xref: /dpdk/drivers/net/ena/ena_ethdev.c (revision cc0c5d251928fbd4e7c9b58fc8458d5450258081)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
3  * All rights reserved.
4  */
5 
6 #include <rte_string_fns.h>
7 #include <rte_errno.h>
8 #include <rte_version.h>
9 #include <rte_net.h>
10 #include <rte_kvargs.h>
11 
12 #include "ena_ethdev.h"
13 #include "ena_logs.h"
14 #include "ena_platform.h"
15 #include "ena_com.h"
16 #include "ena_eth_com.h"
17 
18 #include <ena_common_defs.h>
19 #include <ena_regs_defs.h>
20 #include <ena_admin_defs.h>
21 #include <ena_eth_io_defs.h>
22 
23 #define DRV_MODULE_VER_MAJOR	2
24 #define DRV_MODULE_VER_MINOR	5
25 #define DRV_MODULE_VER_SUBMINOR	0
26 
27 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
28 
29 #define GET_L4_HDR_LEN(mbuf)					\
30 	((rte_pktmbuf_mtod_offset(mbuf,	struct rte_tcp_hdr *,	\
31 		mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
32 
33 #define ETH_GSTRING_LEN	32
34 
35 #define ARRAY_SIZE(x) RTE_DIM(x)
36 
37 #define ENA_MIN_RING_DESC	128
38 
39 #define ENA_PTYPE_HAS_HASH	(RTE_PTYPE_L4_TCP | RTE_PTYPE_L4_UDP)
40 
41 struct ena_stats {
42 	char name[ETH_GSTRING_LEN];
43 	int stat_offset;
44 };
45 
46 #define ENA_STAT_ENTRY(stat, stat_type) { \
47 	.name = #stat, \
48 	.stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
49 }
50 
51 #define ENA_STAT_RX_ENTRY(stat) \
52 	ENA_STAT_ENTRY(stat, rx)
53 
54 #define ENA_STAT_TX_ENTRY(stat) \
55 	ENA_STAT_ENTRY(stat, tx)
56 
57 #define ENA_STAT_ENI_ENTRY(stat) \
58 	ENA_STAT_ENTRY(stat, eni)
59 
60 #define ENA_STAT_GLOBAL_ENTRY(stat) \
61 	ENA_STAT_ENTRY(stat, dev)
62 
63 /* Device arguments */
64 #define ENA_DEVARG_LARGE_LLQ_HDR "large_llq_hdr"
65 /* Timeout in seconds after which a single uncompleted Tx packet should be
66  * considered as a missing.
67  */
68 #define ENA_DEVARG_MISS_TXC_TO "miss_txc_to"
69 
70 /*
71  * Each rte_memzone should have unique name.
72  * To satisfy it, count number of allocation and add it to name.
73  */
74 rte_atomic64_t ena_alloc_cnt;
75 
76 static const struct ena_stats ena_stats_global_strings[] = {
77 	ENA_STAT_GLOBAL_ENTRY(wd_expired),
78 	ENA_STAT_GLOBAL_ENTRY(dev_start),
79 	ENA_STAT_GLOBAL_ENTRY(dev_stop),
80 	ENA_STAT_GLOBAL_ENTRY(tx_drops),
81 };
82 
83 static const struct ena_stats ena_stats_eni_strings[] = {
84 	ENA_STAT_ENI_ENTRY(bw_in_allowance_exceeded),
85 	ENA_STAT_ENI_ENTRY(bw_out_allowance_exceeded),
86 	ENA_STAT_ENI_ENTRY(pps_allowance_exceeded),
87 	ENA_STAT_ENI_ENTRY(conntrack_allowance_exceeded),
88 	ENA_STAT_ENI_ENTRY(linklocal_allowance_exceeded),
89 };
90 
91 static const struct ena_stats ena_stats_tx_strings[] = {
92 	ENA_STAT_TX_ENTRY(cnt),
93 	ENA_STAT_TX_ENTRY(bytes),
94 	ENA_STAT_TX_ENTRY(prepare_ctx_err),
95 	ENA_STAT_TX_ENTRY(tx_poll),
96 	ENA_STAT_TX_ENTRY(doorbells),
97 	ENA_STAT_TX_ENTRY(bad_req_id),
98 	ENA_STAT_TX_ENTRY(available_desc),
99 	ENA_STAT_TX_ENTRY(missed_tx),
100 };
101 
102 static const struct ena_stats ena_stats_rx_strings[] = {
103 	ENA_STAT_RX_ENTRY(cnt),
104 	ENA_STAT_RX_ENTRY(bytes),
105 	ENA_STAT_RX_ENTRY(refill_partial),
106 	ENA_STAT_RX_ENTRY(l3_csum_bad),
107 	ENA_STAT_RX_ENTRY(l4_csum_bad),
108 	ENA_STAT_RX_ENTRY(l4_csum_good),
109 	ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
110 	ENA_STAT_RX_ENTRY(bad_desc_num),
111 	ENA_STAT_RX_ENTRY(bad_req_id),
112 };
113 
114 #define ENA_STATS_ARRAY_GLOBAL	ARRAY_SIZE(ena_stats_global_strings)
115 #define ENA_STATS_ARRAY_ENI	ARRAY_SIZE(ena_stats_eni_strings)
116 #define ENA_STATS_ARRAY_TX	ARRAY_SIZE(ena_stats_tx_strings)
117 #define ENA_STATS_ARRAY_RX	ARRAY_SIZE(ena_stats_rx_strings)
118 
119 #define QUEUE_OFFLOADS (RTE_ETH_TX_OFFLOAD_TCP_CKSUM |\
120 			RTE_ETH_TX_OFFLOAD_UDP_CKSUM |\
121 			RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |\
122 			RTE_ETH_TX_OFFLOAD_TCP_TSO)
123 #define MBUF_OFFLOADS (RTE_MBUF_F_TX_L4_MASK |\
124 		       RTE_MBUF_F_TX_IP_CKSUM |\
125 		       RTE_MBUF_F_TX_TCP_SEG)
126 
127 /** Vendor ID used by Amazon devices */
128 #define PCI_VENDOR_ID_AMAZON 0x1D0F
129 /** Amazon devices */
130 #define PCI_DEVICE_ID_ENA_VF		0xEC20
131 #define PCI_DEVICE_ID_ENA_VF_RSERV0	0xEC21
132 
133 #define	ENA_TX_OFFLOAD_MASK	(RTE_MBUF_F_TX_L4_MASK |         \
134 	RTE_MBUF_F_TX_IPV6 |            \
135 	RTE_MBUF_F_TX_IPV4 |            \
136 	RTE_MBUF_F_TX_IP_CKSUM |        \
137 	RTE_MBUF_F_TX_TCP_SEG)
138 
139 #define	ENA_TX_OFFLOAD_NOTSUP_MASK	\
140 	(RTE_MBUF_F_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
141 
142 /** HW specific offloads capabilities. */
143 /* IPv4 checksum offload. */
144 #define ENA_L3_IPV4_CSUM		0x0001
145 /* TCP/UDP checksum offload for IPv4 packets. */
146 #define ENA_L4_IPV4_CSUM		0x0002
147 /* TCP/UDP checksum offload for IPv4 packets with pseudo header checksum. */
148 #define ENA_L4_IPV4_CSUM_PARTIAL	0x0004
149 /* TCP/UDP checksum offload for IPv6 packets. */
150 #define ENA_L4_IPV6_CSUM		0x0008
151 /* TCP/UDP checksum offload for IPv6 packets with pseudo header checksum. */
152 #define ENA_L4_IPV6_CSUM_PARTIAL	0x0010
153 /* TSO support for IPv4 packets. */
154 #define ENA_IPV4_TSO			0x0020
155 
156 /* Device supports setting RSS hash. */
157 #define ENA_RX_RSS_HASH			0x0040
158 
159 static const struct rte_pci_id pci_id_ena_map[] = {
160 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
161 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF_RSERV0) },
162 	{ .device_id = 0 },
163 };
164 
165 static struct ena_aenq_handlers aenq_handlers;
166 
167 static int ena_device_init(struct ena_adapter *adapter,
168 			   struct rte_pci_device *pdev,
169 			   struct ena_com_dev_get_features_ctx *get_feat_ctx);
170 static int ena_dev_configure(struct rte_eth_dev *dev);
171 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
172 	struct ena_tx_buffer *tx_info,
173 	struct rte_mbuf *mbuf,
174 	void **push_header,
175 	uint16_t *header_len);
176 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf);
177 static int ena_tx_cleanup(void *txp, uint32_t free_pkt_cnt);
178 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
179 				  uint16_t nb_pkts);
180 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
181 		uint16_t nb_pkts);
182 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
183 			      uint16_t nb_desc, unsigned int socket_id,
184 			      const struct rte_eth_txconf *tx_conf);
185 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
186 			      uint16_t nb_desc, unsigned int socket_id,
187 			      const struct rte_eth_rxconf *rx_conf,
188 			      struct rte_mempool *mp);
189 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len);
190 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
191 				    struct ena_com_rx_buf_info *ena_bufs,
192 				    uint32_t descs,
193 				    uint16_t *next_to_clean,
194 				    uint8_t offset);
195 static uint16_t eth_ena_recv_pkts(void *rx_queue,
196 				  struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
197 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
198 				  struct rte_mbuf *mbuf, uint16_t id);
199 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
200 static void ena_init_rings(struct ena_adapter *adapter,
201 			   bool disable_meta_caching);
202 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
203 static int ena_start(struct rte_eth_dev *dev);
204 static int ena_stop(struct rte_eth_dev *dev);
205 static int ena_close(struct rte_eth_dev *dev);
206 static int ena_dev_reset(struct rte_eth_dev *dev);
207 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
208 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
209 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
210 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
211 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
212 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
213 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
214 static int ena_link_update(struct rte_eth_dev *dev,
215 			   int wait_to_complete);
216 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring);
217 static void ena_queue_stop(struct ena_ring *ring);
218 static void ena_queue_stop_all(struct rte_eth_dev *dev,
219 			      enum ena_ring_type ring_type);
220 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring);
221 static int ena_queue_start_all(struct rte_eth_dev *dev,
222 			       enum ena_ring_type ring_type);
223 static void ena_stats_restart(struct rte_eth_dev *dev);
224 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter);
225 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter);
226 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter);
227 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter);
228 static int ena_infos_get(struct rte_eth_dev *dev,
229 			 struct rte_eth_dev_info *dev_info);
230 static void ena_interrupt_handler_rte(void *cb_arg);
231 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
232 static void ena_destroy_device(struct rte_eth_dev *eth_dev);
233 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
234 static int ena_xstats_get_names(struct rte_eth_dev *dev,
235 				struct rte_eth_xstat_name *xstats_names,
236 				unsigned int n);
237 static int ena_xstats_get_names_by_id(struct rte_eth_dev *dev,
238 				      const uint64_t *ids,
239 				      struct rte_eth_xstat_name *xstats_names,
240 				      unsigned int size);
241 static int ena_xstats_get(struct rte_eth_dev *dev,
242 			  struct rte_eth_xstat *stats,
243 			  unsigned int n);
244 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
245 				const uint64_t *ids,
246 				uint64_t *values,
247 				unsigned int n);
248 static int ena_process_bool_devarg(const char *key,
249 				   const char *value,
250 				   void *opaque);
251 static int ena_parse_devargs(struct ena_adapter *adapter,
252 			     struct rte_devargs *devargs);
253 static int ena_copy_eni_stats(struct ena_adapter *adapter,
254 			      struct ena_stats_eni *stats);
255 static int ena_setup_rx_intr(struct rte_eth_dev *dev);
256 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
257 				    uint16_t queue_id);
258 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
259 				     uint16_t queue_id);
260 static int ena_configure_aenq(struct ena_adapter *adapter);
261 static int ena_mp_primary_handle(const struct rte_mp_msg *mp_msg,
262 				 const void *peer);
263 
264 static const struct eth_dev_ops ena_dev_ops = {
265 	.dev_configure          = ena_dev_configure,
266 	.dev_infos_get          = ena_infos_get,
267 	.rx_queue_setup         = ena_rx_queue_setup,
268 	.tx_queue_setup         = ena_tx_queue_setup,
269 	.dev_start              = ena_start,
270 	.dev_stop               = ena_stop,
271 	.link_update            = ena_link_update,
272 	.stats_get              = ena_stats_get,
273 	.xstats_get_names       = ena_xstats_get_names,
274 	.xstats_get_names_by_id = ena_xstats_get_names_by_id,
275 	.xstats_get             = ena_xstats_get,
276 	.xstats_get_by_id       = ena_xstats_get_by_id,
277 	.mtu_set                = ena_mtu_set,
278 	.rx_queue_release       = ena_rx_queue_release,
279 	.tx_queue_release       = ena_tx_queue_release,
280 	.dev_close              = ena_close,
281 	.dev_reset              = ena_dev_reset,
282 	.reta_update            = ena_rss_reta_update,
283 	.reta_query             = ena_rss_reta_query,
284 	.rx_queue_intr_enable   = ena_rx_queue_intr_enable,
285 	.rx_queue_intr_disable  = ena_rx_queue_intr_disable,
286 	.rss_hash_update        = ena_rss_hash_update,
287 	.rss_hash_conf_get      = ena_rss_hash_conf_get,
288 	.tx_done_cleanup        = ena_tx_cleanup,
289 };
290 
291 /*********************************************************************
292  *  Multi-Process communication bits
293  *********************************************************************/
294 /* rte_mp IPC message name */
295 #define ENA_MP_NAME	"net_ena_mp"
296 /* Request timeout in seconds */
297 #define ENA_MP_REQ_TMO	5
298 
299 /** Proxy request type */
300 enum ena_mp_req {
301 	ENA_MP_DEV_STATS_GET,
302 	ENA_MP_ENI_STATS_GET,
303 	ENA_MP_MTU_SET,
304 	ENA_MP_IND_TBL_GET,
305 	ENA_MP_IND_TBL_SET
306 };
307 
308 /** Proxy message body. Shared between requests and responses. */
309 struct ena_mp_body {
310 	/* Message type */
311 	enum ena_mp_req type;
312 	int port_id;
313 	/* Processing result. Set in replies. 0 if message succeeded, negative
314 	 * error code otherwise.
315 	 */
316 	int result;
317 	union {
318 		int mtu; /* For ENA_MP_MTU_SET */
319 	} args;
320 };
321 
322 /**
323  * Initialize IPC message.
324  *
325  * @param[out] msg
326  *   Pointer to the message to initialize.
327  * @param[in] type
328  *   Message type.
329  * @param[in] port_id
330  *   Port ID of target device.
331  *
332  */
333 static void
334 mp_msg_init(struct rte_mp_msg *msg, enum ena_mp_req type, int port_id)
335 {
336 	struct ena_mp_body *body = (struct ena_mp_body *)&msg->param;
337 
338 	memset(msg, 0, sizeof(*msg));
339 	strlcpy(msg->name, ENA_MP_NAME, sizeof(msg->name));
340 	msg->len_param = sizeof(*body);
341 	body->type = type;
342 	body->port_id = port_id;
343 }
344 
345 /*********************************************************************
346  *  Multi-Process communication PMD API
347  *********************************************************************/
348 /**
349  * Define proxy request descriptor
350  *
351  * Used to define all structures and functions required for proxying a given
352  * function to the primary process including the code to perform to prepare the
353  * request and process the response.
354  *
355  * @param[in] f
356  *   Name of the function to proxy
357  * @param[in] t
358  *   Message type to use
359  * @param[in] prep
360  *   Body of a function to prepare the request in form of a statement
361  *   expression. It is passed all the original function arguments along with two
362  *   extra ones:
363  *   - struct ena_adapter *adapter - PMD data of the device calling the proxy.
364  *   - struct ena_mp_body *req - body of a request to prepare.
365  * @param[in] proc
366  *   Body of a function to process the response in form of a statement
367  *   expression. It is passed all the original function arguments along with two
368  *   extra ones:
369  *   - struct ena_adapter *adapter - PMD data of the device calling the proxy.
370  *   - struct ena_mp_body *rsp - body of a response to process.
371  * @param ...
372  *   Proxied function's arguments
373  *
374  * @note Inside prep and proc any parameters which aren't used should be marked
375  *       as such (with ENA_TOUCH or __rte_unused).
376  */
377 #define ENA_PROXY_DESC(f, t, prep, proc, ...)			\
378 	static const enum ena_mp_req mp_type_ ## f =  t;	\
379 	static const char *mp_name_ ## f = #t;			\
380 	static void mp_prep_ ## f(struct ena_adapter *adapter,	\
381 				  struct ena_mp_body *req,	\
382 				  __VA_ARGS__)			\
383 	{							\
384 		prep;						\
385 	}							\
386 	static void mp_proc_ ## f(struct ena_adapter *adapter,	\
387 				  struct ena_mp_body *rsp,	\
388 				  __VA_ARGS__)			\
389 	{							\
390 		proc;						\
391 	}
392 
393 /**
394  * Proxy wrapper for calling primary functions in a secondary process.
395  *
396  * Depending on whether called in primary or secondary process, calls the
397  * @p func directly or proxies the call to the primary process via rte_mp IPC.
398  * This macro requires a proxy request descriptor to be defined for @p func
399  * using ENA_PROXY_DESC() macro.
400  *
401  * @param[in/out] a
402  *   Device PMD data. Used for sending the message and sharing message results
403  *   between primary and secondary.
404  * @param[in] f
405  *   Function to proxy.
406  * @param ...
407  *   Arguments of @p func.
408  *
409  * @return
410  *   - 0: Processing succeeded and response handler was called.
411  *   - -EPERM: IPC is unavailable on this platform. This means only primary
412  *             process may call the proxied function.
413  *   - -EIO:   IPC returned error on request send. Inspect rte_errno detailed
414  *             error code.
415  *   - Negative error code from the proxied function.
416  *
417  * @note This mechanism is geared towards control-path tasks. Avoid calling it
418  *       in fast-path unless unbound delays are allowed. This is due to the IPC
419  *       mechanism itself (socket based).
420  * @note Due to IPC parameter size limitations the proxy logic shares call
421  *       results through the struct ena_adapter shared memory. This makes the
422  *       proxy mechanism strictly single-threaded. Therefore be sure to make all
423  *       calls to the same proxied function under the same lock.
