xref: /dpdk/drivers/net/ena/ena_ethdev.c (revision dae29f75655bb3b06795d39ff22e36c33e34374a)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
3  * All rights reserved.
4  */
5 
6 #include <rte_string_fns.h>
7 #include <rte_errno.h>
8 #include <rte_version.h>
9 #include <rte_net.h>
10 #include <rte_kvargs.h>
11 
12 #include "ena_ethdev.h"
13 #include "ena_logs.h"
14 #include "ena_platform.h"
15 #include "ena_com.h"
16 #include "ena_eth_com.h"
17 
18 #include <ena_common_defs.h>
19 #include <ena_regs_defs.h>
20 #include <ena_admin_defs.h>
21 #include <ena_eth_io_defs.h>
22 
23 #define DRV_MODULE_VER_MAJOR	2
24 #define DRV_MODULE_VER_MINOR	8
25 #define DRV_MODULE_VER_SUBMINOR	0
26 
27 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
28 
29 #define GET_L4_HDR_LEN(mbuf)					\
30 	((rte_pktmbuf_mtod_offset(mbuf,	struct rte_tcp_hdr *,	\
31 		mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
32 
33 #define ETH_GSTRING_LEN	32
34 
35 #define ARRAY_SIZE(x) RTE_DIM(x)
36 
37 #define ENA_MIN_RING_DESC	128
38 
39 /*
40  * We should try to keep ENA_CLEANUP_BUF_SIZE lower than
41  * RTE_MEMPOOL_CACHE_MAX_SIZE, so we can fit this in mempool local cache.
42  */
43 #define ENA_CLEANUP_BUF_SIZE	256
44 
45 #define ENA_PTYPE_HAS_HASH	(RTE_PTYPE_L4_TCP | RTE_PTYPE_L4_UDP)
46 
47 struct ena_stats {
48 	char name[ETH_GSTRING_LEN];
49 	int stat_offset;
50 };
51 
52 #define ENA_STAT_ENTRY(stat, stat_type) { \
53 	.name = #stat, \
54 	.stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
55 }
56 
57 #define ENA_STAT_RX_ENTRY(stat) \
58 	ENA_STAT_ENTRY(stat, rx)
59 
60 #define ENA_STAT_TX_ENTRY(stat) \
61 	ENA_STAT_ENTRY(stat, tx)
62 
63 #define ENA_STAT_METRICS_ENTRY(stat) \
64 	ENA_STAT_ENTRY(stat, metrics)
65 
66 #define ENA_STAT_GLOBAL_ENTRY(stat) \
67 	ENA_STAT_ENTRY(stat, dev)
68 
69 #define ENA_STAT_ENA_SRD_ENTRY(stat) \
70 	ENA_STAT_ENTRY(stat, srd)
71 
72 /* Device arguments */
73 #define ENA_DEVARG_LARGE_LLQ_HDR "large_llq_hdr"
74 /* Timeout in seconds after which a single uncompleted Tx packet should be
75  * considered as a missing.
76  */
77 #define ENA_DEVARG_MISS_TXC_TO "miss_txc_to"
78 /*
79  * Controls whether LLQ should be used (if available). Enabled by default.
80  * NOTE: It's highly not recommended to disable the LLQ, as it may lead to a
81  * huge performance degradation on 6th generation AWS instances.
82  */
83 #define ENA_DEVARG_ENABLE_LLQ "enable_llq"
84 
85 /*
86  * Each rte_memzone should have unique name.
87  * To satisfy it, count number of allocation and add it to name.
88  */
89 rte_atomic64_t ena_alloc_cnt;
90 
91 static const struct ena_stats ena_stats_global_strings[] = {
92 	ENA_STAT_GLOBAL_ENTRY(wd_expired),
93 	ENA_STAT_GLOBAL_ENTRY(dev_start),
94 	ENA_STAT_GLOBAL_ENTRY(dev_stop),
95 	ENA_STAT_GLOBAL_ENTRY(tx_drops),
96 };
97 
98 /*
99  * The legacy metrics (also known as eni stats) consisted of 5 stats, while the reworked
100  * metrics (also known as customer metrics) support an additional stat.
101  */
102 static struct ena_stats ena_stats_metrics_strings[] = {
103 	ENA_STAT_METRICS_ENTRY(bw_in_allowance_exceeded),
104 	ENA_STAT_METRICS_ENTRY(bw_out_allowance_exceeded),
105 	ENA_STAT_METRICS_ENTRY(pps_allowance_exceeded),
106 	ENA_STAT_METRICS_ENTRY(conntrack_allowance_exceeded),
107 	ENA_STAT_METRICS_ENTRY(linklocal_allowance_exceeded),
108 	ENA_STAT_METRICS_ENTRY(conntrack_allowance_available),
109 };
110 
111 static const struct ena_stats ena_stats_srd_strings[] = {
112 	ENA_STAT_ENA_SRD_ENTRY(ena_srd_mode),
113 	ENA_STAT_ENA_SRD_ENTRY(ena_srd_tx_pkts),
114 	ENA_STAT_ENA_SRD_ENTRY(ena_srd_eligible_tx_pkts),
115 	ENA_STAT_ENA_SRD_ENTRY(ena_srd_rx_pkts),
116 	ENA_STAT_ENA_SRD_ENTRY(ena_srd_resource_utilization),
117 };
118 
119 static const struct ena_stats ena_stats_tx_strings[] = {
120 	ENA_STAT_TX_ENTRY(cnt),
121 	ENA_STAT_TX_ENTRY(bytes),
122 	ENA_STAT_TX_ENTRY(prepare_ctx_err),
123 	ENA_STAT_TX_ENTRY(tx_poll),
124 	ENA_STAT_TX_ENTRY(doorbells),
125 	ENA_STAT_TX_ENTRY(bad_req_id),
126 	ENA_STAT_TX_ENTRY(available_desc),
127 	ENA_STAT_TX_ENTRY(missed_tx),
128 };
129 
130 static const struct ena_stats ena_stats_rx_strings[] = {
131 	ENA_STAT_RX_ENTRY(cnt),
132 	ENA_STAT_RX_ENTRY(bytes),
133 	ENA_STAT_RX_ENTRY(refill_partial),
134 	ENA_STAT_RX_ENTRY(l3_csum_bad),
135 	ENA_STAT_RX_ENTRY(l4_csum_bad),
136 	ENA_STAT_RX_ENTRY(l4_csum_good),
137 	ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
138 	ENA_STAT_RX_ENTRY(bad_desc_num),
139 	ENA_STAT_RX_ENTRY(bad_req_id),
140 };
141 
142 #define ENA_STATS_ARRAY_GLOBAL	ARRAY_SIZE(ena_stats_global_strings)
143 #define ENA_STATS_ARRAY_METRICS	ARRAY_SIZE(ena_stats_metrics_strings)
144 #define ENA_STATS_ARRAY_METRICS_LEGACY	(ENA_STATS_ARRAY_METRICS - 1)
145 #define ENA_STATS_ARRAY_ENA_SRD	ARRAY_SIZE(ena_stats_srd_strings)
146 #define ENA_STATS_ARRAY_TX	ARRAY_SIZE(ena_stats_tx_strings)
147 #define ENA_STATS_ARRAY_RX	ARRAY_SIZE(ena_stats_rx_strings)
148 
149 #define QUEUE_OFFLOADS (RTE_ETH_TX_OFFLOAD_TCP_CKSUM |\
150 			RTE_ETH_TX_OFFLOAD_UDP_CKSUM |\
151 			RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |\
152 			RTE_ETH_TX_OFFLOAD_TCP_TSO)
153 #define MBUF_OFFLOADS (RTE_MBUF_F_TX_L4_MASK |\
154 		       RTE_MBUF_F_TX_IP_CKSUM |\
155 		       RTE_MBUF_F_TX_TCP_SEG)
156 
157 /** Vendor ID used by Amazon devices */
158 #define PCI_VENDOR_ID_AMAZON 0x1D0F
159 /** Amazon devices */
160 #define PCI_DEVICE_ID_ENA_VF		0xEC20
161 #define PCI_DEVICE_ID_ENA_VF_RSERV0	0xEC21
162 
163 #define	ENA_TX_OFFLOAD_MASK	(RTE_MBUF_F_TX_L4_MASK |         \
164 	RTE_MBUF_F_TX_IPV6 |            \
165 	RTE_MBUF_F_TX_IPV4 |            \
166 	RTE_MBUF_F_TX_IP_CKSUM |        \
167 	RTE_MBUF_F_TX_TCP_SEG)
168 
169 #define	ENA_TX_OFFLOAD_NOTSUP_MASK	\
170 	(RTE_MBUF_F_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
171 
172 /** HW specific offloads capabilities. */
173 /* IPv4 checksum offload. */
174 #define ENA_L3_IPV4_CSUM		0x0001
175 /* TCP/UDP checksum offload for IPv4 packets. */
176 #define ENA_L4_IPV4_CSUM		0x0002
177 /* TCP/UDP checksum offload for IPv4 packets with pseudo header checksum. */
178 #define ENA_L4_IPV4_CSUM_PARTIAL	0x0004
179 /* TCP/UDP checksum offload for IPv6 packets. */
180 #define ENA_L4_IPV6_CSUM		0x0008
181 /* TCP/UDP checksum offload for IPv6 packets with pseudo header checksum. */
182 #define ENA_L4_IPV6_CSUM_PARTIAL	0x0010
183 /* TSO support for IPv4 packets. */
184 #define ENA_IPV4_TSO			0x0020
185 
186 /* Device supports setting RSS hash. */
187 #define ENA_RX_RSS_HASH			0x0040
188 
189 static const struct rte_pci_id pci_id_ena_map[] = {
190 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
191 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF_RSERV0) },
192 	{ .device_id = 0 },
193 };
194 
195 static struct ena_aenq_handlers aenq_handlers;
196 
197 static int ena_device_init(struct ena_adapter *adapter,
198 			   struct rte_pci_device *pdev,
199 			   struct ena_com_dev_get_features_ctx *get_feat_ctx);
200 static int ena_dev_configure(struct rte_eth_dev *dev);
201 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
202 	struct ena_tx_buffer *tx_info,
203 	struct rte_mbuf *mbuf,
204 	void **push_header,
205 	uint16_t *header_len);
206 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf);
207 static int ena_tx_cleanup(void *txp, uint32_t free_pkt_cnt);
208 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
209 				  uint16_t nb_pkts);
210 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
211 		uint16_t nb_pkts);
212 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
213 			      uint16_t nb_desc, unsigned int socket_id,
214 			      const struct rte_eth_txconf *tx_conf);
215 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
216 			      uint16_t nb_desc, unsigned int socket_id,
217 			      const struct rte_eth_rxconf *rx_conf,
218 			      struct rte_mempool *mp);
219 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len);
220 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
221 				    struct ena_com_rx_buf_info *ena_bufs,
222 				    uint32_t descs,
223 				    uint16_t *next_to_clean,
224 				    uint8_t offset);
225 static uint16_t eth_ena_recv_pkts(void *rx_queue,
226 				  struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
227 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
228 				  struct rte_mbuf *mbuf, uint16_t id);
229 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
230 static void ena_init_rings(struct ena_adapter *adapter,
231 			   bool disable_meta_caching);
232 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
233 static int ena_start(struct rte_eth_dev *dev);
234 static int ena_stop(struct rte_eth_dev *dev);
235 static int ena_close(struct rte_eth_dev *dev);
236 static int ena_dev_reset(struct rte_eth_dev *dev);
237 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
238 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
239 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
240 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
241 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
242 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
243 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
244 static int ena_link_update(struct rte_eth_dev *dev,
245 			   int wait_to_complete);
246 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring);
247 static void ena_queue_stop(struct ena_ring *ring);
248 static void ena_queue_stop_all(struct rte_eth_dev *dev,
249 			      enum ena_ring_type ring_type);
250 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring);
251 static int ena_queue_start_all(struct rte_eth_dev *dev,
252 			       enum ena_ring_type ring_type);
253 static void ena_stats_restart(struct rte_eth_dev *dev);
254 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter);
255 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter);
256 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter);
257 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter);
258 static int ena_infos_get(struct rte_eth_dev *dev,
259 			 struct rte_eth_dev_info *dev_info);
260 static void ena_interrupt_handler_rte(void *cb_arg);
261 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
262 static void ena_destroy_device(struct rte_eth_dev *eth_dev);
263 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
264 static int ena_xstats_get_names(struct rte_eth_dev *dev,
265 				struct rte_eth_xstat_name *xstats_names,
266 				unsigned int n);
267 static int ena_xstats_get_names_by_id(struct rte_eth_dev *dev,
268 				      const uint64_t *ids,
269 				      struct rte_eth_xstat_name *xstats_names,
270 				      unsigned int size);
271 static int ena_xstats_get(struct rte_eth_dev *dev,
272 			  struct rte_eth_xstat *stats,
273 			  unsigned int n);
274 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
275 				const uint64_t *ids,
276 				uint64_t *values,
277 				unsigned int n);
278 static int ena_process_bool_devarg(const char *key,
279 				   const char *value,
280 				   void *opaque);
281 static int ena_parse_devargs(struct ena_adapter *adapter,
282 			     struct rte_devargs *devargs);
283 static void ena_copy_customer_metrics(struct ena_adapter *adapter,
284 					uint64_t *buf,
285 					size_t buf_size);
286 static void ena_copy_ena_srd_info(struct ena_adapter *adapter,
287 				  struct ena_stats_srd *srd_info);
288 static int ena_setup_rx_intr(struct rte_eth_dev *dev);
289 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
290 				    uint16_t queue_id);
291 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
292 				     uint16_t queue_id);
293 static int ena_configure_aenq(struct ena_adapter *adapter);
294 static int ena_mp_primary_handle(const struct rte_mp_msg *mp_msg,
295 				 const void *peer);
296 
297 static const struct eth_dev_ops ena_dev_ops = {
298 	.dev_configure          = ena_dev_configure,
299 	.dev_infos_get          = ena_infos_get,
300 	.rx_queue_setup         = ena_rx_queue_setup,
301 	.tx_queue_setup         = ena_tx_queue_setup,
302 	.dev_start              = ena_start,
303 	.dev_stop               = ena_stop,
304 	.link_update            = ena_link_update,
305 	.stats_get              = ena_stats_get,
306 	.xstats_get_names       = ena_xstats_get_names,
307 	.xstats_get_names_by_id = ena_xstats_get_names_by_id,
308 	.xstats_get             = ena_xstats_get,
309 	.xstats_get_by_id       = ena_xstats_get_by_id,
310 	.mtu_set                = ena_mtu_set,
311 	.rx_queue_release       = ena_rx_queue_release,
312 	.tx_queue_release       = ena_tx_queue_release,
313 	.dev_close              = ena_close,
314 	.dev_reset              = ena_dev_reset,
315 	.reta_update            = ena_rss_reta_update,
316 	.reta_query             = ena_rss_reta_query,
317 	.rx_queue_intr_enable   = ena_rx_queue_intr_enable,
318 	.rx_queue_intr_disable  = ena_rx_queue_intr_disable,
319 	.rss_hash_update        = ena_rss_hash_update,
320 	.rss_hash_conf_get      = ena_rss_hash_conf_get,
321 	.tx_done_cleanup        = ena_tx_cleanup,
322 };
323 
324 /*********************************************************************
325  *  Multi-Process communication bits
326  *********************************************************************/
327 /* rte_mp IPC message name */
328 #define ENA_MP_NAME	"net_ena_mp"
329 /* Request timeout in seconds */
330 #define ENA_MP_REQ_TMO	5
331 
332 /** Proxy request type */
333 enum ena_mp_req {
334 	ENA_MP_DEV_STATS_GET,
335 	ENA_MP_ENI_STATS_GET,
336 	ENA_MP_MTU_SET,
337 	ENA_MP_IND_TBL_GET,
338 	ENA_MP_IND_TBL_SET,
339 	ENA_MP_CUSTOMER_METRICS_GET,
340 	ENA_MP_SRD_STATS_GET,
341 };
342 
343 /** Proxy message body. Shared between requests and responses. */
344 struct ena_mp_body {
345 	/* Message type */
346 	enum ena_mp_req type;
347 	int port_id;
348 	/* Processing result. Set in replies. 0 if message succeeded, negative
349 	 * error code otherwise.
350 	 */
351 	int result;
352 	union {
353 		int mtu; /* For ENA_MP_MTU_SET */
354 	} args;
355 };
356 
357 /**
358  * Initialize IPC message.
359  *
360  * @param[out] msg
361  *   Pointer to the message to initialize.
362  * @param[in] type
363  *   Message type.
364  * @param[in] port_id
365  *   Port ID of target device.
366  *
367  */
368 static void
369 mp_msg_init(struct rte_mp_msg *msg, enum ena_mp_req type, int port_id)
370 {
371 	struct ena_mp_body *body = (struct ena_mp_body *)&msg->param;
372 
373 	memset(msg, 0, sizeof(*msg));
374 	strlcpy(msg->name, ENA_MP_NAME, sizeof(msg->name));
375 	msg->len_param = sizeof(*body);
376 	body->type = type;
377 	body->port_id = port_id;
378 }
379 
380 /*********************************************************************
381  *  Multi-Process communication PMD API
382  *********************************************************************/
383 /**
384  * Define proxy request descriptor
385  *
386  * Used to define all structures and functions required for proxying a given
387  * function to the primary process including the code to perform to prepare the
388  * request and process the response.
389  *
390  * @param[in] f
391  *   Name of the function to proxy
392  * @param[in] t
393  *   Message type to use
394  * @param[in] prep
395  *   Body of a function to prepare the request in form of a statement
396  *   expression. It is passed all the original function arguments along with two
397  *   extra ones:
398  *   - struct ena_adapter *adapter - PMD data of the device calling the proxy.
399  *   - struct ena_mp_body *req - body of a request to prepare.
400  * @param[in] proc
401  *   Body of a function to process the response in form of a statement
402  *   expression. It is passed all the original function arguments along with two
403  *   extra ones:
404  *   - struct ena_adapter *adapter - PMD data of the device calling the proxy.
405  *   - struct ena_mp_body *rsp - body of a response to process.
406  * @param ...
407  *   Proxied function's arguments
408  *
409  * @note Inside prep and proc any parameters which aren't used should be marked
410  *       as such (with ENA_TOUCH or __rte_unused).
411  */
412 #define ENA_PROXY_DESC(f, t, prep, proc, ...)			\
413 	static const enum ena_mp_req mp_type_ ## f =  t;	\
414 	static const char *mp_name_ ## f = #t;			\
415 	static void mp_prep_ ## f(struct ena_adapter *adapter,	\
416 				  struct ena_mp_body *req,	\
417 				  __VA_ARGS__)			\
418 	{							\
419 		prep;						\
420 	}							\
421 	static void mp_proc_ ## f(struct ena_adapter *adapter,	\
422 				  struct ena_mp_body *rsp,	\
423 				  __VA_ARGS__)			\
424 	{							\
425 		proc;						\
426 	}
427 
428 /**
429  * Proxy wrapper for calling primary functions in a secondary process.
430  *
431  * Depending on whether called in primary or secondary process, calls the
432  * @p func directly or proxies the call to the primary process via rte_mp IPC.
433  * This macro requires a proxy request descriptor to be defined for @p func
434  * using ENA_PROXY_DESC() macro.
435  *
436  * @param[in/out] a
437  *   Device PMD data. Used for sending the message and sharing message results
438  *   between primary and secondary.
439  * @param[in] f
440  *   Function to proxy.
441  * @param ...
442  *   Arguments of @p func.
443  *
444  * @return
445  *   - 0: Processing succeeded and response handler was called.
446  *   - -EPERM: IPC is unavailable on this platform. This means only primary
447  *             process may call the proxied function.
448  *   - -EIO:   IPC returned error on request send. Inspect rte_errno detailed
449  *             error code.
450  *   - Negative error code from the proxied function.
451  *
452  * @note This mechanism is geared towards control-path tasks. Avoid calling it
453  *       in fast-path unless unbound delays are allowed. This is due to the IPC
454  *       mechanism itself (socket based).
455  * @note Due to IPC parameter size limitations the proxy logic shares call
456  *       results through the struct ena_adapter shared memory. This makes the
457  *       proxy mechanism strictly single-threaded. Therefore be sure to make all
458  *       calls to the same proxied function under the same lock.
