xref: /dpdk/drivers/net/ena/ena_ethdev.c (revision c339f53823f3f79baa965f74ba8248a6c6af1a27)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
3  * All rights reserved.
4  */
5 
6 #include <rte_string_fns.h>
7 #include <rte_errno.h>
8 #include <rte_version.h>
9 #include <rte_net.h>
10 #include <rte_kvargs.h>
11 
12 #include "ena_ethdev.h"
13 #include "ena_logs.h"
14 #include "ena_platform.h"
15 #include "ena_com.h"
16 #include "ena_eth_com.h"
17 
18 #include <ena_common_defs.h>
19 #include <ena_regs_defs.h>
20 #include <ena_admin_defs.h>
21 #include <ena_eth_io_defs.h>
22 
23 #define DRV_MODULE_VER_MAJOR	2
24 #define DRV_MODULE_VER_MINOR	6
25 #define DRV_MODULE_VER_SUBMINOR	0
26 
27 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
28 
29 #define GET_L4_HDR_LEN(mbuf)					\
30 	((rte_pktmbuf_mtod_offset(mbuf,	struct rte_tcp_hdr *,	\
31 		mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
32 
33 #define ETH_GSTRING_LEN	32
34 
35 #define ARRAY_SIZE(x) RTE_DIM(x)
36 
37 #define ENA_MIN_RING_DESC	128
38 
39 /*
40  * We should try to keep ENA_CLEANUP_BUF_SIZE lower than
41  * RTE_MEMPOOL_CACHE_MAX_SIZE, so we can fit this in mempool local cache.
42  */
43 #define ENA_CLEANUP_BUF_SIZE	256
44 
45 #define ENA_PTYPE_HAS_HASH	(RTE_PTYPE_L4_TCP | RTE_PTYPE_L4_UDP)
46 
47 struct ena_stats {
48 	char name[ETH_GSTRING_LEN];
49 	int stat_offset;
50 };
51 
52 #define ENA_STAT_ENTRY(stat, stat_type) { \
53 	.name = #stat, \
54 	.stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
55 }
56 
57 #define ENA_STAT_RX_ENTRY(stat) \
58 	ENA_STAT_ENTRY(stat, rx)
59 
60 #define ENA_STAT_TX_ENTRY(stat) \
61 	ENA_STAT_ENTRY(stat, tx)
62 
63 #define ENA_STAT_ENI_ENTRY(stat) \
64 	ENA_STAT_ENTRY(stat, eni)
65 
66 #define ENA_STAT_GLOBAL_ENTRY(stat) \
67 	ENA_STAT_ENTRY(stat, dev)
68 
69 /* Device arguments */
70 #define ENA_DEVARG_LARGE_LLQ_HDR "large_llq_hdr"
71 /* Timeout in seconds after which a single uncompleted Tx packet should be
72  * considered as a missing.
73  */
74 #define ENA_DEVARG_MISS_TXC_TO "miss_txc_to"
75 
76 /*
77  * Each rte_memzone should have unique name.
78  * To satisfy it, count number of allocation and add it to name.
79  */
80 rte_atomic64_t ena_alloc_cnt;
81 
82 static const struct ena_stats ena_stats_global_strings[] = {
83 	ENA_STAT_GLOBAL_ENTRY(wd_expired),
84 	ENA_STAT_GLOBAL_ENTRY(dev_start),
85 	ENA_STAT_GLOBAL_ENTRY(dev_stop),
86 	ENA_STAT_GLOBAL_ENTRY(tx_drops),
87 };
88 
89 static const struct ena_stats ena_stats_eni_strings[] = {
90 	ENA_STAT_ENI_ENTRY(bw_in_allowance_exceeded),
91 	ENA_STAT_ENI_ENTRY(bw_out_allowance_exceeded),
92 	ENA_STAT_ENI_ENTRY(pps_allowance_exceeded),
93 	ENA_STAT_ENI_ENTRY(conntrack_allowance_exceeded),
94 	ENA_STAT_ENI_ENTRY(linklocal_allowance_exceeded),
95 };
96 
97 static const struct ena_stats ena_stats_tx_strings[] = {
98 	ENA_STAT_TX_ENTRY(cnt),
99 	ENA_STAT_TX_ENTRY(bytes),
100 	ENA_STAT_TX_ENTRY(prepare_ctx_err),
101 	ENA_STAT_TX_ENTRY(tx_poll),
102 	ENA_STAT_TX_ENTRY(doorbells),
103 	ENA_STAT_TX_ENTRY(bad_req_id),
104 	ENA_STAT_TX_ENTRY(available_desc),
105 	ENA_STAT_TX_ENTRY(missed_tx),
106 };
107 
108 static const struct ena_stats ena_stats_rx_strings[] = {
109 	ENA_STAT_RX_ENTRY(cnt),
110 	ENA_STAT_RX_ENTRY(bytes),
111 	ENA_STAT_RX_ENTRY(refill_partial),
112 	ENA_STAT_RX_ENTRY(l3_csum_bad),
113 	ENA_STAT_RX_ENTRY(l4_csum_bad),
114 	ENA_STAT_RX_ENTRY(l4_csum_good),
115 	ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
116 	ENA_STAT_RX_ENTRY(bad_desc_num),
117 	ENA_STAT_RX_ENTRY(bad_req_id),
118 };
119 
120 #define ENA_STATS_ARRAY_GLOBAL	ARRAY_SIZE(ena_stats_global_strings)
121 #define ENA_STATS_ARRAY_ENI	ARRAY_SIZE(ena_stats_eni_strings)
122 #define ENA_STATS_ARRAY_TX	ARRAY_SIZE(ena_stats_tx_strings)
123 #define ENA_STATS_ARRAY_RX	ARRAY_SIZE(ena_stats_rx_strings)
124 
125 #define QUEUE_OFFLOADS (RTE_ETH_TX_OFFLOAD_TCP_CKSUM |\
126 			RTE_ETH_TX_OFFLOAD_UDP_CKSUM |\
127 			RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |\
128 			RTE_ETH_TX_OFFLOAD_TCP_TSO)
129 #define MBUF_OFFLOADS (RTE_MBUF_F_TX_L4_MASK |\
130 		       RTE_MBUF_F_TX_IP_CKSUM |\
131 		       RTE_MBUF_F_TX_TCP_SEG)
132 
133 /** Vendor ID used by Amazon devices */
134 #define PCI_VENDOR_ID_AMAZON 0x1D0F
135 /** Amazon devices */
136 #define PCI_DEVICE_ID_ENA_VF		0xEC20
137 #define PCI_DEVICE_ID_ENA_VF_RSERV0	0xEC21
138 
139 #define	ENA_TX_OFFLOAD_MASK	(RTE_MBUF_F_TX_L4_MASK |         \
140 	RTE_MBUF_F_TX_IPV6 |            \
141 	RTE_MBUF_F_TX_IPV4 |            \
142 	RTE_MBUF_F_TX_IP_CKSUM |        \
143 	RTE_MBUF_F_TX_TCP_SEG)
144 
145 #define	ENA_TX_OFFLOAD_NOTSUP_MASK	\
146 	(RTE_MBUF_F_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
147 
148 /** HW specific offloads capabilities. */
149 /* IPv4 checksum offload. */
150 #define ENA_L3_IPV4_CSUM		0x0001
151 /* TCP/UDP checksum offload for IPv4 packets. */
152 #define ENA_L4_IPV4_CSUM		0x0002
153 /* TCP/UDP checksum offload for IPv4 packets with pseudo header checksum. */
154 #define ENA_L4_IPV4_CSUM_PARTIAL	0x0004
155 /* TCP/UDP checksum offload for IPv6 packets. */
156 #define ENA_L4_IPV6_CSUM		0x0008
157 /* TCP/UDP checksum offload for IPv6 packets with pseudo header checksum. */
158 #define ENA_L4_IPV6_CSUM_PARTIAL	0x0010
159 /* TSO support for IPv4 packets. */
160 #define ENA_IPV4_TSO			0x0020
161 
162 /* Device supports setting RSS hash. */
163 #define ENA_RX_RSS_HASH			0x0040
164 
165 static const struct rte_pci_id pci_id_ena_map[] = {
166 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
167 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF_RSERV0) },
168 	{ .device_id = 0 },
169 };
170 
171 static struct ena_aenq_handlers aenq_handlers;
172 
173 static int ena_device_init(struct ena_adapter *adapter,
174 			   struct rte_pci_device *pdev,
175 			   struct ena_com_dev_get_features_ctx *get_feat_ctx);
176 static int ena_dev_configure(struct rte_eth_dev *dev);
177 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
178 	struct ena_tx_buffer *tx_info,
179 	struct rte_mbuf *mbuf,
180 	void **push_header,
181 	uint16_t *header_len);
182 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf);
183 static int ena_tx_cleanup(void *txp, uint32_t free_pkt_cnt);
184 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
185 				  uint16_t nb_pkts);
186 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
187 		uint16_t nb_pkts);
188 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
189 			      uint16_t nb_desc, unsigned int socket_id,
190 			      const struct rte_eth_txconf *tx_conf);
191 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
192 			      uint16_t nb_desc, unsigned int socket_id,
193 			      const struct rte_eth_rxconf *rx_conf,
194 			      struct rte_mempool *mp);
195 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len);
196 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
197 				    struct ena_com_rx_buf_info *ena_bufs,
198 				    uint32_t descs,
199 				    uint16_t *next_to_clean,
200 				    uint8_t offset);
201 static uint16_t eth_ena_recv_pkts(void *rx_queue,
202 				  struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
203 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
204 				  struct rte_mbuf *mbuf, uint16_t id);
205 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
206 static void ena_init_rings(struct ena_adapter *adapter,
207 			   bool disable_meta_caching);
208 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
209 static int ena_start(struct rte_eth_dev *dev);
210 static int ena_stop(struct rte_eth_dev *dev);
211 static int ena_close(struct rte_eth_dev *dev);
212 static int ena_dev_reset(struct rte_eth_dev *dev);
213 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
214 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
215 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
216 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
217 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
218 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
219 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
220 static int ena_link_update(struct rte_eth_dev *dev,
221 			   int wait_to_complete);
222 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring);
223 static void ena_queue_stop(struct ena_ring *ring);
224 static void ena_queue_stop_all(struct rte_eth_dev *dev,
225 			      enum ena_ring_type ring_type);
226 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring);
227 static int ena_queue_start_all(struct rte_eth_dev *dev,
228 			       enum ena_ring_type ring_type);
229 static void ena_stats_restart(struct rte_eth_dev *dev);
230 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter);
231 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter);
232 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter);
233 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter);
234 static int ena_infos_get(struct rte_eth_dev *dev,
235 			 struct rte_eth_dev_info *dev_info);
236 static void ena_interrupt_handler_rte(void *cb_arg);
237 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
238 static void ena_destroy_device(struct rte_eth_dev *eth_dev);
239 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
240 static int ena_xstats_get_names(struct rte_eth_dev *dev,
241 				struct rte_eth_xstat_name *xstats_names,
242 				unsigned int n);
243 static int ena_xstats_get_names_by_id(struct rte_eth_dev *dev,
244 				      const uint64_t *ids,
245 				      struct rte_eth_xstat_name *xstats_names,
246 				      unsigned int size);
247 static int ena_xstats_get(struct rte_eth_dev *dev,
248 			  struct rte_eth_xstat *stats,
249 			  unsigned int n);
250 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
251 				const uint64_t *ids,
252 				uint64_t *values,
253 				unsigned int n);
254 static int ena_process_bool_devarg(const char *key,
255 				   const char *value,
256 				   void *opaque);
257 static int ena_parse_devargs(struct ena_adapter *adapter,
258 			     struct rte_devargs *devargs);
259 static int ena_copy_eni_stats(struct ena_adapter *adapter,
260 			      struct ena_stats_eni *stats);
261 static int ena_setup_rx_intr(struct rte_eth_dev *dev);
262 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
263 				    uint16_t queue_id);
264 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
265 				     uint16_t queue_id);
266 static int ena_configure_aenq(struct ena_adapter *adapter);
267 static int ena_mp_primary_handle(const struct rte_mp_msg *mp_msg,
268 				 const void *peer);
269 
270 static const struct eth_dev_ops ena_dev_ops = {
271 	.dev_configure          = ena_dev_configure,
272 	.dev_infos_get          = ena_infos_get,
273 	.rx_queue_setup         = ena_rx_queue_setup,
274 	.tx_queue_setup         = ena_tx_queue_setup,
275 	.dev_start              = ena_start,
276 	.dev_stop               = ena_stop,
277 	.link_update            = ena_link_update,
278 	.stats_get              = ena_stats_get,
279 	.xstats_get_names       = ena_xstats_get_names,
280 	.xstats_get_names_by_id = ena_xstats_get_names_by_id,
281 	.xstats_get             = ena_xstats_get,
282 	.xstats_get_by_id       = ena_xstats_get_by_id,
283 	.mtu_set                = ena_mtu_set,
284 	.rx_queue_release       = ena_rx_queue_release,
285 	.tx_queue_release       = ena_tx_queue_release,
286 	.dev_close              = ena_close,
287 	.dev_reset              = ena_dev_reset,
288 	.reta_update            = ena_rss_reta_update,
289 	.reta_query             = ena_rss_reta_query,
290 	.rx_queue_intr_enable   = ena_rx_queue_intr_enable,
291 	.rx_queue_intr_disable  = ena_rx_queue_intr_disable,
292 	.rss_hash_update        = ena_rss_hash_update,
293 	.rss_hash_conf_get      = ena_rss_hash_conf_get,
294 	.tx_done_cleanup        = ena_tx_cleanup,
295 };
296 
297 /*********************************************************************
298  *  Multi-Process communication bits
299  *********************************************************************/
300 /* rte_mp IPC message name */
301 #define ENA_MP_NAME	"net_ena_mp"
302 /* Request timeout in seconds */
303 #define ENA_MP_REQ_TMO	5
304 
305 /** Proxy request type */
306 enum ena_mp_req {
307 	ENA_MP_DEV_STATS_GET,
308 	ENA_MP_ENI_STATS_GET,
309 	ENA_MP_MTU_SET,
310 	ENA_MP_IND_TBL_GET,
311 	ENA_MP_IND_TBL_SET
312 };
313 
314 /** Proxy message body. Shared between requests and responses. */
315 struct ena_mp_body {
316 	/* Message type */
317 	enum ena_mp_req type;
318 	int port_id;
319 	/* Processing result. Set in replies. 0 if message succeeded, negative
320 	 * error code otherwise.
321 	 */
322 	int result;
323 	union {
324 		int mtu; /* For ENA_MP_MTU_SET */
325 	} args;
326 };
327 
328 /**
329  * Initialize IPC message.
330  *
331  * @param[out] msg
332  *   Pointer to the message to initialize.
333  * @param[in] type
334  *   Message type.
335  * @param[in] port_id
336  *   Port ID of target device.
337  *
338  */
339 static void
340 mp_msg_init(struct rte_mp_msg *msg, enum ena_mp_req type, int port_id)
341 {
342 	struct ena_mp_body *body = (struct ena_mp_body *)&msg->param;
343 
344 	memset(msg, 0, sizeof(*msg));
345 	strlcpy(msg->name, ENA_MP_NAME, sizeof(msg->name));
346 	msg->len_param = sizeof(*body);
347 	body->type = type;
348 	body->port_id = port_id;
349 }
350 
351 /*********************************************************************
352  *  Multi-Process communication PMD API
353  *********************************************************************/
354 /**
355  * Define proxy request descriptor
356  *
357  * Used to define all structures and functions required for proxying a given
358  * function to the primary process including the code to perform to prepare the
359  * request and process the response.
360  *
361  * @param[in] f
362  *   Name of the function to proxy
363  * @param[in] t
364  *   Message type to use
365  * @param[in] prep
366  *   Body of a function to prepare the request in form of a statement
367  *   expression. It is passed all the original function arguments along with two
368  *   extra ones:
369  *   - struct ena_adapter *adapter - PMD data of the device calling the proxy.
370  *   - struct ena_mp_body *req - body of a request to prepare.
371  * @param[in] proc
372  *   Body of a function to process the response in form of a statement
373  *   expression. It is passed all the original function arguments along with two
374  *   extra ones:
375  *   - struct ena_adapter *adapter - PMD data of the device calling the proxy.
376  *   - struct ena_mp_body *rsp - body of a response to process.
377  * @param ...
378  *   Proxied function's arguments
379  *
380  * @note Inside prep and proc any parameters which aren't used should be marked
381  *       as such (with ENA_TOUCH or __rte_unused).
382  */
383 #define ENA_PROXY_DESC(f, t, prep, proc, ...)			\
384 	static const enum ena_mp_req mp_type_ ## f =  t;	\
385 	static const char *mp_name_ ## f = #t;			\
386 	static void mp_prep_ ## f(struct ena_adapter *adapter,	\
387 				  struct ena_mp_body *req,	\
388 				  __VA_ARGS__)			\
389 	{							\
390 		prep;						\
391 	}							\
392 	static void mp_proc_ ## f(struct ena_adapter *adapter,	\
393 				  struct ena_mp_body *rsp,	\
394 				  __VA_ARGS__)			\
395 	{							\
396 		proc;						\
397 	}
398 
399 /**
400  * Proxy wrapper for calling primary functions in a secondary process.
401  *
402  * Depending on whether called in primary or secondary process, calls the
403  * @p func directly or proxies the call to the primary process via rte_mp IPC.
404  * This macro requires a proxy request descriptor to be defined for @p func
405  * using ENA_PROXY_DESC() macro.
406  *
407  * @param[in/out] a
408  *   Device PMD data. Used for sending the message and sharing message results
409  *   between primary and secondary.
410  * @param[in] f
411  *   Function to proxy.
412  * @param ...
413  *   Arguments of @p func.
414  *
415  * @return
416  *   - 0: Processing succeeded and response handler was called.
417  *   - -EPERM: IPC is unavailable on this platform. This means only primary
418  *             process may call the proxied function.
419  *   - -EIO:   IPC returned error on request send. Inspect rte_errno detailed
420  *             error code.
421  *   - Negative error code from the proxied function.
422  *
423  * @note This mechanism is geared towards control-path tasks. Avoid calling it
424  *       in fast-path unless unbound delays are allowed. This is due to the IPC
425  *       mechanism itself (socket based).
426  * @note Due to IPC parameter size limitations the proxy logic shares call
427  *       results through the struct ena_adapter shared memory. This makes the
428  *       proxy mechanism strictly single-threaded. Therefore be sure to make all
429  *       calls to the same proxied function under the same lock.
