xref: /dpdk/drivers/net/ena/ena_ethdev.c (revision bf5fe95c10db55e16b29dc4a7a44d574459d3b62)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
3  * All rights reserved.
4  */
5 
6 #include <rte_string_fns.h>
7 #include <rte_errno.h>
8 #include <rte_version.h>
9 #include <rte_net.h>
10 #include <rte_kvargs.h>
11 
12 #include "ena_ethdev.h"
13 #include "ena_logs.h"
14 #include "ena_platform.h"
15 #include "ena_com.h"
16 #include "ena_eth_com.h"
17 
18 #include <ena_common_defs.h>
19 #include <ena_regs_defs.h>
20 #include <ena_admin_defs.h>
21 #include <ena_eth_io_defs.h>
22 
23 #define DRV_MODULE_VER_MAJOR	2
24 #define DRV_MODULE_VER_MINOR	8
25 #define DRV_MODULE_VER_SUBMINOR	0
26 
27 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
28 
29 #define GET_L4_HDR_LEN(mbuf)					\
30 	((rte_pktmbuf_mtod_offset(mbuf,	struct rte_tcp_hdr *,	\
31 		mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
32 
33 #define ETH_GSTRING_LEN	32
34 
35 #define ARRAY_SIZE(x) RTE_DIM(x)
36 
37 #define ENA_MIN_RING_DESC	128
38 
39 #define BITS_PER_BYTE 8
40 
41 #define BITS_PER_TYPE(type) (sizeof(type) * BITS_PER_BYTE)
42 
43 #define DECIMAL_BASE 10
44 
45 #define MAX_WIDE_LLQ_DEPTH_UNSUPPORTED 0
46 
47 /*
48  * We should try to keep ENA_CLEANUP_BUF_SIZE lower than
49  * RTE_MEMPOOL_CACHE_MAX_SIZE, so we can fit this in mempool local cache.
50  */
51 #define ENA_CLEANUP_BUF_SIZE	256
52 
53 #define ENA_PTYPE_HAS_HASH	(RTE_PTYPE_L4_TCP | RTE_PTYPE_L4_UDP)
54 
55 struct ena_stats {
56 	char name[ETH_GSTRING_LEN];
57 	int stat_offset;
58 };
59 
60 #define ENA_STAT_ENTRY(stat, stat_type) { \
61 	.name = #stat, \
62 	.stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
63 }
64 
65 #define ENA_STAT_RX_ENTRY(stat) \
66 	ENA_STAT_ENTRY(stat, rx)
67 
68 #define ENA_STAT_TX_ENTRY(stat) \
69 	ENA_STAT_ENTRY(stat, tx)
70 
71 #define ENA_STAT_METRICS_ENTRY(stat) \
72 	ENA_STAT_ENTRY(stat, metrics)
73 
74 #define ENA_STAT_GLOBAL_ENTRY(stat) \
75 	ENA_STAT_ENTRY(stat, dev)
76 
77 #define ENA_STAT_ENA_SRD_ENTRY(stat) \
78 	ENA_STAT_ENTRY(stat, srd)
79 
80 /* Device arguments */
81 #define ENA_DEVARG_LARGE_LLQ_HDR "large_llq_hdr"
82 #define ENA_DEVARG_NORMAL_LLQ_HDR "normal_llq_hdr"
83 /* Timeout in seconds after which a single uncompleted Tx packet should be
84  * considered as a missing.
85  */
86 #define ENA_DEVARG_MISS_TXC_TO "miss_txc_to"
87 /*
88  * Controls whether LLQ should be used (if available). Enabled by default.
89  * NOTE: It's highly not recommended to disable the LLQ, as it may lead to a
90  * huge performance degradation on 6th generation AWS instances.
91  */
92 #define ENA_DEVARG_ENABLE_LLQ "enable_llq"
93 
94 /*
95  * Each rte_memzone should have unique name.
96  * To satisfy it, count number of allocation and add it to name.
97  */
98 rte_atomic64_t ena_alloc_cnt;
99 
100 static const struct ena_stats ena_stats_global_strings[] = {
101 	ENA_STAT_GLOBAL_ENTRY(wd_expired),
102 	ENA_STAT_GLOBAL_ENTRY(dev_start),
103 	ENA_STAT_GLOBAL_ENTRY(dev_stop),
104 	ENA_STAT_GLOBAL_ENTRY(tx_drops),
105 };
106 
107 /*
108  * The legacy metrics (also known as eni stats) consisted of 5 stats, while the reworked
109  * metrics (also known as customer metrics) support an additional stat.
110  */
111 static struct ena_stats ena_stats_metrics_strings[] = {
112 	ENA_STAT_METRICS_ENTRY(bw_in_allowance_exceeded),
113 	ENA_STAT_METRICS_ENTRY(bw_out_allowance_exceeded),
114 	ENA_STAT_METRICS_ENTRY(pps_allowance_exceeded),
115 	ENA_STAT_METRICS_ENTRY(conntrack_allowance_exceeded),
116 	ENA_STAT_METRICS_ENTRY(linklocal_allowance_exceeded),
117 	ENA_STAT_METRICS_ENTRY(conntrack_allowance_available),
118 };
119 
120 static const struct ena_stats ena_stats_srd_strings[] = {
121 	ENA_STAT_ENA_SRD_ENTRY(ena_srd_mode),
122 	ENA_STAT_ENA_SRD_ENTRY(ena_srd_tx_pkts),
123 	ENA_STAT_ENA_SRD_ENTRY(ena_srd_eligible_tx_pkts),
124 	ENA_STAT_ENA_SRD_ENTRY(ena_srd_rx_pkts),
125 	ENA_STAT_ENA_SRD_ENTRY(ena_srd_resource_utilization),
126 };
127 
128 static const struct ena_stats ena_stats_tx_strings[] = {
129 	ENA_STAT_TX_ENTRY(cnt),
130 	ENA_STAT_TX_ENTRY(bytes),
131 	ENA_STAT_TX_ENTRY(prepare_ctx_err),
132 	ENA_STAT_TX_ENTRY(tx_poll),
133 	ENA_STAT_TX_ENTRY(doorbells),
134 	ENA_STAT_TX_ENTRY(bad_req_id),
135 	ENA_STAT_TX_ENTRY(available_desc),
136 	ENA_STAT_TX_ENTRY(missed_tx),
137 };
138 
139 static const struct ena_stats ena_stats_rx_strings[] = {
140 	ENA_STAT_RX_ENTRY(cnt),
141 	ENA_STAT_RX_ENTRY(bytes),
142 	ENA_STAT_RX_ENTRY(refill_partial),
143 	ENA_STAT_RX_ENTRY(l3_csum_bad),
144 	ENA_STAT_RX_ENTRY(l4_csum_bad),
145 	ENA_STAT_RX_ENTRY(l4_csum_good),
146 	ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
147 	ENA_STAT_RX_ENTRY(bad_desc_num),
148 	ENA_STAT_RX_ENTRY(bad_req_id),
149 };
150 
151 #define ENA_STATS_ARRAY_GLOBAL	ARRAY_SIZE(ena_stats_global_strings)
152 #define ENA_STATS_ARRAY_METRICS	ARRAY_SIZE(ena_stats_metrics_strings)
153 #define ENA_STATS_ARRAY_METRICS_LEGACY	(ENA_STATS_ARRAY_METRICS - 1)
154 #define ENA_STATS_ARRAY_ENA_SRD	ARRAY_SIZE(ena_stats_srd_strings)
155 #define ENA_STATS_ARRAY_TX	ARRAY_SIZE(ena_stats_tx_strings)
156 #define ENA_STATS_ARRAY_RX	ARRAY_SIZE(ena_stats_rx_strings)
157 
158 #define QUEUE_OFFLOADS (RTE_ETH_TX_OFFLOAD_TCP_CKSUM |\
159 			RTE_ETH_TX_OFFLOAD_UDP_CKSUM |\
160 			RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |\
161 			RTE_ETH_TX_OFFLOAD_TCP_TSO)
162 #define MBUF_OFFLOADS (RTE_MBUF_F_TX_L4_MASK |\
163 		       RTE_MBUF_F_TX_IP_CKSUM |\
164 		       RTE_MBUF_F_TX_TCP_SEG)
165 
166 /** Vendor ID used by Amazon devices */
167 #define PCI_VENDOR_ID_AMAZON 0x1D0F
168 /** Amazon devices */
169 #define PCI_DEVICE_ID_ENA_VF		0xEC20
170 #define PCI_DEVICE_ID_ENA_VF_RSERV0	0xEC21
171 
172 #define	ENA_TX_OFFLOAD_MASK	(RTE_MBUF_F_TX_L4_MASK |         \
173 	RTE_MBUF_F_TX_IPV6 |            \
174 	RTE_MBUF_F_TX_IPV4 |            \
175 	RTE_MBUF_F_TX_IP_CKSUM |        \
176 	RTE_MBUF_F_TX_TCP_SEG)
177 
178 #define	ENA_TX_OFFLOAD_NOTSUP_MASK	\
179 	(RTE_MBUF_F_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
180 
181 /** HW specific offloads capabilities. */
182 /* IPv4 checksum offload. */
183 #define ENA_L3_IPV4_CSUM		0x0001
184 /* TCP/UDP checksum offload for IPv4 packets. */
185 #define ENA_L4_IPV4_CSUM		0x0002
186 /* TCP/UDP checksum offload for IPv4 packets with pseudo header checksum. */
187 #define ENA_L4_IPV4_CSUM_PARTIAL	0x0004
188 /* TCP/UDP checksum offload for IPv6 packets. */
189 #define ENA_L4_IPV6_CSUM		0x0008
190 /* TCP/UDP checksum offload for IPv6 packets with pseudo header checksum. */
191 #define ENA_L4_IPV6_CSUM_PARTIAL	0x0010
192 /* TSO support for IPv4 packets. */
193 #define ENA_IPV4_TSO			0x0020
194 
195 /* Device supports setting RSS hash. */
196 #define ENA_RX_RSS_HASH			0x0040
197 
198 static const struct rte_pci_id pci_id_ena_map[] = {
199 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
200 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF_RSERV0) },
201 	{ .device_id = 0 },
202 };
203 
204 static struct ena_aenq_handlers aenq_handlers;
205 
206 static int ena_device_init(struct ena_adapter *adapter,
207 			   struct rte_pci_device *pdev,
208 			   struct ena_com_dev_get_features_ctx *get_feat_ctx);
209 static int ena_dev_configure(struct rte_eth_dev *dev);
210 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
211 	struct ena_tx_buffer *tx_info,
212 	struct rte_mbuf *mbuf,
213 	void **push_header,
214 	uint16_t *header_len);
215 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf);
216 static int ena_tx_cleanup(void *txp, uint32_t free_pkt_cnt);
217 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
218 				  uint16_t nb_pkts);
219 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
220 		uint16_t nb_pkts);
221 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
222 			      uint16_t nb_desc, unsigned int socket_id,
223 			      const struct rte_eth_txconf *tx_conf);
224 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
225 			      uint16_t nb_desc, unsigned int socket_id,
226 			      const struct rte_eth_rxconf *rx_conf,
227 			      struct rte_mempool *mp);
228 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len);
229 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
230 				    struct ena_com_rx_buf_info *ena_bufs,
231 				    uint32_t descs,
232 				    uint16_t *next_to_clean,
233 				    uint8_t offset);
234 static uint16_t eth_ena_recv_pkts(void *rx_queue,
235 				  struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
236 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
237 				  struct rte_mbuf *mbuf, uint16_t id);
238 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
239 static void ena_init_rings(struct ena_adapter *adapter,
240 			   bool disable_meta_caching);
241 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
242 static int ena_start(struct rte_eth_dev *dev);
243 static int ena_stop(struct rte_eth_dev *dev);
244 static int ena_close(struct rte_eth_dev *dev);
245 static int ena_dev_reset(struct rte_eth_dev *dev);
246 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
247 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
248 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
249 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
250 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
251 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
252 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
253 static int ena_link_update(struct rte_eth_dev *dev,
254 			   int wait_to_complete);
255 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring);
256 static void ena_queue_stop(struct ena_ring *ring);
257 static void ena_queue_stop_all(struct rte_eth_dev *dev,
258 			      enum ena_ring_type ring_type);
259 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring);
260 static int ena_queue_start_all(struct rte_eth_dev *dev,
261 			       enum ena_ring_type ring_type);
262 static void ena_stats_restart(struct rte_eth_dev *dev);
263 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter);
264 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter);
265 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter);
266 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter);
267 static int ena_infos_get(struct rte_eth_dev *dev,
268 			 struct rte_eth_dev_info *dev_info);
269 static void ena_interrupt_handler_rte(void *cb_arg);
270 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
271 static void ena_destroy_device(struct rte_eth_dev *eth_dev);
272 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
273 static int ena_xstats_get_names(struct rte_eth_dev *dev,
274 				struct rte_eth_xstat_name *xstats_names,
275 				unsigned int n);
276 static int ena_xstats_get_names_by_id(struct rte_eth_dev *dev,
277 				      const uint64_t *ids,
278 				      struct rte_eth_xstat_name *xstats_names,
279 				      unsigned int size);
280 static int ena_xstats_get(struct rte_eth_dev *dev,
281 			  struct rte_eth_xstat *stats,
282 			  unsigned int n);
283 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
284 				const uint64_t *ids,
285 				uint64_t *values,
286 				unsigned int n);
287 static int ena_process_bool_devarg(const char *key,
288 				   const char *value,
289 				   void *opaque);
290 static int ena_parse_devargs(struct ena_adapter *adapter,
291 			     struct rte_devargs *devargs);
292 static void ena_copy_customer_metrics(struct ena_adapter *adapter,
293 					uint64_t *buf,
294 					size_t buf_size);
295 static void ena_copy_ena_srd_info(struct ena_adapter *adapter,
296 				  struct ena_stats_srd *srd_info);
297 static int ena_setup_rx_intr(struct rte_eth_dev *dev);
298 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
299 				    uint16_t queue_id);
300 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
301 				     uint16_t queue_id);
302 static int ena_configure_aenq(struct ena_adapter *adapter);
303 static int ena_mp_primary_handle(const struct rte_mp_msg *mp_msg,
304 				 const void *peer);
305 static ena_llq_policy ena_define_llq_hdr_policy(struct ena_adapter *adapter);
306 static bool ena_use_large_llq_hdr(struct ena_adapter *adapter, uint8_t recommended_entry_size);
307 
308 static const struct eth_dev_ops ena_dev_ops = {
309 	.dev_configure          = ena_dev_configure,
310 	.dev_infos_get          = ena_infos_get,
311 	.rx_queue_setup         = ena_rx_queue_setup,
312 	.tx_queue_setup         = ena_tx_queue_setup,
313 	.dev_start              = ena_start,
314 	.dev_stop               = ena_stop,
315 	.link_update            = ena_link_update,
316 	.stats_get              = ena_stats_get,
317 	.xstats_get_names       = ena_xstats_get_names,
318 	.xstats_get_names_by_id = ena_xstats_get_names_by_id,
319 	.xstats_get             = ena_xstats_get,
320 	.xstats_get_by_id       = ena_xstats_get_by_id,
321 	.mtu_set                = ena_mtu_set,
322 	.rx_queue_release       = ena_rx_queue_release,
323 	.tx_queue_release       = ena_tx_queue_release,
324 	.dev_close              = ena_close,
325 	.dev_reset              = ena_dev_reset,
326 	.reta_update            = ena_rss_reta_update,
327 	.reta_query             = ena_rss_reta_query,
328 	.rx_queue_intr_enable   = ena_rx_queue_intr_enable,
329 	.rx_queue_intr_disable  = ena_rx_queue_intr_disable,
330 	.rss_hash_update        = ena_rss_hash_update,
331 	.rss_hash_conf_get      = ena_rss_hash_conf_get,
332 	.tx_done_cleanup        = ena_tx_cleanup,
333 };
334 
335 /*********************************************************************
336  *  Multi-Process communication bits
337  *********************************************************************/
338 /* rte_mp IPC message name */
339 #define ENA_MP_NAME	"net_ena_mp"
340 /* Request timeout in seconds */
341 #define ENA_MP_REQ_TMO	5
342 
343 /** Proxy request type */
344 enum ena_mp_req {
345 	ENA_MP_DEV_STATS_GET,
346 	ENA_MP_ENI_STATS_GET,
347 	ENA_MP_MTU_SET,
348 	ENA_MP_IND_TBL_GET,
349 	ENA_MP_IND_TBL_SET,
350 	ENA_MP_CUSTOMER_METRICS_GET,
351 	ENA_MP_SRD_STATS_GET,
352 };
353 
354 /** Proxy message body. Shared between requests and responses. */
355 struct ena_mp_body {
356 	/* Message type */
357 	enum ena_mp_req type;
358 	int port_id;
359 	/* Processing result. Set in replies. 0 if message succeeded, negative
360 	 * error code otherwise.