424  */
425 #define ENA_PROXY(a, f, ...)						\
426 ({									\
427 	struct ena_adapter *_a = (a);					\
428 	struct timespec ts = { .tv_sec = ENA_MP_REQ_TMO };		\
429 	struct ena_mp_body *req, *rsp;					\
430 	struct rte_mp_reply mp_rep;					\
431 	struct rte_mp_msg mp_req;					\
432 	int ret;							\
433 									\
434 	if (rte_eal_process_type() == RTE_PROC_PRIMARY) {		\
435 		ret = f(__VA_ARGS__);					\
436 	} else {							\
437 		/* Prepare and send request */				\
438 		req = (struct ena_mp_body *)&mp_req.param;		\
439 		mp_msg_init(&mp_req, mp_type_ ## f, _a->edev_data->port_id); \
440 		mp_prep_ ## f(_a, req, ## __VA_ARGS__);			\
441 									\
442 		ret = rte_mp_request_sync(&mp_req, &mp_rep, &ts);	\
443 		if (likely(!ret)) {					\
444 			RTE_ASSERT(mp_rep.nb_received == 1);		\
445 			rsp = (struct ena_mp_body *)&mp_rep.msgs[0].param; \
446 			ret = rsp->result;				\
447 			if (ret == 0) {					\
448 				mp_proc_##f(_a, rsp, ## __VA_ARGS__);	\
449 			} else {					\
450 				PMD_DRV_LOG(ERR,			\
451 					    "%s returned error: %d\n",	\
452 					    mp_name_ ## f, rsp->result);\
453 			}						\
454 			free(mp_rep.msgs);				\
455 		} else if (rte_errno == ENOTSUP) {			\
456 			PMD_DRV_LOG(ERR,				\
457 				    "No IPC, can't proxy to primary\n");\
458 			ret = -rte_errno;				\
459 		} else {						\
460 			PMD_DRV_LOG(ERR, "Request %s failed: %s\n",	\
461 				    mp_name_ ## f,			\
462 				    rte_strerror(rte_errno));		\
463 			ret = -EIO;					\
464 		}							\
465 	}								\
466 	ret;								\
467 })
468 
469 /*********************************************************************
470  *  Multi-Process communication request descriptors
471  *********************************************************************/
472 
473 ENA_PROXY_DESC(ena_com_get_dev_basic_stats, ENA_MP_DEV_STATS_GET,
474 ({
475 	ENA_TOUCH(adapter);
476 	ENA_TOUCH(req);
477 	ENA_TOUCH(ena_dev);
478 	ENA_TOUCH(stats);
479 }),
480 ({
481 	ENA_TOUCH(rsp);
482 	ENA_TOUCH(ena_dev);
483 	if (stats != &adapter->basic_stats)
484 		rte_memcpy(stats, &adapter->basic_stats, sizeof(*stats));
485 }),
486 	struct ena_com_dev *ena_dev, struct ena_admin_basic_stats *stats);
487 
488 ENA_PROXY_DESC(ena_com_get_eni_stats, ENA_MP_ENI_STATS_GET,
489 ({
490 	ENA_TOUCH(adapter);
491 	ENA_TOUCH(req);
492 	ENA_TOUCH(ena_dev);
493 	ENA_TOUCH(stats);
494 }),
495 ({
496 	ENA_TOUCH(rsp);
497 	ENA_TOUCH(ena_dev);
498 	if (stats != (struct ena_admin_eni_stats *)&adapter->eni_stats)
499 		rte_memcpy(stats, &adapter->eni_stats, sizeof(*stats));
500 }),
501 	struct ena_com_dev *ena_dev, struct ena_admin_eni_stats *stats);
502 
503 ENA_PROXY_DESC(ena_com_set_dev_mtu, ENA_MP_MTU_SET,
504 ({
505 	ENA_TOUCH(adapter);
506 	ENA_TOUCH(ena_dev);
507 	req->args.mtu = mtu;
508 }),
509 ({
510 	ENA_TOUCH(adapter);
511 	ENA_TOUCH(rsp);
512 	ENA_TOUCH(ena_dev);
513 	ENA_TOUCH(mtu);
514 }),
515 	struct ena_com_dev *ena_dev, int mtu);
516 
517 ENA_PROXY_DESC(ena_com_indirect_table_set, ENA_MP_IND_TBL_SET,
518 ({
519 	ENA_TOUCH(adapter);
520 	ENA_TOUCH(req);
521 	ENA_TOUCH(ena_dev);
522 }),
523 ({
524 	ENA_TOUCH(adapter);
525 	ENA_TOUCH(rsp);
526 	ENA_TOUCH(ena_dev);
527 }),
528 	struct ena_com_dev *ena_dev);
529 
530 ENA_PROXY_DESC(ena_com_indirect_table_get, ENA_MP_IND_TBL_GET,
531 ({
532 	ENA_TOUCH(adapter);
533 	ENA_TOUCH(req);
534 	ENA_TOUCH(ena_dev);
535 	ENA_TOUCH(ind_tbl);
536 }),
537 ({
538 	ENA_TOUCH(rsp);
539 	ENA_TOUCH(ena_dev);
540 	if (ind_tbl != adapter->indirect_table)
541 		rte_memcpy(ind_tbl, adapter->indirect_table,
542 			   sizeof(adapter->indirect_table));
543 }),
544 	struct ena_com_dev *ena_dev, u32 *ind_tbl);
545 
546 static inline void ena_trigger_reset(struct ena_adapter *adapter,
547 				     enum ena_regs_reset_reason_types reason)
548 {
549 	if (likely(!adapter->trigger_reset)) {
550 		adapter->reset_reason = reason;
551 		adapter->trigger_reset = true;
552 	}
553 }
554 
555 static inline void ena_rx_mbuf_prepare(struct ena_ring *rx_ring,
556 				       struct rte_mbuf *mbuf,
557 				       struct ena_com_rx_ctx *ena_rx_ctx,
558 				       bool fill_hash)
559 {
560 	struct ena_stats_rx *rx_stats = &rx_ring->rx_stats;
561 	uint64_t ol_flags = 0;
562 	uint32_t packet_type = 0;
563 
564 	if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
565 		packet_type |= RTE_PTYPE_L4_TCP;
566 	else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
567 		packet_type |= RTE_PTYPE_L4_UDP;
568 
569 	if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
570 		packet_type |= RTE_PTYPE_L3_IPV4;
571 		if (unlikely(ena_rx_ctx->l3_csum_err)) {
572 			++rx_stats->l3_csum_bad;
573 			ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
574 		} else {
575 			ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
576 		}
577 	} else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
578 		packet_type |= RTE_PTYPE_L3_IPV6;
579 	}
580 
581 	if (!ena_rx_ctx->l4_csum_checked || ena_rx_ctx->frag) {
582 		ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN;
583 	} else {
584 		if (unlikely(ena_rx_ctx->l4_csum_err)) {
585 			++rx_stats->l4_csum_bad;
586 			ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
587 		} else {
588 			++rx_stats->l4_csum_good;
589 			ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
590 		}
591 	}
592 
593 	if (fill_hash &&
594 	    likely((packet_type & ENA_PTYPE_HAS_HASH) && !ena_rx_ctx->frag)) {
595 		ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
596 		mbuf->hash.rss = ena_rx_ctx->hash;
597 	}
598 
599 	mbuf->ol_flags = ol_flags;
600 	mbuf->packet_type = packet_type;
601 }
602 
603 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
604 				       struct ena_com_tx_ctx *ena_tx_ctx,
605 				       uint64_t queue_offloads,
606 				       bool disable_meta_caching)
607 {
608 	struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
609 
610 	if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
611 	    (queue_offloads & QUEUE_OFFLOADS)) {
612 		/* check if TSO is required */
613 		if ((mbuf->ol_flags & RTE_MBUF_F_TX_TCP_SEG) &&
614 		    (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_TSO)) {
615 			ena_tx_ctx->tso_enable = true;
616 
617 			ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
618 		}
619 
620 		/* check if L3 checksum is needed */
621 		if ((mbuf->ol_flags & RTE_MBUF_F_TX_IP_CKSUM) &&
622 		    (queue_offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM))
623 			ena_tx_ctx->l3_csum_enable = true;
624 
625 		if (mbuf->ol_flags & RTE_MBUF_F_TX_IPV6) {
626 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
627 		} else {
628 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
629 
630 			/* set don't fragment (DF) flag */
631 			if (mbuf->packet_type &
632 				(RTE_PTYPE_L4_NONFRAG
633 				 | RTE_PTYPE_INNER_L4_NONFRAG))
634 				ena_tx_ctx->df = true;
635 		}
636 
637 		/* check if L4 checksum is needed */
638 		if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) == RTE_MBUF_F_TX_TCP_CKSUM) &&
639 		    (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) {
640 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
641 			ena_tx_ctx->l4_csum_enable = true;
642 		} else if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) ==
643 				RTE_MBUF_F_TX_UDP_CKSUM) &&
644 				(queue_offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM)) {
645 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
646 			ena_tx_ctx->l4_csum_enable = true;
647 		} else {
648 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
649 			ena_tx_ctx->l4_csum_enable = false;
650 		}
651 
652 		ena_meta->mss = mbuf->tso_segsz;
653 		ena_meta->l3_hdr_len = mbuf->l3_len;
654 		ena_meta->l3_hdr_offset = mbuf->l2_len;
655 
656 		ena_tx_ctx->meta_valid = true;
657 	} else if (disable_meta_caching) {
658 		memset(ena_meta, 0, sizeof(*ena_meta));
659 		ena_tx_ctx->meta_valid = true;
660 	} else {
661 		ena_tx_ctx->meta_valid = false;
662 	}
663 }
664 
665 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
666 {
667 	struct ena_tx_buffer *tx_info = NULL;
668 
669 	if (likely(req_id < tx_ring->ring_size)) {
670 		tx_info = &tx_ring->tx_buffer_info[req_id];
671 		if (likely(tx_info->mbuf))
672 			return 0;
673 	}
674 
675 	if (tx_info)
676 		PMD_TX_LOG(ERR, "tx_info doesn't have valid mbuf\n");
677 	else
678 		PMD_TX_LOG(ERR, "Invalid req_id: %hu\n", req_id);
679 
680 	/* Trigger device reset */
681 	++tx_ring->tx_stats.bad_req_id;
682 	ena_trigger_reset(tx_ring->adapter, ENA_REGS_RESET_INV_TX_REQ_ID);
683 	return -EFAULT;
684 }
685 
686 static void ena_config_host_info(struct ena_com_dev *ena_dev)
687 {
688 	struct ena_admin_host_info *host_info;
689 	int rc;
690 
691 	/* Allocate only the host info */
692 	rc = ena_com_allocate_host_info(ena_dev);
693 	if (rc) {
694 		PMD_DRV_LOG(ERR, "Cannot allocate host info\n");
695 		return;
696 	}
697 
698 	host_info = ena_dev->host_attr.host_info;
699 
700 	host_info->os_type = ENA_ADMIN_OS_DPDK;
701 	host_info->kernel_ver = RTE_VERSION;
702 	strlcpy((char *)host_info->kernel_ver_str, rte_version(),
703 		sizeof(host_info->kernel_ver_str));
704 	host_info->os_dist = RTE_VERSION;
705 	strlcpy((char *)host_info->os_dist_str, rte_version(),
706 		sizeof(host_info->os_dist_str));
707 	host_info->driver_version =
708 		(DRV_MODULE_VER_MAJOR) |
709 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
710 		(DRV_MODULE_VER_SUBMINOR <<
711 			ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
712 	host_info->num_cpus = rte_lcore_count();
713 
714 	host_info->driver_supported_features =
715 		ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK |
716 		ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK;
717 
718 	rc = ena_com_set_host_attributes(ena_dev);
719 	if (rc) {
720 		if (rc == -ENA_COM_UNSUPPORTED)
721 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
722 		else
723 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
724 
725 		goto err;
726 	}
727 
728 	return;
729 
730 err:
731 	ena_com_delete_host_info(ena_dev);
732 }
733 
734 /* This function calculates the number of xstats based on the current config */
735 static unsigned int ena_xstats_calc_num(struct rte_eth_dev_data *data)
736 {
737 	return ENA_STATS_ARRAY_GLOBAL + ENA_STATS_ARRAY_ENI +
738 		(data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
739 		(data->nb_rx_queues * ENA_STATS_ARRAY_RX);
740 }
741 
742 static void ena_config_debug_area(struct ena_adapter *adapter)
743 {
744 	u32 debug_area_size;
745 	int rc, ss_count;
746 
747 	ss_count = ena_xstats_calc_num(adapter->edev_data);
748 
749 	/* allocate 32 bytes for each string and 64bit for the value */
750 	debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
751 
752 	rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
753 	if (rc) {
754 		PMD_DRV_LOG(ERR, "Cannot allocate debug area\n");
755 		return;
756 	}
757 
758 	rc = ena_com_set_host_attributes(&adapter->ena_dev);
759 	if (rc) {
760 		if (rc == -ENA_COM_UNSUPPORTED)
761 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
762 		else
763 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
764 
765 		goto err;
766 	}
767 
768 	return;
769 err:
770 	ena_com_delete_debug_area(&adapter->ena_dev);
771 }
772 
773 static int ena_close(struct rte_eth_dev *dev)
774 {
775 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
776 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
777 	struct ena_adapter *adapter = dev->data->dev_private;
778 	int ret = 0;
779 
780 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
781 		return 0;
782 
783 	if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
784 		ret = ena_stop(dev);
785 	adapter->state = ENA_ADAPTER_STATE_CLOSED;
786 
787 	ena_rx_queue_release_all(dev);
788 	ena_tx_queue_release_all(dev);
789 
790 	rte_free(adapter->drv_stats);
791 	adapter->drv_stats = NULL;
792 
793 	rte_intr_disable(intr_handle);
794 	rte_intr_callback_unregister(intr_handle,
795 				     ena_interrupt_handler_rte,
796 				     dev);
797 
798 	/*
799 	 * MAC is not allocated dynamically. Setting NULL should prevent from
800 	 * release of the resource in the rte_eth_dev_release_port().