430  */
431 #define ENA_PROXY(a, f, ...)						\
432 ({									\
433 	struct ena_adapter *_a = (a);					\
434 	struct timespec ts = { .tv_sec = ENA_MP_REQ_TMO };		\
435 	struct ena_mp_body *req, *rsp;					\
436 	struct rte_mp_reply mp_rep;					\
437 	struct rte_mp_msg mp_req;					\
438 	int ret;							\
439 									\
440 	if (rte_eal_process_type() == RTE_PROC_PRIMARY) {		\
441 		ret = f(__VA_ARGS__);					\
442 	} else {							\
443 		/* Prepare and send request */				\
444 		req = (struct ena_mp_body *)&mp_req.param;		\
445 		mp_msg_init(&mp_req, mp_type_ ## f, _a->edev_data->port_id); \
446 		mp_prep_ ## f(_a, req, ## __VA_ARGS__);			\
447 									\
448 		ret = rte_mp_request_sync(&mp_req, &mp_rep, &ts);	\
449 		if (likely(!ret)) {					\
450 			RTE_ASSERT(mp_rep.nb_received == 1);		\
451 			rsp = (struct ena_mp_body *)&mp_rep.msgs[0].param; \
452 			ret = rsp->result;				\
453 			if (ret == 0) {					\
454 				mp_proc_##f(_a, rsp, ## __VA_ARGS__);	\
455 			} else {					\
456 				PMD_DRV_LOG(ERR,			\
457 					    "%s returned error: %d\n",	\
458 					    mp_name_ ## f, rsp->result);\
459 			}						\
460 			free(mp_rep.msgs);				\
461 		} else if (rte_errno == ENOTSUP) {			\
462 			PMD_DRV_LOG(ERR,				\
463 				    "No IPC, can't proxy to primary\n");\
464 			ret = -rte_errno;				\
465 		} else {						\
466 			PMD_DRV_LOG(ERR, "Request %s failed: %s\n",	\
467 				    mp_name_ ## f,			\
468 				    rte_strerror(rte_errno));		\
469 			ret = -EIO;					\
470 		}							\
471 	}								\
472 	ret;								\
473 })
474 
475 /*********************************************************************
476  *  Multi-Process communication request descriptors
477  *********************************************************************/
478 
479 ENA_PROXY_DESC(ena_com_get_dev_basic_stats, ENA_MP_DEV_STATS_GET,
480 ({
481 	ENA_TOUCH(adapter);
482 	ENA_TOUCH(req);
483 	ENA_TOUCH(ena_dev);
484 	ENA_TOUCH(stats);
485 }),
486 ({
487 	ENA_TOUCH(rsp);
488 	ENA_TOUCH(ena_dev);
489 	if (stats != &adapter->basic_stats)
490 		rte_memcpy(stats, &adapter->basic_stats, sizeof(*stats));
491 }),
492 	struct ena_com_dev *ena_dev, struct ena_admin_basic_stats *stats);
493 
494 ENA_PROXY_DESC(ena_com_get_eni_stats, ENA_MP_ENI_STATS_GET,
495 ({
496 	ENA_TOUCH(adapter);
497 	ENA_TOUCH(req);
498 	ENA_TOUCH(ena_dev);
499 	ENA_TOUCH(stats);
500 }),
501 ({
502 	ENA_TOUCH(rsp);
503 	ENA_TOUCH(ena_dev);
504 	if (stats != (struct ena_admin_eni_stats *)&adapter->eni_stats)
505 		rte_memcpy(stats, &adapter->eni_stats, sizeof(*stats));
506 }),
507 	struct ena_com_dev *ena_dev, struct ena_admin_eni_stats *stats);
508 
509 ENA_PROXY_DESC(ena_com_set_dev_mtu, ENA_MP_MTU_SET,
510 ({
511 	ENA_TOUCH(adapter);
512 	ENA_TOUCH(ena_dev);
513 	req->args.mtu = mtu;
514 }),
515 ({
516 	ENA_TOUCH(adapter);
517 	ENA_TOUCH(rsp);
518 	ENA_TOUCH(ena_dev);
519 	ENA_TOUCH(mtu);
520 }),
521 	struct ena_com_dev *ena_dev, int mtu);
522 
523 ENA_PROXY_DESC(ena_com_indirect_table_set, ENA_MP_IND_TBL_SET,
524 ({
525 	ENA_TOUCH(adapter);
526 	ENA_TOUCH(req);
527 	ENA_TOUCH(ena_dev);
528 }),
529 ({
530 	ENA_TOUCH(adapter);
531 	ENA_TOUCH(rsp);
532 	ENA_TOUCH(ena_dev);
533 }),
534 	struct ena_com_dev *ena_dev);
535 
536 ENA_PROXY_DESC(ena_com_indirect_table_get, ENA_MP_IND_TBL_GET,
537 ({
538 	ENA_TOUCH(adapter);
539 	ENA_TOUCH(req);
540 	ENA_TOUCH(ena_dev);
541 	ENA_TOUCH(ind_tbl);
542 }),
543 ({
544 	ENA_TOUCH(rsp);
545 	ENA_TOUCH(ena_dev);
546 	if (ind_tbl != adapter->indirect_table)
547 		rte_memcpy(ind_tbl, adapter->indirect_table,
548 			   sizeof(adapter->indirect_table));
549 }),
550 	struct ena_com_dev *ena_dev, u32 *ind_tbl);
551 
552 static inline void ena_trigger_reset(struct ena_adapter *adapter,
553 				     enum ena_regs_reset_reason_types reason)
554 {
555 	if (likely(!adapter->trigger_reset)) {
556 		adapter->reset_reason = reason;
557 		adapter->trigger_reset = true;
558 	}
559 }
560 
561 static inline void ena_rx_mbuf_prepare(struct ena_ring *rx_ring,
562 				       struct rte_mbuf *mbuf,
563 				       struct ena_com_rx_ctx *ena_rx_ctx,
564 				       bool fill_hash)
565 {
566 	struct ena_stats_rx *rx_stats = &rx_ring->rx_stats;
567 	uint64_t ol_flags = 0;
568 	uint32_t packet_type = 0;
569 
570 	if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
571 		packet_type |= RTE_PTYPE_L4_TCP;
572 	else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
573 		packet_type |= RTE_PTYPE_L4_UDP;
574 
575 	if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
576 		packet_type |= RTE_PTYPE_L3_IPV4;
577 		if (unlikely(ena_rx_ctx->l3_csum_err)) {
578 			++rx_stats->l3_csum_bad;
579 			ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
580 		} else {
581 			ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
582 		}
583 	} else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
584 		packet_type |= RTE_PTYPE_L3_IPV6;
585 	}
586 
587 	if (!ena_rx_ctx->l4_csum_checked || ena_rx_ctx->frag) {
588 		ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN;
589 	} else {
590 		if (unlikely(ena_rx_ctx->l4_csum_err)) {
591 			++rx_stats->l4_csum_bad;
592 			/*
593 			 * For the L4 Rx checksum offload the HW may indicate
594 			 * bad checksum although it's valid. Because of that,
595 			 * we're setting the UNKNOWN flag to let the app
596 			 * re-verify the checksum.
597 			 */
598 			ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN;
599 		} else {
600 			++rx_stats->l4_csum_good;
601 			ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
602 		}
603 	}
604 
605 	if (fill_hash &&
606 	    likely((packet_type & ENA_PTYPE_HAS_HASH) && !ena_rx_ctx->frag)) {
607 		ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
608 		mbuf->hash.rss = ena_rx_ctx->hash;
609 	}
610 
611 	mbuf->ol_flags = ol_flags;
612 	mbuf->packet_type = packet_type;
613 }
614 
615 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
616 				       struct ena_com_tx_ctx *ena_tx_ctx,
617 				       uint64_t queue_offloads,
618 				       bool disable_meta_caching)
619 {
620 	struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
621 
622 	if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
623 	    (queue_offloads & QUEUE_OFFLOADS)) {
624 		/* check if TSO is required */
625 		if ((mbuf->ol_flags & RTE_MBUF_F_TX_TCP_SEG) &&
626 		    (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_TSO)) {
627 			ena_tx_ctx->tso_enable = true;
628 
629 			ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
630 		}
631 
632 		/* check if L3 checksum is needed */
633 		if ((mbuf->ol_flags & RTE_MBUF_F_TX_IP_CKSUM) &&
634 		    (queue_offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM))
635 			ena_tx_ctx->l3_csum_enable = true;
636 
637 		if (mbuf->ol_flags & RTE_MBUF_F_TX_IPV6) {
638 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
639 			/* For the IPv6 packets, DF always needs to be true. */
640 			ena_tx_ctx->df = 1;
641 		} else {
642 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
643 
644 			/* set don't fragment (DF) flag */
645 			if (mbuf->packet_type &
646 				(RTE_PTYPE_L4_NONFRAG
647 				 | RTE_PTYPE_INNER_L4_NONFRAG))
648 				ena_tx_ctx->df = 1;
649 		}
650 
651 		/* check if L4 checksum is needed */
652 		if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) == RTE_MBUF_F_TX_TCP_CKSUM) &&
653 		    (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) {
654 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
655 			ena_tx_ctx->l4_csum_enable = true;
656 		} else if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) ==
657 				RTE_MBUF_F_TX_UDP_CKSUM) &&
658 				(queue_offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM)) {
659 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
660 			ena_tx_ctx->l4_csum_enable = true;
661 		} else {
662 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
663 			ena_tx_ctx->l4_csum_enable = false;
664 		}
665 
666 		ena_meta->mss = mbuf->tso_segsz;
667 		ena_meta->l3_hdr_len = mbuf->l3_len;
668 		ena_meta->l3_hdr_offset = mbuf->l2_len;
669 
670 		ena_tx_ctx->meta_valid = true;
671 	} else if (disable_meta_caching) {
672 		memset(ena_meta, 0, sizeof(*ena_meta));
673 		ena_tx_ctx->meta_valid = true;
674 	} else {
675 		ena_tx_ctx->meta_valid = false;
676 	}
677 }
678 
679 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
680 {
681 	struct ena_tx_buffer *tx_info = NULL;
682 
683 	if (likely(req_id < tx_ring->ring_size)) {
684 		tx_info = &tx_ring->tx_buffer_info[req_id];
685 		if (likely(tx_info->mbuf))
686 			return 0;
687 	}
688 
689 	if (tx_info)
690 		PMD_TX_LOG(ERR, "tx_info doesn't have valid mbuf. queue %d:%d req_id %u\n",
691 			tx_ring->port_id, tx_ring->id, req_id);
692 	else
693 		PMD_TX_LOG(ERR, "Invalid req_id: %hu in queue %d:%d\n",
694 			req_id, tx_ring->port_id, tx_ring->id);
695 
696 	/* Trigger device reset */
697 	++tx_ring->tx_stats.bad_req_id;
698 	ena_trigger_reset(tx_ring->adapter, ENA_REGS_RESET_INV_TX_REQ_ID);
699 	return -EFAULT;
700 }
701 
702 static void ena_config_host_info(struct ena_com_dev *ena_dev)
703 {
704 	struct ena_admin_host_info *host_info;
705 	int rc;
706 
707 	/* Allocate only the host info */
708 	rc = ena_com_allocate_host_info(ena_dev);
709 	if (rc) {
710 		PMD_DRV_LOG(ERR, "Cannot allocate host info\n");
711 		return;
712 	}
713 
714 	host_info = ena_dev->host_attr.host_info;
715 
716 	host_info->os_type = ENA_ADMIN_OS_DPDK;
717 	host_info->kernel_ver = RTE_VERSION;
718 	strlcpy((char *)host_info->kernel_ver_str, rte_version(),
719 		sizeof(host_info->kernel_ver_str));
720 	host_info->os_dist = RTE_VERSION;
721 	strlcpy((char *)host_info->os_dist_str, rte_version(),
722 		sizeof(host_info->os_dist_str));
723 	host_info->driver_version =
724 		(DRV_MODULE_VER_MAJOR) |
725 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
726 		(DRV_MODULE_VER_SUBMINOR <<
727 			ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
728 	host_info->num_cpus = rte_lcore_count();
729 
730 	host_info->driver_supported_features =
731 		ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK |
732 		ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK;
733 
734 	rc = ena_com_set_host_attributes(ena_dev);
735 	if (rc) {
736 		if (rc == -ENA_COM_UNSUPPORTED)
737 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
738 		else
739 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
740 
741 		goto err;
742 	}
743 
744 	return;
745 
746 err:
747 	ena_com_delete_host_info(ena_dev);
748 }
749 
750 /* This function calculates the number of xstats based on the current config */
751 static unsigned int ena_xstats_calc_num(struct rte_eth_dev_data *data)
752 {
753 	return ENA_STATS_ARRAY_GLOBAL + ENA_STATS_ARRAY_ENI +
754 		(data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
755 		(data->nb_rx_queues * ENA_STATS_ARRAY_RX);
756 }
757 
758 static void ena_config_debug_area(struct ena_adapter *adapter)
759 {
760 	u32 debug_area_size;
761 	int rc, ss_count;
762 
763 	ss_count = ena_xstats_calc_num(adapter->edev_data);
764 
765 	/* allocate 32 bytes for each string and 64bit for the value */
766 	debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
767 
768 	rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
769 	if (rc) {
770 		PMD_DRV_LOG(ERR, "Cannot allocate debug area\n");
771 		return;
772 	}
773 
774 	rc = ena_com_set_host_attributes(&adapter->ena_dev);
775 	if (rc) {
776 		if (rc == -ENA_COM_UNSUPPORTED)
777 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
778 		else
779 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
780 
781 		goto err;
782 	}
783 
784 	return;
785 err:
786 	ena_com_delete_debug_area(&adapter->ena_dev);
787 }
788 
789 static int ena_close(struct rte_eth_dev *dev)
790 {
791 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
792 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
793 	struct ena_adapter *adapter = dev->data->dev_private;
794 	int ret = 0;
795 
796 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
797 		return 0;
798 
799 	if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
800 		ret = ena_stop(dev);
801 	adapter->state = ENA_ADAPTER_STATE_CLOSED;
802 
803 	ena_rx_queue_release_all(dev);
804 	ena_tx_queue_release_all(dev);
805 
806 	rte_free(adapter->drv_stats);
807 	adapter->drv_stats = NULL;
808 
809 	rte_intr_disable(intr_handle);
810 	rte_intr_callback_unregister(intr_handle,
811 				     ena_interrupt_handler_rte,
812 				     dev);
813 
814 	/*
815 	 * MAC is not allocated dynamically. Setting NULL should prevent from
816 	 * release of the resource in the rte_eth_dev_release_port().