459  */
460 #define ENA_PROXY(a, f, ...)						\
461 __extension__ ({							\
462 	struct ena_adapter *_a = (a);					\
463 	struct timespec ts = { .tv_sec = ENA_MP_REQ_TMO };		\
464 	struct ena_mp_body *req, *rsp;					\
465 	struct rte_mp_reply mp_rep;					\
466 	struct rte_mp_msg mp_req;					\
467 	int ret;							\
468 									\
469 	if (rte_eal_process_type() == RTE_PROC_PRIMARY) {		\
470 		ret = f(__VA_ARGS__);					\
471 	} else {							\
472 		/* Prepare and send request */				\
473 		req = (struct ena_mp_body *)&mp_req.param;		\
474 		mp_msg_init(&mp_req, mp_type_ ## f, _a->edev_data->port_id); \
475 		mp_prep_ ## f(_a, req, ## __VA_ARGS__);			\
476 									\
477 		ret = rte_mp_request_sync(&mp_req, &mp_rep, &ts);	\
478 		if (likely(!ret)) {					\
479 			RTE_ASSERT(mp_rep.nb_received == 1);		\
480 			rsp = (struct ena_mp_body *)&mp_rep.msgs[0].param; \
481 			ret = rsp->result;				\
482 			if (ret == 0) {					\
483 				mp_proc_##f(_a, rsp, ## __VA_ARGS__);	\
484 			} else {					\
485 				PMD_DRV_LOG(ERR,			\
486 					    "%s returned error: %d\n",	\
487 					    mp_name_ ## f, rsp->result);\
488 			}						\
489 			free(mp_rep.msgs);				\
490 		} else if (rte_errno == ENOTSUP) {			\
491 			PMD_DRV_LOG(ERR,				\
492 				    "No IPC, can't proxy to primary\n");\
493 			ret = -rte_errno;				\
494 		} else {						\
495 			PMD_DRV_LOG(ERR, "Request %s failed: %s\n",	\
496 				    mp_name_ ## f,			\
497 				    rte_strerror(rte_errno));		\
498 			ret = -EIO;					\
499 		}							\
500 	}								\
501 	ret;								\
502 })
503 
504 /*********************************************************************
505  *  Multi-Process communication request descriptors
506  *********************************************************************/
507 
508 ENA_PROXY_DESC(ena_com_get_dev_basic_stats, ENA_MP_DEV_STATS_GET,
509 __extension__ ({
510 	ENA_TOUCH(adapter);
511 	ENA_TOUCH(req);
512 	ENA_TOUCH(ena_dev);
513 	ENA_TOUCH(stats);
514 }),
515 __extension__ ({
516 	ENA_TOUCH(rsp);
517 	ENA_TOUCH(ena_dev);
518 	if (stats != &adapter->basic_stats)
519 		rte_memcpy(stats, &adapter->basic_stats, sizeof(*stats));
520 }),
521 	struct ena_com_dev *ena_dev, struct ena_admin_basic_stats *stats);
522 
523 ENA_PROXY_DESC(ena_com_get_eni_stats, ENA_MP_ENI_STATS_GET,
524 __extension__ ({
525 	ENA_TOUCH(adapter);
526 	ENA_TOUCH(req);
527 	ENA_TOUCH(ena_dev);
528 	ENA_TOUCH(stats);
529 }),
530 __extension__ ({
531 	ENA_TOUCH(rsp);
532 	ENA_TOUCH(ena_dev);
533 	if (stats != (struct ena_admin_eni_stats *)adapter->metrics_stats)
534 		rte_memcpy(stats, adapter->metrics_stats, sizeof(*stats));
535 }),
536 	struct ena_com_dev *ena_dev, struct ena_admin_eni_stats *stats);
537 
538 ENA_PROXY_DESC(ena_com_set_dev_mtu, ENA_MP_MTU_SET,
539 __extension__ ({
540 	ENA_TOUCH(adapter);
541 	ENA_TOUCH(ena_dev);
542 	req->args.mtu = mtu;
543 }),
544 __extension__ ({
545 	ENA_TOUCH(adapter);
546 	ENA_TOUCH(rsp);
547 	ENA_TOUCH(ena_dev);
548 	ENA_TOUCH(mtu);
549 }),
550 	struct ena_com_dev *ena_dev, int mtu);
551 
552 ENA_PROXY_DESC(ena_com_indirect_table_set, ENA_MP_IND_TBL_SET,
553 __extension__ ({
554 	ENA_TOUCH(adapter);
555 	ENA_TOUCH(req);
556 	ENA_TOUCH(ena_dev);
557 }),
558 __extension__ ({
559 	ENA_TOUCH(adapter);
560 	ENA_TOUCH(rsp);
561 	ENA_TOUCH(ena_dev);
562 }),
563 	struct ena_com_dev *ena_dev);
564 
565 ENA_PROXY_DESC(ena_com_indirect_table_get, ENA_MP_IND_TBL_GET,
566 __extension__ ({
567 	ENA_TOUCH(adapter);
568 	ENA_TOUCH(req);
569 	ENA_TOUCH(ena_dev);
570 	ENA_TOUCH(ind_tbl);
571 }),
572 __extension__ ({
573 	ENA_TOUCH(rsp);
574 	ENA_TOUCH(ena_dev);
575 	if (ind_tbl != adapter->indirect_table)
576 		rte_memcpy(ind_tbl, adapter->indirect_table,
577 			   sizeof(adapter->indirect_table));
578 }),
579 	struct ena_com_dev *ena_dev, u32 *ind_tbl);
580 
581 ENA_PROXY_DESC(ena_com_get_customer_metrics, ENA_MP_CUSTOMER_METRICS_GET,
582 __extension__ ({
583 	ENA_TOUCH(adapter);
584 	ENA_TOUCH(req);
585 	ENA_TOUCH(ena_dev);
586 	ENA_TOUCH(buf);
587 	ENA_TOUCH(buf_size);
588 }),
589 __extension__ ({
590 	ENA_TOUCH(rsp);
591 	ENA_TOUCH(ena_dev);
592 	if (buf != (char *)adapter->metrics_stats)
593 		rte_memcpy(buf, adapter->metrics_stats, buf_size);
594 }),
595 	struct ena_com_dev *ena_dev, char *buf, size_t buf_size);
596 
597 ENA_PROXY_DESC(ena_com_get_ena_srd_info, ENA_MP_SRD_STATS_GET,
598 __extension__ ({
599 	ENA_TOUCH(adapter);
600 	ENA_TOUCH(req);
601 	ENA_TOUCH(ena_dev);
602 	ENA_TOUCH(info);
603 }),
604 __extension__ ({
605 	ENA_TOUCH(rsp);
606 	ENA_TOUCH(ena_dev);
607 	if ((struct ena_stats_srd *)info != &adapter->srd_stats)
608 		rte_memcpy((struct ena_stats_srd *)info,
609 				&adapter->srd_stats,
610 				sizeof(struct ena_stats_srd));
611 }),
612 	struct ena_com_dev *ena_dev, struct ena_admin_ena_srd_info *info);
613 
614 static inline void ena_trigger_reset(struct ena_adapter *adapter,
615 				     enum ena_regs_reset_reason_types reason)
616 {
617 	if (likely(!adapter->trigger_reset)) {
618 		adapter->reset_reason = reason;
619 		adapter->trigger_reset = true;
620 	}
621 }
622 
623 static inline void ena_rx_mbuf_prepare(struct ena_ring *rx_ring,
624 				       struct rte_mbuf *mbuf,
625 				       struct ena_com_rx_ctx *ena_rx_ctx,
626 				       bool fill_hash)
627 {
628 	struct ena_stats_rx *rx_stats = &rx_ring->rx_stats;
629 	uint64_t ol_flags = 0;
630 	uint32_t packet_type = 0;
631 
632 	if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
633 		packet_type |= RTE_PTYPE_L4_TCP;
634 	else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
635 		packet_type |= RTE_PTYPE_L4_UDP;
636 
637 	if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
638 		packet_type |= RTE_PTYPE_L3_IPV4;
639 		if (unlikely(ena_rx_ctx->l3_csum_err)) {
640 			++rx_stats->l3_csum_bad;
641 			ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
642 		} else {
643 			ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
644 		}
645 	} else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
646 		packet_type |= RTE_PTYPE_L3_IPV6;
647 	}
648 
649 	if (!ena_rx_ctx->l4_csum_checked || ena_rx_ctx->frag) {
650 		ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN;
651 	} else {
652 		if (unlikely(ena_rx_ctx->l4_csum_err)) {
653 			++rx_stats->l4_csum_bad;
654 			/*
655 			 * For the L4 Rx checksum offload the HW may indicate
656 			 * bad checksum although it's valid. Because of that,
657 			 * we're setting the UNKNOWN flag to let the app
658 			 * re-verify the checksum.
659 			 */
660 			ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN;
661 		} else {
662 			++rx_stats->l4_csum_good;
663 			ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
664 		}
665 	}
666 
667 	if (fill_hash &&
668 	    likely((packet_type & ENA_PTYPE_HAS_HASH) && !ena_rx_ctx->frag)) {
669 		ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
670 		mbuf->hash.rss = ena_rx_ctx->hash;
671 	}
672 
673 	mbuf->ol_flags = ol_flags;
674 	mbuf->packet_type = packet_type;
675 }
676 
677 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
678 				       struct ena_com_tx_ctx *ena_tx_ctx,
679 				       uint64_t queue_offloads,
680 				       bool disable_meta_caching)
681 {
682 	struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
683 
684 	if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
685 	    (queue_offloads & QUEUE_OFFLOADS)) {
686 		/* check if TSO is required */
687 		if ((mbuf->ol_flags & RTE_MBUF_F_TX_TCP_SEG) &&
688 		    (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_TSO)) {
689 			ena_tx_ctx->tso_enable = true;
690 
691 			ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
692 		}
693 
694 		/* check if L3 checksum is needed */
695 		if ((mbuf->ol_flags & RTE_MBUF_F_TX_IP_CKSUM) &&
696 		    (queue_offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM))
697 			ena_tx_ctx->l3_csum_enable = true;
698 
699 		if (mbuf->ol_flags & RTE_MBUF_F_TX_IPV6) {
700 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
701 			/* For the IPv6 packets, DF always needs to be true. */
702 			ena_tx_ctx->df = 1;
703 		} else {
704 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
705 
706 			/* set don't fragment (DF) flag */
707 			if (mbuf->packet_type &
708 				(RTE_PTYPE_L4_NONFRAG
709 				 | RTE_PTYPE_INNER_L4_NONFRAG))
710 				ena_tx_ctx->df = 1;
711 		}
712 
713 		/* check if L4 checksum is needed */
714 		if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) == RTE_MBUF_F_TX_TCP_CKSUM) &&
715 		    (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) {
716 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
717 			ena_tx_ctx->l4_csum_enable = true;
718 		} else if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) ==
719 				RTE_MBUF_F_TX_UDP_CKSUM) &&
720 				(queue_offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM)) {
721 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
722 			ena_tx_ctx->l4_csum_enable = true;
723 		} else {
724 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
725 			ena_tx_ctx->l4_csum_enable = false;
726 		}
727 
728 		ena_meta->mss = mbuf->tso_segsz;
729 		ena_meta->l3_hdr_len = mbuf->l3_len;
730 		ena_meta->l3_hdr_offset = mbuf->l2_len;
731 
732 		ena_tx_ctx->meta_valid = true;
733 	} else if (disable_meta_caching) {
734 		memset(ena_meta, 0, sizeof(*ena_meta));
735 		ena_tx_ctx->meta_valid = true;
736 	} else {
737 		ena_tx_ctx->meta_valid = false;
738 	}
739 }
740 
741 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
742 {
743 	struct ena_tx_buffer *tx_info = NULL;
744 
745 	if (likely(req_id < tx_ring->ring_size)) {
746 		tx_info = &tx_ring->tx_buffer_info[req_id];
747 		if (likely(tx_info->mbuf))
748 			return 0;
749 	}
750 
751 	if (tx_info)
752 		PMD_TX_LOG(ERR, "tx_info doesn't have valid mbuf. queue %d:%d req_id %u\n",
753 			tx_ring->port_id, tx_ring->id, req_id);
754 	else
755 		PMD_TX_LOG(ERR, "Invalid req_id: %hu in queue %d:%d\n",
756 			req_id, tx_ring->port_id, tx_ring->id);
757 
758 	/* Trigger device reset */
759 	++tx_ring->tx_stats.bad_req_id;
760 	ena_trigger_reset(tx_ring->adapter, ENA_REGS_RESET_INV_TX_REQ_ID);
761 	return -EFAULT;
762 }
763 
764 static void ena_config_host_info(struct ena_com_dev *ena_dev)
765 {
766 	struct ena_admin_host_info *host_info;
767 	int rc;
768 
769 	/* Allocate only the host info */
770 	rc = ena_com_allocate_host_info(ena_dev);
771 	if (rc) {
772 		PMD_DRV_LOG(ERR, "Cannot allocate host info\n");
773 		return;
774 	}
775 
776 	host_info = ena_dev->host_attr.host_info;
777 
778 	host_info->os_type = ENA_ADMIN_OS_DPDK;
779 	host_info->kernel_ver = RTE_VERSION;
780 	strlcpy((char *)host_info->kernel_ver_str, rte_version(),
781 		sizeof(host_info->kernel_ver_str));
782 	host_info->os_dist = RTE_VERSION;
783 	strlcpy((char *)host_info->os_dist_str, rte_version(),
784 		sizeof(host_info->os_dist_str));
785 	host_info->driver_version =
786 		(DRV_MODULE_VER_MAJOR) |
787 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
788 		(DRV_MODULE_VER_SUBMINOR <<
789 			ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
790 	host_info->num_cpus = rte_lcore_count();
791 
792 	host_info->driver_supported_features =
793 		ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK |
794 		ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK;
795 
796 	rc = ena_com_set_host_attributes(ena_dev);
797 	if (rc) {
798 		if (rc == -ENA_COM_UNSUPPORTED)
799 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
800 		else
801 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
802 
803 		goto err;
804 	}
805 
806 	return;
807 
808 err:
809 	ena_com_delete_host_info(ena_dev);
810 }
811 
812 /* This function calculates the number of xstats based on the current config */
813 static unsigned int ena_xstats_calc_num(struct rte_eth_dev_data *data)
814 {
815 	struct ena_adapter *adapter = data->dev_private;
816 
817 	return ENA_STATS_ARRAY_GLOBAL +
818 		adapter->metrics_num +
819 		ENA_STATS_ARRAY_ENA_SRD +
820 		(data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
821 		(data->nb_rx_queues * ENA_STATS_ARRAY_RX);
822 }
823 
824 static void ena_config_debug_area(struct ena_adapter *adapter)
825 {
826 	u32 debug_area_size;
827 	int rc, ss_count;
828 
829 	ss_count = ena_xstats_calc_num(adapter->edev_data);
830 
831 	/* allocate 32 bytes for each string and 64bit for the value */
832 	debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
833 
834 	rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
835 	if (rc) {
836 		PMD_DRV_LOG(ERR, "Cannot allocate debug area\n");
837 		return;
838 	}
839 
840 	rc = ena_com_set_host_attributes(&adapter->ena_dev);
841 	if (rc) {
842 		if (rc == -ENA_COM_UNSUPPORTED)
843 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
844 		else
845 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
846 
847 		goto err;
848 	}
849 
850 	return;
851 err:
852 	ena_com_delete_debug_area(&adapter->ena_dev);
853 }
854 
855 static int ena_close(struct rte_eth_dev *dev)
856 {
857 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
858 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
859 	struct ena_adapter *adapter = dev->data->dev_private;
860 	int ret = 0;
861 
862 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
863 		return 0;
864 
865 	if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
866 		ret = ena_stop(dev);
867 	adapter->state = ENA_ADAPTER_STATE_CLOSED;
868 
869 	ena_rx_queue_release_all(dev);
870 	ena_tx_queue_release_all(dev);
871 
872 	rte_free(adapter->drv_stats);
873 	adapter->drv_stats = NULL;
874 
875 	rte_intr_disable(intr_handle);
876 	rte_intr_callback_unregister(intr_handle,
877 				     ena_interrupt_handler_rte,
878 				     dev);
879 
880 	/*
881 	 * MAC is not allocated dynamically. Setting NULL should prevent from
882 	 * release of the resource in the rte_eth_dev_release_port().