361 	 */
362 	int result;
363 	union {
364 		int mtu; /* For ENA_MP_MTU_SET */
365 	} args;
366 };
367 
368 /**
369  * Initialize IPC message.
370  *
371  * @param[out] msg
372  *   Pointer to the message to initialize.
373  * @param[in] type
374  *   Message type.
375  * @param[in] port_id
376  *   Port ID of target device.
377  *
378  */
379 static void
380 mp_msg_init(struct rte_mp_msg *msg, enum ena_mp_req type, int port_id)
381 {
382 	struct ena_mp_body *body = (struct ena_mp_body *)&msg->param;
383 
384 	memset(msg, 0, sizeof(*msg));
385 	strlcpy(msg->name, ENA_MP_NAME, sizeof(msg->name));
386 	msg->len_param = sizeof(*body);
387 	body->type = type;
388 	body->port_id = port_id;
389 }
390 
391 /*********************************************************************
392  *  Multi-Process communication PMD API
393  *********************************************************************/
394 /**
395  * Define proxy request descriptor
396  *
397  * Used to define all structures and functions required for proxying a given
398  * function to the primary process including the code to perform to prepare the
399  * request and process the response.
400  *
401  * @param[in] f
402  *   Name of the function to proxy
403  * @param[in] t
404  *   Message type to use
405  * @param[in] prep
406  *   Body of a function to prepare the request in form of a statement
407  *   expression. It is passed all the original function arguments along with two
408  *   extra ones:
409  *   - struct ena_adapter *adapter - PMD data of the device calling the proxy.
410  *   - struct ena_mp_body *req - body of a request to prepare.
411  * @param[in] proc
412  *   Body of a function to process the response in form of a statement
413  *   expression. It is passed all the original function arguments along with two
414  *   extra ones:
415  *   - struct ena_adapter *adapter - PMD data of the device calling the proxy.
416  *   - struct ena_mp_body *rsp - body of a response to process.
417  * @param ...
418  *   Proxied function's arguments
419  *
420  * @note Inside prep and proc any parameters which aren't used should be marked
421  *       as such (with ENA_TOUCH or __rte_unused).
422  */
423 #define ENA_PROXY_DESC(f, t, prep, proc, ...)			\
424 	static const enum ena_mp_req mp_type_ ## f =  t;	\
425 	static const char *mp_name_ ## f = #t;			\
426 	static void mp_prep_ ## f(struct ena_adapter *adapter,	\
427 				  struct ena_mp_body *req,	\
428 				  __VA_ARGS__)			\
429 	{							\
430 		prep;						\
431 	}							\
432 	static void mp_proc_ ## f(struct ena_adapter *adapter,	\
433 				  struct ena_mp_body *rsp,	\
434 				  __VA_ARGS__)			\
435 	{							\
436 		proc;						\
437 	}
438 
439 /**
440  * Proxy wrapper for calling primary functions in a secondary process.
441  *
442  * Depending on whether called in primary or secondary process, calls the
443  * @p func directly or proxies the call to the primary process via rte_mp IPC.
444  * This macro requires a proxy request descriptor to be defined for @p func
445  * using ENA_PROXY_DESC() macro.
446  *
447  * @param[in/out] a
448  *   Device PMD data. Used for sending the message and sharing message results
449  *   between primary and secondary.
450  * @param[in] f
451  *   Function to proxy.
452  * @param ...
453  *   Arguments of @p func.
454  *
455  * @return
456  *   - 0: Processing succeeded and response handler was called.
457  *   - -EPERM: IPC is unavailable on this platform. This means only primary
458  *             process may call the proxied function.
459  *   - -EIO:   IPC returned error on request send. Inspect rte_errno detailed
460  *             error code.
461  *   - Negative error code from the proxied function.
462  *
463  * @note This mechanism is geared towards control-path tasks. Avoid calling it
464  *       in fast-path unless unbound delays are allowed. This is due to the IPC
465  *       mechanism itself (socket based).
466  * @note Due to IPC parameter size limitations the proxy logic shares call
467  *       results through the struct ena_adapter shared memory. This makes the
468  *       proxy mechanism strictly single-threaded. Therefore be sure to make all
469  *       calls to the same proxied function under the same lock.
470  */
471 #define ENA_PROXY(a, f, ...)						\
472 __extension__ ({							\
473 	struct ena_adapter *_a = (a);					\
474 	struct timespec ts = { .tv_sec = ENA_MP_REQ_TMO };		\
475 	struct ena_mp_body *req, *rsp;					\
476 	struct rte_mp_reply mp_rep;					\
477 	struct rte_mp_msg mp_req;					\
478 	int ret;							\
479 									\
480 	if (rte_eal_process_type() == RTE_PROC_PRIMARY) {		\
481 		ret = f(__VA_ARGS__);					\
482 	} else {							\
483 		/* Prepare and send request */				\
484 		req = (struct ena_mp_body *)&mp_req.param;		\
485 		mp_msg_init(&mp_req, mp_type_ ## f, _a->edev_data->port_id); \
486 		mp_prep_ ## f(_a, req, ## __VA_ARGS__);			\
487 									\
488 		ret = rte_mp_request_sync(&mp_req, &mp_rep, &ts);	\
489 		if (likely(!ret)) {					\
490 			RTE_ASSERT(mp_rep.nb_received == 1);		\
491 			rsp = (struct ena_mp_body *)&mp_rep.msgs[0].param; \
492 			ret = rsp->result;				\
493 			if (ret == 0) {					\
494 				mp_proc_##f(_a, rsp, ## __VA_ARGS__);	\
495 			} else {					\
496 				PMD_DRV_LOG(ERR,			\
497 					    "%s returned error: %d\n",	\
498 					    mp_name_ ## f, rsp->result);\
499 			}						\
500 			free(mp_rep.msgs);				\
501 		} else if (rte_errno == ENOTSUP) {			\
502 			PMD_DRV_LOG(ERR,				\
503 				    "No IPC, can't proxy to primary\n");\
504 			ret = -rte_errno;				\
505 		} else {						\
506 			PMD_DRV_LOG(ERR, "Request %s failed: %s\n",	\
507 				    mp_name_ ## f,			\
508 				    rte_strerror(rte_errno));		\
509 			ret = -EIO;					\
510 		}							\
511 	}								\
512 	ret;								\
513 })
514 
515 /*********************************************************************
516  *  Multi-Process communication request descriptors
517  *********************************************************************/
518 
519 ENA_PROXY_DESC(ena_com_get_dev_basic_stats, ENA_MP_DEV_STATS_GET,
520 __extension__ ({
521 	ENA_TOUCH(adapter);
522 	ENA_TOUCH(req);
523 	ENA_TOUCH(ena_dev);
524 	ENA_TOUCH(stats);
525 }),
526 __extension__ ({
527 	ENA_TOUCH(rsp);
528 	ENA_TOUCH(ena_dev);
529 	if (stats != &adapter->basic_stats)
530 		rte_memcpy(stats, &adapter->basic_stats, sizeof(*stats));
531 }),
532 	struct ena_com_dev *ena_dev, struct ena_admin_basic_stats *stats);
533 
534 ENA_PROXY_DESC(ena_com_get_eni_stats, ENA_MP_ENI_STATS_GET,
535 __extension__ ({
536 	ENA_TOUCH(adapter);
537 	ENA_TOUCH(req);
538 	ENA_TOUCH(ena_dev);
539 	ENA_TOUCH(stats);
540 }),
541 __extension__ ({
542 	ENA_TOUCH(rsp);
543 	ENA_TOUCH(ena_dev);
544 	if (stats != (struct ena_admin_eni_stats *)adapter->metrics_stats)
545 		rte_memcpy(stats, adapter->metrics_stats, sizeof(*stats));
546 }),
547 	struct ena_com_dev *ena_dev, struct ena_admin_eni_stats *stats);
548 
549 ENA_PROXY_DESC(ena_com_set_dev_mtu, ENA_MP_MTU_SET,
550 __extension__ ({
551 	ENA_TOUCH(adapter);
552 	ENA_TOUCH(ena_dev);
553 	req->args.mtu = mtu;
554 }),
555 __extension__ ({
556 	ENA_TOUCH(adapter);
557 	ENA_TOUCH(rsp);
558 	ENA_TOUCH(ena_dev);
559 	ENA_TOUCH(mtu);
560 }),
561 	struct ena_com_dev *ena_dev, int mtu);
562 
563 ENA_PROXY_DESC(ena_com_indirect_table_set, ENA_MP_IND_TBL_SET,
564 __extension__ ({
565 	ENA_TOUCH(adapter);
566 	ENA_TOUCH(req);
567 	ENA_TOUCH(ena_dev);
568 }),
569 __extension__ ({
570 	ENA_TOUCH(adapter);
571 	ENA_TOUCH(rsp);
572 	ENA_TOUCH(ena_dev);
573 }),
574 	struct ena_com_dev *ena_dev);
575 
576 ENA_PROXY_DESC(ena_com_indirect_table_get, ENA_MP_IND_TBL_GET,
577 __extension__ ({
578 	ENA_TOUCH(adapter);
579 	ENA_TOUCH(req);
580 	ENA_TOUCH(ena_dev);
581 	ENA_TOUCH(ind_tbl);
582 }),
583 __extension__ ({
584 	ENA_TOUCH(rsp);
585 	ENA_TOUCH(ena_dev);
586 	if (ind_tbl != adapter->indirect_table)
587 		rte_memcpy(ind_tbl, adapter->indirect_table,
588 			   sizeof(adapter->indirect_table));
589 }),
590 	struct ena_com_dev *ena_dev, u32 *ind_tbl);
591 
592 ENA_PROXY_DESC(ena_com_get_customer_metrics, ENA_MP_CUSTOMER_METRICS_GET,
593 __extension__ ({
594 	ENA_TOUCH(adapter);
595 	ENA_TOUCH(req);
596 	ENA_TOUCH(ena_dev);
597 	ENA_TOUCH(buf);
598 	ENA_TOUCH(buf_size);
599 }),
600 __extension__ ({
601 	ENA_TOUCH(rsp);
602 	ENA_TOUCH(ena_dev);
603 	if (buf != (char *)adapter->metrics_stats)
604 		rte_memcpy(buf, adapter->metrics_stats, buf_size);
605 }),
606 	struct ena_com_dev *ena_dev, char *buf, size_t buf_size);
607 
608 ENA_PROXY_DESC(ena_com_get_ena_srd_info, ENA_MP_SRD_STATS_GET,
609 __extension__ ({
610 	ENA_TOUCH(adapter);
611 	ENA_TOUCH(req);
612 	ENA_TOUCH(ena_dev);
613 	ENA_TOUCH(info);
614 }),
615 __extension__ ({
616 	ENA_TOUCH(rsp);
617 	ENA_TOUCH(ena_dev);
618 	if ((struct ena_stats_srd *)info != &adapter->srd_stats)
619 		rte_memcpy((struct ena_stats_srd *)info,
620 				&adapter->srd_stats,
621 				sizeof(struct ena_stats_srd));
622 }),
623 	struct ena_com_dev *ena_dev, struct ena_admin_ena_srd_info *info);
624 
625 static inline void ena_trigger_reset(struct ena_adapter *adapter,
626 				     enum ena_regs_reset_reason_types reason)
627 {
628 	if (likely(!adapter->trigger_reset)) {
629 		adapter->reset_reason = reason;
630 		adapter->trigger_reset = true;
631 	}
632 }
633 
634 static inline void ena_rx_mbuf_prepare(struct ena_ring *rx_ring,
635 				       struct rte_mbuf *mbuf,
636 				       struct ena_com_rx_ctx *ena_rx_ctx,
637 				       bool fill_hash)
638 {
639 	struct ena_stats_rx *rx_stats = &rx_ring->rx_stats;
640 	uint64_t ol_flags = 0;
641 	uint32_t packet_type = 0;
642 
643 	if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
644 		packet_type |= RTE_PTYPE_L4_TCP;
645 	else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
646 		packet_type |= RTE_PTYPE_L4_UDP;
647 
648 	if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
649 		packet_type |= RTE_PTYPE_L3_IPV4;
650 		if (unlikely(ena_rx_ctx->l3_csum_err)) {
651 			++rx_stats->l3_csum_bad;
652 			ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
653 		} else {
654 			ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
655 		}
656 	} else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
657 		packet_type |= RTE_PTYPE_L3_IPV6;
658 	}
659 
660 	if (!ena_rx_ctx->l4_csum_checked || ena_rx_ctx->frag) {
661 		ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN;
662 	} else {
663 		if (unlikely(ena_rx_ctx->l4_csum_err)) {
664 			++rx_stats->l4_csum_bad;
665 			/*
666 			 * For the L4 Rx checksum offload the HW may indicate
667 			 * bad checksum although it's valid. Because of that,
668 			 * we're setting the UNKNOWN flag to let the app
669 			 * re-verify the checksum.
