port %d\n",
661 		adapter->rte_dev->data->port_id);
662 
663 	return 0;
664 
665 err_fill_indir:
666 	ena_com_rss_destroy(ena_dev);
667 err_rss_init:
668 
669 	return rc;
670 }
671 
672 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
673 {
674 	struct ena_ring **queues = (struct ena_ring **)dev->data->rx_queues;
675 	int nb_queues = dev->data->nb_rx_queues;
676 	int i;
677 
678 	for (i = 0; i < nb_queues; i++)
679 		ena_rx_queue_release(queues[i]);
680 }
681 
682 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
683 {
684 	struct ena_ring **queues = (struct ena_ring **)dev->data->tx_queues;
685 	int nb_queues = dev->data->nb_tx_queues;
686 	int i;
687 
688 	for (i = 0; i < nb_queues; i++)
689 		ena_tx_queue_release(queues[i]);
690 }
691 
692 static void ena_rx_queue_release(void *queue)
693 {
694 	struct ena_ring *ring = (struct ena_ring *)queue;
695 
696 	/* Free ring resources */
697 	if (ring->rx_buffer_info)
698 		rte_free(ring->rx_buffer_info);
699 	ring->rx_buffer_info = NULL;
700 
701 	if (ring->rx_refill_buffer)
702 		rte_free(ring->rx_refill_buffer);
703 	ring->rx_refill_buffer = NULL;
704 
705 	if (ring->empty_rx_reqs)
706 		rte_free(ring->empty_rx_reqs);
707 	ring->empty_rx_reqs = NULL;
708 
709 	ring->configured = 0;
710 
711 	PMD_DRV_LOG(NOTICE, "RX Queue %d:%d released\n",
712 		ring->port_id, ring->id);
713 }
714 
715 static void ena_tx_queue_release(void *queue)
716 {
717 	struct ena_ring *ring = (struct ena_ring *)queue;
718 
719 	/* Free ring resources */
720 	if (ring->push_buf_intermediate_buf)
721 		rte_free(ring->push_buf_intermediate_buf);
722 
723 	if (ring->tx_buffer_info)
724 		rte_free(ring->tx_buffer_info);
725 
726 	if (ring->empty_tx_reqs)
727 		rte_free(ring->empty_tx_reqs);
728 
729 	ring->empty_tx_reqs = NULL;
730 	ring->tx_buffer_info = NULL;
731 	ring->push_buf_intermediate_buf = NULL;
732 
733 	ring->configured = 0;
734 
735 	PMD_DRV_LOG(NOTICE, "TX Queue %d:%d released\n",
736 		ring->port_id, ring->id);
737 }
738 
739 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
740 {
741 	unsigned int i;
742 
743 	for (i = 0; i < ring->ring_size; ++i) {
744 		struct ena_rx_buffer *rx_info = &ring->rx_buffer_info[i];
745 		if (rx_info->mbuf) {
746 			rte_mbuf_raw_free(rx_info->mbuf);
747 			rx_info->mbuf = NULL;
748 		}
749 	}
750 }
751 
752 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
753 {
754 	unsigned int i;
755 
756 	for (i = 0; i < ring->ring_size; ++i) {
757 		struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
758 
759 		if (tx_buf->mbuf)
760 			rte_pktmbuf_free(tx_buf->mbuf);
761 	}
762 }
763 
764 static int ena_link_update(struct rte_eth_dev *dev,
765 			   __rte_unused int wait_to_complete)
766 {
767 	struct rte_eth_link *link = &dev->data->dev_link;
768 	struct ena_adapter *adapter = dev->data->dev_private;
769 
770 	link->link_status = adapter->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
771 	link->link_speed = ETH_SPEED_NUM_NONE;
772 	link->link_duplex = ETH_LINK_FULL_DUPLEX;
773 
774 	return 0;
775 }
776 
777 static int ena_queue_start_all(struct rte_eth_dev *dev,
778 			       enum ena_ring_type ring_type)
779 {
780 	struct ena_adapter *adapter = dev->data->dev_private;
781 	struct ena_ring *queues = NULL;
782 	int nb_queues;
783 	int i = 0;
784 	int rc = 0;
785 
786 	if (ring_type == ENA_RING_TYPE_RX) {
787 		queues = adapter->rx_ring;
788 		nb_queues = dev->data->nb_rx_queues;
789 	} else {
790 		queues = adapter->tx_ring;
791 		nb_queues = dev->data->nb_tx_queues;
792 	}
793 	for (i = 0; i < nb_queues; i++) {
794 		if (queues[i].configured) {
795 			if (ring_type == ENA_RING_TYPE_RX) {
796 				ena_assert_msg(
797 					dev->data->rx_queues[i] == &queues[i],
798 					"Inconsistent state of rx queues\n");
799 			} else {
800 				ena_assert_msg(
801 					dev->data->tx_queues[i] == &queues[i],
802 					"Inconsistent state of tx queues\n");
803 			}
804 
805 			rc = ena_queue_start(&queues[i]);
806 
807 			if (rc) {
808 				PMD_INIT_LOG(ERR,
809 					     "failed to start queue %d type(%d)",
810 					     i, ring_type);
811 				goto err;
812 			}
813 		}
814 	}
815 
816 	return 0;
817 
818 err:
819 	while (i--)
820 		if (queues[i].configured)
821 			ena_queue_stop(&queues[i]);
822 
823 	return rc;
824 }
825 
826 static uint32_t ena_get_mtu_conf(struct ena_adapter *adapter)
827 {
828 	uint32_t max_frame_len = adapter->max_mtu;
829 
830 	if (adapter->rte_eth_dev_data->dev_conf.rxmode.offloads &
831 	    DEV_RX_OFFLOAD_JUMBO_FRAME)
832 		max_frame_len =
833 			adapter->rte_eth_dev_data->dev_conf.rxmode.max_rx_pkt_len;
834 
835 	return max_frame_len;
836 }
837 
838 static int ena_check_valid_conf(struct ena_adapter *adapter)
839 {
840 	uint32_t max_frame_len = ena_get_mtu_conf(adapter);
841 
842 	if (max_frame_len > adapter->max_mtu || max_frame_len < ENA_MIN_MTU) {
843 		PMD_INIT_LOG(ERR, "Unsupported MTU of %d. "
844 				  "max mtu: %d, min mtu: %d",
845 			     max_frame_len, adapter->max_mtu, ENA_MIN_MTU);
846 		return ENA_COM_UNSUPPORTED;
847 	}
848 
849 	return 0;
850 }
851 
852 static int
853 ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx,
854 		       bool use_large_llq_hdr)
855 {
856 	struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
857 	struct ena_com_dev *ena_dev = ctx->ena_dev;
858 	uint32_t max_tx_queue_size;
859 	uint32_t max_rx_queue_size;
860 
861 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
862 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
863 			&ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
864 		max_rx_queue_size = RTE_MIN(max_queue_ext->max_rx_cq_depth,
865 			max_queue_ext->max_rx_sq_depth);
866 		max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
867 
868 		if (ena_dev->tx_mem_queue_type ==
869 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
870 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
871 				llq->max_llq_depth);
872 		} else {
873 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
874 				max_queue_ext->max_tx_sq_depth);
875 		}
876 
877 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
878 			max_queue_ext->max_per_packet_rx_descs);
879 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
880 			max_queue_ext->max_per_packet_tx_descs);
881 	} else {
882 		struct ena_admin_queue_feature_desc *max_queues =
883 			&ctx->get_feat_ctx->max_queues;
884 		max_rx_queue_size = RTE_MIN(max_queues->max_cq_depth,
885 			max_queues->max_sq_depth);
886 		max_tx_queue_size = max_queues->max_cq_depth;
887 
888 		if (ena_dev->tx_mem_queue_type ==
889 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
890 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
891 				llq->max_llq_depth);
892 		} else {
893 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
894 				max_queues->max_sq_depth);
895 		}
896 
897 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
898 			max_queues->max_packet_rx_descs);
899 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
900 			max_queues->max_packet_tx_descs);
901 	}
902 
903 	/* Round down to the nearest power of 2 */
904 	max_rx_queue_size = rte_align32prevpow2(max_rx_queue_size);
905 	max_tx_queue_size = rte_align32prevpow2(max_tx_queue_size);
906 
907 	if (use_large_llq_hdr) {
908 		if ((llq->entry_size_ctrl_supported &
909 		     ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
910 		    (ena_dev->tx_mem_queue_type ==
911 		     ENA_ADMIN_PLACEMENT_POLICY_DEV)) {
912 			max_tx_queue_size /= 2;
913 			PMD_INIT_LOG(INFO,
914 				"Forcing large headers and decreasing maximum TX queue size to %d\n",
915 				max_tx_queue_size);
916 		} else {
917 			PMD_INIT_LOG(ERR,
918 				"Forcing large headers failed: LLQ is disabled or device does not support large headers\n");
919 		}
920 	}
921 
922 	if (unlikely(max_rx_queue_size == 0 || max_tx_queue_size == 0)) {
923 		PMD_INIT_LOG(ERR, "Invalid queue size");
924 		return -EFAULT;
925 	}
926 
927 	ctx->max_tx_queue_size = max_tx_queue_size;
928 	ctx->max_rx_queue_size = max_rx_queue_size;
929 
930 	return 0;
931 }
932 
933 static void ena_stats_restart(struct rte_eth_dev *dev)
934 {
935 	struct ena_adapter *adapter = dev->data->dev_private;
936 
937 	rte_atomic64_init(&adapter->drv_stats->ierrors);
938 	rte_atomic64_init(&adapter->drv_stats->oerrors);
939 	rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
940 	adapter->drv_stats->rx_drops = 0;
941 }
942 
943 static int ena_stats_get(struct rte_eth_dev *dev,
944 			  struct rte_eth_stats *stats)
945 {
946 	struct ena_admin_basic_stats ena_stats;
947 	struct ena_adapter *adapter = dev->data->dev_private;
948 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