883 	 */
884 	dev->data->mac_addrs = NULL;
885 
886 	return ret;
887 }
888 
889 static int
890 ena_dev_reset(struct rte_eth_dev *dev)
891 {
892 	int rc = 0;
893 
894 	/* Cannot release memory in secondary process */
895 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
896 		PMD_DRV_LOG(WARNING, "dev_reset not supported in secondary.\n");
897 		return -EPERM;
898 	}
899 
900 	ena_destroy_device(dev);
901 	rc = eth_ena_dev_init(dev);
902 	if (rc)
903 		PMD_INIT_LOG(CRIT, "Cannot initialize device\n");
904 
905 	return rc;
906 }
907 
908 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
909 {
910 	int nb_queues = dev->data->nb_rx_queues;
911 	int i;
912 
913 	for (i = 0; i < nb_queues; i++)
914 		ena_rx_queue_release(dev, i);
915 }
916 
917 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
918 {
919 	int nb_queues = dev->data->nb_tx_queues;
920 	int i;
921 
922 	for (i = 0; i < nb_queues; i++)
923 		ena_tx_queue_release(dev, i);
924 }
925 
926 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
927 {
928 	struct ena_ring *ring = dev->data->rx_queues[qid];
929 
930 	/* Free ring resources */
931 	rte_free(ring->rx_buffer_info);
932 	ring->rx_buffer_info = NULL;
933 
934 	rte_free(ring->rx_refill_buffer);
935 	ring->rx_refill_buffer = NULL;
936 
937 	rte_free(ring->empty_rx_reqs);
938 	ring->empty_rx_reqs = NULL;
939 
940 	ring->configured = 0;
941 
942 	PMD_DRV_LOG(NOTICE, "Rx queue %d:%d released\n",
943 		ring->port_id, ring->id);
944 }
945 
946 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
947 {
948 	struct ena_ring *ring = dev->data->tx_queues[qid];
949 
950 	/* Free ring resources */
951 	rte_free(ring->push_buf_intermediate_buf);
952 
953 	rte_free(ring->tx_buffer_info);
954 
955 	rte_free(ring->empty_tx_reqs);
956 
957 	ring->empty_tx_reqs = NULL;
958 	ring->tx_buffer_info = NULL;
959 	ring->push_buf_intermediate_buf = NULL;
960 
961 	ring->configured = 0;
962 
963 	PMD_DRV_LOG(NOTICE, "Tx queue %d:%d released\n",
964 		ring->port_id, ring->id);
965 }
966 
967 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
968 {
969 	unsigned int i;
970 
971 	for (i = 0; i < ring->ring_size; ++i) {
972 		struct ena_rx_buffer *rx_info = &ring->rx_buffer_info[i];
973 		if (rx_info->mbuf) {
974 			rte_mbuf_raw_free(rx_info->mbuf);
975 			rx_info->mbuf = NULL;
976 		}
977 	}
978 }
979 
980 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
981 {
982 	unsigned int i;
983 
984 	for (i = 0; i < ring->ring_size; ++i) {
985 		struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
986 
987 		if (tx_buf->mbuf) {
988 			rte_pktmbuf_free(tx_buf->mbuf);
989 			tx_buf->mbuf = NULL;
990 		}
991 	}
992 }
993 
994 static int ena_link_update(struct rte_eth_dev *dev,
995 			   __rte_unused int wait_to_complete)
996 {
997 	struct rte_eth_link *link = &dev->data->dev_link;
998 	struct ena_adapter *adapter = dev->data->dev_private;
999 
1000 	link->link_status = adapter->link_status ? RTE_ETH_LINK_UP : RTE_ETH_LINK_DOWN;
1001 	link->link_speed = RTE_ETH_SPEED_NUM_NONE;
1002 	link->link_duplex = RTE_ETH_LINK_FULL_DUPLEX;
1003 
1004 	return 0;
1005 }
1006 
1007 static int ena_queue_start_all(struct rte_eth_dev *dev,
1008 			       enum ena_ring_type ring_type)
1009 {
1010 	struct ena_adapter *adapter = dev->data->dev_private;
1011 	struct ena_ring *queues = NULL;
1012 	int nb_queues;
1013 	int i = 0;
1014 	int rc = 0;
1015 
1016 	if (ring_type == ENA_RING_TYPE_RX) {
1017 		queues = adapter->rx_ring;
1018 		nb_queues = dev->data->nb_rx_queues;
1019 	} else {
1020 		queues = adapter->tx_ring;
1021 		nb_queues = dev->data->nb_tx_queues;
1022 	}
1023 	for (i = 0; i < nb_queues; i++) {
1024 		if (queues[i].configured) {
1025 			if (ring_type == ENA_RING_TYPE_RX) {
1026 				ena_assert_msg(
1027 					dev->data->rx_queues[i] == &queues[i],
1028 					"Inconsistent state of Rx queues\n");
1029 			} else {
1030 				ena_assert_msg(
1031 					dev->data->tx_queues[i] == &queues[i],
1032 					"Inconsistent state of Tx queues\n");
1033 			}
1034 
1035 			rc = ena_queue_start(dev, &queues[i]);
1036 
1037 			if (rc) {
1038 				PMD_INIT_LOG(ERR,
1039 					"Failed to start queue[%d] of type(%d)\n",
1040 					i, ring_type);
1041 				goto err;
1042 			}
1043 		}
1044 	}
1045 
1046 	return 0;
1047 
1048 err:
1049 	while (i--)
1050 		if (queues[i].configured)
1051 			ena_queue_stop(&queues[i]);
1052 
1053 	return rc;
1054 }
1055 
1056 static int
1057 ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx,
1058 		       bool use_large_llq_hdr)
1059 {
1060 	struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
1061 	struct ena_com_dev *ena_dev = ctx->ena_dev;
1062 	uint32_t max_tx_queue_size;
1063 	uint32_t max_rx_queue_size;
1064 
1065 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1066 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1067 			&ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
1068 		max_rx_queue_size = RTE_MIN(max_queue_ext->max_rx_cq_depth,
1069 			max_queue_ext->max_rx_sq_depth);
1070 		max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
1071 
1072 		if (ena_dev->tx_mem_queue_type ==
1073 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1074 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1075 				llq->max_llq_depth);
1076 		} else {
1077 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1078 				max_queue_ext->max_tx_sq_depth);
1079 		}
1080 
1081 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1082 			max_queue_ext->max_per_packet_rx_descs);
1083 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1084 			max_queue_ext->max_per_packet_tx_descs);
1085 	} else {
1086 		struct ena_admin_queue_feature_desc *max_queues =
1087 			&ctx->get_feat_ctx->max_queues;
1088 		max_rx_queue_size = RTE_MIN(max_queues->max_cq_depth,
1089 			max_queues->max_sq_depth);
1090 		max_tx_queue_size = max_queues->max_cq_depth;
1091 
1092 		if (ena_dev->tx_mem_queue_type ==
1093 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1094 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1095 				llq->max_llq_depth);
1096 		} else {
1097 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1098 				max_queues->max_sq_depth);
1099 		}
1100 
1101 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1102 			max_queues->max_packet_rx_descs);
1103 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1104 			max_queues->max_packet_tx_descs);
1105 	}
1106 
1107 	/* Round down to the nearest power of 2 */
1108 	max_rx_queue_size = rte_align32prevpow2(max_rx_queue_size);
1109 	max_tx_queue_size = rte_align32prevpow2(max_tx_queue_size);
1110 
1111 	if (use_large_llq_hdr) {
1112 		if ((llq->entry_size_ctrl_supported &
1113 		     ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
1114 		    (ena_dev->tx_mem_queue_type ==
1115 		     ENA_ADMIN_PLACEMENT_POLICY_DEV)) {
1116 			max_tx_queue_size /= 2;
1117 			PMD_INIT_LOG(INFO,
1118 				"Forcing large headers and decreasing maximum Tx queue size to %d\n",
1119 				max_tx_queue_size);
1120 		} else {
1121 			PMD_INIT_LOG(ERR,
1122 				"Forcing large headers failed: LLQ is disabled or device does not support large headers\n");
1123 		}
1124 	}
1125 
1126 	if (unlikely(max_rx_queue_size == 0 || max_tx_queue_size == 0)) {
1127 		PMD_INIT_LOG(ERR, "Invalid queue size\n");
1128 		return -EFAULT;
1129 	}
1130 
1131 	ctx->max_tx_queue_size = max_tx_queue_size;
1132 	ctx->max_rx_queue_size = max_rx_queue_size;
1133 
1134 	return 0;
1135 }
1136 
1137 static void ena_stats_restart(struct rte_eth_dev *dev)
1138 {
1139 	struct ena_adapter *adapter = dev->data->dev_private;
1140 
1141 	rte_atomic64_init(&adapter->drv_stats->ierrors);
1142 	rte_atomic64_init(&adapter->drv_stats->oerrors);
1143 	rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
1144 	adapter->drv_stats->rx_drops = 0;
1145 }
1146 
1147 static int ena_stats_get(struct rte_eth_dev *dev,
1148 			  struct rte_eth_stats *stats)
1149 {
1150 	struct ena_admin_basic_stats ena_stats;
1151 	struct ena_adapter *adapter = dev->data->dev_private;
1152 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1153 	int rc;
1154 	int i;
1155 	int max_rings_stats;
1156 
1157 	memset(&ena_stats, 0, sizeof(ena_stats));
1158 
1159 	rte_spinlock_lock(&adapter->admin_lock);
1160 	rc = ENA_PROXY(adapter, ena_com_get_dev_basic_stats, ena_dev,
1161 		       &ena_stats);
1162 	rte_spinlock_unlock(&adapter->admin_lock);
1163 	if (unlikely(rc)) {
1164 		PMD_DRV_LOG(ERR, "Could not retrieve statistics from ENA\n");
1165 		return rc;
1166 	}
1167 
1168 	/* Set of basic statistics from ENA */
1169 	stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
1170 					  ena_stats.rx_pkts_low);
1171 	stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
1172 					  ena_stats.tx_pkts_low);
1173 	stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
1174 					ena_stats.rx_bytes_low);
1175 	stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
1176 					ena_stats.tx_bytes_low);
1177 
1178 	/* Driver related stats */
1179 	stats->imissed = adapter->drv_stats->rx_drops;
1180 	stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
1181 	stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
1182 	stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
1183 
1184 	max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
1185 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
1186 	for (i = 0; i < max_rings_stats; ++i) {
1187 		struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
1188 
1189 		stats->q_ibytes[i] = rx_stats->bytes;
1190 		stats->q_ipackets[i] = rx_stats->cnt;
1191 		stats->q_errors[i] = rx_stats->bad_desc_num +
1192 			rx_stats->bad_req_id;
1193 	}
1194 
1195 	max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
1196 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
1197 	for (i = 0; i < max_rings_stats; ++i) {
1198 		struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
1199 
1200 		stats->q_obytes[i] = tx_stats->bytes;
1201 		stats->q_opackets[i] = tx_stats->cnt;
1202 	}
1203 
1204 	return 0;
1205 }
1206 
1207 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1208 {
1209 	struct ena_adapter *adapter;
1210 	struct ena_com_dev *ena_dev;
1211 	int rc = 0;
1212 
1213 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
1214 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
1215 	adapter = dev->data->dev_private;
1216 
1217 	ena_dev = &adapter->ena_dev;
1218 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
1219 
1220 	rc = ENA_PROXY(adapter, ena_com_set_dev_mtu, ena_dev, mtu);
1221 	if (rc)
1222 		PMD_DRV_LOG(ERR, "Could not set MTU: %d\n", mtu);
1223 	else
1224 		PMD_DRV_LOG(NOTICE, "MTU set to: %d\n", mtu);
1225 
1226 	return rc;
1227 }
1228 
1229 static int ena_start(struct rte_eth_dev *dev)
1230 {
1231 	struct ena_adapter *adapter = dev->data->dev_private;
1232 	uint64_t ticks;
1233 	int rc = 0;
1234 	uint16_t i;
1235 
1236 	/* Cannot allocate memory in secondary process */
1237 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1238 		PMD_DRV_LOG(WARNING, "dev_start not supported in secondary.\n");
1239 		return -EPERM;
1240 	}
1241 
1242 	rc = ena_setup_rx_intr(dev);
1243 	if (rc)
1244 		return rc;
1245 
1246 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
1247 	if (rc)
1248 		return rc;
1249 
1250 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
1251 	if (rc)
1252 		goto err_start_tx;
1253 
1254 	if (adapter->edev_data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG) {
1255 		rc = ena_rss_configure(adapter);
1256 		if (rc)
1257 			goto err_rss_init;
1258 	}
1259 
1260 	ena_stats_restart(dev);
1261 
1262 	adapter->timestamp_wd = rte_get_timer_cycles();
1263 	adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
1264 
1265 	ticks = rte_get_timer_hz();
1266 	rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
1267 			ena_timer_wd_callback, dev);
1268 
1269 	++adapter->dev_stats.dev_start;
1270 	adapter->state = ENA_ADAPTER_STATE_RUNNING;
1271 
1272 	for (i = 0; i < dev->data->nb_rx_queues; i++)
1273 		dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
1274 	for (i = 0; i < dev->data->nb_tx_queues; i++)
1275 		dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
1276 
1277 	return 0;
1278 
1279 err_rss_init:
1280 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1281 err_start_tx:
1282 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1283 	return rc;
1284 }
1285 
1286 static int ena_stop(struct rte_eth_dev *dev)
1287 {
1288 	struct ena_adapter *adapter = dev->data->dev_private;
1289 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1290 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1291 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
1292 	uint16_t i;
1293 	int rc;
1294 
1295 	/* Cannot free memory in secondary process */
1296 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1297 		PMD_DRV_LOG(WARNING, "dev_stop not supported in secondary.\n");
1298 		return -EPERM;
1299 	}
1300 
1301 	rte_timer_stop_sync(&adapter->timer_wd);
1302 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1303 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1304 
1305 	if (adapter->trigger_reset) {
1306 		rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
1307 		if (rc)
1308 			PMD_DRV_LOG(ERR, "Device reset failed, rc: %d\n", rc);
1309 	}
1310 
1311 	rte_intr_disable(intr_handle);
1312 
1313 	rte_intr_efd_disable(intr_handle);
1314 
1315 	/* Cleanup vector list */
1316 	rte_intr_vec_list_free(intr_handle);
1317 
1318 	rte_intr_enable(intr_handle);
1319 
1320 	++adapter->dev_stats.dev_stop;
1321 	adapter->state = ENA_ADAPTER_STATE_STOPPED;
1322 	dev->data->dev_started = 0;
1323 
1324 	for (i = 0; i < dev->data->nb_rx_queues; i++)
1325 		dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
1326 	for (i = 0; i < dev->data->nb_tx_queues; i++)
1327 		dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
1328 
1329 	return 0;
1330 }
1331 
1332 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring)
1333 {
1334 	struct ena_adapter *adapter = ring->adapter;
1335 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1336 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1337 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
1338 	struct ena_com_create_io_ctx ctx =
1339 		/* policy set to _HOST just to satisfy icc compiler */
1340 		{ ENA_ADMIN_PLACEMENT_POLICY_HOST,
1341 		  0, 0, 0, 0, 0 };
1342 	uint16_t ena_qid;
1343 	unsigned int i;
1344 	int rc;
1345 
1346 	ctx.msix_vector = -1;
1347 	if (ring->type == ENA_RING_TYPE_TX) {
1348 		ena_qid = ENA_IO_TXQ_IDX(ring->id);
1349 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1350 		ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1351 		for (i = 0; i < ring->ring_size; i++)
1352 			ring->empty_tx_reqs[i] = i;
1353 	} else {
1354 		ena_qid = ENA_IO_RXQ_IDX(ring->id);
1355 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1356 		if (rte_intr_dp_is_en(intr_handle))
1357 			ctx.msix_vector =
1358 				rte_intr_vec_list_index_get(intr_handle,
1359 								   ring->id);
1360 
1361 		for (i = 0; i < ring->ring_size; i++)
1362 			ring->empty_rx_reqs[i] = i;
1363 	}
1364 	ctx.queue_size = ring->ring_size;
1365 	ctx.qid = ena_qid;
1366 	ctx.numa_node = ring->numa_socket_id;
1367 
1368 	rc = ena_com_create_io_queue(ena_dev, &ctx);
1369 	if (rc) {
1370 		PMD_DRV_LOG(ERR,
1371 			"Failed to create IO queue[%d] (qid:%d), rc: %d\n",
1372 			ring->id, ena_qid, rc);
1373 		return rc;
1374 	}
1375 
1376 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1377 				     &ring->ena_com_io_sq,
1378 				     &ring->ena_com_io_cq);
1379 	if (rc) {
1380 		PMD_DRV_LOG(ERR,
1381 			"Failed to get IO queue[%d] handlers, rc: %d\n",
1382 			ring->id, rc);
1383 		ena_com_destroy_io_queue(ena_dev, ena_qid);
1384 		return rc;
1385 	}
1386 
1387 	if (ring->type == ENA_RING_TYPE_TX)
1388 		ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1389 
1390 	/* Start with Rx interrupts being masked. */
1391 	if (ring->type == ENA_RING_TYPE_RX && rte_intr_dp_is_en(intr_handle))
1392 		ena_rx_queue_intr_disable(dev, ring->id);
1393 
1394 	return 0;
1395 }
1396 
1397 static void ena_queue_stop(struct ena_ring *ring)
1398 {
1399 	struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
1400 
1401 	if (ring->type == ENA_RING_TYPE_RX) {
1402 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
1403 		ena_rx_queue_release_bufs(ring);
1404 	} else {
1405 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
1406 		ena_tx_queue_release_bufs(ring);
1407 	}
1408 }
1409 
1410 static void ena_queue_stop_all(struct rte_eth_dev *dev,
1411 			      enum ena_ring_type ring_type)
1412 {
1413 	struct ena_adapter *adapter = dev->data->dev_private;
1414 	struct ena_ring *queues = NULL;
1415 	uint16_t nb_queues, i;
1416 
1417 	if (ring_type == ENA_RING_TYPE_RX) {
1418 		queues = adapter->rx_ring;
1419 		nb_queues = dev->data->nb_rx_queues;
1420 	} else {
1421 		queues = adapter->tx_ring;
1422 		nb_queues = dev->data->nb_tx_queues;
1423 	}
1424 
1425 	for (i = 0; i < nb_queues; ++i)
1426 		if (queues[i].configured)
1427 			ena_queue_stop(&queues[i]);
1428 }
1429 
1430 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring)
1431 {
1432 	int rc, bufs_num;
1433 
1434 	ena_assert_msg(ring->configured == 1,
1435 		       "Trying to start unconfigured queue\n");
1436 
1437 	rc = ena_create_io_queue(dev, ring);
1438 	if (rc) {
1439 		PMD_INIT_LOG(ERR, "Failed to create IO queue\n");
1440 		return rc;
1441 	}
1442 
1443 	ring->next_to_clean = 0;
1444 	ring->next_to_use = 0;
1445 
1446 	if (ring->type == ENA_RING_TYPE_TX) {
1447 		ring->tx_stats.available_desc =
1448 			ena_com_free_q_entries(ring->ena_com_io_sq);
1449 		return 0;
1450 	}
1451 
1452 	bufs_num = ring->ring_size - 1;
1453 	rc = ena_populate_rx_queue(ring, bufs_num);
1454 	if (rc != bufs_num) {
1455 		ena_com_destroy_io_queue(&ring->adapter->ena_dev,
1456 					 ENA_IO_RXQ_IDX(ring->id));
1457 		PMD_INIT_LOG(ERR, "Failed to populate Rx ring\n");
1458 		return ENA_COM_FAULT;
1459 	}
1460 	/* Flush per-core RX buffers pools cache as they can be used on other
1461 	 * cores as well.
