xref: /dpdk/drivers/net/ena/ena_ethdev.c (revision d38febb08d57fec29fed27a2d12a507fc6fcdfa1)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
3  * All rights reserved.
4  */
5 
6 #include <rte_string_fns.h>
7 #include <rte_errno.h>
8 #include <rte_version.h>
9 #include <rte_net.h>
10 #include <rte_kvargs.h>
11 
12 #include "ena_ethdev.h"
13 #include "ena_logs.h"
14 #include "ena_platform.h"
15 #include "ena_com.h"
16 #include "ena_eth_com.h"
17 
18 #include <ena_common_defs.h>
19 #include <ena_regs_defs.h>
20 #include <ena_admin_defs.h>
21 #include <ena_eth_io_defs.h>
22 
23 #define DRV_MODULE_VER_MAJOR	2
24 #define DRV_MODULE_VER_MINOR	4
25 #define DRV_MODULE_VER_SUBMINOR	0
26 
27 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
28 
29 #define GET_L4_HDR_LEN(mbuf)					\
30 	((rte_pktmbuf_mtod_offset(mbuf,	struct rte_tcp_hdr *,	\
31 		mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
32 
33 #define ETH_GSTRING_LEN	32
34 
35 #define ARRAY_SIZE(x) RTE_DIM(x)
36 
37 #define ENA_MIN_RING_DESC	128
38 
39 #define ENA_PTYPE_HAS_HASH	(RTE_PTYPE_L4_TCP | RTE_PTYPE_L4_UDP)
40 
41 enum ethtool_stringset {
42 	ETH_SS_TEST             = 0,
43 	ETH_SS_STATS,
44 };
45 
46 struct ena_stats {
47 	char name[ETH_GSTRING_LEN];
48 	int stat_offset;
49 };
50 
51 #define ENA_STAT_ENTRY(stat, stat_type) { \
52 	.name = #stat, \
53 	.stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
54 }
55 
56 #define ENA_STAT_RX_ENTRY(stat) \
57 	ENA_STAT_ENTRY(stat, rx)
58 
59 #define ENA_STAT_TX_ENTRY(stat) \
60 	ENA_STAT_ENTRY(stat, tx)
61 
62 #define ENA_STAT_ENI_ENTRY(stat) \
63 	ENA_STAT_ENTRY(stat, eni)
64 
65 #define ENA_STAT_GLOBAL_ENTRY(stat) \
66 	ENA_STAT_ENTRY(stat, dev)
67 
68 /* Device arguments */
69 #define ENA_DEVARG_LARGE_LLQ_HDR "large_llq_hdr"
70 
71 /*
72  * Each rte_memzone should have unique name.
73  * To satisfy it, count number of allocation and add it to name.
74  */
75 rte_atomic64_t ena_alloc_cnt;
76 
77 static const struct ena_stats ena_stats_global_strings[] = {
78 	ENA_STAT_GLOBAL_ENTRY(wd_expired),
79 	ENA_STAT_GLOBAL_ENTRY(dev_start),
80 	ENA_STAT_GLOBAL_ENTRY(dev_stop),
81 	ENA_STAT_GLOBAL_ENTRY(tx_drops),
82 };
83 
84 static const struct ena_stats ena_stats_eni_strings[] = {
85 	ENA_STAT_ENI_ENTRY(bw_in_allowance_exceeded),
86 	ENA_STAT_ENI_ENTRY(bw_out_allowance_exceeded),
87 	ENA_STAT_ENI_ENTRY(pps_allowance_exceeded),
88 	ENA_STAT_ENI_ENTRY(conntrack_allowance_exceeded),
89 	ENA_STAT_ENI_ENTRY(linklocal_allowance_exceeded),
90 };
91 
92 static const struct ena_stats ena_stats_tx_strings[] = {
93 	ENA_STAT_TX_ENTRY(cnt),
94 	ENA_STAT_TX_ENTRY(bytes),
95 	ENA_STAT_TX_ENTRY(prepare_ctx_err),
96 	ENA_STAT_TX_ENTRY(linearize),
97 	ENA_STAT_TX_ENTRY(linearize_failed),
98 	ENA_STAT_TX_ENTRY(tx_poll),
99 	ENA_STAT_TX_ENTRY(doorbells),
100 	ENA_STAT_TX_ENTRY(bad_req_id),
101 	ENA_STAT_TX_ENTRY(available_desc),
102 };
103 
104 static const struct ena_stats ena_stats_rx_strings[] = {
105 	ENA_STAT_RX_ENTRY(cnt),
106 	ENA_STAT_RX_ENTRY(bytes),
107 	ENA_STAT_RX_ENTRY(refill_partial),
108 	ENA_STAT_RX_ENTRY(bad_csum),
109 	ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
110 	ENA_STAT_RX_ENTRY(bad_desc_num),
111 	ENA_STAT_RX_ENTRY(bad_req_id),
112 };
113 
114 #define ENA_STATS_ARRAY_GLOBAL	ARRAY_SIZE(ena_stats_global_strings)
115 #define ENA_STATS_ARRAY_ENI	ARRAY_SIZE(ena_stats_eni_strings)
116 #define ENA_STATS_ARRAY_TX	ARRAY_SIZE(ena_stats_tx_strings)
117 #define ENA_STATS_ARRAY_RX	ARRAY_SIZE(ena_stats_rx_strings)
118 
119 #define QUEUE_OFFLOADS (DEV_TX_OFFLOAD_TCP_CKSUM |\
120 			DEV_TX_OFFLOAD_UDP_CKSUM |\
121 			DEV_TX_OFFLOAD_IPV4_CKSUM |\
122 			DEV_TX_OFFLOAD_TCP_TSO)
123 #define MBUF_OFFLOADS (PKT_TX_L4_MASK |\
124 		       PKT_TX_IP_CKSUM |\
125 		       PKT_TX_TCP_SEG)
126 
127 /** Vendor ID used by Amazon devices */
128 #define PCI_VENDOR_ID_AMAZON 0x1D0F
129 /** Amazon devices */
130 #define PCI_DEVICE_ID_ENA_VF		0xEC20
131 #define PCI_DEVICE_ID_ENA_VF_RSERV0	0xEC21
132 
133 #define	ENA_TX_OFFLOAD_MASK	(\
134 	PKT_TX_L4_MASK |         \
135 	PKT_TX_IPV6 |            \
136 	PKT_TX_IPV4 |            \
137 	PKT_TX_IP_CKSUM |        \
138 	PKT_TX_TCP_SEG)
139 
140 #define	ENA_TX_OFFLOAD_NOTSUP_MASK	\
141 	(PKT_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
142 
143 static const struct rte_pci_id pci_id_ena_map[] = {
144 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
145 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF_RSERV0) },
146 	{ .device_id = 0 },
147 };
148 
149 static struct ena_aenq_handlers aenq_handlers;
150 
151 static int ena_device_init(struct ena_com_dev *ena_dev,
152 			   struct rte_pci_device *pdev,
153 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
154 			   bool *wd_state);
155 static int ena_dev_configure(struct rte_eth_dev *dev);
156 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
157 	struct ena_tx_buffer *tx_info,
158 	struct rte_mbuf *mbuf,
159 	void **push_header,
160 	uint16_t *header_len);
161 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf);
162 static void ena_tx_cleanup(struct ena_ring *tx_ring);
163 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
164 				  uint16_t nb_pkts);
165 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
166 		uint16_t nb_pkts);
167 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
168 			      uint16_t nb_desc, unsigned int socket_id,
169 			      const struct rte_eth_txconf *tx_conf);
170 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
171 			      uint16_t nb_desc, unsigned int socket_id,
172 			      const struct rte_eth_rxconf *rx_conf,
173 			      struct rte_mempool *mp);
174 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len);
175 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
176 				    struct ena_com_rx_buf_info *ena_bufs,
177 				    uint32_t descs,
178 				    uint16_t *next_to_clean,
179 				    uint8_t offset);
180 static uint16_t eth_ena_recv_pkts(void *rx_queue,
181 				  struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
182 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
183 				  struct rte_mbuf *mbuf, uint16_t id);
184 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
185 static void ena_init_rings(struct ena_adapter *adapter,
186 			   bool disable_meta_caching);
187 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
188 static int ena_start(struct rte_eth_dev *dev);
189 static int ena_stop(struct rte_eth_dev *dev);
190 static int ena_close(struct rte_eth_dev *dev);
191 static int ena_dev_reset(struct rte_eth_dev *dev);
192 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
193 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
194 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
195 static void ena_rx_queue_release(void *queue);
196 static void ena_tx_queue_release(void *queue);
197 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
198 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
199 static int ena_link_update(struct rte_eth_dev *dev,
200 			   int wait_to_complete);
201 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring);
202 static void ena_queue_stop(struct ena_ring *ring);
203 static void ena_queue_stop_all(struct rte_eth_dev *dev,
204 			      enum ena_ring_type ring_type);
205 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring);
206 static int ena_queue_start_all(struct rte_eth_dev *dev,
207 			       enum ena_ring_type ring_type);
208 static void ena_stats_restart(struct rte_eth_dev *dev);
209 static int ena_infos_get(struct rte_eth_dev *dev,
210 			 struct rte_eth_dev_info *dev_info);
211 static void ena_interrupt_handler_rte(void *cb_arg);
212 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
213 static void ena_destroy_device(struct rte_eth_dev *eth_dev);
214 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
215 static int ena_xstats_get_names(struct rte_eth_dev *dev,
216 				struct rte_eth_xstat_name *xstats_names,
217 				unsigned int n);
218 static int ena_xstats_get(struct rte_eth_dev *dev,
219 			  struct rte_eth_xstat *stats,
220 			  unsigned int n);
221 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
222 				const uint64_t *ids,
223 				uint64_t *values,
224 				unsigned int n);
225 static int ena_process_bool_devarg(const char *key,
226 				   const char *value,
227 				   void *opaque);
228 static int ena_parse_devargs(struct ena_adapter *adapter,
229 			     struct rte_devargs *devargs);
230 static int ena_copy_eni_stats(struct ena_adapter *adapter);
231 static int ena_setup_rx_intr(struct rte_eth_dev *dev);
232 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
233 				    uint16_t queue_id);
234 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
235 				     uint16_t queue_id);
236 
237 static const struct eth_dev_ops ena_dev_ops = {
238 	.dev_configure        = ena_dev_configure,
239 	.dev_infos_get        = ena_infos_get,
240 	.rx_queue_setup       = ena_rx_queue_setup,
241 	.tx_queue_setup       = ena_tx_queue_setup,
242 	.dev_start            = ena_start,
243 	.dev_stop             = ena_stop,
244 	.link_update          = ena_link_update,
245 	.stats_get            = ena_stats_get,
246 	.xstats_get_names     = ena_xstats_get_names,
247 	.xstats_get	      = ena_xstats_get,
248 	.xstats_get_by_id     = ena_xstats_get_by_id,
249 	.mtu_set              = ena_mtu_set,
250 	.rx_queue_release     = ena_rx_queue_release,
251 	.tx_queue_release     = ena_tx_queue_release,
252 	.dev_close            = ena_close,
253 	.dev_reset            = ena_dev_reset,
254 	.reta_update          = ena_rss_reta_update,
255 	.reta_query           = ena_rss_reta_query,
256 	.rx_queue_intr_enable = ena_rx_queue_intr_enable,
257 	.rx_queue_intr_disable = ena_rx_queue_intr_disable,
258 	.rss_hash_update      = ena_rss_hash_update,
259 	.rss_hash_conf_get    = ena_rss_hash_conf_get,
260 };
261 
262 static inline void ena_rx_mbuf_prepare(struct rte_mbuf *mbuf,
263 				       struct ena_com_rx_ctx *ena_rx_ctx,
264 				       bool fill_hash)
265 {
266 	uint64_t ol_flags = 0;
267 	uint32_t packet_type = 0;
268 
269 	if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
270 		packet_type |= RTE_PTYPE_L4_TCP;
271 	else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
272 		packet_type |= RTE_PTYPE_L4_UDP;
273 
274 	if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
275 		packet_type |= RTE_PTYPE_L3_IPV4;
276 		if (unlikely(ena_rx_ctx->l3_csum_err))
277 			ol_flags |= PKT_RX_IP_CKSUM_BAD;
278 		else
279 			ol_flags |= PKT_RX_IP_CKSUM_GOOD;
280 	} else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
281 		packet_type |= RTE_PTYPE_L3_IPV6;
282 	}
283 
284 	if (!ena_rx_ctx->l4_csum_checked || ena_rx_ctx->frag)
285 		ol_flags |= PKT_RX_L4_CKSUM_UNKNOWN;
286 	else
287 		if (unlikely(ena_rx_ctx->l4_csum_err))
288 			ol_flags |= PKT_RX_L4_CKSUM_BAD;
289 		else
290 			ol_flags |= PKT_RX_L4_CKSUM_GOOD;
291 
292 	if (fill_hash &&
293 	    likely((packet_type & ENA_PTYPE_HAS_HASH) && !ena_rx_ctx->frag)) {
294 		ol_flags |= PKT_RX_RSS_HASH;
295 		mbuf->hash.rss = ena_rx_ctx->hash;
296 	}
297 
298 	mbuf->ol_flags = ol_flags;
299 	mbuf->packet_type = packet_type;
300 }
301 
302 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
303 				       struct ena_com_tx_ctx *ena_tx_ctx,
304 				       uint64_t queue_offloads,
305 				       bool disable_meta_caching)
306 {
307 	struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
308 
309 	if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
310 	    (queue_offloads & QUEUE_OFFLOADS)) {
311 		/* check if TSO is required */
312 		if ((mbuf->ol_flags & PKT_TX_TCP_SEG) &&
313 		    (queue_offloads & DEV_TX_OFFLOAD_TCP_TSO)) {
314 			ena_tx_ctx->tso_enable = true;
315 
316 			ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
317 		}
318 
319 		/* check if L3 checksum is needed */
320 		if ((mbuf->ol_flags & PKT_TX_IP_CKSUM) &&
321 		    (queue_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM))
322 			ena_tx_ctx->l3_csum_enable = true;
323 
324 		if (mbuf->ol_flags & PKT_TX_IPV6) {
325 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
326 		} else {