949 	int rc;
950 	int i;
951 	int max_rings_stats;
952 
953 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
954 		return -ENOTSUP;
955 
956 	memset(&ena_stats, 0, sizeof(ena_stats));
957 	rc = ena_com_get_dev_basic_stats(ena_dev, &ena_stats);
958 	if (unlikely(rc)) {
959 		PMD_DRV_LOG(ERR, "Could not retrieve statistics from ENA\n");
960 		return rc;
961 	}
962 
963 	/* Set of basic statistics from ENA */
964 	stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
965 					  ena_stats.rx_pkts_low);
966 	stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
967 					  ena_stats.tx_pkts_low);
968 	stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
969 					ena_stats.rx_bytes_low);
970 	stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
971 					ena_stats.tx_bytes_low);
972 
973 	/* Driver related stats */
974 	stats->imissed = adapter->drv_stats->rx_drops;
975 	stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
976 	stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
977 	stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
978 
979 	max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
980 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
981 	for (i = 0; i < max_rings_stats; ++i) {
982 		struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
983 
984 		stats->q_ibytes[i] = rx_stats->bytes;
985 		stats->q_ipackets[i] = rx_stats->cnt;
986 		stats->q_errors[i] = rx_stats->bad_desc_num +
987 			rx_stats->bad_req_id;
988 	}
989 
990 	max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
991 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
992 	for (i = 0; i < max_rings_stats; ++i) {
993 		struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
994 
995 		stats->q_obytes[i] = tx_stats->bytes;
996 		stats->q_opackets[i] = tx_stats->cnt;
997 	}
998 
999 	return 0;
1000 }
1001 
1002 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1003 {
1004 	struct ena_adapter *adapter;
1005 	struct ena_com_dev *ena_dev;
1006 	int rc = 0;
1007 
1008 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
1009 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
1010 	adapter = dev->data->dev_private;
1011 
1012 	ena_dev = &adapter->ena_dev;
1013 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
1014 
1015 	if (mtu > ena_get_mtu_conf(adapter) || mtu < ENA_MIN_MTU) {
1016 		PMD_DRV_LOG(ERR,
1017 			"Invalid MTU setting. new_mtu: %d "
1018 			"max mtu: %d min mtu: %d\n",
1019 			mtu, ena_get_mtu_conf(adapter), ENA_MIN_MTU);
1020 		return -EINVAL;
1021 	}
1022 
1023 	rc = ena_com_set_dev_mtu(ena_dev, mtu);
1024 	if (rc)
1025 		PMD_DRV_LOG(ERR, "Could not set MTU: %d\n", mtu);
1026 	else
1027 		PMD_DRV_LOG(NOTICE, "Set MTU: %d\n", mtu);
1028 
1029 	return rc;
1030 }
1031 
1032 static int ena_start(struct rte_eth_dev *dev)
1033 {
1034 	struct ena_adapter *adapter = dev->data->dev_private;
1035 	uint64_t ticks;
1036 	int rc = 0;
1037 
1038 	rc = ena_check_valid_conf(adapter);
1039 	if (rc)
1040 		return rc;
1041 
1042 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
1043 	if (rc)
1044 		return rc;
1045 
1046 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
1047 	if (rc)
1048 		goto err_start_tx;
1049 
1050 	if (adapter->rte_dev->data->dev_conf.rxmode.mq_mode &
1051 	    ETH_MQ_RX_RSS_FLAG && adapter->rte_dev->data->nb_rx_queues > 0) {
1052 		rc = ena_rss_init_default(adapter);
1053 		if (rc)
1054 			goto err_rss_init;
1055 	}
1056 
1057 	ena_stats_restart(dev);
1058 
1059 	adapter->timestamp_wd = rte_get_timer_cycles();
1060 	adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
1061 
1062 	ticks = rte_get_timer_hz();
1063 	rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
1064 			ena_timer_wd_callback, adapter);
1065 
1066 	++adapter->dev_stats.dev_start;
1067 	adapter->state = ENA_ADAPTER_STATE_RUNNING;
1068 
1069 	return 0;
1070 
1071 err_rss_init:
1072 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1073 err_start_tx:
1074 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1075 	return rc;
1076 }
1077 
1078 static void ena_stop(struct rte_eth_dev *dev)
1079 {
1080 	struct ena_adapter *adapter = dev->data->dev_private;
1081 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1082 	int rc;
1083 
1084 	rte_timer_stop_sync(&adapter->timer_wd);
1085 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1086 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1087 
1088 	if (adapter->trigger_reset) {
1089 		rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
1090 		if (rc)
1091 			PMD_DRV_LOG(ERR, "Device reset failed rc=%d\n", rc);
1092 	}
1093 
1094 	++adapter->dev_stats.dev_stop;
1095 	adapter->state = ENA_ADAPTER_STATE_STOPPED;
1096 }
1097 
1098 static int ena_create_io_queue(struct ena_ring *ring)
1099 {
1100 	struct ena_adapter *adapter;
1101 	struct ena_com_dev *ena_dev;
1102 	struct ena_com_create_io_ctx ctx =
1103 		/* policy set to _HOST just to satisfy icc compiler */
1104 		{ ENA_ADMIN_PLACEMENT_POLICY_HOST,
1105 		  0, 0, 0, 0, 0 };
1106 	uint16_t ena_qid;
1107 	unsigned int i;
1108 	int rc;
1109 
1110 	adapter = ring->adapter;
1111 	ena_dev = &adapter->ena_dev;
1112 
1113 	if (ring->type == ENA_RING_TYPE_TX) {
1114 		ena_qid = ENA_IO_TXQ_IDX(ring->id);
1115 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1116 		ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1117 		for (i = 0; i < ring->ring_size; i++)
1118 			ring->empty_tx_reqs[i] = i;
1119 	} else {
1120 		ena_qid = ENA_IO_RXQ_IDX(ring->id);
1121 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1122 		for (i = 0; i < ring->ring_size; i++)
1123 			ring->empty_rx_reqs[i] = i;
1124 	}
1125 	ctx.queue_size = ring->ring_size;
1126 	ctx.qid = ena_qid;
1127 	ctx.msix_vector = -1; /* interrupts not used */
1128 	ctx.numa_node = ring->numa_socket_id;
1129 
1130 	rc = ena_com_create_io_queue(ena_dev, &ctx);
1131 	if (rc) {
1132 		PMD_DRV_LOG(ERR,
1133 			"failed to create io queue #%d (qid:%d) rc: %d\n",
1134 			ring->id, ena_qid, rc);
1135 		return rc;
1136 	}
1137 
1138 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1139 				     &ring->ena_com_io_sq,
1140 				     &ring->ena_com_io_cq);
1141 	if (rc) {
1142 		PMD_DRV_LOG(ERR,
1143 			"Failed to get io queue handlers. queue num %d rc: %d\n",
1144 			ring->id, rc);
1145 		ena_com_destroy_io_queue(ena_dev, ena_qid);
1146 		return rc;
1147 	}
1148 
1149 	if (ring->type == ENA_RING_TYPE_TX)
1150 		ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1151 
1152 	return 0;
1153 }
1154 
1155 static void ena_queue_stop(struct ena_ring *ring)
1156 {
1157 	struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
1158 
1159 	if (ring->type == ENA_RING_TYPE_RX) {
1160 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
1161 		ena_rx_queue_release_bufs(ring);
1162 	} else {
1163 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
1164 		ena_tx_queue_release_bufs(ring);
1165 	}
1166 }
1167 
1168 static void ena_queue_stop_all(struct rte_eth_dev *dev,
1169 			      enum ena_ring_type ring_type)
1170 {
1171 	struct ena_adapter *adapter = dev->data->dev_private;
1172 	struct ena_ring *queues = NULL;
1173 	uint16_t nb_queues, i;
1174 
1175 	if (ring_type == ENA_RING_TYPE_RX) {
1176 		queues = adapter->rx_ring;
1177 		nb_queues = dev->data->nb_rx_queues;
1178 	} else {
1179 		queues = adapter->tx_ring;
1180 		nb_queues = dev->data->nb_tx_queues;
1181 	}
1182 
1183 	for (i = 0; i < nb_queues; ++i)
1184 		if (queues[i].configured)
1185 			ena_queue_stop(&queues[i]);
1186 }
1187 
1188 static int ena_queue_start(struct ena_ring *ring)
1189 {
1190 	int rc, bufs_num;
1191 
1192 	ena_assert_msg(ring->configured == 1,
1193 		       "Trying to start unconfigured queue\n");
1194 
1195 	rc = ena_create_io_queue(ring);
1196 	if (rc) {
1197 		PMD_INIT_LOG(ERR, "Failed to create IO queue!");
1198 		return rc;
1199 	}
1200 
1201 	ring->next_to_clean = 0;
1202 	ring->next_to_use = 0;
1203 
1204 	if (ring->type == ENA_RING_TYPE_TX) {
1205 		ring->tx_stats.available_desc =
1206 			ena_com_free_q_entries(ring->ena_com_io_sq);
1207 		return 0;
1208 	}
1209 
1210 	bufs_num = ring->ring_size - 1;
1211 	rc = ena_populate_rx_queue(ring, bufs_num);
1212 	if (rc != bufs_num) {
1213 		ena_com_destroy_io_queue(&ring->adapter->ena_dev,
1214 					 ENA_IO_RXQ_IDX(ring->id));
1215 		PMD_INIT_LOG(ERR, "Failed to populate rx ring !");
1216 		return ENA_COM_FAULT;
1217 	}
1218 
1219 	return 0;
1220 }
1221 
1222 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1223 			      uint16_t queue_idx,
1224 			      uint16_t nb_desc,
1225 			      unsigned int socket_id,
1226 			      const struct rte_eth_txconf *tx_conf)