801 	 */
802 	dev->data->mac_addrs = NULL;
803 
804 	return ret;
805 }
806 
807 static int
808 ena_dev_reset(struct rte_eth_dev *dev)
809 {
810 	int rc = 0;
811 
812 	/* Cannot release memory in secondary process */
813 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
814 		PMD_DRV_LOG(WARNING, "dev_reset not supported in secondary.\n");
815 		return -EPERM;
816 	}
817 
818 	ena_destroy_device(dev);
819 	rc = eth_ena_dev_init(dev);
820 	if (rc)
821 		PMD_INIT_LOG(CRIT, "Cannot initialize device\n");
822 
823 	return rc;
824 }
825 
826 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
827 {
828 	int nb_queues = dev->data->nb_rx_queues;
829 	int i;
830 
831 	for (i = 0; i < nb_queues; i++)
832 		ena_rx_queue_release(dev, i);
833 }
834 
835 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
836 {
837 	int nb_queues = dev->data->nb_tx_queues;
838 	int i;
839 
840 	for (i = 0; i < nb_queues; i++)
841 		ena_tx_queue_release(dev, i);
842 }
843 
844 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
845 {
846 	struct ena_ring *ring = dev->data->rx_queues[qid];
847 
848 	/* Free ring resources */
849 	rte_free(ring->rx_buffer_info);
850 	ring->rx_buffer_info = NULL;
851 
852 	rte_free(ring->rx_refill_buffer);
853 	ring->rx_refill_buffer = NULL;
854 
855 	rte_free(ring->empty_rx_reqs);
856 	ring->empty_rx_reqs = NULL;
857 
858 	ring->configured = 0;
859 
860 	PMD_DRV_LOG(NOTICE, "Rx queue %d:%d released\n",
861 		ring->port_id, ring->id);
862 }
863 
864 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
865 {
866 	struct ena_ring *ring = dev->data->tx_queues[qid];
867 
868 	/* Free ring resources */
869 	rte_free(ring->push_buf_intermediate_buf);
870 
871 	rte_free(ring->tx_buffer_info);
872 
873 	rte_free(ring->empty_tx_reqs);
874 
875 	ring->empty_tx_reqs = NULL;
876 	ring->tx_buffer_info = NULL;
877 	ring->push_buf_intermediate_buf = NULL;
878 
879 	ring->configured = 0;
880 
881 	PMD_DRV_LOG(NOTICE, "Tx queue %d:%d released\n",
882 		ring->port_id, ring->id);
883 }
884 
885 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
886 {
887 	unsigned int i;
888 
889 	for (i = 0; i < ring->ring_size; ++i) {
890 		struct ena_rx_buffer *rx_info = &ring->rx_buffer_info[i];
891 		if (rx_info->mbuf) {
892 			rte_mbuf_raw_free(rx_info->mbuf);
893 			rx_info->mbuf = NULL;
894 		}
895 	}
896 }
897 
898 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
899 {
900 	unsigned int i;
901 
902 	for (i = 0; i < ring->ring_size; ++i) {
903 		struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
904 
905 		if (tx_buf->mbuf) {
906 			rte_pktmbuf_free(tx_buf->mbuf);
907 			tx_buf->mbuf = NULL;
908 		}
909 	}
910 }
911 
912 static int ena_link_update(struct rte_eth_dev *dev,
913 			   __rte_unused int wait_to_complete)
914 {
915 	struct rte_eth_link *link = &dev->data->dev_link;
916 	struct ena_adapter *adapter = dev->data->dev_private;
917 
918 	link->link_status = adapter->link_status ? RTE_ETH_LINK_UP : RTE_ETH_LINK_DOWN;
919 	link->link_speed = RTE_ETH_SPEED_NUM_NONE;
920 	link->link_duplex = RTE_ETH_LINK_FULL_DUPLEX;
921 
922 	return 0;
923 }
924 
925 static int ena_queue_start_all(struct rte_eth_dev *dev,
926 			       enum ena_ring_type ring_type)
927 {
928 	struct ena_adapter *adapter = dev->data->dev_private;
929 	struct ena_ring *queues = NULL;
930 	int nb_queues;
931 	int i = 0;
932 	int rc = 0;
933 
934 	if (ring_type == ENA_RING_TYPE_RX) {
935 		queues = adapter->rx_ring;
936 		nb_queues = dev->data->nb_rx_queues;
937 	} else {
938 		queues = adapter->tx_ring;
939 		nb_queues = dev->data->nb_tx_queues;
940 	}
941 	for (i = 0; i < nb_queues; i++) {
942 		if (queues[i].configured) {
943 			if (ring_type == ENA_RING_TYPE_RX) {
944 				ena_assert_msg(
945 					dev->data->rx_queues[i] == &queues[i],
946 					"Inconsistent state of Rx queues\n");
947 			} else {
948 				ena_assert_msg(
949 					dev->data->tx_queues[i] == &queues[i],
950 					"Inconsistent state of Tx queues\n");
951 			}
952 
953 			rc = ena_queue_start(dev, &queues[i]);
954 
955 			if (rc) {
956 				PMD_INIT_LOG(ERR,
957 					"Failed to start queue[%d] of type(%d)\n",
958 					i, ring_type);
959 				goto err;
960 			}
961 		}
962 	}
963 
964 	return 0;
965 
966 err:
967 	while (i--)
968 		if (queues[i].configured)
969 			ena_queue_stop(&queues[i]);
970 
971 	return rc;
972 }
973 
974 static int ena_check_valid_conf(struct ena_adapter *adapter)
975 {
976 	uint32_t mtu = adapter->edev_data->mtu;
977 
978 	if (mtu > adapter->max_mtu || mtu < ENA_MIN_MTU) {
979 		PMD_INIT_LOG(ERR,
980 			"Unsupported MTU of %d. Max MTU: %d, min MTU: %d\n",
981 			mtu, adapter->max_mtu, ENA_MIN_MTU);
982 		return ENA_COM_UNSUPPORTED;
983 	}
984 
985 	return 0;
986 }
987 
988 static int
989 ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx,
990 		       bool use_large_llq_hdr)
991 {
992 	struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
993 	struct ena_com_dev *ena_dev = ctx->ena_dev;
994 	uint32_t max_tx_queue_size;
995 	uint32_t max_rx_queue_size;
996 
997 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
998 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
999 			&ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
1000 		max_rx_queue_size = RTE_MIN(max_queue_ext->max_rx_cq_depth,
1001 			max_queue_ext->max_rx_sq_depth);
1002 		max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
1003 
1004 		if (ena_dev->tx_mem_queue_type ==
1005 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1006 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1007 				llq->max_llq_depth);
1008 		} else {
1009 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1010 				max_queue_ext->max_tx_sq_depth);
1011 		}
1012 
1013 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1014 			max_queue_ext->max_per_packet_rx_descs);
1015 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1016 			max_queue_ext->max_per_packet_tx_descs);
1017 	} else {
1018 		struct ena_admin_queue_feature_desc *max_queues =
1019 			&ctx->get_feat_ctx->max_queues;
1020 		max_rx_queue_size = RTE_MIN(max_queues->max_cq_depth,
1021 			max_queues->max_sq_depth);
1022 		max_tx_queue_size = max_queues->max_cq_depth;
1023 
1024 		if (ena_dev->tx_mem_queue_type ==
1025 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1026 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1027 				llq->max_llq_depth);
1028 		} else {
1029 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1030 				max_queues->max_sq_depth);
1031 		}
1032 
1033 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1034 			max_queues->max_packet_rx_descs);
1035 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1036 			max_queues->max_packet_tx_descs);
1037 	}
1038 
1039 	/* Round down to the nearest power of 2 */
1040 	max_rx_queue_size = rte_align32prevpow2(max_rx_queue_size);
1041 	max_tx_queue_size = rte_align32prevpow2(max_tx_queue_size);
1042 
1043 	if (use_large_llq_hdr) {
1044 		if ((llq->entry_size_ctrl_supported &
1045 		     ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
1046 		    (ena_dev->tx_mem_queue_type ==
1047 		     ENA_ADMIN_PLACEMENT_POLICY_DEV)) {
1048 			max_tx_queue_size /= 2;
1049 			PMD_INIT_LOG(INFO,
1050 				"Forcing large headers and decreasing maximum Tx queue size to %d\n",
1051 				max_tx_queue_size);
1052 		} else {
1053 			PMD_INIT_LOG(ERR,
1054 				"Forcing large headers failed: LLQ is disabled or device does not support large headers\n");
1055 		}
1056 	}
1057 
1058 	if (unlikely(max_rx_queue_size == 0 || max_tx_queue_size == 0)) {
1059 		PMD_INIT_LOG(ERR, "Invalid queue size\n");
1060 		return -EFAULT;
1061 	}
1062 
1063 	ctx->max_tx_queue_size = max_tx_queue_size;
1064 	ctx->max_rx_queue_size = max_rx_queue_size;
1065 
1066 	return 0;
1067 }
1068 
1069 static void ena_stats_restart(struct rte_eth_dev *dev)
1070 {
1071 	struct ena_adapter *adapter = dev->data->dev_private;
1072 
1073 	rte_atomic64_init(&adapter->drv_stats->ierrors);
1074 	rte_atomic64_init(&adapter->drv_stats->oerrors);
1075 	rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
1076 	adapter->drv_stats->rx_drops = 0;
1077 }
1078 
1079 static int ena_stats_get(struct rte_eth_dev *dev,
1080 			  struct rte_eth_stats *stats)
1081 {
1082 	struct ena_admin_basic_stats ena_stats;
1083 	struct ena_adapter *adapter = dev->data->dev_private;
1084 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1085 	int rc;
1086 	int i;
1087 	int max_rings_stats;
1088 
1089 	memset(&ena_stats, 0, sizeof(ena_stats));
1090 
1091 	rte_spinlock_lock(&adapter->admin_lock);
1092 	rc = ENA_PROXY(adapter, ena_com_get_dev_basic_stats, ena_dev,
1093 		       &ena_stats);
1094 	rte_spinlock_unlock(&adapter->admin_lock);
1095 	if (unlikely(rc)) {
1096 		PMD_DRV_LOG(ERR, "Could not retrieve statistics from ENA\n");
1097 		return rc;
1098 	}
1099 
1100 	/* Set of basic statistics from ENA */
1101 	stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
1102 					  ena_stats.rx_pkts_low);
1103 	stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
1104 					  ena_stats.tx_pkts_low);
1105 	stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
1106 					ena_stats.rx_bytes_low);
1107 	stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
1108 					ena_stats.tx_bytes_low);
1109 
1110 	/* Driver related stats */
1111 	stats->imissed = adapter->drv_stats->rx_drops;
1112 	stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
1113 	stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
1114 	stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
1115 
1116 	max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
1117 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
1118 	for (i = 0; i < max_rings_stats; ++i) {
1119 		struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
1120 
1121 		stats->q_ibytes[i] = rx_stats->bytes;
1122 		stats->q_ipackets[i] = rx_stats->cnt;
1123 		stats->q_errors[i] = rx_stats->bad_desc_num +
1124 			rx_stats->bad_req_id;
1125 	}
1126 
1127 	max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
1128 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
1129 	for (i = 0; i < max_rings_stats; ++i) {
1130 		struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
1131 
1132 		stats->q_obytes[i] = tx_stats->bytes;
1133 		stats->q_opackets[i] = tx_stats->cnt;
1134 	}
1135 
1136 	return 0;
1137 }
1138 
1139 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1140 {
1141 	struct ena_adapter *adapter;
1142 	struct ena_com_dev *ena_dev;
1143 	int rc = 0;
1144 
1145 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
1146 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
1147 	adapter = dev->data->dev_private;
1148 
1149 	ena_dev = &adapter->ena_dev;
1150 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
1151 
1152 	if (mtu > adapter->max_mtu || mtu < ENA_MIN_MTU) {
1153 		PMD_DRV_LOG(ERR,
1154 			"Invalid MTU setting. New MTU: %d, max MTU: %d, min MTU: %d\n",
1155 			mtu, adapter->max_mtu, ENA_MIN_MTU);
1156 		return -EINVAL;
1157 	}
1158 
1159 	rc = ENA_PROXY(adapter, ena_com_set_dev_mtu, ena_dev, mtu);
1160 	if (rc)
1161 		PMD_DRV_LOG(ERR, "Could not set MTU: %d\n", mtu);
1162 	else
1163 		PMD_DRV_LOG(NOTICE, "MTU set to: %d\n", mtu);
1164 
1165 	return rc;
1166 }
1167 
1168 static int ena_start(struct rte_eth_dev *dev)
1169 {
1170 	struct ena_adapter *adapter = dev->data->dev_private;
1171 	uint64_t ticks;
1172 	int rc = 0;
1173 
1174 	/* Cannot allocate memory in secondary process */
1175 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1176 		PMD_DRV_LOG(WARNING, "dev_start not supported in secondary.\n");
1177 		return -EPERM;
1178 	}
1179 
1180 	rc = ena_check_valid_conf(adapter);
1181 	if (rc)
1182 		return rc;
1183 
1184 	rc = ena_setup_rx_intr(dev);
1185 	if (rc)
1186 		return rc;
1187 
1188 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
1189 	if (rc)
1190 		return rc;
1191 
1192 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
1193 	if (rc)
1194 		goto err_start_tx;
1195 
1196 	if (adapter->edev_data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG) {
1197 		rc = ena_rss_configure(adapter);
1198 		if (rc)
1199 			goto err_rss_init;
1200 	}
1201 
1202 	ena_stats_restart(dev);
1203 
1204 	adapter->timestamp_wd = rte_get_timer_cycles();
1205 	adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
1206 
1207 	ticks = rte_get_timer_hz();
1208 	rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
1209 			ena_timer_wd_callback, dev);
1210 
1211 	++adapter->dev_stats.dev_start;
1212 	adapter->state = ENA_ADAPTER_STATE_RUNNING;
1213 
1214 	return 0;
1215 
1216 err_rss_init:
1217 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1218 err_start_tx:
1219 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1220 	return rc;
1221 }
1222 
1223 static int ena_stop(struct rte_eth_dev *dev)
1224 {
1225 	struct ena_adapter *adapter = dev->data->dev_private;
1226 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1227 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1228 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
1229 	int rc;
1230 
1231 	/* Cannot free memory in secondary process */
1232 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1233 		PMD_DRV_LOG(WARNING, "dev_stop not supported in secondary.\n");
1234 		return -EPERM;
1235 	}
1236 
1237 	rte_timer_stop_sync(&adapter->timer_wd);
1238 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1239 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1240 
1241 	if (adapter->trigger_reset) {
1242 		rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
1243 		if (rc)
1244 			PMD_DRV_LOG(ERR, "Device reset failed, rc: %d\n", rc);
1245 	}
1246 
1247 	rte_intr_disable(intr_handle);
1248 
1249 	rte_intr_efd_disable(intr_handle);
1250 
1251 	/* Cleanup vector list */
1252 	rte_intr_vec_list_free(intr_handle);
1253 
1254 	rte_intr_enable(intr_handle);
1255 
1256 	++adapter->dev_stats.dev_stop;
1257 	adapter->state = ENA_ADAPTER_STATE_STOPPED;
1258 	dev->data->dev_started = 0;
1259 
1260 	return 0;
1261 }
1262 
1263 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring)
1264 {
1265 	struct ena_adapter *adapter = ring->adapter;
1266 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1267 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1268 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
1269 	struct ena_com_create_io_ctx ctx =
1270 		/* policy set to _HOST just to satisfy icc compiler */
1271 		{ ENA_ADMIN_PLACEMENT_POLICY_HOST,
1272 		  0, 0, 0, 0, 0 };
1273 	uint16_t ena_qid;
1274 	unsigned int i;
1275 	int rc;
1276 
1277 	ctx.msix_vector = -1;
1278 	if (ring->type == ENA_RING_TYPE_TX) {
1279 		ena_qid = ENA_IO_TXQ_IDX(ring->id);
1280 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1281 		ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1282 		for (i = 0; i < ring->ring_size; i++)
1283 			ring->empty_tx_reqs[i] = i;
1284 	} else {
1285 		ena_qid = ENA_IO_RXQ_IDX(ring->id);
1286 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1287 		if (rte_intr_dp_is_en(intr_handle))
1288 			ctx.msix_vector =
1289 				rte_intr_vec_list_index_get(intr_handle,
1290 								   ring->id);
1291 
1292 		for (i = 0; i < ring->ring_size; i++)
1293 			ring->empty_rx_reqs[i] = i;
1294 	}
1295 	ctx.queue_size = ring->ring_size;
1296 	ctx.qid = ena_qid;
1297 	ctx.numa_node = ring->numa_socket_id;
1298 
1299 	rc = ena_com_create_io_queue(ena_dev, &ctx);
1300 	if (rc) {
1301 		PMD_DRV_LOG(ERR,
1302 			"Failed to create IO queue[%d] (qid:%d), rc: %d\n",
1303 			ring->id, ena_qid, rc);
1304 		return rc;
1305 	}
1306 
1307 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1308 				     &ring->ena_com_io_sq,
1309 				     &ring->ena_com_io_cq);
1310 	if (rc) {
1311 		PMD_DRV_LOG(ERR,
1312 			"Failed to get IO queue[%d] handlers, rc: %d\n",
1313 			ring->id, rc);
1314 		ena_com_destroy_io_queue(ena_dev, ena_qid);
1315 		return rc;
1316 	}
1317 
1318 	if (ring->type == ENA_RING_TYPE_TX)
1319 		ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1320 
1321 	/* Start with Rx interrupts being masked. */
1322 	if (ring->type == ENA_RING_TYPE_RX && rte_intr_dp_is_en(intr_handle))
1323 		ena_rx_queue_intr_disable(dev, ring->id);
1324 
1325 	return 0;
1326 }
1327 
1328 static void ena_queue_stop(struct ena_ring *ring)
1329 {
1330 	struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
1331 
1332 	if (ring->type == ENA_RING_TYPE_RX) {
1333 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
1334 		ena_rx_queue_release_bufs(ring);
1335 	} else {
1336 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
1337 		ena_tx_queue_release_bufs(ring);
1338 	}
1339 }
1340 
1341 static void ena_queue_stop_all(struct rte_eth_dev *dev,
1342 			      enum ena_ring_type ring_type)
1343 {
1344 	struct ena_adapter *adapter = dev->data->dev_private;
1345 	struct ena_ring *queues = NULL;
1346 	uint16_t nb_queues, i;
1347 
1348 	if (ring_type == ENA_RING_TYPE_RX) {
1349 		queues = adapter->rx_ring;
1350 		nb_queues = dev->data->nb_rx_queues;
1351 	} else {
1352 		queues = adapter->tx_ring;
1353 		nb_queues = dev->data->nb_tx_queues;
1354 	}
1355 
1356 	for (i = 0; i < nb_queues; ++i)
1357 		if (queues[i].configured)
1358 			ena_queue_stop(&queues[i]);
1359 }
1360 
1361 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring)
1362 {
1363 	int rc, bufs_num;
1364 
1365 	ena_assert_msg(ring->configured == 1,
1366 		       "Trying to start unconfigured queue\n");
1367 
1368 	rc = ena_create_io_queue(dev, ring);
1369 	if (rc) {
1370 		PMD_INIT_LOG(ERR, "Failed to create IO queue\n");
1371 		return rc;
1372 	}
1373 
1374 	ring->next_to_clean = 0;
1375 	ring->next_to_use = 0;
1376 
1377 	if (ring->type == ENA_RING_TYPE_TX) {
1378 		ring->tx_stats.available_desc =
1379 			ena_com_free_q_entries(ring->ena_com_io_sq);
1380 		return 0;
1381 	}
1382 
1383 	bufs_num = ring->ring_size - 1;
1384 	rc = ena_populate_rx_queue(ring, bufs_num);
1385 	if (rc != bufs_num) {
1386 		ena_com_destroy_io_queue(&ring->adapter->ena_dev,
1387 					 ENA_IO_RXQ_IDX(ring->id));
1388 		PMD_INIT_LOG(ERR, "Failed to populate Rx ring\n");
1389 		return ENA_COM_FAULT;
1390 	}
1391 	/* Flush per-core RX buffers pools cache as they can be used on other
1392 	 * cores as well.