327 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
328 
329 			/* set don't fragment (DF) flag */
330 			if (mbuf->packet_type &
331 				(RTE_PTYPE_L4_NONFRAG
332 				 | RTE_PTYPE_INNER_L4_NONFRAG))
333 				ena_tx_ctx->df = true;
334 		}
335 
336 		/* check if L4 checksum is needed */
337 		if (((mbuf->ol_flags & PKT_TX_L4_MASK) == PKT_TX_TCP_CKSUM) &&
338 		    (queue_offloads & DEV_TX_OFFLOAD_TCP_CKSUM)) {
339 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
340 			ena_tx_ctx->l4_csum_enable = true;
341 		} else if (((mbuf->ol_flags & PKT_TX_L4_MASK) ==
342 				PKT_TX_UDP_CKSUM) &&
343 				(queue_offloads & DEV_TX_OFFLOAD_UDP_CKSUM)) {
344 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
345 			ena_tx_ctx->l4_csum_enable = true;
346 		} else {
347 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
348 			ena_tx_ctx->l4_csum_enable = false;
349 		}
350 
351 		ena_meta->mss = mbuf->tso_segsz;
352 		ena_meta->l3_hdr_len = mbuf->l3_len;
353 		ena_meta->l3_hdr_offset = mbuf->l2_len;
354 
355 		ena_tx_ctx->meta_valid = true;
356 	} else if (disable_meta_caching) {
357 		memset(ena_meta, 0, sizeof(*ena_meta));
358 		ena_tx_ctx->meta_valid = true;
359 	} else {
360 		ena_tx_ctx->meta_valid = false;
361 	}
362 }
363 
364 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
365 {
366 	struct ena_tx_buffer *tx_info = NULL;
367 
368 	if (likely(req_id < tx_ring->ring_size)) {
369 		tx_info = &tx_ring->tx_buffer_info[req_id];
370 		if (likely(tx_info->mbuf))
371 			return 0;
372 	}
373 
374 	if (tx_info)
375 		PMD_TX_LOG(ERR, "tx_info doesn't have valid mbuf\n");
376 	else
377 		PMD_TX_LOG(ERR, "Invalid req_id: %hu\n", req_id);
378 
379 	/* Trigger device reset */
380 	++tx_ring->tx_stats.bad_req_id;
381 	tx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID;
382 	tx_ring->adapter->trigger_reset	= true;
383 	return -EFAULT;
384 }
385 
386 static void ena_config_host_info(struct ena_com_dev *ena_dev)
387 {
388 	struct ena_admin_host_info *host_info;
389 	int rc;
390 
391 	/* Allocate only the host info */
392 	rc = ena_com_allocate_host_info(ena_dev);
393 	if (rc) {
394 		PMD_DRV_LOG(ERR, "Cannot allocate host info\n");
395 		return;
396 	}
397 
398 	host_info = ena_dev->host_attr.host_info;
399 
400 	host_info->os_type = ENA_ADMIN_OS_DPDK;
401 	host_info->kernel_ver = RTE_VERSION;
402 	strlcpy((char *)host_info->kernel_ver_str, rte_version(),
403 		sizeof(host_info->kernel_ver_str));
404 	host_info->os_dist = RTE_VERSION;
405 	strlcpy((char *)host_info->os_dist_str, rte_version(),
406 		sizeof(host_info->os_dist_str));
407 	host_info->driver_version =
408 		(DRV_MODULE_VER_MAJOR) |
409 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
410 		(DRV_MODULE_VER_SUBMINOR <<
411 			ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
412 	host_info->num_cpus = rte_lcore_count();
413 
414 	host_info->driver_supported_features =
415 		ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK |
416 		ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK;
417 
418 	rc = ena_com_set_host_attributes(ena_dev);
419 	if (rc) {
420 		if (rc == -ENA_COM_UNSUPPORTED)
421 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
422 		else
423 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
424 
425 		goto err;
426 	}
427 
428 	return;
429 
430 err:
431 	ena_com_delete_host_info(ena_dev);
432 }
433 
434 /* This function calculates the number of xstats based on the current config */
435 static unsigned int ena_xstats_calc_num(struct rte_eth_dev_data *data)
436 {
437 	return ENA_STATS_ARRAY_GLOBAL + ENA_STATS_ARRAY_ENI +
438 		(data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
439 		(data->nb_rx_queues * ENA_STATS_ARRAY_RX);
440 }
441 
442 static void ena_config_debug_area(struct ena_adapter *adapter)
443 {
444 	u32 debug_area_size;
445 	int rc, ss_count;
446 
447 	ss_count = ena_xstats_calc_num(adapter->edev_data);
448 
449 	/* allocate 32 bytes for each string and 64bit for the value */
450 	debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
451 
452 	rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
453 	if (rc) {
454 		PMD_DRV_LOG(ERR, "Cannot allocate debug area\n");
455 		return;
456 	}
457 
458 	rc = ena_com_set_host_attributes(&adapter->ena_dev);
459 	if (rc) {
460 		if (rc == -ENA_COM_UNSUPPORTED)
461 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
462 		else
463 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
464 
465 		goto err;
466 	}
467 
468 	return;
469 err:
470 	ena_com_delete_debug_area(&adapter->ena_dev);
471 }
472 
473 static int ena_close(struct rte_eth_dev *dev)
474 {
475 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
476 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
477 	struct ena_adapter *adapter = dev->data->dev_private;
478 	int ret = 0;
479 
480 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
481 		return 0;
482 
483 	if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
484 		ret = ena_stop(dev);
485 	adapter->state = ENA_ADAPTER_STATE_CLOSED;
486 
487 	ena_rx_queue_release_all(dev);
488 	ena_tx_queue_release_all(dev);
489 
490 	rte_free(adapter->drv_stats);
491 	adapter->drv_stats = NULL;
492 
493 	rte_intr_disable(intr_handle);
494 	rte_intr_callback_unregister(intr_handle,
495 				     ena_interrupt_handler_rte,
496 				     dev);
497 
498 	/*
499 	 * MAC is not allocated dynamically. Setting NULL should prevent from
500 	 * release of the resource in the rte_eth_dev_release_port().
501 	 */
502 	dev->data->mac_addrs = NULL;
503 
504 	return ret;
505 }
506 
507 static int
508 ena_dev_reset(struct rte_eth_dev *dev)
509 {
510 	int rc = 0;
511 
512 	/* Cannot release memory in secondary process */
513 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
514 		PMD_DRV_LOG(WARNING, "dev_reset not supported in secondary.\n");
515 		return -EPERM;
516 	}
517 
518 	ena_destroy_device(dev);
519 	rc = eth_ena_dev_init(dev);
520 	if (rc)
521 		PMD_INIT_LOG(CRIT, "Cannot initialize device\n");
522 
523 	return rc;
524 }
525 
526 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
527 {
528 	struct ena_ring **queues = (struct ena_ring **)dev->data->rx_queues;
529 	int nb_queues = dev->data->nb_rx_queues;
530 	int i;
531 
532 	for (i = 0; i < nb_queues; i++)
533 		ena_rx_queue_release(queues[i]);
534 }
535 
536 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
537 {
538 	struct ena_ring **queues = (struct ena_ring **)dev->data->tx_queues;
539 	int nb_queues = dev->data->nb_tx_queues;
540 	int i;
541 
542 	for (i = 0; i < nb_queues; i++)
543 		ena_tx_queue_release(queues[i]);
544 }
545 
546 static void ena_rx_queue_release(void *queue)
547 {
548 	struct ena_ring *ring = (struct ena_ring *)queue;
549 
550 	/* Free ring resources */
551 	if (ring->rx_buffer_info)
552 		rte_free(ring->rx_buffer_info);
553 	ring->rx_buffer_info = NULL;
554 
555 	if (ring->rx_refill_buffer)
556 		rte_free(ring->rx_refill_buffer);
557 	ring->rx_refill_buffer = NULL;
558 
559 	if (ring->empty_rx_reqs)
560 		rte_free(ring->empty_rx_reqs);
561 	ring->empty_rx_reqs = NULL;
562 
563 	ring->configured = 0;
564 
565 	PMD_DRV_LOG(NOTICE, "Rx queue %d:%d released\n",
566 		ring->port_id, ring->id);
567 }
568 
569 static void ena_tx_queue_release(void *queue)
570 {
571 	struct ena_ring *ring = (struct ena_ring *)queue;
572 
573 	/* Free ring resources */
574 	if (ring->push_buf_intermediate_buf)
575 		rte_free(ring->push_buf_intermediate_buf);
576 
577 	if (ring->tx_buffer_info)
578 		rte_free(ring->tx_buffer_info);
579 
580 	if (ring->empty_tx_reqs)
581 		rte_free(ring->empty_tx_reqs);
582 
583 	ring->empty_tx_reqs = NULL;
584 	ring->tx_buffer_info = NULL;
585 	ring->push_buf_intermediate_buf = NULL;
586 
587 	ring->configured = 0;
588 
589 	PMD_DRV_LOG(NOTICE, "Tx queue %d:%d released\n",
590 		ring->port_id, ring->id);
591 }
592 
593 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
594 {
595 	unsigned int i;
596 
597 	for (i = 0; i < ring->ring_size; ++i) {
598 		struct ena_rx_buffer *rx_info = &ring->rx_buffer_info[i];
599 		if (rx_info->mbuf) {
600 			rte_mbuf_raw_free(rx_info->mbuf);
601 			rx_info->mbuf = NULL;
602 		}
603 	}
604 }
605 
606 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
607 {
608 	unsigned int i;
609 
610 	for (i = 0; i < ring->ring_size; ++i) {
611 		struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
612 
613 		if (tx_buf->mbuf) {
614 			rte_pktmbuf_free(tx_buf->mbuf);
615 			tx_buf->mbuf = NULL;
616 		}
617 	}
618 }
619 
620 static int ena_link_update(struct rte_eth_dev *dev,
621 			   __rte_unused int wait_to_complete)
622 {
623 	struct rte_eth_link *link = &dev->data->dev_link;
624 	struct ena_adapter *adapter = dev->data->dev_private;
625 
626 	link->link_status = adapter->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
627 	link->link_speed = ETH_SPEED_NUM_NONE;
628 	link->link_duplex = ETH_LINK_FULL_DUPLEX;
629 
630 	return 0;
631 }
632 
633 static int ena_queue_start_all(struct rte_eth_dev *dev,
634 			       enum ena_ring_type ring_type)
635 {
636 	struct ena_adapter *adapter = dev->data->dev_private;
637 	struct ena_ring *queues = NULL;
638 	int nb_queues;
639 	int i = 0;
640 	int rc = 0;
641 
642 	if (ring_type == ENA_RING_TYPE_RX) {
643 		queues = adapter->rx_ring;
644 		nb_queues = dev->data->nb_rx_queues;
645 	} else {
646 		queues = adapter->tx_ring;
647 		nb_queues = dev->data->nb_tx_queues;
648 	}
649 	for (i = 0; i < nb_queues; i++) {
650 		if (queues[i].configured) {
651 			if (ring_type == ENA_RING_TYPE_RX) {
652 				ena_assert_msg(
653 					dev->data->rx_queues[i] == &queues[i],
654 					"Inconsistent state of Rx queues\n");
655 			} else {
656 				ena_assert_msg(
657 					dev->data->tx_queues[i] == &queues[i],
658 					"Inconsistent state of Tx queues\n");
659 			}
660 
661 			rc = ena_queue_start(dev, &queues[i]);
662 
663 			if (rc) {
664 				PMD_INIT_LOG(ERR,
665 					"Failed to start queue[%d] of type(%d)\n",
666 					i, ring_type);
667 				goto err;
668 			}
669 		}
670 	}
671 
672 	return 0;
673 
674 err:
675 	while (i--)
676 		if (queues[i].configured)
677 			ena_queue_stop(&queues[i]);
678 
679 	return rc;
680 }
681 
682 static uint32_t ena_get_mtu_conf(struct ena_adapter *adapter)
683 {
684 	uint32_t max_frame_len = adapter->max_mtu;
685 
686 	if (adapter->edev_data->dev_conf.rxmode.offloads &
687 	    DEV_RX_OFFLOAD_JUMBO_FRAME)
688 		max_frame_len =
689 			adapter->edev_data->dev_conf.rxmode.max_rx_pkt_len;
690 
691 	return max_frame_len;
692 }
693 
694 static int ena_check_valid_conf(struct ena_adapter *adapter)
695 {
696 	uint32_t max_frame_len = ena_get_mtu_conf(adapter);
697 
698 	if (max_frame_len > adapter->max_mtu || max_frame_len < ENA_MIN_MTU) {
699 		PMD_INIT_LOG(ERR,
700 			"Unsupported MTU of %d. Max MTU: %d, min MTU: %d\n",
701 			max_frame_len, adapter->max_mtu, ENA_MIN_MTU);
702 		return ENA_COM_UNSUPPORTED;
703 	}
704 
705 	return 0;
706 }
707 
708 static int
709 ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx,
710 		       bool use_large_llq_hdr)
711 {
712 	struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
713 	struct ena_com_dev *ena_dev = ctx->ena_dev;
714 	uint32_t max_tx_queue_size;
715 	uint32_t max_rx_queue_size;
716 
717 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
718 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
719 			&ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
720 		max_rx_queue_size = RTE_MIN(max_queue_ext->max_rx_cq_depth,
721 			max_queue_ext->max_rx_sq_depth);
722 		max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
723 
724 		if (ena_dev->tx_mem_queue_type ==
725 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
726 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
727 				llq->max_llq_depth);
728 		} else {
729 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
730 				max_queue_ext->max_tx_sq_depth);
731 		}
732 
733 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
734 			max_queue_ext->max_per_packet_rx_descs);
735 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
736 			max_queue_ext->max_per_packet_tx_descs);