1462 	 */
1463 	rte_mempool_cache_flush(NULL, ring->mb_pool);
1464 
1465 	return 0;
1466 }
1467 
1468 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1469 			      uint16_t queue_idx,
1470 			      uint16_t nb_desc,
1471 			      unsigned int socket_id,
1472 			      const struct rte_eth_txconf *tx_conf)
1473 {
1474 	struct ena_ring *txq = NULL;
1475 	struct ena_adapter *adapter = dev->data->dev_private;
1476 	unsigned int i;
1477 	uint16_t dyn_thresh;
1478 
1479 	txq = &adapter->tx_ring[queue_idx];
1480 
1481 	if (txq->configured) {
1482 		PMD_DRV_LOG(CRIT,
1483 			"API violation. Queue[%d] is already configured\n",
1484 			queue_idx);
1485 		return ENA_COM_FAULT;
1486 	}
1487 
1488 	if (!rte_is_power_of_2(nb_desc)) {
1489 		PMD_DRV_LOG(ERR,
1490 			"Unsupported size of Tx queue: %d is not a power of 2.\n",
1491 			nb_desc);
1492 		return -EINVAL;
1493 	}
1494 
1495 	if (nb_desc > adapter->max_tx_ring_size) {
1496 		PMD_DRV_LOG(ERR,
1497 			"Unsupported size of Tx queue (max size: %d)\n",
1498 			adapter->max_tx_ring_size);
1499 		return -EINVAL;
1500 	}
1501 
1502 	txq->port_id = dev->data->port_id;
1503 	txq->next_to_clean = 0;
1504 	txq->next_to_use = 0;
1505 	txq->ring_size = nb_desc;
1506 	txq->size_mask = nb_desc - 1;
1507 	txq->numa_socket_id = socket_id;
1508 	txq->pkts_without_db = false;
1509 	txq->last_cleanup_ticks = 0;
1510 
1511 	txq->tx_buffer_info = rte_zmalloc_socket("txq->tx_buffer_info",
1512 		sizeof(struct ena_tx_buffer) * txq->ring_size,
1513 		RTE_CACHE_LINE_SIZE,
1514 		socket_id);
1515 	if (!txq->tx_buffer_info) {
1516 		PMD_DRV_LOG(ERR,
1517 			"Failed to allocate memory for Tx buffer info\n");
1518 		return -ENOMEM;
1519 	}
1520 
1521 	txq->empty_tx_reqs = rte_zmalloc_socket("txq->empty_tx_reqs",
1522 		sizeof(uint16_t) * txq->ring_size,
1523 		RTE_CACHE_LINE_SIZE,
1524 		socket_id);
1525 	if (!txq->empty_tx_reqs) {
1526 		PMD_DRV_LOG(ERR,
1527 			"Failed to allocate memory for empty Tx requests\n");
1528 		rte_free(txq->tx_buffer_info);
1529 		return -ENOMEM;
1530 	}
1531 
1532 	txq->push_buf_intermediate_buf =
1533 		rte_zmalloc_socket("txq->push_buf_intermediate_buf",
1534 			txq->tx_max_header_size,
1535 			RTE_CACHE_LINE_SIZE,
1536 			socket_id);
1537 	if (!txq->push_buf_intermediate_buf) {
1538 		PMD_DRV_LOG(ERR, "Failed to alloc push buffer for LLQ\n");
1539 		rte_free(txq->tx_buffer_info);
1540 		rte_free(txq->empty_tx_reqs);
1541 		return -ENOMEM;
1542 	}
1543 
1544 	for (i = 0; i < txq->ring_size; i++)
1545 		txq->empty_tx_reqs[i] = i;
1546 
1547 	txq->offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1548 
1549 	/* Check if caller provided the Tx cleanup threshold value. */
1550 	if (tx_conf->tx_free_thresh != 0) {
1551 		txq->tx_free_thresh = tx_conf->tx_free_thresh;
1552 	} else {
1553 		dyn_thresh = txq->ring_size -
1554 			txq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1555 		txq->tx_free_thresh = RTE_MAX(dyn_thresh,
1556 			txq->ring_size - ENA_REFILL_THRESH_PACKET);
1557 	}
1558 
1559 	txq->missing_tx_completion_threshold =
1560 		RTE_MIN(txq->ring_size / 2, ENA_DEFAULT_MISSING_COMP);
1561 
1562 	/* Store pointer to this queue in upper layer */
1563 	txq->configured = 1;
1564 	dev->data->tx_queues[queue_idx] = txq;
1565 
1566 	return 0;
1567 }
1568 
1569 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1570 			      uint16_t queue_idx,
1571 			      uint16_t nb_desc,
1572 			      unsigned int socket_id,
1573 			      const struct rte_eth_rxconf *rx_conf,
1574 			      struct rte_mempool *mp)
1575 {
1576 	struct ena_adapter *adapter = dev->data->dev_private;
1577 	struct ena_ring *rxq = NULL;
1578 	size_t buffer_size;
1579 	int i;
1580 	uint16_t dyn_thresh;
1581 
1582 	rxq = &adapter->rx_ring[queue_idx];
1583 	if (rxq->configured) {
1584 		PMD_DRV_LOG(CRIT,
1585 			"API violation. Queue[%d] is already configured\n",
1586 			queue_idx);
1587 		return ENA_COM_FAULT;
1588 	}
1589 
1590 	if (!rte_is_power_of_2(nb_desc)) {
1591 		PMD_DRV_LOG(ERR,
1592 			"Unsupported size of Rx queue: %d is not a power of 2.\n",
1593 			nb_desc);
1594 		return -EINVAL;
1595 	}
1596 
1597 	if (nb_desc > adapter->max_rx_ring_size) {
1598 		PMD_DRV_LOG(ERR,
1599 			"Unsupported size of Rx queue (max size: %d)\n",
1600 			adapter->max_rx_ring_size);
1601 		return -EINVAL;
1602 	}
1603 
1604 	/* ENA isn't supporting buffers smaller than 1400 bytes */
1605 	buffer_size = rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
1606 	if (buffer_size < ENA_RX_BUF_MIN_SIZE) {
1607 		PMD_DRV_LOG(ERR,
1608 			"Unsupported size of Rx buffer: %zu (min size: %d)\n",
1609 			buffer_size, ENA_RX_BUF_MIN_SIZE);
1610 		return -EINVAL;
1611 	}
1612 
1613 	rxq->port_id = dev->data->port_id;
1614 	rxq->next_to_clean = 0;
1615 	rxq->next_to_use = 0;
1616 	rxq->ring_size = nb_desc;
1617 	rxq->size_mask = nb_desc - 1;
1618 	rxq->numa_socket_id = socket_id;
1619 	rxq->mb_pool = mp;
1620 
1621 	rxq->rx_buffer_info = rte_zmalloc_socket("rxq->buffer_info",
1622 		sizeof(struct ena_rx_buffer) * nb_desc,
1623 		RTE_CACHE_LINE_SIZE,
1624 		socket_id);
1625 	if (!rxq->rx_buffer_info) {
1626 		PMD_DRV_LOG(ERR,
1627 			"Failed to allocate memory for Rx buffer info\n");
1628 		return -ENOMEM;
1629 	}
1630 
1631 	rxq->rx_refill_buffer = rte_zmalloc_socket("rxq->rx_refill_buffer",
1632 		sizeof(struct rte_mbuf *) * nb_desc,
1633 		RTE_CACHE_LINE_SIZE,
1634 		socket_id);
1635 	if (!rxq->rx_refill_buffer) {
1636 		PMD_DRV_LOG(ERR,
1637 			"Failed to allocate memory for Rx refill buffer\n");
1638 		rte_free(rxq->rx_buffer_info);
1639 		rxq->rx_buffer_info = NULL;
1640 		return -ENOMEM;
1641 	}
1642 
1643 	rxq->empty_rx_reqs = rte_zmalloc_socket("rxq->empty_rx_reqs",
1644 		sizeof(uint16_t) * nb_desc,
1645 		RTE_CACHE_LINE_SIZE,
1646 		socket_id);
1647 	if (!rxq->empty_rx_reqs) {
1648 		PMD_DRV_LOG(ERR,
1649 			"Failed to allocate memory for empty Rx requests\n");
1650 		rte_free(rxq->rx_buffer_info);
1651 		rxq->rx_buffer_info = NULL;
1652 		rte_free(rxq->rx_refill_buffer);
1653 		rxq->rx_refill_buffer = NULL;
1654 		return -ENOMEM;
1655 	}
1656 
1657 	for (i = 0; i < nb_desc; i++)
1658 		rxq->empty_rx_reqs[i] = i;
1659 
1660 	rxq->offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1661 
1662 	if (rx_conf->rx_free_thresh != 0) {
1663 		rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1664 	} else {
1665 		dyn_thresh = rxq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1666 		rxq->rx_free_thresh = RTE_MIN(dyn_thresh,
1667 			(uint16_t)(ENA_REFILL_THRESH_PACKET));
1668 	}
1669 
1670 	/* Store pointer to this queue in upper layer */
1671 	rxq->configured = 1;
1672 	dev->data->rx_queues[queue_idx] = rxq;
1673 
1674 	return 0;
1675 }
1676 
1677 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
1678 				  struct rte_mbuf *mbuf, uint16_t id)
1679 {
1680 	struct ena_com_buf ebuf;
1681 	int rc;
1682 
1683 	/* prepare physical address for DMA transaction */
1684 	ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1685 	ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1686 
1687 	/* pass resource to device */
1688 	rc = ena_com_add_single_rx_desc(io_sq, &ebuf, id);
1689 	if (unlikely(rc != 0))
1690 		PMD_RX_LOG(WARNING, "Failed adding Rx desc\n");
1691 
1692 	return rc;
1693 }
1694 
1695 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1696 {
1697 	unsigned int i;
1698 	int rc;
1699 	uint16_t next_to_use = rxq->next_to_use;
1700 	uint16_t req_id;
1701 #ifdef RTE_ETHDEV_DEBUG_RX
1702 	uint16_t in_use;
1703 #endif
1704 	struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1705 
1706 	if (unlikely(!count))
1707 		return 0;
1708 
1709 #ifdef RTE_ETHDEV_DEBUG_RX
1710 	in_use = rxq->ring_size - 1 -
1711 		ena_com_free_q_entries(rxq->ena_com_io_sq);
1712 	if (unlikely((in_use + count) >= rxq->ring_size))
1713 		PMD_RX_LOG(ERR, "Bad Rx ring state\n");
1714 #endif
1715 
1716 	/* get resources for incoming packets */
1717 	rc = rte_pktmbuf_alloc_bulk(rxq->mb_pool, mbufs, count);
1718 	if (unlikely(rc < 0)) {
1719 		rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1720 		++rxq->rx_stats.mbuf_alloc_fail;
1721 		PMD_RX_LOG(DEBUG, "There are not enough free buffers\n");
1722 		return 0;
1723 	}
1724 
1725 	for (i = 0; i < count; i++) {
1726 		struct rte_mbuf *mbuf = mbufs[i];
1727 		struct ena_rx_buffer *rx_info;
1728 
1729 		if (likely((i + 4) < count))
1730 			rte_prefetch0(mbufs[i + 4]);
1731 
1732 		req_id = rxq->empty_rx_reqs[next_to_use];
1733 		rx_info = &rxq->rx_buffer_info[req_id];
1734 
1735 		rc = ena_add_single_rx_desc(rxq->ena_com_io_sq, mbuf, req_id);
1736 		if (unlikely(rc != 0))
1737 			break;
1738 
1739 		rx_info->mbuf = mbuf;
1740 		next_to_use = ENA_IDX_NEXT_MASKED(next_to_use, rxq->size_mask);
1741 	}
1742 
1743 	if (unlikely(i < count)) {
1744 		PMD_RX_LOG(WARNING,
1745 			"Refilled Rx queue[%d] with only %d/%d buffers\n",
1746 			rxq->id, i, count);
1747 		rte_pktmbuf_free_bulk(&mbufs[i], count - i);
1748 		++rxq->rx_stats.refill_partial;
1749 	}
1750 
1751 	/* When we submitted free resources to device... */
1752 	if (likely(i > 0)) {
1753 		/* ...let HW know that it can fill buffers with data. */
1754 		ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1755 
1756 		rxq->next_to_use = next_to_use;
1757 	}
1758 
1759 	return i;
1760 }
1761 
1762 static size_t ena_get_metrics_entries(struct ena_adapter *adapter)
1763 {
1764 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1765 	size_t metrics_num = 0;
1766 
1767 	if (ena_com_get_cap(ena_dev, ENA_ADMIN_CUSTOMER_METRICS))
1768 		metrics_num = ENA_STATS_ARRAY_METRICS;
1769 	else if (ena_com_get_cap(ena_dev, ENA_ADMIN_ENI_STATS))
1770 		metrics_num = ENA_STATS_ARRAY_METRICS_LEGACY;
1771 	PMD_DRV_LOG(NOTICE, "0x%x customer metrics are supported\n", (unsigned int)metrics_num);
1772 	if (metrics_num > ENA_MAX_CUSTOMER_METRICS) {
1773 		PMD_DRV_LOG(NOTICE, "Not enough space for the requested customer metrics\n");
1774 		metrics_num = ENA_MAX_CUSTOMER_METRICS;
1775 	}
1776 	return metrics_num;
1777 }
1778 
1779 static int ena_device_init(struct ena_adapter *adapter,
1780 			   struct rte_pci_device *pdev,
1781 			   struct ena_com_dev_get_features_ctx *get_feat_ctx)
1782 {
1783 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1784 	uint32_t aenq_groups;
1785 	int rc;
1786 	bool readless_supported;
1787 
1788 	/* Initialize mmio registers */
1789 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
1790 	if (rc) {
1791 		PMD_DRV_LOG(ERR, "Failed to init MMIO read less\n");
1792 		return rc;
1793 	}
1794 
1795 	/* The PCIe configuration space revision id indicate if mmio reg
1796 	 * read is disabled.
1797 	 */
1798 	readless_supported = !(pdev->id.class_id & ENA_MMIO_DISABLE_REG_READ);
1799 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1800 
1801 	/* reset device */
1802 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1803 	if (rc) {
1804 		PMD_DRV_LOG(ERR, "Cannot reset device\n");
1805 		goto err_mmio_read_less;
1806 	}
1807 
1808 	/* check FW version */
1809 	rc = ena_com_validate_version(ena_dev);
1810 	if (rc) {
1811 		PMD_DRV_LOG(ERR, "Device version is too low\n");
1812 		goto err_mmio_read_less;
1813 	}
1814 
1815 	ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1816 
1817 	/* ENA device administration layer init */
1818 	rc = ena_com_admin_init(ena_dev, &aenq_handlers);
1819 	if (rc) {
1820 		PMD_DRV_LOG(ERR,
1821 			"Cannot initialize ENA admin queue\n");
1822 		goto err_mmio_read_less;
1823 	}
1824 
1825 	/* To enable the msix interrupts the driver needs to know the number
1826 	 * of queues. So the driver uses polling mode to retrieve this
1827 	 * information.
1828 	 */
1829 	ena_com_set_admin_polling_mode(ena_dev, true);
1830 
1831 	ena_config_host_info(ena_dev);
1832 
1833 	/* Get Device Attributes and features */
1834 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1835 	if (rc) {
1836 		PMD_DRV_LOG(ERR,
1837 			"Cannot get attribute for ENA device, rc: %d\n", rc);
1838 		goto err_admin_init;
1839 	}
1840 
1841 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1842 		      BIT(ENA_ADMIN_NOTIFICATION) |
1843 		      BIT(ENA_ADMIN_KEEP_ALIVE) |
1844 		      BIT(ENA_ADMIN_FATAL_ERROR) |
1845 		      BIT(ENA_ADMIN_WARNING);
1846 
1847 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
1848 
1849 	adapter->all_aenq_groups = aenq_groups;
1850 	/* The actual supported number of metrics is negotiated with the device at runtime */
1851 	adapter->metrics_num = ena_get_metrics_entries(adapter);
1852 
1853 	return 0;
1854 
1855 err_admin_init:
1856 	ena_com_admin_destroy(ena_dev);
1857 
1858 err_mmio_read_less:
1859 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1860 
1861 	return rc;
1862 }
1863 
1864 static void ena_interrupt_handler_rte(void *cb_arg)
1865 {
1866 	struct rte_eth_dev *dev = cb_arg;
1867 	struct ena_adapter *adapter = dev->data->dev_private;
1868 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1869 
1870 	ena_com_admin_q_comp_intr_handler(ena_dev);
1871 	if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED))
1872 		ena_com_aenq_intr_handler(ena_dev, dev);
1873 }
1874 
1875 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1876 {
1877 	if (!(adapter->active_aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE)))
1878 		return;
1879 
1880 	if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1881 		return;
1882 
1883 	if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1884 	    adapter->keep_alive_timeout)) {
1885 		PMD_DRV_LOG(ERR, "Keep alive timeout\n");
1886 		ena_trigger_reset(adapter, ENA_REGS_RESET_KEEP_ALIVE_TO);
1887 		++adapter->dev_stats.wd_expired;
1888 	}
1889 }
1890 
1891 /* Check if admin queue is enabled */
1892 static void check_for_admin_com_state(struct ena_adapter *adapter)
1893 {
1894 	if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1895 		PMD_DRV_LOG(ERR, "ENA admin queue is not in running state\n");
1896 		ena_trigger_reset(adapter, ENA_REGS_RESET_ADMIN_TO);
1897 	}
1898 }
1899 
1900 static int check_for_tx_completion_in_queue(struct ena_adapter *adapter,
1901 					    struct ena_ring *tx_ring)
1902 {
1903 	struct ena_tx_buffer *tx_buf;
1904 	uint64_t timestamp;
1905 	uint64_t completion_delay;
1906 	uint32_t missed_tx = 0;
1907 	unsigned int i;
1908 	int rc = 0;
1909 
1910 	for (i = 0; i < tx_ring->ring_size; ++i) {
1911 		tx_buf = &tx_ring->tx_buffer_info[i];
1912 		timestamp = tx_buf->timestamp;
1913 
1914 		if (timestamp == 0)
1915 			continue;
1916 
1917 		completion_delay = rte_get_timer_cycles() - timestamp;
1918 		if (completion_delay > adapter->missing_tx_completion_to) {
1919 			if (unlikely(!tx_buf->print_once)) {
1920 				PMD_TX_LOG(WARNING,
1921 					"Found a Tx that wasn't completed on time, qid %d, index %d. "
1922 					"Missing Tx outstanding for %" PRIu64 " msecs.\n",
1923 					tx_ring->id, i,	completion_delay /
1924 					rte_get_timer_hz() * 1000);
1925 				tx_buf->print_once = true;
1926 			}
1927 			++missed_tx;
1928 		}
1929 	}
1930 
1931 	if (unlikely(missed_tx > tx_ring->missing_tx_completion_threshold)) {
1932 		PMD_DRV_LOG(ERR,
1933 			"The number of lost Tx completions is above the threshold (%d > %d). "
1934 			"Trigger the device reset.\n",
1935 			missed_tx,
1936 			tx_ring->missing_tx_completion_threshold);
1937 		adapter->reset_reason = ENA_REGS_RESET_MISS_TX_CMPL;
1938 		adapter->trigger_reset = true;
1939 		rc = -EIO;
1940 	}
1941 
1942 	tx_ring->tx_stats.missed_tx += missed_tx;
1943 
1944 	return rc;
1945 }
1946 
1947 static void check_for_tx_completions(struct ena_adapter *adapter)
1948 {
1949 	struct ena_ring *tx_ring;
1950 	uint64_t tx_cleanup_delay;
1951 	size_t qid;
1952 	int budget;
1953 	uint16_t nb_tx_queues = adapter->edev_data->nb_tx_queues;
1954 
1955 	if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT)
1956 		return;
1957 
1958 	nb_tx_queues = adapter->edev_data->nb_tx_queues;
1959 	budget = adapter->missing_tx_completion_budget;
1960 
1961 	qid = adapter->last_tx_comp_qid;
1962 	while (budget-- > 0) {
1963 		tx_ring = &adapter->tx_ring[qid];
1964 
1965 		/* Tx cleanup is called only by the burst function and can be
1966 		 * called dynamically by the application. Also cleanup is
1967 		 * limited by the threshold. To avoid false detection of the
1968 		 * missing HW Tx completion, get the delay since last cleanup
1969 		 * function was called.