670 			 */
671 			ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN;
672 		} else {
673 			++rx_stats->l4_csum_good;
674 			ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
675 		}
676 	}
677 
678 	if (fill_hash &&
679 	    likely((packet_type & ENA_PTYPE_HAS_HASH) && !ena_rx_ctx->frag)) {
680 		ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
681 		mbuf->hash.rss = ena_rx_ctx->hash;
682 	}
683 
684 	mbuf->ol_flags = ol_flags;
685 	mbuf->packet_type = packet_type;
686 }
687 
688 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
689 				       struct ena_com_tx_ctx *ena_tx_ctx,
690 				       uint64_t queue_offloads,
691 				       bool disable_meta_caching)
692 {
693 	struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
694 
695 	if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
696 	    (queue_offloads & QUEUE_OFFLOADS)) {
697 		/* check if TSO is required */
698 		if ((mbuf->ol_flags & RTE_MBUF_F_TX_TCP_SEG) &&
699 		    (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_TSO)) {
700 			ena_tx_ctx->tso_enable = true;
701 
702 			ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
703 		}
704 
705 		/* check if L3 checksum is needed */
706 		if ((mbuf->ol_flags & RTE_MBUF_F_TX_IP_CKSUM) &&
707 		    (queue_offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM))
708 			ena_tx_ctx->l3_csum_enable = true;
709 
710 		if (mbuf->ol_flags & RTE_MBUF_F_TX_IPV6) {
711 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
712 			/* For the IPv6 packets, DF always needs to be true. */
713 			ena_tx_ctx->df = 1;
714 		} else {
715 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
716 
717 			/* set don't fragment (DF) flag */
718 			if (mbuf->packet_type &
719 				(RTE_PTYPE_L4_NONFRAG
720 				 | RTE_PTYPE_INNER_L4_NONFRAG))
721 				ena_tx_ctx->df = 1;
722 		}
723 
724 		/* check if L4 checksum is needed */
725 		if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) == RTE_MBUF_F_TX_TCP_CKSUM) &&
726 		    (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) {
727 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
728 			ena_tx_ctx->l4_csum_enable = true;
729 		} else if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) ==
730 				RTE_MBUF_F_TX_UDP_CKSUM) &&
731 				(queue_offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM)) {
732 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
733 			ena_tx_ctx->l4_csum_enable = true;
734 		} else {
735 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
736 			ena_tx_ctx->l4_csum_enable = false;
737 		}
738 
739 		ena_meta->mss = mbuf->tso_segsz;
740 		ena_meta->l3_hdr_len = mbuf->l3_len;
741 		ena_meta->l3_hdr_offset = mbuf->l2_len;
742 
743 		ena_tx_ctx->meta_valid = true;
744 	} else if (disable_meta_caching) {
745 		memset(ena_meta, 0, sizeof(*ena_meta));
746 		ena_tx_ctx->meta_valid = true;
747 	} else {
748 		ena_tx_ctx->meta_valid = false;
749 	}
750 }
751 
752 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
753 {
754 	struct ena_tx_buffer *tx_info = NULL;
755 
756 	if (likely(req_id < tx_ring->ring_size)) {
757 		tx_info = &tx_ring->tx_buffer_info[req_id];
758 		if (likely(tx_info->mbuf))
759 			return 0;
760 	}
761 
762 	if (tx_info)
763 		PMD_TX_LOG(ERR, "tx_info doesn't have valid mbuf. queue %d:%d req_id %u\n",
764 			tx_ring->port_id, tx_ring->id, req_id);
765 	else
766 		PMD_TX_LOG(ERR, "Invalid req_id: %hu in queue %d:%d\n",
767 			req_id, tx_ring->port_id, tx_ring->id);
768 
769 	/* Trigger device reset */
770 	++tx_ring->tx_stats.bad_req_id;
771 	ena_trigger_reset(tx_ring->adapter, ENA_REGS_RESET_INV_TX_REQ_ID);
772 	return -EFAULT;
773 }
774 
775 static void ena_config_host_info(struct ena_com_dev *ena_dev)
776 {
777 	struct ena_admin_host_info *host_info;
778 	int rc;
779 
780 	/* Allocate only the host info */
781 	rc = ena_com_allocate_host_info(ena_dev);
782 	if (rc) {
783 		PMD_DRV_LOG(ERR, "Cannot allocate host info\n");
784 		return;
785 	}
786 
787 	host_info = ena_dev->host_attr.host_info;
788 
789 	host_info->os_type = ENA_ADMIN_OS_DPDK;
790 	host_info->kernel_ver = RTE_VERSION;
791 	strlcpy((char *)host_info->kernel_ver_str, rte_version(),
792 		sizeof(host_info->kernel_ver_str));
793 	host_info->os_dist = RTE_VERSION;
794 	strlcpy((char *)host_info->os_dist_str, rte_version(),
795 		sizeof(host_info->os_dist_str));
796 	host_info->driver_version =
797 		(DRV_MODULE_VER_MAJOR) |
798 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
799 		(DRV_MODULE_VER_SUBMINOR <<
800 			ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
801 	host_info->num_cpus = rte_lcore_count();
802 
803 	host_info->driver_supported_features =
804 		ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK |
805 		ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK;
806 
807 	rc = ena_com_set_host_attributes(ena_dev);
808 	if (rc) {
809 		if (rc == -ENA_COM_UNSUPPORTED)
810 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
811 		else
812 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
813 
814 		goto err;
815 	}
816 
817 	return;
818 
819 err:
820 	ena_com_delete_host_info(ena_dev);
821 }
822 
823 /* This function calculates the number of xstats based on the current config */
824 static unsigned int ena_xstats_calc_num(struct rte_eth_dev_data *data)
825 {
826 	struct ena_adapter *adapter = data->dev_private;
827 
828 	return ENA_STATS_ARRAY_GLOBAL +
829 		adapter->metrics_num +
830 		ENA_STATS_ARRAY_ENA_SRD +
831 		(data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
832 		(data->nb_rx_queues * ENA_STATS_ARRAY_RX);
833 }
834 
835 static void ena_config_debug_area(struct ena_adapter *adapter)
836 {
837 	u32 debug_area_size;
838 	int rc, ss_count;
839 
840 	ss_count = ena_xstats_calc_num(adapter->edev_data);
841 
842 	/* allocate 32 bytes for each string and 64bit for the value */
843 	debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
844 
845 	rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
846 	if (rc) {
847 		PMD_DRV_LOG(ERR, "Cannot allocate debug area\n");
848 		return;
849 	}
850 
851 	rc = ena_com_set_host_attributes(&adapter->ena_dev);
852 	if (rc) {
853 		if (rc == -ENA_COM_UNSUPPORTED)
854 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
855 		else
856 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
857 
858 		goto err;
859 	}
860 
861 	return;
862 err:
863 	ena_com_delete_debug_area(&adapter->ena_dev);
864 }
865 
866 static int ena_close(struct rte_eth_dev *dev)
867 {
868 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
869 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
870 	struct ena_adapter *adapter = dev->data->dev_private;
871 	int ret = 0;
872 	int rc;
873 
874 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
875 		return 0;
876 
877 	if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
878 		ret = ena_stop(dev);
879 	adapter->state = ENA_ADAPTER_STATE_CLOSED;
880 
881 	rte_intr_disable(intr_handle);
882 	rc = rte_intr_callback_unregister_sync(intr_handle, ena_interrupt_handler_rte, dev);
883 	if (unlikely(rc != 0))
884 		PMD_INIT_LOG(ERR, "Failed to unregister interrupt handler\n");
885 
886 	ena_rx_queue_release_all(dev);
887 	ena_tx_queue_release_all(dev);
888 
889 	rte_free(adapter->drv_stats);
890 	adapter->drv_stats = NULL;
891 
892 	/*
893 	 * MAC is not allocated dynamically. Setting NULL should prevent from
894 	 * release of the resource in the rte_eth_dev_release_port().
895 	 */
896 	dev->data->mac_addrs = NULL;
897 
898 	return ret;
899 }
900 
901 static int
902 ena_dev_reset(struct rte_eth_dev *dev)
903 {
904 	int rc = 0;
905 
906 	/* Cannot release memory in secondary process */
907 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
908 		PMD_DRV_LOG(WARNING, "dev_reset not supported in secondary.\n");
909 		return -EPERM;
910 	}
911 
912 	ena_destroy_device(dev);
913 	rc = eth_ena_dev_init(dev);
914 	if (rc)
915 		PMD_INIT_LOG(CRIT, "Cannot initialize device\n");
916 
917 	return rc;
918 }
919 
920 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
921 {
922 	int nb_queues = dev->data->nb_rx_queues;
923 	int i;
924 
925 	for (i = 0; i < nb_queues; i++)
926 		ena_rx_queue_release(dev, i);
927 }
928 
929 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
930 {
931 	int nb_queues = dev->data->nb_tx_queues;
932 	int i;
933 
934 	for (i = 0; i < nb_queues; i++)
935 		ena_tx_queue_release(dev, i);
936 }
937 
938 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
939 {
940 	struct ena_ring *ring = dev->data->rx_queues[qid];
941 
942 	/* Free ring resources */
943 	rte_free(ring->rx_buffer_info);
944 	ring->rx_buffer_info = NULL;
945 
946 	rte_free(ring->rx_refill_buffer);
947 	ring->rx_refill_buffer = NULL;
948 
949 	rte_free(ring->empty_rx_reqs);
950 	ring->empty_rx_reqs = NULL;
951 
952 	ring->configured = 0;
953 
954 	PMD_DRV_LOG(NOTICE, "Rx queue %d:%d released\n",
955 		ring->port_id, ring->id);
956 }
957 
958 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
959 {
960 	struct ena_ring *ring = dev->data->tx_queues[qid];
961 
962 	/* Free ring resources */
963 	rte_free(ring->push_buf_intermediate_buf);
964 
965 	rte_free(ring->tx_buffer_info);
966 
967 	rte_free(ring->empty_tx_reqs);
968 
969 	ring->empty_tx_reqs = NULL;
970 	ring->tx_buffer_info = NULL;
971 	ring->push_buf_intermediate_buf = NULL;
972 
973 	ring->configured = 0;
974 
975 	PMD_DRV_LOG(NOTICE, "Tx queue %d:%d released\n",
976 		ring->port_id, ring->id);
977 }
978 
979 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
980 {
981 	unsigned int i;
982 
983 	for (i = 0; i < ring->ring_size; ++i) {
984 		struct ena_rx_buffer *rx_info = &ring->rx_buffer_info[i];
985 		if (rx_info->mbuf) {
986 			rte_mbuf_raw_free(rx_info->mbuf);
987 			rx_info->mbuf = NULL;
988 		}
989 	}
990 }
991 
992 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
993 {
994 	unsigned int i;
995 
996 	for (i = 0; i < ring->ring_size; ++i) {
997 		struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
998 
999 		if (tx_buf->mbuf) {
1000 			rte_pktmbuf_free(tx_buf->mbuf);
1001 			tx_buf->mbuf = NULL;
1002 		}
1003 	}
1004 }
1005 
1006 static int ena_link_update(struct rte_eth_dev *dev,
1007 			   __rte_unused int wait_to_complete)
1008 {
1009 	struct rte_eth_link *link = &dev->data->dev_link;
1010 	struct ena_adapter *adapter = dev->data->dev_private;
1011 
1012 	link->link_status = adapter->link_status ? RTE_ETH_LINK_UP : RTE_ETH_LINK_DOWN;
1013 	link->link_speed = RTE_ETH_SPEED_NUM_NONE;
1014 	link->link_duplex = RTE_ETH_LINK_FULL_DUPLEX;
1015 
1016 	return 0;
1017 }
1018 
1019 static int ena_queue_start_all(struct rte_eth_dev *dev,
1020 			       enum ena_ring_type ring_type)
1021 {
1022 	struct ena_adapter *adapter = dev->data->dev_private;
1023 	struct ena_ring *queues = NULL;
1024 	int nb_queues;
1025 	int i = 0;
1026 	int rc = 0;
1027 
1028 	if (ring_type == ENA_RING_TYPE_RX) {
1029 		queues = adapter->rx_ring;
1030 		nb_queues = dev->data->nb_rx_queues;
1031 	} else {
1032 		queues = adapter->tx_ring;
1033 		nb_queues = dev->data->nb_tx_queues;
1034 	}
1035 	for (i = 0; i < nb_queues; i++) {
1036 		if (queues[i].configured) {
1037 			if (ring_type == ENA_RING_TYPE_RX) {
1038 				ena_assert_msg(
1039 					dev->data->rx_queues[i] == &queues[i],
1040 					"Inconsistent state of Rx queues\n");
1041 			} else {
1042 				ena_assert_msg(
1043 					dev->data->tx_queues[i] == &queues[i],
1044 					"Inconsistent state of Tx queues\n");
1045 			}
1046 
1047 			rc = ena_queue_start(dev, &queues[i]);
1048 
1049 			if (rc) {
1050 				PMD_INIT_LOG(ERR,
1051 					"Failed to start queue[%d] of type(%d)\n",
1052 					i, ring_type);
1053 				goto err;
1054 			}
1055 		}
1056 	}
1057 
1058 	return 0;
1059 
1060 err:
1061 	while (i--)
1062 		if (queues[i].configured)
1063 			ena_queue_stop(&queues[i]);
1064 
1065 	return rc;
1066 }
1067 
1068 static int
1069 ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx,
1070 		       bool use_large_llq_hdr)
1071 {
1072 	struct ena_admin_feature_llq_desc *dev = &ctx->get_feat_ctx->llq;
1073 	struct ena_com_dev *ena_dev = ctx->ena_dev;
1074 	uint32_t max_tx_queue_size;
1075 	uint32_t max_rx_queue_size;
1076 
1077 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1078 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1079 			&ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
1080 		max_rx_queue_size = RTE_MIN(max_queue_ext->max_rx_cq_depth,
1081 			max_queue_ext->max_rx_sq_depth);
1082 		max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
1083 
1084 		if (ena_dev->tx_mem_queue_type ==
1085 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1086 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1087 				dev->max_llq_depth);
1088 		} else {
1089 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1090 				max_queue_ext->max_tx_sq_depth);
1091 		}
1092 
1093 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1094 			max_queue_ext->max_per_packet_rx_descs);
1095 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1096 			max_queue_ext->max_per_packet_tx_descs);
1097 	} else {
1098 		struct ena_admin_queue_feature_desc *max_queues =
1099 			&ctx->get_feat_ctx->max_queues;
1100 		max_rx_queue_size = RTE_MIN(max_queues->max_cq_depth,
1101 			max_queues->max_sq_depth);
1102 		max_tx_queue_size = max_queues->max_cq_depth;
1103 
1104 		if (ena_dev->tx_mem_queue_type ==
1105 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1106 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1107 				dev->max_llq_depth);
1108 		} else {
1109 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1110 				max_queues->max_sq_depth);
1111 		}
1112 
1113 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1114 			max_queues->max_packet_rx_descs);
1115 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1116 			max_queues->max_packet_tx_descs);
1117 	}
1118 
1119 	/* Round down to the nearest power of 2 */
1120 	max_rx_queue_size = rte_align32prevpow2(max_rx_queue_size);
1121 	max_tx_queue_size = rte_align32prevpow2(max_tx_queue_size);
1122 
1123 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV && use_large_llq_hdr) {
1124 		/* intersection between driver configuration and device capabilities */
1125 		if (dev->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B) {
1126 			if (dev->max_wide_llq_depth == MAX_WIDE_LLQ_DEPTH_UNSUPPORTED) {
1127 				/* Devices that do not support the double-sized ENA memory BAR will
1128 				 * report max_wide_llq_depth as 0. In such case, driver halves the
1129 				 * queue depth when working in large llq policy.