1393 	 */
1394 	rte_mempool_cache_flush(NULL, ring->mb_pool);
1395 
1396 	return 0;
1397 }
1398 
1399 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1400 			      uint16_t queue_idx,
1401 			      uint16_t nb_desc,
1402 			      unsigned int socket_id,
1403 			      const struct rte_eth_txconf *tx_conf)
1404 {
1405 	struct ena_ring *txq = NULL;
1406 	struct ena_adapter *adapter = dev->data->dev_private;
1407 	unsigned int i;
1408 	uint16_t dyn_thresh;
1409 
1410 	txq = &adapter->tx_ring[queue_idx];
1411 
1412 	if (txq->configured) {
1413 		PMD_DRV_LOG(CRIT,
1414 			"API violation. Queue[%d] is already configured\n",
1415 			queue_idx);
1416 		return ENA_COM_FAULT;
1417 	}
1418 
1419 	if (!rte_is_power_of_2(nb_desc)) {
1420 		PMD_DRV_LOG(ERR,
1421 			"Unsupported size of Tx queue: %d is not a power of 2.\n",
1422 			nb_desc);
1423 		return -EINVAL;
1424 	}
1425 
1426 	if (nb_desc > adapter->max_tx_ring_size) {
1427 		PMD_DRV_LOG(ERR,
1428 			"Unsupported size of Tx queue (max size: %d)\n",
1429 			adapter->max_tx_ring_size);
1430 		return -EINVAL;
1431 	}
1432 
1433 	txq->port_id = dev->data->port_id;
1434 	txq->next_to_clean = 0;
1435 	txq->next_to_use = 0;
1436 	txq->ring_size = nb_desc;
1437 	txq->size_mask = nb_desc - 1;
1438 	txq->numa_socket_id = socket_id;
1439 	txq->pkts_without_db = false;
1440 	txq->last_cleanup_ticks = 0;
1441 
1442 	txq->tx_buffer_info = rte_zmalloc_socket("txq->tx_buffer_info",
1443 		sizeof(struct ena_tx_buffer) * txq->ring_size,
1444 		RTE_CACHE_LINE_SIZE,
1445 		socket_id);
1446 	if (!txq->tx_buffer_info) {
1447 		PMD_DRV_LOG(ERR,
1448 			"Failed to allocate memory for Tx buffer info\n");
1449 		return -ENOMEM;
1450 	}
1451 
1452 	txq->empty_tx_reqs = rte_zmalloc_socket("txq->empty_tx_reqs",
1453 		sizeof(uint16_t) * txq->ring_size,
1454 		RTE_CACHE_LINE_SIZE,
1455 		socket_id);
1456 	if (!txq->empty_tx_reqs) {
1457 		PMD_DRV_LOG(ERR,
1458 			"Failed to allocate memory for empty Tx requests\n");
1459 		rte_free(txq->tx_buffer_info);
1460 		return -ENOMEM;
1461 	}
1462 
1463 	txq->push_buf_intermediate_buf =
1464 		rte_zmalloc_socket("txq->push_buf_intermediate_buf",
1465 			txq->tx_max_header_size,
1466 			RTE_CACHE_LINE_SIZE,
1467 			socket_id);
1468 	if (!txq->push_buf_intermediate_buf) {
1469 		PMD_DRV_LOG(ERR, "Failed to alloc push buffer for LLQ\n");
1470 		rte_free(txq->tx_buffer_info);
1471 		rte_free(txq->empty_tx_reqs);
1472 		return -ENOMEM;
1473 	}
1474 
1475 	for (i = 0; i < txq->ring_size; i++)
1476 		txq->empty_tx_reqs[i] = i;
1477 
1478 	txq->offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1479 
1480 	/* Check if caller provided the Tx cleanup threshold value. */
1481 	if (tx_conf->tx_free_thresh != 0) {
1482 		txq->tx_free_thresh = tx_conf->tx_free_thresh;
1483 	} else {
1484 		dyn_thresh = txq->ring_size -
1485 			txq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1486 		txq->tx_free_thresh = RTE_MAX(dyn_thresh,
1487 			txq->ring_size - ENA_REFILL_THRESH_PACKET);
1488 	}
1489 
1490 	txq->missing_tx_completion_threshold =
1491 		RTE_MIN(txq->ring_size / 2, ENA_DEFAULT_MISSING_COMP);
1492 
1493 	/* Store pointer to this queue in upper layer */
1494 	txq->configured = 1;
1495 	dev->data->tx_queues[queue_idx] = txq;
1496 
1497 	return 0;
1498 }
1499 
1500 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1501 			      uint16_t queue_idx,
1502 			      uint16_t nb_desc,
1503 			      unsigned int socket_id,
1504 			      const struct rte_eth_rxconf *rx_conf,
1505 			      struct rte_mempool *mp)
1506 {
1507 	struct ena_adapter *adapter = dev->data->dev_private;
1508 	struct ena_ring *rxq = NULL;
1509 	size_t buffer_size;
1510 	int i;
1511 	uint16_t dyn_thresh;
1512 
1513 	rxq = &adapter->rx_ring[queue_idx];
1514 	if (rxq->configured) {
1515 		PMD_DRV_LOG(CRIT,
1516 			"API violation. Queue[%d] is already configured\n",
1517 			queue_idx);
1518 		return ENA_COM_FAULT;
1519 	}
1520 
1521 	if (!rte_is_power_of_2(nb_desc)) {
1522 		PMD_DRV_LOG(ERR,
1523 			"Unsupported size of Rx queue: %d is not a power of 2.\n",
1524 			nb_desc);
1525 		return -EINVAL;
1526 	}
1527 
1528 	if (nb_desc > adapter->max_rx_ring_size) {
1529 		PMD_DRV_LOG(ERR,
1530 			"Unsupported size of Rx queue (max size: %d)\n",
1531 			adapter->max_rx_ring_size);
1532 		return -EINVAL;
1533 	}
1534 
1535 	/* ENA isn't supporting buffers smaller than 1400 bytes */
1536 	buffer_size = rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
1537 	if (buffer_size < ENA_RX_BUF_MIN_SIZE) {
1538 		PMD_DRV_LOG(ERR,
1539 			"Unsupported size of Rx buffer: %zu (min size: %d)\n",
1540 			buffer_size, ENA_RX_BUF_MIN_SIZE);
1541 		return -EINVAL;
1542 	}
1543 
1544 	rxq->port_id = dev->data->port_id;
1545 	rxq->next_to_clean = 0;
1546 	rxq->next_to_use = 0;
1547 	rxq->ring_size = nb_desc;
1548 	rxq->size_mask = nb_desc - 1;
1549 	rxq->numa_socket_id = socket_id;
1550 	rxq->mb_pool = mp;
1551 
1552 	rxq->rx_buffer_info = rte_zmalloc_socket("rxq->buffer_info",
1553 		sizeof(struct ena_rx_buffer) * nb_desc,
1554 		RTE_CACHE_LINE_SIZE,
1555 		socket_id);
1556 	if (!rxq->rx_buffer_info) {
1557 		PMD_DRV_LOG(ERR,
1558 			"Failed to allocate memory for Rx buffer info\n");
1559 		return -ENOMEM;
1560 	}
1561 
1562 	rxq->rx_refill_buffer = rte_zmalloc_socket("rxq->rx_refill_buffer",
1563 		sizeof(struct rte_mbuf *) * nb_desc,
1564 		RTE_CACHE_LINE_SIZE,
1565 		socket_id);
1566 	if (!rxq->rx_refill_buffer) {
1567 		PMD_DRV_LOG(ERR,
1568 			"Failed to allocate memory for Rx refill buffer\n");
1569 		rte_free(rxq->rx_buffer_info);
1570 		rxq->rx_buffer_info = NULL;
1571 		return -ENOMEM;
1572 	}
1573 
1574 	rxq->empty_rx_reqs = rte_zmalloc_socket("rxq->empty_rx_reqs",
1575 		sizeof(uint16_t) * nb_desc,
1576 		RTE_CACHE_LINE_SIZE,
1577 		socket_id);
1578 	if (!rxq->empty_rx_reqs) {
1579 		PMD_DRV_LOG(ERR,
1580 			"Failed to allocate memory for empty Rx requests\n");
1581 		rte_free(rxq->rx_buffer_info);
1582 		rxq->rx_buffer_info = NULL;
1583 		rte_free(rxq->rx_refill_buffer);
1584 		rxq->rx_refill_buffer = NULL;
1585 		return -ENOMEM;
1586 	}
1587 
1588 	for (i = 0; i < nb_desc; i++)
1589 		rxq->empty_rx_reqs[i] = i;
1590 
1591 	rxq->offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1592 
1593 	if (rx_conf->rx_free_thresh != 0) {
1594 		rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1595 	} else {
1596 		dyn_thresh = rxq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1597 		rxq->rx_free_thresh = RTE_MIN(dyn_thresh,
1598 			(uint16_t)(ENA_REFILL_THRESH_PACKET));
1599 	}
1600 
1601 	/* Store pointer to this queue in upper layer */
1602 	rxq->configured = 1;
1603 	dev->data->rx_queues[queue_idx] = rxq;
1604 
1605 	return 0;
1606 }
1607 
1608 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
1609 				  struct rte_mbuf *mbuf, uint16_t id)
1610 {
1611 	struct ena_com_buf ebuf;
1612 	int rc;
1613 
1614 	/* prepare physical address for DMA transaction */
1615 	ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1616 	ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1617 
1618 	/* pass resource to device */
1619 	rc = ena_com_add_single_rx_desc(io_sq, &ebuf, id);
1620 	if (unlikely(rc != 0))
1621 		PMD_RX_LOG(WARNING, "Failed adding Rx desc\n");
1622 
1623 	return rc;
1624 }
1625 
1626 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1627 {
1628 	unsigned int i;
1629 	int rc;
1630 	uint16_t next_to_use = rxq->next_to_use;
1631 	uint16_t req_id;
1632 #ifdef RTE_ETHDEV_DEBUG_RX
1633 	uint16_t in_use;
1634 #endif
1635 	struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1636 
1637 	if (unlikely(!count))
1638 		return 0;
1639 
1640 #ifdef RTE_ETHDEV_DEBUG_RX
1641 	in_use = rxq->ring_size - 1 -
1642 		ena_com_free_q_entries(rxq->ena_com_io_sq);
1643 	if (unlikely((in_use + count) >= rxq->ring_size))
1644 		PMD_RX_LOG(ERR, "Bad Rx ring state\n");
1645 #endif
1646 
1647 	/* get resources for incoming packets */
1648 	rc = rte_pktmbuf_alloc_bulk(rxq->mb_pool, mbufs, count);
1649 	if (unlikely(rc < 0)) {
1650 		rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1651 		++rxq->rx_stats.mbuf_alloc_fail;
1652 		PMD_RX_LOG(DEBUG, "There are not enough free buffers\n");
1653 		return 0;
1654 	}
1655 
1656 	for (i = 0; i < count; i++) {
1657 		struct rte_mbuf *mbuf = mbufs[i];
1658 		struct ena_rx_buffer *rx_info;
1659 
1660 		if (likely((i + 4) < count))
1661 			rte_prefetch0(mbufs[i + 4]);
1662 
1663 		req_id = rxq->empty_rx_reqs[next_to_use];
1664 		rx_info = &rxq->rx_buffer_info[req_id];
1665 
1666 		rc = ena_add_single_rx_desc(rxq->ena_com_io_sq, mbuf, req_id);
1667 		if (unlikely(rc != 0))
1668 			break;
1669 
1670 		rx_info->mbuf = mbuf;
1671 		next_to_use = ENA_IDX_NEXT_MASKED(next_to_use, rxq->size_mask);
1672 	}
1673 
1674 	if (unlikely(i < count)) {
1675 		PMD_RX_LOG(WARNING,
1676 			"Refilled Rx queue[%d] with only %d/%d buffers\n",
1677 			rxq->id, i, count);
1678 		rte_pktmbuf_free_bulk(&mbufs[i], count - i);
1679 		++rxq->rx_stats.refill_partial;
1680 	}
1681 
1682 	/* When we submitted free resources to device... */
1683 	if (likely(i > 0)) {
1684 		/* ...let HW know that it can fill buffers with data. */
1685 		ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1686 
1687 		rxq->next_to_use = next_to_use;
1688 	}
1689 
1690 	return i;
1691 }
1692 
1693 static int ena_device_init(struct ena_adapter *adapter,
1694 			   struct rte_pci_device *pdev,
1695 			   struct ena_com_dev_get_features_ctx *get_feat_ctx)
1696 {
1697 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1698 	uint32_t aenq_groups;
1699 	int rc;
1700 	bool readless_supported;
1701 
1702 	/* Initialize mmio registers */
1703 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
1704 	if (rc) {
1705 		PMD_DRV_LOG(ERR, "Failed to init MMIO read less\n");
1706 		return rc;
1707 	}
1708 
1709 	/* The PCIe configuration space revision id indicate if mmio reg
1710 	 * read is disabled.
1711 	 */
1712 	readless_supported = !(pdev->id.class_id & ENA_MMIO_DISABLE_REG_READ);
1713 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1714 
1715 	/* reset device */
1716 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1717 	if (rc) {
1718 		PMD_DRV_LOG(ERR, "Cannot reset device\n");
1719 		goto err_mmio_read_less;
1720 	}
1721 
1722 	/* check FW version */
1723 	rc = ena_com_validate_version(ena_dev);
1724 	if (rc) {
1725 		PMD_DRV_LOG(ERR, "Device version is too low\n");
1726 		goto err_mmio_read_less;
1727 	}
1728 
1729 	ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1730 
1731 	/* ENA device administration layer init */
1732 	rc = ena_com_admin_init(ena_dev, &aenq_handlers);
1733 	if (rc) {
1734 		PMD_DRV_LOG(ERR,
1735 			"Cannot initialize ENA admin queue\n");
1736 		goto err_mmio_read_less;
1737 	}
1738 
1739 	/* To enable the msix interrupts the driver needs to know the number
1740 	 * of queues. So the driver uses polling mode to retrieve this
1741 	 * information.
1742 	 */
1743 	ena_com_set_admin_polling_mode(ena_dev, true);
1744 
1745 	ena_config_host_info(ena_dev);
1746 
1747 	/* Get Device Attributes and features */
1748 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1749 	if (rc) {
1750 		PMD_DRV_LOG(ERR,
1751 			"Cannot get attribute for ENA device, rc: %d\n", rc);
1752 		goto err_admin_init;
1753 	}
1754 
1755 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1756 		      BIT(ENA_ADMIN_NOTIFICATION) |
1757 		      BIT(ENA_ADMIN_KEEP_ALIVE) |
1758 		      BIT(ENA_ADMIN_FATAL_ERROR) |
1759 		      BIT(ENA_ADMIN_WARNING);
1760 
1761 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
1762 
1763 	adapter->all_aenq_groups = aenq_groups;
1764 
1765 	return 0;
1766 
1767 err_admin_init:
1768 	ena_com_admin_destroy(ena_dev);
1769 
1770 err_mmio_read_less:
1771 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1772 
1773 	return rc;
1774 }
1775 
1776 static void ena_interrupt_handler_rte(void *cb_arg)
1777 {
1778 	struct rte_eth_dev *dev = cb_arg;
1779 	struct ena_adapter *adapter = dev->data->dev_private;
1780 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1781 
1782 	ena_com_admin_q_comp_intr_handler(ena_dev);
1783 	if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED))
1784 		ena_com_aenq_intr_handler(ena_dev, dev);
1785 }
1786 
1787 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1788 {
1789 	if (!(adapter->active_aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE)))
1790 		return;
1791 
1792 	if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1793 		return;
1794 
1795 	if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1796 	    adapter->keep_alive_timeout)) {
1797 		PMD_DRV_LOG(ERR, "Keep alive timeout\n");
1798 		ena_trigger_reset(adapter, ENA_REGS_RESET_KEEP_ALIVE_TO);
1799 		++adapter->dev_stats.wd_expired;
1800 	}
1801 }
1802 
1803 /* Check if admin queue is enabled */
1804 static void check_for_admin_com_state(struct ena_adapter *adapter)
1805 {
1806 	if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1807 		PMD_DRV_LOG(ERR, "ENA admin queue is not in running state\n");
1808 		ena_trigger_reset(adapter, ENA_REGS_RESET_ADMIN_TO);
1809 	}
1810 }
1811 
1812 static int check_for_tx_completion_in_queue(struct ena_adapter *adapter,
1813 					    struct ena_ring *tx_ring)
1814 {
1815 	struct ena_tx_buffer *tx_buf;
1816 	uint64_t timestamp;
1817 	uint64_t completion_delay;
1818 	uint32_t missed_tx = 0;
1819 	unsigned int i;
1820 	int rc = 0;
1821 
1822 	for (i = 0; i < tx_ring->ring_size; ++i) {
1823 		tx_buf = &tx_ring->tx_buffer_info[i];
1824 		timestamp = tx_buf->timestamp;
1825 
1826 		if (timestamp == 0)
1827 			continue;
1828 
1829 		completion_delay = rte_get_timer_cycles() - timestamp;
1830 		if (completion_delay > adapter->missing_tx_completion_to) {
1831 			if (unlikely(!tx_buf->print_once)) {
1832 				PMD_TX_LOG(WARNING,
1833 					"Found a Tx that wasn't completed on time, qid %d, index %d. "
1834 					"Missing Tx outstanding for %" PRIu64 " msecs.\n",
1835 					tx_ring->id, i,	completion_delay /
1836 					rte_get_timer_hz() * 1000);
1837 				tx_buf->print_once = true;
1838 			}
1839 			++missed_tx;
1840 		}
1841 	}
1842 
1843 	if (unlikely(missed_tx > tx_ring->missing_tx_completion_threshold)) {
1844 		PMD_DRV_LOG(ERR,
1845 			"The number of lost Tx completions is above the threshold (%d > %d). "
1846 			"Trigger the device reset.\n",
1847 			missed_tx,
1848 			tx_ring->missing_tx_completion_threshold);
1849 		adapter->reset_reason = ENA_REGS_RESET_MISS_TX_CMPL;
1850 		adapter->trigger_reset = true;
1851 		rc = -EIO;
1852 	}
1853 
1854 	tx_ring->tx_stats.missed_tx += missed_tx;
1855 
1856 	return rc;
1857 }
1858 
1859 static void check_for_tx_completions(struct ena_adapter *adapter)
1860 {
1861 	struct ena_ring *tx_ring;
1862 	uint64_t tx_cleanup_delay;
1863 	size_t qid;
1864 	int budget;
1865 	uint16_t nb_tx_queues = adapter->edev_data->nb_tx_queues;
1866 
1867 	if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT)
1868 		return;
1869 
1870 	nb_tx_queues = adapter->edev_data->nb_tx_queues;
1871 	budget = adapter->missing_tx_completion_budget;
1872 
1873 	qid = adapter->last_tx_comp_qid;
1874 	while (budget-- > 0) {
1875 		tx_ring = &adapter->tx_ring[qid];
1876 
1877 		/* Tx cleanup is called only by the burst function and can be
1878 		 * called dynamically by the application. Also cleanup is
1879 		 * limited by the threshold. To avoid false detection of the
1880 		 * missing HW Tx completion, get the delay since last cleanup
1881 		 * function was called.