737 	} else {
738 		struct ena_admin_queue_feature_desc *max_queues =
739 			&ctx->get_feat_ctx->max_queues;
740 		max_rx_queue_size = RTE_MIN(max_queues->max_cq_depth,
741 			max_queues->max_sq_depth);
742 		max_tx_queue_size = max_queues->max_cq_depth;
743 
744 		if (ena_dev->tx_mem_queue_type ==
745 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
746 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
747 				llq->max_llq_depth);
748 		} else {
749 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
750 				max_queues->max_sq_depth);
751 		}
752 
753 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
754 			max_queues->max_packet_rx_descs);
755 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
756 			max_queues->max_packet_tx_descs);
757 	}
758 
759 	/* Round down to the nearest power of 2 */
760 	max_rx_queue_size = rte_align32prevpow2(max_rx_queue_size);
761 	max_tx_queue_size = rte_align32prevpow2(max_tx_queue_size);
762 
763 	if (use_large_llq_hdr) {
764 		if ((llq->entry_size_ctrl_supported &
765 		     ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
766 		    (ena_dev->tx_mem_queue_type ==
767 		     ENA_ADMIN_PLACEMENT_POLICY_DEV)) {
768 			max_tx_queue_size /= 2;
769 			PMD_INIT_LOG(INFO,
770 				"Forcing large headers and decreasing maximum Tx queue size to %d\n",
771 				max_tx_queue_size);
772 		} else {
773 			PMD_INIT_LOG(ERR,
774 				"Forcing large headers failed: LLQ is disabled or device does not support large headers\n");
775 		}
776 	}
777 
778 	if (unlikely(max_rx_queue_size == 0 || max_tx_queue_size == 0)) {
779 		PMD_INIT_LOG(ERR, "Invalid queue size\n");
780 		return -EFAULT;
781 	}
782 
783 	ctx->max_tx_queue_size = max_tx_queue_size;
784 	ctx->max_rx_queue_size = max_rx_queue_size;
785 
786 	return 0;
787 }
788 
789 static void ena_stats_restart(struct rte_eth_dev *dev)
790 {
791 	struct ena_adapter *adapter = dev->data->dev_private;
792 
793 	rte_atomic64_init(&adapter->drv_stats->ierrors);
794 	rte_atomic64_init(&adapter->drv_stats->oerrors);
795 	rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
796 	adapter->drv_stats->rx_drops = 0;
797 }
798 
799 static int ena_stats_get(struct rte_eth_dev *dev,
800 			  struct rte_eth_stats *stats)
801 {
802 	struct ena_admin_basic_stats ena_stats;
803 	struct ena_adapter *adapter = dev->data->dev_private;
804 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
805 	int rc;
806 	int i;
807 	int max_rings_stats;
808 
809 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
810 		return -ENOTSUP;
811 
812 	memset(&ena_stats, 0, sizeof(ena_stats));
813 
814 	rte_spinlock_lock(&adapter->admin_lock);
815 	rc = ena_com_get_dev_basic_stats(ena_dev, &ena_stats);
816 	rte_spinlock_unlock(&adapter->admin_lock);
817 	if (unlikely(rc)) {
818 		PMD_DRV_LOG(ERR, "Could not retrieve statistics from ENA\n");
819 		return rc;
820 	}
821 
822 	/* Set of basic statistics from ENA */
823 	stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
824 					  ena_stats.rx_pkts_low);
825 	stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
826 					  ena_stats.tx_pkts_low);
827 	stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
828 					ena_stats.rx_bytes_low);
829 	stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
830 					ena_stats.tx_bytes_low);
831 
832 	/* Driver related stats */
833 	stats->imissed = adapter->drv_stats->rx_drops;
834 	stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
835 	stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
836 	stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
837 
838 	max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
839 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
840 	for (i = 0; i < max_rings_stats; ++i) {
841 		struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
842 
843 		stats->q_ibytes[i] = rx_stats->bytes;
844 		stats->q_ipackets[i] = rx_stats->cnt;
845 		stats->q_errors[i] = rx_stats->bad_desc_num +
846 			rx_stats->bad_req_id;
847 	}
848 
849 	max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
850 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
851 	for (i = 0; i < max_rings_stats; ++i) {
852 		struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
853 
854 		stats->q_obytes[i] = tx_stats->bytes;
855 		stats->q_opackets[i] = tx_stats->cnt;
856 	}
857 
858 	return 0;
859 }
860 
861 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
862 {
863 	struct ena_adapter *adapter;
864 	struct ena_com_dev *ena_dev;
865 	int rc = 0;
866 
867 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
868 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
869 	adapter = dev->data->dev_private;
870 
871 	ena_dev = &adapter->ena_dev;
872 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
873 
874 	if (mtu > ena_get_mtu_conf(adapter) || mtu < ENA_MIN_MTU) {
875 		PMD_DRV_LOG(ERR,
876 			"Invalid MTU setting. New MTU: %d, max MTU: %d, min MTU: %d\n",
877 			mtu, ena_get_mtu_conf(adapter), ENA_MIN_MTU);
878 		return -EINVAL;
879 	}
880 
881 	rc = ena_com_set_dev_mtu(ena_dev, mtu);
882 	if (rc)
883 		PMD_DRV_LOG(ERR, "Could not set MTU: %d\n", mtu);
884 	else
885 		PMD_DRV_LOG(NOTICE, "MTU set to: %d\n", mtu);
886 
887 	return rc;
888 }
889 
890 static int ena_start(struct rte_eth_dev *dev)
891 {
892 	struct ena_adapter *adapter = dev->data->dev_private;
893 	uint64_t ticks;
894 	int rc = 0;
895 
896 	/* Cannot allocate memory in secondary process */
897 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
898 		PMD_DRV_LOG(WARNING, "dev_start not supported in secondary.\n");
899 		return -EPERM;
900 	}
901 
902 	rc = ena_check_valid_conf(adapter);
903 	if (rc)
904 		return rc;
905 
906 	rc = ena_setup_rx_intr(dev);
907 	if (rc)
908 		return rc;
909 
910 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
911 	if (rc)
912 		return rc;
913 
914 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
915 	if (rc)
916 		goto err_start_tx;
917 
918 	if (adapter->edev_data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG) {
919 		rc = ena_rss_configure(adapter);
920 		if (rc)
921 			goto err_rss_init;
922 	}
923 
924 	ena_stats_restart(dev);
925 
926 	adapter->timestamp_wd = rte_get_timer_cycles();
927 	adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
928 
929 	ticks = rte_get_timer_hz();
930 	rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
931 			ena_timer_wd_callback, dev);
932 
933 	++adapter->dev_stats.dev_start;
934 	adapter->state = ENA_ADAPTER_STATE_RUNNING;
935 
936 	return 0;
937 
938 err_rss_init:
939 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
940 err_start_tx:
941 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
942 	return rc;
943 }
944 
945 static int ena_stop(struct rte_eth_dev *dev)
946 {
947 	struct ena_adapter *adapter = dev->data->dev_private;
948 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
949 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
950 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
951 	int rc;
952 
953 	/* Cannot free memory in secondary process */
954 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
955 		PMD_DRV_LOG(WARNING, "dev_stop not supported in secondary.\n");
956 		return -EPERM;
957 	}
958 
959 	rte_timer_stop_sync(&adapter->timer_wd);
960 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
961 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
962 
963 	if (adapter->trigger_reset) {
964 		rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
965 		if (rc)
966 			PMD_DRV_LOG(ERR, "Device reset failed, rc: %d\n", rc);
967 	}
968 
969 	rte_intr_disable(intr_handle);
970 
971 	rte_intr_efd_disable(intr_handle);
972 	if (intr_handle->intr_vec != NULL) {
973 		rte_free(intr_handle->intr_vec);
974 		intr_handle->intr_vec = NULL;
975 	}
976 
977 	rte_intr_enable(intr_handle);
978 
979 	++adapter->dev_stats.dev_stop;
980 	adapter->state = ENA_ADAPTER_STATE_STOPPED;
981 	dev->data->dev_started = 0;
982 
983 	return 0;
984 }
985 
986 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring)
987 {
988 	struct ena_adapter *adapter = ring->adapter;
989 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
990 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
991 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
992 	struct ena_com_create_io_ctx ctx =
993 		/* policy set to _HOST just to satisfy icc compiler */
994 		{ ENA_ADMIN_PLACEMENT_POLICY_HOST,
995 		  0, 0, 0, 0, 0 };
996 	uint16_t ena_qid;
997 	unsigned int i;
998 	int rc;
999 
1000 	ctx.msix_vector = -1;
1001 	if (ring->type == ENA_RING_TYPE_TX) {
1002 		ena_qid = ENA_IO_TXQ_IDX(ring->id);
1003 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1004 		ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1005 		for (i = 0; i < ring->ring_size; i++)
1006 			ring->empty_tx_reqs[i] = i;
1007 	} else {
1008 		ena_qid = ENA_IO_RXQ_IDX(ring->id);
1009 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1010 		if (rte_intr_dp_is_en(intr_handle))
1011 			ctx.msix_vector = intr_handle->intr_vec[ring->id];
1012 		for (i = 0; i < ring->ring_size; i++)
1013 			ring->empty_rx_reqs[i] = i;
1014 	}
1015 	ctx.queue_size = ring->ring_size;
1016 	ctx.qid = ena_qid;
1017 	ctx.numa_node = ring->numa_socket_id;
1018 
1019 	rc = ena_com_create_io_queue(ena_dev, &ctx);
1020 	if (rc) {
1021 		PMD_DRV_LOG(ERR,
1022 			"Failed to create IO queue[%d] (qid:%d), rc: %d\n",
1023 			ring->id, ena_qid, rc);
1024 		return rc;
1025 	}
1026 
1027 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1028 				     &ring->ena_com_io_sq,
1029 				     &ring->ena_com_io_cq);
1030 	if (rc) {
1031 		PMD_DRV_LOG(ERR,
1032 			"Failed to get IO queue[%d] handlers, rc: %d\n",
1033 			ring->id, rc);
1034 		ena_com_destroy_io_queue(ena_dev, ena_qid);
1035 		return rc;
1036 	}
1037 
1038 	if (ring->type == ENA_RING_TYPE_TX)
1039 		ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1040 
1041 	/* Start with Rx interrupts being masked. */
1042 	if (ring->type == ENA_RING_TYPE_RX && rte_intr_dp_is_en(intr_handle))
1043 		ena_rx_queue_intr_disable(dev, ring->id);
1044 
1045 	return 0;
1046 }
1047 
1048 static void ena_queue_stop(struct ena_ring *ring)
1049 {
1050 	struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
1051 
1052 	if (ring->type == ENA_RING_TYPE_RX) {
1053 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
1054 		ena_rx_queue_release_bufs(ring);
1055 	} else {
1056 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
1057 		ena_tx_queue_release_bufs(ring);
1058 	}
1059 }
1060 
1061 static void ena_queue_stop_all(struct rte_eth_dev *dev,
1062 			      enum ena_ring_type ring_type)
1063 {
1064 	struct ena_adapter *adapter = dev->data->dev_private;
1065 	struct ena_ring *queues = NULL;
1066 	uint16_t nb_queues, i;
1067 
1068 	if (ring_type == ENA_RING_TYPE_RX) {
1069 		queues = adapter->rx_ring;
1070 		nb_queues = dev->data->nb_rx_queues;
1071 	} else {
1072 		queues = adapter->tx_ring;
1073 		nb_queues = dev->data->nb_tx_queues;
1074 	}
1075 
1076 	for (i = 0; i < nb_queues; ++i)
1077 		if (queues[i].configured)
1078 			ena_queue_stop(&queues[i]);
1079 }
1080 
1081 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring)
1082 {
1083 	int rc, bufs_num;
1084 
1085 	ena_assert_msg(ring->configured == 1,
1086 		       "Trying to start unconfigured queue\n");
1087 
1088 	rc = ena_create_io_queue(dev, ring);
1089 	if (rc) {
1090 		PMD_INIT_LOG(ERR, "Failed to create IO queue\n");
1091 		return rc;
1092 	}
1093 
1094 	ring->next_to_clean = 0;
1095 	ring->next_to_use = 0;
1096 
1097 	if (ring->type == ENA_RING_TYPE_TX) {
1098 		ring->tx_stats.available_desc =
1099 			ena_com_free_q_entries(ring->ena_com_io_sq);
1100 		return 0;
1101 	}
1102 
1103 	bufs_num = ring->ring_size - 1;
1104 	rc = ena_populate_rx_queue(ring, bufs_num);
1105 	if (rc != bufs_num) {
1106 		ena_com_destroy_io_queue(&ring->adapter->ena_dev,
1107 					 ENA_IO_RXQ_IDX(ring->id));
1108 		PMD_INIT_LOG(ERR, "Failed to populate Rx ring\n");
1109 		return ENA_COM_FAULT;
1110 	}
1111 	/* Flush per-core RX buffers pools cache as they can be used on other
1112 	 * cores as well.