1970 		 */
1971 		tx_cleanup_delay = rte_get_timer_cycles() -
1972 			tx_ring->last_cleanup_ticks;
1973 		if (tx_cleanup_delay < adapter->tx_cleanup_stall_delay)
1974 			check_for_tx_completion_in_queue(adapter, tx_ring);
1975 		qid = (qid + 1) % nb_tx_queues;
1976 	}
1977 
1978 	adapter->last_tx_comp_qid = qid;
1979 }
1980 
1981 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
1982 				  void *arg)
1983 {
1984 	struct rte_eth_dev *dev = arg;
1985 	struct ena_adapter *adapter = dev->data->dev_private;
1986 
1987 	if (unlikely(adapter->trigger_reset))
1988 		return;
1989 
1990 	check_for_missing_keep_alive(adapter);
1991 	check_for_admin_com_state(adapter);
1992 	check_for_tx_completions(adapter);
1993 
1994 	if (unlikely(adapter->trigger_reset)) {
1995 		PMD_DRV_LOG(ERR, "Trigger reset is on\n");
1996 		rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
1997 			NULL);
1998 	}
1999 }
2000 
2001 static inline void
2002 set_default_llq_configurations(struct ena_llq_configurations *llq_config,
2003 			       struct ena_admin_feature_llq_desc *llq,
2004 			       bool use_large_llq_hdr)
2005 {
2006 	llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
2007 	llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
2008 	llq_config->llq_num_decs_before_header =
2009 		ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
2010 
2011 	if (use_large_llq_hdr &&
2012 	    (llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B)) {
2013 		llq_config->llq_ring_entry_size =
2014 			ENA_ADMIN_LIST_ENTRY_SIZE_256B;
2015 		llq_config->llq_ring_entry_size_value = 256;
2016 	} else {
2017 		llq_config->llq_ring_entry_size =
2018 			ENA_ADMIN_LIST_ENTRY_SIZE_128B;
2019 		llq_config->llq_ring_entry_size_value = 128;
2020 	}
2021 }
2022 
2023 static int
2024 ena_set_queues_placement_policy(struct ena_adapter *adapter,
2025 				struct ena_com_dev *ena_dev,
2026 				struct ena_admin_feature_llq_desc *llq,
2027 				struct ena_llq_configurations *llq_default_configurations)
2028 {
2029 	int rc;
2030 	u32 llq_feature_mask;
2031 
2032 	if (!adapter->enable_llq) {
2033 		PMD_DRV_LOG(WARNING,
2034 			"NOTE: LLQ has been disabled as per user's request. "
2035 			"This may lead to a huge performance degradation!\n");
2036 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
2037 		return 0;
2038 	}
2039 
2040 	llq_feature_mask = 1 << ENA_ADMIN_LLQ;
2041 	if (!(ena_dev->supported_features & llq_feature_mask)) {
2042 		PMD_DRV_LOG(INFO,
2043 			"LLQ is not supported. Fallback to host mode policy.\n");
2044 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
2045 		return 0;
2046 	}
2047 
2048 	if (adapter->dev_mem_base == NULL) {
2049 		PMD_DRV_LOG(ERR,
2050 			"LLQ is advertised as supported, but device doesn't expose mem bar\n");
2051 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
2052 		return 0;
2053 	}
2054 
2055 	rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
2056 	if (unlikely(rc)) {
2057 		PMD_INIT_LOG(WARNING,
2058 			"Failed to config dev mode. Fallback to host mode policy.\n");
2059 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
2060 		return 0;
2061 	}
2062 
2063 	/* Nothing to config, exit */
2064 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
2065 		return 0;
2066 
2067 	ena_dev->mem_bar = adapter->dev_mem_base;
2068 
2069 	return 0;
2070 }
2071 
2072 static uint32_t ena_calc_max_io_queue_num(struct ena_com_dev *ena_dev,
2073 	struct ena_com_dev_get_features_ctx *get_feat_ctx)
2074 {
2075 	uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
2076 
2077 	/* Regular queues capabilities */
2078 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
2079 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
2080 			&get_feat_ctx->max_queue_ext.max_queue_ext;
2081 		io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
2082 				    max_queue_ext->max_rx_cq_num);
2083 		io_tx_sq_num = max_queue_ext->max_tx_sq_num;
2084 		io_tx_cq_num = max_queue_ext->max_tx_cq_num;
2085 	} else {
2086 		struct ena_admin_queue_feature_desc *max_queues =
2087 			&get_feat_ctx->max_queues;
2088 		io_tx_sq_num = max_queues->max_sq_num;
2089 		io_tx_cq_num = max_queues->max_cq_num;
2090 		io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
2091 	}
2092 
2093 	/* In case of LLQ use the llq number in the get feature cmd */
2094 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
2095 		io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
2096 
2097 	max_num_io_queues = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
2098 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_sq_num);
2099 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_cq_num);
2100 
2101 	if (unlikely(max_num_io_queues == 0)) {
2102 		PMD_DRV_LOG(ERR, "Number of IO queues cannot not be 0\n");
2103 		return -EFAULT;
2104 	}
2105 
2106 	return max_num_io_queues;
2107 }
2108 
2109 static void
2110 ena_set_offloads(struct ena_offloads *offloads,
2111 		 struct ena_admin_feature_offload_desc *offload_desc)
2112 {
2113 	if (offload_desc->tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK)
2114 		offloads->tx_offloads |= ENA_IPV4_TSO;
2115 
2116 	/* Tx IPv4 checksum offloads */
2117 	if (offload_desc->tx &
2118 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)
2119 		offloads->tx_offloads |= ENA_L3_IPV4_CSUM;
2120 	if (offload_desc->tx &
2121 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK)
2122 		offloads->tx_offloads |= ENA_L4_IPV4_CSUM;
2123 	if (offload_desc->tx &
2124 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)
2125 		offloads->tx_offloads |= ENA_L4_IPV4_CSUM_PARTIAL;
2126 
2127 	/* Tx IPv6 checksum offloads */
2128 	if (offload_desc->tx &
2129 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK)
2130 		offloads->tx_offloads |= ENA_L4_IPV6_CSUM;
2131 	if (offload_desc->tx &
2132 	     ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)
2133 		offloads->tx_offloads |= ENA_L4_IPV6_CSUM_PARTIAL;
2134 
2135 	/* Rx IPv4 checksum offloads */
2136 	if (offload_desc->rx_supported &
2137 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)
2138 		offloads->rx_offloads |= ENA_L3_IPV4_CSUM;
2139 	if (offload_desc->rx_supported &
2140 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK)
2141 		offloads->rx_offloads |= ENA_L4_IPV4_CSUM;
2142 
2143 	/* Rx IPv6 checksum offloads */
2144 	if (offload_desc->rx_supported &
2145 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK)
2146 		offloads->rx_offloads |= ENA_L4_IPV6_CSUM;
2147 
2148 	if (offload_desc->rx_supported &
2149 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_HASH_MASK)
2150 		offloads->rx_offloads |= ENA_RX_RSS_HASH;
2151 }
2152 
2153 static int ena_init_once(void)
2154 {
2155 	static bool init_done;
2156 
2157 	if (init_done)
2158 		return 0;
2159 
2160 	if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
2161 		/* Init timer subsystem for the ENA timer service. */
2162 		rte_timer_subsystem_init();
2163 		/* Register handler for requests from secondary processes. */
2164 		rte_mp_action_register(ENA_MP_NAME, ena_mp_primary_handle);
2165 	}
2166 
2167 	init_done = true;
2168 	return 0;
2169 }
2170 
2171 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
2172 {
2173 	struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
2174 	struct rte_pci_device *pci_dev;
2175 	struct rte_intr_handle *intr_handle;
2176 	struct ena_adapter *adapter = eth_dev->data->dev_private;
2177 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
2178 	struct ena_com_dev_get_features_ctx get_feat_ctx;
2179 	struct ena_llq_configurations llq_config;
2180 	const char *queue_type_str;
2181 	uint32_t max_num_io_queues;
2182 	int rc;
2183 	static int adapters_found;
2184 	bool disable_meta_caching;
2185 
2186 	eth_dev->dev_ops = &ena_dev_ops;
2187 	eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
2188 	eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
2189 	eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
2190 
2191 	rc = ena_init_once();
2192 	if (rc != 0)
2193 		return rc;
2194 
2195 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2196 		return 0;
2197 
2198 	eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
2199 
2200 	memset(adapter, 0, sizeof(struct ena_adapter));
2201 	ena_dev = &adapter->ena_dev;
2202 
2203 	adapter->edev_data = eth_dev->data;
2204 
2205 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2206 
2207 	PMD_INIT_LOG(INFO, "Initializing " PCI_PRI_FMT "\n",
2208 		     pci_dev->addr.domain,
2209 		     pci_dev->addr.bus,
2210 		     pci_dev->addr.devid,
2211 		     pci_dev->addr.function);
2212 
2213 	intr_handle = pci_dev->intr_handle;
2214 
2215 	adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
2216 	adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
2217 
2218 	if (!adapter->regs) {
2219 		PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)\n",
2220 			     ENA_REGS_BAR);
2221 		return -ENXIO;
2222 	}
2223 
2224 	ena_dev->reg_bar = adapter->regs;
2225 	/* Pass device data as a pointer which can be passed to the IO functions
2226 	 * by the ena_com (for example - the memory allocation).
2227 	 */
2228 	ena_dev->dmadev = eth_dev->data;
2229 
2230 	adapter->id_number = adapters_found;
2231 
2232 	snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
2233 		 adapter->id_number);
2234 
2235 	/* Assign default devargs values */
2236 	adapter->missing_tx_completion_to = ENA_TX_TIMEOUT;
2237 	adapter->enable_llq = true;
2238 	adapter->use_large_llq_hdr = false;
2239 
2240 	rc = ena_parse_devargs(adapter, pci_dev->device.devargs);
2241 	if (rc != 0) {
2242 		PMD_INIT_LOG(CRIT, "Failed to parse devargs\n");
2243 		goto err;
2244 	}
2245 	rc = ena_com_allocate_customer_metrics_buffer(ena_dev);
2246 	if (rc != 0) {
2247 		PMD_INIT_LOG(CRIT, "Failed to allocate customer metrics buffer\n");
2248 		goto err;
2249 	}
2250 
2251 	/* device specific initialization routine */
2252 	rc = ena_device_init(adapter, pci_dev, &get_feat_ctx);
2253 	if (rc) {
2254 		PMD_INIT_LOG(CRIT, "Failed to init ENA device\n");
2255 		goto err_metrics_delete;
2256 	}
2257 
2258 	/* Check if device supports LSC */
2259 	if (!(adapter->all_aenq_groups & BIT(ENA_ADMIN_LINK_CHANGE)))
2260 		adapter->edev_data->dev_flags &= ~RTE_ETH_DEV_INTR_LSC;
2261 
2262 	set_default_llq_configurations(&llq_config, &get_feat_ctx.llq,
2263 		adapter->use_large_llq_hdr);
2264 	rc = ena_set_queues_placement_policy(adapter, ena_dev,
2265 					     &get_feat_ctx.llq, &llq_config);
2266 	if (unlikely(rc)) {
2267 		PMD_INIT_LOG(CRIT, "Failed to set placement policy\n");
2268 		return rc;
2269 	}
2270 
2271 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
2272 		queue_type_str = "Regular";
2273 	else
2274 		queue_type_str = "Low latency";
2275 	PMD_DRV_LOG(INFO, "Placement policy: %s\n", queue_type_str);
2276 
2277 	calc_queue_ctx.ena_dev = ena_dev;
2278 	calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
2279 
2280 	max_num_io_queues = ena_calc_max_io_queue_num(ena_dev, &get_feat_ctx);
2281 	rc = ena_calc_io_queue_size(&calc_queue_ctx,
2282 		adapter->use_large_llq_hdr);
2283 	if (unlikely((rc != 0) || (max_num_io_queues == 0))) {
2284 		rc = -EFAULT;
2285 		goto err_device_destroy;
2286 	}
2287 
2288 	adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
2289 	adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
2290 	adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
2291 	adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
2292 	adapter->max_num_io_queues = max_num_io_queues;
2293 
2294 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2295 		disable_meta_caching =
2296 			!!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
2297 			BIT(ENA_ADMIN_DISABLE_META_CACHING));
2298 	} else {
2299 		disable_meta_caching = false;
2300 	}
2301 
2302 	/* prepare ring structures */
2303 	ena_init_rings(adapter, disable_meta_caching);
2304 
2305 	ena_config_debug_area(adapter);
2306 
2307 	/* Set max MTU for this device */
2308 	adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
2309 
2310 	ena_set_offloads(&adapter->offloads, &get_feat_ctx.offload);
2311 
2312 	/* Copy MAC address and point DPDK to it */
2313 	eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr;
2314 	rte_ether_addr_copy((struct rte_ether_addr *)
2315 			get_feat_ctx.dev_attr.mac_addr,
2316 			(struct rte_ether_addr *)adapter->mac_addr);
2317 
2318 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
2319 	if (unlikely(rc != 0)) {
2320 		PMD_DRV_LOG(ERR, "Failed to initialize RSS in ENA device\n");
2321 		goto err_delete_debug_area;
2322 	}
2323 
2324 	adapter->drv_stats = rte_zmalloc("adapter stats",
2325 					 sizeof(*adapter->drv_stats),
2326 					 RTE_CACHE_LINE_SIZE);
2327 	if (!adapter->drv_stats) {
2328 		PMD_DRV_LOG(ERR,
2329 			"Failed to allocate memory for adapter statistics\n");
2330 		rc = -ENOMEM;
2331 		goto err_rss_destroy;
2332 	}
2333 
2334 	rte_spinlock_init(&adapter->admin_lock);
2335 
2336 	rte_intr_callback_register(intr_handle,
2337 				   ena_interrupt_handler_rte,
2338 				   eth_dev);
2339 	rte_intr_enable(intr_handle);
2340 	ena_com_set_admin_polling_mode(ena_dev, false);
2341 	ena_com_admin_aenq_enable(ena_dev);
2342 
2343 	rte_timer_init(&adapter->timer_wd);
2344 
2345 	adapters_found++;
2346 	adapter->state = ENA_ADAPTER_STATE_INIT;
2347 
2348 	return 0;
2349 
2350 err_rss_destroy:
2351 	ena_com_rss_destroy(ena_dev);
2352 err_delete_debug_area:
2353 	ena_com_delete_debug_area(ena_dev);
2354 
2355 err_device_destroy:
2356 	ena_com_delete_host_info(ena_dev);
2357 	ena_com_admin_destroy(ena_dev);
2358 err_metrics_delete:
2359 	ena_com_delete_customer_metrics_buffer(ena_dev);
2360 err:
2361 	return rc;
2362 }
2363 
2364 static void ena_destroy_device(struct rte_eth_dev *eth_dev)
2365 {
2366 	struct ena_adapter *adapter = eth_dev->data->dev_private;
2367 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
2368 
2369 	if (adapter->state == ENA_ADAPTER_STATE_FREE)
2370 		return;
2371 
2372 	ena_com_set_admin_running_state(ena_dev, false);
2373 
2374 	if (adapter->state != ENA_ADAPTER_STATE_CLOSED)
2375 		ena_close(eth_dev);
2376 
2377 	ena_com_rss_destroy(ena_dev);
2378 
2379 	ena_com_delete_debug_area(ena_dev);
2380 	ena_com_delete_host_info(ena_dev);
2381 
2382 	ena_com_abort_admin_commands(ena_dev);
2383 	ena_com_wait_for_abort_completion(ena_dev);
2384 	ena_com_admin_destroy(ena_dev);
2385 	ena_com_mmio_reg_read_request_destroy(ena_dev);
2386 	ena_com_delete_customer_metrics_buffer(ena_dev);
2387 
2388 	adapter->state = ENA_ADAPTER_STATE_FREE;
2389 }
2390 
2391 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
2392 {
2393 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2394 		return 0;
2395 
2396 	ena_destroy_device(eth_dev);
2397 
2398 	return 0;
2399 }
2400 
2401 static int ena_dev_configure(struct rte_eth_dev *dev)
2402 {
2403 	struct ena_adapter *adapter = dev->data->dev_private;
2404 	int rc;
2405 
2406 	adapter->state = ENA_ADAPTER_STATE_CONFIG;
2407 
2408 	if (dev->data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG)
2409 		dev->data->dev_conf.rxmode.offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2410 	dev->data->dev_conf.txmode.offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2411 
2412 	/* Scattered Rx cannot be turned off in the HW, so this capability must
2413 	 * be forced.
2414 	 */
2415 	dev->data->scattered_rx = 1;
2416 
2417 	adapter->last_tx_comp_qid = 0;
2418 
2419 	adapter->missing_tx_completion_budget =
2420 		RTE_MIN(ENA_MONITORED_TX_QUEUES, dev->data->nb_tx_queues);
2421 
2422 	/* To avoid detection of the spurious Tx completion timeout due to
2423 	 * application not calling the Tx cleanup function, set timeout for the
2424 	 * Tx queue which should be half of the missing completion timeout for a
2425 	 * safety. If there will be a lot of missing Tx completions in the
2426 	 * queue, they will be detected sooner or later.
2427 	 */
2428 	adapter->tx_cleanup_stall_delay = adapter->missing_tx_completion_to / 2;
2429 
2430 	rc = ena_configure_aenq(adapter);
2431 
2432 	return rc;
2433 }
2434 
2435 static void ena_init_rings(struct ena_adapter *adapter,
2436 			   bool disable_meta_caching)
2437 {
2438 	size_t i;
2439 
2440 	for (i = 0; i < adapter->max_num_io_queues; i++) {
2441 		struct ena_ring *ring = &adapter->tx_ring[i];
2442 
2443 		ring->configured = 0;
2444 		ring->type = ENA_RING_TYPE_TX;
2445 		ring->adapter = adapter;
2446 		ring->id = i;
2447 		ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
2448 		ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
2449 		ring->sgl_size = adapter->max_tx_sgl_size;
2450 		ring->disable_meta_caching = disable_meta_caching;
2451 	}
2452 
2453 	for (i = 0; i < adapter->max_num_io_queues; i++) {
2454 		struct ena_ring *ring = &adapter->rx_ring[i];
2455 
2456 		ring->configured = 0;
2457 		ring->type = ENA_RING_TYPE_RX;
2458 		ring->adapter = adapter;
2459 		ring->id = i;
2460 		ring->sgl_size = adapter->max_rx_sgl_size;
2461 	}
2462 }
2463 
2464 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter)
2465 {
2466 	uint64_t port_offloads = 0;
2467 
2468 	if (adapter->offloads.rx_offloads & ENA_L3_IPV4_CSUM)
2469 		port_offloads |= RTE_ETH_RX_OFFLOAD_IPV4_CKSUM;
2470 
2471 	if (adapter->offloads.rx_offloads &
2472 	    (ENA_L4_IPV4_CSUM | ENA_L4_IPV6_CSUM))
2473 		port_offloads |=
2474 			RTE_ETH_RX_OFFLOAD_UDP_CKSUM | RTE_ETH_RX_OFFLOAD_TCP_CKSUM;
2475 
2476 	if (adapter->offloads.rx_offloads & ENA_RX_RSS_HASH)
2477 		port_offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2478 
2479 	port_offloads |= RTE_ETH_RX_OFFLOAD_SCATTER;
2480 
2481 	return port_offloads;
2482 }
2483 
2484 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter)
2485 {
2486 	uint64_t port_offloads = 0;
2487 
2488 	if (adapter->offloads.tx_offloads & ENA_IPV4_TSO)
2489 		port_offloads |= RTE_ETH_TX_OFFLOAD_TCP_TSO;
2490 
2491 	if (adapter->offloads.tx_offloads & ENA_L3_IPV4_CSUM)
2492 		port_offloads |= RTE_ETH_TX_OFFLOAD_IPV4_CKSUM;
2493 	if (adapter->offloads.tx_offloads &
2494 	    (ENA_L4_IPV4_CSUM_PARTIAL | ENA_L4_IPV4_CSUM |
2495 	     ENA_L4_IPV6_CSUM | ENA_L4_IPV6_CSUM_PARTIAL))
2496 		port_offloads |=
2497 			RTE_ETH_TX_OFFLOAD_UDP_CKSUM | RTE_ETH_TX_OFFLOAD_TCP_CKSUM;
2498 
2499 	port_offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2500 
2501 	port_offloads |= RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
2502 
2503 	return port_offloads;
2504 }
2505 
2506 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter)
2507 {
2508 	RTE_SET_USED(adapter);
2509 
2510 	return 0;
2511 }
2512 
2513 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter)
2514 {
2515 	uint64_t queue_offloads = 0;
2516 	RTE_SET_USED(adapter);
2517 
2518 	queue_offloads |= RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
2519 
2520 	return queue_offloads;
2521 }
2522 
2523 static int ena_infos_get(struct rte_eth_dev *dev,
2524 			  struct rte_eth_dev_info *dev_info)
2525 {
2526 	struct ena_adapter *adapter;
2527 	struct ena_com_dev *ena_dev;
2528 
2529 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
2530 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
2531 	adapter = dev->data->dev_private;
2532 
2533 	ena_dev = &adapter->ena_dev;
2534 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
2535 
2536 	dev_info->speed_capa =
2537 			RTE_ETH_LINK_SPEED_1G   |
2538 			RTE_ETH_LINK_SPEED_2_5G |
2539 			RTE_ETH_LINK_SPEED_5G   |
2540 			RTE_ETH_LINK_SPEED_10G  |
2541 			RTE_ETH_LINK_SPEED_25G  |
2542 			RTE_ETH_LINK_SPEED_40G  |
2543 			RTE_ETH_LINK_SPEED_50G  |
2544 			RTE_ETH_LINK_SPEED_100G |
2545 			RTE_ETH_LINK_SPEED_200G |
2546 			RTE_ETH_LINK_SPEED_400G;
2547 
2548 	/* Inform framework about available features */
2549 	dev_info->rx_offload_capa = ena_get_rx_port_offloads(adapter);
2550 	dev_info->tx_offload_capa = ena_get_tx_port_offloads(adapter);
2551 	dev_info->rx_queue_offload_capa = ena_get_rx_queue_offloads(adapter);
2552 	dev_info->tx_queue_offload_capa = ena_get_tx_queue_offloads(adapter);
2553 
2554 	dev_info->flow_type_rss_offloads = ENA_ALL_RSS_HF;
2555 	dev_info->hash_key_size = ENA_HASH_KEY_SIZE;
2556 
2557 	dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
2558 	dev_info->max_rx_pktlen  = adapter->max_mtu + RTE_ETHER_HDR_LEN +
2559 		RTE_ETHER_CRC_LEN;
2560 	dev_info->min_mtu = ENA_MIN_MTU;
2561 	dev_info->max_mtu = adapter->max_mtu;
2562 	dev_info->max_mac_addrs = 1;
2563 
2564 	dev_info->max_rx_queues = adapter->max_num_io_queues;
2565 	dev_info->max_tx_queues = adapter->max_num_io_queues;
2566 	dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
2567 
2568 	dev_info->rx_desc_lim.nb_max = adapter->max_rx_ring_size;
2569 	dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2570 	dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2571 					adapter->max_rx_sgl_size);
2572 	dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2573 					adapter->max_rx_sgl_size);
2574 
2575 	dev_info->tx_desc_lim.nb_max = adapter->max_tx_ring_size;
2576 	dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2577 	dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2578 					adapter->max_tx_sgl_size);
2579 	dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2580 					adapter->max_tx_sgl_size);
2581 
2582 	dev_info->default_rxportconf.ring_size = ENA_DEFAULT_RING_SIZE;
2583 	dev_info->default_txportconf.ring_size = ENA_DEFAULT_RING_SIZE;
2584 
2585 	dev_info->err_handle_mode = RTE_ETH_ERROR_HANDLE_MODE_PASSIVE;
2586 
2587 	return 0;
2588 }
2589 
2590 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len)
2591 {
2592 	mbuf->data_len = len;
2593 	mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2594 	mbuf->refcnt = 1;
2595 	mbuf->next = NULL;
2596 }
2597 
2598 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
2599 				    struct ena_com_rx_buf_info *ena_bufs,
2600 				    uint32_t descs,
2601 				    uint16_t *next_to_clean,
2602 				    uint8_t offset)
2603 {
2604 	struct rte_mbuf *mbuf;
2605 	struct rte_mbuf *mbuf_head;
2606 	struct ena_rx_buffer *rx_info;
2607 	int rc;
2608 	uint16_t ntc, len, req_id, buf = 0;
2609 
2610 	if (unlikely(descs == 0))
2611 		return NULL;
2612 
2613 	ntc = *next_to_clean;
2614 
2615 	len = ena_bufs[buf].len;
2616 	req_id = ena_bufs[buf].req_id;
2617 
2618 	rx_info = &rx_ring->rx_buffer_info[req_id];
2619 
2620 	mbuf = rx_info->mbuf;
2621 	RTE_ASSERT(mbuf != NULL);
2622 
2623 	ena_init_rx_mbuf(mbuf, len);
2624 
2625 	/* Fill the mbuf head with the data specific for 1st segment. */
2626 	mbuf_head = mbuf;
2627 	mbuf_head->nb_segs = descs;
2628 	mbuf_head->port = rx_ring->port_id;
2629 	mbuf_head->pkt_len = len;
2630 	mbuf_head->data_off += offset;
2631 
2632 	rx_info->mbuf = NULL;
2633 	rx_ring->empty_rx_reqs[ntc] = req_id;
2634 	ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2635 
2636 	while (--descs) {
2637 		++buf;
2638 		len = ena_bufs[buf].len;
2639 		req_id = ena_bufs[buf].req_id;
2640 
2641 		rx_info = &rx_ring->rx_buffer_info[req_id];
2642 		RTE_ASSERT(rx_info->mbuf != NULL);
2643 
2644 		if (unlikely(len == 0)) {
2645 			/*
2646 			 * Some devices can pass descriptor with the length 0.