1227 {
1228 	struct ena_ring *txq = NULL;
1229 	struct ena_adapter *adapter = dev->data->dev_private;
1230 	unsigned int i;
1231 
1232 	txq = &adapter->tx_ring[queue_idx];
1233 
1234 	if (txq->configured) {
1235 		PMD_DRV_LOG(CRIT,
1236 			"API violation. Queue %d is already configured\n",
1237 			queue_idx);
1238 		return ENA_COM_FAULT;
1239 	}
1240 
1241 	if (!rte_is_power_of_2(nb_desc)) {
1242 		PMD_DRV_LOG(ERR,
1243 			"Unsupported size of TX queue: %d is not a power of 2.\n",
1244 			nb_desc);
1245 		return -EINVAL;
1246 	}
1247 
1248 	if (nb_desc > adapter->max_tx_ring_size) {
1249 		PMD_DRV_LOG(ERR,
1250 			"Unsupported size of TX queue (max size: %d)\n",
1251 			adapter->max_tx_ring_size);
1252 		return -EINVAL;
1253 	}
1254 
1255 	if (nb_desc == RTE_ETH_DEV_FALLBACK_TX_RINGSIZE)
1256 		nb_desc = adapter->max_tx_ring_size;
1257 
1258 	txq->port_id = dev->data->port_id;
1259 	txq->next_to_clean = 0;
1260 	txq->next_to_use = 0;
1261 	txq->ring_size = nb_desc;
1262 	txq->size_mask = nb_desc - 1;
1263 	txq->numa_socket_id = socket_id;
1264 
1265 	txq->tx_buffer_info = rte_zmalloc("txq->tx_buffer_info",
1266 					  sizeof(struct ena_tx_buffer) *
1267 					  txq->ring_size,
1268 					  RTE_CACHE_LINE_SIZE);
1269 	if (!txq->tx_buffer_info) {
1270 		PMD_DRV_LOG(ERR, "failed to alloc mem for tx buffer info\n");
1271 		return -ENOMEM;
1272 	}
1273 
1274 	txq->empty_tx_reqs = rte_zmalloc("txq->empty_tx_reqs",
1275 					 sizeof(u16) * txq->ring_size,
1276 					 RTE_CACHE_LINE_SIZE);
1277 	if (!txq->empty_tx_reqs) {
1278 		PMD_DRV_LOG(ERR, "failed to alloc mem for tx reqs\n");
1279 		rte_free(txq->tx_buffer_info);
1280 		return -ENOMEM;
1281 	}
1282 
1283 	txq->push_buf_intermediate_buf =
1284 		rte_zmalloc("txq->push_buf_intermediate_buf",
1285 			    txq->tx_max_header_size,
1286 			    RTE_CACHE_LINE_SIZE);
1287 	if (!txq->push_buf_intermediate_buf) {
1288 		PMD_DRV_LOG(ERR, "failed to alloc push buff for LLQ\n");
1289 		rte_free(txq->tx_buffer_info);
1290 		rte_free(txq->empty_tx_reqs);
1291 		return -ENOMEM;
1292 	}
1293 
1294 	for (i = 0; i < txq->ring_size; i++)
1295 		txq->empty_tx_reqs[i] = i;
1296 
1297 	if (tx_conf != NULL) {
1298 		txq->offloads =
1299 			tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1300 	}
1301 	/* Store pointer to this queue in upper layer */
1302 	txq->configured = 1;
1303 	dev->data->tx_queues[queue_idx] = txq;
1304 
1305 	return 0;
1306 }
1307 
1308 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1309 			      uint16_t queue_idx,
1310 			      uint16_t nb_desc,
1311 			      unsigned int socket_id,
1312 			      __rte_unused const struct rte_eth_rxconf *rx_conf,
1313 			      struct rte_mempool *mp)
1314 {
1315 	struct ena_adapter *adapter = dev->data->dev_private;
1316 	struct ena_ring *rxq = NULL;
1317 	size_t buffer_size;
1318 	int i;
1319 
1320 	rxq = &adapter->rx_ring[queue_idx];
1321 	if (rxq->configured) {
1322 		PMD_DRV_LOG(CRIT,
1323 			"API violation. Queue %d is already configured\n",
1324 			queue_idx);
1325 		return ENA_COM_FAULT;
1326 	}
1327 
1328 	if (nb_desc == RTE_ETH_DEV_FALLBACK_RX_RINGSIZE)
1329 		nb_desc = adapter->max_rx_ring_size;
1330 
1331 	if (!rte_is_power_of_2(nb_desc)) {
1332 		PMD_DRV_LOG(ERR,
1333 			"Unsupported size of RX queue: %d is not a power of 2.\n",
1334 			nb_desc);
1335 		return -EINVAL;
1336 	}
1337 
1338 	if (nb_desc > adapter->max_rx_ring_size) {
1339 		PMD_DRV_LOG(ERR,
1340 			"Unsupported size of RX queue (max size: %d)\n",
1341 			adapter->max_rx_ring_size);
1342 		return -EINVAL;
1343 	}
1344 
1345 	/* ENA isn't supporting buffers smaller than 1400 bytes */
1346 	buffer_size = rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
1347 	if (buffer_size < ENA_RX_BUF_MIN_SIZE) {
1348 		PMD_DRV_LOG(ERR,
1349 			"Unsupported size of RX buffer: %zu (min size: %d)\n",
1350 			buffer_size, ENA_RX_BUF_MIN_SIZE);
1351 		return -EINVAL;
1352 	}
1353 
1354 	rxq->port_id = dev->data->port_id;
1355 	rxq->next_to_clean = 0;
1356 	rxq->next_to_use = 0;
1357 	rxq->ring_size = nb_desc;
1358 	rxq->size_mask = nb_desc - 1;
1359 	rxq->numa_socket_id = socket_id;
1360 	rxq->mb_pool = mp;
1361 
1362 	rxq->rx_buffer_info = rte_zmalloc("rxq->buffer_info",
1363 		sizeof(struct ena_rx_buffer) * nb_desc,
1364 		RTE_CACHE_LINE_SIZE);
1365 	if (!rxq->rx_buffer_info) {
1366 		PMD_DRV_LOG(ERR, "failed to alloc mem for rx buffer info\n");
1367 		return -ENOMEM;
1368 	}
1369 
1370 	rxq->rx_refill_buffer = rte_zmalloc("rxq->rx_refill_buffer",
1371 					    sizeof(struct rte_mbuf *) * nb_desc,
1372 					    RTE_CACHE_LINE_SIZE);
1373 
1374 	if (!rxq->rx_refill_buffer) {
1375 		PMD_DRV_LOG(ERR, "failed to alloc mem for rx refill buffer\n");
1376 		rte_free(rxq->rx_buffer_info);
1377 		rxq->rx_buffer_info = NULL;
1378 		return -ENOMEM;
1379 	}
1380 
1381 	rxq->empty_rx_reqs = rte_zmalloc("rxq->empty_rx_reqs",
1382 					 sizeof(uint16_t) * nb_desc,
1383 					 RTE_CACHE_LINE_SIZE);
1384 	if (!rxq->empty_rx_reqs) {
1385 		PMD_DRV_LOG(ERR, "failed to alloc mem for empty rx reqs\n");
1386 		rte_free(rxq->rx_buffer_info);
1387 		rxq->rx_buffer_info = NULL;
1388 		rte_free(rxq->rx_refill_buffer);
1389 		rxq->rx_refill_buffer = NULL;
1390 		return -ENOMEM;
1391 	}
1392 
1393 	for (i = 0; i < nb_desc; i++)
1394 		rxq->empty_rx_reqs[i] = i;
1395 
1396 	/* Store pointer to this queue in upper layer */
1397 	rxq->configured = 1;
1398 	dev->data->rx_queues[queue_idx] = rxq;
1399 
1400 	return 0;
1401 }
1402 
1403 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
1404 				  struct rte_mbuf *mbuf, uint16_t id)
1405 {
1406 	struct ena_com_buf ebuf;
1407 	int rc;
1408 
1409 	/* prepare physical address for DMA transaction */
1410 	ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1411 	ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1412 
1413 	/* pass resource to device */
1414 	rc = ena_com_add_single_rx_desc(io_sq, &ebuf, id);
1415 	if (unlikely(rc != 0))
1416 		PMD_DRV_LOG(WARNING, "failed adding rx desc\n");
1417 
1418 	return rc;
1419 }
1420 
1421 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1422 {
1423 	unsigned int i;
1424 	int rc;
1425 	uint16_t next_to_use = rxq->next_to_use;
1426 	uint16_t in_use, req_id;
1427 	struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1428 
1429 	if (unlikely(!count))
1430 		return 0;
1431 
1432 	in_use = rxq->ring_size - 1 -
1433 		ena_com_free_q_entries(rxq->ena_com_io_sq);
1434 	ena_assert_msg(((in_use + count) < rxq->ring_size),
1435 		"bad ring state\n");
1436 
1437 	/* get resources for incoming packets */
1438 	rc = rte_mempool_get_bulk(rxq->mb_pool, (void **)mbufs, count);
1439 	if (unlikely(rc < 0)) {
1440 		rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1441 		++rxq->rx_stats.mbuf_alloc_fail;
1442 		PMD_RX_LOG(DEBUG, "there are no enough free buffers");
1443 		return 0;
1444 	}
1445 
1446 	for (i = 0; i < count; i++) {
1447 		struct rte_mbuf *mbuf = mbufs[i];
1448 		struct ena_rx_buffer *rx_info;
1449 
1450 		if (likely((i + 4) < count))
1451 			rte_prefetch0(mbufs[i + 4]);
1452 
1453 		req_id = rxq->empty_rx_reqs[next_to_use];
1454 		rc = validate_rx_req_id(rxq, req_id);
1455 		if (unlikely(rc))
1456 			break;
1457 
1458 		rx_info = &rxq->rx_buffer_info[req_id];
1459 
1460 		rc = ena_add_single_rx_desc(rxq->ena_com_io_sq, mbuf, req_id);
1461 		if (unlikely(rc != 0))
1462 			break;
1463 
1464 		rx_info->mbuf = mbuf;
1465 		next_to_use = ENA_IDX_NEXT_MASKED(next_to_use, rxq->size_mask);
1466 	}
1467 
1468 	if (unlikely(i < count)) {
1469 		PMD_DRV_LOG(WARNING, "refilled rx qid %d with only %d "
1470 			"buffers (from %d)\n", rxq->id, i, count);
1471 		rte_mempool_put_bulk(rxq->mb_pool, (void **)(&mbufs[i]),
1472 				     count - i);
1473 		++rxq->rx_stats.refill_partial;
1474 	}
1475 
1476 	/* When we submitted free recources to device... */
1477 	if (likely(i > 0)) {
1478 		/* ...let HW know that it can fill buffers with data. */
1479 		ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1480 
1481 		rxq->next_to_use = next_to_use;
1482 	}
1483 
1484 	return i;
1485 }
1486 
1487 static int ena_device_init(struct ena_com_dev *ena_dev,
1488 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
1489 			   bool *wd_state)
1490 {
1491 	uint32_t aenq_groups;
1492 	int rc;
1493 	bool readless_supported;
1494 
1495 	/* Initialize mmio registers */
1496 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
1497 	if (rc) {
1498 		PMD_DRV_LOG(ERR, "failed to init mmio read less\n");
1499 		return rc;
1500 	}
1501 
1502 	/* The PCIe configuration space revision id indicate if mmio reg
1503 	 * read is disabled.