1113 	 */
1114 	rte_mempool_cache_flush(NULL, ring->mb_pool);
1115 
1116 	return 0;
1117 }
1118 
1119 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1120 			      uint16_t queue_idx,
1121 			      uint16_t nb_desc,
1122 			      unsigned int socket_id,
1123 			      const struct rte_eth_txconf *tx_conf)
1124 {
1125 	struct ena_ring *txq = NULL;
1126 	struct ena_adapter *adapter = dev->data->dev_private;
1127 	unsigned int i;
1128 
1129 	txq = &adapter->tx_ring[queue_idx];
1130 
1131 	if (txq->configured) {
1132 		PMD_DRV_LOG(CRIT,
1133 			"API violation. Queue[%d] is already configured\n",
1134 			queue_idx);
1135 		return ENA_COM_FAULT;
1136 	}
1137 
1138 	if (!rte_is_power_of_2(nb_desc)) {
1139 		PMD_DRV_LOG(ERR,
1140 			"Unsupported size of Tx queue: %d is not a power of 2.\n",
1141 			nb_desc);
1142 		return -EINVAL;
1143 	}
1144 
1145 	if (nb_desc > adapter->max_tx_ring_size) {
1146 		PMD_DRV_LOG(ERR,
1147 			"Unsupported size of Tx queue (max size: %d)\n",
1148 			adapter->max_tx_ring_size);
1149 		return -EINVAL;
1150 	}
1151 
1152 	txq->port_id = dev->data->port_id;
1153 	txq->next_to_clean = 0;
1154 	txq->next_to_use = 0;
1155 	txq->ring_size = nb_desc;
1156 	txq->size_mask = nb_desc - 1;
1157 	txq->numa_socket_id = socket_id;
1158 	txq->pkts_without_db = false;
1159 
1160 	txq->tx_buffer_info = rte_zmalloc("txq->tx_buffer_info",
1161 					  sizeof(struct ena_tx_buffer) *
1162 					  txq->ring_size,
1163 					  RTE_CACHE_LINE_SIZE);
1164 	if (!txq->tx_buffer_info) {
1165 		PMD_DRV_LOG(ERR,
1166 			"Failed to allocate memory for Tx buffer info\n");
1167 		return -ENOMEM;
1168 	}
1169 
1170 	txq->empty_tx_reqs = rte_zmalloc("txq->empty_tx_reqs",
1171 					 sizeof(u16) * txq->ring_size,
1172 					 RTE_CACHE_LINE_SIZE);
1173 	if (!txq->empty_tx_reqs) {
1174 		PMD_DRV_LOG(ERR,
1175 			"Failed to allocate memory for empty Tx requests\n");
1176 		rte_free(txq->tx_buffer_info);
1177 		return -ENOMEM;
1178 	}
1179 
1180 	txq->push_buf_intermediate_buf =
1181 		rte_zmalloc("txq->push_buf_intermediate_buf",
1182 			    txq->tx_max_header_size,
1183 			    RTE_CACHE_LINE_SIZE);
1184 	if (!txq->push_buf_intermediate_buf) {
1185 		PMD_DRV_LOG(ERR, "Failed to alloc push buffer for LLQ\n");
1186 		rte_free(txq->tx_buffer_info);
1187 		rte_free(txq->empty_tx_reqs);
1188 		return -ENOMEM;
1189 	}
1190 
1191 	for (i = 0; i < txq->ring_size; i++)
1192 		txq->empty_tx_reqs[i] = i;
1193 
1194 	if (tx_conf != NULL) {
1195 		txq->offloads =
1196 			tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1197 	}
1198 	/* Store pointer to this queue in upper layer */
1199 	txq->configured = 1;
1200 	dev->data->tx_queues[queue_idx] = txq;
1201 
1202 	return 0;
1203 }
1204 
1205 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1206 			      uint16_t queue_idx,
1207 			      uint16_t nb_desc,
1208 			      unsigned int socket_id,
1209 			      const struct rte_eth_rxconf *rx_conf,
1210 			      struct rte_mempool *mp)
1211 {
1212 	struct ena_adapter *adapter = dev->data->dev_private;
1213 	struct ena_ring *rxq = NULL;
1214 	size_t buffer_size;
1215 	int i;
1216 
1217 	rxq = &adapter->rx_ring[queue_idx];
1218 	if (rxq->configured) {
1219 		PMD_DRV_LOG(CRIT,
1220 			"API violation. Queue[%d] is already configured\n",
1221 			queue_idx);
1222 		return ENA_COM_FAULT;
1223 	}
1224 
1225 	if (!rte_is_power_of_2(nb_desc)) {
1226 		PMD_DRV_LOG(ERR,
1227 			"Unsupported size of Rx queue: %d is not a power of 2.\n",
1228 			nb_desc);
1229 		return -EINVAL;
1230 	}
1231 
1232 	if (nb_desc > adapter->max_rx_ring_size) {
1233 		PMD_DRV_LOG(ERR,
1234 			"Unsupported size of Rx queue (max size: %d)\n",
1235 			adapter->max_rx_ring_size);
1236 		return -EINVAL;
1237 	}
1238 
1239 	/* ENA isn't supporting buffers smaller than 1400 bytes */
1240 	buffer_size = rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
1241 	if (buffer_size < ENA_RX_BUF_MIN_SIZE) {
1242 		PMD_DRV_LOG(ERR,
1243 			"Unsupported size of Rx buffer: %zu (min size: %d)\n",
1244 			buffer_size, ENA_RX_BUF_MIN_SIZE);
1245 		return -EINVAL;
1246 	}
1247 
1248 	rxq->port_id = dev->data->port_id;
1249 	rxq->next_to_clean = 0;
1250 	rxq->next_to_use = 0;
1251 	rxq->ring_size = nb_desc;
1252 	rxq->size_mask = nb_desc - 1;
1253 	rxq->numa_socket_id = socket_id;
1254 	rxq->mb_pool = mp;
1255 
1256 	rxq->rx_buffer_info = rte_zmalloc("rxq->buffer_info",
1257 		sizeof(struct ena_rx_buffer) * nb_desc,
1258 		RTE_CACHE_LINE_SIZE);
1259 	if (!rxq->rx_buffer_info) {
1260 		PMD_DRV_LOG(ERR,
1261 			"Failed to allocate memory for Rx buffer info\n");
1262 		return -ENOMEM;
1263 	}
1264 
1265 	rxq->rx_refill_buffer = rte_zmalloc("rxq->rx_refill_buffer",
1266 					    sizeof(struct rte_mbuf *) * nb_desc,
1267 					    RTE_CACHE_LINE_SIZE);
1268 
1269 	if (!rxq->rx_refill_buffer) {
1270 		PMD_DRV_LOG(ERR,
1271 			"Failed to allocate memory for Rx refill buffer\n");
1272 		rte_free(rxq->rx_buffer_info);
1273 		rxq->rx_buffer_info = NULL;
1274 		return -ENOMEM;
1275 	}
1276 
1277 	rxq->empty_rx_reqs = rte_zmalloc("rxq->empty_rx_reqs",
1278 					 sizeof(uint16_t) * nb_desc,
1279 					 RTE_CACHE_LINE_SIZE);
1280 	if (!rxq->empty_rx_reqs) {
1281 		PMD_DRV_LOG(ERR,
1282 			"Failed to allocate memory for empty Rx requests\n");
1283 		rte_free(rxq->rx_buffer_info);
1284 		rxq->rx_buffer_info = NULL;
1285 		rte_free(rxq->rx_refill_buffer);
1286 		rxq->rx_refill_buffer = NULL;
1287 		return -ENOMEM;
1288 	}
1289 
1290 	for (i = 0; i < nb_desc; i++)
1291 		rxq->empty_rx_reqs[i] = i;
1292 
1293 	rxq->offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1294 
1295 	/* Store pointer to this queue in upper layer */
1296 	rxq->configured = 1;
1297 	dev->data->rx_queues[queue_idx] = rxq;
1298 
1299 	return 0;
1300 }
1301 
1302 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
1303 				  struct rte_mbuf *mbuf, uint16_t id)
1304 {
1305 	struct ena_com_buf ebuf;
1306 	int rc;
1307 
1308 	/* prepare physical address for DMA transaction */
1309 	ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1310 	ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1311 
1312 	/* pass resource to device */
1313 	rc = ena_com_add_single_rx_desc(io_sq, &ebuf, id);
1314 	if (unlikely(rc != 0))
1315 		PMD_RX_LOG(WARNING, "Failed adding Rx desc\n");
1316 
1317 	return rc;
1318 }
1319 
1320 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1321 {
1322 	unsigned int i;
1323 	int rc;
1324 	uint16_t next_to_use = rxq->next_to_use;
1325 	uint16_t req_id;
1326 #ifdef RTE_ETHDEV_DEBUG_RX
1327 	uint16_t in_use;
1328 #endif
1329 	struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1330 
1331 	if (unlikely(!count))
1332 		return 0;
1333 
1334 #ifdef RTE_ETHDEV_DEBUG_RX
1335 	in_use = rxq->ring_size - 1 -
1336 		ena_com_free_q_entries(rxq->ena_com_io_sq);
1337 	if (unlikely((in_use + count) >= rxq->ring_size))
1338 		PMD_RX_LOG(ERR, "Bad Rx ring state\n");
1339 #endif
1340 
1341 	/* get resources for incoming packets */
1342 	rc = rte_pktmbuf_alloc_bulk(rxq->mb_pool, mbufs, count);
1343 	if (unlikely(rc < 0)) {
1344 		rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1345 		++rxq->rx_stats.mbuf_alloc_fail;
1346 		PMD_RX_LOG(DEBUG, "There are not enough free buffers\n");
1347 		return 0;
1348 	}
1349 
1350 	for (i = 0; i < count; i++) {
1351 		struct rte_mbuf *mbuf = mbufs[i];
1352 		struct ena_rx_buffer *rx_info;
1353 
1354 		if (likely((i + 4) < count))
1355 			rte_prefetch0(mbufs[i + 4]);
1356 
1357 		req_id = rxq->empty_rx_reqs[next_to_use];
1358 		rx_info = &rxq->rx_buffer_info[req_id];
1359 
1360 		rc = ena_add_single_rx_desc(rxq->ena_com_io_sq, mbuf, req_id);
1361 		if (unlikely(rc != 0))
1362 			break;
1363 
1364 		rx_info->mbuf = mbuf;
1365 		next_to_use = ENA_IDX_NEXT_MASKED(next_to_use, rxq->size_mask);
1366 	}
1367 
1368 	if (unlikely(i < count)) {
1369 		PMD_RX_LOG(WARNING,
1370 			"Refilled Rx queue[%d] with only %d/%d buffers\n",
1371 			rxq->id, i, count);
1372 		rte_pktmbuf_free_bulk(&mbufs[i], count - i);
1373 		++rxq->rx_stats.refill_partial;
1374 	}
1375 
1376 	/* When we submitted free recources to device... */
1377 	if (likely(i > 0)) {
1378 		/* ...let HW know that it can fill buffers with data. */
1379 		ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1380 
1381 		rxq->next_to_use = next_to_use;
1382 	}
1383 
1384 	return i;
1385 }
1386 
1387 static int ena_device_init(struct ena_com_dev *ena_dev,
1388 			   struct rte_pci_device *pdev,
1389 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
1390 			   bool *wd_state)
1391 {
1392 	uint32_t aenq_groups;
1393 	int rc;
1394 	bool readless_supported;
1395 
1396 	/* Initialize mmio registers */
1397 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
1398 	if (rc) {
1399 		PMD_DRV_LOG(ERR, "Failed to init MMIO read less\n");
1400 		return rc;
1401 	}
1402 
1403 	/* The PCIe configuration space revision id indicate if mmio reg
1404 	 * read is disabled.
1405 	 */
1406 	readless_supported = !(pdev->id.class_id & ENA_MMIO_DISABLE_REG_READ);
1407 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1408 
1409 	/* reset device */
1410 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1411 	if (rc) {
1412 		PMD_DRV_LOG(ERR, "Cannot reset device\n");
1413 		goto err_mmio_read_less;
1414 	}
1415 
1416 	/* check FW version */
1417 	rc = ena_com_validate_version(ena_dev);
1418 	if (rc) {
1419 		PMD_DRV_LOG(ERR, "Device version is too low\n");
1420 		goto err_mmio_read_less;
1421 	}
1422 
1423 	ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1424 
1425 	/* ENA device administration layer init */
1426 	rc = ena_com_admin_init(ena_dev, &aenq_handlers);
1427 	if (rc) {
1428 		PMD_DRV_LOG(ERR,
1429 			"Cannot initialize ENA admin queue\n");
1430 		goto err_mmio_read_less;
1431 	}
1432 
1433 	/* To enable the msix interrupts the driver needs to know the number
1434 	 * of queues. So the driver uses polling mode to retrieve this
1435 	 * information.