1130 				 */
1131 				max_tx_queue_size >>= 1;
1132 				PMD_INIT_LOG(INFO,
1133 					"large LLQ policy requires limiting Tx queue size to %u entries\n",
1134 				max_tx_queue_size);
1135 			} else if (dev->max_wide_llq_depth < max_tx_queue_size) {
1136 				/* In case the queue depth that the driver calculated exceeds
1137 				 * the maximal value that the device allows, it will be limited
1138 				 * to that maximal value
1139 				 */
1140 				max_tx_queue_size = dev->max_wide_llq_depth;
1141 			}
1142 		} else {
1143 			PMD_INIT_LOG(INFO,
1144 				"Forcing large LLQ headers failed since device lacks this support\n");
1145 		}
1146 	}
1147 
1148 	if (unlikely(max_rx_queue_size == 0 || max_tx_queue_size == 0)) {
1149 		PMD_INIT_LOG(ERR, "Invalid queue size\n");
1150 		return -EFAULT;
1151 	}
1152 
1153 	ctx->max_tx_queue_size = max_tx_queue_size;
1154 	ctx->max_rx_queue_size = max_rx_queue_size;
1155 
1156 	PMD_DRV_LOG(INFO, "tx queue size %u\n", max_tx_queue_size);
1157 	return 0;
1158 }
1159 
1160 static void ena_stats_restart(struct rte_eth_dev *dev)
1161 {
1162 	struct ena_adapter *adapter = dev->data->dev_private;
1163 
1164 	rte_atomic64_init(&adapter->drv_stats->ierrors);
1165 	rte_atomic64_init(&adapter->drv_stats->oerrors);
1166 	rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
1167 	adapter->drv_stats->rx_drops = 0;
1168 }
1169 
1170 static int ena_stats_get(struct rte_eth_dev *dev,
1171 			  struct rte_eth_stats *stats)
1172 {
1173 	struct ena_admin_basic_stats ena_stats;
1174 	struct ena_adapter *adapter = dev->data->dev_private;
1175 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1176 	int rc;
1177 	int i;
1178 	int max_rings_stats;
1179 
1180 	memset(&ena_stats, 0, sizeof(ena_stats));
1181 
1182 	rte_spinlock_lock(&adapter->admin_lock);
1183 	rc = ENA_PROXY(adapter, ena_com_get_dev_basic_stats, ena_dev,
1184 		       &ena_stats);
1185 	rte_spinlock_unlock(&adapter->admin_lock);
1186 	if (unlikely(rc)) {
1187 		PMD_DRV_LOG(ERR, "Could not retrieve statistics from ENA\n");
1188 		return rc;
1189 	}
1190 
1191 	/* Set of basic statistics from ENA */
1192 	stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
1193 					  ena_stats.rx_pkts_low);
1194 	stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
1195 					  ena_stats.tx_pkts_low);
1196 	stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
1197 					ena_stats.rx_bytes_low);
1198 	stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
1199 					ena_stats.tx_bytes_low);
1200 
1201 	/* Driver related stats */
1202 	stats->imissed = adapter->drv_stats->rx_drops;
1203 	stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
1204 	stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
1205 	stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
1206 
1207 	max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
1208 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
1209 	for (i = 0; i < max_rings_stats; ++i) {
1210 		struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
1211 
1212 		stats->q_ibytes[i] = rx_stats->bytes;
1213 		stats->q_ipackets[i] = rx_stats->cnt;
1214 		stats->q_errors[i] = rx_stats->bad_desc_num +
1215 			rx_stats->bad_req_id;
1216 	}
1217 
1218 	max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
1219 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
1220 	for (i = 0; i < max_rings_stats; ++i) {
1221 		struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
1222 
1223 		stats->q_obytes[i] = tx_stats->bytes;
1224 		stats->q_opackets[i] = tx_stats->cnt;
1225 	}
1226 
1227 	return 0;
1228 }
1229 
1230 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1231 {
1232 	struct ena_adapter *adapter;
1233 	struct ena_com_dev *ena_dev;
1234 	int rc = 0;
1235 
1236 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
1237 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
1238 	adapter = dev->data->dev_private;
1239 
1240 	ena_dev = &adapter->ena_dev;
1241 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
1242 
1243 	rc = ENA_PROXY(adapter, ena_com_set_dev_mtu, ena_dev, mtu);
1244 	if (rc)
1245 		PMD_DRV_LOG(ERR, "Could not set MTU: %d\n", mtu);
1246 	else
1247 		PMD_DRV_LOG(NOTICE, "MTU set to: %d\n", mtu);
1248 
1249 	return rc;
1250 }
1251 
1252 static int ena_start(struct rte_eth_dev *dev)
1253 {
1254 	struct ena_adapter *adapter = dev->data->dev_private;
1255 	uint64_t ticks;
1256 	int rc = 0;
1257 	uint16_t i;
1258 
1259 	/* Cannot allocate memory in secondary process */
1260 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1261 		PMD_DRV_LOG(WARNING, "dev_start not supported in secondary.\n");
1262 		return -EPERM;
1263 	}
1264 
1265 	rc = ena_setup_rx_intr(dev);
1266 	if (rc)
1267 		return rc;
1268 
1269 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
1270 	if (rc)
1271 		return rc;
1272 
1273 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
1274 	if (rc)
1275 		goto err_start_tx;
1276 
1277 	if (adapter->edev_data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG) {
1278 		rc = ena_rss_configure(adapter);
1279 		if (rc)
1280 			goto err_rss_init;
1281 	}
1282 
1283 	ena_stats_restart(dev);
1284 
1285 	adapter->timestamp_wd = rte_get_timer_cycles();
1286 	adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
1287 
1288 	ticks = rte_get_timer_hz();
1289 	rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
1290 			ena_timer_wd_callback, dev);
1291 
1292 	++adapter->dev_stats.dev_start;
1293 	adapter->state = ENA_ADAPTER_STATE_RUNNING;
1294 
1295 	for (i = 0; i < dev->data->nb_rx_queues; i++)
1296 		dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
1297 	for (i = 0; i < dev->data->nb_tx_queues; i++)
1298 		dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
1299 
1300 	return 0;
1301 
1302 err_rss_init:
1303 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1304 err_start_tx:
1305 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1306 	return rc;
1307 }
1308 
1309 static int ena_stop(struct rte_eth_dev *dev)
1310 {
1311 	struct ena_adapter *adapter = dev->data->dev_private;
1312 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1313 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1314 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
1315 	uint16_t i;
1316 	int rc;
1317 
1318 	/* Cannot free memory in secondary process */
1319 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1320 		PMD_DRV_LOG(WARNING, "dev_stop not supported in secondary.\n");
1321 		return -EPERM;
1322 	}
1323 
1324 	rte_timer_stop_sync(&adapter->timer_wd);
1325 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1326 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1327 
1328 	if (adapter->trigger_reset) {
1329 		rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
1330 		if (rc)
1331 			PMD_DRV_LOG(ERR, "Device reset failed, rc: %d\n", rc);
1332 	}
1333 
1334 	rte_intr_disable(intr_handle);
1335 
1336 	rte_intr_efd_disable(intr_handle);
1337 
1338 	/* Cleanup vector list */
1339 	rte_intr_vec_list_free(intr_handle);
1340 
1341 	rte_intr_enable(intr_handle);
1342 
1343 	++adapter->dev_stats.dev_stop;
1344 	adapter->state = ENA_ADAPTER_STATE_STOPPED;
1345 	dev->data->dev_started = 0;
1346 
1347 	for (i = 0; i < dev->data->nb_rx_queues; i++)
1348 		dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
1349 	for (i = 0; i < dev->data->nb_tx_queues; i++)
1350 		dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
1351 
1352 	return 0;
1353 }
1354 
1355 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring)
1356 {
1357 	struct ena_adapter *adapter = ring->adapter;
1358 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1359 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1360 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
1361 	struct ena_com_create_io_ctx ctx =
1362 		/* policy set to _HOST just to satisfy icc compiler */
1363 		{ ENA_ADMIN_PLACEMENT_POLICY_HOST,
1364 		  0, 0, 0, 0, 0 };
1365 	uint16_t ena_qid;
1366 	unsigned int i;
1367 	int rc;
1368 
1369 	ctx.msix_vector = -1;
1370 	if (ring->type == ENA_RING_TYPE_TX) {
1371 		ena_qid = ENA_IO_TXQ_IDX(ring->id);
1372 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1373 		ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1374 		for (i = 0; i < ring->ring_size; i++)
1375 			ring->empty_tx_reqs[i] = i;
1376 	} else {
1377 		ena_qid = ENA_IO_RXQ_IDX(ring->id);
1378 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1379 		if (rte_intr_dp_is_en(intr_handle))
1380 			ctx.msix_vector =
1381 				rte_intr_vec_list_index_get(intr_handle,
1382 								   ring->id);
1383 
1384 		for (i = 0; i < ring->ring_size; i++)
1385 			ring->empty_rx_reqs[i] = i;
1386 	}
1387 	ctx.queue_size = ring->ring_size;
1388 	ctx.qid = ena_qid;
1389 	ctx.numa_node = ring->numa_socket_id;
1390 
1391 	rc = ena_com_create_io_queue(ena_dev, &ctx);
1392 	if (rc) {
1393 		PMD_DRV_LOG(ERR,
1394 			"Failed to create IO queue[%d] (qid:%d), rc: %d\n",
1395 			ring->id, ena_qid, rc);
1396 		return rc;
1397 	}
1398 
1399 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1400 				     &ring->ena_com_io_sq,
1401 				     &ring->ena_com_io_cq);
1402 	if (rc) {
1403 		PMD_DRV_LOG(ERR,
1404 			"Failed to get IO queue[%d] handlers, rc: %d\n",
1405 			ring->id, rc);
1406 		ena_com_destroy_io_queue(ena_dev, ena_qid);
1407 		return rc;
1408 	}
1409 
1410 	if (ring->type == ENA_RING_TYPE_TX)
1411 		ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1412 
1413 	/* Start with Rx interrupts being masked. */
1414 	if (ring->type == ENA_RING_TYPE_RX && rte_intr_dp_is_en(intr_handle))
1415 		ena_rx_queue_intr_disable(dev, ring->id);
1416 
1417 	return 0;
1418 }
1419 
1420 static void ena_queue_stop(struct ena_ring *ring)
1421 {
1422 	struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
1423 
1424 	if (ring->type == ENA_RING_TYPE_RX) {
1425 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
1426 		ena_rx_queue_release_bufs(ring);
1427 	} else {
1428 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
1429 		ena_tx_queue_release_bufs(ring);
1430 	}
1431 }
1432 
1433 static void ena_queue_stop_all(struct rte_eth_dev *dev,
1434 			      enum ena_ring_type ring_type)
1435 {
1436 	struct ena_adapter *adapter = dev->data->dev_private;
1437 	struct ena_ring *queues = NULL;
1438 	uint16_t nb_queues, i;
1439 
1440 	if (ring_type == ENA_RING_TYPE_RX) {
1441 		queues = adapter->rx_ring;
1442 		nb_queues = dev->data->nb_rx_queues;
1443 	} else {
1444 		queues = adapter->tx_ring;
1445 		nb_queues = dev->data->nb_tx_queues;
1446 	}
1447 
1448 	for (i = 0; i < nb_queues; ++i)
1449 		if (queues[i].configured)
1450 			ena_queue_stop(&queues[i]);
1451 }
1452 
1453 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring)
1454 {
1455 	int rc, bufs_num;
1456 
1457 	ena_assert_msg(ring->configured == 1,
1458 		       "Trying to start unconfigured queue\n");
1459 
1460 	rc = ena_create_io_queue(dev, ring);
1461 	if (rc) {
1462 		PMD_INIT_LOG(ERR, "Failed to create IO queue\n");
1463 		return rc;
1464 	}
1465 
1466 	ring->next_to_clean = 0;
1467 	ring->next_to_use = 0;
1468 
1469 	if (ring->type == ENA_RING_TYPE_TX) {
1470 		ring->tx_stats.available_desc =
1471 			ena_com_free_q_entries(ring->ena_com_io_sq);
1472 		return 0;
1473 	}
1474 
1475 	bufs_num = ring->ring_size - 1;
1476 	rc = ena_populate_rx_queue(ring, bufs_num);
1477 	if (rc != bufs_num) {
1478 		ena_com_destroy_io_queue(&ring->adapter->ena_dev,
1479 					 ENA_IO_RXQ_IDX(ring->id));
1480 		PMD_INIT_LOG(ERR, "Failed to populate Rx ring\n");
1481 		return ENA_COM_FAULT;
1482 	}
1483 	/* Flush per-core RX buffers pools cache as they can be used on other
1484 	 * cores as well.