1882 		 */
1883 		tx_cleanup_delay = rte_get_timer_cycles() -
1884 			tx_ring->last_cleanup_ticks;
1885 		if (tx_cleanup_delay < adapter->tx_cleanup_stall_delay)
1886 			check_for_tx_completion_in_queue(adapter, tx_ring);
1887 		qid = (qid + 1) % nb_tx_queues;
1888 	}
1889 
1890 	adapter->last_tx_comp_qid = qid;
1891 }
1892 
1893 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
1894 				  void *arg)
1895 {
1896 	struct rte_eth_dev *dev = arg;
1897 	struct ena_adapter *adapter = dev->data->dev_private;
1898 
1899 	if (unlikely(adapter->trigger_reset))
1900 		return;
1901 
1902 	check_for_missing_keep_alive(adapter);
1903 	check_for_admin_com_state(adapter);
1904 	check_for_tx_completions(adapter);
1905 
1906 	if (unlikely(adapter->trigger_reset)) {
1907 		PMD_DRV_LOG(ERR, "Trigger reset is on\n");
1908 		rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
1909 			NULL);
1910 	}
1911 }
1912 
1913 static inline void
1914 set_default_llq_configurations(struct ena_llq_configurations *llq_config,
1915 			       struct ena_admin_feature_llq_desc *llq,
1916 			       bool use_large_llq_hdr)
1917 {
1918 	llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
1919 	llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
1920 	llq_config->llq_num_decs_before_header =
1921 		ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
1922 
1923 	if (use_large_llq_hdr &&
1924 	    (llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B)) {
1925 		llq_config->llq_ring_entry_size =
1926 			ENA_ADMIN_LIST_ENTRY_SIZE_256B;
1927 		llq_config->llq_ring_entry_size_value = 256;
1928 	} else {
1929 		llq_config->llq_ring_entry_size =
1930 			ENA_ADMIN_LIST_ENTRY_SIZE_128B;
1931 		llq_config->llq_ring_entry_size_value = 128;
1932 	}
1933 }
1934 
1935 static int
1936 ena_set_queues_placement_policy(struct ena_adapter *adapter,
1937 				struct ena_com_dev *ena_dev,
1938 				struct ena_admin_feature_llq_desc *llq,
1939 				struct ena_llq_configurations *llq_default_configurations)
1940 {
1941 	int rc;
1942 	u32 llq_feature_mask;
1943 
1944 	llq_feature_mask = 1 << ENA_ADMIN_LLQ;
1945 	if (!(ena_dev->supported_features & llq_feature_mask)) {
1946 		PMD_DRV_LOG(INFO,
1947 			"LLQ is not supported. Fallback to host mode policy.\n");
1948 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1949 		return 0;
1950 	}
1951 
1952 	rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
1953 	if (unlikely(rc)) {
1954 		PMD_INIT_LOG(WARNING,
1955 			"Failed to config dev mode. Fallback to host mode policy.\n");
1956 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1957 		return 0;
1958 	}
1959 
1960 	/* Nothing to config, exit */
1961 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1962 		return 0;
1963 
1964 	if (!adapter->dev_mem_base) {
1965 		PMD_DRV_LOG(ERR,
1966 			"Unable to access LLQ BAR resource. Fallback to host mode policy.\n");
1967 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1968 		return 0;
1969 	}
1970 
1971 	ena_dev->mem_bar = adapter->dev_mem_base;
1972 
1973 	return 0;
1974 }
1975 
1976 static uint32_t ena_calc_max_io_queue_num(struct ena_com_dev *ena_dev,
1977 	struct ena_com_dev_get_features_ctx *get_feat_ctx)
1978 {
1979 	uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
1980 
1981 	/* Regular queues capabilities */
1982 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1983 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1984 			&get_feat_ctx->max_queue_ext.max_queue_ext;
1985 		io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
1986 				    max_queue_ext->max_rx_cq_num);
1987 		io_tx_sq_num = max_queue_ext->max_tx_sq_num;
1988 		io_tx_cq_num = max_queue_ext->max_tx_cq_num;
1989 	} else {
1990 		struct ena_admin_queue_feature_desc *max_queues =
1991 			&get_feat_ctx->max_queues;
1992 		io_tx_sq_num = max_queues->max_sq_num;
1993 		io_tx_cq_num = max_queues->max_cq_num;
1994 		io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
1995 	}
1996 
1997 	/* In case of LLQ use the llq number in the get feature cmd */
1998 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
1999 		io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
2000 
2001 	max_num_io_queues = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
2002 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_sq_num);
2003 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_cq_num);
2004 
2005 	if (unlikely(max_num_io_queues == 0)) {
2006 		PMD_DRV_LOG(ERR, "Number of IO queues cannot not be 0\n");
2007 		return -EFAULT;
2008 	}
2009 
2010 	return max_num_io_queues;
2011 }
2012 
2013 static void
2014 ena_set_offloads(struct ena_offloads *offloads,
2015 		 struct ena_admin_feature_offload_desc *offload_desc)
2016 {
2017 	if (offload_desc->tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK)
2018 		offloads->tx_offloads |= ENA_IPV4_TSO;
2019 
2020 	/* Tx IPv4 checksum offloads */
2021 	if (offload_desc->tx &
2022 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)
2023 		offloads->tx_offloads |= ENA_L3_IPV4_CSUM;
2024 	if (offload_desc->tx &
2025 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK)
2026 		offloads->tx_offloads |= ENA_L4_IPV4_CSUM;
2027 	if (offload_desc->tx &
2028 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)
2029 		offloads->tx_offloads |= ENA_L4_IPV4_CSUM_PARTIAL;
2030 
2031 	/* Tx IPv6 checksum offloads */
2032 	if (offload_desc->tx &
2033 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK)
2034 		offloads->tx_offloads |= ENA_L4_IPV6_CSUM;
2035 	if (offload_desc->tx &
2036 	     ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)
2037 		offloads->tx_offloads |= ENA_L4_IPV6_CSUM_PARTIAL;
2038 
2039 	/* Rx IPv4 checksum offloads */
2040 	if (offload_desc->rx_supported &
2041 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)
2042 		offloads->rx_offloads |= ENA_L3_IPV4_CSUM;
2043 	if (offload_desc->rx_supported &
2044 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK)
2045 		offloads->rx_offloads |= ENA_L4_IPV4_CSUM;
2046 
2047 	/* Rx IPv6 checksum offloads */
2048 	if (offload_desc->rx_supported &
2049 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK)
2050 		offloads->rx_offloads |= ENA_L4_IPV6_CSUM;
2051 
2052 	if (offload_desc->rx_supported &
2053 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_HASH_MASK)
2054 		offloads->rx_offloads |= ENA_RX_RSS_HASH;
2055 }
2056 
2057 static int ena_init_once(void)
2058 {
2059 	static bool init_done;
2060 
2061 	if (init_done)
2062 		return 0;
2063 
2064 	if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
2065 		/* Init timer subsystem for the ENA timer service. */
2066 		rte_timer_subsystem_init();
2067 		/* Register handler for requests from secondary processes. */
2068 		rte_mp_action_register(ENA_MP_NAME, ena_mp_primary_handle);
2069 	}
2070 
2071 	init_done = true;
2072 	return 0;
2073 }
2074 
2075 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
2076 {
2077 	struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
2078 	struct rte_pci_device *pci_dev;
2079 	struct rte_intr_handle *intr_handle;
2080 	struct ena_adapter *adapter = eth_dev->data->dev_private;
2081 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
2082 	struct ena_com_dev_get_features_ctx get_feat_ctx;
2083 	struct ena_llq_configurations llq_config;
2084 	const char *queue_type_str;
2085 	uint32_t max_num_io_queues;
2086 	int rc;
2087 	static int adapters_found;
2088 	bool disable_meta_caching;
2089 
2090 	eth_dev->dev_ops = &ena_dev_ops;
2091 	eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
2092 	eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
2093 	eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
2094 
2095 	rc = ena_init_once();
2096 	if (rc != 0)
2097 		return rc;
2098 
2099 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2100 		return 0;
2101 
2102 	eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
2103 
2104 	memset(adapter, 0, sizeof(struct ena_adapter));
2105 	ena_dev = &adapter->ena_dev;
2106 
2107 	adapter->edev_data = eth_dev->data;
2108 
2109 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2110 
2111 	PMD_INIT_LOG(INFO, "Initializing %x:%x:%x.%d\n",
2112 		     pci_dev->addr.domain,
2113 		     pci_dev->addr.bus,
2114 		     pci_dev->addr.devid,
2115 		     pci_dev->addr.function);
2116 
2117 	intr_handle = pci_dev->intr_handle;
2118 
2119 	adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
2120 	adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
2121 
2122 	if (!adapter->regs) {
2123 		PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)\n",
2124 			     ENA_REGS_BAR);
2125 		return -ENXIO;
2126 	}
2127 
2128 	ena_dev->reg_bar = adapter->regs;
2129 	/* Pass device data as a pointer which can be passed to the IO functions
2130 	 * by the ena_com (for example - the memory allocation).
2131 	 */
2132 	ena_dev->dmadev = eth_dev->data;
2133 
2134 	adapter->id_number = adapters_found;
2135 
2136 	snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
2137 		 adapter->id_number);
2138 
2139 	adapter->missing_tx_completion_to = ENA_TX_TIMEOUT;
2140 
2141 	rc = ena_parse_devargs(adapter, pci_dev->device.devargs);
2142 	if (rc != 0) {
2143 		PMD_INIT_LOG(CRIT, "Failed to parse devargs\n");
2144 		goto err;
2145 	}
2146 
2147 	/* device specific initialization routine */
2148 	rc = ena_device_init(adapter, pci_dev, &get_feat_ctx);
2149 	if (rc) {
2150 		PMD_INIT_LOG(CRIT, "Failed to init ENA device\n");
2151 		goto err;
2152 	}
2153 
2154 	/* Check if device supports LSC */
2155 	if (!(adapter->all_aenq_groups & BIT(ENA_ADMIN_LINK_CHANGE)))
2156 		adapter->edev_data->dev_flags &= ~RTE_ETH_DEV_INTR_LSC;
2157 
2158 	set_default_llq_configurations(&llq_config, &get_feat_ctx.llq,
2159 		adapter->use_large_llq_hdr);
2160 	rc = ena_set_queues_placement_policy(adapter, ena_dev,
2161 					     &get_feat_ctx.llq, &llq_config);
2162 	if (unlikely(rc)) {
2163 		PMD_INIT_LOG(CRIT, "Failed to set placement policy\n");
2164 		return rc;
2165 	}
2166 
2167 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
2168 		queue_type_str = "Regular";
2169 	else
2170 		queue_type_str = "Low latency";
2171 	PMD_DRV_LOG(INFO, "Placement policy: %s\n", queue_type_str);
2172 
2173 	calc_queue_ctx.ena_dev = ena_dev;
2174 	calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
2175 
2176 	max_num_io_queues = ena_calc_max_io_queue_num(ena_dev, &get_feat_ctx);
2177 	rc = ena_calc_io_queue_size(&calc_queue_ctx,
2178 		adapter->use_large_llq_hdr);
2179 	if (unlikely((rc != 0) || (max_num_io_queues == 0))) {
2180 		rc = -EFAULT;
2181 		goto err_device_destroy;
2182 	}
2183 
2184 	adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
2185 	adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
2186 	adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
2187 	adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
2188 	adapter->max_num_io_queues = max_num_io_queues;
2189 
2190 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2191 		disable_meta_caching =
2192 			!!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
2193 			BIT(ENA_ADMIN_DISABLE_META_CACHING));
2194 	} else {
2195 		disable_meta_caching = false;
2196 	}
2197 
2198 	/* prepare ring structures */
2199 	ena_init_rings(adapter, disable_meta_caching);
2200 
2201 	ena_config_debug_area(adapter);
2202 
2203 	/* Set max MTU for this device */
2204 	adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
2205 
2206 	ena_set_offloads(&adapter->offloads, &get_feat_ctx.offload);
2207 
2208 	/* Copy MAC address and point DPDK to it */
2209 	eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr;
2210 	rte_ether_addr_copy((struct rte_ether_addr *)
2211 			get_feat_ctx.dev_attr.mac_addr,
2212 			(struct rte_ether_addr *)adapter->mac_addr);
2213 
2214 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
2215 	if (unlikely(rc != 0)) {
2216 		PMD_DRV_LOG(ERR, "Failed to initialize RSS in ENA device\n");
2217 		goto err_delete_debug_area;
2218 	}
2219 
2220 	adapter->drv_stats = rte_zmalloc("adapter stats",
2221 					 sizeof(*adapter->drv_stats),
2222 					 RTE_CACHE_LINE_SIZE);
2223 	if (!adapter->drv_stats) {
2224 		PMD_DRV_LOG(ERR,
2225 			"Failed to allocate memory for adapter statistics\n");
2226 		rc = -ENOMEM;
2227 		goto err_rss_destroy;
2228 	}
2229 
2230 	rte_spinlock_init(&adapter->admin_lock);
2231 
2232 	rte_intr_callback_register(intr_handle,
2233 				   ena_interrupt_handler_rte,
2234 				   eth_dev);
2235 	rte_intr_enable(intr_handle);
2236 	ena_com_set_admin_polling_mode(ena_dev, false);
2237 	ena_com_admin_aenq_enable(ena_dev);
2238 
2239 	rte_timer_init(&adapter->timer_wd);
2240 
2241 	adapters_found++;
2242 	adapter->state = ENA_ADAPTER_STATE_INIT;
2243 
2244 	return 0;
2245 
2246 err_rss_destroy:
2247 	ena_com_rss_destroy(ena_dev);
2248 err_delete_debug_area:
2249 	ena_com_delete_debug_area(ena_dev);
2250 
2251 err_device_destroy:
2252 	ena_com_delete_host_info(ena_dev);
2253 	ena_com_admin_destroy(ena_dev);
2254 
2255 err:
2256 	return rc;
2257 }
2258 
2259 static void ena_destroy_device(struct rte_eth_dev *eth_dev)
2260 {
2261 	struct ena_adapter *adapter = eth_dev->data->dev_private;
2262 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
2263 
2264 	if (adapter->state == ENA_ADAPTER_STATE_FREE)
2265 		return;
2266 
2267 	ena_com_set_admin_running_state(ena_dev, false);
2268 
2269 	if (adapter->state != ENA_ADAPTER_STATE_CLOSED)
2270 		ena_close(eth_dev);
2271 
2272 	ena_com_rss_destroy(ena_dev);
2273 
2274 	ena_com_delete_debug_area(ena_dev);
2275 	ena_com_delete_host_info(ena_dev);
2276 
2277 	ena_com_abort_admin_commands(ena_dev);
2278 	ena_com_wait_for_abort_completion(ena_dev);
2279 	ena_com_admin_destroy(ena_dev);
2280 	ena_com_mmio_reg_read_request_destroy(ena_dev);
2281 
2282 	adapter->state = ENA_ADAPTER_STATE_FREE;
2283 }
2284 
2285 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
2286 {
2287 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2288 		return 0;
2289 
2290 	ena_destroy_device(eth_dev);
2291 
2292 	return 0;
2293 }
2294 
2295 static int ena_dev_configure(struct rte_eth_dev *dev)
2296 {
2297 	struct ena_adapter *adapter = dev->data->dev_private;
2298 	int rc;
2299 
2300 	adapter->state = ENA_ADAPTER_STATE_CONFIG;
2301 
2302 	if (dev->data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG)
2303 		dev->data->dev_conf.rxmode.offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2304 	dev->data->dev_conf.txmode.offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2305 
2306 	/* Scattered Rx cannot be turned off in the HW, so this capability must
2307 	 * be forced.
2308 	 */
2309 	dev->data->scattered_rx = 1;
2310 
2311 	adapter->last_tx_comp_qid = 0;
2312 
2313 	adapter->missing_tx_completion_budget =
2314 		RTE_MIN(ENA_MONITORED_TX_QUEUES, dev->data->nb_tx_queues);
2315 
2316 	/* To avoid detection of the spurious Tx completion timeout due to
2317 	 * application not calling the Tx cleanup function, set timeout for the
2318 	 * Tx queue which should be half of the missing completion timeout for a
2319 	 * safety. If there will be a lot of missing Tx completions in the
2320 	 * queue, they will be detected sooner or later.
2321 	 */
2322 	adapter->tx_cleanup_stall_delay = adapter->missing_tx_completion_to / 2;
2323 
2324 	rc = ena_configure_aenq(adapter);
2325 
2326 	return rc;
2327 }
2328 
2329 static void ena_init_rings(struct ena_adapter *adapter,
2330 			   bool disable_meta_caching)
2331 {
2332 	size_t i;
2333 
2334 	for (i = 0; i < adapter->max_num_io_queues; i++) {
2335 		struct ena_ring *ring = &adapter->tx_ring[i];
2336 
2337 		ring->configured = 0;
2338 		ring->type = ENA_RING_TYPE_TX;
2339 		ring->adapter = adapter;
2340 		ring->id = i;
2341 		ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
2342 		ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
2343 		ring->sgl_size = adapter->max_tx_sgl_size;
2344 		ring->disable_meta_caching = disable_meta_caching;
2345 	}
2346 
2347 	for (i = 0; i < adapter->max_num_io_queues; i++) {
2348 		struct ena_ring *ring = &adapter->rx_ring[i];
2349 
2350 		ring->configured = 0;
2351 		ring->type = ENA_RING_TYPE_RX;
2352 		ring->adapter = adapter;
2353 		ring->id = i;
2354 		ring->sgl_size = adapter->max_rx_sgl_size;
2355 	}
2356 }
2357 
2358 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter)
2359 {
2360 	uint64_t port_offloads = 0;
2361 
2362 	if (adapter->offloads.rx_offloads & ENA_L3_IPV4_CSUM)
2363 		port_offloads |= RTE_ETH_RX_OFFLOAD_IPV4_CKSUM;
2364 
2365 	if (adapter->offloads.rx_offloads &
2366 	    (ENA_L4_IPV4_CSUM | ENA_L4_IPV6_CSUM))
2367 		port_offloads |=
2368 			RTE_ETH_RX_OFFLOAD_UDP_CKSUM | RTE_ETH_RX_OFFLOAD_TCP_CKSUM;
2369 
2370 	if (adapter->offloads.rx_offloads & ENA_RX_RSS_HASH)
2371 		port_offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2372 
2373 	port_offloads |= RTE_ETH_RX_OFFLOAD_SCATTER;
2374 
2375 	return port_offloads;
2376 }
2377 
2378 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter)
2379 {
2380 	uint64_t port_offloads = 0;
2381 
2382 	if (adapter->offloads.tx_offloads & ENA_IPV4_TSO)
2383 		port_offloads |= RTE_ETH_TX_OFFLOAD_TCP_TSO;
2384 
2385 	if (adapter->offloads.tx_offloads & ENA_L3_IPV4_CSUM)
2386 		port_offloads |= RTE_ETH_TX_OFFLOAD_IPV4_CKSUM;
2387 	if (adapter->offloads.tx_offloads &
2388 	    (ENA_L4_IPV4_CSUM_PARTIAL | ENA_L4_IPV4_CSUM |
2389 	     ENA_L4_IPV6_CSUM | ENA_L4_IPV6_CSUM_PARTIAL))
2390 		port_offloads |=
2391 			RTE_ETH_TX_OFFLOAD_UDP_CKSUM | RTE_ETH_TX_OFFLOAD_TCP_CKSUM;
2392 
2393 	port_offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2394 
2395 	return port_offloads;
2396 }
2397 
2398 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter)
2399 {
2400 	RTE_SET_USED(adapter);
2401 
2402 	return 0;
2403 }
2404 
2405 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter)
2406 {
2407 	RTE_SET_USED(adapter);
2408 
2409 	return 0;
2410 }
2411 
2412 static int ena_infos_get(struct rte_eth_dev *dev,
2413 			  struct rte_eth_dev_info *dev_info)
2414 {
2415 	struct ena_adapter *adapter;
2416 	struct ena_com_dev *ena_dev;
2417 
2418 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
2419 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
2420 	adapter = dev->data->dev_private;
2421 
2422 	ena_dev = &adapter->ena_dev;
2423 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
2424 
2425 	dev_info->speed_capa =
2426 			RTE_ETH_LINK_SPEED_1G   |
2427 			RTE_ETH_LINK_SPEED_2_5G |
2428 			RTE_ETH_LINK_SPEED_5G   |
2429 			RTE_ETH_LINK_SPEED_10G  |
2430 			RTE_ETH_LINK_SPEED_25G  |
2431 			RTE_ETH_LINK_SPEED_40G  |
2432 			RTE_ETH_LINK_SPEED_50G  |
2433 			RTE_ETH_LINK_SPEED_100G;
2434 
2435 	/* Inform framework about available features */
2436 	dev_info->rx_offload_capa = ena_get_rx_port_offloads(adapter);
2437 	dev_info->tx_offload_capa = ena_get_tx_port_offloads(adapter);
2438 	dev_info->rx_queue_offload_capa = ena_get_rx_queue_offloads(adapter);
2439 	dev_info->tx_queue_offload_capa = ena_get_tx_queue_offloads(adapter);
2440 
2441 	dev_info->flow_type_rss_offloads = ENA_ALL_RSS_HF;
2442 	dev_info->hash_key_size = ENA_HASH_KEY_SIZE;
2443 
2444 	dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
2445 	dev_info->max_rx_pktlen  = adapter->max_mtu + RTE_ETHER_HDR_LEN +
2446 		RTE_ETHER_CRC_LEN;
2447 	dev_info->min_mtu = ENA_MIN_MTU;
2448 	dev_info->max_mtu = adapter->max_mtu;
2449 	dev_info->max_mac_addrs = 1;
2450 
2451 	dev_info->max_rx_queues = adapter->max_num_io_queues;
2452 	dev_info->max_tx_queues = adapter->max_num_io_queues;
2453 	dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
2454 
2455 	dev_info->rx_desc_lim.nb_max = adapter->max_rx_ring_size;
2456 	dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2457 	dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2458 					adapter->max_rx_sgl_size);
2459 	dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2460 					adapter->max_rx_sgl_size);
2461 
2462 	dev_info->tx_desc_lim.nb_max = adapter->max_tx_ring_size;
2463 	dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2464 	dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2465 					adapter->max_tx_sgl_size);
2466 	dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2467 					adapter->max_tx_sgl_size);
2468 
2469 	dev_info->default_rxportconf.ring_size = ENA_DEFAULT_RING_SIZE;
2470 	dev_info->default_txportconf.ring_size = ENA_DEFAULT_RING_SIZE;
2471 
2472 	return 0;
2473 }
2474 
2475 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len)
2476 {
2477 	mbuf->data_len = len;
2478 	mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2479 	mbuf->refcnt = 1;
2480 	mbuf->next = NULL;
2481 }
2482 
2483 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
2484 				    struct ena_com_rx_buf_info *ena_bufs,
2485 				    uint32_t descs,
2486 				    uint16_t *next_to_clean,
2487 				    uint8_t offset)
2488 {
2489 	struct rte_mbuf *mbuf;
2490 	struct rte_mbuf *mbuf_head;
2491 	struct ena_rx_buffer *rx_info;
2492 	int rc;
2493 	uint16_t ntc, len, req_id, buf = 0;
2494 
2495 	if (unlikely(descs == 0))
2496 		return NULL;
2497 
2498 	ntc = *next_to_clean;
2499 
2500 	len = ena_bufs[buf].len;
2501 	req_id = ena_bufs[buf].req_id;
2502 
2503 	rx_info = &rx_ring->rx_buffer_info[req_id];
2504 
2505 	mbuf = rx_info->mbuf;
2506 	RTE_ASSERT(mbuf != NULL);
2507 
2508 	ena_init_rx_mbuf(mbuf, len);
2509 
2510 	/* Fill the mbuf head with the data specific for 1st segment. */
2511 	mbuf_head = mbuf;
2512 	mbuf_head->nb_segs = descs;
2513 	mbuf_head->port = rx_ring->port_id;
2514 	mbuf_head->pkt_len = len;
2515 	mbuf_head->data_off += offset;
2516 
2517 	rx_info->mbuf = NULL;
2518 	rx_ring->empty_rx_reqs[ntc] = req_id;
2519 	ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2520 
2521 	while (--descs) {
2522 		++buf;
2523 		len = ena_bufs[buf].len;
2524 		req_id = ena_bufs[buf].req_id;
2525 
2526 		rx_info = &rx_ring->rx_buffer_info[req_id];
2527 		RTE_ASSERT(rx_info->mbuf != NULL);
2528 
2529 		if (unlikely(len == 0)) {
2530 			/*
2531 			 * Some devices can pass descriptor with the length 0.