1436 	 */
1437 	ena_com_set_admin_polling_mode(ena_dev, true);
1438 
1439 	ena_config_host_info(ena_dev);
1440 
1441 	/* Get Device Attributes and features */
1442 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1443 	if (rc) {
1444 		PMD_DRV_LOG(ERR,
1445 			"Cannot get attribute for ENA device, rc: %d\n", rc);
1446 		goto err_admin_init;
1447 	}
1448 
1449 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1450 		      BIT(ENA_ADMIN_NOTIFICATION) |
1451 		      BIT(ENA_ADMIN_KEEP_ALIVE) |
1452 		      BIT(ENA_ADMIN_FATAL_ERROR) |
1453 		      BIT(ENA_ADMIN_WARNING);
1454 
1455 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
1456 	rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
1457 	if (rc) {
1458 		PMD_DRV_LOG(ERR, "Cannot configure AENQ groups, rc: %d\n", rc);
1459 		goto err_admin_init;
1460 	}
1461 
1462 	*wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
1463 
1464 	return 0;
1465 
1466 err_admin_init:
1467 	ena_com_admin_destroy(ena_dev);
1468 
1469 err_mmio_read_less:
1470 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1471 
1472 	return rc;
1473 }
1474 
1475 static void ena_interrupt_handler_rte(void *cb_arg)
1476 {
1477 	struct rte_eth_dev *dev = cb_arg;
1478 	struct ena_adapter *adapter = dev->data->dev_private;
1479 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1480 
1481 	ena_com_admin_q_comp_intr_handler(ena_dev);
1482 	if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED))
1483 		ena_com_aenq_intr_handler(ena_dev, dev);
1484 }
1485 
1486 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1487 {
1488 	if (!adapter->wd_state)
1489 		return;
1490 
1491 	if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1492 		return;
1493 
1494 	if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1495 	    adapter->keep_alive_timeout)) {
1496 		PMD_DRV_LOG(ERR, "Keep alive timeout\n");
1497 		adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
1498 		adapter->trigger_reset = true;
1499 		++adapter->dev_stats.wd_expired;
1500 	}
1501 }
1502 
1503 /* Check if admin queue is enabled */
1504 static void check_for_admin_com_state(struct ena_adapter *adapter)
1505 {
1506 	if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1507 		PMD_DRV_LOG(ERR, "ENA admin queue is not in running state\n");
1508 		adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
1509 		adapter->trigger_reset = true;
1510 	}
1511 }
1512 
1513 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
1514 				  void *arg)
1515 {
1516 	struct rte_eth_dev *dev = arg;
1517 	struct ena_adapter *adapter = dev->data->dev_private;
1518 
1519 	check_for_missing_keep_alive(adapter);
1520 	check_for_admin_com_state(adapter);
1521 
1522 	if (unlikely(adapter->trigger_reset)) {
1523 		PMD_DRV_LOG(ERR, "Trigger reset is on\n");
1524 		rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
1525 			NULL);
1526 	}
1527 }
1528 
1529 static inline void
1530 set_default_llq_configurations(struct ena_llq_configurations *llq_config,
1531 			       struct ena_admin_feature_llq_desc *llq,
1532 			       bool use_large_llq_hdr)
1533 {
1534 	llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
1535 	llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
1536 	llq_config->llq_num_decs_before_header =
1537 		ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
1538 
1539 	if (use_large_llq_hdr &&
1540 	    (llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B)) {
1541 		llq_config->llq_ring_entry_size =
1542 			ENA_ADMIN_LIST_ENTRY_SIZE_256B;
1543 		llq_config->llq_ring_entry_size_value = 256;
1544 	} else {
1545 		llq_config->llq_ring_entry_size =
1546 			ENA_ADMIN_LIST_ENTRY_SIZE_128B;
1547 		llq_config->llq_ring_entry_size_value = 128;
1548 	}
1549 }
1550 
1551 static int
1552 ena_set_queues_placement_policy(struct ena_adapter *adapter,
1553 				struct ena_com_dev *ena_dev,
1554 				struct ena_admin_feature_llq_desc *llq,
1555 				struct ena_llq_configurations *llq_default_configurations)
1556 {
1557 	int rc;
1558 	u32 llq_feature_mask;
1559 
1560 	llq_feature_mask = 1 << ENA_ADMIN_LLQ;
1561 	if (!(ena_dev->supported_features & llq_feature_mask)) {
1562 		PMD_DRV_LOG(INFO,
1563 			"LLQ is not supported. Fallback to host mode policy.\n");
1564 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1565 		return 0;
1566 	}
1567 
1568 	rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
1569 	if (unlikely(rc)) {
1570 		PMD_INIT_LOG(WARNING,
1571 			"Failed to config dev mode. Fallback to host mode policy.\n");
1572 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1573 		return 0;
1574 	}
1575 
1576 	/* Nothing to config, exit */
1577 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1578 		return 0;
1579 
1580 	if (!adapter->dev_mem_base) {
1581 		PMD_DRV_LOG(ERR,
1582 			"Unable to access LLQ BAR resource. Fallback to host mode policy.\n");
1583 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1584 		return 0;
1585 	}
1586 
1587 	ena_dev->mem_bar = adapter->dev_mem_base;
1588 
1589 	return 0;
1590 }
1591 
1592 static uint32_t ena_calc_max_io_queue_num(struct ena_com_dev *ena_dev,
1593 	struct ena_com_dev_get_features_ctx *get_feat_ctx)
1594 {
1595 	uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
1596 
1597 	/* Regular queues capabilities */
1598 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1599 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1600 			&get_feat_ctx->max_queue_ext.max_queue_ext;
1601 		io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
1602 				    max_queue_ext->max_rx_cq_num);
1603 		io_tx_sq_num = max_queue_ext->max_tx_sq_num;
1604 		io_tx_cq_num = max_queue_ext->max_tx_cq_num;
1605 	} else {
1606 		struct ena_admin_queue_feature_desc *max_queues =
1607 			&get_feat_ctx->max_queues;
1608 		io_tx_sq_num = max_queues->max_sq_num;
1609 		io_tx_cq_num = max_queues->max_cq_num;
1610 		io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
1611 	}
1612 
1613 	/* In case of LLQ use the llq number in the get feature cmd */
1614 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
1615 		io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
1616 
1617 	max_num_io_queues = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
1618 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_sq_num);
1619 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_cq_num);
1620 
1621 	if (unlikely(max_num_io_queues == 0)) {
1622 		PMD_DRV_LOG(ERR, "Number of IO queues cannot not be 0\n");
1623 		return -EFAULT;
1624 	}
1625 
1626 	return max_num_io_queues;
1627 }
1628 
1629 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
1630 {
1631 	struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
1632 	struct rte_pci_device *pci_dev;
1633 	struct rte_intr_handle *intr_handle;
1634 	struct ena_adapter *adapter = eth_dev->data->dev_private;
1635 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1636 	struct ena_com_dev_get_features_ctx get_feat_ctx;
1637 	struct ena_llq_configurations llq_config;
1638 	const char *queue_type_str;
1639 	uint32_t max_num_io_queues;
1640 	int rc;
1641 	static int adapters_found;
1642 	bool disable_meta_caching;
1643 	bool wd_state = false;
1644 
1645 	eth_dev->dev_ops = &ena_dev_ops;
1646 	eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
1647 	eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
1648 	eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
1649 
1650 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1651 		return 0;
1652 
1653 	eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
1654 
1655 	memset(adapter, 0, sizeof(struct ena_adapter));
1656 	ena_dev = &adapter->ena_dev;
1657 
1658 	adapter->edev_data = eth_dev->data;
1659 
1660 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1661 
1662 	PMD_INIT_LOG(INFO, "Initializing %x:%x:%x.%d\n",
1663 		     pci_dev->addr.domain,
1664 		     pci_dev->addr.bus,
1665 		     pci_dev->addr.devid,
1666 		     pci_dev->addr.function);
1667 
1668 	intr_handle = &pci_dev->intr_handle;
1669 
1670 	adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
1671 	adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
1672 
1673 	if (!adapter->regs) {
1674 		PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)\n",
1675 			     ENA_REGS_BAR);
1676 		return -ENXIO;
1677 	}
1678 
1679 	ena_dev->reg_bar = adapter->regs;
1680 	/* This is a dummy pointer for ena_com functions. */
1681 	ena_dev->dmadev = adapter;
1682 
1683 	adapter->id_number = adapters_found;
1684 
1685 	snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
1686 		 adapter->id_number);
1687 
1688 	rc = ena_parse_devargs(adapter, pci_dev->device.devargs);
1689 	if (rc != 0) {
1690 		PMD_INIT_LOG(CRIT, "Failed to parse devargs\n");
1691 		goto err;
1692 	}
1693 
1694 	/* device specific initialization routine */
1695 	rc = ena_device_init(ena_dev, pci_dev, &get_feat_ctx, &wd_state);
1696 	if (rc) {
1697 		PMD_INIT_LOG(CRIT, "Failed to init ENA device\n");
1698 		goto err;
1699 	}
1700 	adapter->wd_state = wd_state;
1701 
1702 	set_default_llq_configurations(&llq_config, &get_feat_ctx.llq,
1703 		adapter->use_large_llq_hdr);
1704 	rc = ena_set_queues_placement_policy(adapter, ena_dev,
1705 					     &get_feat_ctx.llq, &llq_config);
1706 	if (unlikely(rc)) {
1707 		PMD_INIT_LOG(CRIT, "Failed to set placement policy\n");
1708 		return rc;
1709 	}
1710 
1711 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1712 		queue_type_str = "Regular";
1713 	else
1714 		queue_type_str = "Low latency";
1715 	PMD_DRV_LOG(INFO, "Placement policy: %s\n", queue_type_str);
1716 
1717 	calc_queue_ctx.ena_dev = ena_dev;
1718 	calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
1719 
1720 	max_num_io_queues = ena_calc_max_io_queue_num(ena_dev, &get_feat_ctx);
1721 	rc = ena_calc_io_queue_size(&calc_queue_ctx,
1722 		adapter->use_large_llq_hdr);
1723 	if (unlikely((rc != 0) || (max_num_io_queues == 0))) {
1724 		rc = -EFAULT;
1725 		goto err_device_destroy;
1726 	}
1727 
1728 	adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
1729 	adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
1730 	adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
1731 	adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
1732 	adapter->max_num_io_queues = max_num_io_queues;
1733 
1734 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1735 		disable_meta_caching =
1736 			!!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
1737 			BIT(ENA_ADMIN_DISABLE_META_CACHING));
1738 	} else {
1739 		disable_meta_caching = false;
1740 	}
1741 
1742 	/* prepare ring structures */
1743 	ena_init_rings(adapter, disable_meta_caching);
1744 
1745 	ena_config_debug_area(adapter);
1746 
1747 	/* Set max MTU for this device */
1748 	adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
1749 
1750 	/* set device support for offloads */
1751 	adapter->offloads.tso4_supported = (get_feat_ctx.offload.tx &
1752 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) != 0;
1753 	adapter->offloads.tx_csum_supported = (get_feat_ctx.offload.tx &
1754 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK) != 0;
1755 	adapter->offloads.rx_csum_supported =
1756 		(get_feat_ctx.offload.rx_supported &
1757 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK) != 0;
1758 	adapter->offloads.rss_hash_supported =
1759 		(get_feat_ctx.offload.rx_supported &
1760 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_HASH_MASK) != 0;
1761 
1762 	/* Copy MAC address and point DPDK to it */
1763 	eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr;
1764 	rte_ether_addr_copy((struct rte_ether_addr *)
1765 			get_feat_ctx.dev_attr.mac_addr,
1766 			(struct rte_ether_addr *)adapter->mac_addr);
1767 
1768 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
1769 	if (unlikely(rc != 0)) {
1770 		PMD_DRV_LOG(ERR, "Failed to initialize RSS in ENA device\n");
1771 		goto err_delete_debug_area;
1772 	}
1773 
1774 	adapter->drv_stats = rte_zmalloc("adapter stats",
1775 					 sizeof(*adapter->drv_stats),
1776 					 RTE_CACHE_LINE_SIZE);
1777 	if (!adapter->drv_stats) {
1778 		PMD_DRV_LOG(ERR,
1779 			"Failed to allocate memory for adapter statistics\n");
1780 		rc = -ENOMEM;
1781 		goto err_rss_destroy;
1782 	}
1783 
1784 	rte_spinlock_init(&adapter->admin_lock);
1785 
1786 	rte_intr_callback_register(intr_handle,
1787 				   ena_interrupt_handler_rte,
1788 				   eth_dev);
1789 	rte_intr_enable(intr_handle);
1790 	ena_com_set_admin_polling_mode(ena_dev, false);
1791 	ena_com_admin_aenq_enable(ena_dev);
1792 
1793 	if (adapters_found == 0)
1794 		rte_timer_subsystem_init();
1795 	rte_timer_init(&adapter->timer_wd);
1796 
1797 	adapters_found++;
1798 	adapter->state = ENA_ADAPTER_STATE_INIT;
1799 
1800 	return 0;
1801 
1802 err_rss_destroy:
1803 	ena_com_rss_destroy(ena_dev);
1804 err_delete_debug_area:
1805 	ena_com_delete_debug_area(ena_dev);
1806 
1807 err_device_destroy:
1808 	ena_com_delete_host_info(ena_dev);
1809 	ena_com_admin_destroy(ena_dev);
1810 
1811 err:
1812 	return rc;
1813 }
1814 
1815 static void ena_destroy_device(struct rte_eth_dev *eth_dev)
1816 {
1817 	struct ena_adapter *adapter = eth_dev->data->dev_private;
1818 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1819 
1820 	if (adapter->state == ENA_ADAPTER_STATE_FREE)
1821 		return;
1822 
1823 	ena_com_set_admin_running_state(ena_dev, false);
1824 
1825 	if (adapter->state != ENA_ADAPTER_STATE_CLOSED)
1826 		ena_close(eth_dev);
1827 