817 	 */
818 	dev->data->mac_addrs = NULL;
819 
820 	return ret;
821 }
822 
823 static int
824 ena_dev_reset(struct rte_eth_dev *dev)
825 {
826 	int rc = 0;
827 
828 	/* Cannot release memory in secondary process */
829 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
830 		PMD_DRV_LOG(WARNING, "dev_reset not supported in secondary.\n");
831 		return -EPERM;
832 	}
833 
834 	ena_destroy_device(dev);
835 	rc = eth_ena_dev_init(dev);
836 	if (rc)
837 		PMD_INIT_LOG(CRIT, "Cannot initialize device\n");
838 
839 	return rc;
840 }
841 
842 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
843 {
844 	int nb_queues = dev->data->nb_rx_queues;
845 	int i;
846 
847 	for (i = 0; i < nb_queues; i++)
848 		ena_rx_queue_release(dev, i);
849 }
850 
851 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
852 {
853 	int nb_queues = dev->data->nb_tx_queues;
854 	int i;
855 
856 	for (i = 0; i < nb_queues; i++)
857 		ena_tx_queue_release(dev, i);
858 }
859 
860 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
861 {
862 	struct ena_ring *ring = dev->data->rx_queues[qid];
863 
864 	/* Free ring resources */
865 	rte_free(ring->rx_buffer_info);
866 	ring->rx_buffer_info = NULL;
867 
868 	rte_free(ring->rx_refill_buffer);
869 	ring->rx_refill_buffer = NULL;
870 
871 	rte_free(ring->empty_rx_reqs);
872 	ring->empty_rx_reqs = NULL;
873 
874 	ring->configured = 0;
875 
876 	PMD_DRV_LOG(NOTICE, "Rx queue %d:%d released\n",
877 		ring->port_id, ring->id);
878 }
879 
880 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
881 {
882 	struct ena_ring *ring = dev->data->tx_queues[qid];
883 
884 	/* Free ring resources */
885 	rte_free(ring->push_buf_intermediate_buf);
886 
887 	rte_free(ring->tx_buffer_info);
888 
889 	rte_free(ring->empty_tx_reqs);
890 
891 	ring->empty_tx_reqs = NULL;
892 	ring->tx_buffer_info = NULL;
893 	ring->push_buf_intermediate_buf = NULL;
894 
895 	ring->configured = 0;
896 
897 	PMD_DRV_LOG(NOTICE, "Tx queue %d:%d released\n",
898 		ring->port_id, ring->id);
899 }
900 
901 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
902 {
903 	unsigned int i;
904 
905 	for (i = 0; i < ring->ring_size; ++i) {
906 		struct ena_rx_buffer *rx_info = &ring->rx_buffer_info[i];
907 		if (rx_info->mbuf) {
908 			rte_mbuf_raw_free(rx_info->mbuf);
909 			rx_info->mbuf = NULL;
910 		}
911 	}
912 }
913 
914 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
915 {
916 	unsigned int i;
917 
918 	for (i = 0; i < ring->ring_size; ++i) {
919 		struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
920 
921 		if (tx_buf->mbuf) {
922 			rte_pktmbuf_free(tx_buf->mbuf);
923 			tx_buf->mbuf = NULL;
924 		}
925 	}
926 }
927 
928 static int ena_link_update(struct rte_eth_dev *dev,
929 			   __rte_unused int wait_to_complete)
930 {
931 	struct rte_eth_link *link = &dev->data->dev_link;
932 	struct ena_adapter *adapter = dev->data->dev_private;
933 
934 	link->link_status = adapter->link_status ? RTE_ETH_LINK_UP : RTE_ETH_LINK_DOWN;
935 	link->link_speed = RTE_ETH_SPEED_NUM_NONE;
936 	link->link_duplex = RTE_ETH_LINK_FULL_DUPLEX;
937 
938 	return 0;
939 }
940 
941 static int ena_queue_start_all(struct rte_eth_dev *dev,
942 			       enum ena_ring_type ring_type)
943 {
944 	struct ena_adapter *adapter = dev->data->dev_private;
945 	struct ena_ring *queues = NULL;
946 	int nb_queues;
947 	int i = 0;
948 	int rc = 0;
949 
950 	if (ring_type == ENA_RING_TYPE_RX) {
951 		queues = adapter->rx_ring;
952 		nb_queues = dev->data->nb_rx_queues;
953 	} else {
954 		queues = adapter->tx_ring;
955 		nb_queues = dev->data->nb_tx_queues;
956 	}
957 	for (i = 0; i < nb_queues; i++) {
958 		if (queues[i].configured) {
959 			if (ring_type == ENA_RING_TYPE_RX) {
960 				ena_assert_msg(
961 					dev->data->rx_queues[i] == &queues[i],
962 					"Inconsistent state of Rx queues\n");
963 			} else {
964 				ena_assert_msg(
965 					dev->data->tx_queues[i] == &queues[i],
966 					"Inconsistent state of Tx queues\n");
967 			}
968 
969 			rc = ena_queue_start(dev, &queues[i]);
970 
971 			if (rc) {
972 				PMD_INIT_LOG(ERR,
973 					"Failed to start queue[%d] of type(%d)\n",
974 					i, ring_type);
975 				goto err;
976 			}
977 		}
978 	}
979 
980 	return 0;
981 
982 err:
983 	while (i--)
984 		if (queues[i].configured)
985 			ena_queue_stop(&queues[i]);
986 
987 	return rc;
988 }
989 
990 static int ena_check_valid_conf(struct ena_adapter *adapter)
991 {
992 	uint32_t mtu = adapter->edev_data->mtu;
993 
994 	if (mtu > adapter->max_mtu || mtu < ENA_MIN_MTU) {
995 		PMD_INIT_LOG(ERR,
996 			"Unsupported MTU of %d. Max MTU: %d, min MTU: %d\n",
997 			mtu, adapter->max_mtu, ENA_MIN_MTU);
998 		return ENA_COM_UNSUPPORTED;
999 	}
1000 
1001 	return 0;
1002 }
1003 
1004 static int
1005 ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx,
1006 		       bool use_large_llq_hdr)
1007 {
1008 	struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
1009 	struct ena_com_dev *ena_dev = ctx->ena_dev;
1010 	uint32_t max_tx_queue_size;
1011 	uint32_t max_rx_queue_size;
1012 
1013 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1014 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1015 			&ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
1016 		max_rx_queue_size = RTE_MIN(max_queue_ext->max_rx_cq_depth,
1017 			max_queue_ext->max_rx_sq_depth);
1018 		max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
1019 
1020 		if (ena_dev->tx_mem_queue_type ==
1021 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1022 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1023 				llq->max_llq_depth);
1024 		} else {
1025 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1026 				max_queue_ext->max_tx_sq_depth);
1027 		}
1028 
1029 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1030 			max_queue_ext->max_per_packet_rx_descs);
1031 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1032 			max_queue_ext->max_per_packet_tx_descs);
1033 	} else {
1034 		struct ena_admin_queue_feature_desc *max_queues =
1035 			&ctx->get_feat_ctx->max_queues;
1036 		max_rx_queue_size = RTE_MIN(max_queues->max_cq_depth,
1037 			max_queues->max_sq_depth);
1038 		max_tx_queue_size = max_queues->max_cq_depth;
1039 
1040 		if (ena_dev->tx_mem_queue_type ==
1041 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1042 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1043 				llq->max_llq_depth);
1044 		} else {
1045 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1046 				max_queues->max_sq_depth);
1047 		}
1048 
1049 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1050 			max_queues->max_packet_rx_descs);
1051 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1052 			max_queues->max_packet_tx_descs);
1053 	}
1054 
1055 	/* Round down to the nearest power of 2 */
1056 	max_rx_queue_size = rte_align32prevpow2(max_rx_queue_size);
1057 	max_tx_queue_size = rte_align32prevpow2(max_tx_queue_size);
1058 
1059 	if (use_large_llq_hdr) {
1060 		if ((llq->entry_size_ctrl_supported &
1061 		     ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
1062 		    (ena_dev->tx_mem_queue_type ==
1063 		     ENA_ADMIN_PLACEMENT_POLICY_DEV)) {
1064 			max_tx_queue_size /= 2;
1065 			PMD_INIT_LOG(INFO,
1066 				"Forcing large headers and decreasing maximum Tx queue size to %d\n",
1067 				max_tx_queue_size);
1068 		} else {
1069 			PMD_INIT_LOG(ERR,
1070 				"Forcing large headers failed: LLQ is disabled or device does not support large headers\n");
1071 		}
1072 	}
1073 
1074 	if (unlikely(max_rx_queue_size == 0 || max_tx_queue_size == 0)) {
1075 		PMD_INIT_LOG(ERR, "Invalid queue size\n");
1076 		return -EFAULT;
1077 	}
1078 
1079 	ctx->max_tx_queue_size = max_tx_queue_size;
1080 	ctx->max_rx_queue_size = max_rx_queue_size;
1081 
1082 	return 0;
1083 }
1084 
1085 static void ena_stats_restart(struct rte_eth_dev *dev)
1086 {
1087 	struct ena_adapter *adapter = dev->data->dev_private;
1088 
1089 	rte_atomic64_init(&adapter->drv_stats->ierrors);
1090 	rte_atomic64_init(&adapter->drv_stats->oerrors);
1091 	rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
1092 	adapter->drv_stats->rx_drops = 0;
1093 }
1094 
1095 static int ena_stats_get(struct rte_eth_dev *dev,
1096 			  struct rte_eth_stats *stats)
1097 {
1098 	struct ena_admin_basic_stats ena_stats;
1099 	struct ena_adapter *adapter = dev->data->dev_private;
1100 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1101 	int rc;
1102 	int i;
1103 	int max_rings_stats;
1104 
1105 	memset(&ena_stats, 0, sizeof(ena_stats));
1106 
1107 	rte_spinlock_lock(&adapter->admin_lock);
1108 	rc = ENA_PROXY(adapter, ena_com_get_dev_basic_stats, ena_dev,
1109 		       &ena_stats);
1110 	rte_spinlock_unlock(&adapter->admin_lock);
1111 	if (unlikely(rc)) {
1112 		PMD_DRV_LOG(ERR, "Could not retrieve statistics from ENA\n");
1113 		return rc;
1114 	}
1115 
1116 	/* Set of basic statistics from ENA */
1117 	stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
1118 					  ena_stats.rx_pkts_low);
1119 	stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
1120 					  ena_stats.tx_pkts_low);
1121 	stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
1122 					ena_stats.rx_bytes_low);
1123 	stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
1124 					ena_stats.tx_bytes_low);
1125 
1126 	/* Driver related stats */
1127 	stats->imissed = adapter->drv_stats->rx_drops;
1128 	stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
1129 	stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
1130 	stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
1131 
1132 	max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
1133 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
1134 	for (i = 0; i < max_rings_stats; ++i) {
1135 		struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
1136 
1137 		stats->q_ibytes[i] = rx_stats->bytes;
1138 		stats->q_ipackets[i] = rx_stats->cnt;
1139 		stats->q_errors[i] = rx_stats->bad_desc_num +
1140 			rx_stats->bad_req_id;
1141 	}
1142 
1143 	max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
1144 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
1145 	for (i = 0; i < max_rings_stats; ++i) {
1146 		struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
1147 
1148 		stats->q_obytes[i] = tx_stats->bytes;
1149 		stats->q_opackets[i] = tx_stats->cnt;
1150 	}
1151 
1152 	return 0;
1153 }
1154 
1155 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1156 {
1157 	struct ena_adapter *adapter;
1158 	struct ena_com_dev *ena_dev;
1159 	int rc = 0;
1160 
1161 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
1162 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
1163 	adapter = dev->data->dev_private;
1164 
1165 	ena_dev = &adapter->ena_dev;
1166 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
1167 
1168 	if (mtu > adapter->max_mtu || mtu < ENA_MIN_MTU) {
1169 		PMD_DRV_LOG(ERR,
1170 			"Invalid MTU setting. New MTU: %d, max MTU: %d, min MTU: %d\n",
1171 			mtu, adapter->max_mtu, ENA_MIN_MTU);
1172 		return -EINVAL;
1173 	}
1174 
1175 	rc = ENA_PROXY(adapter, ena_com_set_dev_mtu, ena_dev, mtu);
1176 	if (rc)
1177 		PMD_DRV_LOG(ERR, "Could not set MTU: %d\n", mtu);
1178 	else
1179 		PMD_DRV_LOG(NOTICE, "MTU set to: %d\n", mtu);
1180 
1181 	return rc;
1182 }
1183 
1184 static int ena_start(struct rte_eth_dev *dev)
1185 {
1186 	struct ena_adapter *adapter = dev->data->dev_private;
1187 	uint64_t ticks;
1188 	int rc = 0;
1189 
1190 	/* Cannot allocate memory in secondary process */
1191 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1192 		PMD_DRV_LOG(WARNING, "dev_start not supported in secondary.\n");
1193 		return -EPERM;
1194 	}
1195 
1196 	rc = ena_check_valid_conf(adapter);
1197 	if (rc)
1198 		return rc;
1199 
1200 	rc = ena_setup_rx_intr(dev);
1201 	if (rc)
1202 		return rc;
1203 
1204 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
1205 	if (rc)
1206 		return rc;
1207 
1208 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
1209 	if (rc)
1210 		goto err_start_tx;
1211 
1212 	if (adapter->edev_data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG) {
1213 		rc = ena_rss_configure(adapter);
1214 		if (rc)
1215 			goto err_rss_init;
1216 	}
1217 
1218 	ena_stats_restart(dev);
1219 
1220 	adapter->timestamp_wd = rte_get_timer_cycles();
1221 	adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
1222 
1223 	ticks = rte_get_timer_hz();
1224 	rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
1225 			ena_timer_wd_callback, dev);
1226 
1227 	++adapter->dev_stats.dev_start;
1228 	adapter->state = ENA_ADAPTER_STATE_RUNNING;
1229 
1230 	return 0;
1231 
1232 err_rss_init:
1233 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1234 err_start_tx:
1235 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1236 	return rc;
1237 }
1238 
1239 static int ena_stop(struct rte_eth_dev *dev)
1240 {
1241 	struct ena_adapter *adapter = dev->data->dev_private;
1242 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1243 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1244 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
1245 	int rc;
1246 
1247 	/* Cannot free memory in secondary process */
1248 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1249 		PMD_DRV_LOG(WARNING, "dev_stop not supported in secondary.\n");
1250 		return -EPERM;
1251 	}
1252 
1253 	rte_timer_stop_sync(&adapter->timer_wd);
1254 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1255 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1256 
1257 	if (adapter->trigger_reset) {
1258 		rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
1259 		if (rc)
1260 			PMD_DRV_LOG(ERR, "Device reset failed, rc: %d\n", rc);
1261 	}
1262 
1263 	rte_intr_disable(intr_handle);
1264 
1265 	rte_intr_efd_disable(intr_handle);
1266 
1267 	/* Cleanup vector list */
1268 	rte_intr_vec_list_free(intr_handle);
1269 
1270 	rte_intr_enable(intr_handle);
1271 
1272 	++adapter->dev_stats.dev_stop;
1273 	adapter->state = ENA_ADAPTER_STATE_STOPPED;
1274 	dev->data->dev_started = 0;
1275 
1276 	return 0;
1277 }
1278 
1279 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring)
1280 {
1281 	struct ena_adapter *adapter = ring->adapter;
1282 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1283 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1284 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
1285 	struct ena_com_create_io_ctx ctx =
1286 		/* policy set to _HOST just to satisfy icc compiler */
1287 		{ ENA_ADMIN_PLACEMENT_POLICY_HOST,
1288 		  0, 0, 0, 0, 0 };
1289 	uint16_t ena_qid;
1290 	unsigned int i;
1291 	int rc;
1292 
1293 	ctx.msix_vector = -1;
1294 	if (ring->type == ENA_RING_TYPE_TX) {
1295 		ena_qid = ENA_IO_TXQ_IDX(ring->id);
1296 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1297 		ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1298 		for (i = 0; i < ring->ring_size; i++)
1299 			ring->empty_tx_reqs[i] = i;
1300 	} else {
1301 		ena_qid = ENA_IO_RXQ_IDX(ring->id);
1302 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1303 		if (rte_intr_dp_is_en(intr_handle))
1304 			ctx.msix_vector =
1305 				rte_intr_vec_list_index_get(intr_handle,
1306 								   ring->id);
1307 
1308 		for (i = 0; i < ring->ring_size; i++)
1309 			ring->empty_rx_reqs[i] = i;
1310 	}
1311 	ctx.queue_size = ring->ring_size;
1312 	ctx.qid = ena_qid;
1313 	ctx.numa_node = ring->numa_socket_id;
1314 
1315 	rc = ena_com_create_io_queue(ena_dev, &ctx);
1316 	if (rc) {
1317 		PMD_DRV_LOG(ERR,
1318 			"Failed to create IO queue[%d] (qid:%d), rc: %d\n",
1319 			ring->id, ena_qid, rc);
1320 		return rc;
1321 	}
1322 
1323 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1324 				     &ring->ena_com_io_sq,
1325 				     &ring->ena_com_io_cq);
1326 	if (rc) {
1327 		PMD_DRV_LOG(ERR,
1328 			"Failed to get IO queue[%d] handlers, rc: %d\n",
1329 			ring->id, rc);
1330 		ena_com_destroy_io_queue(ena_dev, ena_qid);
1331 		return rc;
1332 	}
1333 
1334 	if (ring->type == ENA_RING_TYPE_TX)
1335 		ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1336 
1337 	/* Start with Rx interrupts being masked. */
1338 	if (ring->type == ENA_RING_TYPE_RX && rte_intr_dp_is_en(intr_handle))
1339 		ena_rx_queue_intr_disable(dev, ring->id);
1340 
1341 	return 0;
1342 }
1343 
1344 static void ena_queue_stop(struct ena_ring *ring)
1345 {
1346 	struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
1347 
1348 	if (ring->type == ENA_RING_TYPE_RX) {
1349 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
1350 		ena_rx_queue_release_bufs(ring);
1351 	} else {
1352 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
1353 		ena_tx_queue_release_bufs(ring);
1354 	}
1355 }
1356 
1357 static void ena_queue_stop_all(struct rte_eth_dev *dev,
1358 			      enum ena_ring_type ring_type)
1359 {
1360 	struct ena_adapter *adapter = dev->data->dev_private;
1361 	struct ena_ring *queues = NULL;
1362 	uint16_t nb_queues, i;
1363 
1364 	if (ring_type == ENA_RING_TYPE_RX) {
1365 		queues = adapter->rx_ring;
1366 		nb_queues = dev->data->nb_rx_queues;
1367 	} else {
1368 		queues = adapter->tx_ring;
1369 		nb_queues = dev->data->nb_tx_queues;
1370 	}
1371 
1372 	for (i = 0; i < nb_queues; ++i)
1373 		if (queues[i].configured)
1374 			ena_queue_stop(&queues[i]);
1375 }
1376 
1377 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring)
1378 {
1379 	int rc, bufs_num;
1380 
1381 	ena_assert_msg(ring->configured == 1,
1382 		       "Trying to start unconfigured queue\n");
1383 
1384 	rc = ena_create_io_queue(dev, ring);
1385 	if (rc) {
1386 		PMD_INIT_LOG(ERR, "Failed to create IO queue\n");
1387 		return rc;
1388 	}
1389 
1390 	ring->next_to_clean = 0;
1391 	ring->next_to_use = 0;
1392 
1393 	if (ring->type == ENA_RING_TYPE_TX) {
1394 		ring->tx_stats.available_desc =
1395 			ena_com_free_q_entries(ring->ena_com_io_sq);
1396 		return 0;
1397 	}
1398 
1399 	bufs_num = ring->ring_size - 1;
1400 	rc = ena_populate_rx_queue(ring, bufs_num);
1401 	if (rc != bufs_num) {
1402 		ena_com_destroy_io_queue(&ring->adapter->ena_dev,
1403 					 ENA_IO_RXQ_IDX(ring->id));
1404 		PMD_INIT_LOG(ERR, "Failed to populate Rx ring\n");
1405 		return ENA_COM_FAULT;
1406 	}
1407 	/* Flush per-core RX buffers pools cache as they can be used on other
1408 	 * cores as well.