1485 	 */
1486 	rte_mempool_cache_flush(NULL, ring->mb_pool);
1487 
1488 	return 0;
1489 }
1490 
1491 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1492 			      uint16_t queue_idx,
1493 			      uint16_t nb_desc,
1494 			      unsigned int socket_id,
1495 			      const struct rte_eth_txconf *tx_conf)
1496 {
1497 	struct ena_ring *txq = NULL;
1498 	struct ena_adapter *adapter = dev->data->dev_private;
1499 	unsigned int i;
1500 	uint16_t dyn_thresh;
1501 
1502 	txq = &adapter->tx_ring[queue_idx];
1503 
1504 	if (txq->configured) {
1505 		PMD_DRV_LOG(CRIT,
1506 			"API violation. Queue[%d] is already configured\n",
1507 			queue_idx);
1508 		return ENA_COM_FAULT;
1509 	}
1510 
1511 	if (!rte_is_power_of_2(nb_desc)) {
1512 		PMD_DRV_LOG(ERR,
1513 			"Unsupported size of Tx queue: %d is not a power of 2.\n",
1514 			nb_desc);
1515 		return -EINVAL;
1516 	}
1517 
1518 	if (nb_desc > adapter->max_tx_ring_size) {
1519 		PMD_DRV_LOG(ERR,
1520 			"Unsupported size of Tx queue (max size: %d)\n",
1521 			adapter->max_tx_ring_size);
1522 		return -EINVAL;
1523 	}
1524 
1525 	txq->port_id = dev->data->port_id;
1526 	txq->next_to_clean = 0;
1527 	txq->next_to_use = 0;
1528 	txq->ring_size = nb_desc;
1529 	txq->size_mask = nb_desc - 1;
1530 	txq->numa_socket_id = socket_id;
1531 	txq->pkts_without_db = false;
1532 	txq->last_cleanup_ticks = 0;
1533 
1534 	txq->tx_buffer_info = rte_zmalloc_socket("txq->tx_buffer_info",
1535 		sizeof(struct ena_tx_buffer) * txq->ring_size,
1536 		RTE_CACHE_LINE_SIZE,
1537 		socket_id);
1538 	if (!txq->tx_buffer_info) {
1539 		PMD_DRV_LOG(ERR,
1540 			"Failed to allocate memory for Tx buffer info\n");
1541 		return -ENOMEM;
1542 	}
1543 
1544 	txq->empty_tx_reqs = rte_zmalloc_socket("txq->empty_tx_reqs",
1545 		sizeof(uint16_t) * txq->ring_size,
1546 		RTE_CACHE_LINE_SIZE,
1547 		socket_id);
1548 	if (!txq->empty_tx_reqs) {
1549 		PMD_DRV_LOG(ERR,
1550 			"Failed to allocate memory for empty Tx requests\n");
1551 		rte_free(txq->tx_buffer_info);
1552 		return -ENOMEM;
1553 	}
1554 
1555 	txq->push_buf_intermediate_buf =
1556 		rte_zmalloc_socket("txq->push_buf_intermediate_buf",
1557 			txq->tx_max_header_size,
1558 			RTE_CACHE_LINE_SIZE,
1559 			socket_id);
1560 	if (!txq->push_buf_intermediate_buf) {
1561 		PMD_DRV_LOG(ERR, "Failed to alloc push buffer for LLQ\n");
1562 		rte_free(txq->tx_buffer_info);
1563 		rte_free(txq->empty_tx_reqs);
1564 		return -ENOMEM;
1565 	}
1566 
1567 	for (i = 0; i < txq->ring_size; i++)
1568 		txq->empty_tx_reqs[i] = i;
1569 
1570 	txq->offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1571 
1572 	/* Check if caller provided the Tx cleanup threshold value. */
1573 	if (tx_conf->tx_free_thresh != 0) {
1574 		txq->tx_free_thresh = tx_conf->tx_free_thresh;
1575 	} else {
1576 		dyn_thresh = txq->ring_size -
1577 			txq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1578 		txq->tx_free_thresh = RTE_MAX(dyn_thresh,
1579 			txq->ring_size - ENA_REFILL_THRESH_PACKET);
1580 	}
1581 
1582 	txq->missing_tx_completion_threshold =
1583 		RTE_MIN(txq->ring_size / 2, ENA_DEFAULT_MISSING_COMP);
1584 
1585 	/* Store pointer to this queue in upper layer */
1586 	txq->configured = 1;
1587 	dev->data->tx_queues[queue_idx] = txq;
1588 
1589 	return 0;
1590 }
1591 
1592 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1593 			      uint16_t queue_idx,
1594 			      uint16_t nb_desc,
1595 			      unsigned int socket_id,
1596 			      const struct rte_eth_rxconf *rx_conf,
1597 			      struct rte_mempool *mp)
1598 {
1599 	struct ena_adapter *adapter = dev->data->dev_private;
1600 	struct ena_ring *rxq = NULL;
1601 	size_t buffer_size;
1602 	int i;
1603 	uint16_t dyn_thresh;
1604 
1605 	rxq = &adapter->rx_ring[queue_idx];
1606 	if (rxq->configured) {
1607 		PMD_DRV_LOG(CRIT,
1608 			"API violation. Queue[%d] is already configured\n",
1609 			queue_idx);
1610 		return ENA_COM_FAULT;
1611 	}
1612 
1613 	if (!rte_is_power_of_2(nb_desc)) {
1614 		PMD_DRV_LOG(ERR,
1615 			"Unsupported size of Rx queue: %d is not a power of 2.\n",
1616 			nb_desc);
1617 		return -EINVAL;
1618 	}
1619 
1620 	if (nb_desc > adapter->max_rx_ring_size) {
1621 		PMD_DRV_LOG(ERR,
1622 			"Unsupported size of Rx queue (max size: %d)\n",
1623 			adapter->max_rx_ring_size);
1624 		return -EINVAL;
1625 	}
1626 
1627 	/* ENA isn't supporting buffers smaller than 1400 bytes */
1628 	buffer_size = rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
1629 	if (buffer_size < ENA_RX_BUF_MIN_SIZE) {
1630 		PMD_DRV_LOG(ERR,
1631 			"Unsupported size of Rx buffer: %zu (min size: %d)\n",
1632 			buffer_size, ENA_RX_BUF_MIN_SIZE);
1633 		return -EINVAL;
1634 	}
1635 
1636 	rxq->port_id = dev->data->port_id;
1637 	rxq->next_to_clean = 0;
1638 	rxq->next_to_use = 0;
1639 	rxq->ring_size = nb_desc;
1640 	rxq->size_mask = nb_desc - 1;
1641 	rxq->numa_socket_id = socket_id;
1642 	rxq->mb_pool = mp;
1643 
1644 	rxq->rx_buffer_info = rte_zmalloc_socket("rxq->buffer_info",
1645 		sizeof(struct ena_rx_buffer) * nb_desc,
1646 		RTE_CACHE_LINE_SIZE,
1647 		socket_id);
1648 	if (!rxq->rx_buffer_info) {
1649 		PMD_DRV_LOG(ERR,
1650 			"Failed to allocate memory for Rx buffer info\n");
1651 		return -ENOMEM;
1652 	}
1653 
1654 	rxq->rx_refill_buffer = rte_zmalloc_socket("rxq->rx_refill_buffer",
1655 		sizeof(struct rte_mbuf *) * nb_desc,
1656 		RTE_CACHE_LINE_SIZE,
1657 		socket_id);
1658 	if (!rxq->rx_refill_buffer) {
1659 		PMD_DRV_LOG(ERR,
1660 			"Failed to allocate memory for Rx refill buffer\n");
1661 		rte_free(rxq->rx_buffer_info);
1662 		rxq->rx_buffer_info = NULL;
1663 		return -ENOMEM;
1664 	}
1665 
1666 	rxq->empty_rx_reqs = rte_zmalloc_socket("rxq->empty_rx_reqs",
1667 		sizeof(uint16_t) * nb_desc,
1668 		RTE_CACHE_LINE_SIZE,
1669 		socket_id);
1670 	if (!rxq->empty_rx_reqs) {
1671 		PMD_DRV_LOG(ERR,
1672 			"Failed to allocate memory for empty Rx requests\n");
1673 		rte_free(rxq->rx_buffer_info);
1674 		rxq->rx_buffer_info = NULL;
1675 		rte_free(rxq->rx_refill_buffer);
1676 		rxq->rx_refill_buffer = NULL;
1677 		return -ENOMEM;
1678 	}
1679 
1680 	for (i = 0; i < nb_desc; i++)
1681 		rxq->empty_rx_reqs[i] = i;
1682 
1683 	rxq->offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1684 
1685 	if (rx_conf->rx_free_thresh != 0) {
1686 		rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1687 	} else {
1688 		dyn_thresh = rxq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1689 		rxq->rx_free_thresh = RTE_MIN(dyn_thresh,
1690 			(uint16_t)(ENA_REFILL_THRESH_PACKET));
1691 	}
1692 
1693 	/* Store pointer to this queue in upper layer */
1694 	rxq->configured = 1;
1695 	dev->data->rx_queues[queue_idx] = rxq;
1696 
1697 	return 0;
1698 }
1699 
1700 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
1701 				  struct rte_mbuf *mbuf, uint16_t id)
1702 {
1703 	struct ena_com_buf ebuf;
1704 	int rc;
1705 
1706 	/* prepare physical address for DMA transaction */
1707 	ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1708 	ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1709 
1710 	/* pass resource to device */
1711 	rc = ena_com_add_single_rx_desc(io_sq, &ebuf, id);
1712 	if (unlikely(rc != 0))
1713 		PMD_RX_LOG(WARNING, "Failed adding Rx desc\n");
1714 
1715 	return rc;
1716 }
1717 
1718 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1719 {
1720 	unsigned int i;
1721 	int rc;
1722 	uint16_t next_to_use = rxq->next_to_use;
1723 	uint16_t req_id;
1724 #ifdef RTE_ETHDEV_DEBUG_RX
1725 	uint16_t in_use;
1726 #endif
1727 	struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1728 
1729 	if (unlikely(!count))
1730 		return 0;
1731 
1732 #ifdef RTE_ETHDEV_DEBUG_RX
1733 	in_use = rxq->ring_size - 1 -
1734 		ena_com_free_q_entries(rxq->ena_com_io_sq);
1735 	if (unlikely((in_use + count) >= rxq->ring_size))
1736 		PMD_RX_LOG(ERR, "Bad Rx ring state\n");
1737 #endif
1738 
1739 	/* get resources for incoming packets */
1740 	rc = rte_pktmbuf_alloc_bulk(rxq->mb_pool, mbufs, count);
1741 	if (unlikely(rc < 0)) {
1742 		rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1743 		++rxq->rx_stats.mbuf_alloc_fail;
1744 		PMD_RX_LOG(DEBUG, "There are not enough free buffers\n");
1745 		return 0;
1746 	}
1747 
1748 	for (i = 0; i < count; i++) {
1749 		struct rte_mbuf *mbuf = mbufs[i];
1750 		struct ena_rx_buffer *rx_info;
1751 
1752 		if (likely((i + 4) < count))
1753 			rte_prefetch0(mbufs[i + 4]);
1754 
1755 		req_id = rxq->empty_rx_reqs[next_to_use];
1756 		rx_info = &rxq->rx_buffer_info[req_id];
1757 
1758 		rc = ena_add_single_rx_desc(rxq->ena_com_io_sq, mbuf, req_id);
1759 		if (unlikely(rc != 0))
1760 			break;
1761 
1762 		rx_info->mbuf = mbuf;
1763 		next_to_use = ENA_IDX_NEXT_MASKED(next_to_use, rxq->size_mask);
1764 	}
1765 
1766 	if (unlikely(i < count)) {
1767 		PMD_RX_LOG(WARNING,
1768 			"Refilled Rx queue[%d] with only %d/%d buffers\n",
1769 			rxq->id, i, count);
1770 		rte_pktmbuf_free_bulk(&mbufs[i], count - i);
1771 		++rxq->rx_stats.refill_partial;
1772 	}
1773 
1774 	/* When we submitted free resources to device... */
1775 	if (likely(i > 0)) {
1776 		/* ...let HW know that it can fill buffers with data. */
1777 		ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1778 
1779 		rxq->next_to_use = next_to_use;
1780 	}
1781 
1782 	return i;
1783 }
1784 
1785 static size_t ena_get_metrics_entries(struct ena_adapter *adapter)
1786 {
1787 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1788 	size_t metrics_num = 0;
1789 
1790 	if (ena_com_get_cap(ena_dev, ENA_ADMIN_CUSTOMER_METRICS))
1791 		metrics_num = ENA_STATS_ARRAY_METRICS;
1792 	else if (ena_com_get_cap(ena_dev, ENA_ADMIN_ENI_STATS))
1793 		metrics_num = ENA_STATS_ARRAY_METRICS_LEGACY;
1794 	PMD_DRV_LOG(NOTICE, "0x%x customer metrics are supported\n", (unsigned int)metrics_num);
1795 	if (metrics_num > ENA_MAX_CUSTOMER_METRICS) {
1796 		PMD_DRV_LOG(NOTICE, "Not enough space for the requested customer metrics\n");
1797 		metrics_num = ENA_MAX_CUSTOMER_METRICS;
1798 	}
1799 	return metrics_num;
1800 }
1801 
1802 static int ena_device_init(struct ena_adapter *adapter,
1803 			   struct rte_pci_device *pdev,
1804 			   struct ena_com_dev_get_features_ctx *get_feat_ctx)
1805 {
1806 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1807 	uint32_t aenq_groups;
1808 	int rc;
1809 	bool readless_supported;
1810 
1811 	/* Initialize mmio registers */
1812 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
1813 	if (rc) {
1814 		PMD_DRV_LOG(ERR, "Failed to init MMIO read less\n");
1815 		return rc;
1816 	}
1817 
1818 	/* The PCIe configuration space revision id indicate if mmio reg
1819 	 * read is disabled.
1820 	 */
1821 	readless_supported = !(pdev->id.class_id & ENA_MMIO_DISABLE_REG_READ);
1822 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1823 
1824 	/* reset device */
1825 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1826 	if (rc) {
1827 		PMD_DRV_LOG(ERR, "Cannot reset device\n");
1828 		goto err_mmio_read_less;
1829 	}
1830 
1831 	/* check FW version */
1832 	rc = ena_com_validate_version(ena_dev);
1833 	if (rc) {
1834 		PMD_DRV_LOG(ERR, "Device version is too low\n");
1835 		goto err_mmio_read_less;
1836 	}
1837 
1838 	ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1839 
1840 	/* ENA device administration layer init */
1841 	rc = ena_com_admin_init(ena_dev, &aenq_handlers);
1842 	if (rc) {
1843 		PMD_DRV_LOG(ERR,
1844 			"Cannot initialize ENA admin queue\n");
1845 		goto err_mmio_read_less;
1846 	}
1847 
1848 	/* To enable the msix interrupts the driver needs to know the number
1849 	 * of queues. So the driver uses polling mode to retrieve this
1850 	 * information.