1828 	ena_com_rss_destroy(ena_dev);
1829 
1830 	ena_com_delete_debug_area(ena_dev);
1831 	ena_com_delete_host_info(ena_dev);
1832 
1833 	ena_com_abort_admin_commands(ena_dev);
1834 	ena_com_wait_for_abort_completion(ena_dev);
1835 	ena_com_admin_destroy(ena_dev);
1836 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1837 
1838 	adapter->state = ENA_ADAPTER_STATE_FREE;
1839 }
1840 
1841 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
1842 {
1843 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1844 		return 0;
1845 
1846 	ena_destroy_device(eth_dev);
1847 
1848 	return 0;
1849 }
1850 
1851 static int ena_dev_configure(struct rte_eth_dev *dev)
1852 {
1853 	struct ena_adapter *adapter = dev->data->dev_private;
1854 
1855 	adapter->state = ENA_ADAPTER_STATE_CONFIG;
1856 
1857 	if (dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG)
1858 		dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
1859 	dev->data->dev_conf.txmode.offloads |= DEV_TX_OFFLOAD_MULTI_SEGS;
1860 
1861 	adapter->tx_selected_offloads = dev->data->dev_conf.txmode.offloads;
1862 	adapter->rx_selected_offloads = dev->data->dev_conf.rxmode.offloads;
1863 	return 0;
1864 }
1865 
1866 static void ena_init_rings(struct ena_adapter *adapter,
1867 			   bool disable_meta_caching)
1868 {
1869 	size_t i;
1870 
1871 	for (i = 0; i < adapter->max_num_io_queues; i++) {
1872 		struct ena_ring *ring = &adapter->tx_ring[i];
1873 
1874 		ring->configured = 0;
1875 		ring->type = ENA_RING_TYPE_TX;
1876 		ring->adapter = adapter;
1877 		ring->id = i;
1878 		ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
1879 		ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
1880 		ring->sgl_size = adapter->max_tx_sgl_size;
1881 		ring->disable_meta_caching = disable_meta_caching;
1882 	}
1883 
1884 	for (i = 0; i < adapter->max_num_io_queues; i++) {
1885 		struct ena_ring *ring = &adapter->rx_ring[i];
1886 
1887 		ring->configured = 0;
1888 		ring->type = ENA_RING_TYPE_RX;
1889 		ring->adapter = adapter;
1890 		ring->id = i;
1891 		ring->sgl_size = adapter->max_rx_sgl_size;
1892 	}
1893 }
1894 
1895 static int ena_infos_get(struct rte_eth_dev *dev,
1896 			  struct rte_eth_dev_info *dev_info)
1897 {
1898 	struct ena_adapter *adapter;
1899 	struct ena_com_dev *ena_dev;
1900 	uint64_t rx_feat = 0, tx_feat = 0;
1901 
1902 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
1903 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
1904 	adapter = dev->data->dev_private;
1905 
1906 	ena_dev = &adapter->ena_dev;
1907 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
1908 
1909 	dev_info->speed_capa =
1910 			ETH_LINK_SPEED_1G   |
1911 			ETH_LINK_SPEED_2_5G |
1912 			ETH_LINK_SPEED_5G   |
1913 			ETH_LINK_SPEED_10G  |
1914 			ETH_LINK_SPEED_25G  |
1915 			ETH_LINK_SPEED_40G  |
1916 			ETH_LINK_SPEED_50G  |
1917 			ETH_LINK_SPEED_100G;
1918 
1919 	/* Set Tx & Rx features available for device */
1920 	if (adapter->offloads.tso4_supported)
1921 		tx_feat	|= DEV_TX_OFFLOAD_TCP_TSO;
1922 
1923 	if (adapter->offloads.tx_csum_supported)
1924 		tx_feat |= DEV_TX_OFFLOAD_IPV4_CKSUM |
1925 			DEV_TX_OFFLOAD_UDP_CKSUM |
1926 			DEV_TX_OFFLOAD_TCP_CKSUM;
1927 
1928 	if (adapter->offloads.rx_csum_supported)
1929 		rx_feat |= DEV_RX_OFFLOAD_IPV4_CKSUM |
1930 			DEV_RX_OFFLOAD_UDP_CKSUM  |
1931 			DEV_RX_OFFLOAD_TCP_CKSUM;
1932 
1933 	rx_feat |= DEV_RX_OFFLOAD_JUMBO_FRAME;
1934 	tx_feat |= DEV_TX_OFFLOAD_MULTI_SEGS;
1935 
1936 	/* Inform framework about available features */
1937 	dev_info->rx_offload_capa = rx_feat;
1938 	if (adapter->offloads.rss_hash_supported)
1939 		dev_info->rx_offload_capa |= DEV_RX_OFFLOAD_RSS_HASH;
1940 	dev_info->rx_queue_offload_capa = rx_feat;
1941 	dev_info->tx_offload_capa = tx_feat;
1942 	dev_info->tx_queue_offload_capa = tx_feat;
1943 
1944 	dev_info->flow_type_rss_offloads = ENA_ALL_RSS_HF;
1945 	dev_info->hash_key_size = ENA_HASH_KEY_SIZE;
1946 
1947 	dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
1948 	dev_info->max_rx_pktlen  = adapter->max_mtu;
1949 	dev_info->max_mac_addrs = 1;
1950 
1951 	dev_info->max_rx_queues = adapter->max_num_io_queues;
1952 	dev_info->max_tx_queues = adapter->max_num_io_queues;
1953 	dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
1954 
1955 	adapter->tx_supported_offloads = tx_feat;
1956 	adapter->rx_supported_offloads = rx_feat;
1957 
1958 	dev_info->rx_desc_lim.nb_max = adapter->max_rx_ring_size;
1959 	dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
1960 	dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
1961 					adapter->max_rx_sgl_size);
1962 	dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
1963 					adapter->max_rx_sgl_size);
1964 
1965 	dev_info->tx_desc_lim.nb_max = adapter->max_tx_ring_size;
1966 	dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
1967 	dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
1968 					adapter->max_tx_sgl_size);
1969 	dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
1970 					adapter->max_tx_sgl_size);
1971 
1972 	dev_info->default_rxportconf.ring_size = ENA_DEFAULT_RING_SIZE;
1973 	dev_info->default_txportconf.ring_size = ENA_DEFAULT_RING_SIZE;
1974 
1975 	return 0;
1976 }
1977 
1978 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len)
1979 {
1980 	mbuf->data_len = len;
1981 	mbuf->data_off = RTE_PKTMBUF_HEADROOM;
1982 	mbuf->refcnt = 1;
1983 	mbuf->next = NULL;
1984 }
1985 
1986 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
1987 				    struct ena_com_rx_buf_info *ena_bufs,
1988 				    uint32_t descs,
1989 				    uint16_t *next_to_clean,
1990 				    uint8_t offset)
1991 {
1992 	struct rte_mbuf *mbuf;
1993 	struct rte_mbuf *mbuf_head;
1994 	struct ena_rx_buffer *rx_info;
1995 	int rc;
1996 	uint16_t ntc, len, req_id, buf = 0;
1997 
1998 	if (unlikely(descs == 0))
1999 		return NULL;
2000 
2001 	ntc = *next_to_clean;
2002 
2003 	len = ena_bufs[buf].len;
2004 	req_id = ena_bufs[buf].req_id;
2005 
2006 	rx_info = &rx_ring->rx_buffer_info[req_id];
2007 
2008 	mbuf = rx_info->mbuf;
2009 	RTE_ASSERT(mbuf != NULL);
2010 
2011 	ena_init_rx_mbuf(mbuf, len);
2012 
2013 	/* Fill the mbuf head with the data specific for 1st segment. */
2014 	mbuf_head = mbuf;
2015 	mbuf_head->nb_segs = descs;
2016 	mbuf_head->port = rx_ring->port_id;
2017 	mbuf_head->pkt_len = len;
2018 	mbuf_head->data_off += offset;
2019 
2020 	rx_info->mbuf = NULL;
2021 	rx_ring->empty_rx_reqs[ntc] = req_id;
2022 	ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2023 
2024 	while (--descs) {
2025 		++buf;
2026 		len = ena_bufs[buf].len;
2027 		req_id = ena_bufs[buf].req_id;
2028 
2029 		rx_info = &rx_ring->rx_buffer_info[req_id];
2030 		RTE_ASSERT(rx_info->mbuf != NULL);
2031 
2032 		if (unlikely(len == 0)) {
2033 			/*
2034 			 * Some devices can pass descriptor with the length 0.
2035 			 * To avoid confusion, the PMD is simply putting the
2036 			 * descriptor back, as it was never used. We'll avoid
2037 			 * mbuf allocation that way.
2038 			 */
2039 			rc = ena_add_single_rx_desc(rx_ring->ena_com_io_sq,
2040 				rx_info->mbuf, req_id);
2041 			if (unlikely(rc != 0)) {
2042 				/* Free the mbuf in case of an error. */
2043 				rte_mbuf_raw_free(rx_info->mbuf);
2044 			} else {
2045 				/*
2046 				 * If there was no error, just exit the loop as
2047 				 * 0 length descriptor is always the last one.
2048 				 */
2049 				break;
2050 			}
2051 		} else {
2052 			/* Create an mbuf chain. */
2053 			mbuf->next = rx_info->mbuf;
2054 			mbuf = mbuf->next;
2055 
2056 			ena_init_rx_mbuf(mbuf, len);
2057 			mbuf_head->pkt_len += len;
2058 		}
2059 
2060 		/*
2061 		 * Mark the descriptor as depleted and perform necessary
2062 		 * cleanup.
2063 		 * This code will execute in two cases:
2064 		 *  1. Descriptor len was greater than 0 - normal situation.
2065 		 *  2. Descriptor len was 0 and we failed to add the descriptor
2066 		 *     to the device. In that situation, we should try to add
2067 		 *     the mbuf again in the populate routine and mark the
2068 		 *     descriptor as used up by the device.
2069 		 */
2070 		rx_info->mbuf = NULL;
2071 		rx_ring->empty_rx_reqs[ntc] = req_id;
2072 		ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2073 	}
2074 
2075 	*next_to_clean = ntc;
2076 
2077 	return mbuf_head;
2078 }
2079 
2080 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
2081 				  uint16_t nb_pkts)
2082 {
2083 	struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
2084 	unsigned int free_queue_entries;
2085 	unsigned int refill_threshold;
2086 	uint16_t next_to_clean = rx_ring->next_to_clean;
2087 	uint16_t descs_in_use;
2088 	struct rte_mbuf *mbuf;
2089 	uint16_t completed;
2090 	struct ena_com_rx_ctx ena_rx_ctx;
2091 	int i, rc = 0;
2092 	bool fill_hash;
2093 
2094 #ifdef RTE_ETHDEV_DEBUG_RX
2095 	/* Check adapter state */
2096 	if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2097 		PMD_RX_LOG(ALERT,
2098 			"Trying to receive pkts while device is NOT running\n");
2099 		return 0;
2100 	}
2101 #endif
2102 
2103 	fill_hash = rx_ring->offloads & DEV_RX_OFFLOAD_RSS_HASH;
2104 
2105 	descs_in_use = rx_ring->ring_size -
2106 		ena_com_free_q_entries(rx_ring->ena_com_io_sq) - 1;
2107 	nb_pkts = RTE_MIN(descs_in_use, nb_pkts);
2108 
2109 	for (completed = 0; completed < nb_pkts; completed++) {
2110 		ena_rx_ctx.max_bufs = rx_ring->sgl_size;
2111 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
2112 		ena_rx_ctx.descs = 0;
2113 		ena_rx_ctx.pkt_offset = 0;
2114 		/* receive packet context */
2115 		rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
2116 				    rx_ring->ena_com_io_sq,
2117 				    &ena_rx_ctx);
2118 		if (unlikely(rc)) {
2119 			PMD_RX_LOG(ERR,
2120 				"Failed to get the packet from the device, rc: %d\n",
2121 				rc);
2122 			if (rc == ENA_COM_NO_SPACE) {
2123 				++rx_ring->rx_stats.bad_desc_num;
2124 				rx_ring->adapter->reset_reason =
2125 					ENA_REGS_RESET_TOO_MANY_RX_DESCS;
2126 			} else {
2127 				++rx_ring->rx_stats.bad_req_id;
2128 				rx_ring->adapter->reset_reason =
2129 					ENA_REGS_RESET_INV_RX_REQ_ID;
2130 			}
2131 			rx_ring->adapter->trigger_reset = true;
2132 			return 0;
2133 		}
2134 
2135 		mbuf = ena_rx_mbuf(rx_ring,
2136 			ena_rx_ctx.ena_bufs,
2137 			ena_rx_ctx.descs,
2138 			&next_to_clean,
2139 			ena_rx_ctx.pkt_offset);
2140 		if (unlikely(mbuf == NULL)) {
2141 			for (i = 0; i < ena_rx_ctx.descs; ++i) {
2142 				rx_ring->empty_rx_reqs[next_to_clean] =
2143 					rx_ring->ena_bufs[i].req_id;
2144 				next_to_clean = ENA_IDX_NEXT_MASKED(
2145 					next_to_clean, rx_ring->size_mask);
2146 			}
2147 			break;
2148 		}
2149 
2150 		/* fill mbuf attributes if any */
2151 		ena_rx_mbuf_prepare(mbuf, &ena_rx_ctx, fill_hash);
2152 
2153 		if (unlikely(mbuf->ol_flags &
2154 				(PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD))) {
2155 			rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors);
2156 			++rx_ring->rx_stats.bad_csum;
2157 		}
2158 
2159 		rx_pkts[completed] = mbuf;
2160 		rx_ring->rx_stats.bytes += mbuf->pkt_len;
2161 	}
2162 
2163 	rx_ring->rx_stats.cnt += completed;
2164 	rx_ring->next_to_clean = next_to_clean;
2165 
2166 	free_queue_entries = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
2167 	refill_threshold =
2168 		RTE_MIN(rx_ring->ring_size / ENA_REFILL_THRESH_DIVIDER,
2169 		(unsigned int)ENA_REFILL_THRESH_PACKET);
2170 
2171 	/* Burst refill to save doorbells, memory barriers, const interval */
2172 	if (free_queue_entries > refill_threshold) {
2173 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
2174 		ena_populate_rx_queue(rx_ring, free_queue_entries);
2175 	}
2176 
2177 	return completed;
2178 }
2179 
2180 static uint16_t
2181 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2182 		uint16_t nb_pkts)
2183 {
2184 	int32_t ret;
2185 	uint32_t i;
2186 	struct rte_mbuf *m;
2187 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2188 	struct rte_ipv4_hdr *ip_hdr;
2189 	uint64_t ol_flags;
2190 	uint16_t frag_field;
2191 
2192 	for (i = 0; i != nb_pkts; i++) {
2193 		m = tx_pkts[i];
2194 		ol_flags = m->ol_flags;
2195 
2196 		if (!(ol_flags & PKT_TX_IPV4))
2197 			continue;
2198 
2199 		/* If there was not L2 header length specified, assume it is
2200 		 * length of the ethernet header.
2201 		 */
2202 		if (unlikely(m->l2_len == 0))
2203 			m->l2_len = sizeof(struct rte_ether_hdr);
2204 
2205 		ip_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *,
2206 						 m->l2_len);
2207 		frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
2208 
2209 		if ((frag_field & RTE_IPV4_HDR_DF_FLAG) != 0) {
2210 			m->packet_type |= RTE_PTYPE_L4_NONFRAG;
2211 
2212 			/* If IPv4 header has DF flag enabled and TSO support is
2213 			 * disabled, partial chcecksum should not be calculated.
2214 			 */
2215 			if (!tx_ring->adapter->offloads.tso4_supported)
2216 				continue;
2217 		}
2218 
2219 		if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) != 0 ||
2220 				(ol_flags & PKT_TX_L4_MASK) ==
2221 				PKT_TX_SCTP_CKSUM) {
2222 			rte_errno = ENOTSUP;
2223 			return i;
2224 		}
2225 
2226 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2227 		ret = rte_validate_tx_offload(m);
2228 		if (ret != 0) {
2229 			rte_errno = -ret;
2230 			return i;
2231 		}
2232 #endif
2233 
2234 		/* In case we are supposed to TSO and have DF not set (DF=0)
2235 		 * hardware must be provided with partial checksum, otherwise
2236 		 * it will take care of necessary calculations.