2532 			 * To avoid confusion, the PMD is simply putting the
2533 			 * descriptor back, as it was never used. We'll avoid
2534 			 * mbuf allocation that way.
2535 			 */
2536 			rc = ena_add_single_rx_desc(rx_ring->ena_com_io_sq,
2537 				rx_info->mbuf, req_id);
2538 			if (unlikely(rc != 0)) {
2539 				/* Free the mbuf in case of an error. */
2540 				rte_mbuf_raw_free(rx_info->mbuf);
2541 			} else {
2542 				/*
2543 				 * If there was no error, just exit the loop as
2544 				 * 0 length descriptor is always the last one.
2545 				 */
2546 				break;
2547 			}
2548 		} else {
2549 			/* Create an mbuf chain. */
2550 			mbuf->next = rx_info->mbuf;
2551 			mbuf = mbuf->next;
2552 
2553 			ena_init_rx_mbuf(mbuf, len);
2554 			mbuf_head->pkt_len += len;
2555 		}
2556 
2557 		/*
2558 		 * Mark the descriptor as depleted and perform necessary
2559 		 * cleanup.
2560 		 * This code will execute in two cases:
2561 		 *  1. Descriptor len was greater than 0 - normal situation.
2562 		 *  2. Descriptor len was 0 and we failed to add the descriptor
2563 		 *     to the device. In that situation, we should try to add
2564 		 *     the mbuf again in the populate routine and mark the
2565 		 *     descriptor as used up by the device.
2566 		 */
2567 		rx_info->mbuf = NULL;
2568 		rx_ring->empty_rx_reqs[ntc] = req_id;
2569 		ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2570 	}
2571 
2572 	*next_to_clean = ntc;
2573 
2574 	return mbuf_head;
2575 }
2576 
2577 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
2578 				  uint16_t nb_pkts)
2579 {
2580 	struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
2581 	unsigned int free_queue_entries;
2582 	uint16_t next_to_clean = rx_ring->next_to_clean;
2583 	uint16_t descs_in_use;
2584 	struct rte_mbuf *mbuf;
2585 	uint16_t completed;
2586 	struct ena_com_rx_ctx ena_rx_ctx;
2587 	int i, rc = 0;
2588 	bool fill_hash;
2589 
2590 #ifdef RTE_ETHDEV_DEBUG_RX
2591 	/* Check adapter state */
2592 	if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2593 		PMD_RX_LOG(ALERT,
2594 			"Trying to receive pkts while device is NOT running\n");
2595 		return 0;
2596 	}
2597 #endif
2598 
2599 	fill_hash = rx_ring->offloads & RTE_ETH_RX_OFFLOAD_RSS_HASH;
2600 
2601 	descs_in_use = rx_ring->ring_size -
2602 		ena_com_free_q_entries(rx_ring->ena_com_io_sq) - 1;
2603 	nb_pkts = RTE_MIN(descs_in_use, nb_pkts);
2604 
2605 	for (completed = 0; completed < nb_pkts; completed++) {
2606 		ena_rx_ctx.max_bufs = rx_ring->sgl_size;
2607 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
2608 		ena_rx_ctx.descs = 0;
2609 		ena_rx_ctx.pkt_offset = 0;
2610 		/* receive packet context */
2611 		rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
2612 				    rx_ring->ena_com_io_sq,
2613 				    &ena_rx_ctx);
2614 		if (unlikely(rc)) {
2615 			PMD_RX_LOG(ERR,
2616 				"Failed to get the packet from the device, rc: %d\n",
2617 				rc);
2618 			if (rc == ENA_COM_NO_SPACE) {
2619 				++rx_ring->rx_stats.bad_desc_num;
2620 				ena_trigger_reset(rx_ring->adapter,
2621 					ENA_REGS_RESET_TOO_MANY_RX_DESCS);
2622 			} else {
2623 				++rx_ring->rx_stats.bad_req_id;
2624 				ena_trigger_reset(rx_ring->adapter,
2625 					ENA_REGS_RESET_INV_RX_REQ_ID);
2626 			}
2627 			return 0;
2628 		}
2629 
2630 		mbuf = ena_rx_mbuf(rx_ring,
2631 			ena_rx_ctx.ena_bufs,
2632 			ena_rx_ctx.descs,
2633 			&next_to_clean,
2634 			ena_rx_ctx.pkt_offset);
2635 		if (unlikely(mbuf == NULL)) {
2636 			for (i = 0; i < ena_rx_ctx.descs; ++i) {
2637 				rx_ring->empty_rx_reqs[next_to_clean] =
2638 					rx_ring->ena_bufs[i].req_id;
2639 				next_to_clean = ENA_IDX_NEXT_MASKED(
2640 					next_to_clean, rx_ring->size_mask);
2641 			}
2642 			break;
2643 		}
2644 
2645 		/* fill mbuf attributes if any */
2646 		ena_rx_mbuf_prepare(rx_ring, mbuf, &ena_rx_ctx, fill_hash);
2647 
2648 		if (unlikely(mbuf->ol_flags &
2649 				(RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD)))
2650 			rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors);
2651 
2652 		rx_pkts[completed] = mbuf;
2653 		rx_ring->rx_stats.bytes += mbuf->pkt_len;
2654 	}
2655 
2656 	rx_ring->rx_stats.cnt += completed;
2657 	rx_ring->next_to_clean = next_to_clean;
2658 
2659 	free_queue_entries = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
2660 
2661 	/* Burst refill to save doorbells, memory barriers, const interval */
2662 	if (free_queue_entries >= rx_ring->rx_free_thresh) {
2663 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
2664 		ena_populate_rx_queue(rx_ring, free_queue_entries);
2665 	}
2666 
2667 	return completed;
2668 }
2669 
2670 static uint16_t
2671 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2672 		uint16_t nb_pkts)
2673 {
2674 	int32_t ret;
2675 	uint32_t i;
2676 	struct rte_mbuf *m;
2677 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2678 	struct ena_adapter *adapter = tx_ring->adapter;
2679 	struct rte_ipv4_hdr *ip_hdr;
2680 	uint64_t ol_flags;
2681 	uint64_t l4_csum_flag;
2682 	uint64_t dev_offload_capa;
2683 	uint16_t frag_field;
2684 	bool need_pseudo_csum;
2685 
2686 	dev_offload_capa = adapter->offloads.tx_offloads;
2687 	for (i = 0; i != nb_pkts; i++) {
2688 		m = tx_pkts[i];
2689 		ol_flags = m->ol_flags;
2690 
2691 		/* Check if any offload flag was set */
2692 		if (ol_flags == 0)
2693 			continue;
2694 
2695 		l4_csum_flag = ol_flags & RTE_MBUF_F_TX_L4_MASK;
2696 		/* SCTP checksum offload is not supported by the ENA. */
2697 		if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) ||
2698 		    l4_csum_flag == RTE_MBUF_F_TX_SCTP_CKSUM) {
2699 			PMD_TX_LOG(DEBUG,
2700 				"mbuf[%" PRIu32 "] has unsupported offloads flags set: 0x%" PRIu64 "\n",
2701 				i, ol_flags);
2702 			rte_errno = ENOTSUP;
2703 			return i;
2704 		}
2705 
2706 		if (unlikely(m->nb_segs >= tx_ring->sgl_size &&
2707 		    !(tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
2708 		      m->nb_segs == tx_ring->sgl_size &&
2709 		      m->data_len < tx_ring->tx_max_header_size))) {
2710 			PMD_TX_LOG(DEBUG,
2711 				"mbuf[%" PRIu32 "] has too many segments: %" PRIu16 "\n",
2712 				i, m->nb_segs);
2713 			rte_errno = EINVAL;
2714 			return i;
2715 		}
2716 
2717 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2718 		/* Check if requested offload is also enabled for the queue */
2719 		if ((ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
2720 		     !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM)) ||
2721 		    (l4_csum_flag == RTE_MBUF_F_TX_TCP_CKSUM &&
2722 		     !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) ||
2723 		    (l4_csum_flag == RTE_MBUF_F_TX_UDP_CKSUM &&
2724 		     !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM))) {
2725 			PMD_TX_LOG(DEBUG,
2726 				"mbuf[%" PRIu32 "]: requested offloads: %" PRIu16 " are not enabled for the queue[%u]\n",
2727 				i, m->nb_segs, tx_ring->id);
2728 			rte_errno = EINVAL;
2729 			return i;
2730 		}
2731 
2732 		/* The caller is obligated to set l2 and l3 len if any cksum
2733 		 * offload is enabled.
2734 		 */
2735 		if (unlikely(ol_flags & (RTE_MBUF_F_TX_IP_CKSUM | RTE_MBUF_F_TX_L4_MASK) &&
2736 		    (m->l2_len == 0 || m->l3_len == 0))) {
2737 			PMD_TX_LOG(DEBUG,
2738 				"mbuf[%" PRIu32 "]: l2_len or l3_len values are 0 while the offload was requested\n",
2739 				i);
2740 			rte_errno = EINVAL;
2741 			return i;
2742 		}
2743 		ret = rte_validate_tx_offload(m);
2744 		if (ret != 0) {
2745 			rte_errno = -ret;
2746 			return i;
2747 		}
2748 #endif
2749 
2750 		/* Verify HW support for requested offloads and determine if
2751 		 * pseudo header checksum is needed.
2752 		 */
2753 		need_pseudo_csum = false;
2754 		if (ol_flags & RTE_MBUF_F_TX_IPV4) {
2755 			if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
2756 			    !(dev_offload_capa & ENA_L3_IPV4_CSUM)) {
2757 				rte_errno = ENOTSUP;
2758 				return i;
2759 			}
2760 
2761 			if (ol_flags & RTE_MBUF_F_TX_TCP_SEG &&
2762 			    !(dev_offload_capa & ENA_IPV4_TSO)) {
2763 				rte_errno = ENOTSUP;
2764 				return i;
2765 			}
2766 
2767 			/* Check HW capabilities and if pseudo csum is needed
2768 			 * for L4 offloads.
2769 			 */
2770 			if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
2771 			    !(dev_offload_capa & ENA_L4_IPV4_CSUM)) {
2772 				if (dev_offload_capa &
2773 				    ENA_L4_IPV4_CSUM_PARTIAL) {
2774 					need_pseudo_csum = true;
2775 				} else {
2776 					rte_errno = ENOTSUP;
2777 					return i;
2778 				}
2779 			}
2780 
2781 			/* Parse the DF flag */
2782 			ip_hdr = rte_pktmbuf_mtod_offset(m,
2783 				struct rte_ipv4_hdr *, m->l2_len);
2784 			frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
2785 			if (frag_field & RTE_IPV4_HDR_DF_FLAG) {
2786 				m->packet_type |= RTE_PTYPE_L4_NONFRAG;
2787 			} else if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2788 				/* In case we are supposed to TSO and have DF
2789 				 * not set (DF=0) hardware must be provided with
2790 				 * partial checksum.
2791 				 */
2792 				need_pseudo_csum = true;
2793 			}
2794 		} else if (ol_flags & RTE_MBUF_F_TX_IPV6) {
2795 			/* There is no support for IPv6 TSO as for now. */
2796 			if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2797 				rte_errno = ENOTSUP;
2798 				return i;
2799 			}
2800 
2801 			/* Check HW capabilities and if pseudo csum is needed */
2802 			if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
2803 			    !(dev_offload_capa & ENA_L4_IPV6_CSUM)) {
2804 				if (dev_offload_capa &
2805 				    ENA_L4_IPV6_CSUM_PARTIAL) {
2806 					need_pseudo_csum = true;
2807 				} else {
2808 					rte_errno = ENOTSUP;
2809 					return i;
2810 				}
2811 			}
2812 		}
2813 
2814 		if (need_pseudo_csum) {
2815 			ret = rte_net_intel_cksum_flags_prepare(m, ol_flags);
2816 			if (ret != 0) {
2817 				rte_errno = -ret;
2818 				return i;
2819 			}
2820 		}
2821 	}
2822 
2823 	return i;
2824 }
2825 
2826 static void ena_update_hints(struct ena_adapter *adapter,
2827 			     struct ena_admin_ena_hw_hints *hints)
2828 {
2829 	if (hints->admin_completion_tx_timeout)
2830 		adapter->ena_dev.admin_queue.completion_timeout =
2831 			hints->admin_completion_tx_timeout * 1000;
2832 
2833 	if (hints->mmio_read_timeout)
2834 		/* convert to usec */
2835 		adapter->ena_dev.mmio_read.reg_read_to =
2836 			hints->mmio_read_timeout * 1000;
2837 
2838 	if (hints->driver_watchdog_timeout) {
2839 		if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
2840 			adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
2841 		else
2842 			// Convert msecs to ticks
2843 			adapter->keep_alive_timeout =
2844 				(hints->driver_watchdog_timeout *
2845 				rte_get_timer_hz()) / 1000;
2846 	}
2847 }
2848 
2849 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
2850 	struct ena_tx_buffer *tx_info,
2851 	struct rte_mbuf *mbuf,
2852 	void **push_header,
2853 	uint16_t *header_len)
2854 {
2855 	struct ena_com_buf *ena_buf;
2856 	uint16_t delta, seg_len, push_len;
2857 
2858 	delta = 0;
2859 	seg_len = mbuf->data_len;
2860 
2861 	tx_info->mbuf = mbuf;
2862 	ena_buf = tx_info->bufs;
2863 
2864 	if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2865 		/*
2866 		 * Tx header might be (and will be in most cases) smaller than
2867 		 * tx_max_header_size. But it's not an issue to send more data
2868 		 * to the device, than actually needed if the mbuf size is
2869 		 * greater than tx_max_header_size.
2870 		 */
2871 		push_len = RTE_MIN(mbuf->pkt_len, tx_ring->tx_max_header_size);
2872 		*header_len = push_len;
2873 
2874 		if (likely(push_len <= seg_len)) {
2875 			/* If the push header is in the single segment, then
2876 			 * just point it to the 1st mbuf data.
2877 			 */
2878 			*push_header = rte_pktmbuf_mtod(mbuf, uint8_t *);
2879 		} else {
2880 			/* If the push header lays in the several segments, copy
2881 			 * it to the intermediate buffer.