1504 	 */
1505 	readless_supported =
1506 		!(((struct rte_pci_device *)ena_dev->dmadev)->id.class_id
1507 			       & ENA_MMIO_DISABLE_REG_READ);
1508 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1509 
1510 	/* reset device */
1511 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1512 	if (rc) {
1513 		PMD_DRV_LOG(ERR, "cannot reset device\n");
1514 		goto err_mmio_read_less;
1515 	}
1516 
1517 	/* check FW version */
1518 	rc = ena_com_validate_version(ena_dev);
1519 	if (rc) {
1520 		PMD_DRV_LOG(ERR, "device version is too low\n");
1521 		goto err_mmio_read_less;
1522 	}
1523 
1524 	ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1525 
1526 	/* ENA device administration layer init */
1527 	rc = ena_com_admin_init(ena_dev, &aenq_handlers);
1528 	if (rc) {
1529 		PMD_DRV_LOG(ERR,
1530 			"cannot initialize ena admin queue with device\n");
1531 		goto err_mmio_read_less;
1532 	}
1533 
1534 	/* To enable the msix interrupts the driver needs to know the number
1535 	 * of queues. So the driver uses polling mode to retrieve this
1536 	 * information.
1537 	 */
1538 	ena_com_set_admin_polling_mode(ena_dev, true);
1539 
1540 	ena_config_host_info(ena_dev);
1541 
1542 	/* Get Device Attributes and features */
1543 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1544 	if (rc) {
1545 		PMD_DRV_LOG(ERR,
1546 			"cannot get attribute for ena device rc= %d\n", rc);
1547 		goto err_admin_init;
1548 	}
1549 
1550 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1551 		      BIT(ENA_ADMIN_NOTIFICATION) |
1552 		      BIT(ENA_ADMIN_KEEP_ALIVE) |
1553 		      BIT(ENA_ADMIN_FATAL_ERROR) |
1554 		      BIT(ENA_ADMIN_WARNING);
1555 
1556 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
1557 	rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
1558 	if (rc) {
1559 		PMD_DRV_LOG(ERR, "Cannot configure aenq groups rc: %d\n", rc);
1560 		goto err_admin_init;
1561 	}
1562 
1563 	*wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
1564 
1565 	return 0;
1566 
1567 err_admin_init:
1568 	ena_com_admin_destroy(ena_dev);
1569 
1570 err_mmio_read_less:
1571 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1572 
1573 	return rc;
1574 }
1575 
1576 static void ena_interrupt_handler_rte(void *cb_arg)
1577 {
1578 	struct ena_adapter *adapter = cb_arg;
1579 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1580 
1581 	ena_com_admin_q_comp_intr_handler(ena_dev);
1582 	if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED))
1583 		ena_com_aenq_intr_handler(ena_dev, adapter);
1584 }
1585 
1586 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1587 {
1588 	if (!adapter->wd_state)
1589 		return;
1590 
1591 	if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1592 		return;
1593 
1594 	if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1595 	    adapter->keep_alive_timeout)) {
1596 		PMD_DRV_LOG(ERR, "Keep alive timeout\n");
1597 		adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
1598 		adapter->trigger_reset = true;
1599 		++adapter->dev_stats.wd_expired;
1600 	}
1601 }
1602 
1603 /* Check if admin queue is enabled */
1604 static void check_for_admin_com_state(struct ena_adapter *adapter)
1605 {
1606 	if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1607 		PMD_DRV_LOG(ERR, "ENA admin queue is not in running state!\n");
1608 		adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
1609 		adapter->trigger_reset = true;
1610 	}
1611 }
1612 
1613 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
1614 				  void *arg)
1615 {
1616 	struct ena_adapter *adapter = arg;
1617 	struct rte_eth_dev *dev = adapter->rte_dev;
1618 
1619 	check_for_missing_keep_alive(adapter);
1620 	check_for_admin_com_state(adapter);
1621 
1622 	if (unlikely(adapter->trigger_reset)) {
1623 		PMD_DRV_LOG(ERR, "Trigger reset is on\n");
1624 		rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
1625 			NULL);
1626 	}
1627 }
1628 
1629 static inline void
1630 set_default_llq_configurations(struct ena_llq_configurations *llq_config,
1631 			       struct ena_admin_feature_llq_desc *llq,
1632 			       bool use_large_llq_hdr)
1633 {
1634 	llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
1635 	llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
1636 	llq_config->llq_num_decs_before_header =
1637 		ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
1638 
1639 	if (use_large_llq_hdr &&
1640 	    (llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B)) {
1641 		llq_config->llq_ring_entry_size =
1642 			ENA_ADMIN_LIST_ENTRY_SIZE_256B;
1643 		llq_config->llq_ring_entry_size_value = 256;
1644 	} else {
1645 		llq_config->llq_ring_entry_size =
1646 			ENA_ADMIN_LIST_ENTRY_SIZE_128B;
1647 		llq_config->llq_ring_entry_size_value = 128;
1648 	}
1649 }
1650 
1651 static int
1652 ena_set_queues_placement_policy(struct ena_adapter *adapter,
1653 				struct ena_com_dev *ena_dev,
1654 				struct ena_admin_feature_llq_desc *llq,
1655 				struct ena_llq_configurations *llq_default_configurations)
1656 {
1657 	int rc;
1658 	u32 llq_feature_mask;
1659 
1660 	llq_feature_mask = 1 << ENA_ADMIN_LLQ;
1661 	if (!(ena_dev->supported_features & llq_feature_mask)) {
1662 		PMD_DRV_LOG(INFO,
1663 			"LLQ is not supported. Fallback to host mode policy.\n");
1664 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1665 		return 0;
1666 	}
1667 
1668 	rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
1669 	if (unlikely(rc)) {
1670 		PMD_INIT_LOG(WARNING, "Failed to config dev mode. "
1671 			"Fallback to host mode policy.");
1672 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1673 		return 0;
1674 	}
1675 
1676 	/* Nothing to config, exit */
1677 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1678 		return 0;
1679 
1680 	if (!adapter->dev_mem_base) {
1681 		PMD_DRV_LOG(ERR, "Unable to access LLQ bar resource. "
1682 			"Fallback to host mode policy.\n.");
1683 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1684 		return 0;
1685 	}
1686 
1687 	ena_dev->mem_bar = adapter->dev_mem_base;
1688 
1689 	return 0;
1690 }
1691 
1692 static uint32_t ena_calc_max_io_queue_num(struct ena_com_dev *ena_dev,
1693 	struct ena_com_dev_get_features_ctx *get_feat_ctx)
1694 {
1695 	uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
1696 
1697 	/* Regular queues capabilities */
1698 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1699 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1700 			&get_feat_ctx->max_queue_ext.max_queue_ext;
1701 		io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
1702 				    max_queue_ext->max_rx_cq_num);
1703 		io_tx_sq_num = max_queue_ext->max_tx_sq_num;
1704 		io_tx_cq_num = max_queue_ext->max_tx_cq_num;
1705 	} else {
1706 		struct ena_admin_queue_feature_desc *max_queues =
1707 			&get_feat_ctx->max_queues;
1708 		io_tx_sq_num = max_queues->max_sq_num;
1709 		io_tx_cq_num = max_queues->max_cq_num;
1710 		io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
1711 	}
1712 
1713 	/* In case of LLQ use the llq number in the get feature cmd */
1714 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
1715 		io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
1716 
1717 	max_num_io_queues = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
1718 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_sq_num);
1719 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_cq_num);
1720 
1721 	if (unlikely(max_num_io_queues == 0)) {
1722 		PMD_DRV_LOG(ERR, "Number of IO queues should not be 0\n");
1723 		return -EFAULT;
1724 	}
1725 
1726 	return max_num_io_queues;
1727 }
1728 
1729 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
1730 {
1731 	struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
1732 	struct rte_pci_device *pci_dev;
1733 	struct rte_intr_handle *intr_handle;
1734 	struct ena_adapter *adapter = eth_dev->data->dev_private;
1735 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1736 	struct ena_com_dev_get_features_ctx get_feat_ctx;
1737 	struct ena_llq_configurations llq_config;
1738 	const char *queue_type_str;
1739 	uint32_t max_num_io_queues;
1740 	int rc;
1741 	static int adapters_found;
1742 	bool disable_meta_caching;
1743 	bool wd_state = false;
1744 
1745 	eth_dev->dev_ops = &ena_dev_ops;
1746 	eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
1747 	eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
1748 	eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
1749 
1750 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1751 		return 0;
1752 
1753 	memset(adapter, 0, sizeof(struct ena_adapter));
1754 	ena_dev = &adapter->ena_dev;
1755 
1756 	adapter->rte_eth_dev_data = eth_dev->data;
1757 	adapter->rte_dev = eth_dev;
1758 
1759 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1760 	adapter->pdev = pci_dev;
1761 
1762 	PMD_INIT_LOG(INFO, "Initializing %x:%x:%x.%d",
1763 		     pci_dev->addr.domain,
1764 		     pci_dev->addr.bus,
1765 		     pci_dev->addr.devid,
1766 		     pci_dev->addr.function);
1767 
1768 	intr_handle = &pci_dev->intr_handle;
1769 
1770 	adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
1771 	adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
1772 
1773 	if (!adapter->regs) {
1774 		PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)",
1775 			     ENA_REGS_BAR);
1776 		return -ENXIO;
1777 	}
1778 
1779 	ena_dev->reg_bar = adapter->regs;
1780 	ena_dev->dmadev = adapter->pdev;
1781 
1782 	adapter->id_number = adapters_found;
1783 
1784 	snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
1785 		 adapter->id_number);
1786 
1787 	rc = ena_parse_devargs(adapter, pci_dev->device.devargs);
1788 	if (rc != 0) {
1789 		PMD_INIT_LOG(CRIT, "Failed to parse devargs\n");
1790 		goto err;
1791 	}
1792 
1793 	/* device specific initialization routine */
1794 	rc = ena_device_init(ena_dev, &get_feat_ctx, &wd_state);
1795 	if (rc) {
1796 		PMD_INIT_LOG(CRIT, "Failed to init ENA device");
1797 		goto err;
1798 	}
1799 	adapter->wd_state = wd_state;
1800 
1801 	set_default_llq_configurations(&llq_config, &get_feat_ctx.llq,
1802 		adapter->use_large_llq_hdr);
1803 	rc = ena_set_queues_placement_policy(adapter, ena_dev,
1804 					     &get_feat_ctx.llq, &llq_config);
1805 	if (unlikely(rc)) {
1806 		PMD_INIT_LOG(CRIT, "Failed to set placement policy");
1807 		return rc;
1808 	}
1809 
1810 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1811 		queue_type_str = "Regular";
1812 	else
1813 		queue_type_str = "Low latency";
1814 	PMD_DRV_LOG(INFO, "Placement policy: %s\n", queue_type_str);
1815 
1816 	calc_queue_ctx.ena_dev = ena_dev;
1817 	calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
1818 
1819 	max_num_io_queues = ena_calc_max_io_queue_num(ena_dev, &get_feat_ctx);
1820 	rc = ena_calc_io_queue_size(&calc_queue_ctx,
1821 		adapter->use_large_llq_hdr);
1822 	if (unlikely((rc != 0) || (max_num_io_queues == 0))) {
1823 		rc = -EFAULT;
1824 		goto err_device_destroy;
1825 	}
1826 
1827 	adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
1828 	adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
1829 	adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
1830 	adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
1831 	adapter->max_num_io_queues = max_num_io_queues;
1832 
1833 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1834 		disable_meta_caching =
1835 			!!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
1836 			BIT(ENA_ADMIN_DISABLE_META_CACHING));
1837 	} else {
1838 		disable_meta_caching = false;
1839 	}
1840 
1841 	/* prepare ring structures */
1842 	ena_init_rings(adapter, disable_meta_caching);
1843 
1844 	ena_config_debug_area(adapter);
1845 
1846 	/* Set max MTU for this device */
1847 	adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
1848 
1849 	/* set device support for offloads */
1850 	adapter->offloads.tso4_supported = (get_feat_ctx.offload.tx &
1851 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) != 0;
1852 	adapter->offloads.tx_csum_supported = (get_feat_ctx.offload.tx &
1853 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK) != 0;
1854 	adapter->offloads.rx_csum_supported =
1855 		(get_feat_ctx.offload.rx_supported &
1856 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK) != 0;
1857 
1858 	/* Copy MAC address and point DPDK to it */
1859 	eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr;
1860 	rte_ether_addr_copy((struct rte_ether_addr *)
1861 			get_feat_ctx.dev_attr.mac_addr,
1862 			(struct rte_ether_addr *)adapter->mac_addr);
1863 
1864 	/*
1865 	 * Pass the information to the rte_eth_dev_close() that it should also
1866 	 * release the private port resources.