2237 		 */
2238 
2239 		ret = rte_net_intel_cksum_flags_prepare(m,
2240 			ol_flags & ~PKT_TX_TCP_SEG);
2241 		if (ret != 0) {
2242 			rte_errno = -ret;
2243 			return i;
2244 		}
2245 	}
2246 
2247 	return i;
2248 }
2249 
2250 static void ena_update_hints(struct ena_adapter *adapter,
2251 			     struct ena_admin_ena_hw_hints *hints)
2252 {
2253 	if (hints->admin_completion_tx_timeout)
2254 		adapter->ena_dev.admin_queue.completion_timeout =
2255 			hints->admin_completion_tx_timeout * 1000;
2256 
2257 	if (hints->mmio_read_timeout)
2258 		/* convert to usec */
2259 		adapter->ena_dev.mmio_read.reg_read_to =
2260 			hints->mmio_read_timeout * 1000;
2261 
2262 	if (hints->driver_watchdog_timeout) {
2263 		if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
2264 			adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
2265 		else
2266 			// Convert msecs to ticks
2267 			adapter->keep_alive_timeout =
2268 				(hints->driver_watchdog_timeout *
2269 				rte_get_timer_hz()) / 1000;
2270 	}
2271 }
2272 
2273 static int ena_check_space_and_linearize_mbuf(struct ena_ring *tx_ring,
2274 					      struct rte_mbuf *mbuf)
2275 {
2276 	struct ena_com_dev *ena_dev;
2277 	int num_segments, header_len, rc;
2278 
2279 	ena_dev = &tx_ring->adapter->ena_dev;
2280 	num_segments = mbuf->nb_segs;
2281 	header_len = mbuf->data_len;
2282 
2283 	if (likely(num_segments < tx_ring->sgl_size))
2284 		goto checkspace;
2285 
2286 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
2287 	    (num_segments == tx_ring->sgl_size) &&
2288 	    (header_len < tx_ring->tx_max_header_size))
2289 		goto checkspace;
2290 
2291 	/* Checking for space for 2 additional metadata descriptors due to
2292 	 * possible header split and metadata descriptor. Linearization will
2293 	 * be needed so we reduce the segments number from num_segments to 1
2294 	 */
2295 	if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 3)) {
2296 		PMD_TX_LOG(DEBUG, "Not enough space in the Tx queue\n");
2297 		return ENA_COM_NO_MEM;
2298 	}
2299 	++tx_ring->tx_stats.linearize;
2300 	rc = rte_pktmbuf_linearize(mbuf);
2301 	if (unlikely(rc)) {
2302 		PMD_TX_LOG(WARNING, "Mbuf linearize failed\n");
2303 		rte_atomic64_inc(&tx_ring->adapter->drv_stats->ierrors);
2304 		++tx_ring->tx_stats.linearize_failed;
2305 		return rc;
2306 	}
2307 
2308 	return 0;
2309 
2310 checkspace:
2311 	/* Checking for space for 2 additional metadata descriptors due to
2312 	 * possible header split and metadata descriptor
2313 	 */
2314 	if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
2315 					  num_segments + 2)) {
2316 		PMD_TX_LOG(DEBUG, "Not enough space in the Tx queue\n");
2317 		return ENA_COM_NO_MEM;
2318 	}
2319 
2320 	return 0;
2321 }
2322 
2323 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
2324 	struct ena_tx_buffer *tx_info,
2325 	struct rte_mbuf *mbuf,
2326 	void **push_header,
2327 	uint16_t *header_len)
2328 {
2329 	struct ena_com_buf *ena_buf;
2330 	uint16_t delta, seg_len, push_len;
2331 
2332 	delta = 0;
2333 	seg_len = mbuf->data_len;
2334 
2335 	tx_info->mbuf = mbuf;
2336 	ena_buf = tx_info->bufs;
2337 
2338 	if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2339 		/*
2340 		 * Tx header might be (and will be in most cases) smaller than
2341 		 * tx_max_header_size. But it's not an issue to send more data
2342 		 * to the device, than actually needed if the mbuf size is
2343 		 * greater than tx_max_header_size.
2344 		 */
2345 		push_len = RTE_MIN(mbuf->pkt_len, tx_ring->tx_max_header_size);
2346 		*header_len = push_len;
2347 
2348 		if (likely(push_len <= seg_len)) {
2349 			/* If the push header is in the single segment, then
2350 			 * just point it to the 1st mbuf data.
2351 			 */
2352 			*push_header = rte_pktmbuf_mtod(mbuf, uint8_t *);
2353 		} else {
2354 			/* If the push header lays in the several segments, copy
2355 			 * it to the intermediate buffer.
2356 			 */
2357 			rte_pktmbuf_read(mbuf, 0, push_len,
2358 				tx_ring->push_buf_intermediate_buf);
2359 			*push_header = tx_ring->push_buf_intermediate_buf;
2360 			delta = push_len - seg_len;
2361 		}
2362 	} else {
2363 		*push_header = NULL;
2364 		*header_len = 0;
2365 		push_len = 0;
2366 	}
2367 
2368 	/* Process first segment taking into consideration pushed header */
2369 	if (seg_len > push_len) {
2370 		ena_buf->paddr = mbuf->buf_iova +
2371 				mbuf->data_off +
2372 				push_len;
2373 		ena_buf->len = seg_len - push_len;
2374 		ena_buf++;
2375 		tx_info->num_of_bufs++;
2376 	}
2377 
2378 	while ((mbuf = mbuf->next) != NULL) {
2379 		seg_len = mbuf->data_len;
2380 
2381 		/* Skip mbufs if whole data is pushed as a header */
2382 		if (unlikely(delta > seg_len)) {
2383 			delta -= seg_len;
2384 			continue;
2385 		}
2386 
2387 		ena_buf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
2388 		ena_buf->len = seg_len - delta;
2389 		ena_buf++;
2390 		tx_info->num_of_bufs++;
2391 
2392 		delta = 0;
2393 	}
2394 }
2395 
2396 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf)
2397 {
2398 	struct ena_tx_buffer *tx_info;
2399 	struct ena_com_tx_ctx ena_tx_ctx = { { 0 } };
2400 	uint16_t next_to_use;
2401 	uint16_t header_len;
2402 	uint16_t req_id;
2403 	void *push_header;
2404 	int nb_hw_desc;
2405 	int rc;
2406 
2407 	rc = ena_check_space_and_linearize_mbuf(tx_ring, mbuf);
2408 	if (unlikely(rc))
2409 		return rc;
2410 
2411 	next_to_use = tx_ring->next_to_use;
2412 
2413 	req_id = tx_ring->empty_tx_reqs[next_to_use];
2414 	tx_info = &tx_ring->tx_buffer_info[req_id];
2415 	tx_info->num_of_bufs = 0;
2416 
2417 	ena_tx_map_mbuf(tx_ring, tx_info, mbuf, &push_header, &header_len);
2418 
2419 	ena_tx_ctx.ena_bufs = tx_info->bufs;
2420 	ena_tx_ctx.push_header = push_header;
2421 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2422 	ena_tx_ctx.req_id = req_id;
2423 	ena_tx_ctx.header_len = header_len;
2424 
2425 	/* Set Tx offloads flags, if applicable */
2426 	ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads,
2427 		tx_ring->disable_meta_caching);
2428 
2429 	if (unlikely(ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
2430 			&ena_tx_ctx))) {
2431 		PMD_TX_LOG(DEBUG,
2432 			"LLQ Tx max burst size of queue %d achieved, writing doorbell to send burst\n",
2433 			tx_ring->id);
2434 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2435 		tx_ring->tx_stats.doorbells++;
2436 		tx_ring->pkts_without_db = false;
2437 	}
2438 
2439 	/* prepare the packet's descriptors to dma engine */
2440 	rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq,	&ena_tx_ctx,
2441 		&nb_hw_desc);
2442 	if (unlikely(rc)) {
2443 		PMD_DRV_LOG(ERR, "Failed to prepare Tx buffers, rc: %d\n", rc);
2444 		++tx_ring->tx_stats.prepare_ctx_err;
2445 		tx_ring->adapter->reset_reason =
2446 		    ENA_REGS_RESET_DRIVER_INVALID_STATE;
2447 		tx_ring->adapter->trigger_reset = true;
2448 		return rc;
2449 	}
2450 
2451 	tx_info->tx_descs = nb_hw_desc;
2452 
2453 	tx_ring->tx_stats.cnt++;
2454 	tx_ring->tx_stats.bytes += mbuf->pkt_len;
2455 
2456 	tx_ring->next_to_use = ENA_IDX_NEXT_MASKED(next_to_use,
2457 		tx_ring->size_mask);
2458 
2459 	return 0;
2460 }
2461 
2462 static void ena_tx_cleanup(struct ena_ring *tx_ring)
2463 {
2464 	unsigned int cleanup_budget;
2465 	unsigned int total_tx_descs = 0;
2466 	uint16_t next_to_clean = tx_ring->next_to_clean;
2467 
2468 	cleanup_budget = RTE_MIN(tx_ring->ring_size / ENA_REFILL_THRESH_DIVIDER,
2469 		(unsigned int)ENA_REFILL_THRESH_PACKET);
2470 
2471 	while (likely(total_tx_descs < cleanup_budget)) {
2472 		struct rte_mbuf *mbuf;
2473 		struct ena_tx_buffer *tx_info;
2474 		uint16_t req_id;
2475 
2476 		if (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) != 0)
2477 			break;
2478 
2479 		if (unlikely(validate_tx_req_id(tx_ring, req_id) != 0))
2480 			break;
2481 
2482 		/* Get Tx info & store how many descs were processed  */
2483 		tx_info = &tx_ring->tx_buffer_info[req_id];
2484 
2485 		mbuf = tx_info->mbuf;
2486 		rte_pktmbuf_free(mbuf);
2487 
2488 		tx_info->mbuf = NULL;
2489 		tx_ring->empty_tx_reqs[next_to_clean] = req_id;
2490 
2491 		total_tx_descs += tx_info->tx_descs;
2492 
2493 		/* Put back descriptor to the ring for reuse */
2494 		next_to_clean = ENA_IDX_NEXT_MASKED(next_to_clean,
2495 			tx_ring->size_mask);
2496 	}
2497 
2498 	if (likely(total_tx_descs > 0)) {
2499 		/* acknowledge completion of sent packets */
2500 		tx_ring->next_to_clean = next_to_clean;
2501 		ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
2502 		ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
2503 	}
2504 }
2505 
2506 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2507 				  uint16_t nb_pkts)
2508 {
2509 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2510 	uint16_t sent_idx = 0;
2511 
2512 #ifdef RTE_ETHDEV_DEBUG_TX
2513 	/* Check adapter state */
2514 	if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2515 		PMD_TX_LOG(ALERT,
2516 			"Trying to xmit pkts while device is NOT running\n");
2517 		return 0;
2518 	}
2519 #endif
2520 
2521 	for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
2522 		if (ena_xmit_mbuf(tx_ring, tx_pkts[sent_idx]))
2523 			break;
2524 		tx_ring->pkts_without_db = true;
2525 		rte_prefetch0(tx_pkts[ENA_IDX_ADD_MASKED(sent_idx, 4,
2526 			tx_ring->size_mask)]);
2527 	}
2528 
2529 	tx_ring->tx_stats.available_desc =
2530 		ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2531 
2532 	/* If there are ready packets to be xmitted... */
2533 	if (likely(tx_ring->pkts_without_db)) {
2534 		/* ...let HW do its best :-) */
2535 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2536 		tx_ring->tx_stats.doorbells++;
2537 		tx_ring->pkts_without_db = false;
2538 	}
2539 
2540 	ena_tx_cleanup(tx_ring);
2541 
2542 	tx_ring->tx_stats.available_desc =
2543 		ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2544 	tx_ring->tx_stats.tx_poll++;
2545 
2546 	return sent_idx;
2547 }
2548 
2549 int ena_copy_eni_stats(struct ena_adapter *adapter)
2550 {
2551 	struct ena_admin_eni_stats admin_eni_stats;
2552 	int rc;
2553 
2554 	rte_spinlock_lock(&adapter->admin_lock);
2555 	rc = ena_com_get_eni_stats(&adapter->ena_dev, &admin_eni_stats);
2556 	rte_spinlock_unlock(&adapter->admin_lock);
2557 	if (rc != 0) {
2558 		if (rc == ENA_COM_UNSUPPORTED) {
2559 			PMD_DRV_LOG(DEBUG,
2560 				"Retrieving ENI metrics is not supported\n");
2561 		} else {
2562 			PMD_DRV_LOG(WARNING,
2563 				"Failed to get ENI metrics, rc: %d\n", rc);
2564 		}
2565 		return rc;
2566 	}
2567 
2568 	rte_memcpy(&adapter->eni_stats, &admin_eni_stats,
2569 		sizeof(struct ena_stats_eni));
2570 
2571 	return 0;
2572 }
2573 
2574 /**
2575  * DPDK callback to retrieve names of extended device statistics
2576  *
2577  * @param dev
2578  *   Pointer to Ethernet device structure.
2579  * @param[out] xstats_names
2580  *   Buffer to insert names into.
2581  * @param n
2582  *   Number of names.
2583  *
2584  * @return
2585  *   Number of xstats names.
2586  */
2587 static int ena_xstats_get_names(struct rte_eth_dev *dev,
2588 				struct rte_eth_xstat_name *xstats_names,
2589 				unsigned int n)
2590 {
2591 	unsigned int xstats_count = ena_xstats_calc_num(dev->data);
2592 	unsigned int stat, i, count = 0;
2593 
2594 	if (n < xstats_count || !xstats_names)
2595 		return xstats_count;
2596 
2597 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
2598 		strcpy(xstats_names[count].name,
2599 			ena_stats_global_strings[stat].name);
2600 
2601 	for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++)
2602 		strcpy(xstats_names[count].name,
2603 			ena_stats_eni_strings[stat].name);
2604 
2605 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
2606 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
2607 			snprintf(xstats_names[count].name,
2608 				sizeof(xstats_names[count].name),
2609 				"rx_q%d_%s", i,
2610 				ena_stats_rx_strings[stat].name);
2611 
2612 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
2613 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
2614 			snprintf(xstats_names[count].name,
2615 				sizeof(xstats_names[count].name),
2616 				"tx_q%d_%s", i,
2617 				ena_stats_tx_strings[stat].name);
2618 
2619 	return xstats_count;
2620 }
2621 
2622 /**
2623  * DPDK callback to get extended device statistics.
2624  *
2625  * @param dev
2626  *   Pointer to Ethernet device structure.
2627  * @param[out] stats
2628  *   Stats table output buffer.
2629  * @param n
2630  *   The size of the stats table.
2631  *
2632  * @return
2633  *   Number of xstats on success, negative on failure.
2634  */
2635 static int ena_xstats_get(struct rte_eth_dev *dev,
2636 			  struct rte_eth_xstat *xstats,
2637 			  unsigned int n)
2638 {
2639 	struct ena_adapter *adapter = dev->data->dev_private;
2640 	unsigned int xstats_count = ena_xstats_calc_num(dev->data);
2641 	unsigned int stat, i, count = 0;
2642 	int stat_offset;
2643 	void *stats_begin;
2644 
2645 	if (n < xstats_count)
2646 		return xstats_count;
2647 
2648 	if (!xstats)
2649 		return 0;
2650 
2651 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
2652 		stat_offset = ena_stats_global_strings[stat].stat_offset;
2653 		stats_begin = &adapter->dev_stats;
2654 
2655 		xstats[count].id = count;
2656 		xstats[count].value = *((uint64_t *)
2657 			((char *)stats_begin + stat_offset));
2658 	}
2659 
2660 	/* Even if the function below fails, we should copy previous (or initial
2661 	 * values) to keep structure of rte_eth_xstat consistent.