2647 			 * To avoid confusion, the PMD is simply putting the
2648 			 * descriptor back, as it was never used. We'll avoid
2649 			 * mbuf allocation that way.
2650 			 */
2651 			rc = ena_add_single_rx_desc(rx_ring->ena_com_io_sq,
2652 				rx_info->mbuf, req_id);
2653 			if (unlikely(rc != 0)) {
2654 				/* Free the mbuf in case of an error. */
2655 				rte_mbuf_raw_free(rx_info->mbuf);
2656 			} else {
2657 				/*
2658 				 * If there was no error, just exit the loop as
2659 				 * 0 length descriptor is always the last one.
2660 				 */
2661 				break;
2662 			}
2663 		} else {
2664 			/* Create an mbuf chain. */
2665 			mbuf->next = rx_info->mbuf;
2666 			mbuf = mbuf->next;
2667 
2668 			ena_init_rx_mbuf(mbuf, len);
2669 			mbuf_head->pkt_len += len;
2670 		}
2671 
2672 		/*
2673 		 * Mark the descriptor as depleted and perform necessary
2674 		 * cleanup.
2675 		 * This code will execute in two cases:
2676 		 *  1. Descriptor len was greater than 0 - normal situation.
2677 		 *  2. Descriptor len was 0 and we failed to add the descriptor
2678 		 *     to the device. In that situation, we should try to add
2679 		 *     the mbuf again in the populate routine and mark the
2680 		 *     descriptor as used up by the device.
2681 		 */
2682 		rx_info->mbuf = NULL;
2683 		rx_ring->empty_rx_reqs[ntc] = req_id;
2684 		ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2685 	}
2686 
2687 	*next_to_clean = ntc;
2688 
2689 	return mbuf_head;
2690 }
2691 
2692 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
2693 				  uint16_t nb_pkts)
2694 {
2695 	struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
2696 	unsigned int free_queue_entries;
2697 	uint16_t next_to_clean = rx_ring->next_to_clean;
2698 	uint16_t descs_in_use;
2699 	struct rte_mbuf *mbuf;
2700 	uint16_t completed;
2701 	struct ena_com_rx_ctx ena_rx_ctx;
2702 	int i, rc = 0;
2703 	bool fill_hash;
2704 
2705 #ifdef RTE_ETHDEV_DEBUG_RX
2706 	/* Check adapter state */
2707 	if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2708 		PMD_RX_LOG(ALERT,
2709 			"Trying to receive pkts while device is NOT running\n");
2710 		return 0;
2711 	}
2712 #endif
2713 
2714 	fill_hash = rx_ring->offloads & RTE_ETH_RX_OFFLOAD_RSS_HASH;
2715 
2716 	descs_in_use = rx_ring->ring_size -
2717 		ena_com_free_q_entries(rx_ring->ena_com_io_sq) - 1;
2718 	nb_pkts = RTE_MIN(descs_in_use, nb_pkts);
2719 
2720 	for (completed = 0; completed < nb_pkts; completed++) {
2721 		ena_rx_ctx.max_bufs = rx_ring->sgl_size;
2722 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
2723 		ena_rx_ctx.descs = 0;
2724 		ena_rx_ctx.pkt_offset = 0;
2725 		/* receive packet context */
2726 		rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
2727 				    rx_ring->ena_com_io_sq,
2728 				    &ena_rx_ctx);
2729 		if (unlikely(rc)) {
2730 			PMD_RX_LOG(ERR,
2731 				"Failed to get the packet from the device, rc: %d\n",
2732 				rc);
2733 			if (rc == ENA_COM_NO_SPACE) {
2734 				++rx_ring->rx_stats.bad_desc_num;
2735 				ena_trigger_reset(rx_ring->adapter,
2736 					ENA_REGS_RESET_TOO_MANY_RX_DESCS);
2737 			} else {
2738 				++rx_ring->rx_stats.bad_req_id;
2739 				ena_trigger_reset(rx_ring->adapter,
2740 					ENA_REGS_RESET_INV_RX_REQ_ID);
2741 			}
2742 			return 0;
2743 		}
2744 
2745 		mbuf = ena_rx_mbuf(rx_ring,
2746 			ena_rx_ctx.ena_bufs,
2747 			ena_rx_ctx.descs,
2748 			&next_to_clean,
2749 			ena_rx_ctx.pkt_offset);
2750 		if (unlikely(mbuf == NULL)) {
2751 			for (i = 0; i < ena_rx_ctx.descs; ++i) {
2752 				rx_ring->empty_rx_reqs[next_to_clean] =
2753 					rx_ring->ena_bufs[i].req_id;
2754 				next_to_clean = ENA_IDX_NEXT_MASKED(
2755 					next_to_clean, rx_ring->size_mask);
2756 			}
2757 			break;
2758 		}
2759 
2760 		/* fill mbuf attributes if any */
2761 		ena_rx_mbuf_prepare(rx_ring, mbuf, &ena_rx_ctx, fill_hash);
2762 
2763 		if (unlikely(mbuf->ol_flags &
2764 				(RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD)))
2765 			rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors);
2766 
2767 		rx_pkts[completed] = mbuf;
2768 		rx_ring->rx_stats.bytes += mbuf->pkt_len;
2769 	}
2770 
2771 	rx_ring->rx_stats.cnt += completed;
2772 	rx_ring->next_to_clean = next_to_clean;
2773 
2774 	free_queue_entries = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
2775 
2776 	/* Burst refill to save doorbells, memory barriers, const interval */
2777 	if (free_queue_entries >= rx_ring->rx_free_thresh) {
2778 		ena_populate_rx_queue(rx_ring, free_queue_entries);
2779 	}
2780 
2781 	return completed;
2782 }
2783 
2784 static uint16_t
2785 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2786 		uint16_t nb_pkts)
2787 {
2788 	int32_t ret;
2789 	uint32_t i;
2790 	struct rte_mbuf *m;
2791 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2792 	struct ena_adapter *adapter = tx_ring->adapter;
2793 	struct rte_ipv4_hdr *ip_hdr;
2794 	uint64_t ol_flags;
2795 	uint64_t l4_csum_flag;
2796 	uint64_t dev_offload_capa;
2797 	uint16_t frag_field;
2798 	bool need_pseudo_csum;
2799 
2800 	dev_offload_capa = adapter->offloads.tx_offloads;
2801 	for (i = 0; i != nb_pkts; i++) {
2802 		m = tx_pkts[i];
2803 		ol_flags = m->ol_flags;
2804 
2805 		/* Check if any offload flag was set */
2806 		if (ol_flags == 0)
2807 			continue;
2808 
2809 		l4_csum_flag = ol_flags & RTE_MBUF_F_TX_L4_MASK;
2810 		/* SCTP checksum offload is not supported by the ENA. */
2811 		if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) ||
2812 		    l4_csum_flag == RTE_MBUF_F_TX_SCTP_CKSUM) {
2813 			PMD_TX_LOG(DEBUG,
2814 				"mbuf[%" PRIu32 "] has unsupported offloads flags set: 0x%" PRIu64 "\n",
2815 				i, ol_flags);
2816 			rte_errno = ENOTSUP;
2817 			return i;
2818 		}
2819 
2820 		if (unlikely(m->nb_segs >= tx_ring->sgl_size &&
2821 		    !(tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
2822 		      m->nb_segs == tx_ring->sgl_size &&
2823 		      m->data_len < tx_ring->tx_max_header_size))) {
2824 			PMD_TX_LOG(DEBUG,
2825 				"mbuf[%" PRIu32 "] has too many segments: %" PRIu16 "\n",
2826 				i, m->nb_segs);
2827 			rte_errno = EINVAL;
2828 			return i;
2829 		}
2830 
2831 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2832 		/* Check if requested offload is also enabled for the queue */
2833 		if ((ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
2834 		     !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM)) ||
2835 		    (l4_csum_flag == RTE_MBUF_F_TX_TCP_CKSUM &&
2836 		     !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) ||
2837 		    (l4_csum_flag == RTE_MBUF_F_TX_UDP_CKSUM &&
2838 		     !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM))) {
2839 			PMD_TX_LOG(DEBUG,
2840 				"mbuf[%" PRIu32 "]: requested offloads: %" PRIu16 " are not enabled for the queue[%u]\n",
2841 				i, m->nb_segs, tx_ring->id);
2842 			rte_errno = EINVAL;
2843 			return i;
2844 		}
2845 
2846 		/* The caller is obligated to set l2 and l3 len if any cksum
2847 		 * offload is enabled.
2848 		 */
2849 		if (unlikely(ol_flags & (RTE_MBUF_F_TX_IP_CKSUM | RTE_MBUF_F_TX_L4_MASK) &&
2850 		    (m->l2_len == 0 || m->l3_len == 0))) {
2851 			PMD_TX_LOG(DEBUG,
2852 				"mbuf[%" PRIu32 "]: l2_len or l3_len values are 0 while the offload was requested\n",
2853 				i);
2854 			rte_errno = EINVAL;
2855 			return i;
2856 		}
2857 		ret = rte_validate_tx_offload(m);
2858 		if (ret != 0) {
2859 			rte_errno = -ret;
2860 			return i;
2861 		}
2862 #endif
2863 
2864 		/* Verify HW support for requested offloads and determine if
2865 		 * pseudo header checksum is needed.
2866 		 */
2867 		need_pseudo_csum = false;
2868 		if (ol_flags & RTE_MBUF_F_TX_IPV4) {
2869 			if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
2870 			    !(dev_offload_capa & ENA_L3_IPV4_CSUM)) {
2871 				rte_errno = ENOTSUP;
2872 				return i;
2873 			}
2874 
2875 			if (ol_flags & RTE_MBUF_F_TX_TCP_SEG &&
2876 			    !(dev_offload_capa & ENA_IPV4_TSO)) {
2877 				rte_errno = ENOTSUP;
2878 				return i;
2879 			}
2880 
2881 			/* Check HW capabilities and if pseudo csum is needed
2882 			 * for L4 offloads.
2883 			 */
2884 			if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
2885 			    !(dev_offload_capa & ENA_L4_IPV4_CSUM)) {
2886 				if (dev_offload_capa &
2887 				    ENA_L4_IPV4_CSUM_PARTIAL) {
2888 					need_pseudo_csum = true;
2889 				} else {
2890 					rte_errno = ENOTSUP;
2891 					return i;
2892 				}
2893 			}
2894 
2895 			/* Parse the DF flag */
2896 			ip_hdr = rte_pktmbuf_mtod_offset(m,
2897 				struct rte_ipv4_hdr *, m->l2_len);
2898 			frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
2899 			if (frag_field & RTE_IPV4_HDR_DF_FLAG) {
2900 				m->packet_type |= RTE_PTYPE_L4_NONFRAG;
2901 			} else if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2902 				/* In case we are supposed to TSO and have DF
2903 				 * not set (DF=0) hardware must be provided with
2904 				 * partial checksum.
2905 				 */
2906 				need_pseudo_csum = true;
2907 			}
2908 		} else if (ol_flags & RTE_MBUF_F_TX_IPV6) {
2909 			/* There is no support for IPv6 TSO as for now. */
2910 			if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2911 				rte_errno = ENOTSUP;
2912 				return i;
2913 			}
2914 
2915 			/* Check HW capabilities and if pseudo csum is needed */
2916 			if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
2917 			    !(dev_offload_capa & ENA_L4_IPV6_CSUM)) {
2918 				if (dev_offload_capa &
2919 				    ENA_L4_IPV6_CSUM_PARTIAL) {
2920 					need_pseudo_csum = true;
2921 				} else {
2922 					rte_errno = ENOTSUP;
2923 					return i;
2924 				}
2925 			}
2926 		}
2927 
2928 		if (need_pseudo_csum) {
2929 			ret = rte_net_intel_cksum_flags_prepare(m, ol_flags);
2930 			if (ret != 0) {
2931 				rte_errno = -ret;
2932 				return i;
2933 			}
2934 		}
2935 	}
2936 
2937 	return i;
2938 }
2939 
2940 static void ena_update_hints(struct ena_adapter *adapter,
2941 			     struct ena_admin_ena_hw_hints *hints)
2942 {
2943 	if (hints->admin_completion_tx_timeout)
2944 		adapter->ena_dev.admin_queue.completion_timeout =
2945 			hints->admin_completion_tx_timeout * 1000;
2946 
2947 	if (hints->mmio_read_timeout)
2948 		/* convert to usec */
2949 		adapter->ena_dev.mmio_read.reg_read_to =
2950 			hints->mmio_read_timeout * 1000;
2951 
2952 	if (hints->driver_watchdog_timeout) {
2953 		if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
2954 			adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
2955 		else
2956 			// Convert msecs to ticks
2957 			adapter->keep_alive_timeout =
2958 				(hints->driver_watchdog_timeout *
2959 				rte_get_timer_hz()) / 1000;
2960 	}
2961 }
2962 
2963 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
2964 	struct ena_tx_buffer *tx_info,
2965 	struct rte_mbuf *mbuf,
2966 	void **push_header,
2967 	uint16_t *header_len)
2968 {
2969 	struct ena_com_buf *ena_buf;
2970 	uint16_t delta, seg_len, push_len;
2971 
2972 	delta = 0;
2973 	seg_len = mbuf->data_len;
2974 
2975 	tx_info->mbuf = mbuf;
2976 	ena_buf = tx_info->bufs;
2977 
2978 	if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2979 		/*
2980 		 * Tx header might be (and will be in most cases) smaller than
2981 		 * tx_max_header_size. But it's not an issue to send more data
2982 		 * to the device, than actually needed if the mbuf size is
2983 		 * greater than tx_max_header_size.
2984 		 */
2985 		push_len = RTE_MIN(mbuf->pkt_len, tx_ring->tx_max_header_size);
2986 		*header_len = push_len;
2987 
2988 		if (likely(push_len <= seg_len)) {
2989 			/* If the push header is in the single segment, then
2990 			 * just point it to the 1st mbuf data.
2991 			 */
2992 			*push_header = rte_pktmbuf_mtod(mbuf, uint8_t *);
2993 		} else {
2994 			/* If the push header lays in the several segments, copy
2995 			 * it to the intermediate buffer.