2882 			 */
2883 			rte_pktmbuf_read(mbuf, 0, push_len,
2884 				tx_ring->push_buf_intermediate_buf);
2885 			*push_header = tx_ring->push_buf_intermediate_buf;
2886 			delta = push_len - seg_len;
2887 		}
2888 	} else {
2889 		*push_header = NULL;
2890 		*header_len = 0;
2891 		push_len = 0;
2892 	}
2893 
2894 	/* Process first segment taking into consideration pushed header */
2895 	if (seg_len > push_len) {
2896 		ena_buf->paddr = mbuf->buf_iova +
2897 				mbuf->data_off +
2898 				push_len;
2899 		ena_buf->len = seg_len - push_len;
2900 		ena_buf++;
2901 		tx_info->num_of_bufs++;
2902 	}
2903 
2904 	while ((mbuf = mbuf->next) != NULL) {
2905 		seg_len = mbuf->data_len;
2906 
2907 		/* Skip mbufs if whole data is pushed as a header */
2908 		if (unlikely(delta > seg_len)) {
2909 			delta -= seg_len;
2910 			continue;
2911 		}
2912 
2913 		ena_buf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
2914 		ena_buf->len = seg_len - delta;
2915 		ena_buf++;
2916 		tx_info->num_of_bufs++;
2917 
2918 		delta = 0;
2919 	}
2920 }
2921 
2922 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf)
2923 {
2924 	struct ena_tx_buffer *tx_info;
2925 	struct ena_com_tx_ctx ena_tx_ctx = { { 0 } };
2926 	uint16_t next_to_use;
2927 	uint16_t header_len;
2928 	uint16_t req_id;
2929 	void *push_header;
2930 	int nb_hw_desc;
2931 	int rc;
2932 
2933 	/* Checking for space for 2 additional metadata descriptors due to
2934 	 * possible header split and metadata descriptor
2935 	 */
2936 	if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
2937 					  mbuf->nb_segs + 2)) {
2938 		PMD_DRV_LOG(DEBUG, "Not enough space in the tx queue\n");
2939 		return ENA_COM_NO_MEM;
2940 	}
2941 
2942 	next_to_use = tx_ring->next_to_use;
2943 
2944 	req_id = tx_ring->empty_tx_reqs[next_to_use];
2945 	tx_info = &tx_ring->tx_buffer_info[req_id];
2946 	tx_info->num_of_bufs = 0;
2947 	RTE_ASSERT(tx_info->mbuf == NULL);
2948 
2949 	ena_tx_map_mbuf(tx_ring, tx_info, mbuf, &push_header, &header_len);
2950 
2951 	ena_tx_ctx.ena_bufs = tx_info->bufs;
2952 	ena_tx_ctx.push_header = push_header;
2953 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2954 	ena_tx_ctx.req_id = req_id;
2955 	ena_tx_ctx.header_len = header_len;
2956 
2957 	/* Set Tx offloads flags, if applicable */
2958 	ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads,
2959 		tx_ring->disable_meta_caching);
2960 
2961 	if (unlikely(ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
2962 			&ena_tx_ctx))) {
2963 		PMD_TX_LOG(DEBUG,
2964 			"LLQ Tx max burst size of queue %d achieved, writing doorbell to send burst\n",
2965 			tx_ring->id);
2966 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2967 		tx_ring->tx_stats.doorbells++;
2968 		tx_ring->pkts_without_db = false;
2969 	}
2970 
2971 	/* prepare the packet's descriptors to dma engine */
2972 	rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq,	&ena_tx_ctx,
2973 		&nb_hw_desc);
2974 	if (unlikely(rc)) {
2975 		PMD_DRV_LOG(ERR, "Failed to prepare Tx buffers, rc: %d\n", rc);
2976 		++tx_ring->tx_stats.prepare_ctx_err;
2977 		ena_trigger_reset(tx_ring->adapter,
2978 			ENA_REGS_RESET_DRIVER_INVALID_STATE);
2979 		return rc;
2980 	}
2981 
2982 	tx_info->tx_descs = nb_hw_desc;
2983 	tx_info->timestamp = rte_get_timer_cycles();
2984 
2985 	tx_ring->tx_stats.cnt++;
2986 	tx_ring->tx_stats.bytes += mbuf->pkt_len;
2987 
2988 	tx_ring->next_to_use = ENA_IDX_NEXT_MASKED(next_to_use,
2989 		tx_ring->size_mask);
2990 
2991 	return 0;
2992 }
2993 
2994 static int ena_tx_cleanup(void *txp, uint32_t free_pkt_cnt)
2995 {
2996 	struct ena_ring *tx_ring = (struct ena_ring *)txp;
2997 	unsigned int total_tx_descs = 0;
2998 	unsigned int total_tx_pkts = 0;
2999 	uint16_t cleanup_budget;
3000 	uint16_t next_to_clean = tx_ring->next_to_clean;
3001 
3002 	/*
3003 	 * If free_pkt_cnt is equal to 0, it means that the user requested
3004 	 * full cleanup, so attempt to release all Tx descriptors
3005 	 * (ring_size - 1 -> size_mask)
3006 	 */
3007 	cleanup_budget = (free_pkt_cnt == 0) ? tx_ring->size_mask : free_pkt_cnt;
3008 
3009 	while (likely(total_tx_pkts < cleanup_budget)) {
3010 		struct rte_mbuf *mbuf;
3011 		struct ena_tx_buffer *tx_info;
3012 		uint16_t req_id;
3013 
3014 		if (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) != 0)
3015 			break;
3016 
3017 		if (unlikely(validate_tx_req_id(tx_ring, req_id) != 0))
3018 			break;
3019 
3020 		/* Get Tx info & store how many descs were processed  */
3021 		tx_info = &tx_ring->tx_buffer_info[req_id];
3022 		tx_info->timestamp = 0;
3023 
3024 		mbuf = tx_info->mbuf;
3025 		rte_pktmbuf_free(mbuf);
3026 
3027 		tx_info->mbuf = NULL;
3028 		tx_ring->empty_tx_reqs[next_to_clean] = req_id;
3029 
3030 		total_tx_descs += tx_info->tx_descs;
3031 		total_tx_pkts++;
3032 
3033 		/* Put back descriptor to the ring for reuse */
3034 		next_to_clean = ENA_IDX_NEXT_MASKED(next_to_clean,
3035 			tx_ring->size_mask);
3036 	}
3037 
3038 	if (likely(total_tx_descs > 0)) {
3039 		/* acknowledge completion of sent packets */
3040 		tx_ring->next_to_clean = next_to_clean;
3041 		ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
3042 		ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
3043 	}
3044 
3045 	/* Notify completion handler that full cleanup was performed */
3046 	if (free_pkt_cnt == 0 || total_tx_pkts < cleanup_budget)
3047 		tx_ring->last_cleanup_ticks = rte_get_timer_cycles();
3048 
3049 	return total_tx_pkts;
3050 }
3051 
3052 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
3053 				  uint16_t nb_pkts)
3054 {
3055 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
3056 	int available_desc;
3057 	uint16_t sent_idx = 0;
3058 
3059 #ifdef RTE_ETHDEV_DEBUG_TX
3060 	/* Check adapter state */
3061 	if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
3062 		PMD_TX_LOG(ALERT,
3063 			"Trying to xmit pkts while device is NOT running\n");
3064 		return 0;
3065 	}
3066 #endif
3067 
3068 	available_desc = ena_com_free_q_entries(tx_ring->ena_com_io_sq);
3069 	if (available_desc < tx_ring->tx_free_thresh)
3070 		ena_tx_cleanup((void *)tx_ring, 0);
3071 
3072 	for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
3073 		if (ena_xmit_mbuf(tx_ring, tx_pkts[sent_idx]))
3074 			break;
3075 		tx_ring->pkts_without_db = true;
3076 		rte_prefetch0(tx_pkts[ENA_IDX_ADD_MASKED(sent_idx, 4,
3077 			tx_ring->size_mask)]);
3078 	}
3079 
3080 	/* If there are ready packets to be xmitted... */
3081 	if (likely(tx_ring->pkts_without_db)) {
3082 		/* ...let HW do its best :-) */
3083 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
3084 		tx_ring->tx_stats.doorbells++;
3085 		tx_ring->pkts_without_db = false;
3086 	}
3087 
3088 	tx_ring->tx_stats.available_desc =
3089 		ena_com_free_q_entries(tx_ring->ena_com_io_sq);
3090 	tx_ring->tx_stats.tx_poll++;
3091 
3092 	return sent_idx;
3093 }
3094 
3095 int ena_copy_eni_stats(struct ena_adapter *adapter, struct ena_stats_eni *stats)
3096 {
3097 	int rc;
3098 
3099 	rte_spinlock_lock(&adapter->admin_lock);
3100 	/* Retrieve and store the latest statistics from the AQ. This ensures
3101 	 * that previous value is returned in case of a com error.
3102 	 */
3103 	rc = ENA_PROXY(adapter, ena_com_get_eni_stats, &adapter->ena_dev,
3104 		(struct ena_admin_eni_stats *)stats);
3105 	rte_spinlock_unlock(&adapter->admin_lock);
3106 	if (rc != 0) {
3107 		if (rc == ENA_COM_UNSUPPORTED) {
3108 			PMD_DRV_LOG(DEBUG,
3109 				"Retrieving ENI metrics is not supported\n");
3110 		} else {
3111 			PMD_DRV_LOG(WARNING,
3112 				"Failed to get ENI metrics, rc: %d\n", rc);
3113 		}
3114 		return rc;
3115 	}
3116 
3117 	return 0;
3118 }
3119 
3120 /**
3121  * DPDK callback to retrieve names of extended device statistics
3122  *
3123  * @param dev
3124  *   Pointer to Ethernet device structure.
3125  * @param[out] xstats_names
3126  *   Buffer to insert names into.
3127  * @param n
3128  *   Number of names.
3129  *
3130  * @return
3131  *   Number of xstats names.
3132  */
3133 static int ena_xstats_get_names(struct rte_eth_dev *dev,
3134 				struct rte_eth_xstat_name *xstats_names,
3135 				unsigned int n)
3136 {
3137 	unsigned int xstats_count = ena_xstats_calc_num(dev->data);
3138 	unsigned int stat, i, count = 0;
3139 
3140 	if (n < xstats_count || !xstats_names)
3141 		return xstats_count;
3142 
3143 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
3144 		strcpy(xstats_names[count].name,
3145 			ena_stats_global_strings[stat].name);
3146 
3147 	for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++)
3148 		strcpy(xstats_names[count].name,
3149 			ena_stats_eni_strings[stat].name);
3150 
3151 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
3152 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
3153 			snprintf(xstats_names[count].name,
3154 				sizeof(xstats_names[count].name),
3155 				"rx_q%d_%s", i,
3156 				ena_stats_rx_strings[stat].name);
3157 
3158 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
3159 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
3160 			snprintf(xstats_names[count].name,
3161 				sizeof(xstats_names[count].name),
3162 				"tx_q%d_%s", i,
3163 				ena_stats_tx_strings[stat].name);
3164 
3165 	return xstats_count;
3166 }
3167 
3168 /**
3169  * DPDK callback to retrieve names of extended device statistics for the given
3170  * ids.
3171  *
3172  * @param dev
3173  *   Pointer to Ethernet device structure.
3174  * @param[out] xstats_names
3175  *   Buffer to insert names into.
3176  * @param ids
3177  *   IDs array for which the names should be retrieved.
3178  * @param size
3179  *   Number of ids.
3180  *
3181  * @return
3182  *   Positive value: number of xstats names. Negative value: error code.
3183  */
3184 static int ena_xstats_get_names_by_id(struct rte_eth_dev *dev,
3185 				      const uint64_t *ids,
3186 				      struct rte_eth_xstat_name *xstats_names,
3187 				      unsigned int size)
3188 {
3189 	uint64_t xstats_count = ena_xstats_calc_num(dev->data);
3190 	uint64_t id, qid;
3191 	unsigned int i;
3192 
3193 	if (xstats_names == NULL)
3194 		return xstats_count;
3195 
3196 	for (i = 0; i < size; ++i) {
3197 		id = ids[i];
3198 		if (id > xstats_count) {
3199 			PMD_DRV_LOG(ERR,
3200 				"ID value out of range: id=%" PRIu64 ", xstats_num=%" PRIu64 "\n",
3201 				 id, xstats_count);
3202 			return -EINVAL;
3203 		}
3204 
3205 		if (id < ENA_STATS_ARRAY_GLOBAL) {
3206 			strcpy(xstats_names[i].name,
3207 			       ena_stats_global_strings[id].name);
3208 			continue;
3209 		}
3210 
3211 		id -= ENA_STATS_ARRAY_GLOBAL;
3212 		if (id < ENA_STATS_ARRAY_ENI) {
3213 			strcpy(xstats_names[i].name,
3214 			       ena_stats_eni_strings[id].name);
3215 			continue;
3216 		}
3217 
3218 		id -= ENA_STATS_ARRAY_ENI;
3219 		if (id < ENA_STATS_ARRAY_RX) {
3220 			qid = id / dev->data->nb_rx_queues;
3221 			id %= dev->data->nb_rx_queues;
3222 			snprintf(xstats_names[i].name,
3223 				 sizeof(xstats_names[i].name),
3224 				 "rx_q%" PRIu64 "d_%s",
3225 				 qid, ena_stats_rx_strings[id].name);
3226 			continue;
3227 		}
3228 
3229 		id -= ENA_STATS_ARRAY_RX;
3230 		/* Although this condition is not needed, it was added for
3231 		 * compatibility if new xstat structure would be ever added.
3232 		 */
3233 		if (id < ENA_STATS_ARRAY_TX) {
3234 			qid = id / dev->data->nb_tx_queues;
3235 			id %= dev->data->nb_tx_queues;
3236 			snprintf(xstats_names[i].name,
3237 				 sizeof(xstats_names[i].name),
3238 				 "tx_q%" PRIu64 "_%s",
3239 				 qid, ena_stats_tx_strings[id].name);
3240 			continue;
3241 		}
3242 	}
3243 
3244 	return i;
3245 }
3246 
3247 /**
3248  * DPDK callback to get extended device statistics.
3249  *
3250  * @param dev
3251  *   Pointer to Ethernet device structure.
3252  * @param[out] stats
3253  *   Stats table output buffer.
3254  * @param n
3255  *   The size of the stats table.
3256  *
3257  * @return
3258  *   Number of xstats on success, negative on failure.
3259  */
3260 static int ena_xstats_get(struct rte_eth_dev *dev,
3261 			  struct rte_eth_xstat *xstats,
3262 			  unsigned int n)
3263 {
3264 	struct ena_adapter *adapter = dev->data->dev_private;
3265 	unsigned int xstats_count = ena_xstats_calc_num(dev->data);
3266 	struct ena_stats_eni eni_stats;
3267 	unsigned int stat, i, count = 0;
3268 	int stat_offset;
3269 	void *stats_begin;
3270 
3271 	if (n < xstats_count)
3272 		return xstats_count;
3273 
3274 	if (!xstats)
3275 		return 0;
3276 
3277 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
3278 		stat_offset = ena_stats_global_strings[stat].stat_offset;
3279 		stats_begin = &adapter->dev_stats;
3280 
3281 		xstats[count].id = count;
3282 		xstats[count].value = *((uint64_t *)
3283 			((char *)stats_begin + stat_offset));
3284 	}
3285 
3286 	/* Even if the function below fails, we should copy previous (or initial
3287 	 * values) to keep structure of rte_eth_xstat consistent.
3288 	 */
3289 	ena_copy_eni_stats(adapter, &eni_stats);
3290 	for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++) {
3291 		stat_offset = ena_stats_eni_strings[stat].stat_offset;
3292 		stats_begin = &eni_stats;
3293 
3294 		xstats[count].id = count;
3295 		xstats[count].value = *((uint64_t *)
3296 		    ((char *)stats_begin + stat_offset));
3297 	}
3298 
3299 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
3300 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
3301 			stat_offset = ena_stats_rx_strings[stat].stat_offset;
3302 			stats_begin = &adapter->rx_ring[i].rx_stats;
3303 
3304 			xstats[count].id = count;
3305 			xstats[count].value = *((uint64_t *)
3306 				((char *)stats_begin + stat_offset));
3307 		}
3308 	}
3309 
3310 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
3311 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
3312 			stat_offset = ena_stats_tx_strings[stat].stat_offset;
3313 			stats_begin = &adapter->tx_ring[i].rx_stats;
3314 
3315 			xstats[count].id = count;
3316 			xstats[count].value = *((uint64_t *)
3317 				((char *)stats_begin + stat_offset));
3318 		}
3319 	}
3320 
3321 	return count;
3322 }
3323 
3324 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
3325 				const uint64_t *ids,
3326 				uint64_t *values,
3327 				unsigned int n)
3328 {
3329 	struct ena_adapter *adapter = dev->data->dev_private;
3330 	struct ena_stats_eni eni_stats;
3331 	uint64_t id;
3332 	uint64_t rx_entries, tx_entries;
3333 	unsigned int i;
3334 	int qid;
3335 	int valid = 0;
3336 	bool was_eni_copied = false;
3337 
3338 	for (i = 0; i < n; ++i) {
3339 		id = ids[i];
3340 		/* Check if id belongs to global statistics */
3341 		if (id < ENA_STATS_ARRAY_GLOBAL) {
3342 			values[i] = *((uint64_t *)&adapter->dev_stats + id);
3343 			++valid;
3344 			continue;
3345 		}
3346 
3347 		/* Check if id belongs to ENI statistics */
3348 		id -= ENA_STATS_ARRAY_GLOBAL;
3349 		if (id < ENA_STATS_ARRAY_ENI) {
3350 			/* Avoid reading ENI stats multiple times in a single
3351 			 * function call, as it requires communication with the
3352 			 * admin queue.