1409 	 */
1410 	rte_mempool_cache_flush(NULL, ring->mb_pool);
1411 
1412 	return 0;
1413 }
1414 
1415 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1416 			      uint16_t queue_idx,
1417 			      uint16_t nb_desc,
1418 			      unsigned int socket_id,
1419 			      const struct rte_eth_txconf *tx_conf)
1420 {
1421 	struct ena_ring *txq = NULL;
1422 	struct ena_adapter *adapter = dev->data->dev_private;
1423 	unsigned int i;
1424 	uint16_t dyn_thresh;
1425 
1426 	txq = &adapter->tx_ring[queue_idx];
1427 
1428 	if (txq->configured) {
1429 		PMD_DRV_LOG(CRIT,
1430 			"API violation. Queue[%d] is already configured\n",
1431 			queue_idx);
1432 		return ENA_COM_FAULT;
1433 	}
1434 
1435 	if (!rte_is_power_of_2(nb_desc)) {
1436 		PMD_DRV_LOG(ERR,
1437 			"Unsupported size of Tx queue: %d is not a power of 2.\n",
1438 			nb_desc);
1439 		return -EINVAL;
1440 	}
1441 
1442 	if (nb_desc > adapter->max_tx_ring_size) {
1443 		PMD_DRV_LOG(ERR,
1444 			"Unsupported size of Tx queue (max size: %d)\n",
1445 			adapter->max_tx_ring_size);
1446 		return -EINVAL;
1447 	}
1448 
1449 	txq->port_id = dev->data->port_id;
1450 	txq->next_to_clean = 0;
1451 	txq->next_to_use = 0;
1452 	txq->ring_size = nb_desc;
1453 	txq->size_mask = nb_desc - 1;
1454 	txq->numa_socket_id = socket_id;
1455 	txq->pkts_without_db = false;
1456 	txq->last_cleanup_ticks = 0;
1457 
1458 	txq->tx_buffer_info = rte_zmalloc_socket("txq->tx_buffer_info",
1459 		sizeof(struct ena_tx_buffer) * txq->ring_size,
1460 		RTE_CACHE_LINE_SIZE,
1461 		socket_id);
1462 	if (!txq->tx_buffer_info) {
1463 		PMD_DRV_LOG(ERR,
1464 			"Failed to allocate memory for Tx buffer info\n");
1465 		return -ENOMEM;
1466 	}
1467 
1468 	txq->empty_tx_reqs = rte_zmalloc_socket("txq->empty_tx_reqs",
1469 		sizeof(uint16_t) * txq->ring_size,
1470 		RTE_CACHE_LINE_SIZE,
1471 		socket_id);
1472 	if (!txq->empty_tx_reqs) {
1473 		PMD_DRV_LOG(ERR,
1474 			"Failed to allocate memory for empty Tx requests\n");
1475 		rte_free(txq->tx_buffer_info);
1476 		return -ENOMEM;
1477 	}
1478 
1479 	txq->push_buf_intermediate_buf =
1480 		rte_zmalloc_socket("txq->push_buf_intermediate_buf",
1481 			txq->tx_max_header_size,
1482 			RTE_CACHE_LINE_SIZE,
1483 			socket_id);
1484 	if (!txq->push_buf_intermediate_buf) {
1485 		PMD_DRV_LOG(ERR, "Failed to alloc push buffer for LLQ\n");
1486 		rte_free(txq->tx_buffer_info);
1487 		rte_free(txq->empty_tx_reqs);
1488 		return -ENOMEM;
1489 	}
1490 
1491 	for (i = 0; i < txq->ring_size; i++)
1492 		txq->empty_tx_reqs[i] = i;
1493 
1494 	txq->offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1495 
1496 	/* Check if caller provided the Tx cleanup threshold value. */
1497 	if (tx_conf->tx_free_thresh != 0) {
1498 		txq->tx_free_thresh = tx_conf->tx_free_thresh;
1499 	} else {
1500 		dyn_thresh = txq->ring_size -
1501 			txq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1502 		txq->tx_free_thresh = RTE_MAX(dyn_thresh,
1503 			txq->ring_size - ENA_REFILL_THRESH_PACKET);
1504 	}
1505 
1506 	txq->missing_tx_completion_threshold =
1507 		RTE_MIN(txq->ring_size / 2, ENA_DEFAULT_MISSING_COMP);
1508 
1509 	/* Store pointer to this queue in upper layer */
1510 	txq->configured = 1;
1511 	dev->data->tx_queues[queue_idx] = txq;
1512 
1513 	return 0;
1514 }
1515 
1516 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1517 			      uint16_t queue_idx,
1518 			      uint16_t nb_desc,
1519 			      unsigned int socket_id,
1520 			      const struct rte_eth_rxconf *rx_conf,
1521 			      struct rte_mempool *mp)
1522 {
1523 	struct ena_adapter *adapter = dev->data->dev_private;
1524 	struct ena_ring *rxq = NULL;
1525 	size_t buffer_size;
1526 	int i;
1527 	uint16_t dyn_thresh;
1528 
1529 	rxq = &adapter->rx_ring[queue_idx];
1530 	if (rxq->configured) {
1531 		PMD_DRV_LOG(CRIT,
1532 			"API violation. Queue[%d] is already configured\n",
1533 			queue_idx);
1534 		return ENA_COM_FAULT;
1535 	}
1536 
1537 	if (!rte_is_power_of_2(nb_desc)) {
1538 		PMD_DRV_LOG(ERR,
1539 			"Unsupported size of Rx queue: %d is not a power of 2.\n",
1540 			nb_desc);
1541 		return -EINVAL;
1542 	}
1543 
1544 	if (nb_desc > adapter->max_rx_ring_size) {
1545 		PMD_DRV_LOG(ERR,
1546 			"Unsupported size of Rx queue (max size: %d)\n",
1547 			adapter->max_rx_ring_size);
1548 		return -EINVAL;
1549 	}
1550 
1551 	/* ENA isn't supporting buffers smaller than 1400 bytes */
1552 	buffer_size = rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
1553 	if (buffer_size < ENA_RX_BUF_MIN_SIZE) {
1554 		PMD_DRV_LOG(ERR,
1555 			"Unsupported size of Rx buffer: %zu (min size: %d)\n",
1556 			buffer_size, ENA_RX_BUF_MIN_SIZE);
1557 		return -EINVAL;
1558 	}
1559 
1560 	rxq->port_id = dev->data->port_id;
1561 	rxq->next_to_clean = 0;
1562 	rxq->next_to_use = 0;
1563 	rxq->ring_size = nb_desc;
1564 	rxq->size_mask = nb_desc - 1;
1565 	rxq->numa_socket_id = socket_id;
1566 	rxq->mb_pool = mp;
1567 
1568 	rxq->rx_buffer_info = rte_zmalloc_socket("rxq->buffer_info",
1569 		sizeof(struct ena_rx_buffer) * nb_desc,
1570 		RTE_CACHE_LINE_SIZE,
1571 		socket_id);
1572 	if (!rxq->rx_buffer_info) {
1573 		PMD_DRV_LOG(ERR,
1574 			"Failed to allocate memory for Rx buffer info\n");
1575 		return -ENOMEM;
1576 	}
1577 
1578 	rxq->rx_refill_buffer = rte_zmalloc_socket("rxq->rx_refill_buffer",
1579 		sizeof(struct rte_mbuf *) * nb_desc,
1580 		RTE_CACHE_LINE_SIZE,
1581 		socket_id);
1582 	if (!rxq->rx_refill_buffer) {
1583 		PMD_DRV_LOG(ERR,
1584 			"Failed to allocate memory for Rx refill buffer\n");
1585 		rte_free(rxq->rx_buffer_info);
1586 		rxq->rx_buffer_info = NULL;
1587 		return -ENOMEM;
1588 	}
1589 
1590 	rxq->empty_rx_reqs = rte_zmalloc_socket("rxq->empty_rx_reqs",
1591 		sizeof(uint16_t) * nb_desc,
1592 		RTE_CACHE_LINE_SIZE,
1593 		socket_id);
1594 	if (!rxq->empty_rx_reqs) {
1595 		PMD_DRV_LOG(ERR,
1596 			"Failed to allocate memory for empty Rx requests\n");
1597 		rte_free(rxq->rx_buffer_info);
1598 		rxq->rx_buffer_info = NULL;
1599 		rte_free(rxq->rx_refill_buffer);
1600 		rxq->rx_refill_buffer = NULL;
1601 		return -ENOMEM;
1602 	}
1603 
1604 	for (i = 0; i < nb_desc; i++)
1605 		rxq->empty_rx_reqs[i] = i;
1606 
1607 	rxq->offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1608 
1609 	if (rx_conf->rx_free_thresh != 0) {
1610 		rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1611 	} else {
1612 		dyn_thresh = rxq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1613 		rxq->rx_free_thresh = RTE_MIN(dyn_thresh,
1614 			(uint16_t)(ENA_REFILL_THRESH_PACKET));
1615 	}
1616 
1617 	/* Store pointer to this queue in upper layer */
1618 	rxq->configured = 1;
1619 	dev->data->rx_queues[queue_idx] = rxq;
1620 
1621 	return 0;
1622 }
1623 
1624 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
1625 				  struct rte_mbuf *mbuf, uint16_t id)
1626 {
1627 	struct ena_com_buf ebuf;
1628 	int rc;
1629 
1630 	/* prepare physical address for DMA transaction */
1631 	ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1632 	ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1633 
1634 	/* pass resource to device */
1635 	rc = ena_com_add_single_rx_desc(io_sq, &ebuf, id);
1636 	if (unlikely(rc != 0))
1637 		PMD_RX_LOG(WARNING, "Failed adding Rx desc\n");
1638 
1639 	return rc;
1640 }
1641 
1642 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1643 {
1644 	unsigned int i;
1645 	int rc;
1646 	uint16_t next_to_use = rxq->next_to_use;
1647 	uint16_t req_id;
1648 #ifdef RTE_ETHDEV_DEBUG_RX
1649 	uint16_t in_use;
1650 #endif
1651 	struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1652 
1653 	if (unlikely(!count))
1654 		return 0;
1655 
1656 #ifdef RTE_ETHDEV_DEBUG_RX
1657 	in_use = rxq->ring_size - 1 -
1658 		ena_com_free_q_entries(rxq->ena_com_io_sq);
1659 	if (unlikely((in_use + count) >= rxq->ring_size))
1660 		PMD_RX_LOG(ERR, "Bad Rx ring state\n");
1661 #endif
1662 
1663 	/* get resources for incoming packets */
1664 	rc = rte_pktmbuf_alloc_bulk(rxq->mb_pool, mbufs, count);
1665 	if (unlikely(rc < 0)) {
1666 		rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1667 		++rxq->rx_stats.mbuf_alloc_fail;
1668 		PMD_RX_LOG(DEBUG, "There are not enough free buffers\n");
1669 		return 0;
1670 	}
1671 
1672 	for (i = 0; i < count; i++) {
1673 		struct rte_mbuf *mbuf = mbufs[i];
1674 		struct ena_rx_buffer *rx_info;
1675 
1676 		if (likely((i + 4) < count))
1677 			rte_prefetch0(mbufs[i + 4]);
1678 
1679 		req_id = rxq->empty_rx_reqs[next_to_use];
1680 		rx_info = &rxq->rx_buffer_info[req_id];
1681 
1682 		rc = ena_add_single_rx_desc(rxq->ena_com_io_sq, mbuf, req_id);
1683 		if (unlikely(rc != 0))
1684 			break;
1685 
1686 		rx_info->mbuf = mbuf;
1687 		next_to_use = ENA_IDX_NEXT_MASKED(next_to_use, rxq->size_mask);
1688 	}
1689 
1690 	if (unlikely(i < count)) {
1691 		PMD_RX_LOG(WARNING,
1692 			"Refilled Rx queue[%d] with only %d/%d buffers\n",
1693 			rxq->id, i, count);
1694 		rte_pktmbuf_free_bulk(&mbufs[i], count - i);
1695 		++rxq->rx_stats.refill_partial;
1696 	}
1697 
1698 	/* When we submitted free resources to device... */
1699 	if (likely(i > 0)) {
1700 		/* ...let HW know that it can fill buffers with data. */
1701 		ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1702 
1703 		rxq->next_to_use = next_to_use;
1704 	}
1705 
1706 	return i;
1707 }
1708 
1709 static int ena_device_init(struct ena_adapter *adapter,
1710 			   struct rte_pci_device *pdev,
1711 			   struct ena_com_dev_get_features_ctx *get_feat_ctx)
1712 {
1713 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1714 	uint32_t aenq_groups;
1715 	int rc;
1716 	bool readless_supported;
1717 
1718 	/* Initialize mmio registers */
1719 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
1720 	if (rc) {
1721 		PMD_DRV_LOG(ERR, "Failed to init MMIO read less\n");
1722 		return rc;
1723 	}
1724 
1725 	/* The PCIe configuration space revision id indicate if mmio reg
1726 	 * read is disabled.
1727 	 */
1728 	readless_supported = !(pdev->id.class_id & ENA_MMIO_DISABLE_REG_READ);
1729 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1730 
1731 	/* reset device */
1732 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1733 	if (rc) {
1734 		PMD_DRV_LOG(ERR, "Cannot reset device\n");
1735 		goto err_mmio_read_less;
1736 	}
1737 
1738 	/* check FW version */
1739 	rc = ena_com_validate_version(ena_dev);
1740 	if (rc) {
1741 		PMD_DRV_LOG(ERR, "Device version is too low\n");
1742 		goto err_mmio_read_less;
1743 	}
1744 
1745 	ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1746 
1747 	/* ENA device administration layer init */
1748 	rc = ena_com_admin_init(ena_dev, &aenq_handlers);
1749 	if (rc) {
1750 		PMD_DRV_LOG(ERR,
1751 			"Cannot initialize ENA admin queue\n");
1752 		goto err_mmio_read_less;
1753 	}
1754 
1755 	/* To enable the msix interrupts the driver needs to know the number
1756 	 * of queues. So the driver uses polling mode to retrieve this
1757 	 * information.
1758 	 */
1759 	ena_com_set_admin_polling_mode(ena_dev, true);
1760 
1761 	ena_config_host_info(ena_dev);
1762 
1763 	/* Get Device Attributes and features */
1764 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1765 	if (rc) {
1766 		PMD_DRV_LOG(ERR,
1767 			"Cannot get attribute for ENA device, rc: %d\n", rc);
1768 		goto err_admin_init;
1769 	}
1770 
1771 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1772 		      BIT(ENA_ADMIN_NOTIFICATION) |
1773 		      BIT(ENA_ADMIN_KEEP_ALIVE) |
1774 		      BIT(ENA_ADMIN_FATAL_ERROR) |
1775 		      BIT(ENA_ADMIN_WARNING);
1776 
1777 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
1778 
1779 	adapter->all_aenq_groups = aenq_groups;
1780 
1781 	return 0;
1782 
1783 err_admin_init:
1784 	ena_com_admin_destroy(ena_dev);
1785 
1786 err_mmio_read_less:
1787 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1788 
1789 	return rc;
1790 }
1791 
1792 static void ena_interrupt_handler_rte(void *cb_arg)
1793 {
1794 	struct rte_eth_dev *dev = cb_arg;
1795 	struct ena_adapter *adapter = dev->data->dev_private;
1796 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1797 
1798 	ena_com_admin_q_comp_intr_handler(ena_dev);
1799 	if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED))
1800 		ena_com_aenq_intr_handler(ena_dev, dev);
1801 }
1802 
1803 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1804 {
1805 	if (!(adapter->active_aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE)))
1806 		return;
1807 
1808 	if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1809 		return;
1810 
1811 	if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1812 	    adapter->keep_alive_timeout)) {
1813 		PMD_DRV_LOG(ERR, "Keep alive timeout\n");
1814 		ena_trigger_reset(adapter, ENA_REGS_RESET_KEEP_ALIVE_TO);
1815 		++adapter->dev_stats.wd_expired;
1816 	}
1817 }
1818 
1819 /* Check if admin queue is enabled */
1820 static void check_for_admin_com_state(struct ena_adapter *adapter)
1821 {
1822 	if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1823 		PMD_DRV_LOG(ERR, "ENA admin queue is not in running state\n");
1824 		ena_trigger_reset(adapter, ENA_REGS_RESET_ADMIN_TO);
1825 	}
1826 }
1827 
1828 static int check_for_tx_completion_in_queue(struct ena_adapter *adapter,
1829 					    struct ena_ring *tx_ring)
1830 {
1831 	struct ena_tx_buffer *tx_buf;
1832 	uint64_t timestamp;
1833 	uint64_t completion_delay;
1834 	uint32_t missed_tx = 0;
1835 	unsigned int i;
1836 	int rc = 0;
1837 
1838 	for (i = 0; i < tx_ring->ring_size; ++i) {
1839 		tx_buf = &tx_ring->tx_buffer_info[i];
1840 		timestamp = tx_buf->timestamp;
1841 
1842 		if (timestamp == 0)
1843 			continue;
1844 
1845 		completion_delay = rte_get_timer_cycles() - timestamp;
1846 		if (completion_delay > adapter->missing_tx_completion_to) {
1847 			if (unlikely(!tx_buf->print_once)) {
1848 				PMD_TX_LOG(WARNING,
1849 					"Found a Tx that wasn't completed on time, qid %d, index %d. "
1850 					"Missing Tx outstanding for %" PRIu64 " msecs.\n",
1851 					tx_ring->id, i,	completion_delay /
1852 					rte_get_timer_hz() * 1000);
1853 				tx_buf->print_once = true;
1854 			}
1855 			++missed_tx;
1856 		}
1857 	}
1858 
1859 	if (unlikely(missed_tx > tx_ring->missing_tx_completion_threshold)) {
1860 		PMD_DRV_LOG(ERR,
1861 			"The number of lost Tx completions is above the threshold (%d > %d). "
1862 			"Trigger the device reset.\n",
1863 			missed_tx,
1864 			tx_ring->missing_tx_completion_threshold);
1865 		adapter->reset_reason = ENA_REGS_RESET_MISS_TX_CMPL;
1866 		adapter->trigger_reset = true;
1867 		rc = -EIO;
1868 	}
1869 
1870 	tx_ring->tx_stats.missed_tx += missed_tx;
1871 
1872 	return rc;
1873 }
1874 
1875 static void check_for_tx_completions(struct ena_adapter *adapter)
1876 {
1877 	struct ena_ring *tx_ring;
1878 	uint64_t tx_cleanup_delay;
1879 	size_t qid;
1880 	int budget;
1881 	uint16_t nb_tx_queues = adapter->edev_data->nb_tx_queues;
1882 
1883 	if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT)
1884 		return;
1885 
1886 	nb_tx_queues = adapter->edev_data->nb_tx_queues;
1887 	budget = adapter->missing_tx_completion_budget;
1888 
1889 	qid = adapter->last_tx_comp_qid;
1890 	while (budget-- > 0) {
1891 		tx_ring = &adapter->tx_ring[qid];
1892 
1893 		/* Tx cleanup is called only by the burst function and can be
1894 		 * called dynamically by the application. Also cleanup is
1895 		 * limited by the threshold. To avoid false detection of the
1896 		 * missing HW Tx completion, get the delay since last cleanup
1897 		 * function was called.