1867 	 */
1868 	eth_dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE;
1869 
1870 	adapter->drv_stats = rte_zmalloc("adapter stats",
1871 					 sizeof(*adapter->drv_stats),
1872 					 RTE_CACHE_LINE_SIZE);
1873 	if (!adapter->drv_stats) {
1874 		PMD_DRV_LOG(ERR, "failed to alloc mem for adapter stats\n");
1875 		rc = -ENOMEM;
1876 		goto err_delete_debug_area;
1877 	}
1878 
1879 	rte_intr_callback_register(intr_handle,
1880 				   ena_interrupt_handler_rte,
1881 				   adapter);
1882 	rte_intr_enable(intr_handle);
1883 	ena_com_set_admin_polling_mode(ena_dev, false);
1884 	ena_com_admin_aenq_enable(ena_dev);
1885 
1886 	if (adapters_found == 0)
1887 		rte_timer_subsystem_init();
1888 	rte_timer_init(&adapter->timer_wd);
1889 
1890 	adapters_found++;
1891 	adapter->state = ENA_ADAPTER_STATE_INIT;
1892 
1893 	return 0;
1894 
1895 err_delete_debug_area:
1896 	ena_com_delete_debug_area(ena_dev);
1897 
1898 err_device_destroy:
1899 	ena_com_delete_host_info(ena_dev);
1900 	ena_com_admin_destroy(ena_dev);
1901 
1902 err:
1903 	return rc;
1904 }
1905 
1906 static void ena_destroy_device(struct rte_eth_dev *eth_dev)
1907 {
1908 	struct ena_adapter *adapter = eth_dev->data->dev_private;
1909 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1910 
1911 	if (adapter->state == ENA_ADAPTER_STATE_FREE)
1912 		return;
1913 
1914 	ena_com_set_admin_running_state(ena_dev, false);
1915 
1916 	if (adapter->state != ENA_ADAPTER_STATE_CLOSED)
1917 		ena_close(eth_dev);
1918 
1919 	ena_com_delete_debug_area(ena_dev);
1920 	ena_com_delete_host_info(ena_dev);
1921 
1922 	ena_com_abort_admin_commands(ena_dev);
1923 	ena_com_wait_for_abort_completion(ena_dev);
1924 	ena_com_admin_destroy(ena_dev);
1925 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1926 
1927 	adapter->state = ENA_ADAPTER_STATE_FREE;
1928 }
1929 
1930 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
1931 {
1932 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1933 		return 0;
1934 
1935 	ena_destroy_device(eth_dev);
1936 
1937 	eth_dev->dev_ops = NULL;
1938 	eth_dev->rx_pkt_burst = NULL;
1939 	eth_dev->tx_pkt_burst = NULL;
1940 	eth_dev->tx_pkt_prepare = NULL;
1941 
1942 	return 0;
1943 }
1944 
1945 static int ena_dev_configure(struct rte_eth_dev *dev)
1946 {
1947 	struct ena_adapter *adapter = dev->data->dev_private;
1948 
1949 	adapter->state = ENA_ADAPTER_STATE_CONFIG;
1950 
1951 	adapter->tx_selected_offloads = dev->data->dev_conf.txmode.offloads;
1952 	adapter->rx_selected_offloads = dev->data->dev_conf.rxmode.offloads;
1953 	return 0;
1954 }
1955 
1956 static void ena_init_rings(struct ena_adapter *adapter,
1957 			   bool disable_meta_caching)
1958 {
1959 	size_t i;
1960 
1961 	for (i = 0; i < adapter->max_num_io_queues; i++) {
1962 		struct ena_ring *ring = &adapter->tx_ring[i];
1963 
1964 		ring->configured = 0;
1965 		ring->type = ENA_RING_TYPE_TX;
1966 		ring->adapter = adapter;
1967 		ring->id = i;
1968 		ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
1969 		ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
1970 		ring->sgl_size = adapter->max_tx_sgl_size;
1971 		ring->disable_meta_caching = disable_meta_caching;
1972 	}
1973 
1974 	for (i = 0; i < adapter->max_num_io_queues; i++) {
1975 		struct ena_ring *ring = &adapter->rx_ring[i];
1976 
1977 		ring->configured = 0;
1978 		ring->type = ENA_RING_TYPE_RX;
1979 		ring->adapter = adapter;
1980 		ring->id = i;
1981 		ring->sgl_size = adapter->max_rx_sgl_size;
1982 	}
1983 }
1984 
1985 static int ena_infos_get(struct rte_eth_dev *dev,
1986 			  struct rte_eth_dev_info *dev_info)
1987 {
1988 	struct ena_adapter *adapter;
1989 	struct ena_com_dev *ena_dev;
1990 	uint64_t rx_feat = 0, tx_feat = 0;
1991 
1992 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
1993 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
1994 	adapter = dev->data->dev_private;
1995 
1996 	ena_dev = &adapter->ena_dev;
1997 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
1998 
1999 	dev_info->speed_capa =
2000 			ETH_LINK_SPEED_1G   |
2001 			ETH_LINK_SPEED_2_5G |
2002 			ETH_LINK_SPEED_5G   |
2003 			ETH_LINK_SPEED_10G  |
2004 			ETH_LINK_SPEED_25G  |
2005 			ETH_LINK_SPEED_40G  |
2006 			ETH_LINK_SPEED_50G  |
2007 			ETH_LINK_SPEED_100G;
2008 
2009 	/* Set Tx & Rx features available for device */
2010 	if (adapter->offloads.tso4_supported)
2011 		tx_feat	|= DEV_TX_OFFLOAD_TCP_TSO;
2012 
2013 	if (adapter->offloads.tx_csum_supported)
2014 		tx_feat |= DEV_TX_OFFLOAD_IPV4_CKSUM |
2015 			DEV_TX_OFFLOAD_UDP_CKSUM |
2016 			DEV_TX_OFFLOAD_TCP_CKSUM;
2017 
2018 	if (adapter->offloads.rx_csum_supported)
2019 		rx_feat |= DEV_RX_OFFLOAD_IPV4_CKSUM |
2020 			DEV_RX_OFFLOAD_UDP_CKSUM  |
2021 			DEV_RX_OFFLOAD_TCP_CKSUM;
2022 
2023 	rx_feat |= DEV_RX_OFFLOAD_JUMBO_FRAME;
2024 
2025 	/* Inform framework about available features */
2026 	dev_info->rx_offload_capa = rx_feat;
2027 	dev_info->rx_queue_offload_capa = rx_feat;
2028 	dev_info->tx_offload_capa = tx_feat;
2029 	dev_info->tx_queue_offload_capa = tx_feat;
2030 
2031 	dev_info->flow_type_rss_offloads = ETH_RSS_IP | ETH_RSS_TCP |
2032 					   ETH_RSS_UDP;
2033 
2034 	dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
2035 	dev_info->max_rx_pktlen  = adapter->max_mtu;
2036 	dev_info->max_mac_addrs = 1;
2037 
2038 	dev_info->max_rx_queues = adapter->max_num_io_queues;
2039 	dev_info->max_tx_queues = adapter->max_num_io_queues;
2040 	dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
2041 
2042 	adapter->tx_supported_offloads = tx_feat;
2043 	adapter->rx_supported_offloads = rx_feat;
2044 
2045 	dev_info->rx_desc_lim.nb_max = adapter->max_rx_ring_size;
2046 	dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2047 	dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2048 					adapter->max_rx_sgl_size);
2049 	dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2050 					adapter->max_rx_sgl_size);
2051 
2052 	dev_info->tx_desc_lim.nb_max = adapter->max_tx_ring_size;
2053 	dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2054 	dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2055 					adapter->max_tx_sgl_size);
2056 	dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2057 					adapter->max_tx_sgl_size);
2058 
2059 	return 0;
2060 }
2061 
2062 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len)
2063 {
2064 	mbuf->data_len = len;
2065 	mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2066 	mbuf->refcnt = 1;
2067 	mbuf->next = NULL;
2068 }
2069 
2070 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
2071 				    struct ena_com_rx_buf_info *ena_bufs,
2072 				    uint32_t descs,
2073 				    uint16_t *next_to_clean,
2074 				    uint8_t offset)
2075 {
2076 	struct rte_mbuf *mbuf;
2077 	struct rte_mbuf *mbuf_head;
2078 	struct ena_rx_buffer *rx_info;
2079 	int rc;
2080 	uint16_t ntc, len, req_id, buf = 0;
2081 
2082 	if (unlikely(descs == 0))
2083 		return NULL;
2084 
2085 	ntc = *next_to_clean;
2086 
2087 	len = ena_bufs[buf].len;
2088 	req_id = ena_bufs[buf].req_id;
2089 	if (unlikely(validate_rx_req_id(rx_ring, req_id)))
2090 		return NULL;
2091 
2092 	rx_info = &rx_ring->rx_buffer_info[req_id];
2093 
2094 	mbuf = rx_info->mbuf;
2095 	RTE_ASSERT(mbuf != NULL);
2096 
2097 	ena_init_rx_mbuf(mbuf, len);
2098 
2099 	/* Fill the mbuf head with the data specific for 1st segment. */
2100 	mbuf_head = mbuf;
2101 	mbuf_head->nb_segs = descs;
2102 	mbuf_head->port = rx_ring->port_id;
2103 	mbuf_head->pkt_len = len;
2104 	mbuf_head->data_off += offset;
2105 
2106 	rx_info->mbuf = NULL;
2107 	rx_ring->empty_rx_reqs[ntc] = req_id;
2108 	ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2109 
2110 	while (--descs) {
2111 		++buf;
2112 		len = ena_bufs[buf].len;
2113 		req_id = ena_bufs[buf].req_id;
2114 		if (unlikely(validate_rx_req_id(rx_ring, req_id))) {
2115 			rte_mbuf_raw_free(mbuf_head);
2116 			return NULL;
2117 		}
2118 
2119 		rx_info = &rx_ring->rx_buffer_info[req_id];
2120 		RTE_ASSERT(rx_info->mbuf != NULL);
2121 
2122 		if (unlikely(len == 0)) {
2123 			/*
2124 			 * Some devices can pass descriptor with the length 0.