2996 			 */
2997 			rte_pktmbuf_read(mbuf, 0, push_len,
2998 				tx_ring->push_buf_intermediate_buf);
2999 			*push_header = tx_ring->push_buf_intermediate_buf;
3000 			delta = push_len - seg_len;
3001 		}
3002 	} else {
3003 		*push_header = NULL;
3004 		*header_len = 0;
3005 		push_len = 0;
3006 	}
3007 
3008 	/* Process first segment taking into consideration pushed header */
3009 	if (seg_len > push_len) {
3010 		ena_buf->paddr = mbuf->buf_iova +
3011 				mbuf->data_off +
3012 				push_len;
3013 		ena_buf->len = seg_len - push_len;
3014 		ena_buf++;
3015 		tx_info->num_of_bufs++;
3016 	}
3017 
3018 	while ((mbuf = mbuf->next) != NULL) {
3019 		seg_len = mbuf->data_len;
3020 
3021 		/* Skip mbufs if whole data is pushed as a header */
3022 		if (unlikely(delta > seg_len)) {
3023 			delta -= seg_len;
3024 			continue;
3025 		}
3026 
3027 		ena_buf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
3028 		ena_buf->len = seg_len - delta;
3029 		ena_buf++;
3030 		tx_info->num_of_bufs++;
3031 
3032 		delta = 0;
3033 	}
3034 }
3035 
3036 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf)
3037 {
3038 	struct ena_tx_buffer *tx_info;
3039 	struct ena_com_tx_ctx ena_tx_ctx = { { 0 } };
3040 	uint16_t next_to_use;
3041 	uint16_t header_len;
3042 	uint16_t req_id;
3043 	void *push_header;
3044 	int nb_hw_desc;
3045 	int rc;
3046 
3047 	/* Checking for space for 2 additional metadata descriptors due to
3048 	 * possible header split and metadata descriptor
3049 	 */
3050 	if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
3051 					  mbuf->nb_segs + 2)) {
3052 		PMD_DRV_LOG(DEBUG, "Not enough space in the tx queue\n");
3053 		return ENA_COM_NO_MEM;
3054 	}
3055 
3056 	next_to_use = tx_ring->next_to_use;
3057 
3058 	req_id = tx_ring->empty_tx_reqs[next_to_use];
3059 	tx_info = &tx_ring->tx_buffer_info[req_id];
3060 	tx_info->num_of_bufs = 0;
3061 	RTE_ASSERT(tx_info->mbuf == NULL);
3062 
3063 	ena_tx_map_mbuf(tx_ring, tx_info, mbuf, &push_header, &header_len);
3064 
3065 	ena_tx_ctx.ena_bufs = tx_info->bufs;
3066 	ena_tx_ctx.push_header = push_header;
3067 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
3068 	ena_tx_ctx.req_id = req_id;
3069 	ena_tx_ctx.header_len = header_len;
3070 
3071 	/* Set Tx offloads flags, if applicable */
3072 	ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads,
3073 		tx_ring->disable_meta_caching);
3074 
3075 	if (unlikely(ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
3076 			&ena_tx_ctx))) {
3077 		PMD_TX_LOG(DEBUG,
3078 			"LLQ Tx max burst size of queue %d achieved, writing doorbell to send burst\n",
3079 			tx_ring->id);
3080 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
3081 		tx_ring->tx_stats.doorbells++;
3082 		tx_ring->pkts_without_db = false;
3083 	}
3084 
3085 	/* prepare the packet's descriptors to dma engine */
3086 	rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq,	&ena_tx_ctx,
3087 		&nb_hw_desc);
3088 	if (unlikely(rc)) {
3089 		PMD_DRV_LOG(ERR, "Failed to prepare Tx buffers, rc: %d\n", rc);
3090 		++tx_ring->tx_stats.prepare_ctx_err;
3091 		ena_trigger_reset(tx_ring->adapter,
3092 			ENA_REGS_RESET_DRIVER_INVALID_STATE);
3093 		return rc;
3094 	}
3095 
3096 	tx_info->tx_descs = nb_hw_desc;
3097 	tx_info->timestamp = rte_get_timer_cycles();
3098 
3099 	tx_ring->tx_stats.cnt++;
3100 	tx_ring->tx_stats.bytes += mbuf->pkt_len;
3101 
3102 	tx_ring->next_to_use = ENA_IDX_NEXT_MASKED(next_to_use,
3103 		tx_ring->size_mask);
3104 
3105 	return 0;
3106 }
3107 
3108 static __rte_always_inline size_t
3109 ena_tx_cleanup_mbuf_fast(struct rte_mbuf **mbufs_to_clean,
3110 			 struct rte_mbuf *mbuf,
3111 			 size_t mbuf_cnt,
3112 			 size_t buf_size)
3113 {
3114 	struct rte_mbuf *m_next;
3115 
3116 	while (mbuf != NULL) {
3117 		m_next = mbuf->next;
3118 		mbufs_to_clean[mbuf_cnt++] = mbuf;
3119 		if (mbuf_cnt == buf_size) {
3120 			rte_mempool_put_bulk(mbufs_to_clean[0]->pool, (void **)mbufs_to_clean,
3121 				(unsigned int)mbuf_cnt);
3122 			mbuf_cnt = 0;
3123 		}
3124 		mbuf = m_next;
3125 	}
3126 
3127 	return mbuf_cnt;
3128 }
3129 
3130 static int ena_tx_cleanup(void *txp, uint32_t free_pkt_cnt)
3131 {
3132 	struct rte_mbuf *mbufs_to_clean[ENA_CLEANUP_BUF_SIZE];
3133 	struct ena_ring *tx_ring = (struct ena_ring *)txp;
3134 	size_t mbuf_cnt = 0;
3135 	unsigned int total_tx_descs = 0;
3136 	unsigned int total_tx_pkts = 0;
3137 	uint16_t cleanup_budget;
3138 	uint16_t next_to_clean = tx_ring->next_to_clean;
3139 	bool fast_free = tx_ring->offloads & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
3140 
3141 	/*
3142 	 * If free_pkt_cnt is equal to 0, it means that the user requested
3143 	 * full cleanup, so attempt to release all Tx descriptors
3144 	 * (ring_size - 1 -> size_mask)
3145 	 */
3146 	cleanup_budget = (free_pkt_cnt == 0) ? tx_ring->size_mask : free_pkt_cnt;
3147 
3148 	while (likely(total_tx_pkts < cleanup_budget)) {
3149 		struct rte_mbuf *mbuf;
3150 		struct ena_tx_buffer *tx_info;
3151 		uint16_t req_id;
3152 
3153 		if (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) != 0)
3154 			break;
3155 
3156 		if (unlikely(validate_tx_req_id(tx_ring, req_id) != 0))
3157 			break;
3158 
3159 		/* Get Tx info & store how many descs were processed  */
3160 		tx_info = &tx_ring->tx_buffer_info[req_id];
3161 		tx_info->timestamp = 0;
3162 
3163 		mbuf = tx_info->mbuf;
3164 		if (fast_free) {
3165 			mbuf_cnt = ena_tx_cleanup_mbuf_fast(mbufs_to_clean, mbuf, mbuf_cnt,
3166 				ENA_CLEANUP_BUF_SIZE);
3167 		} else {
3168 			rte_pktmbuf_free(mbuf);
3169 		}
3170 
3171 		tx_info->mbuf = NULL;
3172 		tx_ring->empty_tx_reqs[next_to_clean] = req_id;
3173 
3174 		total_tx_descs += tx_info->tx_descs;
3175 		total_tx_pkts++;
3176 
3177 		/* Put back descriptor to the ring for reuse */
3178 		next_to_clean = ENA_IDX_NEXT_MASKED(next_to_clean,
3179 			tx_ring->size_mask);
3180 	}
3181 
3182 	if (likely(total_tx_descs > 0)) {
3183 		/* acknowledge completion of sent packets */
3184 		tx_ring->next_to_clean = next_to_clean;
3185 		ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
3186 	}
3187 
3188 	if (mbuf_cnt != 0)
3189 		rte_mempool_put_bulk(mbufs_to_clean[0]->pool,
3190 			(void **)mbufs_to_clean, mbuf_cnt);
3191 
3192 	/* Notify completion handler that full cleanup was performed */
3193 	if (free_pkt_cnt == 0 || total_tx_pkts < cleanup_budget)
3194 		tx_ring->last_cleanup_ticks = rte_get_timer_cycles();
3195 
3196 	return total_tx_pkts;
3197 }
3198 
3199 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
3200 				  uint16_t nb_pkts)
3201 {
3202 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
3203 	int available_desc;
3204 	uint16_t sent_idx = 0;
3205 
3206 #ifdef RTE_ETHDEV_DEBUG_TX
3207 	/* Check adapter state */
3208 	if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
3209 		PMD_TX_LOG(ALERT,
3210 			"Trying to xmit pkts while device is NOT running\n");
3211 		return 0;
3212 	}
3213 #endif
3214 
3215 	available_desc = ena_com_free_q_entries(tx_ring->ena_com_io_sq);
3216 	if (available_desc < tx_ring->tx_free_thresh)
3217 		ena_tx_cleanup((void *)tx_ring, 0);
3218 
3219 	for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
3220 		if (ena_xmit_mbuf(tx_ring, tx_pkts[sent_idx]))
3221 			break;
3222 		tx_ring->pkts_without_db = true;
3223 		rte_prefetch0(tx_pkts[ENA_IDX_ADD_MASKED(sent_idx, 4,
3224 			tx_ring->size_mask)]);
3225 	}
3226 
3227 	/* If there are ready packets to be xmitted... */
3228 	if (likely(tx_ring->pkts_without_db)) {
3229 		/* ...let HW do its best :-) */
3230 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
3231 		tx_ring->tx_stats.doorbells++;
3232 		tx_ring->pkts_without_db = false;
3233 	}
3234 
3235 	tx_ring->tx_stats.available_desc =
3236 		ena_com_free_q_entries(tx_ring->ena_com_io_sq);
3237 	tx_ring->tx_stats.tx_poll++;
3238 
3239 	return sent_idx;
3240 }
3241 
3242 static void ena_copy_customer_metrics(struct ena_adapter *adapter, uint64_t *buf,
3243 					     size_t num_metrics)
3244 {
3245 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
3246 	int rc;
3247 
3248 	if (ena_com_get_cap(ena_dev, ENA_ADMIN_CUSTOMER_METRICS)) {
3249 		if (num_metrics != ENA_STATS_ARRAY_METRICS) {
3250 			PMD_DRV_LOG(ERR, "Detected discrepancy in the number of customer metrics");
3251 			return;
3252 		}
3253 		rte_spinlock_lock(&adapter->admin_lock);
3254 		rc = ENA_PROXY(adapter,
3255 					ena_com_get_customer_metrics,
3256 					&adapter->ena_dev,
3257 					(char *)buf,
3258 					num_metrics * sizeof(uint64_t));
3259 		rte_spinlock_unlock(&adapter->admin_lock);
3260 		if (rc != 0) {
3261 			PMD_DRV_LOG(WARNING, "Failed to get customer metrics, rc: %d\n", rc);
3262 			return;
3263 		}
3264 
3265 	} else if (ena_com_get_cap(ena_dev, ENA_ADMIN_ENI_STATS)) {
3266 		if (num_metrics != ENA_STATS_ARRAY_METRICS_LEGACY) {
3267 			PMD_DRV_LOG(ERR, "Detected discrepancy in the number of legacy metrics");
3268 			return;
3269 		}
3270 
3271 		rte_spinlock_lock(&adapter->admin_lock);
3272 		rc = ENA_PROXY(adapter,
3273 			       ena_com_get_eni_stats,
3274 			       &adapter->ena_dev,
3275 			       (struct ena_admin_eni_stats *)buf);
3276 		rte_spinlock_unlock(&adapter->admin_lock);
3277 		if (rc != 0) {
3278 			PMD_DRV_LOG(WARNING,
3279 				"Failed to get ENI metrics, rc: %d\n", rc);
3280 			return;
3281 		}
3282 	}
3283 }
3284 
3285 static void ena_copy_ena_srd_info(struct ena_adapter *adapter,
3286 		struct ena_stats_srd *srd_info)
3287 {
3288 	int rc;
3289 
3290 	if (!ena_com_get_cap(&adapter->ena_dev, ENA_ADMIN_ENA_SRD_INFO))
3291 		return;
3292 
3293 	rte_spinlock_lock(&adapter->admin_lock);
3294 	rc = ENA_PROXY(adapter,
3295 		       ena_com_get_ena_srd_info,
3296 		       &adapter->ena_dev,
3297 		       (struct ena_admin_ena_srd_info *)srd_info);
3298 	rte_spinlock_unlock(&adapter->admin_lock);
3299 	if (rc != ENA_COM_OK && rc != ENA_COM_UNSUPPORTED) {
3300 		PMD_DRV_LOG(WARNING,
3301 				"Failed to get ENA express srd info, rc: %d\n", rc);
3302 		return;
3303 	}
3304 }
3305 
3306 /**
3307  * DPDK callback to retrieve names of extended device statistics
3308  *
3309  * @param dev
3310  *   Pointer to Ethernet device structure.
3311  * @param[out] xstats_names
3312  *   Buffer to insert names into.
3313  * @param n
3314  *   Number of names.
3315  *
3316  * @return
3317  *   Number of xstats names.
3318  */
3319 static int ena_xstats_get_names(struct rte_eth_dev *dev,
3320 				struct rte_eth_xstat_name *xstats_names,
3321 				unsigned int n)
3322 {
3323 	struct ena_adapter *adapter = dev->data->dev_private;
3324 	unsigned int xstats_count = ena_xstats_calc_num(dev->data);
3325 	unsigned int stat, i, count = 0;
3326 
3327 	if (n < xstats_count || !xstats_names)
3328 		return xstats_count;
3329 
3330 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
3331 		strcpy(xstats_names[count].name,
3332 			ena_stats_global_strings[stat].name);
3333 
3334 	for (stat = 0; stat < adapter->metrics_num; stat++, count++)
3335 		rte_strscpy(xstats_names[count].name,
3336 			    ena_stats_metrics_strings[stat].name,
3337 			    RTE_ETH_XSTATS_NAME_SIZE);
3338 	for (stat = 0; stat < ENA_STATS_ARRAY_ENA_SRD; stat++, count++)
3339 		rte_strscpy(xstats_names[count].name,
3340 			    ena_stats_srd_strings[stat].name,
3341 			    RTE_ETH_XSTATS_NAME_SIZE);
3342 
3343 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
3344 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
3345 			snprintf(xstats_names[count].name,
3346 				sizeof(xstats_names[count].name),
3347 				"rx_q%d_%s", i,
3348 				ena_stats_rx_strings[stat].name);
3349 
3350 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
3351 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
3352 			snprintf(xstats_names[count].name,
3353 				sizeof(xstats_names[count].name),
3354 				"tx_q%d_%s", i,
3355 				ena_stats_tx_strings[stat].name);
3356 
3357 	return xstats_count;
3358 }
3359 
3360 /**
3361  * DPDK callback to retrieve names of extended device statistics for the given
3362  * ids.
3363  *
3364  * @param dev
3365  *   Pointer to Ethernet device structure.
3366  * @param[out] xstats_names
3367  *   Buffer to insert names into.
3368  * @param ids
3369  *   IDs array for which the names should be retrieved.
3370  * @param size
3371  *   Number of ids.
3372  *
3373  * @return
3374  *   Positive value: number of xstats names. Negative value: error code.
3375  */
3376 static int ena_xstats_get_names_by_id(struct rte_eth_dev *dev,
3377 				      const uint64_t *ids,
3378 				      struct rte_eth_xstat_name *xstats_names,
3379 				      unsigned int size)
3380 {
3381 	struct ena_adapter *adapter = dev->data->dev_private;
3382 	uint64_t xstats_count = ena_xstats_calc_num(dev->data);
3383 	uint64_t id, qid;
3384 	unsigned int i;
3385 
3386 	if (xstats_names == NULL)
3387 		return xstats_count;
3388 
3389 	for (i = 0; i < size; ++i) {
3390 		id = ids[i];
3391 		if (id > xstats_count) {
3392 			PMD_DRV_LOG(ERR,
3393 				"ID value out of range: id=%" PRIu64 ", xstats_num=%" PRIu64 "\n",
3394 				 id, xstats_count);
3395 			return -EINVAL;
3396 		}
3397 
3398 		if (id < ENA_STATS_ARRAY_GLOBAL) {
3399 			strcpy(xstats_names[i].name,
3400 			       ena_stats_global_strings[id].name);
3401 			continue;
3402 		}
3403 
3404 		id -= ENA_STATS_ARRAY_GLOBAL;
3405 		if (id < adapter->metrics_num) {
3406 			rte_strscpy(xstats_names[i].name,
3407 				    ena_stats_metrics_strings[id].name,
3408 				    RTE_ETH_XSTATS_NAME_SIZE);
3409 			continue;
3410 		}
3411 
3412 		id -= adapter->metrics_num;
3413 
3414 		if (id < ENA_STATS_ARRAY_ENA_SRD) {
3415 			rte_strscpy(xstats_names[i].name,
3416 				    ena_stats_srd_strings[id].name,
3417 				    RTE_ETH_XSTATS_NAME_SIZE);
3418 			continue;
3419 		}
3420 		id -= ENA_STATS_ARRAY_ENA_SRD;
3421 
3422 		if (id < ENA_STATS_ARRAY_RX) {
3423 			qid = id / dev->data->nb_rx_queues;
3424 			id %= dev->data->nb_rx_queues;
3425 			snprintf(xstats_names[i].name,
3426 				 sizeof(xstats_names[i].name),
3427 				 "rx_q%" PRIu64 "d_%s",
3428 				 qid, ena_stats_rx_strings[id].name);
3429 			continue;
3430 		}
3431 
3432 		id -= ENA_STATS_ARRAY_RX;
3433 		/* Although this condition is not needed, it was added for
3434 		 * compatibility if new xstat structure would be ever added.
3435 		 */
3436 		if (id < ENA_STATS_ARRAY_TX) {
3437 			qid = id / dev->data->nb_tx_queues;
3438 			id %= dev->data->nb_tx_queues;
3439 			snprintf(xstats_names[i].name,
3440 				 sizeof(xstats_names[i].name),
3441 				 "tx_q%" PRIu64 "_%s",
3442 				 qid, ena_stats_tx_strings[id].name);
3443 			continue;
3444 		}
3445 	}
3446 
3447 	return i;
3448 }
3449 
3450 /**
3451  * DPDK callback to get extended device statistics.
3452  *
3453  * @param dev
3454  *   Pointer to Ethernet device structure.
3455  * @param[out] stats
3456  *   Stats table output buffer.
3457  * @param n
3458  *   The size of the stats table.
3459  *
3460  * @return
3461  *   Number of xstats on success, negative on failure.
3462  */
3463 static int ena_xstats_get(struct rte_eth_dev *dev,
3464 			  struct rte_eth_xstat *xstats,
3465 			  unsigned int n)
3466 {
3467 	struct ena_adapter *adapter = dev->data->dev_private;
3468 	unsigned int xstats_count = ena_xstats_calc_num(dev->data);
3469 	unsigned int stat, i, count = 0;
3470 	int stat_offset;
3471 	void *stats_begin;
3472 	uint64_t metrics_stats[ENA_MAX_CUSTOMER_METRICS];
3473 	struct ena_stats_srd srd_info = {0};
3474 
3475 	if (n < xstats_count)
3476 		return xstats_count;
3477 
3478 	if (!xstats)
3479 		return 0;
3480 
3481 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
3482 		stat_offset = ena_stats_global_strings[stat].stat_offset;
3483 		stats_begin = &adapter->dev_stats;
3484 
3485 		xstats[count].id = count;
3486 		xstats[count].value = *((uint64_t *)
3487 			((char *)stats_begin + stat_offset));
3488 	}
3489 
3490 	ena_copy_customer_metrics(adapter, metrics_stats, adapter->metrics_num);
3491 	stats_begin = metrics_stats;
3492 	for (stat = 0; stat < adapter->metrics_num; stat++, count++) {
3493 		stat_offset = ena_stats_metrics_strings[stat].stat_offset;
3494 
3495 		xstats[count].id = count;
3496 		xstats[count].value = *((uint64_t *)
3497 		    ((char *)stats_begin + stat_offset));
3498 	}
3499 
3500 	ena_copy_ena_srd_info(adapter, &srd_info);
3501 	stats_begin = &srd_info;
3502 	for (stat = 0; stat < ENA_STATS_ARRAY_ENA_SRD; stat++, count++) {
3503 		stat_offset = ena_stats_srd_strings[stat].stat_offset;
3504 		xstats[count].id = count;
3505 		xstats[count].value = *((uint64_t *)
3506 		    ((char *)stats_begin + stat_offset));
3507 	}
3508 
3509 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
3510 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
3511 			stat_offset = ena_stats_rx_strings[stat].stat_offset;
3512 			stats_begin = &adapter->rx_ring[i].rx_stats;
3513 
3514 			xstats[count].id = count;
3515 			xstats[count].value = *((uint64_t *)
3516 				((char *)stats_begin + stat_offset));
3517 		}
3518 	}
3519 
3520 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
3521 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
3522 			stat_offset = ena_stats_tx_strings[stat].stat_offset;
3523 			stats_begin = &adapter->tx_ring[i].rx_stats;
3524 
3525 			xstats[count].id = count;
3526 			xstats[count].value = *((uint64_t *)
3527 				((char *)stats_begin + stat_offset));
3528 		}
3529 	}
3530 
3531 	return count;
3532 }
3533 
3534 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
3535 				const uint64_t *ids,
3536 				uint64_t *values,
3537 				unsigned int n)
3538 {
3539 	struct ena_adapter *adapter = dev->data->dev_private;
3540 	uint64_t id;
3541 	uint64_t rx_entries, tx_entries;
3542 	unsigned int i;
3543 	int qid;
3544 	int valid = 0;
3545 	bool were_metrics_copied = false;
3546 	bool was_srd_info_copied = false;
3547 	uint64_t metrics_stats[ENA_MAX_CUSTOMER_METRICS];
3548 	struct ena_stats_srd srd_info = {0};
3549 
3550 	for (i = 0; i < n; ++i) {
3551 		id = ids[i];
3552 		/* Check if id belongs to global statistics */
3553 		if (id < ENA_STATS_ARRAY_GLOBAL) {
3554 			values[i] = *((uint64_t *)&adapter->dev_stats + id);
3555 			++valid;
3556 			continue;
3557 		}
3558 
3559 		/* Check if id belongs to ENI statistics */
3560 		id -= ENA_STATS_ARRAY_GLOBAL;
3561 		if (id < adapter->metrics_num) {
3562 			/* Avoid reading metrics multiple times in a single
3563 			 * function call, as it requires communication with the
3564 			 * admin queue.
3565 			 */
3566 			if (!were_metrics_copied) {
3567 				were_metrics_copied = true;
3568 				ena_copy_customer_metrics(adapter,
3569 						metrics_stats,
3570 						adapter->metrics_num);
3571 			}
3572 
3573 			values[i] = *((uint64_t *)&metrics_stats + id);
3574 			++valid;
3575 			continue;
3576 		}
3577 
3578 		/* Check if id belongs to SRD info statistics */
3579 		id -= adapter->metrics_num;
3580 
3581 		if (id < ENA_STATS_ARRAY_ENA_SRD) {
3582 			/*
3583 			 * Avoid reading srd info multiple times in a single
3584 			 * function call, as it requires communication with the
3585 			 * admin queue.