1898 		 */
1899 		tx_cleanup_delay = rte_get_timer_cycles() -
1900 			tx_ring->last_cleanup_ticks;
1901 		if (tx_cleanup_delay < adapter->tx_cleanup_stall_delay)
1902 			check_for_tx_completion_in_queue(adapter, tx_ring);
1903 		qid = (qid + 1) % nb_tx_queues;
1904 	}
1905 
1906 	adapter->last_tx_comp_qid = qid;
1907 }
1908 
1909 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
1910 				  void *arg)
1911 {
1912 	struct rte_eth_dev *dev = arg;
1913 	struct ena_adapter *adapter = dev->data->dev_private;
1914 
1915 	if (unlikely(adapter->trigger_reset))
1916 		return;
1917 
1918 	check_for_missing_keep_alive(adapter);
1919 	check_for_admin_com_state(adapter);
1920 	check_for_tx_completions(adapter);
1921 
1922 	if (unlikely(adapter->trigger_reset)) {
1923 		PMD_DRV_LOG(ERR, "Trigger reset is on\n");
1924 		rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
1925 			NULL);
1926 	}
1927 }
1928 
1929 static inline void
1930 set_default_llq_configurations(struct ena_llq_configurations *llq_config,
1931 			       struct ena_admin_feature_llq_desc *llq,
1932 			       bool use_large_llq_hdr)
1933 {
1934 	llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
1935 	llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
1936 	llq_config->llq_num_decs_before_header =
1937 		ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
1938 
1939 	if (use_large_llq_hdr &&
1940 	    (llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B)) {
1941 		llq_config->llq_ring_entry_size =
1942 			ENA_ADMIN_LIST_ENTRY_SIZE_256B;
1943 		llq_config->llq_ring_entry_size_value = 256;
1944 	} else {
1945 		llq_config->llq_ring_entry_size =
1946 			ENA_ADMIN_LIST_ENTRY_SIZE_128B;
1947 		llq_config->llq_ring_entry_size_value = 128;
1948 	}
1949 }
1950 
1951 static int
1952 ena_set_queues_placement_policy(struct ena_adapter *adapter,
1953 				struct ena_com_dev *ena_dev,
1954 				struct ena_admin_feature_llq_desc *llq,
1955 				struct ena_llq_configurations *llq_default_configurations)
1956 {
1957 	int rc;
1958 	u32 llq_feature_mask;
1959 
1960 	llq_feature_mask = 1 << ENA_ADMIN_LLQ;
1961 	if (!(ena_dev->supported_features & llq_feature_mask)) {
1962 		PMD_DRV_LOG(INFO,
1963 			"LLQ is not supported. Fallback to host mode policy.\n");
1964 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1965 		return 0;
1966 	}
1967 
1968 	if (adapter->dev_mem_base == NULL) {
1969 		PMD_DRV_LOG(ERR,
1970 			"LLQ is advertised as supported, but device doesn't expose mem bar\n");
1971 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1972 		return 0;
1973 	}
1974 
1975 	rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
1976 	if (unlikely(rc)) {
1977 		PMD_INIT_LOG(WARNING,
1978 			"Failed to config dev mode. Fallback to host mode policy.\n");
1979 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1980 		return 0;
1981 	}
1982 
1983 	/* Nothing to config, exit */
1984 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1985 		return 0;
1986 
1987 	ena_dev->mem_bar = adapter->dev_mem_base;
1988 
1989 	return 0;
1990 }
1991 
1992 static uint32_t ena_calc_max_io_queue_num(struct ena_com_dev *ena_dev,
1993 	struct ena_com_dev_get_features_ctx *get_feat_ctx)
1994 {
1995 	uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
1996 
1997 	/* Regular queues capabilities */
1998 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1999 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
2000 			&get_feat_ctx->max_queue_ext.max_queue_ext;
2001 		io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
2002 				    max_queue_ext->max_rx_cq_num);
2003 		io_tx_sq_num = max_queue_ext->max_tx_sq_num;
2004 		io_tx_cq_num = max_queue_ext->max_tx_cq_num;
2005 	} else {
2006 		struct ena_admin_queue_feature_desc *max_queues =
2007 			&get_feat_ctx->max_queues;
2008 		io_tx_sq_num = max_queues->max_sq_num;
2009 		io_tx_cq_num = max_queues->max_cq_num;
2010 		io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
2011 	}
2012 
2013 	/* In case of LLQ use the llq number in the get feature cmd */
2014 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
2015 		io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
2016 
2017 	max_num_io_queues = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
2018 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_sq_num);
2019 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_cq_num);
2020 
2021 	if (unlikely(max_num_io_queues == 0)) {
2022 		PMD_DRV_LOG(ERR, "Number of IO queues cannot not be 0\n");
2023 		return -EFAULT;
2024 	}
2025 
2026 	return max_num_io_queues;
2027 }
2028 
2029 static void
2030 ena_set_offloads(struct ena_offloads *offloads,
2031 		 struct ena_admin_feature_offload_desc *offload_desc)
2032 {
2033 	if (offload_desc->tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK)
2034 		offloads->tx_offloads |= ENA_IPV4_TSO;
2035 
2036 	/* Tx IPv4 checksum offloads */
2037 	if (offload_desc->tx &
2038 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)
2039 		offloads->tx_offloads |= ENA_L3_IPV4_CSUM;
2040 	if (offload_desc->tx &
2041 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK)
2042 		offloads->tx_offloads |= ENA_L4_IPV4_CSUM;
2043 	if (offload_desc->tx &
2044 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)
2045 		offloads->tx_offloads |= ENA_L4_IPV4_CSUM_PARTIAL;
2046 
2047 	/* Tx IPv6 checksum offloads */
2048 	if (offload_desc->tx &
2049 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK)
2050 		offloads->tx_offloads |= ENA_L4_IPV6_CSUM;
2051 	if (offload_desc->tx &
2052 	     ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)
2053 		offloads->tx_offloads |= ENA_L4_IPV6_CSUM_PARTIAL;
2054 
2055 	/* Rx IPv4 checksum offloads */
2056 	if (offload_desc->rx_supported &
2057 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)
2058 		offloads->rx_offloads |= ENA_L3_IPV4_CSUM;
2059 	if (offload_desc->rx_supported &
2060 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK)
2061 		offloads->rx_offloads |= ENA_L4_IPV4_CSUM;
2062 
2063 	/* Rx IPv6 checksum offloads */
2064 	if (offload_desc->rx_supported &
2065 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK)
2066 		offloads->rx_offloads |= ENA_L4_IPV6_CSUM;
2067 
2068 	if (offload_desc->rx_supported &
2069 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_HASH_MASK)
2070 		offloads->rx_offloads |= ENA_RX_RSS_HASH;
2071 }
2072 
2073 static int ena_init_once(void)
2074 {
2075 	static bool init_done;
2076 
2077 	if (init_done)
2078 		return 0;
2079 
2080 	if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
2081 		/* Init timer subsystem for the ENA timer service. */
2082 		rte_timer_subsystem_init();
2083 		/* Register handler for requests from secondary processes. */
2084 		rte_mp_action_register(ENA_MP_NAME, ena_mp_primary_handle);
2085 	}
2086 
2087 	init_done = true;
2088 	return 0;
2089 }
2090 
2091 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
2092 {
2093 	struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
2094 	struct rte_pci_device *pci_dev;
2095 	struct rte_intr_handle *intr_handle;
2096 	struct ena_adapter *adapter = eth_dev->data->dev_private;
2097 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
2098 	struct ena_com_dev_get_features_ctx get_feat_ctx;
2099 	struct ena_llq_configurations llq_config;
2100 	const char *queue_type_str;
2101 	uint32_t max_num_io_queues;
2102 	int rc;
2103 	static int adapters_found;
2104 	bool disable_meta_caching;
2105 
2106 	eth_dev->dev_ops = &ena_dev_ops;
2107 	eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
2108 	eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
2109 	eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
2110 
2111 	rc = ena_init_once();
2112 	if (rc != 0)
2113 		return rc;
2114 
2115 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2116 		return 0;
2117 
2118 	eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
2119 
2120 	memset(adapter, 0, sizeof(struct ena_adapter));
2121 	ena_dev = &adapter->ena_dev;
2122 
2123 	adapter->edev_data = eth_dev->data;
2124 
2125 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2126 
2127 	PMD_INIT_LOG(INFO, "Initializing %x:%x:%x.%d\n",
2128 		     pci_dev->addr.domain,
2129 		     pci_dev->addr.bus,
2130 		     pci_dev->addr.devid,
2131 		     pci_dev->addr.function);
2132 
2133 	intr_handle = pci_dev->intr_handle;
2134 
2135 	adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
2136 	adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
2137 
2138 	if (!adapter->regs) {
2139 		PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)\n",
2140 			     ENA_REGS_BAR);
2141 		return -ENXIO;
2142 	}
2143 
2144 	ena_dev->reg_bar = adapter->regs;
2145 	/* Pass device data as a pointer which can be passed to the IO functions
2146 	 * by the ena_com (for example - the memory allocation).
2147 	 */
2148 	ena_dev->dmadev = eth_dev->data;
2149 
2150 	adapter->id_number = adapters_found;
2151 
2152 	snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
2153 		 adapter->id_number);
2154 
2155 	adapter->missing_tx_completion_to = ENA_TX_TIMEOUT;
2156 
2157 	rc = ena_parse_devargs(adapter, pci_dev->device.devargs);
2158 	if (rc != 0) {
2159 		PMD_INIT_LOG(CRIT, "Failed to parse devargs\n");
2160 		goto err;
2161 	}
2162 
2163 	/* device specific initialization routine */
2164 	rc = ena_device_init(adapter, pci_dev, &get_feat_ctx);
2165 	if (rc) {
2166 		PMD_INIT_LOG(CRIT, "Failed to init ENA device\n");
2167 		goto err;
2168 	}
2169 
2170 	/* Check if device supports LSC */
2171 	if (!(adapter->all_aenq_groups & BIT(ENA_ADMIN_LINK_CHANGE)))
2172 		adapter->edev_data->dev_flags &= ~RTE_ETH_DEV_INTR_LSC;
2173 
2174 	set_default_llq_configurations(&llq_config, &get_feat_ctx.llq,
2175 		adapter->use_large_llq_hdr);
2176 	rc = ena_set_queues_placement_policy(adapter, ena_dev,
2177 					     &get_feat_ctx.llq, &llq_config);
2178 	if (unlikely(rc)) {
2179 		PMD_INIT_LOG(CRIT, "Failed to set placement policy\n");
2180 		return rc;
2181 	}
2182 
2183 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
2184 		queue_type_str = "Regular";
2185 	else
2186 		queue_type_str = "Low latency";
2187 	PMD_DRV_LOG(INFO, "Placement policy: %s\n", queue_type_str);
2188 
2189 	calc_queue_ctx.ena_dev = ena_dev;
2190 	calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
2191 
2192 	max_num_io_queues = ena_calc_max_io_queue_num(ena_dev, &get_feat_ctx);
2193 	rc = ena_calc_io_queue_size(&calc_queue_ctx,
2194 		adapter->use_large_llq_hdr);
2195 	if (unlikely((rc != 0) || (max_num_io_queues == 0))) {
2196 		rc = -EFAULT;
2197 		goto err_device_destroy;
2198 	}
2199 
2200 	adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
2201 	adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
2202 	adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
2203 	adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
2204 	adapter->max_num_io_queues = max_num_io_queues;
2205 
2206 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2207 		disable_meta_caching =
2208 			!!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
2209 			BIT(ENA_ADMIN_DISABLE_META_CACHING));
2210 	} else {
2211 		disable_meta_caching = false;
2212 	}
2213 
2214 	/* prepare ring structures */
2215 	ena_init_rings(adapter, disable_meta_caching);
2216 
2217 	ena_config_debug_area(adapter);
2218 
2219 	/* Set max MTU for this device */
2220 	adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
2221 
2222 	ena_set_offloads(&adapter->offloads, &get_feat_ctx.offload);
2223 
2224 	/* Copy MAC address and point DPDK to it */
2225 	eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr;
2226 	rte_ether_addr_copy((struct rte_ether_addr *)
2227 			get_feat_ctx.dev_attr.mac_addr,
2228 			(struct rte_ether_addr *)adapter->mac_addr);
2229 
2230 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
2231 	if (unlikely(rc != 0)) {
2232 		PMD_DRV_LOG(ERR, "Failed to initialize RSS in ENA device\n");
2233 		goto err_delete_debug_area;
2234 	}
2235 
2236 	adapter->drv_stats = rte_zmalloc("adapter stats",
2237 					 sizeof(*adapter->drv_stats),
2238 					 RTE_CACHE_LINE_SIZE);
2239 	if (!adapter->drv_stats) {
2240 		PMD_DRV_LOG(ERR,
2241 			"Failed to allocate memory for adapter statistics\n");
2242 		rc = -ENOMEM;
2243 		goto err_rss_destroy;
2244 	}
2245 
2246 	rte_spinlock_init(&adapter->admin_lock);
2247 
2248 	rte_intr_callback_register(intr_handle,
2249 				   ena_interrupt_handler_rte,
2250 				   eth_dev);
2251 	rte_intr_enable(intr_handle);
2252 	ena_com_set_admin_polling_mode(ena_dev, false);
2253 	ena_com_admin_aenq_enable(ena_dev);
2254 
2255 	rte_timer_init(&adapter->timer_wd);
2256 
2257 	adapters_found++;
2258 	adapter->state = ENA_ADAPTER_STATE_INIT;
2259 
2260 	return 0;
2261 
2262 err_rss_destroy:
2263 	ena_com_rss_destroy(ena_dev);
2264 err_delete_debug_area:
2265 	ena_com_delete_debug_area(ena_dev);
2266 
2267 err_device_destroy:
2268 	ena_com_delete_host_info(ena_dev);
2269 	ena_com_admin_destroy(ena_dev);
2270 
2271 err:
2272 	return rc;
2273 }
2274 
2275 static void ena_destroy_device(struct rte_eth_dev *eth_dev)
2276 {
2277 	struct ena_adapter *adapter = eth_dev->data->dev_private;
2278 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
2279 
2280 	if (adapter->state == ENA_ADAPTER_STATE_FREE)
2281 		return;
2282 
2283 	ena_com_set_admin_running_state(ena_dev, false);
2284 
2285 	if (adapter->state != ENA_ADAPTER_STATE_CLOSED)
2286 		ena_close(eth_dev);
2287 
2288 	ena_com_rss_destroy(ena_dev);
2289 
2290 	ena_com_delete_debug_area(ena_dev);
2291 	ena_com_delete_host_info(ena_dev);
2292 
2293 	ena_com_abort_admin_commands(ena_dev);
2294 	ena_com_wait_for_abort_completion(ena_dev);
2295 	ena_com_admin_destroy(ena_dev);
2296 	ena_com_mmio_reg_read_request_destroy(ena_dev);
2297 
2298 	adapter->state = ENA_ADAPTER_STATE_FREE;
2299 }
2300 
2301 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
2302 {
2303 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2304 		return 0;
2305 
2306 	ena_destroy_device(eth_dev);
2307 
2308 	return 0;
2309 }
2310 
2311 static int ena_dev_configure(struct rte_eth_dev *dev)
2312 {
2313 	struct ena_adapter *adapter = dev->data->dev_private;
2314 	int rc;
2315 
2316 	adapter->state = ENA_ADAPTER_STATE_CONFIG;
2317 
2318 	if (dev->data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG)
2319 		dev->data->dev_conf.rxmode.offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2320 	dev->data->dev_conf.txmode.offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2321 
2322 	/* Scattered Rx cannot be turned off in the HW, so this capability must
2323 	 * be forced.
2324 	 */
2325 	dev->data->scattered_rx = 1;
2326 
2327 	adapter->last_tx_comp_qid = 0;
2328 
2329 	adapter->missing_tx_completion_budget =
2330 		RTE_MIN(ENA_MONITORED_TX_QUEUES, dev->data->nb_tx_queues);
2331 
2332 	/* To avoid detection of the spurious Tx completion timeout due to
2333 	 * application not calling the Tx cleanup function, set timeout for the
2334 	 * Tx queue which should be half of the missing completion timeout for a
2335 	 * safety. If there will be a lot of missing Tx completions in the
2336 	 * queue, they will be detected sooner or later.
2337 	 */
2338 	adapter->tx_cleanup_stall_delay = adapter->missing_tx_completion_to / 2;
2339 
2340 	rc = ena_configure_aenq(adapter);
2341 
2342 	return rc;
2343 }
2344 
2345 static void ena_init_rings(struct ena_adapter *adapter,
2346 			   bool disable_meta_caching)
2347 {
2348 	size_t i;
2349 
2350 	for (i = 0; i < adapter->max_num_io_queues; i++) {
2351 		struct ena_ring *ring = &adapter->tx_ring[i];
2352 
2353 		ring->configured = 0;
2354 		ring->type = ENA_RING_TYPE_TX;
2355 		ring->adapter = adapter;
2356 		ring->id = i;
2357 		ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
2358 		ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
2359 		ring->sgl_size = adapter->max_tx_sgl_size;
2360 		ring->disable_meta_caching = disable_meta_caching;
2361 	}
2362 
2363 	for (i = 0; i < adapter->max_num_io_queues; i++) {
2364 		struct ena_ring *ring = &adapter->rx_ring[i];
2365 
2366 		ring->configured = 0;
2367 		ring->type = ENA_RING_TYPE_RX;
2368 		ring->adapter = adapter;
2369 		ring->id = i;
2370 		ring->sgl_size = adapter->max_rx_sgl_size;
2371 	}
2372 }
2373 
2374 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter)
2375 {
2376 	uint64_t port_offloads = 0;
2377 
2378 	if (adapter->offloads.rx_offloads & ENA_L3_IPV4_CSUM)
2379 		port_offloads |= RTE_ETH_RX_OFFLOAD_IPV4_CKSUM;
2380 
2381 	if (adapter->offloads.rx_offloads &
2382 	    (ENA_L4_IPV4_CSUM | ENA_L4_IPV6_CSUM))
2383 		port_offloads |=
2384 			RTE_ETH_RX_OFFLOAD_UDP_CKSUM | RTE_ETH_RX_OFFLOAD_TCP_CKSUM;
2385 
2386 	if (adapter->offloads.rx_offloads & ENA_RX_RSS_HASH)
2387 		port_offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2388 
2389 	port_offloads |= RTE_ETH_RX_OFFLOAD_SCATTER;
2390 
2391 	return port_offloads;
2392 }
2393 
2394 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter)
2395 {
2396 	uint64_t port_offloads = 0;
2397 
2398 	if (adapter->offloads.tx_offloads & ENA_IPV4_TSO)
2399 		port_offloads |= RTE_ETH_TX_OFFLOAD_TCP_TSO;
2400 
2401 	if (adapter->offloads.tx_offloads & ENA_L3_IPV4_CSUM)
2402 		port_offloads |= RTE_ETH_TX_OFFLOAD_IPV4_CKSUM;
2403 	if (adapter->offloads.tx_offloads &
2404 	    (ENA_L4_IPV4_CSUM_PARTIAL | ENA_L4_IPV4_CSUM |
2405 	     ENA_L4_IPV6_CSUM | ENA_L4_IPV6_CSUM_PARTIAL))
2406 		port_offloads |=
2407 			RTE_ETH_TX_OFFLOAD_UDP_CKSUM | RTE_ETH_TX_OFFLOAD_TCP_CKSUM;
2408 
2409 	port_offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2410 
2411 	port_offloads |= RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
2412 
2413 	return port_offloads;
2414 }
2415 
2416 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter)
2417 {
2418 	RTE_SET_USED(adapter);
2419 
2420 	return 0;
2421 }
2422 
2423 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter)
2424 {
2425 	uint64_t queue_offloads = 0;
2426 	RTE_SET_USED(adapter);
2427 
2428 	queue_offloads |= RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
2429 
2430 	return queue_offloads;
2431 }
2432 
2433 static int ena_infos_get(struct rte_eth_dev *dev,
2434 			  struct rte_eth_dev_info *dev_info)
2435 {
2436 	struct ena_adapter *adapter;
2437 	struct ena_com_dev *ena_dev;
2438 
2439 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
2440 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
2441 	adapter = dev->data->dev_private;
2442 
2443 	ena_dev = &adapter->ena_dev;
2444 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
2445 
2446 	dev_info->speed_capa =
2447 			RTE_ETH_LINK_SPEED_1G   |
2448 			RTE_ETH_LINK_SPEED_2_5G |
2449 			RTE_ETH_LINK_SPEED_5G   |
2450 			RTE_ETH_LINK_SPEED_10G  |
2451 			RTE_ETH_LINK_SPEED_25G  |
2452 			RTE_ETH_LINK_SPEED_40G  |
2453 			RTE_ETH_LINK_SPEED_50G  |
2454 			RTE_ETH_LINK_SPEED_100G;
2455 
2456 	/* Inform framework about available features */
2457 	dev_info->rx_offload_capa = ena_get_rx_port_offloads(adapter);
2458 	dev_info->tx_offload_capa = ena_get_tx_port_offloads(adapter);
2459 	dev_info->rx_queue_offload_capa = ena_get_rx_queue_offloads(adapter);
2460 	dev_info->tx_queue_offload_capa = ena_get_tx_queue_offloads(adapter);
2461 
2462 	dev_info->flow_type_rss_offloads = ENA_ALL_RSS_HF;
2463 	dev_info->hash_key_size = ENA_HASH_KEY_SIZE;
2464 
2465 	dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
2466 	dev_info->max_rx_pktlen  = adapter->max_mtu + RTE_ETHER_HDR_LEN +
2467 		RTE_ETHER_CRC_LEN;
2468 	dev_info->min_mtu = ENA_MIN_MTU;
2469 	dev_info->max_mtu = adapter->max_mtu;
2470 	dev_info->max_mac_addrs = 1;
2471 
2472 	dev_info->max_rx_queues = adapter->max_num_io_queues;
2473 	dev_info->max_tx_queues = adapter->max_num_io_queues;
2474 	dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
2475 
2476 	dev_info->rx_desc_lim.nb_max = adapter->max_rx_ring_size;
2477 	dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2478 	dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2479 					adapter->max_rx_sgl_size);
2480 	dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2481 					adapter->max_rx_sgl_size);
2482 
2483 	dev_info->tx_desc_lim.nb_max = adapter->max_tx_ring_size;
2484 	dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2485 	dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2486 					adapter->max_tx_sgl_size);
2487 	dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2488 					adapter->max_tx_sgl_size);
2489 
2490 	dev_info->default_rxportconf.ring_size = ENA_DEFAULT_RING_SIZE;
2491 	dev_info->default_txportconf.ring_size = ENA_DEFAULT_RING_SIZE;
2492 
2493 	return 0;
2494 }
2495 
2496 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len)
2497 {
2498 	mbuf->data_len = len;
2499 	mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2500 	mbuf->refcnt = 1;
2501 	mbuf->next = NULL;
2502 }
2503 
2504 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
2505 				    struct ena_com_rx_buf_info *ena_bufs,
2506 				    uint32_t descs,
2507 				    uint16_t *next_to_clean,
2508 				    uint8_t offset)
2509 {
2510 	struct rte_mbuf *mbuf;
2511 	struct rte_mbuf *mbuf_head;
2512 	struct ena_rx_buffer *rx_info;
2513 	int rc;
2514 	uint16_t ntc, len, req_id, buf = 0;
2515 
2516 	if (unlikely(descs == 0))
2517 		return NULL;
2518 
2519 	ntc = *next_to_clean;
2520 
2521 	len = ena_bufs[buf].len;
2522 	req_id = ena_bufs[buf].req_id;
2523 
2524 	rx_info = &rx_ring->rx_buffer_info[req_id];
2525 
2526 	mbuf = rx_info->mbuf;
2527 	RTE_ASSERT(mbuf != NULL);
2528 
2529 	ena_init_rx_mbuf(mbuf, len);
2530 
2531 	/* Fill the mbuf head with the data specific for 1st segment. */
2532 	mbuf_head = mbuf;
2533 	mbuf_head->nb_segs = descs;
2534 	mbuf_head->port = rx_ring->port_id;
2535 	mbuf_head->pkt_len = len;
2536 	mbuf_head->data_off += offset;
2537 
2538 	rx_info->mbuf = NULL;
2539 	rx_ring->empty_rx_reqs[ntc] = req_id;
2540 	ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2541 
2542 	while (--descs) {
2543 		++buf;
2544 		len = ena_bufs[buf].len;
2545 		req_id = ena_bufs[buf].req_id;
2546 
2547 		rx_info = &rx_ring->rx_buffer_info[req_id];
2548 		RTE_ASSERT(rx_info->mbuf != NULL);
2549 
2550 		if (unlikely(len == 0)) {
2551 			/*
2552 			 * Some devices can pass descriptor with the length 0.