1851 	 */
1852 	ena_com_set_admin_polling_mode(ena_dev, true);
1853 
1854 	ena_config_host_info(ena_dev);
1855 
1856 	/* Get Device Attributes and features */
1857 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1858 	if (rc) {
1859 		PMD_DRV_LOG(ERR,
1860 			"Cannot get attribute for ENA device, rc: %d\n", rc);
1861 		goto err_admin_init;
1862 	}
1863 
1864 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1865 		      BIT(ENA_ADMIN_NOTIFICATION) |
1866 		      BIT(ENA_ADMIN_KEEP_ALIVE) |
1867 		      BIT(ENA_ADMIN_FATAL_ERROR) |
1868 		      BIT(ENA_ADMIN_WARNING) |
1869 		      BIT(ENA_ADMIN_CONF_NOTIFICATIONS);
1870 
1871 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
1872 
1873 	adapter->all_aenq_groups = aenq_groups;
1874 	/* The actual supported number of metrics is negotiated with the device at runtime */
1875 	adapter->metrics_num = ena_get_metrics_entries(adapter);
1876 
1877 	return 0;
1878 
1879 err_admin_init:
1880 	ena_com_admin_destroy(ena_dev);
1881 
1882 err_mmio_read_less:
1883 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1884 
1885 	return rc;
1886 }
1887 
1888 static void ena_interrupt_handler_rte(void *cb_arg)
1889 {
1890 	struct rte_eth_dev *dev = cb_arg;
1891 	struct ena_adapter *adapter = dev->data->dev_private;
1892 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1893 
1894 	ena_com_admin_q_comp_intr_handler(ena_dev);
1895 	if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED))
1896 		ena_com_aenq_intr_handler(ena_dev, dev);
1897 }
1898 
1899 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1900 {
1901 	if (!(adapter->active_aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE)))
1902 		return;
1903 
1904 	if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1905 		return;
1906 
1907 	if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1908 	    adapter->keep_alive_timeout)) {
1909 		PMD_DRV_LOG(ERR, "Keep alive timeout\n");
1910 		ena_trigger_reset(adapter, ENA_REGS_RESET_KEEP_ALIVE_TO);
1911 		++adapter->dev_stats.wd_expired;
1912 	}
1913 }
1914 
1915 /* Check if admin queue is enabled */
1916 static void check_for_admin_com_state(struct ena_adapter *adapter)
1917 {
1918 	if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1919 		PMD_DRV_LOG(ERR, "ENA admin queue is not in running state\n");
1920 		ena_trigger_reset(adapter, ENA_REGS_RESET_ADMIN_TO);
1921 	}
1922 }
1923 
1924 static int check_for_tx_completion_in_queue(struct ena_adapter *adapter,
1925 					    struct ena_ring *tx_ring)
1926 {
1927 	struct ena_tx_buffer *tx_buf;
1928 	uint64_t timestamp;
1929 	uint64_t completion_delay;
1930 	uint32_t missed_tx = 0;
1931 	unsigned int i;
1932 	int rc = 0;
1933 
1934 	for (i = 0; i < tx_ring->ring_size; ++i) {
1935 		tx_buf = &tx_ring->tx_buffer_info[i];
1936 		timestamp = tx_buf->timestamp;
1937 
1938 		if (timestamp == 0)
1939 			continue;
1940 
1941 		completion_delay = rte_get_timer_cycles() - timestamp;
1942 		if (completion_delay > adapter->missing_tx_completion_to) {
1943 			if (unlikely(!tx_buf->print_once)) {
1944 				PMD_TX_LOG(WARNING,
1945 					"Found a Tx that wasn't completed on time, qid %d, index %d. "
1946 					"Missing Tx outstanding for %" PRIu64 " msecs.\n",
1947 					tx_ring->id, i,	completion_delay /
1948 					rte_get_timer_hz() * 1000);
1949 				tx_buf->print_once = true;
1950 			}
1951 			++missed_tx;
1952 		}
1953 	}
1954 
1955 	if (unlikely(missed_tx > tx_ring->missing_tx_completion_threshold)) {
1956 		PMD_DRV_LOG(ERR,
1957 			"The number of lost Tx completions is above the threshold (%d > %d). "
1958 			"Trigger the device reset.\n",
1959 			missed_tx,
1960 			tx_ring->missing_tx_completion_threshold);
1961 		adapter->reset_reason = ENA_REGS_RESET_MISS_TX_CMPL;
1962 		adapter->trigger_reset = true;
1963 		rc = -EIO;
1964 	}
1965 
1966 	tx_ring->tx_stats.missed_tx += missed_tx;
1967 
1968 	return rc;
1969 }
1970 
1971 static void check_for_tx_completions(struct ena_adapter *adapter)
1972 {
1973 	struct ena_ring *tx_ring;
1974 	uint64_t tx_cleanup_delay;
1975 	size_t qid;
1976 	int budget;
1977 	uint16_t nb_tx_queues = adapter->edev_data->nb_tx_queues;
1978 
1979 	if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT)
1980 		return;
1981 
1982 	nb_tx_queues = adapter->edev_data->nb_tx_queues;
1983 	budget = adapter->missing_tx_completion_budget;
1984 
1985 	qid = adapter->last_tx_comp_qid;
1986 	while (budget-- > 0) {
1987 		tx_ring = &adapter->tx_ring[qid];
1988 
1989 		/* Tx cleanup is called only by the burst function and can be
1990 		 * called dynamically by the application. Also cleanup is
1991 		 * limited by the threshold. To avoid false detection of the
1992 		 * missing HW Tx completion, get the delay since last cleanup
1993 		 * function was called.
1994 		 */
1995 		tx_cleanup_delay = rte_get_timer_cycles() -
1996 			tx_ring->last_cleanup_ticks;
1997 		if (tx_cleanup_delay < adapter->tx_cleanup_stall_delay)
1998 			check_for_tx_completion_in_queue(adapter, tx_ring);
1999 		qid = (qid + 1) % nb_tx_queues;
2000 	}
2001 
2002 	adapter->last_tx_comp_qid = qid;
2003 }
2004 
2005 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
2006 				  void *arg)
2007 {
2008 	struct rte_eth_dev *dev = arg;
2009 	struct ena_adapter *adapter = dev->data->dev_private;
2010 
2011 	if (unlikely(adapter->trigger_reset))
2012 		return;
2013 
2014 	check_for_missing_keep_alive(adapter);
2015 	check_for_admin_com_state(adapter);
2016 	check_for_tx_completions(adapter);
2017 
2018 	if (unlikely(adapter->trigger_reset)) {
2019 		PMD_DRV_LOG(ERR, "Trigger reset is on\n");
2020 		rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
2021 			NULL);
2022 	}
2023 }
2024 
2025 static inline void
2026 set_default_llq_configurations(struct ena_llq_configurations *llq_config,
2027 			       struct ena_admin_feature_llq_desc *llq,
2028 			       bool use_large_llq_hdr)
2029 {
2030 	llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
2031 	llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
2032 	llq_config->llq_num_decs_before_header =
2033 		ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
2034 
2035 	if (use_large_llq_hdr &&
2036 	    (llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B)) {
2037 		llq_config->llq_ring_entry_size =
2038 			ENA_ADMIN_LIST_ENTRY_SIZE_256B;
2039 		llq_config->llq_ring_entry_size_value = 256;
2040 	} else {
2041 		llq_config->llq_ring_entry_size =
2042 			ENA_ADMIN_LIST_ENTRY_SIZE_128B;
2043 		llq_config->llq_ring_entry_size_value = 128;
2044 	}
2045 }
2046 
2047 static int
2048 ena_set_queues_placement_policy(struct ena_adapter *adapter,
2049 				struct ena_com_dev *ena_dev,
2050 				struct ena_admin_feature_llq_desc *llq,
2051 				struct ena_llq_configurations *llq_default_configurations)
2052 {
2053 	int rc;
2054 	u32 llq_feature_mask;
2055 
2056 	if (adapter->llq_header_policy == ENA_LLQ_POLICY_DISABLED) {
2057 		PMD_DRV_LOG(WARNING,
2058 			"NOTE: LLQ has been disabled as per user's request. "
2059 			"This may lead to a huge performance degradation!\n");
2060 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
2061 		return 0;
2062 	}
2063 
2064 	llq_feature_mask = 1 << ENA_ADMIN_LLQ;
2065 	if (!(ena_dev->supported_features & llq_feature_mask)) {
2066 		PMD_DRV_LOG(INFO,
2067 			"LLQ is not supported. Fallback to host mode policy.\n");
2068 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
2069 		return 0;
2070 	}
2071 
2072 	if (adapter->dev_mem_base == NULL) {
2073 		PMD_DRV_LOG(ERR,
2074 			"LLQ is advertised as supported, but device doesn't expose mem bar\n");
2075 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
2076 		return 0;
2077 	}
2078 
2079 	rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
2080 	if (unlikely(rc)) {
2081 		PMD_INIT_LOG(WARNING,
2082 			"Failed to config dev mode. Fallback to host mode policy.\n");
2083 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
2084 		return 0;
2085 	}
2086 
2087 	/* Nothing to config, exit */
2088 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
2089 		return 0;
2090 
2091 	ena_dev->mem_bar = adapter->dev_mem_base;
2092 
2093 	return 0;
2094 }
2095 
2096 static uint32_t ena_calc_max_io_queue_num(struct ena_com_dev *ena_dev,
2097 	struct ena_com_dev_get_features_ctx *get_feat_ctx)
2098 {
2099 	uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
2100 
2101 	/* Regular queues capabilities */
2102 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
2103 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
2104 			&get_feat_ctx->max_queue_ext.max_queue_ext;
2105 		io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
2106 				    max_queue_ext->max_rx_cq_num);
2107 		io_tx_sq_num = max_queue_ext->max_tx_sq_num;
2108 		io_tx_cq_num = max_queue_ext->max_tx_cq_num;
2109 	} else {
2110 		struct ena_admin_queue_feature_desc *max_queues =
2111 			&get_feat_ctx->max_queues;
2112 		io_tx_sq_num = max_queues->max_sq_num;
2113 		io_tx_cq_num = max_queues->max_cq_num;
2114 		io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
2115 	}
2116 
2117 	/* In case of LLQ use the llq number in the get feature cmd */
2118 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
2119 		io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
2120 
2121 	max_num_io_queues = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
2122 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_sq_num);
2123 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_cq_num);
2124 
2125 	if (unlikely(max_num_io_queues == 0)) {
2126 		PMD_DRV_LOG(ERR, "Number of IO queues cannot not be 0\n");
2127 		return -EFAULT;
2128 	}
2129 
2130 	return max_num_io_queues;
2131 }
2132 
2133 static void
2134 ena_set_offloads(struct ena_offloads *offloads,
2135 		 struct ena_admin_feature_offload_desc *offload_desc)
2136 {
2137 	if (offload_desc->tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK)
2138 		offloads->tx_offloads |= ENA_IPV4_TSO;
2139 
2140 	/* Tx IPv4 checksum offloads */
2141 	if (offload_desc->tx &
2142 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)
2143 		offloads->tx_offloads |= ENA_L3_IPV4_CSUM;
2144 	if (offload_desc->tx &
2145 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK)
2146 		offloads->tx_offloads |= ENA_L4_IPV4_CSUM;
2147 	if (offload_desc->tx &
2148 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)
2149 		offloads->tx_offloads |= ENA_L4_IPV4_CSUM_PARTIAL;
2150 
2151 	/* Tx IPv6 checksum offloads */
2152 	if (offload_desc->tx &
2153 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK)
2154 		offloads->tx_offloads |= ENA_L4_IPV6_CSUM;
2155 	if (offload_desc->tx &
2156 	     ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)
2157 		offloads->tx_offloads |= ENA_L4_IPV6_CSUM_PARTIAL;
2158 
2159 	/* Rx IPv4 checksum offloads */
2160 	if (offload_desc->rx_supported &
2161 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)
2162 		offloads->rx_offloads |= ENA_L3_IPV4_CSUM;
2163 	if (offload_desc->rx_supported &
2164 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK)
2165 		offloads->rx_offloads |= ENA_L4_IPV4_CSUM;
2166 
2167 	/* Rx IPv6 checksum offloads */
2168 	if (offload_desc->rx_supported &
2169 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK)
2170 		offloads->rx_offloads |= ENA_L4_IPV6_CSUM;
2171 
2172 	if (offload_desc->rx_supported &
2173 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_HASH_MASK)
2174 		offloads->rx_offloads |= ENA_RX_RSS_HASH;
2175 }
2176 
2177 static int ena_init_once(void)
2178 {
2179 	static bool init_done;
2180 
2181 	if (init_done)
2182 		return 0;
2183 
2184 	if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
2185 		/* Init timer subsystem for the ENA timer service. */
2186 		rte_timer_subsystem_init();
2187 		/* Register handler for requests from secondary processes. */
2188 		rte_mp_action_register(ENA_MP_NAME, ena_mp_primary_handle);
2189 	}
2190 
2191 	init_done = true;
2192 	return 0;
2193 }
2194 
2195 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
2196 {
2197 	struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
2198 	struct rte_pci_device *pci_dev;
2199 	struct rte_intr_handle *intr_handle;
2200 	struct ena_adapter *adapter = eth_dev->data->dev_private;
2201 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
2202 	struct ena_com_dev_get_features_ctx get_feat_ctx;
2203 	struct ena_llq_configurations llq_config;
2204 	const char *queue_type_str;
2205 	uint32_t max_num_io_queues;
2206 	int rc;
2207 	static int adapters_found;
2208 	bool disable_meta_caching;
2209 
2210 	eth_dev->dev_ops = &ena_dev_ops;
2211 	eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
2212 	eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
2213 	eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
2214 
2215 	rc = ena_init_once();
2216 	if (rc != 0)
2217 		return rc;
2218 
2219 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2220 		return 0;
2221 
2222 	eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
2223 
2224 	memset(adapter, 0, sizeof(struct ena_adapter));
2225 	ena_dev = &adapter->ena_dev;
2226 
2227 	adapter->edev_data = eth_dev->data;
2228 
2229 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2230 
2231 	PMD_INIT_LOG(INFO, "Initializing " PCI_PRI_FMT "\n",
2232 		     pci_dev->addr.domain,
2233 		     pci_dev->addr.bus,
2234 		     pci_dev->addr.devid,
2235 		     pci_dev->addr.function);
2236 
2237 	intr_handle = pci_dev->intr_handle;
2238 
2239 	adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
2240 	adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
2241 
2242 	if (!adapter->regs) {
2243 		PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)\n",
2244 			     ENA_REGS_BAR);
2245 		return -ENXIO;
2246 	}
2247 
2248 	ena_dev->reg_bar = adapter->regs;
2249 	/* Pass device data as a pointer which can be passed to the IO functions
2250 	 * by the ena_com (for example - the memory allocation).