3586 			 */
3587 			if (!was_srd_info_copied) {
3588 				was_srd_info_copied = true;
3589 				ena_copy_ena_srd_info(adapter, &srd_info);
3590 			}
3591 			values[i] = *((uint64_t *)&adapter->srd_stats + id);
3592 			++valid;
3593 			continue;
3594 		}
3595 
3596 		/* Check if id belongs to rx queue statistics */
3597 		id -= ENA_STATS_ARRAY_ENA_SRD;
3598 
3599 		rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
3600 		if (id < rx_entries) {
3601 			qid = id % dev->data->nb_rx_queues;
3602 			id /= dev->data->nb_rx_queues;
3603 			values[i] = *((uint64_t *)
3604 				&adapter->rx_ring[qid].rx_stats + id);
3605 			++valid;
3606 			continue;
3607 		}
3608 				/* Check if id belongs to rx queue statistics */
3609 		id -= rx_entries;
3610 		tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
3611 		if (id < tx_entries) {
3612 			qid = id % dev->data->nb_tx_queues;
3613 			id /= dev->data->nb_tx_queues;
3614 			values[i] = *((uint64_t *)
3615 				&adapter->tx_ring[qid].tx_stats + id);
3616 			++valid;
3617 			continue;
3618 		}
3619 	}
3620 
3621 	return valid;
3622 }
3623 
3624 static int ena_process_uint_devarg(const char *key,
3625 				  const char *value,
3626 				  void *opaque)
3627 {
3628 	struct ena_adapter *adapter = opaque;
3629 	char *str_end;
3630 	uint64_t uint_value;
3631 
3632 	uint_value = strtoull(value, &str_end, 10);
3633 	if (value == str_end) {
3634 		PMD_INIT_LOG(ERR,
3635 			"Invalid value for key '%s'. Only uint values are accepted.\n",
3636 			key);
3637 		return -EINVAL;
3638 	}
3639 
3640 	if (strcmp(key, ENA_DEVARG_MISS_TXC_TO) == 0) {
3641 		if (uint_value > ENA_MAX_TX_TIMEOUT_SECONDS) {
3642 			PMD_INIT_LOG(ERR,
3643 				"Tx timeout too high: %" PRIu64 " sec. Maximum allowed: %d sec.\n",
3644 				uint_value, ENA_MAX_TX_TIMEOUT_SECONDS);
3645 			return -EINVAL;
3646 		} else if (uint_value == 0) {
3647 			PMD_INIT_LOG(INFO,
3648 				"Check for missing Tx completions has been disabled.\n");
3649 			adapter->missing_tx_completion_to =
3650 				ENA_HW_HINTS_NO_TIMEOUT;
3651 		} else {
3652 			PMD_INIT_LOG(INFO,
3653 				"Tx packet completion timeout set to %" PRIu64 " seconds.\n",
3654 				uint_value);
3655 			adapter->missing_tx_completion_to =
3656 				uint_value * rte_get_timer_hz();
3657 		}
3658 	}
3659 
3660 	return 0;
3661 }
3662 
3663 static int ena_process_bool_devarg(const char *key,
3664 				   const char *value,
3665 				   void *opaque)
3666 {
3667 	struct ena_adapter *adapter = opaque;
3668 	bool bool_value;
3669 
3670 	/* Parse the value. */
3671 	if (strcmp(value, "1") == 0) {
3672 		bool_value = true;
3673 	} else if (strcmp(value, "0") == 0) {
3674 		bool_value = false;
3675 	} else {
3676 		PMD_INIT_LOG(ERR,
3677 			"Invalid value: '%s' for key '%s'. Accepted: '0' or '1'\n",
3678 			value, key);
3679 		return -EINVAL;
3680 	}
3681 
3682 	/* Now, assign it to the proper adapter field. */
3683 	if (strcmp(key, ENA_DEVARG_LARGE_LLQ_HDR) == 0)
3684 		adapter->use_large_llq_hdr = bool_value;
3685 	else if (strcmp(key, ENA_DEVARG_ENABLE_LLQ) == 0)
3686 		adapter->enable_llq = bool_value;
3687 
3688 	return 0;
3689 }
3690 
3691 static int ena_parse_devargs(struct ena_adapter *adapter,
3692 			     struct rte_devargs *devargs)
3693 {
3694 	static const char * const allowed_args[] = {
3695 		ENA_DEVARG_LARGE_LLQ_HDR,
3696 		ENA_DEVARG_MISS_TXC_TO,
3697 		ENA_DEVARG_ENABLE_LLQ,
3698 		NULL,
3699 	};
3700 	struct rte_kvargs *kvlist;
3701 	int rc;
3702 
3703 	if (devargs == NULL)
3704 		return 0;
3705 
3706 	kvlist = rte_kvargs_parse(devargs->args, allowed_args);
3707 	if (kvlist == NULL) {
3708 		PMD_INIT_LOG(ERR, "Invalid device arguments: %s\n",
3709 			devargs->args);
3710 		return -EINVAL;
3711 	}
3712 
3713 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_LARGE_LLQ_HDR,
3714 		ena_process_bool_devarg, adapter);
3715 	if (rc != 0)
3716 		goto exit;
3717 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_MISS_TXC_TO,
3718 		ena_process_uint_devarg, adapter);
3719 	if (rc != 0)
3720 		goto exit;
3721 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_ENABLE_LLQ,
3722 		ena_process_bool_devarg, adapter);
3723 
3724 exit:
3725 	rte_kvargs_free(kvlist);
3726 
3727 	return rc;
3728 }
3729 
3730 static int ena_setup_rx_intr(struct rte_eth_dev *dev)
3731 {
3732 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3733 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
3734 	int rc;
3735 	uint16_t vectors_nb, i;
3736 	bool rx_intr_requested = dev->data->dev_conf.intr_conf.rxq;
3737 
3738 	if (!rx_intr_requested)
3739 		return 0;
3740 
3741 	if (!rte_intr_cap_multiple(intr_handle)) {
3742 		PMD_DRV_LOG(ERR,
3743 			"Rx interrupt requested, but it isn't supported by the PCI driver\n");
3744 		return -ENOTSUP;
3745 	}
3746 
3747 	/* Disable interrupt mapping before the configuration starts. */
3748 	rte_intr_disable(intr_handle);
3749 
3750 	/* Verify if there are enough vectors available. */
3751 	vectors_nb = dev->data->nb_rx_queues;
3752 	if (vectors_nb > RTE_MAX_RXTX_INTR_VEC_ID) {
3753 		PMD_DRV_LOG(ERR,
3754 			"Too many Rx interrupts requested, maximum number: %d\n",
3755 			RTE_MAX_RXTX_INTR_VEC_ID);
3756 		rc = -ENOTSUP;
3757 		goto enable_intr;
3758 	}
3759 
3760 	/* Allocate the vector list */
3761 	if (rte_intr_vec_list_alloc(intr_handle, "intr_vec",
3762 					   dev->data->nb_rx_queues)) {
3763 		PMD_DRV_LOG(ERR,
3764 			"Failed to allocate interrupt vector for %d queues\n",
3765 			dev->data->nb_rx_queues);
3766 		rc = -ENOMEM;
3767 		goto enable_intr;
3768 	}
3769 
3770 	rc = rte_intr_efd_enable(intr_handle, vectors_nb);
3771 	if (rc != 0)
3772 		goto free_intr_vec;
3773 
3774 	if (!rte_intr_allow_others(intr_handle)) {
3775 		PMD_DRV_LOG(ERR,
3776 			"Not enough interrupts available to use both ENA Admin and Rx interrupts\n");
3777 		goto disable_intr_efd;
3778 	}
3779 
3780 	for (i = 0; i < vectors_nb; ++i)
3781 		if (rte_intr_vec_list_index_set(intr_handle, i,
3782 					   RTE_INTR_VEC_RXTX_OFFSET + i))
3783 			goto disable_intr_efd;
3784 
3785 	rte_intr_enable(intr_handle);
3786 	return 0;
3787 
3788 disable_intr_efd:
3789 	rte_intr_efd_disable(intr_handle);
3790 free_intr_vec:
3791 	rte_intr_vec_list_free(intr_handle);
3792 enable_intr:
3793 	rte_intr_enable(intr_handle);
3794 	return rc;
3795 }
3796 
3797 static void ena_rx_queue_intr_set(struct rte_eth_dev *dev,
3798 				 uint16_t queue_id,
3799 				 bool unmask)
3800 {
3801 	struct ena_adapter *adapter = dev->data->dev_private;
3802 	struct ena_ring *rxq = &adapter->rx_ring[queue_id];
3803 	struct ena_eth_io_intr_reg intr_reg;
3804 
3805 	ena_com_update_intr_reg(&intr_reg, 0, 0, unmask, 1);
3806 	ena_com_unmask_intr(rxq->ena_com_io_cq, &intr_reg);
3807 }
3808 
3809 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
3810 				    uint16_t queue_id)
3811 {
3812 	ena_rx_queue_intr_set(dev, queue_id, true);
3813 
3814 	return 0;
3815 }
3816 
3817 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
3818 				     uint16_t queue_id)
3819 {
3820 	ena_rx_queue_intr_set(dev, queue_id, false);
3821 
3822 	return 0;
3823 }
3824 
3825 static int ena_configure_aenq(struct ena_adapter *adapter)
3826 {
3827 	uint32_t aenq_groups = adapter->all_aenq_groups;
3828 	int rc;
3829 
3830 	/* All_aenq_groups holds all AENQ functions supported by the device and
3831 	 * the HW, so at first we need to be sure the LSC request is valid.
3832 	 */
3833 	if (adapter->edev_data->dev_conf.intr_conf.lsc != 0) {
3834 		if (!(aenq_groups & BIT(ENA_ADMIN_LINK_CHANGE))) {
3835 			PMD_DRV_LOG(ERR,
3836 				"LSC requested, but it's not supported by the AENQ\n");
3837 			return -EINVAL;
3838 		}
3839 	} else {
3840 		/* If LSC wasn't enabled by the app, let's enable all supported
3841 		 * AENQ procedures except the LSC.
3842 		 */
3843 		aenq_groups &= ~BIT(ENA_ADMIN_LINK_CHANGE);
3844 	}
3845 
3846 	rc = ena_com_set_aenq_config(&adapter->ena_dev, aenq_groups);
3847 	if (rc != 0) {
3848 		PMD_DRV_LOG(ERR, "Cannot configure AENQ groups, rc=%d\n", rc);
3849 		return rc;
3850 	}
3851 
3852 	adapter->active_aenq_groups = aenq_groups;
3853 
3854 	return 0;
3855 }
3856 
3857 int ena_mp_indirect_table_set(struct ena_adapter *adapter)
3858 {
3859 	return ENA_PROXY(adapter, ena_com_indirect_table_set, &adapter->ena_dev);
3860 }
3861 
3862 int ena_mp_indirect_table_get(struct ena_adapter *adapter,
3863 			      uint32_t *indirect_table)
3864 {
3865 	return ENA_PROXY(adapter, ena_com_indirect_table_get, &adapter->ena_dev,
3866 		indirect_table);
3867 }
3868 
3869 /*********************************************************************
3870  *  ena_plat_dpdk.h functions implementations
3871  *********************************************************************/
3872 
3873 const struct rte_memzone *
3874 ena_mem_alloc_coherent(struct rte_eth_dev_data *data, size_t size,
3875 		       int socket_id, unsigned int alignment, void **virt_addr,
3876 		       dma_addr_t *phys_addr)
3877 {
3878 	char z_name[RTE_MEMZONE_NAMESIZE];
3879 	struct ena_adapter *adapter = data->dev_private;
3880 	const struct rte_memzone *memzone;
3881 	int rc;
3882 
3883 	rc = snprintf(z_name, RTE_MEMZONE_NAMESIZE, "ena_p%d_mz%" PRIu64 "",
3884 		data->port_id, adapter->memzone_cnt);
3885 	if (rc >= RTE_MEMZONE_NAMESIZE) {
3886 		PMD_DRV_LOG(ERR,
3887 			"Name for the ena_com memzone is too long. Port: %d, mz_num: %" PRIu64 "\n",
3888 			data->port_id, adapter->memzone_cnt);
3889 		goto error;
3890 	}
3891 	adapter->memzone_cnt++;
3892 
3893 	memzone = rte_memzone_reserve_aligned(z_name, size, socket_id,
3894 		RTE_MEMZONE_IOVA_CONTIG, alignment);
3895 	if (memzone == NULL) {
3896 		PMD_DRV_LOG(ERR, "Failed to allocate ena_com memzone: %s\n",
3897 			z_name);
3898 		goto error;
3899 	}
3900 
3901 	memset(memzone->addr, 0, size);
3902 	*virt_addr = memzone->addr;
3903 	*phys_addr = memzone->iova;
3904 
3905 	return memzone;
3906 
3907 error:
3908 	*virt_addr = NULL;
3909 	*phys_addr = 0;
3910 
3911 	return NULL;
3912 }
3913 
3914 
3915 /*********************************************************************
3916  *  PMD configuration
3917  *********************************************************************/
3918 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
3919 	struct rte_pci_device *pci_dev)
3920 {
3921 	return rte_eth_dev_pci_generic_probe(pci_dev,
3922 		sizeof(struct ena_adapter), eth_ena_dev_init);
3923 }
3924 
3925 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
3926 {
3927 	return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
3928 }
3929 
3930 static struct rte_pci_driver rte_ena_pmd = {
3931 	.id_table = pci_id_ena_map,
3932 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
3933 		     RTE_PCI_DRV_WC_ACTIVATE,
3934 	.probe = eth_ena_pci_probe,
3935 	.remove = eth_ena_pci_remove,
3936 };
3937 
3938 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
3939 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
3940 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
3941 RTE_PMD_REGISTER_PARAM_STRING(net_ena,
3942 	ENA_DEVARG_LARGE_LLQ_HDR "=<0|1> "
3943 	ENA_DEVARG_ENABLE_LLQ "=<0|1> "
3944 	ENA_DEVARG_MISS_TXC_TO "=<uint>");
3945 RTE_LOG_REGISTER_SUFFIX(ena_logtype_init, init, NOTICE);
3946 RTE_LOG_REGISTER_SUFFIX(ena_logtype_driver, driver, NOTICE);
3947 #ifdef RTE_ETHDEV_DEBUG_RX
3948 RTE_LOG_REGISTER_SUFFIX(ena_logtype_rx, rx, DEBUG);
3949 #endif
3950 #ifdef RTE_ETHDEV_DEBUG_TX
3951 RTE_LOG_REGISTER_SUFFIX(ena_logtype_tx, tx, DEBUG);
3952 #endif
3953 RTE_LOG_REGISTER_SUFFIX(ena_logtype_com, com, WARNING);
3954 
3955 /******************************************************************************
3956  ******************************** AENQ Handlers *******************************
3957  *****************************************************************************/
3958 static void ena_update_on_link_change(void *adapter_data,
3959 				      struct ena_admin_aenq_entry *aenq_e)
3960 {
3961 	struct rte_eth_dev *eth_dev = adapter_data;
3962 	struct ena_adapter *adapter = eth_dev->data->dev_private;
3963 	struct ena_admin_aenq_link_change_desc *aenq_link_desc;
3964 	uint32_t status;
3965 
3966 	aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
3967 
3968 	status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
3969 	adapter->link_status = status;
3970 
3971 	ena_link_update(eth_dev, 0);
3972 	rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
3973 }
3974 
3975 static void ena_notification(void *adapter_data,
3976 			     struct ena_admin_aenq_entry *aenq_e)
3977 {
3978 	struct rte_eth_dev *eth_dev = adapter_data;
3979 	struct ena_adapter *adapter = eth_dev->data->dev_private;
3980 	struct ena_admin_ena_hw_hints *hints;
3981 
3982 	if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
3983 		PMD_DRV_LOG(WARNING, "Invalid AENQ group: %x. Expected: %x\n",
3984 			aenq_e->aenq_common_desc.group,
3985 			ENA_ADMIN_NOTIFICATION);
3986 
3987 	switch (aenq_e->aenq_common_desc.syndrome) {
3988 	case ENA_ADMIN_UPDATE_HINTS:
3989 		hints = (struct ena_admin_ena_hw_hints *)
3990 			(&aenq_e->inline_data_w4);
3991 		ena_update_hints(adapter, hints);
3992 		break;
3993 	default:
3994 		PMD_DRV_LOG(ERR, "Invalid AENQ notification link state: %d\n",
3995 			aenq_e->aenq_common_desc.syndrome);
3996 	}
3997 }
3998 
3999 static void ena_keep_alive(void *adapter_data,
4000 			   __rte_unused struct ena_admin_aenq_entry *aenq_e)
4001 {
4002 	struct rte_eth_dev *eth_dev = adapter_data;
4003 	struct ena_adapter *adapter = eth_dev->data->dev_private;
4004 	struct ena_admin_aenq_keep_alive_desc *desc;
4005 	uint64_t rx_drops;
4006 	uint64_t tx_drops;
4007 	uint64_t rx_overruns;
4008 
4009 	adapter->timestamp_wd = rte_get_timer_cycles();
4010 
4011 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
4012 	rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
4013 	tx_drops = ((uint64_t)desc->tx_drops_high << 32) | desc->tx_drops_low;
4014 	rx_overruns = ((uint64_t)desc->rx_overruns_high << 32) | desc->rx_overruns_low;
4015 
4016 	/*
4017 	 * Depending on its acceleration support, the device updates a different statistic when
4018 	 * Rx packet is dropped because there are no available buffers to accommodate it.
4019 	 */
4020 	adapter->drv_stats->rx_drops = rx_drops + rx_overruns;
4021 	adapter->dev_stats.tx_drops = tx_drops;
4022 }
4023 
4024 /**
4025  * This handler will called for unknown event group or unimplemented handlers
4026  **/
4027 static void unimplemented_aenq_handler(__rte_unused void *data,
4028 				       __rte_unused struct ena_admin_aenq_entry *aenq_e)
4029 {
4030 	PMD_DRV_LOG(ERR,
4031 		"Unknown event was received or event with unimplemented handler\n");
4032 }
4033 
4034 static struct ena_aenq_handlers aenq_handlers = {
4035 	.handlers = {
4036 		[ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
4037 		[ENA_ADMIN_NOTIFICATION] = ena_notification,
4038 		[ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive
4039 	},
4040 	.unimplemented_handler = unimplemented_aenq_handler
4041 };
4042 
4043 /*********************************************************************
4044  *  Multi-Process communication request handling (in primary)
4045  *********************************************************************/
4046 static int
4047 ena_mp_primary_handle(const struct rte_mp_msg *mp_msg, const void *peer)
4048 {
4049 	const struct ena_mp_body *req =
4050 		(const struct ena_mp_body *)mp_msg->param;
4051 	struct ena_adapter *adapter;
4052 	struct ena_com_dev *ena_dev;
4053 	struct ena_mp_body *rsp;
4054 	struct rte_mp_msg mp_rsp;
4055 	struct rte_eth_dev *dev;
4056 	int res = 0;
4057 
4058 	rsp = (struct ena_mp_body *)&mp_rsp.param;
4059 	mp_msg_init(&mp_rsp, req->type, req->port_id);
4060 
4061 	if (!rte_eth_dev_is_valid_port(req->port_id)) {
4062 		rte_errno = ENODEV;
4063 		res = -rte_errno;
4064 		PMD_DRV_LOG(ERR, "Unknown port %d in request %d\n",
4065 			    req->port_id, req->type);
4066 		goto end;
4067 	}
4068 	dev = &rte_eth_devices[req->port_id];
4069 	adapter = dev->data->dev_private;
4070 	ena_dev = &adapter->ena_dev;
4071 
4072 	switch (req->type) {
4073 	case ENA_MP_DEV_STATS_GET:
4074 		res = ena_com_get_dev_basic_stats(ena_dev,
4075 						  &adapter->basic_stats);
4076 		break;
4077 	case ENA_MP_ENI_STATS_GET:
4078 		res = ena_com_get_eni_stats(ena_dev,
4079 			(struct ena_admin_eni_stats *)&adapter->metrics_stats);
4080 		break;
4081 	case ENA_MP_MTU_SET:
4082 		res = ena_com_set_dev_mtu(ena_dev, req->args.mtu);
4083 		break;
4084 	case ENA_MP_IND_TBL_GET:
4085 		res = ena_com_indirect_table_get(ena_dev,
4086 						 adapter->indirect_table);
4087 		break;
4088 	case ENA_MP_IND_TBL_SET:
4089 		res = ena_com_indirect_table_set(ena_dev);
4090 		break;
4091 	case ENA_MP_CUSTOMER_METRICS_GET:
4092 		res = ena_com_get_customer_metrics(ena_dev,
4093 				(char *)adapter->metrics_stats,
4094 				adapter->metrics_num * sizeof(uint64_t));
4095 		break;
4096 	case ENA_MP_SRD_STATS_GET:
4097 		res = ena_com_get_ena_srd_info(ena_dev,
4098 				(struct ena_admin_ena_srd_info *)&adapter->srd_stats);
4099 		break;
4100 	default:
4101 		PMD_DRV_LOG(ERR, "Unknown request type %d\n", req->type);
4102 		res = -EINVAL;
4103 		break;
4104 	}
4105 
4106 end:
4107 	/* Save processing result in the reply */
4108 	rsp->result = res;
4109 	/* Return just IPC processing status */
4110 	return rte_mp_reply(&mp_rsp, peer);
4111 }
4112