2553 			 * To avoid confusion, the PMD is simply putting the
2554 			 * descriptor back, as it was never used. We'll avoid
2555 			 * mbuf allocation that way.
2556 			 */
2557 			rc = ena_add_single_rx_desc(rx_ring->ena_com_io_sq,
2558 				rx_info->mbuf, req_id);
2559 			if (unlikely(rc != 0)) {
2560 				/* Free the mbuf in case of an error. */
2561 				rte_mbuf_raw_free(rx_info->mbuf);
2562 			} else {
2563 				/*
2564 				 * If there was no error, just exit the loop as
2565 				 * 0 length descriptor is always the last one.
2566 				 */
2567 				break;
2568 			}
2569 		} else {
2570 			/* Create an mbuf chain. */
2571 			mbuf->next = rx_info->mbuf;
2572 			mbuf = mbuf->next;
2573 
2574 			ena_init_rx_mbuf(mbuf, len);
2575 			mbuf_head->pkt_len += len;
2576 		}
2577 
2578 		/*
2579 		 * Mark the descriptor as depleted and perform necessary
2580 		 * cleanup.
2581 		 * This code will execute in two cases:
2582 		 *  1. Descriptor len was greater than 0 - normal situation.
2583 		 *  2. Descriptor len was 0 and we failed to add the descriptor
2584 		 *     to the device. In that situation, we should try to add
2585 		 *     the mbuf again in the populate routine and mark the
2586 		 *     descriptor as used up by the device.
2587 		 */
2588 		rx_info->mbuf = NULL;
2589 		rx_ring->empty_rx_reqs[ntc] = req_id;
2590 		ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2591 	}
2592 
2593 	*next_to_clean = ntc;
2594 
2595 	return mbuf_head;
2596 }
2597 
2598 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
2599 				  uint16_t nb_pkts)
2600 {
2601 	struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
2602 	unsigned int free_queue_entries;
2603 	uint16_t next_to_clean = rx_ring->next_to_clean;
2604 	uint16_t descs_in_use;
2605 	struct rte_mbuf *mbuf;
2606 	uint16_t completed;
2607 	struct ena_com_rx_ctx ena_rx_ctx;
2608 	int i, rc = 0;
2609 	bool fill_hash;
2610 
2611 #ifdef RTE_ETHDEV_DEBUG_RX
2612 	/* Check adapter state */
2613 	if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2614 		PMD_RX_LOG(ALERT,
2615 			"Trying to receive pkts while device is NOT running\n");
2616 		return 0;
2617 	}
2618 #endif
2619 
2620 	fill_hash = rx_ring->offloads & RTE_ETH_RX_OFFLOAD_RSS_HASH;
2621 
2622 	descs_in_use = rx_ring->ring_size -
2623 		ena_com_free_q_entries(rx_ring->ena_com_io_sq) - 1;
2624 	nb_pkts = RTE_MIN(descs_in_use, nb_pkts);
2625 
2626 	for (completed = 0; completed < nb_pkts; completed++) {
2627 		ena_rx_ctx.max_bufs = rx_ring->sgl_size;
2628 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
2629 		ena_rx_ctx.descs = 0;
2630 		ena_rx_ctx.pkt_offset = 0;
2631 		/* receive packet context */
2632 		rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
2633 				    rx_ring->ena_com_io_sq,
2634 				    &ena_rx_ctx);
2635 		if (unlikely(rc)) {
2636 			PMD_RX_LOG(ERR,
2637 				"Failed to get the packet from the device, rc: %d\n",
2638 				rc);
2639 			if (rc == ENA_COM_NO_SPACE) {
2640 				++rx_ring->rx_stats.bad_desc_num;
2641 				ena_trigger_reset(rx_ring->adapter,
2642 					ENA_REGS_RESET_TOO_MANY_RX_DESCS);
2643 			} else {
2644 				++rx_ring->rx_stats.bad_req_id;
2645 				ena_trigger_reset(rx_ring->adapter,
2646 					ENA_REGS_RESET_INV_RX_REQ_ID);
2647 			}
2648 			return 0;
2649 		}
2650 
2651 		mbuf = ena_rx_mbuf(rx_ring,
2652 			ena_rx_ctx.ena_bufs,
2653 			ena_rx_ctx.descs,
2654 			&next_to_clean,
2655 			ena_rx_ctx.pkt_offset);
2656 		if (unlikely(mbuf == NULL)) {
2657 			for (i = 0; i < ena_rx_ctx.descs; ++i) {
2658 				rx_ring->empty_rx_reqs[next_to_clean] =
2659 					rx_ring->ena_bufs[i].req_id;
2660 				next_to_clean = ENA_IDX_NEXT_MASKED(
2661 					next_to_clean, rx_ring->size_mask);
2662 			}
2663 			break;
2664 		}
2665 
2666 		/* fill mbuf attributes if any */
2667 		ena_rx_mbuf_prepare(rx_ring, mbuf, &ena_rx_ctx, fill_hash);
2668 
2669 		if (unlikely(mbuf->ol_flags &
2670 				(RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD)))
2671 			rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors);
2672 
2673 		rx_pkts[completed] = mbuf;
2674 		rx_ring->rx_stats.bytes += mbuf->pkt_len;
2675 	}
2676 
2677 	rx_ring->rx_stats.cnt += completed;
2678 	rx_ring->next_to_clean = next_to_clean;
2679 
2680 	free_queue_entries = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
2681 
2682 	/* Burst refill to save doorbells, memory barriers, const interval */
2683 	if (free_queue_entries >= rx_ring->rx_free_thresh) {
2684 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
2685 		ena_populate_rx_queue(rx_ring, free_queue_entries);
2686 	}
2687 
2688 	return completed;
2689 }
2690 
2691 static uint16_t
2692 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2693 		uint16_t nb_pkts)
2694 {
2695 	int32_t ret;
2696 	uint32_t i;
2697 	struct rte_mbuf *m;
2698 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2699 	struct ena_adapter *adapter = tx_ring->adapter;
2700 	struct rte_ipv4_hdr *ip_hdr;
2701 	uint64_t ol_flags;
2702 	uint64_t l4_csum_flag;
2703 	uint64_t dev_offload_capa;
2704 	uint16_t frag_field;
2705 	bool need_pseudo_csum;
2706 
2707 	dev_offload_capa = adapter->offloads.tx_offloads;
2708 	for (i = 0; i != nb_pkts; i++) {
2709 		m = tx_pkts[i];
2710 		ol_flags = m->ol_flags;
2711 
2712 		/* Check if any offload flag was set */
2713 		if (ol_flags == 0)
2714 			continue;
2715 
2716 		l4_csum_flag = ol_flags & RTE_MBUF_F_TX_L4_MASK;
2717 		/* SCTP checksum offload is not supported by the ENA. */
2718 		if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) ||
2719 		    l4_csum_flag == RTE_MBUF_F_TX_SCTP_CKSUM) {
2720 			PMD_TX_LOG(DEBUG,
2721 				"mbuf[%" PRIu32 "] has unsupported offloads flags set: 0x%" PRIu64 "\n",
2722 				i, ol_flags);
2723 			rte_errno = ENOTSUP;
2724 			return i;
2725 		}
2726 
2727 		if (unlikely(m->nb_segs >= tx_ring->sgl_size &&
2728 		    !(tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
2729 		      m->nb_segs == tx_ring->sgl_size &&
2730 		      m->data_len < tx_ring->tx_max_header_size))) {
2731 			PMD_TX_LOG(DEBUG,
2732 				"mbuf[%" PRIu32 "] has too many segments: %" PRIu16 "\n",
2733 				i, m->nb_segs);
2734 			rte_errno = EINVAL;
2735 			return i;
2736 		}
2737 
2738 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2739 		/* Check if requested offload is also enabled for the queue */
2740 		if ((ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
2741 		     !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM)) ||
2742 		    (l4_csum_flag == RTE_MBUF_F_TX_TCP_CKSUM &&
2743 		     !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) ||
2744 		    (l4_csum_flag == RTE_MBUF_F_TX_UDP_CKSUM &&
2745 		     !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM))) {
2746 			PMD_TX_LOG(DEBUG,
2747 				"mbuf[%" PRIu32 "]: requested offloads: %" PRIu16 " are not enabled for the queue[%u]\n",
2748 				i, m->nb_segs, tx_ring->id);
2749 			rte_errno = EINVAL;
2750 			return i;
2751 		}
2752 
2753 		/* The caller is obligated to set l2 and l3 len if any cksum
2754 		 * offload is enabled.
2755 		 */
2756 		if (unlikely(ol_flags & (RTE_MBUF_F_TX_IP_CKSUM | RTE_MBUF_F_TX_L4_MASK) &&
2757 		    (m->l2_len == 0 || m->l3_len == 0))) {
2758 			PMD_TX_LOG(DEBUG,
2759 				"mbuf[%" PRIu32 "]: l2_len or l3_len values are 0 while the offload was requested\n",
2760 				i);
2761 			rte_errno = EINVAL;
2762 			return i;
2763 		}
2764 		ret = rte_validate_tx_offload(m);
2765 		if (ret != 0) {
2766 			rte_errno = -ret;
2767 			return i;
2768 		}
2769 #endif
2770 
2771 		/* Verify HW support for requested offloads and determine if
2772 		 * pseudo header checksum is needed.
2773 		 */
2774 		need_pseudo_csum = false;
2775 		if (ol_flags & RTE_MBUF_F_TX_IPV4) {
2776 			if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
2777 			    !(dev_offload_capa & ENA_L3_IPV4_CSUM)) {
2778 				rte_errno = ENOTSUP;
2779 				return i;
2780 			}
2781 
2782 			if (ol_flags & RTE_MBUF_F_TX_TCP_SEG &&
2783 			    !(dev_offload_capa & ENA_IPV4_TSO)) {
2784 				rte_errno = ENOTSUP;
2785 				return i;
2786 			}
2787 
2788 			/* Check HW capabilities and if pseudo csum is needed
2789 			 * for L4 offloads.
2790 			 */
2791 			if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
2792 			    !(dev_offload_capa & ENA_L4_IPV4_CSUM)) {
2793 				if (dev_offload_capa &
2794 				    ENA_L4_IPV4_CSUM_PARTIAL) {
2795 					need_pseudo_csum = true;
2796 				} else {
2797 					rte_errno = ENOTSUP;
2798 					return i;
2799 				}
2800 			}
2801 
2802 			/* Parse the DF flag */
2803 			ip_hdr = rte_pktmbuf_mtod_offset(m,
2804 				struct rte_ipv4_hdr *, m->l2_len);
2805 			frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
2806 			if (frag_field & RTE_IPV4_HDR_DF_FLAG) {
2807 				m->packet_type |= RTE_PTYPE_L4_NONFRAG;
2808 			} else if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2809 				/* In case we are supposed to TSO and have DF
2810 				 * not set (DF=0) hardware must be provided with
2811 				 * partial checksum.
2812 				 */
2813 				need_pseudo_csum = true;
2814 			}
2815 		} else if (ol_flags & RTE_MBUF_F_TX_IPV6) {
2816 			/* There is no support for IPv6 TSO as for now. */
2817 			if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2818 				rte_errno = ENOTSUP;
2819 				return i;
2820 			}
2821 
2822 			/* Check HW capabilities and if pseudo csum is needed */
2823 			if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
2824 			    !(dev_offload_capa & ENA_L4_IPV6_CSUM)) {
2825 				if (dev_offload_capa &
2826 				    ENA_L4_IPV6_CSUM_PARTIAL) {
2827 					need_pseudo_csum = true;
2828 				} else {
2829 					rte_errno = ENOTSUP;
2830 					return i;
2831 				}
2832 			}
2833 		}
2834 
2835 		if (need_pseudo_csum) {
2836 			ret = rte_net_intel_cksum_flags_prepare(m, ol_flags);
2837 			if (ret != 0) {
2838 				rte_errno = -ret;
2839 				return i;
2840 			}
2841 		}
2842 	}
2843 
2844 	return i;
2845 }
2846 
2847 static void ena_update_hints(struct ena_adapter *adapter,
2848 			     struct ena_admin_ena_hw_hints *hints)
2849 {
2850 	if (hints->admin_completion_tx_timeout)
2851 		adapter->ena_dev.admin_queue.completion_timeout =
2852 			hints->admin_completion_tx_timeout * 1000;
2853 
2854 	if (hints->mmio_read_timeout)
2855 		/* convert to usec */
2856 		adapter->ena_dev.mmio_read.reg_read_to =
2857 			hints->mmio_read_timeout * 1000;
2858 
2859 	if (hints->driver_watchdog_timeout) {
2860 		if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
2861 			adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
2862 		else
2863 			// Convert msecs to ticks
2864 			adapter->keep_alive_timeout =
2865 				(hints->driver_watchdog_timeout *
2866 				rte_get_timer_hz()) / 1000;
2867 	}
2868 }
2869 
2870 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
2871 	struct ena_tx_buffer *tx_info,
2872 	struct rte_mbuf *mbuf,
2873 	void **push_header,
2874 	uint16_t *header_len)
2875 {
2876 	struct ena_com_buf *ena_buf;
2877 	uint16_t delta, seg_len, push_len;
2878 
2879 	delta = 0;
2880 	seg_len = mbuf->data_len;
2881 
2882 	tx_info->mbuf = mbuf;
2883 	ena_buf = tx_info->bufs;
2884 
2885 	if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2886 		/*
2887 		 * Tx header might be (and will be in most cases) smaller than
2888 		 * tx_max_header_size. But it's not an issue to send more data
2889 		 * to the device, than actually needed if the mbuf size is
2890 		 * greater than tx_max_header_size.
2891 		 */
2892 		push_len = RTE_MIN(mbuf->pkt_len, tx_ring->tx_max_header_size);
2893 		*header_len = push_len;
2894 
2895 		if (likely(push_len <= seg_len)) {
2896 			/* If the push header is in the single segment, then
2897 			 * just point it to the 1st mbuf data.
2898 			 */
2899 			*push_header = rte_pktmbuf_mtod(mbuf, uint8_t *);
2900 		} else {
2901 			/* If the push header lays in the several segments, copy
2902 			 * it to the intermediate buffer.