3353 			 */
3354 			if (!was_eni_copied) {
3355 				was_eni_copied = true;
3356 				ena_copy_eni_stats(adapter, &eni_stats);
3357 			}
3358 			values[i] = *((uint64_t *)&eni_stats + id);
3359 			++valid;
3360 			continue;
3361 		}
3362 
3363 		/* Check if id belongs to rx queue statistics */
3364 		id -= ENA_STATS_ARRAY_ENI;
3365 		rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
3366 		if (id < rx_entries) {
3367 			qid = id % dev->data->nb_rx_queues;
3368 			id /= dev->data->nb_rx_queues;
3369 			values[i] = *((uint64_t *)
3370 				&adapter->rx_ring[qid].rx_stats + id);
3371 			++valid;
3372 			continue;
3373 		}
3374 				/* Check if id belongs to rx queue statistics */
3375 		id -= rx_entries;
3376 		tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
3377 		if (id < tx_entries) {
3378 			qid = id % dev->data->nb_tx_queues;
3379 			id /= dev->data->nb_tx_queues;
3380 			values[i] = *((uint64_t *)
3381 				&adapter->tx_ring[qid].tx_stats + id);
3382 			++valid;
3383 			continue;
3384 		}
3385 	}
3386 
3387 	return valid;
3388 }
3389 
3390 static int ena_process_uint_devarg(const char *key,
3391 				  const char *value,
3392 				  void *opaque)
3393 {
3394 	struct ena_adapter *adapter = opaque;
3395 	char *str_end;
3396 	uint64_t uint_value;
3397 
3398 	uint_value = strtoull(value, &str_end, 10);
3399 	if (value == str_end) {
3400 		PMD_INIT_LOG(ERR,
3401 			"Invalid value for key '%s'. Only uint values are accepted.\n",
3402 			key);
3403 		return -EINVAL;
3404 	}
3405 
3406 	if (strcmp(key, ENA_DEVARG_MISS_TXC_TO) == 0) {
3407 		if (uint_value > ENA_MAX_TX_TIMEOUT_SECONDS) {
3408 			PMD_INIT_LOG(ERR,
3409 				"Tx timeout too high: %" PRIu64 " sec. Maximum allowed: %d sec.\n",
3410 				uint_value, ENA_MAX_TX_TIMEOUT_SECONDS);
3411 			return -EINVAL;
3412 		} else if (uint_value == 0) {
3413 			PMD_INIT_LOG(INFO,
3414 				"Check for missing Tx completions has been disabled.\n");
3415 			adapter->missing_tx_completion_to =
3416 				ENA_HW_HINTS_NO_TIMEOUT;
3417 		} else {
3418 			PMD_INIT_LOG(INFO,
3419 				"Tx packet completion timeout set to %" PRIu64 " seconds.\n",
3420 				uint_value);
3421 			adapter->missing_tx_completion_to =
3422 				uint_value * rte_get_timer_hz();
3423 		}
3424 	}
3425 
3426 	return 0;
3427 }
3428 
3429 static int ena_process_bool_devarg(const char *key,
3430 				   const char *value,
3431 				   void *opaque)
3432 {
3433 	struct ena_adapter *adapter = opaque;
3434 	bool bool_value;
3435 
3436 	/* Parse the value. */
3437 	if (strcmp(value, "1") == 0) {
3438 		bool_value = true;
3439 	} else if (strcmp(value, "0") == 0) {
3440 		bool_value = false;
3441 	} else {
3442 		PMD_INIT_LOG(ERR,
3443 			"Invalid value: '%s' for key '%s'. Accepted: '0' or '1'\n",
3444 			value, key);
3445 		return -EINVAL;
3446 	}
3447 
3448 	/* Now, assign it to the proper adapter field. */
3449 	if (strcmp(key, ENA_DEVARG_LARGE_LLQ_HDR) == 0)
3450 		adapter->use_large_llq_hdr = bool_value;
3451 
3452 	return 0;
3453 }
3454 
3455 static int ena_parse_devargs(struct ena_adapter *adapter,
3456 			     struct rte_devargs *devargs)
3457 {
3458 	static const char * const allowed_args[] = {
3459 		ENA_DEVARG_LARGE_LLQ_HDR,
3460 		ENA_DEVARG_MISS_TXC_TO,
3461 		NULL,
3462 	};
3463 	struct rte_kvargs *kvlist;
3464 	int rc;
3465 
3466 	if (devargs == NULL)
3467 		return 0;
3468 
3469 	kvlist = rte_kvargs_parse(devargs->args, allowed_args);
3470 	if (kvlist == NULL) {
3471 		PMD_INIT_LOG(ERR, "Invalid device arguments: %s\n",
3472 			devargs->args);
3473 		return -EINVAL;
3474 	}
3475 
3476 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_LARGE_LLQ_HDR,
3477 		ena_process_bool_devarg, adapter);
3478 	if (rc != 0)
3479 		goto exit;
3480 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_MISS_TXC_TO,
3481 		ena_process_uint_devarg, adapter);
3482 
3483 exit:
3484 	rte_kvargs_free(kvlist);
3485 
3486 	return rc;
3487 }
3488 
3489 static int ena_setup_rx_intr(struct rte_eth_dev *dev)
3490 {
3491 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3492 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
3493 	int rc;
3494 	uint16_t vectors_nb, i;
3495 	bool rx_intr_requested = dev->data->dev_conf.intr_conf.rxq;
3496 
3497 	if (!rx_intr_requested)
3498 		return 0;
3499 
3500 	if (!rte_intr_cap_multiple(intr_handle)) {
3501 		PMD_DRV_LOG(ERR,
3502 			"Rx interrupt requested, but it isn't supported by the PCI driver\n");
3503 		return -ENOTSUP;
3504 	}
3505 
3506 	/* Disable interrupt mapping before the configuration starts. */
3507 	rte_intr_disable(intr_handle);
3508 
3509 	/* Verify if there are enough vectors available. */
3510 	vectors_nb = dev->data->nb_rx_queues;
3511 	if (vectors_nb > RTE_MAX_RXTX_INTR_VEC_ID) {
3512 		PMD_DRV_LOG(ERR,
3513 			"Too many Rx interrupts requested, maximum number: %d\n",
3514 			RTE_MAX_RXTX_INTR_VEC_ID);
3515 		rc = -ENOTSUP;
3516 		goto enable_intr;
3517 	}
3518 
3519 	/* Allocate the vector list */
3520 	if (rte_intr_vec_list_alloc(intr_handle, "intr_vec",
3521 					   dev->data->nb_rx_queues)) {
3522 		PMD_DRV_LOG(ERR,
3523 			"Failed to allocate interrupt vector for %d queues\n",
3524 			dev->data->nb_rx_queues);
3525 		rc = -ENOMEM;
3526 		goto enable_intr;
3527 	}
3528 
3529 	rc = rte_intr_efd_enable(intr_handle, vectors_nb);
3530 	if (rc != 0)
3531 		goto free_intr_vec;
3532 
3533 	if (!rte_intr_allow_others(intr_handle)) {
3534 		PMD_DRV_LOG(ERR,
3535 			"Not enough interrupts available to use both ENA Admin and Rx interrupts\n");
3536 		goto disable_intr_efd;
3537 	}
3538 
3539 	for (i = 0; i < vectors_nb; ++i)
3540 		if (rte_intr_vec_list_index_set(intr_handle, i,
3541 					   RTE_INTR_VEC_RXTX_OFFSET + i))
3542 			goto disable_intr_efd;
3543 
3544 	rte_intr_enable(intr_handle);
3545 	return 0;
3546 
3547 disable_intr_efd:
3548 	rte_intr_efd_disable(intr_handle);
3549 free_intr_vec:
3550 	rte_intr_vec_list_free(intr_handle);
3551 enable_intr:
3552 	rte_intr_enable(intr_handle);
3553 	return rc;
3554 }
3555 
3556 static void ena_rx_queue_intr_set(struct rte_eth_dev *dev,
3557 				 uint16_t queue_id,
3558 				 bool unmask)
3559 {
3560 	struct ena_adapter *adapter = dev->data->dev_private;
3561 	struct ena_ring *rxq = &adapter->rx_ring[queue_id];
3562 	struct ena_eth_io_intr_reg intr_reg;
3563 
3564 	ena_com_update_intr_reg(&intr_reg, 0, 0, unmask);
3565 	ena_com_unmask_intr(rxq->ena_com_io_cq, &intr_reg);
3566 }
3567 
3568 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
3569 				    uint16_t queue_id)
3570 {
3571 	ena_rx_queue_intr_set(dev, queue_id, true);
3572 
3573 	return 0;
3574 }
3575 
3576 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
3577 				     uint16_t queue_id)
3578 {
3579 	ena_rx_queue_intr_set(dev, queue_id, false);
3580 
3581 	return 0;
3582 }
3583 
3584 static int ena_configure_aenq(struct ena_adapter *adapter)
3585 {
3586 	uint32_t aenq_groups = adapter->all_aenq_groups;
3587 	int rc;
3588 
3589 	/* All_aenq_groups holds all AENQ functions supported by the device and
3590 	 * the HW, so at first we need to be sure the LSC request is valid.
3591 	 */
3592 	if (adapter->edev_data->dev_conf.intr_conf.lsc != 0) {
3593 		if (!(aenq_groups & BIT(ENA_ADMIN_LINK_CHANGE))) {
3594 			PMD_DRV_LOG(ERR,
3595 				"LSC requested, but it's not supported by the AENQ\n");
3596 			return -EINVAL;
3597 		}
3598 	} else {
3599 		/* If LSC wasn't enabled by the app, let's enable all supported
3600 		 * AENQ procedures except the LSC.
3601 		 */
3602 		aenq_groups &= ~BIT(ENA_ADMIN_LINK_CHANGE);
3603 	}
3604 
3605 	rc = ena_com_set_aenq_config(&adapter->ena_dev, aenq_groups);
3606 	if (rc != 0) {
3607 		PMD_DRV_LOG(ERR, "Cannot configure AENQ groups, rc=%d\n", rc);
3608 		return rc;
3609 	}
3610 
3611 	adapter->active_aenq_groups = aenq_groups;
3612 
3613 	return 0;
3614 }
3615 
3616 int ena_mp_indirect_table_set(struct ena_adapter *adapter)
3617 {
3618 	return ENA_PROXY(adapter, ena_com_indirect_table_set, &adapter->ena_dev);
3619 }
3620 
3621 int ena_mp_indirect_table_get(struct ena_adapter *adapter,
3622 			      uint32_t *indirect_table)
3623 {
3624 	return ENA_PROXY(adapter, ena_com_indirect_table_get, &adapter->ena_dev,
3625 		indirect_table);
3626 }
3627 
3628 /*********************************************************************
3629  *  ena_plat_dpdk.h functions implementations
3630  *********************************************************************/
3631 
3632 const struct rte_memzone *
3633 ena_mem_alloc_coherent(struct rte_eth_dev_data *data, size_t size,
3634 		       int socket_id, unsigned int alignment, void **virt_addr,
3635 		       dma_addr_t *phys_addr)
3636 {
3637 	char z_name[RTE_MEMZONE_NAMESIZE];
3638 	struct ena_adapter *adapter = data->dev_private;
3639 	const struct rte_memzone *memzone;
3640 	int rc;
3641 
3642 	rc = snprintf(z_name, RTE_MEMZONE_NAMESIZE, "ena_p%d_mz%" PRIu64 "",
3643 		data->port_id, adapter->memzone_cnt);
3644 	if (rc >= RTE_MEMZONE_NAMESIZE) {
3645 		PMD_DRV_LOG(ERR,
3646 			"Name for the ena_com memzone is too long. Port: %d, mz_num: %" PRIu64 "\n",
3647 			data->port_id, adapter->memzone_cnt);
3648 		goto error;
3649 	}
3650 	adapter->memzone_cnt++;
3651 
3652 	memzone = rte_memzone_reserve_aligned(z_name, size, socket_id,
3653 		RTE_MEMZONE_IOVA_CONTIG, alignment);
3654 	if (memzone == NULL) {
3655 		PMD_DRV_LOG(ERR, "Failed to allocate ena_com memzone: %s\n",
3656 			z_name);
3657 		goto error;
3658 	}
3659 
3660 	memset(memzone->addr, 0, size);
3661 	*virt_addr = memzone->addr;
3662 	*phys_addr = memzone->iova;
3663 
3664 	return memzone;
3665 
3666 error:
3667 	*virt_addr = NULL;
3668 	*phys_addr = 0;
3669 
3670 	return NULL;
3671 }
3672 
3673 
3674 /*********************************************************************
3675  *  PMD configuration
3676  *********************************************************************/
3677 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
3678 	struct rte_pci_device *pci_dev)
3679 {
3680 	return rte_eth_dev_pci_generic_probe(pci_dev,
3681 		sizeof(struct ena_adapter), eth_ena_dev_init);
3682 }
3683 
3684 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
3685 {
3686 	return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
3687 }
3688 
3689 static struct rte_pci_driver rte_ena_pmd = {
3690 	.id_table = pci_id_ena_map,
3691 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
3692 		     RTE_PCI_DRV_WC_ACTIVATE,
3693 	.probe = eth_ena_pci_probe,
3694 	.remove = eth_ena_pci_remove,
3695 };
3696 
3697 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
3698 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
3699 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
3700 RTE_PMD_REGISTER_PARAM_STRING(net_ena, ENA_DEVARG_LARGE_LLQ_HDR "=<0|1>");
3701 RTE_LOG_REGISTER_SUFFIX(ena_logtype_init, init, NOTICE);
3702 RTE_LOG_REGISTER_SUFFIX(ena_logtype_driver, driver, NOTICE);
3703 #ifdef RTE_ETHDEV_DEBUG_RX
3704 RTE_LOG_REGISTER_SUFFIX(ena_logtype_rx, rx, DEBUG);
3705 #endif
3706 #ifdef RTE_ETHDEV_DEBUG_TX
3707 RTE_LOG_REGISTER_SUFFIX(ena_logtype_tx, tx, DEBUG);
3708 #endif
3709 RTE_LOG_REGISTER_SUFFIX(ena_logtype_com, com, WARNING);
3710 
3711 /******************************************************************************
3712  ******************************** AENQ Handlers *******************************
3713  *****************************************************************************/
3714 static void ena_update_on_link_change(void *adapter_data,
3715 				      struct ena_admin_aenq_entry *aenq_e)
3716 {
3717 	struct rte_eth_dev *eth_dev = adapter_data;
3718 	struct ena_adapter *adapter = eth_dev->data->dev_private;
3719 	struct ena_admin_aenq_link_change_desc *aenq_link_desc;
3720 	uint32_t status;
3721 
3722 	aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
3723 
3724 	status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
3725 	adapter->link_status = status;
3726 
3727 	ena_link_update(eth_dev, 0);
3728 	rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
3729 }
3730 
3731 static void ena_notification(void *adapter_data,
3732 			     struct ena_admin_aenq_entry *aenq_e)
3733 {
3734 	struct rte_eth_dev *eth_dev = adapter_data;
3735 	struct ena_adapter *adapter = eth_dev->data->dev_private;
3736 	struct ena_admin_ena_hw_hints *hints;
3737 
3738 	if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
3739 		PMD_DRV_LOG(WARNING, "Invalid AENQ group: %x. Expected: %x\n",
3740 			aenq_e->aenq_common_desc.group,
3741 			ENA_ADMIN_NOTIFICATION);
3742 
3743 	switch (aenq_e->aenq_common_desc.syndrome) {
3744 	case ENA_ADMIN_UPDATE_HINTS:
3745 		hints = (struct ena_admin_ena_hw_hints *)
3746 			(&aenq_e->inline_data_w4);
3747 		ena_update_hints(adapter, hints);
3748 		break;
3749 	default:
3750 		PMD_DRV_LOG(ERR, "Invalid AENQ notification link state: %d\n",
3751 			aenq_e->aenq_common_desc.syndrome);
3752 	}
3753 }
3754 
3755 static void ena_keep_alive(void *adapter_data,
3756 			   __rte_unused struct ena_admin_aenq_entry *aenq_e)
3757 {
3758 	struct rte_eth_dev *eth_dev = adapter_data;
3759 	struct ena_adapter *adapter = eth_dev->data->dev_private;
3760 	struct ena_admin_aenq_keep_alive_desc *desc;
3761 	uint64_t rx_drops;
3762 	uint64_t tx_drops;
3763 
3764 	adapter->timestamp_wd = rte_get_timer_cycles();
3765 
3766 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
3767 	rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
3768 	tx_drops = ((uint64_t)desc->tx_drops_high << 32) | desc->tx_drops_low;
3769 
3770 	adapter->drv_stats->rx_drops = rx_drops;
3771 	adapter->dev_stats.tx_drops = tx_drops;
3772 }
3773 
3774 /**
3775  * This handler will called for unknown event group or unimplemented handlers
3776  **/
3777 static void unimplemented_aenq_handler(__rte_unused void *data,
3778 				       __rte_unused struct ena_admin_aenq_entry *aenq_e)
3779 {
3780 	PMD_DRV_LOG(ERR,
3781 		"Unknown event was received or event with unimplemented handler\n");
3782 }
3783 
3784 static struct ena_aenq_handlers aenq_handlers = {
3785 	.handlers = {
3786 		[ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
3787 		[ENA_ADMIN_NOTIFICATION] = ena_notification,
3788 		[ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive
3789 	},
3790 	.unimplemented_handler = unimplemented_aenq_handler
3791 };
3792 
3793 /*********************************************************************
3794  *  Multi-Process communication request handling (in primary)
3795  *********************************************************************/
3796 static int
3797 ena_mp_primary_handle(const struct rte_mp_msg *mp_msg, const void *peer)
3798 {
3799 	const struct ena_mp_body *req =
3800 		(const struct ena_mp_body *)mp_msg->param;
3801 	struct ena_adapter *adapter;
3802 	struct ena_com_dev *ena_dev;
3803 	struct ena_mp_body *rsp;
3804 	struct rte_mp_msg mp_rsp;
3805 	struct rte_eth_dev *dev;
3806 	int res = 0;
3807 
3808 	rsp = (struct ena_mp_body *)&mp_rsp.param;
3809 	mp_msg_init(&mp_rsp, req->type, req->port_id);
3810 
3811 	if (!rte_eth_dev_is_valid_port(req->port_id)) {
3812 		rte_errno = ENODEV;
3813 		res = -rte_errno;
3814 		PMD_DRV_LOG(ERR, "Unknown port %d in request %d\n",
3815 			    req->port_id, req->type);
3816 		goto end;
3817 	}
3818 	dev = &rte_eth_devices[req->port_id];
3819 	adapter = dev->data->dev_private;
3820 	ena_dev = &adapter->ena_dev;
3821 
3822 	switch (req->type) {
3823 	case ENA_MP_DEV_STATS_GET:
3824 		res = ena_com_get_dev_basic_stats(ena_dev,
3825 						  &adapter->basic_stats);
3826 		break;
3827 	case ENA_MP_ENI_STATS_GET:
3828 		res = ena_com_get_eni_stats(ena_dev,
3829 			(struct ena_admin_eni_stats *)&adapter->eni_stats);
3830 		break;
3831 	case ENA_MP_MTU_SET:
3832 		res = ena_com_set_dev_mtu(ena_dev, req->args.mtu);
3833 		break;
3834 	case ENA_MP_IND_TBL_GET:
3835 		res = ena_com_indirect_table_get(ena_dev,
3836 						 adapter->indirect_table);
3837 		break;
3838 	case ENA_MP_IND_TBL_SET:
3839 		res = ena_com_indirect_table_set(ena_dev);
3840 		break;
3841 	default:
3842 		PMD_DRV_LOG(ERR, "Unknown request type %d\n", req->type);
3843 		res = -EINVAL;
3844 		break;
3845 	}
3846 
3847 end:
3848 	/* Save processing result in the reply */
3849 	rsp->result = res;
3850 	/* Return just IPC processing status */
3851 	return rte_mp_reply(&mp_rsp, peer);
3852 }
3853