2125 			 * To avoid confusion, the PMD is simply putting the
2126 			 * descriptor back, as it was never used. We'll avoid
2127 			 * mbuf allocation that way.
2128 			 */
2129 			rc = ena_add_single_rx_desc(rx_ring->ena_com_io_sq,
2130 				rx_info->mbuf, req_id);
2131 			if (unlikely(rc != 0)) {
2132 				/* Free the mbuf in case of an error. */
2133 				rte_mbuf_raw_free(rx_info->mbuf);
2134 			} else {
2135 				/*
2136 				 * If there was no error, just exit the loop as
2137 				 * 0 length descriptor is always the last one.
2138 				 */
2139 				break;
2140 			}
2141 		} else {
2142 			/* Create an mbuf chain. */
2143 			mbuf->next = rx_info->mbuf;
2144 			mbuf = mbuf->next;
2145 
2146 			ena_init_rx_mbuf(mbuf, len);
2147 			mbuf_head->pkt_len += len;
2148 		}
2149 
2150 		/*
2151 		 * Mark the descriptor as depleted and perform necessary
2152 		 * cleanup.
2153 		 * This code will execute in two cases:
2154 		 *  1. Descriptor len was greater than 0 - normal situation.
2155 		 *  2. Descriptor len was 0 and we failed to add the descriptor
2156 		 *     to the device. In that situation, we should try to add
2157 		 *     the mbuf again in the populate routine and mark the
2158 		 *     descriptor as used up by the device.
2159 		 */
2160 		rx_info->mbuf = NULL;
2161 		rx_ring->empty_rx_reqs[ntc] = req_id;
2162 		ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2163 	}
2164 
2165 	*next_to_clean = ntc;
2166 
2167 	return mbuf_head;
2168 }
2169 
2170 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
2171 				  uint16_t nb_pkts)
2172 {
2173 	struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
2174 	unsigned int free_queue_entries;
2175 	unsigned int refill_threshold;
2176 	uint16_t next_to_clean = rx_ring->next_to_clean;
2177 	uint16_t descs_in_use;
2178 	struct rte_mbuf *mbuf;
2179 	uint16_t completed;
2180 	struct ena_com_rx_ctx ena_rx_ctx;
2181 	int i, rc = 0;
2182 
2183 	/* Check adapter state */
2184 	if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2185 		PMD_DRV_LOG(ALERT,
2186 			"Trying to receive pkts while device is NOT running\n");
2187 		return 0;
2188 	}
2189 
2190 	descs_in_use = rx_ring->ring_size -
2191 		ena_com_free_q_entries(rx_ring->ena_com_io_sq) - 1;
2192 	nb_pkts = RTE_MIN(descs_in_use, nb_pkts);
2193 
2194 	for (completed = 0; completed < nb_pkts; completed++) {
2195 		ena_rx_ctx.max_bufs = rx_ring->sgl_size;
2196 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
2197 		ena_rx_ctx.descs = 0;
2198 		ena_rx_ctx.pkt_offset = 0;
2199 		/* receive packet context */
2200 		rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
2201 				    rx_ring->ena_com_io_sq,
2202 				    &ena_rx_ctx);
2203 		if (unlikely(rc)) {
2204 			PMD_DRV_LOG(ERR, "ena_com_rx_pkt error %d\n", rc);
2205 			rx_ring->adapter->reset_reason =
2206 				ENA_REGS_RESET_TOO_MANY_RX_DESCS;
2207 			rx_ring->adapter->trigger_reset = true;
2208 			++rx_ring->rx_stats.bad_desc_num;
2209 			return 0;
2210 		}
2211 
2212 		mbuf = ena_rx_mbuf(rx_ring,
2213 			ena_rx_ctx.ena_bufs,
2214 			ena_rx_ctx.descs,
2215 			&next_to_clean,
2216 			ena_rx_ctx.pkt_offset);
2217 		if (unlikely(mbuf == NULL)) {
2218 			for (i = 0; i < ena_rx_ctx.descs; ++i) {
2219 				rx_ring->empty_rx_reqs[next_to_clean] =
2220 					rx_ring->ena_bufs[i].req_id;
2221 				next_to_clean = ENA_IDX_NEXT_MASKED(
2222 					next_to_clean, rx_ring->size_mask);
2223 			}
2224 			break;
2225 		}
2226 
2227 		/* fill mbuf attributes if any */
2228 		ena_rx_mbuf_prepare(mbuf, &ena_rx_ctx);
2229 
2230 		if (unlikely(mbuf->ol_flags &
2231 				(PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD))) {
2232 			rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors);
2233 			++rx_ring->rx_stats.bad_csum;
2234 		}
2235 
2236 		mbuf->hash.rss = ena_rx_ctx.hash;
2237 
2238 		rx_pkts[completed] = mbuf;
2239 		rx_ring->rx_stats.bytes += mbuf->pkt_len;
2240 	}
2241 
2242 	rx_ring->rx_stats.cnt += completed;
2243 	rx_ring->next_to_clean = next_to_clean;
2244 
2245 	free_queue_entries = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
2246 	refill_threshold =
2247 		RTE_MIN(rx_ring->ring_size / ENA_REFILL_THRESH_DIVIDER,
2248 		(unsigned int)ENA_REFILL_THRESH_PACKET);
2249 
2250 	/* Burst refill to save doorbells, memory barriers, const interval */
2251 	if (free_queue_entries > refill_threshold) {
2252 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
2253 		ena_populate_rx_queue(rx_ring, free_queue_entries);
2254 	}
2255 
2256 	return completed;
2257 }
2258 
2259 static uint16_t
2260 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2261 		uint16_t nb_pkts)
2262 {
2263 	int32_t ret;
2264 	uint32_t i;
2265 	struct rte_mbuf *m;
2266 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2267 	struct rte_ipv4_hdr *ip_hdr;
2268 	uint64_t ol_flags;
2269 	uint16_t frag_field;
2270 
2271 	for (i = 0; i != nb_pkts; i++) {
2272 		m = tx_pkts[i];
2273 		ol_flags = m->ol_flags;
2274 
2275 		if (!(ol_flags & PKT_TX_IPV4))
2276 			continue;
2277 
2278 		/* If there was not L2 header length specified, assume it is
2279 		 * length of the ethernet header.
2280 		 */
2281 		if (unlikely(m->l2_len == 0))
2282 			m->l2_len = sizeof(struct rte_ether_hdr);
2283 
2284 		ip_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *,
2285 						 m->l2_len);
2286 		frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
2287 
2288 		if ((frag_field & RTE_IPV4_HDR_DF_FLAG) != 0) {
2289 			m->packet_type |= RTE_PTYPE_L4_NONFRAG;
2290 
2291 			/* If IPv4 header has DF flag enabled and TSO support is
2292 			 * disabled, partial chcecksum should not be calculated.
2293 			 */
2294 			if (!tx_ring->adapter->offloads.tso4_supported)
2295 				continue;
2296 		}
2297 
2298 		if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) != 0 ||
2299 				(ol_flags & PKT_TX_L4_MASK) ==
2300 				PKT_TX_SCTP_CKSUM) {
2301 			rte_errno = ENOTSUP;
2302 			return i;
2303 		}
2304 
2305 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2306 		ret = rte_validate_tx_offload(m);
2307 		if (ret != 0) {
2308 			rte_errno = -ret;
2309 			return i;
2310 		}
2311 #endif
2312 
2313 		/* In case we are supposed to TSO and have DF not set (DF=0)
2314 		 * hardware must be provided with partial checksum, otherwise
2315 		 * it will take care of necessary calculations.
2316 		 */
2317 
2318 		ret = rte_net_intel_cksum_flags_prepare(m,
2319 			ol_flags & ~PKT_TX_TCP_SEG);
2320 		if (ret != 0) {
2321 			rte_errno = -ret;
2322 			return i;
2323 		}
2324 	}
2325 
2326 	return i;
2327 }
2328 
2329 static void ena_update_hints(struct ena_adapter *adapter,
2330 			     struct ena_admin_ena_hw_hints *hints)
2331 {
2332 	if (hints->admin_completion_tx_timeout)
2333 		adapter->ena_dev.admin_queue.completion_timeout =
2334 			hints->admin_completion_tx_timeout * 1000;
2335 
2336 	if (hints->mmio_read_timeout)
2337 		/* convert to usec */
2338 		adapter->ena_dev.mmio_read.reg_read_to =
2339 			hints->mmio_read_timeout * 1000;
2340 
2341 	if (hints->driver_watchdog_timeout) {
2342 		if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
2343 			adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
2344 		else
2345 			// Convert msecs to ticks
2346 			adapter->keep_alive_timeout =
2347 				(hints->driver_watchdog_timeout *
2348 				rte_get_timer_hz()) / 1000;
2349 	}
2350 }
2351 
2352 static int ena_check_and_linearize_mbuf(struct ena_ring *tx_ring,
2353 					struct rte_mbuf *mbuf)
2354 {
2355 	struct ena_com_dev *ena_dev;
2356 	int num_segments, header_len, rc;
2357 
2358 	ena_dev = &tx_ring->adapter->ena_dev;
2359 	num_segments = mbuf->nb_segs;
2360 	header_len = mbuf->data_len;
2361 
2362 	if (likely(num_segments < tx_ring->sgl_size))
2363 		return 0;
2364 
2365 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
2366 	    (num_segments == tx_ring->sgl_size) &&
2367 	    (header_len < tx_ring->tx_max_header_size))
2368 		return 0;
2369 
2370 	++tx_ring->tx_stats.linearize;
2371 	rc = rte_pktmbuf_linearize(mbuf);
2372 	if (unlikely(rc)) {
2373 		PMD_DRV_LOG(WARNING, "Mbuf linearize failed\n");
2374 		rte_atomic64_inc(&tx_ring->adapter->drv_stats->ierrors);
2375 		++tx_ring->tx_stats.linearize_failed;
2376 		return rc;
2377 	}
2378 
2379 	return rc;
2380 }
2381 
2382 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
2383 	struct ena_tx_buffer *tx_info,
2384 	struct rte_mbuf *mbuf,
2385 	void **push_header,
2386 	uint16_t *header_len)
2387 {
2388 	struct ena_com_buf *ena_buf;
2389 	uint16_t delta, seg_len, push_len;
2390 
2391 	delta = 0;
2392 	seg_len = mbuf->data_len;
2393 
2394 	tx_info->mbuf = mbuf;
2395 	ena_buf = tx_info->bufs;
2396 
2397 	if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2398 		/*
2399 		 * Tx header might be (and will be in most cases) smaller than
2400 		 * tx_max_header_size. But it's not an issue to send more data
2401 		 * to the device, than actually needed if the mbuf size is
2402 		 * greater than tx_max_header_size.