2903 			 */
2904 			rte_pktmbuf_read(mbuf, 0, push_len,
2905 				tx_ring->push_buf_intermediate_buf);
2906 			*push_header = tx_ring->push_buf_intermediate_buf;
2907 			delta = push_len - seg_len;
2908 		}
2909 	} else {
2910 		*push_header = NULL;
2911 		*header_len = 0;
2912 		push_len = 0;
2913 	}
2914 
2915 	/* Process first segment taking into consideration pushed header */
2916 	if (seg_len > push_len) {
2917 		ena_buf->paddr = mbuf->buf_iova +
2918 				mbuf->data_off +
2919 				push_len;
2920 		ena_buf->len = seg_len - push_len;
2921 		ena_buf++;
2922 		tx_info->num_of_bufs++;
2923 	}
2924 
2925 	while ((mbuf = mbuf->next) != NULL) {
2926 		seg_len = mbuf->data_len;
2927 
2928 		/* Skip mbufs if whole data is pushed as a header */
2929 		if (unlikely(delta > seg_len)) {
2930 			delta -= seg_len;
2931 			continue;
2932 		}
2933 
2934 		ena_buf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
2935 		ena_buf->len = seg_len - delta;
2936 		ena_buf++;
2937 		tx_info->num_of_bufs++;
2938 
2939 		delta = 0;
2940 	}
2941 }
2942 
2943 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf)
2944 {
2945 	struct ena_tx_buffer *tx_info;
2946 	struct ena_com_tx_ctx ena_tx_ctx = { { 0 } };
2947 	uint16_t next_to_use;
2948 	uint16_t header_len;
2949 	uint16_t req_id;
2950 	void *push_header;
2951 	int nb_hw_desc;
2952 	int rc;
2953 
2954 	/* Checking for space for 2 additional metadata descriptors due to
2955 	 * possible header split and metadata descriptor
2956 	 */
2957 	if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
2958 					  mbuf->nb_segs + 2)) {
2959 		PMD_DRV_LOG(DEBUG, "Not enough space in the tx queue\n");
2960 		return ENA_COM_NO_MEM;
2961 	}
2962 
2963 	next_to_use = tx_ring->next_to_use;
2964 
2965 	req_id = tx_ring->empty_tx_reqs[next_to_use];
2966 	tx_info = &tx_ring->tx_buffer_info[req_id];
2967 	tx_info->num_of_bufs = 0;
2968 	RTE_ASSERT(tx_info->mbuf == NULL);
2969 
2970 	ena_tx_map_mbuf(tx_ring, tx_info, mbuf, &push_header, &header_len);
2971 
2972 	ena_tx_ctx.ena_bufs = tx_info->bufs;
2973 	ena_tx_ctx.push_header = push_header;
2974 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2975 	ena_tx_ctx.req_id = req_id;
2976 	ena_tx_ctx.header_len = header_len;
2977 
2978 	/* Set Tx offloads flags, if applicable */
2979 	ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads,
2980 		tx_ring->disable_meta_caching);
2981 
2982 	if (unlikely(ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
2983 			&ena_tx_ctx))) {
2984 		PMD_TX_LOG(DEBUG,
2985 			"LLQ Tx max burst size of queue %d achieved, writing doorbell to send burst\n",
2986 			tx_ring->id);
2987 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2988 		tx_ring->tx_stats.doorbells++;
2989 		tx_ring->pkts_without_db = false;
2990 	}
2991 
2992 	/* prepare the packet's descriptors to dma engine */
2993 	rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq,	&ena_tx_ctx,
2994 		&nb_hw_desc);
2995 	if (unlikely(rc)) {
2996 		PMD_DRV_LOG(ERR, "Failed to prepare Tx buffers, rc: %d\n", rc);
2997 		++tx_ring->tx_stats.prepare_ctx_err;
2998 		ena_trigger_reset(tx_ring->adapter,
2999 			ENA_REGS_RESET_DRIVER_INVALID_STATE);
3000 		return rc;
3001 	}
3002 
3003 	tx_info->tx_descs = nb_hw_desc;
3004 	tx_info->timestamp = rte_get_timer_cycles();
3005 
3006 	tx_ring->tx_stats.cnt++;
3007 	tx_ring->tx_stats.bytes += mbuf->pkt_len;
3008 
3009 	tx_ring->next_to_use = ENA_IDX_NEXT_MASKED(next_to_use,
3010 		tx_ring->size_mask);
3011 
3012 	return 0;
3013 }
3014 
3015 static __rte_always_inline size_t
3016 ena_tx_cleanup_mbuf_fast(struct rte_mbuf **mbufs_to_clean,
3017 			 struct rte_mbuf *mbuf,
3018 			 size_t mbuf_cnt,
3019 			 size_t buf_size)
3020 {
3021 	struct rte_mbuf *m_next;
3022 
3023 	while (mbuf != NULL) {
3024 		m_next = mbuf->next;
3025 		mbufs_to_clean[mbuf_cnt++] = mbuf;
3026 		if (mbuf_cnt == buf_size) {
3027 			rte_mempool_put_bulk(mbufs_to_clean[0]->pool, (void **)mbufs_to_clean,
3028 				(unsigned int)mbuf_cnt);
3029 			mbuf_cnt = 0;
3030 		}
3031 		mbuf = m_next;
3032 	}
3033 
3034 	return mbuf_cnt;
3035 }
3036 
3037 static int ena_tx_cleanup(void *txp, uint32_t free_pkt_cnt)
3038 {
3039 	struct rte_mbuf *mbufs_to_clean[ENA_CLEANUP_BUF_SIZE];
3040 	struct ena_ring *tx_ring = (struct ena_ring *)txp;
3041 	size_t mbuf_cnt = 0;
3042 	unsigned int total_tx_descs = 0;
3043 	unsigned int total_tx_pkts = 0;
3044 	uint16_t cleanup_budget;
3045 	uint16_t next_to_clean = tx_ring->next_to_clean;
3046 	bool fast_free = tx_ring->offloads & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
3047 
3048 	/*
3049 	 * If free_pkt_cnt is equal to 0, it means that the user requested
3050 	 * full cleanup, so attempt to release all Tx descriptors
3051 	 * (ring_size - 1 -> size_mask)
3052 	 */
3053 	cleanup_budget = (free_pkt_cnt == 0) ? tx_ring->size_mask : free_pkt_cnt;
3054 
3055 	while (likely(total_tx_pkts < cleanup_budget)) {
3056 		struct rte_mbuf *mbuf;
3057 		struct ena_tx_buffer *tx_info;
3058 		uint16_t req_id;
3059 
3060 		if (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) != 0)
3061 			break;
3062 
3063 		if (unlikely(validate_tx_req_id(tx_ring, req_id) != 0))
3064 			break;
3065 
3066 		/* Get Tx info & store how many descs were processed  */
3067 		tx_info = &tx_ring->tx_buffer_info[req_id];
3068 		tx_info->timestamp = 0;
3069 
3070 		mbuf = tx_info->mbuf;
3071 		if (fast_free) {
3072 			mbuf_cnt = ena_tx_cleanup_mbuf_fast(mbufs_to_clean, mbuf, mbuf_cnt,
3073 				ENA_CLEANUP_BUF_SIZE);
3074 		} else {
3075 			rte_pktmbuf_free(mbuf);
3076 		}
3077 
3078 		tx_info->mbuf = NULL;
3079 		tx_ring->empty_tx_reqs[next_to_clean] = req_id;
3080 
3081 		total_tx_descs += tx_info->tx_descs;
3082 		total_tx_pkts++;
3083 
3084 		/* Put back descriptor to the ring for reuse */
3085 		next_to_clean = ENA_IDX_NEXT_MASKED(next_to_clean,
3086 			tx_ring->size_mask);
3087 	}
3088 
3089 	if (likely(total_tx_descs > 0)) {
3090 		/* acknowledge completion of sent packets */
3091 		tx_ring->next_to_clean = next_to_clean;
3092 		ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
3093 		ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
3094 	}
3095 
3096 	if (mbuf_cnt != 0)
3097 		rte_mempool_put_bulk(mbufs_to_clean[0]->pool,
3098 			(void **)mbufs_to_clean, mbuf_cnt);
3099 
3100 	/* Notify completion handler that full cleanup was performed */
3101 	if (free_pkt_cnt == 0 || total_tx_pkts < cleanup_budget)
3102 		tx_ring->last_cleanup_ticks = rte_get_timer_cycles();
3103 
3104 	return total_tx_pkts;
3105 }
3106 
3107 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
3108 				  uint16_t nb_pkts)
3109 {
3110 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
3111 	int available_desc;
3112 	uint16_t sent_idx = 0;
3113 
3114 #ifdef RTE_ETHDEV_DEBUG_TX
3115 	/* Check adapter state */
3116 	if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
3117 		PMD_TX_LOG(ALERT,
3118 			"Trying to xmit pkts while device is NOT running\n");
3119 		return 0;
3120 	}
3121 #endif
3122 
3123 	available_desc = ena_com_free_q_entries(tx_ring->ena_com_io_sq);
3124 	if (available_desc < tx_ring->tx_free_thresh)
3125 		ena_tx_cleanup((void *)tx_ring, 0);
3126 
3127 	for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
3128 		if (ena_xmit_mbuf(tx_ring, tx_pkts[sent_idx]))
3129 			break;
3130 		tx_ring->pkts_without_db = true;
3131 		rte_prefetch0(tx_pkts[ENA_IDX_ADD_MASKED(sent_idx, 4,
3132 			tx_ring->size_mask)]);
3133 	}
3134 
3135 	/* If there are ready packets to be xmitted... */
3136 	if (likely(tx_ring->pkts_without_db)) {
3137 		/* ...let HW do its best :-) */
3138 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
3139 		tx_ring->tx_stats.doorbells++;
3140 		tx_ring->pkts_without_db = false;
3141 	}
3142 
3143 	tx_ring->tx_stats.available_desc =
3144 		ena_com_free_q_entries(tx_ring->ena_com_io_sq);
3145 	tx_ring->tx_stats.tx_poll++;
3146 
3147 	return sent_idx;
3148 }
3149 
3150 int ena_copy_eni_stats(struct ena_adapter *adapter, struct ena_stats_eni *stats)
3151 {
3152 	int rc;
3153 
3154 	rte_spinlock_lock(&adapter->admin_lock);
3155 	/* Retrieve and store the latest statistics from the AQ. This ensures
3156 	 * that previous value is returned in case of a com error.
3157 	 */
3158 	rc = ENA_PROXY(adapter, ena_com_get_eni_stats, &adapter->ena_dev,
3159 		(struct ena_admin_eni_stats *)stats);
3160 	rte_spinlock_unlock(&adapter->admin_lock);
3161 	if (rc != 0) {
3162 		if (rc == ENA_COM_UNSUPPORTED) {
3163 			PMD_DRV_LOG(DEBUG,
3164 				"Retrieving ENI metrics is not supported\n");
3165 		} else {
3166 			PMD_DRV_LOG(WARNING,
3167 				"Failed to get ENI metrics, rc: %d\n", rc);
3168 		}
3169 		return rc;
3170 	}
3171 
3172 	return 0;
3173 }
3174 
3175 /**
3176  * DPDK callback to retrieve names of extended device statistics
3177  *
3178  * @param dev
3179  *   Pointer to Ethernet device structure.
3180  * @param[out] xstats_names
3181  *   Buffer to insert names into.
3182  * @param n
3183  *   Number of names.
3184  *
3185  * @return
3186  *   Number of xstats names.
3187  */
3188 static int ena_xstats_get_names(struct rte_eth_dev *dev,
3189 				struct rte_eth_xstat_name *xstats_names,
3190 				unsigned int n)
3191 {
3192 	unsigned int xstats_count = ena_xstats_calc_num(dev->data);
3193 	unsigned int stat, i, count = 0;
3194 
3195 	if (n < xstats_count || !xstats_names)
3196 		return xstats_count;
3197 
3198 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
3199 		strcpy(xstats_names[count].name,
3200 			ena_stats_global_strings[stat].name);
3201 
3202 	for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++)
3203 		strcpy(xstats_names[count].name,
3204 			ena_stats_eni_strings[stat].name);
3205 
3206 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
3207 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
3208 			snprintf(xstats_names[count].name,
3209 				sizeof(xstats_names[count].name),
3210 				"rx_q%d_%s", i,
3211 				ena_stats_rx_strings[stat].name);
3212 
3213 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
3214 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
3215 			snprintf(xstats_names[count].name,
3216 				sizeof(xstats_names[count].name),
3217 				"tx_q%d_%s", i,
3218 				ena_stats_tx_strings[stat].name);
3219 
3220 	return xstats_count;
3221 }
3222 
3223 /**
3224  * DPDK callback to retrieve names of extended device statistics for the given
3225  * ids.
3226  *
3227  * @param dev
3228  *   Pointer to Ethernet device structure.
3229  * @param[out] xstats_names
3230  *   Buffer to insert names into.
3231  * @param ids
3232  *   IDs array for which the names should be retrieved.
3233  * @param size
3234  *   Number of ids.
3235  *
3236  * @return
3237  *   Positive value: number of xstats names. Negative value: error code.
3238  */
3239 static int ena_xstats_get_names_by_id(struct rte_eth_dev *dev,
3240 				      const uint64_t *ids,
3241 				      struct rte_eth_xstat_name *xstats_names,
3242 				      unsigned int size)
3243 {
3244 	uint64_t xstats_count = ena_xstats_calc_num(dev->data);
3245 	uint64_t id, qid;
3246 	unsigned int i;
3247 
3248 	if (xstats_names == NULL)
3249 		return xstats_count;
3250 
3251 	for (i = 0; i < size; ++i) {
3252 		id = ids[i];
3253 		if (id > xstats_count) {
3254 			PMD_DRV_LOG(ERR,
3255 				"ID value out of range: id=%" PRIu64 ", xstats_num=%" PRIu64 "\n",
3256 				 id, xstats_count);
3257 			return -EINVAL;
3258 		}
3259 
3260 		if (id < ENA_STATS_ARRAY_GLOBAL) {
3261 			strcpy(xstats_names[i].name,
3262 			       ena_stats_global_strings[id].name);
3263 			continue;
3264 		}
3265 
3266 		id -= ENA_STATS_ARRAY_GLOBAL;
3267 		if (id < ENA_STATS_ARRAY_ENI) {
3268 			strcpy(xstats_names[i].name,
3269 			       ena_stats_eni_strings[id].name);
3270 			continue;
3271 		}
3272 
3273 		id -= ENA_STATS_ARRAY_ENI;
3274 		if (id < ENA_STATS_ARRAY_RX) {
3275 			qid = id / dev->data->nb_rx_queues;
3276 			id %= dev->data->nb_rx_queues;
3277 			snprintf(xstats_names[i].name,
3278 				 sizeof(xstats_names[i].name),
3279 				 "rx_q%" PRIu64 "d_%s",
3280 				 qid, ena_stats_rx_strings[id].name);
3281 			continue;
3282 		}
3283 
3284 		id -= ENA_STATS_ARRAY_RX;
3285 		/* Although this condition is not needed, it was added for
3286 		 * compatibility if new xstat structure would be ever added.
3287 		 */
3288 		if (id < ENA_STATS_ARRAY_TX) {
3289 			qid = id / dev->data->nb_tx_queues;
3290 			id %= dev->data->nb_tx_queues;
3291 			snprintf(xstats_names[i].name,
3292 				 sizeof(xstats_names[i].name),
3293 				 "tx_q%" PRIu64 "_%s",
3294 				 qid, ena_stats_tx_strings[id].name);
3295 			continue;
3296 		}
3297 	}
3298 
3299 	return i;
3300 }
3301 
3302 /**
3303  * DPDK callback to get extended device statistics.
3304  *
3305  * @param dev
3306  *   Pointer to Ethernet device structure.
3307  * @param[out] stats
3308  *   Stats table output buffer.
3309  * @param n
3310  *   The size of the stats table.
3311  *
3312  * @return
3313  *   Number of xstats on success, negative on failure.
3314  */
3315 static int ena_xstats_get(struct rte_eth_dev *dev,
3316 			  struct rte_eth_xstat *xstats,
3317 			  unsigned int n)
3318 {
3319 	struct ena_adapter *adapter = dev->data->dev_private;
3320 	unsigned int xstats_count = ena_xstats_calc_num(dev->data);
3321 	struct ena_stats_eni eni_stats;
3322 	unsigned int stat, i, count = 0;
3323 	int stat_offset;
3324 	void *stats_begin;
3325 
3326 	if (n < xstats_count)
3327 		return xstats_count;
3328 
3329 	if (!xstats)
3330 		return 0;
3331 
3332 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
3333 		stat_offset = ena_stats_global_strings[stat].stat_offset;
3334 		stats_begin = &adapter->dev_stats;
3335 
3336 		xstats[count].id = count;
3337 		xstats[count].value = *((uint64_t *)
3338 			((char *)stats_begin + stat_offset));
3339 	}
3340 
3341 	/* Even if the function below fails, we should copy previous (or initial
3342 	 * values) to keep structure of rte_eth_xstat consistent.
3343 	 */
3344 	ena_copy_eni_stats(adapter, &eni_stats);
3345 	for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++) {
3346 		stat_offset = ena_stats_eni_strings[stat].stat_offset;
3347 		stats_begin = &eni_stats;
3348 
3349 		xstats[count].id = count;
3350 		xstats[count].value = *((uint64_t *)
3351 		    ((char *)stats_begin + stat_offset));
3352 	}
3353 
3354 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
3355 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
3356 			stat_offset = ena_stats_rx_strings[stat].stat_offset;
3357 			stats_begin = &adapter->rx_ring[i].rx_stats;
3358 
3359 			xstats[count].id = count;
3360 			xstats[count].value = *((uint64_t *)
3361 				((char *)stats_begin + stat_offset));
3362 		}
3363 	}
3364 
3365 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
3366 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
3367 			stat_offset = ena_stats_tx_strings[stat].stat_offset;
3368 			stats_begin = &adapter->tx_ring[i].rx_stats;
3369 
3370 			xstats[count].id = count;
3371 			xstats[count].value = *((uint64_t *)
3372 				((char *)stats_begin + stat_offset));
3373 		}
3374 	}
3375 
3376 	return count;
3377 }
3378 
3379 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
3380 				const uint64_t *ids,
3381 				uint64_t *values,
3382 				unsigned int n)
3383 {
3384 	struct ena_adapter *adapter = dev->data->dev_private;
3385 	struct ena_stats_eni eni_stats;
3386 	uint64_t id;
3387 	uint64_t rx_entries, tx_entries;
3388 	unsigned int i;
3389 	int qid;
3390 	int valid = 0;
3391 	bool was_eni_copied = false;
3392 
3393 	for (i = 0; i < n; ++i) {
3394 		id = ids[i];
3395 		/* Check if id belongs to global statistics */
3396 		if (id < ENA_STATS_ARRAY_GLOBAL) {
3397 			values[i] = *((uint64_t *)&adapter->dev_stats + id);
3398 			++valid;
3399 			continue;
3400 		}
3401 
3402 		/* Check if id belongs to ENI statistics */
3403 		id -= ENA_STATS_ARRAY_GLOBAL;
3404 		if (id < ENA_STATS_ARRAY_ENI) {
3405 			/* Avoid reading ENI stats multiple times in a single
3406 			 * function call, as it requires communication with the
3407 			 * admin queue.