2251 	 */
2252 	ena_dev->dmadev = eth_dev->data;
2253 
2254 	adapter->id_number = adapters_found;
2255 
2256 	snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
2257 		 adapter->id_number);
2258 
2259 	/* Assign default devargs values */
2260 	adapter->missing_tx_completion_to = ENA_TX_TIMEOUT;
2261 	adapter->enable_llq = true;
2262 	adapter->use_large_llq_hdr = false;
2263 	adapter->use_normal_llq_hdr = false;
2264 
2265 	/* Get user bypass */
2266 	rc = ena_parse_devargs(adapter, pci_dev->device.devargs);
2267 	if (rc != 0) {
2268 		PMD_INIT_LOG(CRIT, "Failed to parse devargs\n");
2269 		goto err;
2270 	}
2271 	adapter->llq_header_policy = ena_define_llq_hdr_policy(adapter);
2272 
2273 	rc = ena_com_allocate_customer_metrics_buffer(ena_dev);
2274 	if (rc != 0) {
2275 		PMD_INIT_LOG(CRIT, "Failed to allocate customer metrics buffer\n");
2276 		goto err;
2277 	}
2278 
2279 	/* device specific initialization routine */
2280 	rc = ena_device_init(adapter, pci_dev, &get_feat_ctx);
2281 	if (rc) {
2282 		PMD_INIT_LOG(CRIT, "Failed to init ENA device\n");
2283 		goto err_metrics_delete;
2284 	}
2285 
2286 	/* Check if device supports LSC */
2287 	if (!(adapter->all_aenq_groups & BIT(ENA_ADMIN_LINK_CHANGE)))
2288 		adapter->edev_data->dev_flags &= ~RTE_ETH_DEV_INTR_LSC;
2289 
2290 	bool use_large_llq_hdr = ena_use_large_llq_hdr(adapter,
2291 						       get_feat_ctx.llq.entry_size_recommended);
2292 	set_default_llq_configurations(&llq_config, &get_feat_ctx.llq, use_large_llq_hdr);
2293 	rc = ena_set_queues_placement_policy(adapter, ena_dev,
2294 					     &get_feat_ctx.llq, &llq_config);
2295 	if (unlikely(rc)) {
2296 		PMD_INIT_LOG(CRIT, "Failed to set placement policy\n");
2297 		return rc;
2298 	}
2299 
2300 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST) {
2301 		queue_type_str = "Regular";
2302 	} else {
2303 		queue_type_str = "Low latency";
2304 		PMD_DRV_LOG(INFO, "LLQ entry size %uB\n", llq_config.llq_ring_entry_size_value);
2305 	}
2306 	PMD_DRV_LOG(INFO, "Placement policy: %s\n", queue_type_str);
2307 
2308 	calc_queue_ctx.ena_dev = ena_dev;
2309 	calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
2310 
2311 	max_num_io_queues = ena_calc_max_io_queue_num(ena_dev, &get_feat_ctx);
2312 	rc = ena_calc_io_queue_size(&calc_queue_ctx, use_large_llq_hdr);
2313 	if (unlikely((rc != 0) || (max_num_io_queues == 0))) {
2314 		rc = -EFAULT;
2315 		goto err_device_destroy;
2316 	}
2317 
2318 	adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
2319 	adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
2320 	adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
2321 	adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
2322 	adapter->max_num_io_queues = max_num_io_queues;
2323 
2324 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2325 		disable_meta_caching =
2326 			!!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
2327 			BIT(ENA_ADMIN_DISABLE_META_CACHING));
2328 	} else {
2329 		disable_meta_caching = false;
2330 	}
2331 
2332 	/* prepare ring structures */
2333 	ena_init_rings(adapter, disable_meta_caching);
2334 
2335 	ena_config_debug_area(adapter);
2336 
2337 	/* Set max MTU for this device */
2338 	adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
2339 
2340 	ena_set_offloads(&adapter->offloads, &get_feat_ctx.offload);
2341 
2342 	/* Copy MAC address and point DPDK to it */
2343 	eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr;
2344 	rte_ether_addr_copy((struct rte_ether_addr *)
2345 			get_feat_ctx.dev_attr.mac_addr,
2346 			(struct rte_ether_addr *)adapter->mac_addr);
2347 
2348 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
2349 	if (unlikely(rc != 0)) {
2350 		PMD_DRV_LOG(ERR, "Failed to initialize RSS in ENA device\n");
2351 		goto err_delete_debug_area;
2352 	}
2353 
2354 	adapter->drv_stats = rte_zmalloc("adapter stats",
2355 					 sizeof(*adapter->drv_stats),
2356 					 RTE_CACHE_LINE_SIZE);
2357 	if (!adapter->drv_stats) {
2358 		PMD_DRV_LOG(ERR,
2359 			"Failed to allocate memory for adapter statistics\n");
2360 		rc = -ENOMEM;
2361 		goto err_rss_destroy;
2362 	}
2363 
2364 	rte_spinlock_init(&adapter->admin_lock);
2365 
2366 	rte_intr_callback_register(intr_handle,
2367 				   ena_interrupt_handler_rte,
2368 				   eth_dev);
2369 	rte_intr_enable(intr_handle);
2370 	ena_com_set_admin_polling_mode(ena_dev, false);
2371 	ena_com_admin_aenq_enable(ena_dev);
2372 
2373 	rte_timer_init(&adapter->timer_wd);
2374 
2375 	adapters_found++;
2376 	adapter->state = ENA_ADAPTER_STATE_INIT;
2377 
2378 	return 0;
2379 
2380 err_rss_destroy:
2381 	ena_com_rss_destroy(ena_dev);
2382 err_delete_debug_area:
2383 	ena_com_delete_debug_area(ena_dev);
2384 
2385 err_device_destroy:
2386 	ena_com_delete_host_info(ena_dev);
2387 	ena_com_admin_destroy(ena_dev);
2388 err_metrics_delete:
2389 	ena_com_delete_customer_metrics_buffer(ena_dev);
2390 err:
2391 	return rc;
2392 }
2393 
2394 static void ena_destroy_device(struct rte_eth_dev *eth_dev)
2395 {
2396 	struct ena_adapter *adapter = eth_dev->data->dev_private;
2397 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
2398 
2399 	if (adapter->state == ENA_ADAPTER_STATE_FREE)
2400 		return;
2401 
2402 	ena_com_set_admin_running_state(ena_dev, false);
2403 
2404 	if (adapter->state != ENA_ADAPTER_STATE_CLOSED)
2405 		ena_close(eth_dev);
2406 
2407 	ena_com_rss_destroy(ena_dev);
2408 
2409 	ena_com_delete_debug_area(ena_dev);
2410 	ena_com_delete_host_info(ena_dev);
2411 
2412 	ena_com_abort_admin_commands(ena_dev);
2413 	ena_com_wait_for_abort_completion(ena_dev);
2414 	ena_com_admin_destroy(ena_dev);
2415 	ena_com_mmio_reg_read_request_destroy(ena_dev);
2416 	ena_com_delete_customer_metrics_buffer(ena_dev);
2417 
2418 	adapter->state = ENA_ADAPTER_STATE_FREE;
2419 }
2420 
2421 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
2422 {
2423 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2424 		return 0;
2425 
2426 	ena_destroy_device(eth_dev);
2427 
2428 	return 0;
2429 }
2430 
2431 static int ena_dev_configure(struct rte_eth_dev *dev)
2432 {
2433 	struct ena_adapter *adapter = dev->data->dev_private;
2434 	int rc;
2435 
2436 	adapter->state = ENA_ADAPTER_STATE_CONFIG;
2437 
2438 	if (dev->data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG)
2439 		dev->data->dev_conf.rxmode.offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2440 	dev->data->dev_conf.txmode.offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2441 
2442 	/* Scattered Rx cannot be turned off in the HW, so this capability must
2443 	 * be forced.
2444 	 */
2445 	dev->data->scattered_rx = 1;
2446 
2447 	adapter->last_tx_comp_qid = 0;
2448 
2449 	adapter->missing_tx_completion_budget =
2450 		RTE_MIN(ENA_MONITORED_TX_QUEUES, dev->data->nb_tx_queues);
2451 
2452 	/* To avoid detection of the spurious Tx completion timeout due to
2453 	 * application not calling the Tx cleanup function, set timeout for the
2454 	 * Tx queue which should be half of the missing completion timeout for a
2455 	 * safety. If there will be a lot of missing Tx completions in the
2456 	 * queue, they will be detected sooner or later.
2457 	 */
2458 	adapter->tx_cleanup_stall_delay = adapter->missing_tx_completion_to / 2;
2459 
2460 	rc = ena_configure_aenq(adapter);
2461 
2462 	return rc;
2463 }
2464 
2465 static void ena_init_rings(struct ena_adapter *adapter,
2466 			   bool disable_meta_caching)
2467 {
2468 	size_t i;
2469 
2470 	for (i = 0; i < adapter->max_num_io_queues; i++) {
2471 		struct ena_ring *ring = &adapter->tx_ring[i];
2472 
2473 		ring->configured = 0;
2474 		ring->type = ENA_RING_TYPE_TX;
2475 		ring->adapter = adapter;
2476 		ring->id = i;
2477 		ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
2478 		ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
2479 		ring->sgl_size = adapter->max_tx_sgl_size;
2480 		ring->disable_meta_caching = disable_meta_caching;
2481 	}
2482 
2483 	for (i = 0; i < adapter->max_num_io_queues; i++) {
2484 		struct ena_ring *ring = &adapter->rx_ring[i];
2485 
2486 		ring->configured = 0;
2487 		ring->type = ENA_RING_TYPE_RX;
2488 		ring->adapter = adapter;
2489 		ring->id = i;
2490 		ring->sgl_size = adapter->max_rx_sgl_size;
2491 	}
2492 }
2493 
2494 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter)
2495 {
2496 	uint64_t port_offloads = 0;
2497 
2498 	if (adapter->offloads.rx_offloads & ENA_L3_IPV4_CSUM)
2499 		port_offloads |= RTE_ETH_RX_OFFLOAD_IPV4_CKSUM;
2500 
2501 	if (adapter->offloads.rx_offloads &
2502 	    (ENA_L4_IPV4_CSUM | ENA_L4_IPV6_CSUM))
2503 		port_offloads |=
2504 			RTE_ETH_RX_OFFLOAD_UDP_CKSUM | RTE_ETH_RX_OFFLOAD_TCP_CKSUM;
2505 
2506 	if (adapter->offloads.rx_offloads & ENA_RX_RSS_HASH)
2507 		port_offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2508 
2509 	port_offloads |= RTE_ETH_RX_OFFLOAD_SCATTER;
2510 
2511 	return port_offloads;
2512 }
2513 
2514 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter)
2515 {
2516 	uint64_t port_offloads = 0;
2517 
2518 	if (adapter->offloads.tx_offloads & ENA_IPV4_TSO)
2519 		port_offloads |= RTE_ETH_TX_OFFLOAD_TCP_TSO;
2520 
2521 	if (adapter->offloads.tx_offloads & ENA_L3_IPV4_CSUM)
2522 		port_offloads |= RTE_ETH_TX_OFFLOAD_IPV4_CKSUM;
2523 	if (adapter->offloads.tx_offloads &
2524 	    (ENA_L4_IPV4_CSUM_PARTIAL | ENA_L4_IPV4_CSUM |
2525 	     ENA_L4_IPV6_CSUM | ENA_L4_IPV6_CSUM_PARTIAL))
2526 		port_offloads |=
2527 			RTE_ETH_TX_OFFLOAD_UDP_CKSUM | RTE_ETH_TX_OFFLOAD_TCP_CKSUM;
2528 
2529 	port_offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2530 
2531 	port_offloads |= RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
2532 
2533 	return port_offloads;
2534 }
2535 
2536 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter)
2537 {
2538 	RTE_SET_USED(adapter);
2539 
2540 	return 0;
2541 }
2542 
2543 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter)
2544 {
2545 	uint64_t queue_offloads = 0;
2546 	RTE_SET_USED(adapter);
2547 
2548 	queue_offloads |= RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
2549 
2550 	return queue_offloads;
2551 }
2552 
2553 static int ena_infos_get(struct rte_eth_dev *dev,
2554 			  struct rte_eth_dev_info *dev_info)
2555 {
2556 	struct ena_adapter *adapter;
2557 	struct ena_com_dev *ena_dev;
2558 
2559 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
2560 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
2561 	adapter = dev->data->dev_private;
2562 
2563 	ena_dev = &adapter->ena_dev;
2564 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
2565 
2566 	dev_info->speed_capa =
2567 			RTE_ETH_LINK_SPEED_1G   |
2568 			RTE_ETH_LINK_SPEED_2_5G |
2569 			RTE_ETH_LINK_SPEED_5G   |
2570 			RTE_ETH_LINK_SPEED_10G  |
2571 			RTE_ETH_LINK_SPEED_25G  |
2572 			RTE_ETH_LINK_SPEED_40G  |
2573 			RTE_ETH_LINK_SPEED_50G  |
2574 			RTE_ETH_LINK_SPEED_100G |
2575 			RTE_ETH_LINK_SPEED_200G |
2576 			RTE_ETH_LINK_SPEED_400G;
2577 
2578 	/* Inform framework about available features */
2579 	dev_info->rx_offload_capa = ena_get_rx_port_offloads(adapter);
2580 	dev_info->tx_offload_capa = ena_get_tx_port_offloads(adapter);
2581 	dev_info->rx_queue_offload_capa = ena_get_rx_queue_offloads(adapter);
2582 	dev_info->tx_queue_offload_capa = ena_get_tx_queue_offloads(adapter);
2583 
2584 	dev_info->flow_type_rss_offloads = ENA_ALL_RSS_HF;
2585 	dev_info->hash_key_size = ENA_HASH_KEY_SIZE;
2586 
2587 	dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
2588 	dev_info->max_rx_pktlen  = adapter->max_mtu + RTE_ETHER_HDR_LEN +
2589 		RTE_ETHER_CRC_LEN;
2590 	dev_info->min_mtu = ENA_MIN_MTU;
2591 	dev_info->max_mtu = adapter->max_mtu;
2592 	dev_info->max_mac_addrs = 1;
2593 
2594 	dev_info->max_rx_queues = adapter->max_num_io_queues;
2595 	dev_info->max_tx_queues = adapter->max_num_io_queues;
2596 	dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
2597 
2598 	dev_info->rx_desc_lim.nb_max = adapter->max_rx_ring_size;
2599 	dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2600 	dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2601 					adapter->max_rx_sgl_size);
2602 	dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2603 					adapter->max_rx_sgl_size);
2604 
2605 	dev_info->tx_desc_lim.nb_max = adapter->max_tx_ring_size;
2606 	dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2607 	dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2608 					adapter->max_tx_sgl_size);
2609 	dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2610 					adapter->max_tx_sgl_size);
2611 
2612 	dev_info->default_rxportconf.ring_size = RTE_MIN(ENA_DEFAULT_RING_SIZE,
2613 							 dev_info->rx_desc_lim.nb_max);
2614 	dev_info->default_txportconf.ring_size = RTE_MIN(ENA_DEFAULT_RING_SIZE,
2615 							 dev_info->tx_desc_lim.nb_max);
2616 
2617 	dev_info->err_handle_mode = RTE_ETH_ERROR_HANDLE_MODE_PASSIVE;
2618 
2619 	return 0;
2620 }
2621 
2622 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len)
2623 {
2624 	mbuf->data_len = len;
2625 	mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2626 	mbuf->refcnt = 1;
2627 	mbuf->next = NULL;
2628 }
2629 
2630 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
2631 				    struct ena_com_rx_buf_info *ena_bufs,
2632 				    uint32_t descs,
2633 				    uint16_t *next_to_clean,
2634 				    uint8_t offset)
2635 {
2636 	struct rte_mbuf *mbuf;
2637 	struct rte_mbuf *mbuf_head;
2638 	struct ena_rx_buffer *rx_info;
2639 	int rc;
2640 	uint16_t ntc, len, req_id, buf = 0;
2641 
2642 	if (unlikely(descs == 0))
2643 		return NULL;
2644 
2645 	ntc = *next_to_clean;
2646 
2647 	len = ena_bufs[buf].len;
2648 	req_id = ena_bufs[buf].req_id;
2649 
2650 	rx_info = &rx_ring->rx_buffer_info[req_id];
2651 
2652 	mbuf = rx_info->mbuf;
2653 	RTE_ASSERT(mbuf != NULL);
2654 
2655 	ena_init_rx_mbuf(mbuf, len);
2656 
2657 	/* Fill the mbuf head with the data specific for 1st segment. */
2658 	mbuf_head = mbuf;
2659 	mbuf_head->nb_segs = descs;
2660 	mbuf_head->port = rx_ring->port_id;
2661 	mbuf_head->pkt_len = len;
2662 	mbuf_head->data_off += offset;
2663 
2664 	rx_info->mbuf = NULL;
2665 	rx_ring->empty_rx_reqs[ntc] = req_id;
2666 	ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2667 
2668 	while (--descs) {
2669 		++buf;
2670 		len = ena_bufs[buf].len;
2671 		req_id = ena_bufs[buf].req_id;
2672 
2673 		rx_info = &rx_ring->rx_buffer_info[req_id];
2674 		RTE_ASSERT(rx_info->mbuf != NULL);
2675 
2676 		if (unlikely(len == 0)) {
2677 			/*
2678 			 * Some devices can pass descriptor with the length 0.
2679 			 * To avoid confusion, the PMD is simply putting the
2680 			 * descriptor back, as it was never used. We'll avoid
2681 			 * mbuf allocation that way.