2403 		 */
2404 		push_len = RTE_MIN(mbuf->pkt_len, tx_ring->tx_max_header_size);
2405 		*header_len = push_len;
2406 
2407 		if (likely(push_len <= seg_len)) {
2408 			/* If the push header is in the single segment, then
2409 			 * just point it to the 1st mbuf data.
2410 			 */
2411 			*push_header = rte_pktmbuf_mtod(mbuf, uint8_t *);
2412 		} else {
2413 			/* If the push header lays in the several segments, copy
2414 			 * it to the intermediate buffer.
2415 			 */
2416 			rte_pktmbuf_read(mbuf, 0, push_len,
2417 				tx_ring->push_buf_intermediate_buf);
2418 			*push_header = tx_ring->push_buf_intermediate_buf;
2419 			delta = push_len - seg_len;
2420 		}
2421 	} else {
2422 		*push_header = NULL;
2423 		*header_len = 0;
2424 		push_len = 0;
2425 	}
2426 
2427 	/* Process first segment taking into consideration pushed header */
2428 	if (seg_len > push_len) {
2429 		ena_buf->paddr = mbuf->buf_iova +
2430 				mbuf->data_off +
2431 				push_len;
2432 		ena_buf->len = seg_len - push_len;
2433 		ena_buf++;
2434 		tx_info->num_of_bufs++;
2435 	}
2436 
2437 	while ((mbuf = mbuf->next) != NULL) {
2438 		seg_len = mbuf->data_len;
2439 
2440 		/* Skip mbufs if whole data is pushed as a header */
2441 		if (unlikely(delta > seg_len)) {
2442 			delta -= seg_len;
2443 			continue;
2444 		}
2445 
2446 		ena_buf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
2447 		ena_buf->len = seg_len - delta;
2448 		ena_buf++;
2449 		tx_info->num_of_bufs++;
2450 
2451 		delta = 0;
2452 	}
2453 }
2454 
2455 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf)
2456 {
2457 	struct ena_tx_buffer *tx_info;
2458 	struct ena_com_tx_ctx ena_tx_ctx = { { 0 } };
2459 	uint16_t next_to_use;
2460 	uint16_t header_len;
2461 	uint16_t req_id;
2462 	void *push_header;
2463 	int nb_hw_desc;
2464 	int rc;
2465 
2466 	rc = ena_check_and_linearize_mbuf(tx_ring, mbuf);
2467 	if (unlikely(rc))
2468 		return rc;
2469 
2470 	next_to_use = tx_ring->next_to_use;
2471 
2472 	req_id = tx_ring->empty_tx_reqs[next_to_use];
2473 	tx_info = &tx_ring->tx_buffer_info[req_id];
2474 	tx_info->num_of_bufs = 0;
2475 
2476 	ena_tx_map_mbuf(tx_ring, tx_info, mbuf, &push_header, &header_len);
2477 
2478 	ena_tx_ctx.ena_bufs = tx_info->bufs;
2479 	ena_tx_ctx.push_header = push_header;
2480 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2481 	ena_tx_ctx.req_id = req_id;
2482 	ena_tx_ctx.header_len = header_len;
2483 
2484 	/* Set Tx offloads flags, if applicable */
2485 	ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads,
2486 		tx_ring->disable_meta_caching);
2487 
2488 	if (unlikely(ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
2489 			&ena_tx_ctx))) {
2490 		PMD_DRV_LOG(DEBUG,
2491 			"llq tx max burst size of queue %d achieved, writing doorbell to send burst\n",
2492 			tx_ring->id);
2493 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2494 	}
2495 
2496 	/* prepare the packet's descriptors to dma engine */
2497 	rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq,	&ena_tx_ctx,
2498 		&nb_hw_desc);
2499 	if (unlikely(rc)) {
2500 		++tx_ring->tx_stats.prepare_ctx_err;
2501 		return rc;
2502 	}
2503 
2504 	tx_info->tx_descs = nb_hw_desc;
2505 
2506 	tx_ring->tx_stats.cnt++;
2507 	tx_ring->tx_stats.bytes += mbuf->pkt_len;
2508 
2509 	tx_ring->next_to_use = ENA_IDX_NEXT_MASKED(next_to_use,
2510 		tx_ring->size_mask);
2511 
2512 	return 0;
2513 }
2514 
2515 static void ena_tx_cleanup(struct ena_ring *tx_ring)
2516 {
2517 	unsigned int cleanup_budget;
2518 	unsigned int total_tx_descs = 0;
2519 	uint16_t next_to_clean = tx_ring->next_to_clean;
2520 
2521 	cleanup_budget = RTE_MIN(tx_ring->ring_size / ENA_REFILL_THRESH_DIVIDER,
2522 		(unsigned int)ENA_REFILL_THRESH_PACKET);
2523 
2524 	while (likely(total_tx_descs < cleanup_budget)) {
2525 		struct rte_mbuf *mbuf;
2526 		struct ena_tx_buffer *tx_info;
2527 		uint16_t req_id;
2528 
2529 		if (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) != 0)
2530 			break;
2531 
2532 		if (unlikely(validate_tx_req_id(tx_ring, req_id) != 0))
2533 			break;
2534 
2535 		/* Get Tx info & store how many descs were processed  */
2536 		tx_info = &tx_ring->tx_buffer_info[req_id];
2537 
2538 		mbuf = tx_info->mbuf;
2539 		rte_pktmbuf_free(mbuf);
2540 
2541 		tx_info->mbuf = NULL;
2542 		tx_ring->empty_tx_reqs[next_to_clean] = req_id;
2543 
2544 		total_tx_descs += tx_info->tx_descs;
2545 
2546 		/* Put back descriptor to the ring for reuse */
2547 		next_to_clean = ENA_IDX_NEXT_MASKED(next_to_clean,
2548 			tx_ring->size_mask);
2549 	}
2550 
2551 	if (likely(total_tx_descs > 0)) {
2552 		/* acknowledge completion of sent packets */
2553 		tx_ring->next_to_clean = next_to_clean;
2554 		ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
2555 		ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
2556 	}
2557 }
2558 
2559 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2560 				  uint16_t nb_pkts)
2561 {
2562 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2563 	uint16_t sent_idx = 0;
2564 
2565 	/* Check adapter state */
2566 	if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2567 		PMD_DRV_LOG(ALERT,
2568 			"Trying to xmit pkts while device is NOT running\n");
2569 		return 0;
2570 	}
2571 
2572 	nb_pkts = RTE_MIN(ena_com_free_q_entries(tx_ring->ena_com_io_sq),
2573 		nb_pkts);
2574 
2575 	for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
2576 		if (ena_xmit_mbuf(tx_ring, tx_pkts[sent_idx]))
2577 			break;
2578 
2579 		rte_prefetch0(tx_pkts[ENA_IDX_ADD_MASKED(sent_idx, 4,
2580 			tx_ring->size_mask)]);
2581 	}
2582 
2583 	tx_ring->tx_stats.available_desc =
2584 		ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2585 
2586 	/* If there are ready packets to be xmitted... */
2587 	if (sent_idx > 0) {
2588 		/* ...let HW do its best :-) */
2589 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2590 		tx_ring->tx_stats.doorbells++;
2591 	}
2592 
2593 	ena_tx_cleanup(tx_ring);
2594 
2595 	tx_ring->tx_stats.available_desc =
2596 		ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2597 	tx_ring->tx_stats.tx_poll++;
2598 
2599 	return sent_idx;
2600 }
2601 
2602 /**
2603  * DPDK callback to retrieve names of extended device statistics
2604  *
2605  * @param dev
2606  *   Pointer to Ethernet device structure.
2607  * @param[out] xstats_names
2608  *   Buffer to insert names into.
2609  * @param n
2610  *   Number of names.
2611  *
2612  * @return
2613  *   Number of xstats names.
2614  */
2615 static int ena_xstats_get_names(struct rte_eth_dev *dev,
2616 				struct rte_eth_xstat_name *xstats_names,
2617 				unsigned int n)
2618 {
2619 	unsigned int xstats_count = ena_xstats_calc_num(dev);
2620 	unsigned int stat, i, count = 0;
2621 
2622 	if (n < xstats_count || !xstats_names)
2623 		return xstats_count;
2624 
2625 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
2626 		strcpy(xstats_names[count].name,
2627 			ena_stats_global_strings[stat].name);
2628 
2629 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
2630 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
2631 			snprintf(xstats_names[count].name,
2632 				sizeof(xstats_names[count].name),
2633 				"rx_q%d_%s", i,
2634 				ena_stats_rx_strings[stat].name);
2635 
2636 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
2637 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
2638 			snprintf(xstats_names[count].name,
2639 				sizeof(xstats_names[count].name),
2640 				"tx_q%d_%s", i,
2641 				ena_stats_tx_strings[stat].name);
2642 
2643 	return xstats_count;
2644 }
2645 
2646 /**
2647  * DPDK callback to get extended device statistics.
2648  *
2649  * @param dev
2650  *   Pointer to Ethernet device structure.
2651  * @param[out] stats
2652  *   Stats table output buffer.
2653  * @param n
2654  *   The size of the stats table.