3408 			 */
3409 			if (!was_eni_copied) {
3410 				was_eni_copied = true;
3411 				ena_copy_eni_stats(adapter, &eni_stats);
3412 			}
3413 			values[i] = *((uint64_t *)&eni_stats + id);
3414 			++valid;
3415 			continue;
3416 		}
3417 
3418 		/* Check if id belongs to rx queue statistics */
3419 		id -= ENA_STATS_ARRAY_ENI;
3420 		rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
3421 		if (id < rx_entries) {
3422 			qid = id % dev->data->nb_rx_queues;
3423 			id /= dev->data->nb_rx_queues;
3424 			values[i] = *((uint64_t *)
3425 				&adapter->rx_ring[qid].rx_stats + id);
3426 			++valid;
3427 			continue;
3428 		}
3429 				/* Check if id belongs to rx queue statistics */
3430 		id -= rx_entries;
3431 		tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
3432 		if (id < tx_entries) {
3433 			qid = id % dev->data->nb_tx_queues;
3434 			id /= dev->data->nb_tx_queues;
3435 			values[i] = *((uint64_t *)
3436 				&adapter->tx_ring[qid].tx_stats + id);
3437 			++valid;
3438 			continue;
3439 		}
3440 	}
3441 
3442 	return valid;
3443 }
3444 
3445 static int ena_process_uint_devarg(const char *key,
3446 				  const char *value,
3447 				  void *opaque)
3448 {
3449 	struct ena_adapter *adapter = opaque;
3450 	char *str_end;
3451 	uint64_t uint_value;
3452 
3453 	uint_value = strtoull(value, &str_end, 10);
3454 	if (value == str_end) {
3455 		PMD_INIT_LOG(ERR,
3456 			"Invalid value for key '%s'. Only uint values are accepted.\n",
3457 			key);
3458 		return -EINVAL;
3459 	}
3460 
3461 	if (strcmp(key, ENA_DEVARG_MISS_TXC_TO) == 0) {
3462 		if (uint_value > ENA_MAX_TX_TIMEOUT_SECONDS) {
3463 			PMD_INIT_LOG(ERR,
3464 				"Tx timeout too high: %" PRIu64 " sec. Maximum allowed: %d sec.\n",
3465 				uint_value, ENA_MAX_TX_TIMEOUT_SECONDS);
3466 			return -EINVAL;
3467 		} else if (uint_value == 0) {
3468 			PMD_INIT_LOG(INFO,
3469 				"Check for missing Tx completions has been disabled.\n");
3470 			adapter->missing_tx_completion_to =
3471 				ENA_HW_HINTS_NO_TIMEOUT;
3472 		} else {
3473 			PMD_INIT_LOG(INFO,
3474 				"Tx packet completion timeout set to %" PRIu64 " seconds.\n",
3475 				uint_value);
3476 			adapter->missing_tx_completion_to =
3477 				uint_value * rte_get_timer_hz();
3478 		}
3479 	}
3480 
3481 	return 0;
3482 }
3483 
3484 static int ena_process_bool_devarg(const char *key,
3485 				   const char *value,
3486 				   void *opaque)
3487 {
3488 	struct ena_adapter *adapter = opaque;
3489 	bool bool_value;
3490 
3491 	/* Parse the value. */
3492 	if (strcmp(value, "1") == 0) {
3493 		bool_value = true;
3494 	} else if (strcmp(value, "0") == 0) {
3495 		bool_value = false;
3496 	} else {
3497 		PMD_INIT_LOG(ERR,
3498 			"Invalid value: '%s' for key '%s'. Accepted: '0' or '1'\n",
3499 			value, key);
3500 		return -EINVAL;
3501 	}
3502 
3503 	/* Now, assign it to the proper adapter field. */
3504 	if (strcmp(key, ENA_DEVARG_LARGE_LLQ_HDR) == 0)
3505 		adapter->use_large_llq_hdr = bool_value;
3506 
3507 	return 0;
3508 }
3509 
3510 static int ena_parse_devargs(struct ena_adapter *adapter,
3511 			     struct rte_devargs *devargs)
3512 {
3513 	static const char * const allowed_args[] = {
3514 		ENA_DEVARG_LARGE_LLQ_HDR,
3515 		ENA_DEVARG_MISS_TXC_TO,
3516 		NULL,
3517 	};
3518 	struct rte_kvargs *kvlist;
3519 	int rc;
3520 
3521 	if (devargs == NULL)
3522 		return 0;
3523 
3524 	kvlist = rte_kvargs_parse(devargs->args, allowed_args);
3525 	if (kvlist == NULL) {
3526 		PMD_INIT_LOG(ERR, "Invalid device arguments: %s\n",
3527 			devargs->args);
3528 		return -EINVAL;
3529 	}
3530 
3531 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_LARGE_LLQ_HDR,
3532 		ena_process_bool_devarg, adapter);
3533 	if (rc != 0)
3534 		goto exit;
3535 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_MISS_TXC_TO,
3536 		ena_process_uint_devarg, adapter);
3537 
3538 exit:
3539 	rte_kvargs_free(kvlist);
3540 
3541 	return rc;
3542 }
3543 
3544 static int ena_setup_rx_intr(struct rte_eth_dev *dev)
3545 {
3546 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3547 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
3548 	int rc;
3549 	uint16_t vectors_nb, i;
3550 	bool rx_intr_requested = dev->data->dev_conf.intr_conf.rxq;
3551 
3552 	if (!rx_intr_requested)
3553 		return 0;
3554 
3555 	if (!rte_intr_cap_multiple(intr_handle)) {
3556 		PMD_DRV_LOG(ERR,
3557 			"Rx interrupt requested, but it isn't supported by the PCI driver\n");
3558 		return -ENOTSUP;
3559 	}
3560 
3561 	/* Disable interrupt mapping before the configuration starts. */
3562 	rte_intr_disable(intr_handle);
3563 
3564 	/* Verify if there are enough vectors available. */
3565 	vectors_nb = dev->data->nb_rx_queues;
3566 	if (vectors_nb > RTE_MAX_RXTX_INTR_VEC_ID) {
3567 		PMD_DRV_LOG(ERR,
3568 			"Too many Rx interrupts requested, maximum number: %d\n",
3569 			RTE_MAX_RXTX_INTR_VEC_ID);
3570 		rc = -ENOTSUP;
3571 		goto enable_intr;
3572 	}
3573 
3574 	/* Allocate the vector list */
3575 	if (rte_intr_vec_list_alloc(intr_handle, "intr_vec",
3576 					   dev->data->nb_rx_queues)) {
3577 		PMD_DRV_LOG(ERR,
3578 			"Failed to allocate interrupt vector for %d queues\n",
3579 			dev->data->nb_rx_queues);
3580 		rc = -ENOMEM;
3581 		goto enable_intr;
3582 	}
3583 
3584 	rc = rte_intr_efd_enable(intr_handle, vectors_nb);
3585 	if (rc != 0)
3586 		goto free_intr_vec;
3587 
3588 	if (!rte_intr_allow_others(intr_handle)) {
3589 		PMD_DRV_LOG(ERR,
3590 			"Not enough interrupts available to use both ENA Admin and Rx interrupts\n");
3591 		goto disable_intr_efd;
3592 	}
3593 
3594 	for (i = 0; i < vectors_nb; ++i)
3595 		if (rte_intr_vec_list_index_set(intr_handle, i,
3596 					   RTE_INTR_VEC_RXTX_OFFSET + i))
3597 			goto disable_intr_efd;
3598 
3599 	rte_intr_enable(intr_handle);
3600 	return 0;
3601 
3602 disable_intr_efd:
3603 	rte_intr_efd_disable(intr_handle);
3604 free_intr_vec:
3605 	rte_intr_vec_list_free(intr_handle);
3606 enable_intr:
3607 	rte_intr_enable(intr_handle);
3608 	return rc;
3609 }
3610 
3611 static void ena_rx_queue_intr_set(struct rte_eth_dev *dev,
3612 				 uint16_t queue_id,
3613 				 bool unmask)
3614 {
3615 	struct ena_adapter *adapter = dev->data->dev_private;
3616 	struct ena_ring *rxq = &adapter->rx_ring[queue_id];
3617 	struct ena_eth_io_intr_reg intr_reg;
3618 
3619 	ena_com_update_intr_reg(&intr_reg, 0, 0, unmask);
3620 	ena_com_unmask_intr(rxq->ena_com_io_cq, &intr_reg);
3621 }
3622 
3623 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
3624 				    uint16_t queue_id)
3625 {
3626 	ena_rx_queue_intr_set(dev, queue_id, true);
3627 
3628 	return 0;
3629 }
3630 
3631 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
3632 				     uint16_t queue_id)
3633 {
3634 	ena_rx_queue_intr_set(dev, queue_id, false);
3635 
3636 	return 0;
3637 }
3638 
3639 static int ena_configure_aenq(struct ena_adapter *adapter)
3640 {
3641 	uint32_t aenq_groups = adapter->all_aenq_groups;
3642 	int rc;
3643 
3644 	/* All_aenq_groups holds all AENQ functions supported by the device and
3645 	 * the HW, so at first we need to be sure the LSC request is valid.
3646 	 */
3647 	if (adapter->edev_data->dev_conf.intr_conf.lsc != 0) {
3648 		if (!(aenq_groups & BIT(ENA_ADMIN_LINK_CHANGE))) {
3649 			PMD_DRV_LOG(ERR,
3650 				"LSC requested, but it's not supported by the AENQ\n");
3651 			return -EINVAL;
3652 		}
3653 	} else {
3654 		/* If LSC wasn't enabled by the app, let's enable all supported
3655 		 * AENQ procedures except the LSC.
3656 		 */
3657 		aenq_groups &= ~BIT(ENA_ADMIN_LINK_CHANGE);
3658 	}
3659 
3660 	rc = ena_com_set_aenq_config(&adapter->ena_dev, aenq_groups);
3661 	if (rc != 0) {
3662 		PMD_DRV_LOG(ERR, "Cannot configure AENQ groups, rc=%d\n", rc);
3663 		return rc;
3664 	}
3665 
3666 	adapter->active_aenq_groups = aenq_groups;
3667 
3668 	return 0;
3669 }
3670 
3671 int ena_mp_indirect_table_set(struct ena_adapter *adapter)
3672 {
3673 	return ENA_PROXY(adapter, ena_com_indirect_table_set, &adapter->ena_dev);
3674 }
3675 
3676 int ena_mp_indirect_table_get(struct ena_adapter *adapter,
3677 			      uint32_t *indirect_table)
3678 {
3679 	return ENA_PROXY(adapter, ena_com_indirect_table_get, &adapter->ena_dev,
3680 		indirect_table);
3681 }
3682 
3683 /*********************************************************************
3684  *  ena_plat_dpdk.h functions implementations
3685  *********************************************************************/
3686 
3687 const struct rte_memzone *
3688 ena_mem_alloc_coherent(struct rte_eth_dev_data *data, size_t size,
3689 		       int socket_id, unsigned int alignment, void **virt_addr,
3690 		       dma_addr_t *phys_addr)
3691 {
3692 	char z_name[RTE_MEMZONE_NAMESIZE];
3693 	struct ena_adapter *adapter = data->dev_private;
3694 	const struct rte_memzone *memzone;
3695 	int rc;
3696 
3697 	rc = snprintf(z_name, RTE_MEMZONE_NAMESIZE, "ena_p%d_mz%" PRIu64 "",
3698 		data->port_id, adapter->memzone_cnt);
3699 	if (rc >= RTE_MEMZONE_NAMESIZE) {
3700 		PMD_DRV_LOG(ERR,
3701 			"Name for the ena_com memzone is too long. Port: %d, mz_num: %" PRIu64 "\n",
3702 			data->port_id, adapter->memzone_cnt);
3703 		goto error;
3704 	}
3705 	adapter->memzone_cnt++;
3706 
3707 	memzone = rte_memzone_reserve_aligned(z_name, size, socket_id,
3708 		RTE_MEMZONE_IOVA_CONTIG, alignment);
3709 	if (memzone == NULL) {
3710 		PMD_DRV_LOG(ERR, "Failed to allocate ena_com memzone: %s\n",
3711 			z_name);
3712 		goto error;
3713 	}
3714 
3715 	memset(memzone->addr, 0, size);
3716 	*virt_addr = memzone->addr;
3717 	*phys_addr = memzone->iova;
3718 
3719 	return memzone;
3720 
3721 error:
3722 	*virt_addr = NULL;
3723 	*phys_addr = 0;
3724 
3725 	return NULL;
3726 }
3727 
3728 
3729 /*********************************************************************
3730  *  PMD configuration
3731  *********************************************************************/
3732 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
3733 	struct rte_pci_device *pci_dev)
3734 {
3735 	return rte_eth_dev_pci_generic_probe(pci_dev,
3736 		sizeof(struct ena_adapter), eth_ena_dev_init);
3737 }
3738 
3739 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
3740 {
3741 	return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
3742 }
3743 
3744 static struct rte_pci_driver rte_ena_pmd = {
3745 	.id_table = pci_id_ena_map,
3746 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
3747 		     RTE_PCI_DRV_WC_ACTIVATE,
3748 	.probe = eth_ena_pci_probe,
3749 	.remove = eth_ena_pci_remove,
3750 };
3751 
3752 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
3753 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
3754 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
3755 RTE_PMD_REGISTER_PARAM_STRING(net_ena, ENA_DEVARG_LARGE_LLQ_HDR "=<0|1>");
3756 RTE_LOG_REGISTER_SUFFIX(ena_logtype_init, init, NOTICE);
3757 RTE_LOG_REGISTER_SUFFIX(ena_logtype_driver, driver, NOTICE);
3758 #ifdef RTE_ETHDEV_DEBUG_RX
3759 RTE_LOG_REGISTER_SUFFIX(ena_logtype_rx, rx, DEBUG);
3760 #endif
3761 #ifdef RTE_ETHDEV_DEBUG_TX
3762 RTE_LOG_REGISTER_SUFFIX(ena_logtype_tx, tx, DEBUG);
3763 #endif
3764 RTE_LOG_REGISTER_SUFFIX(ena_logtype_com, com, WARNING);
3765 
3766 /******************************************************************************
3767  ******************************** AENQ Handlers *******************************
3768  *****************************************************************************/
3769 static void ena_update_on_link_change(void *adapter_data,
3770 				      struct ena_admin_aenq_entry *aenq_e)
3771 {
3772 	struct rte_eth_dev *eth_dev = adapter_data;
3773 	struct ena_adapter *adapter = eth_dev->data->dev_private;
3774 	struct ena_admin_aenq_link_change_desc *aenq_link_desc;
3775 	uint32_t status;
3776 
3777 	aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
3778 
3779 	status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
3780 	adapter->link_status = status;
3781 
3782 	ena_link_update(eth_dev, 0);
3783 	rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
3784 }
3785 
3786 static void ena_notification(void *adapter_data,
3787 			     struct ena_admin_aenq_entry *aenq_e)
3788 {
3789 	struct rte_eth_dev *eth_dev = adapter_data;
3790 	struct ena_adapter *adapter = eth_dev->data->dev_private;
3791 	struct ena_admin_ena_hw_hints *hints;
3792 
3793 	if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
3794 		PMD_DRV_LOG(WARNING, "Invalid AENQ group: %x. Expected: %x\n",
3795 			aenq_e->aenq_common_desc.group,
3796 			ENA_ADMIN_NOTIFICATION);
3797 
3798 	switch (aenq_e->aenq_common_desc.syndrome) {
3799 	case ENA_ADMIN_UPDATE_HINTS:
3800 		hints = (struct ena_admin_ena_hw_hints *)
3801 			(&aenq_e->inline_data_w4);
3802 		ena_update_hints(adapter, hints);
3803 		break;
3804 	default:
3805 		PMD_DRV_LOG(ERR, "Invalid AENQ notification link state: %d\n",
3806 			aenq_e->aenq_common_desc.syndrome);
3807 	}
3808 }
3809 
3810 static void ena_keep_alive(void *adapter_data,
3811 			   __rte_unused struct ena_admin_aenq_entry *aenq_e)
3812 {
3813 	struct rte_eth_dev *eth_dev = adapter_data;
3814 	struct ena_adapter *adapter = eth_dev->data->dev_private;
3815 	struct ena_admin_aenq_keep_alive_desc *desc;
3816 	uint64_t rx_drops;
3817 	uint64_t tx_drops;
3818 
3819 	adapter->timestamp_wd = rte_get_timer_cycles();
3820 
3821 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
3822 	rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
3823 	tx_drops = ((uint64_t)desc->tx_drops_high << 32) | desc->tx_drops_low;
3824 
3825 	adapter->drv_stats->rx_drops = rx_drops;
3826 	adapter->dev_stats.tx_drops = tx_drops;
3827 }
3828 
3829 /**
3830  * This handler will called for unknown event group or unimplemented handlers
3831  **/
3832 static void unimplemented_aenq_handler(__rte_unused void *data,
3833 				       __rte_unused struct ena_admin_aenq_entry *aenq_e)
3834 {
3835 	PMD_DRV_LOG(ERR,
3836 		"Unknown event was received or event with unimplemented handler\n");
3837 }
3838 
3839 static struct ena_aenq_handlers aenq_handlers = {
3840 	.handlers = {
3841 		[ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
3842 		[ENA_ADMIN_NOTIFICATION] = ena_notification,
3843 		[ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive
3844 	},
3845 	.unimplemented_handler = unimplemented_aenq_handler
3846 };
3847 
3848 /*********************************************************************
3849  *  Multi-Process communication request handling (in primary)
3850  *********************************************************************/
3851 static int
3852 ena_mp_primary_handle(const struct rte_mp_msg *mp_msg, const void *peer)
3853 {
3854 	const struct ena_mp_body *req =
3855 		(const struct ena_mp_body *)mp_msg->param;
3856 	struct ena_adapter *adapter;
3857 	struct ena_com_dev *ena_dev;
3858 	struct ena_mp_body *rsp;
3859 	struct rte_mp_msg mp_rsp;
3860 	struct rte_eth_dev *dev;
3861 	int res = 0;
3862 
3863 	rsp = (struct ena_mp_body *)&mp_rsp.param;
3864 	mp_msg_init(&mp_rsp, req->type, req->port_id);
3865 
3866 	if (!rte_eth_dev_is_valid_port(req->port_id)) {
3867 		rte_errno = ENODEV;
3868 		res = -rte_errno;
3869 		PMD_DRV_LOG(ERR, "Unknown port %d in request %d\n",
3870 			    req->port_id, req->type);
3871 		goto end;
3872 	}
3873 	dev = &rte_eth_devices[req->port_id];
3874 	adapter = dev->data->dev_private;
3875 	ena_dev = &adapter->ena_dev;
3876 
3877 	switch (req->type) {
3878 	case ENA_MP_DEV_STATS_GET:
3879 		res = ena_com_get_dev_basic_stats(ena_dev,
3880 						  &adapter->basic_stats);
3881 		break;
3882 	case ENA_MP_ENI_STATS_GET:
3883 		res = ena_com_get_eni_stats(ena_dev,
3884 			(struct ena_admin_eni_stats *)&adapter->eni_stats);
3885 		break;
3886 	case ENA_MP_MTU_SET:
3887 		res = ena_com_set_dev_mtu(ena_dev, req->args.mtu);
3888 		break;
3889 	case ENA_MP_IND_TBL_GET:
3890 		res = ena_com_indirect_table_get(ena_dev,
3891 						 adapter->indirect_table);
3892 		break;
3893 	case ENA_MP_IND_TBL_SET:
3894 		res = ena_com_indirect_table_set(ena_dev);
3895 		break;
3896 	default:
3897 		PMD_DRV_LOG(ERR, "Unknown request type %d\n", req->type);
3898 		res = -EINVAL;
3899 		break;
3900 	}
3901 
3902 end:
3903 	/* Save processing result in the reply */
3904 	rsp->result = res;
3905 	/* Return just IPC processing status */
3906 	return rte_mp_reply(&mp_rsp, peer);
3907 }
3908