2662 	 */
2663 	ena_copy_eni_stats(adapter);
2664 	for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++) {
2665 		stat_offset = ena_stats_eni_strings[stat].stat_offset;
2666 		stats_begin = &adapter->eni_stats;
2667 
2668 		xstats[count].id = count;
2669 		xstats[count].value = *((uint64_t *)
2670 		    ((char *)stats_begin + stat_offset));
2671 	}
2672 
2673 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
2674 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
2675 			stat_offset = ena_stats_rx_strings[stat].stat_offset;
2676 			stats_begin = &adapter->rx_ring[i].rx_stats;
2677 
2678 			xstats[count].id = count;
2679 			xstats[count].value = *((uint64_t *)
2680 				((char *)stats_begin + stat_offset));
2681 		}
2682 	}
2683 
2684 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
2685 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
2686 			stat_offset = ena_stats_tx_strings[stat].stat_offset;
2687 			stats_begin = &adapter->tx_ring[i].rx_stats;
2688 
2689 			xstats[count].id = count;
2690 			xstats[count].value = *((uint64_t *)
2691 				((char *)stats_begin + stat_offset));
2692 		}
2693 	}
2694 
2695 	return count;
2696 }
2697 
2698 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
2699 				const uint64_t *ids,
2700 				uint64_t *values,
2701 				unsigned int n)
2702 {
2703 	struct ena_adapter *adapter = dev->data->dev_private;
2704 	uint64_t id;
2705 	uint64_t rx_entries, tx_entries;
2706 	unsigned int i;
2707 	int qid;
2708 	int valid = 0;
2709 	bool was_eni_copied = false;
2710 
2711 	for (i = 0; i < n; ++i) {
2712 		id = ids[i];
2713 		/* Check if id belongs to global statistics */
2714 		if (id < ENA_STATS_ARRAY_GLOBAL) {
2715 			values[i] = *((uint64_t *)&adapter->dev_stats + id);
2716 			++valid;
2717 			continue;
2718 		}
2719 
2720 		/* Check if id belongs to ENI statistics */
2721 		id -= ENA_STATS_ARRAY_GLOBAL;
2722 		if (id < ENA_STATS_ARRAY_ENI) {
2723 			/* Avoid reading ENI stats multiple times in a single
2724 			 * function call, as it requires communication with the
2725 			 * admin queue.
2726 			 */
2727 			if (!was_eni_copied) {
2728 				was_eni_copied = true;
2729 				ena_copy_eni_stats(adapter);
2730 			}
2731 			values[i] = *((uint64_t *)&adapter->eni_stats + id);
2732 			++valid;
2733 			continue;
2734 		}
2735 
2736 		/* Check if id belongs to rx queue statistics */
2737 		id -= ENA_STATS_ARRAY_ENI;
2738 		rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
2739 		if (id < rx_entries) {
2740 			qid = id % dev->data->nb_rx_queues;
2741 			id /= dev->data->nb_rx_queues;
2742 			values[i] = *((uint64_t *)
2743 				&adapter->rx_ring[qid].rx_stats + id);
2744 			++valid;
2745 			continue;
2746 		}
2747 				/* Check if id belongs to rx queue statistics */
2748 		id -= rx_entries;
2749 		tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
2750 		if (id < tx_entries) {
2751 			qid = id % dev->data->nb_tx_queues;
2752 			id /= dev->data->nb_tx_queues;
2753 			values[i] = *((uint64_t *)
2754 				&adapter->tx_ring[qid].tx_stats + id);
2755 			++valid;
2756 			continue;
2757 		}
2758 	}
2759 
2760 	return valid;
2761 }
2762 
2763 static int ena_process_bool_devarg(const char *key,
2764 				   const char *value,
2765 				   void *opaque)
2766 {
2767 	struct ena_adapter *adapter = opaque;
2768 	bool bool_value;
2769 
2770 	/* Parse the value. */
2771 	if (strcmp(value, "1") == 0) {
2772 		bool_value = true;
2773 	} else if (strcmp(value, "0") == 0) {
2774 		bool_value = false;
2775 	} else {
2776 		PMD_INIT_LOG(ERR,
2777 			"Invalid value: '%s' for key '%s'. Accepted: '0' or '1'\n",
2778 			value, key);
2779 		return -EINVAL;
2780 	}
2781 
2782 	/* Now, assign it to the proper adapter field. */
2783 	if (strcmp(key, ENA_DEVARG_LARGE_LLQ_HDR) == 0)
2784 		adapter->use_large_llq_hdr = bool_value;
2785 
2786 	return 0;
2787 }
2788 
2789 static int ena_parse_devargs(struct ena_adapter *adapter,
2790 			     struct rte_devargs *devargs)
2791 {
2792 	static const char * const allowed_args[] = {
2793 		ENA_DEVARG_LARGE_LLQ_HDR,
2794 		NULL,
2795 	};
2796 	struct rte_kvargs *kvlist;
2797 	int rc;
2798 
2799 	if (devargs == NULL)
2800 		return 0;
2801 
2802 	kvlist = rte_kvargs_parse(devargs->args, allowed_args);
2803 	if (kvlist == NULL) {
2804 		PMD_INIT_LOG(ERR, "Invalid device arguments: %s\n",
2805 			devargs->args);
2806 		return -EINVAL;
2807 	}
2808 
2809 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_LARGE_LLQ_HDR,
2810 		ena_process_bool_devarg, adapter);
2811 
2812 	rte_kvargs_free(kvlist);
2813 
2814 	return rc;
2815 }
2816 
2817 static int ena_setup_rx_intr(struct rte_eth_dev *dev)
2818 {
2819 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2820 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2821 	int rc;
2822 	uint16_t vectors_nb, i;
2823 	bool rx_intr_requested = dev->data->dev_conf.intr_conf.rxq;
2824 
2825 	if (!rx_intr_requested)
2826 		return 0;
2827 
2828 	if (!rte_intr_cap_multiple(intr_handle)) {
2829 		PMD_DRV_LOG(ERR,
2830 			"Rx interrupt requested, but it isn't supported by the PCI driver\n");
2831 		return -ENOTSUP;
2832 	}
2833 
2834 	/* Disable interrupt mapping before the configuration starts. */
2835 	rte_intr_disable(intr_handle);
2836 
2837 	/* Verify if there are enough vectors available. */
2838 	vectors_nb = dev->data->nb_rx_queues;
2839 	if (vectors_nb > RTE_MAX_RXTX_INTR_VEC_ID) {
2840 		PMD_DRV_LOG(ERR,
2841 			"Too many Rx interrupts requested, maximum number: %d\n",
2842 			RTE_MAX_RXTX_INTR_VEC_ID);
2843 		rc = -ENOTSUP;
2844 		goto enable_intr;
2845 	}
2846 
2847 	intr_handle->intr_vec =	rte_zmalloc("intr_vec",
2848 		dev->data->nb_rx_queues * sizeof(*intr_handle->intr_vec), 0);
2849 	if (intr_handle->intr_vec == NULL) {
2850 		PMD_DRV_LOG(ERR,
2851 			"Failed to allocate interrupt vector for %d queues\n",
2852 			dev->data->nb_rx_queues);
2853 		rc = -ENOMEM;
2854 		goto enable_intr;
2855 	}
2856 
2857 	rc = rte_intr_efd_enable(intr_handle, vectors_nb);
2858 	if (rc != 0)
2859 		goto free_intr_vec;
2860 
2861 	if (!rte_intr_allow_others(intr_handle)) {
2862 		PMD_DRV_LOG(ERR,
2863 			"Not enough interrupts available to use both ENA Admin and Rx interrupts\n");
2864 		goto disable_intr_efd;
2865 	}
2866 
2867 	for (i = 0; i < vectors_nb; ++i)
2868 		intr_handle->intr_vec[i] = RTE_INTR_VEC_RXTX_OFFSET + i;
2869 
2870 	rte_intr_enable(intr_handle);
2871 	return 0;
2872 
2873 disable_intr_efd:
2874 	rte_intr_efd_disable(intr_handle);
2875 free_intr_vec:
2876 	rte_free(intr_handle->intr_vec);
2877 	intr_handle->intr_vec = NULL;
2878 enable_intr:
2879 	rte_intr_enable(intr_handle);
2880 	return rc;
2881 }
2882 
2883 static void ena_rx_queue_intr_set(struct rte_eth_dev *dev,
2884 				 uint16_t queue_id,
2885 				 bool unmask)
2886 {
2887 	struct ena_adapter *adapter = dev->data->dev_private;
2888 	struct ena_ring *rxq = &adapter->rx_ring[queue_id];
2889 	struct ena_eth_io_intr_reg intr_reg;
2890 
2891 	ena_com_update_intr_reg(&intr_reg, 0, 0, unmask);
2892 	ena_com_unmask_intr(rxq->ena_com_io_cq, &intr_reg);
2893 }
2894 
2895 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
2896 				    uint16_t queue_id)
2897 {
2898 	ena_rx_queue_intr_set(dev, queue_id, true);
2899 
2900 	return 0;
2901 }
2902 
2903 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
2904 				     uint16_t queue_id)
2905 {
2906 	ena_rx_queue_intr_set(dev, queue_id, false);
2907 
2908 	return 0;
2909 }
2910 
2911 /*********************************************************************
2912  *  PMD configuration
2913  *********************************************************************/
2914 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2915 	struct rte_pci_device *pci_dev)
2916 {
2917 	return rte_eth_dev_pci_generic_probe(pci_dev,
2918 		sizeof(struct ena_adapter), eth_ena_dev_init);
2919 }
2920 
2921 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
2922 {
2923 	return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
2924 }
2925 
2926 static struct rte_pci_driver rte_ena_pmd = {
2927 	.id_table = pci_id_ena_map,
2928 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
2929 		     RTE_PCI_DRV_WC_ACTIVATE,
2930 	.probe = eth_ena_pci_probe,
2931 	.remove = eth_ena_pci_remove,
2932 };
2933 
2934 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
2935 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
2936 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
2937 RTE_PMD_REGISTER_PARAM_STRING(net_ena, ENA_DEVARG_LARGE_LLQ_HDR "=<0|1>");
2938 RTE_LOG_REGISTER_SUFFIX(ena_logtype_init, init, NOTICE);
2939 RTE_LOG_REGISTER_SUFFIX(ena_logtype_driver, driver, NOTICE);
2940 #ifdef RTE_ETHDEV_DEBUG_RX
2941 RTE_LOG_REGISTER_SUFFIX(ena_logtype_rx, rx, DEBUG);
2942 #endif
2943 #ifdef RTE_ETHDEV_DEBUG_TX
2944 RTE_LOG_REGISTER_SUFFIX(ena_logtype_tx, tx, DEBUG);
2945 #endif
2946 RTE_LOG_REGISTER_SUFFIX(ena_logtype_com, com, WARNING);
2947 
2948 /******************************************************************************
2949  ******************************** AENQ Handlers *******************************
2950  *****************************************************************************/
2951 static void ena_update_on_link_change(void *adapter_data,
2952 				      struct ena_admin_aenq_entry *aenq_e)
2953 {
2954 	struct rte_eth_dev *eth_dev = adapter_data;
2955 	struct ena_adapter *adapter = eth_dev->data->dev_private;
2956 	struct ena_admin_aenq_link_change_desc *aenq_link_desc;
2957 	uint32_t status;
2958 
2959 	aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
2960 
2961 	status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
2962 	adapter->link_status = status;
2963 
2964 	ena_link_update(eth_dev, 0);
2965 	rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
2966 }
2967 
2968 static void ena_notification(void *adapter_data,
2969 			     struct ena_admin_aenq_entry *aenq_e)
2970 {
2971 	struct rte_eth_dev *eth_dev = adapter_data;
2972 	struct ena_adapter *adapter = eth_dev->data->dev_private;
2973 	struct ena_admin_ena_hw_hints *hints;
2974 
2975 	if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
2976 		PMD_DRV_LOG(WARNING, "Invalid AENQ group: %x. Expected: %x\n",
2977 			aenq_e->aenq_common_desc.group,
2978 			ENA_ADMIN_NOTIFICATION);
2979 
2980 	switch (aenq_e->aenq_common_desc.syndrome) {
2981 	case ENA_ADMIN_UPDATE_HINTS:
2982 		hints = (struct ena_admin_ena_hw_hints *)
2983 			(&aenq_e->inline_data_w4);
2984 		ena_update_hints(adapter, hints);
2985 		break;
2986 	default:
2987 		PMD_DRV_LOG(ERR, "Invalid AENQ notification link state: %d\n",
2988 			aenq_e->aenq_common_desc.syndrome);
2989 	}
2990 }
2991 
2992 static void ena_keep_alive(void *adapter_data,
2993 			   __rte_unused struct ena_admin_aenq_entry *aenq_e)
2994 {
2995 	struct rte_eth_dev *eth_dev = adapter_data;
2996 	struct ena_adapter *adapter = eth_dev->data->dev_private;
2997 	struct ena_admin_aenq_keep_alive_desc *desc;
2998 	uint64_t rx_drops;
2999 	uint64_t tx_drops;
3000 
3001 	adapter->timestamp_wd = rte_get_timer_cycles();
3002 
3003 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
3004 	rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
3005 	tx_drops = ((uint64_t)desc->tx_drops_high << 32) | desc->tx_drops_low;
3006 
3007 	adapter->drv_stats->rx_drops = rx_drops;
3008 	adapter->dev_stats.tx_drops = tx_drops;
3009 }
3010 
3011 /**
3012  * This handler will called for unknown event group or unimplemented handlers
3013  **/
3014 static void unimplemented_aenq_handler(__rte_unused void *data,
3015 				       __rte_unused struct ena_admin_aenq_entry *aenq_e)
3016 {
3017 	PMD_DRV_LOG(ERR,
3018 		"Unknown event was received or event with unimplemented handler\n");
3019 }
3020 
3021 static struct ena_aenq_handlers aenq_handlers = {
3022 	.handlers = {
3023 		[ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
3024 		[ENA_ADMIN_NOTIFICATION] = ena_notification,
3025 		[ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive
3026 	},
3027 	.unimplemented_handler = unimplemented_aenq_handler
3028 };
3029