2655  *
2656  * @return
2657  *   Number of xstats on success, negative on failure.
2658  */
2659 static int ena_xstats_get(struct rte_eth_dev *dev,
2660 			  struct rte_eth_xstat *xstats,
2661 			  unsigned int n)
2662 {
2663 	struct ena_adapter *adapter = dev->data->dev_private;
2664 	unsigned int xstats_count = ena_xstats_calc_num(dev);
2665 	unsigned int stat, i, count = 0;
2666 	int stat_offset;
2667 	void *stats_begin;
2668 
2669 	if (n < xstats_count)
2670 		return xstats_count;
2671 
2672 	if (!xstats)
2673 		return 0;
2674 
2675 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
2676 		stat_offset = ena_stats_rx_strings[stat].stat_offset;
2677 		stats_begin = &adapter->dev_stats;
2678 
2679 		xstats[count].id = count;
2680 		xstats[count].value = *((uint64_t *)
2681 			((char *)stats_begin + stat_offset));
2682 	}
2683 
2684 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
2685 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
2686 			stat_offset = ena_stats_rx_strings[stat].stat_offset;
2687 			stats_begin = &adapter->rx_ring[i].rx_stats;
2688 
2689 			xstats[count].id = count;
2690 			xstats[count].value = *((uint64_t *)
2691 				((char *)stats_begin + stat_offset));
2692 		}
2693 	}
2694 
2695 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
2696 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
2697 			stat_offset = ena_stats_tx_strings[stat].stat_offset;
2698 			stats_begin = &adapter->tx_ring[i].rx_stats;
2699 
2700 			xstats[count].id = count;
2701 			xstats[count].value = *((uint64_t *)
2702 				((char *)stats_begin + stat_offset));
2703 		}
2704 	}
2705 
2706 	return count;
2707 }
2708 
2709 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
2710 				const uint64_t *ids,
2711 				uint64_t *values,
2712 				unsigned int n)
2713 {
2714 	struct ena_adapter *adapter = dev->data->dev_private;
2715 	uint64_t id;
2716 	uint64_t rx_entries, tx_entries;
2717 	unsigned int i;
2718 	int qid;
2719 	int valid = 0;
2720 	for (i = 0; i < n; ++i) {
2721 		id = ids[i];
2722 		/* Check if id belongs to global statistics */
2723 		if (id < ENA_STATS_ARRAY_GLOBAL) {
2724 			values[i] = *((uint64_t *)&adapter->dev_stats + id);
2725 			++valid;
2726 			continue;
2727 		}
2728 
2729 		/* Check if id belongs to rx queue statistics */
2730 		id -= ENA_STATS_ARRAY_GLOBAL;
2731 		rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
2732 		if (id < rx_entries) {
2733 			qid = id % dev->data->nb_rx_queues;
2734 			id /= dev->data->nb_rx_queues;
2735 			values[i] = *((uint64_t *)
2736 				&adapter->rx_ring[qid].rx_stats + id);
2737 			++valid;
2738 			continue;
2739 		}
2740 				/* Check if id belongs to rx queue statistics */
2741 		id -= rx_entries;
2742 		tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
2743 		if (id < tx_entries) {
2744 			qid = id % dev->data->nb_tx_queues;
2745 			id /= dev->data->nb_tx_queues;
2746 			values[i] = *((uint64_t *)
2747 				&adapter->tx_ring[qid].tx_stats + id);
2748 			++valid;
2749 			continue;
2750 		}
2751 	}
2752 
2753 	return valid;
2754 }
2755 
2756 static int ena_process_bool_devarg(const char *key,
2757 				   const char *value,
2758 				   void *opaque)
2759 {
2760 	struct ena_adapter *adapter = opaque;
2761 	bool bool_value;
2762 
2763 	/* Parse the value. */
2764 	if (strcmp(value, "1") == 0) {
2765 		bool_value = true;
2766 	} else if (strcmp(value, "0") == 0) {
2767 		bool_value = false;
2768 	} else {
2769 		PMD_INIT_LOG(ERR,
2770 			"Invalid value: '%s' for key '%s'. Accepted: '0' or '1'\n",
2771 			value, key);
2772 		return -EINVAL;
2773 	}
2774 
2775 	/* Now, assign it to the proper adapter field. */
2776 	if (strcmp(key, ENA_DEVARG_LARGE_LLQ_HDR))
2777 		adapter->use_large_llq_hdr = bool_value;
2778 
2779 	return 0;
2780 }
2781 
2782 static int ena_parse_devargs(struct ena_adapter *adapter,
2783 			     struct rte_devargs *devargs)
2784 {
2785 	static const char * const allowed_args[] = {
2786 		ENA_DEVARG_LARGE_LLQ_HDR,
2787 	};
2788 	struct rte_kvargs *kvlist;
2789 	int rc;
2790 
2791 	if (devargs == NULL)
2792 		return 0;
2793 
2794 	kvlist = rte_kvargs_parse(devargs->args, allowed_args);
2795 	if (kvlist == NULL) {
2796 		PMD_INIT_LOG(ERR, "Invalid device arguments: %s\n",
2797 			devargs->args);
2798 		return -EINVAL;
2799 	}
2800 
2801 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_LARGE_LLQ_HDR,
2802 		ena_process_bool_devarg, adapter);
2803 
2804 	rte_kvargs_free(kvlist);
2805 
2806 	return rc;
2807 }
2808 
2809 /*********************************************************************
2810  *  PMD configuration
2811  *********************************************************************/
2812 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2813 	struct rte_pci_device *pci_dev)
2814 {
2815 	return rte_eth_dev_pci_generic_probe(pci_dev,
2816 		sizeof(struct ena_adapter), eth_ena_dev_init);
2817 }
2818 
2819 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
2820 {
2821 	return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
2822 }
2823 
2824 static struct rte_pci_driver rte_ena_pmd = {
2825 	.id_table = pci_id_ena_map,
2826 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
2827 		     RTE_PCI_DRV_WC_ACTIVATE,
2828 	.probe = eth_ena_pci_probe,
2829 	.remove = eth_ena_pci_remove,
2830 };
2831 
2832 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
2833 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
2834 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
2835 RTE_PMD_REGISTER_PARAM_STRING(net_ena, ENA_DEVARG_LARGE_LLQ_HDR "=<0|1>");
2836 RTE_LOG_REGISTER(ena_logtype_init, pmd.net.ena.init, NOTICE);
2837 RTE_LOG_REGISTER(ena_logtype_driver, pmd.net.ena.driver, NOTICE);
2838 #ifdef RTE_LIBRTE_ENA_DEBUG_RX
2839 RTE_LOG_REGISTER(ena_logtype_rx, pmd.net.ena.rx, NOTICE);
2840 #endif
2841 #ifdef RTE_LIBRTE_ENA_DEBUG_TX
2842 RTE_LOG_REGISTER(ena_logtype_tx, pmd.net.ena.tx, NOTICE);
2843 #endif
2844 #ifdef RTE_LIBRTE_ENA_DEBUG_TX_FREE
2845 RTE_LOG_REGISTER(ena_logtype_tx_free, pmd.net.ena.tx_free, NOTICE);
2846 #endif
2847 #ifdef RTE_LIBRTE_ENA_COM_DEBUG
2848 RTE_LOG_REGISTER(ena_logtype_com, pmd.net.ena.com, NOTICE);
2849 #endif
2850 
2851 /******************************************************************************
2852  ******************************** AENQ Handlers *******************************
2853  *****************************************************************************/
2854 static void ena_update_on_link_change(void *adapter_data,
2855 				      struct ena_admin_aenq_entry *aenq_e)
2856 {
2857 	struct rte_eth_dev *eth_dev;
2858 	struct ena_adapter *adapter;
2859 	struct ena_admin_aenq_link_change_desc *aenq_link_desc;
2860 	uint32_t status;
2861 
2862 	adapter = adapter_data;
2863 	aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
2864 	eth_dev = adapter->rte_dev;
2865 
2866 	status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
2867 	adapter->link_status = status;
2868 
2869 	ena_link_update(eth_dev, 0);
2870 	rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
2871 }
2872 
2873 static void ena_notification(void *data,
2874 			     struct ena_admin_aenq_entry *aenq_e)
2875 {
2876 	struct ena_adapter *adapter = data;
2877 	struct ena_admin_ena_hw_hints *hints;
2878 
2879 	if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
2880 		PMD_DRV_LOG(WARNING, "Invalid group(%x) expected %x\n",
2881 			aenq_e->aenq_common_desc.group,
2882 			ENA_ADMIN_NOTIFICATION);
2883 
2884 	switch (aenq_e->aenq_common_desc.syndrom) {
2885 	case ENA_ADMIN_UPDATE_HINTS:
2886 		hints = (struct ena_admin_ena_hw_hints *)
2887 			(&aenq_e->inline_data_w4);
2888 		ena_update_hints(adapter, hints);
2889 		break;
2890 	default:
2891 		PMD_DRV_LOG(ERR, "Invalid aenq notification link state %d\n",
2892 			aenq_e->aenq_common_desc.syndrom);
2893 	}
2894 }
2895 
2896 static void ena_keep_alive(void *adapter_data,
2897 			   __rte_unused struct ena_admin_aenq_entry *aenq_e)
2898 {
2899 	struct ena_adapter *adapter = adapter_data;
2900 	struct ena_admin_aenq_keep_alive_desc *desc;
2901 	uint64_t rx_drops;
2902 	uint64_t tx_drops;
2903 
2904 	adapter->timestamp_wd = rte_get_timer_cycles();
2905 
2906 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
2907 	rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
2908 	tx_drops = ((uint64_t)desc->tx_drops_high << 32) | desc->tx_drops_low;
2909 
2910 	adapter->drv_stats->rx_drops = rx_drops;
2911 	adapter->dev_stats.tx_drops = tx_drops;
2912 }
2913 
2914 /**
2915  * This handler will called for unknown event group or unimplemented handlers
2916  **/
2917 static void unimplemented_aenq_handler(__rte_unused void *data,
2918 				       __rte_unused struct ena_admin_aenq_entry *aenq_e)
2919 {
2920 	PMD_DRV_LOG(ERR, "Unknown event was received or event with "
2921 			  "unimplemented handler\n");
2922 }
2923 
2924 static struct ena_aenq_handlers aenq_handlers = {
2925 	.handlers = {
2926 		[ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
2927 		[ENA_ADMIN_NOTIFICATION] = ena_notification,
2928 		[ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive
2929 	},
2930 	.unimplemented_handler = unimplemented_aenq_handler
2931 };
2932