2682 			 */
2683 			rc = ena_add_single_rx_desc(rx_ring->ena_com_io_sq,
2684 				rx_info->mbuf, req_id);
2685 			if (unlikely(rc != 0)) {
2686 				/* Free the mbuf in case of an error. */
2687 				rte_mbuf_raw_free(rx_info->mbuf);
2688 			} else {
2689 				/*
2690 				 * If there was no error, just exit the loop as
2691 				 * 0 length descriptor is always the last one.
2692 				 */
2693 				break;
2694 			}
2695 		} else {
2696 			/* Create an mbuf chain. */
2697 			mbuf->next = rx_info->mbuf;
2698 			mbuf = mbuf->next;
2699 
2700 			ena_init_rx_mbuf(mbuf, len);
2701 			mbuf_head->pkt_len += len;
2702 		}
2703 
2704 		/*
2705 		 * Mark the descriptor as depleted and perform necessary
2706 		 * cleanup.
2707 		 * This code will execute in two cases:
2708 		 *  1. Descriptor len was greater than 0 - normal situation.
2709 		 *  2. Descriptor len was 0 and we failed to add the descriptor
2710 		 *     to the device. In that situation, we should try to add
2711 		 *     the mbuf again in the populate routine and mark the
2712 		 *     descriptor as used up by the device.
2713 		 */
2714 		rx_info->mbuf = NULL;
2715 		rx_ring->empty_rx_reqs[ntc] = req_id;
2716 		ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2717 	}
2718 
2719 	*next_to_clean = ntc;
2720 
2721 	return mbuf_head;
2722 }
2723 
2724 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
2725 				  uint16_t nb_pkts)
2726 {
2727 	struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
2728 	unsigned int free_queue_entries;
2729 	uint16_t next_to_clean = rx_ring->next_to_clean;
2730 	uint16_t descs_in_use;
2731 	struct rte_mbuf *mbuf;
2732 	uint16_t completed;
2733 	struct ena_com_rx_ctx ena_rx_ctx;
2734 	int i, rc = 0;
2735 	bool fill_hash;
2736 
2737 #ifdef RTE_ETHDEV_DEBUG_RX
2738 	/* Check adapter state */
2739 	if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2740 		PMD_RX_LOG(ALERT,
2741 			"Trying to receive pkts while device is NOT running\n");
2742 		return 0;
2743 	}
2744 #endif
2745 
2746 	fill_hash = rx_ring->offloads & RTE_ETH_RX_OFFLOAD_RSS_HASH;
2747 
2748 	descs_in_use = rx_ring->ring_size -
2749 		ena_com_free_q_entries(rx_ring->ena_com_io_sq) - 1;
2750 	nb_pkts = RTE_MIN(descs_in_use, nb_pkts);
2751 
2752 	for (completed = 0; completed < nb_pkts; completed++) {
2753 		ena_rx_ctx.max_bufs = rx_ring->sgl_size;
2754 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
2755 		ena_rx_ctx.descs = 0;
2756 		ena_rx_ctx.pkt_offset = 0;
2757 		/* receive packet context */
2758 		rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
2759 				    rx_ring->ena_com_io_sq,
2760 				    &ena_rx_ctx);
2761 		if (unlikely(rc)) {
2762 			PMD_RX_LOG(ERR,
2763 				"Failed to get the packet from the device, rc: %d\n",
2764 				rc);
2765 			if (rc == ENA_COM_NO_SPACE) {
2766 				++rx_ring->rx_stats.bad_desc_num;
2767 				ena_trigger_reset(rx_ring->adapter,
2768 					ENA_REGS_RESET_TOO_MANY_RX_DESCS);
2769 			} else {
2770 				++rx_ring->rx_stats.bad_req_id;
2771 				ena_trigger_reset(rx_ring->adapter,
2772 					ENA_REGS_RESET_INV_RX_REQ_ID);
2773 			}
2774 			return 0;
2775 		}
2776 
2777 		mbuf = ena_rx_mbuf(rx_ring,
2778 			ena_rx_ctx.ena_bufs,
2779 			ena_rx_ctx.descs,
2780 			&next_to_clean,
2781 			ena_rx_ctx.pkt_offset);
2782 		if (unlikely(mbuf == NULL)) {
2783 			for (i = 0; i < ena_rx_ctx.descs; ++i) {
2784 				rx_ring->empty_rx_reqs[next_to_clean] =
2785 					rx_ring->ena_bufs[i].req_id;
2786 				next_to_clean = ENA_IDX_NEXT_MASKED(
2787 					next_to_clean, rx_ring->size_mask);
2788 			}
2789 			break;
2790 		}
2791 
2792 		/* fill mbuf attributes if any */
2793 		ena_rx_mbuf_prepare(rx_ring, mbuf, &ena_rx_ctx, fill_hash);
2794 
2795 		if (unlikely(mbuf->ol_flags &
2796 				(RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD)))
2797 			rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors);
2798 
2799 		rx_pkts[completed] = mbuf;
2800 		rx_ring->rx_stats.bytes += mbuf->pkt_len;
2801 	}
2802 
2803 	rx_ring->rx_stats.cnt += completed;
2804 	rx_ring->next_to_clean = next_to_clean;
2805 
2806 	free_queue_entries = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
2807 
2808 	/* Burst refill to save doorbells, memory barriers, const interval */
2809 	if (free_queue_entries >= rx_ring->rx_free_thresh) {
2810 		ena_populate_rx_queue(rx_ring, free_queue_entries);
2811 	}
2812 
2813 	return completed;
2814 }
2815 
2816 static uint16_t
2817 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2818 		uint16_t nb_pkts)
2819 {
2820 	int32_t ret;
2821 	uint32_t i;
2822 	struct rte_mbuf *m;
2823 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2824 	struct ena_adapter *adapter = tx_ring->adapter;
2825 	struct rte_ipv4_hdr *ip_hdr;
2826 	uint64_t ol_flags;
2827 	uint64_t l4_csum_flag;
2828 	uint64_t dev_offload_capa;
2829 	uint16_t frag_field;
2830 	bool need_pseudo_csum;
2831 
2832 	dev_offload_capa = adapter->offloads.tx_offloads;
2833 	for (i = 0; i != nb_pkts; i++) {
2834 		m = tx_pkts[i];
2835 		ol_flags = m->ol_flags;
2836 
2837 		/* Check if any offload flag was set */
2838 		if (ol_flags == 0)
2839 			continue;
2840 
2841 		l4_csum_flag = ol_flags & RTE_MBUF_F_TX_L4_MASK;
2842 		/* SCTP checksum offload is not supported by the ENA. */
2843 		if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) ||
2844 		    l4_csum_flag == RTE_MBUF_F_TX_SCTP_CKSUM) {
2845 			PMD_TX_LOG(DEBUG,
2846 				"mbuf[%" PRIu32 "] has unsupported offloads flags set: 0x%" PRIu64 "\n",
2847 				i, ol_flags);
2848 			rte_errno = ENOTSUP;
2849 			return i;
2850 		}
2851 
2852 		if (unlikely(m->nb_segs >= tx_ring->sgl_size &&
2853 		    !(tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
2854 		      m->nb_segs == tx_ring->sgl_size &&
2855 		      m->data_len < tx_ring->tx_max_header_size))) {
2856 			PMD_TX_LOG(DEBUG,
2857 				"mbuf[%" PRIu32 "] has too many segments: %" PRIu16 "\n",
2858 				i, m->nb_segs);
2859 			rte_errno = EINVAL;
2860 			return i;
2861 		}
2862 
2863 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2864 		/* Check if requested offload is also enabled for the queue */
2865 		if ((ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
2866 		     !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM)) ||
2867 		    (l4_csum_flag == RTE_MBUF_F_TX_TCP_CKSUM &&
2868 		     !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) ||
2869 		    (l4_csum_flag == RTE_MBUF_F_TX_UDP_CKSUM &&
2870 		     !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM))) {
2871 			PMD_TX_LOG(DEBUG,
2872 				"mbuf[%" PRIu32 "]: requested offloads: %" PRIu16 " are not enabled for the queue[%u]\n",
2873 				i, m->nb_segs, tx_ring->id);
2874 			rte_errno = EINVAL;
2875 			return i;
2876 		}
2877 
2878 		/* The caller is obligated to set l2 and l3 len if any cksum
2879 		 * offload is enabled.
2880 		 */
2881 		if (unlikely(ol_flags & (RTE_MBUF_F_TX_IP_CKSUM | RTE_MBUF_F_TX_L4_MASK) &&
2882 		    (m->l2_len == 0 || m->l3_len == 0))) {
2883 			PMD_TX_LOG(DEBUG,
2884 				"mbuf[%" PRIu32 "]: l2_len or l3_len values are 0 while the offload was requested\n",
2885 				i);
2886 			rte_errno = EINVAL;
2887 			return i;
2888 		}
2889 		ret = rte_validate_tx_offload(m);
2890 		if (ret != 0) {
2891 			rte_errno = -ret;
2892 			return i;
2893 		}
2894 #endif
2895 
2896 		/* Verify HW support for requested offloads and determine if
2897 		 * pseudo header checksum is needed.
2898 		 */
2899 		need_pseudo_csum = false;
2900 		if (ol_flags & RTE_MBUF_F_TX_IPV4) {
2901 			if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
2902 			    !(dev_offload_capa & ENA_L3_IPV4_CSUM)) {
2903 				rte_errno = ENOTSUP;
2904 				return i;
2905 			}
2906 
2907 			if (ol_flags & RTE_MBUF_F_TX_TCP_SEG &&
2908 			    !(dev_offload_capa & ENA_IPV4_TSO)) {
2909 				rte_errno = ENOTSUP;
2910 				return i;
2911 			}
2912 
2913 			/* Check HW capabilities and if pseudo csum is needed
2914 			 * for L4 offloads.
2915 			 */
2916 			if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
2917 			    !(dev_offload_capa & ENA_L4_IPV4_CSUM)) {
2918 				if (dev_offload_capa &
2919 				    ENA_L4_IPV4_CSUM_PARTIAL) {
2920 					need_pseudo_csum = true;
2921 				} else {
2922 					rte_errno = ENOTSUP;
2923 					return i;
2924 				}
2925 			}
2926 
2927 			/* Parse the DF flag */
2928 			ip_hdr = rte_pktmbuf_mtod_offset(m,
2929 				struct rte_ipv4_hdr *, m->l2_len);
2930 			frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
2931 			if (frag_field & RTE_IPV4_HDR_DF_FLAG) {
2932 				m->packet_type |= RTE_PTYPE_L4_NONFRAG;
2933 			} else if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2934 				/* In case we are supposed to TSO and have DF
2935 				 * not set (DF=0) hardware must be provided with
2936 				 * partial checksum.
2937 				 */
2938 				need_pseudo_csum = true;
2939 			}
2940 		} else if (ol_flags & RTE_MBUF_F_TX_IPV6) {
2941 			/* There is no support for IPv6 TSO as for now. */
2942 			if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2943 				rte_errno = ENOTSUP;
2944 				return i;
2945 			}
2946 
2947 			/* Check HW capabilities and if pseudo csum is needed */
2948 			if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
2949 			    !(dev_offload_capa & ENA_L4_IPV6_CSUM)) {
2950 				if (dev_offload_capa &
2951 				    ENA_L4_IPV6_CSUM_PARTIAL) {
2952 					need_pseudo_csum = true;
2953 				} else {
2954 					rte_errno = ENOTSUP;
2955 					return i;
2956 				}
2957 			}
2958 		}
2959 
2960 		if (need_pseudo_csum) {
2961 			ret = rte_net_intel_cksum_flags_prepare(m, ol_flags);
2962 			if (ret != 0) {
2963 				rte_errno = -ret;
2964 				return i;
2965 			}
2966 		}
2967 	}
2968 
2969 	return i;
2970 }
2971 
2972 static void ena_update_hints(struct ena_adapter *adapter,
2973 			     struct ena_admin_ena_hw_hints *hints)
2974 {
2975 	if (hints->admin_completion_tx_timeout)
2976 		adapter->ena_dev.admin_queue.completion_timeout =
2977 			hints->admin_completion_tx_timeout * 1000;
2978 
2979 	if (hints->mmio_read_timeout)
2980 		/* convert to usec */
2981 		adapter->ena_dev.mmio_read.reg_read_to =
2982 			hints->mmio_read_timeout * 1000;
2983 
2984 	if (hints->driver_watchdog_timeout) {
2985 		if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
2986 			adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
2987 		else
2988 			// Convert msecs to ticks
2989 			adapter->keep_alive_timeout =
2990 				(hints->driver_watchdog_timeout *
2991 				rte_get_timer_hz()) / 1000;
2992 	}
2993 }
2994 
2995 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
2996 	struct ena_tx_buffer *tx_info,
2997 	struct rte_mbuf *mbuf,
2998 	void **push_header,
2999 	uint16_t *header_len)
3000 {
3001 	struct ena_com_buf *ena_buf;
3002 	uint16_t delta, seg_len, push_len;
3003 
3004 	delta = 0;
3005 	seg_len = mbuf->data_len;
3006 
3007 	tx_info->mbuf = mbuf;
3008 	ena_buf = tx_info->bufs;
3009 
3010 	if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
3011 		/*
3012 		 * Tx header might be (and will be in most cases) smaller than
3013 		 * tx_max_header_size. But it's not an issue to send more data
3014 		 * to the device, than actually needed if the mbuf size is
3015 		 * greater than tx_max_header_size.
3016 		 */
3017 		push_len = RTE_MIN(mbuf->pkt_len, tx_ring->tx_max_header_size);
3018 		*header_len = push_len;
3019 
3020 		if (likely(push_len <= seg_len)) {
3021 			/* If the push header is in the single segment, then
3022 			 * just point it to the 1st mbuf data.
3023 			 */
3024 			*push_header = rte_pktmbuf_mtod(mbuf, uint8_t *);
3025 		} else {
3026 			/* If the push header lays in the several segments, copy
3027 			 * it to the intermediate buffer.
3028 			 */
3029 			rte_pktmbuf_read(mbuf, 0, push_len,
3030 				tx_ring->push_buf_intermediate_buf);
3031 			*push_header = tx_ring->push_buf_intermediate_buf;
3032 			delta = push_len - seg_len;
3033 		}
3034 	} else {
3035 		*push_header = NULL;
3036 		*header_len = 0;
3037 		push_len = 0;
3038 	}
3039 
3040 	/* Process first segment taking into consideration pushed header */
3041 	if (seg_len > push_len) {
3042 		ena_buf->paddr = mbuf->buf_iova +
3043 				mbuf->data_off +
3044 				push_len;
3045 		ena_buf->len = seg_len - push_len;
3046 		ena_buf++;
3047 		tx_info->num_of_bufs++;
3048 	}
3049 
3050 	while ((mbuf = mbuf->next) != NULL) {
3051 		seg_len = mbuf->data_len;
3052 
3053 		/* Skip mbufs if whole data is pushed as a header */
3054 		if (unlikely(delta > seg_len)) {
3055 			delta -= seg_len;
3056 			continue;
3057 		}
3058 
3059 		ena_buf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
3060 		ena_buf->len = seg_len - delta;
3061 		ena_buf++;
3062 		tx_info->num_of_bufs++;
3063 
3064 		delta = 0;
3065 	}
3066 }
3067 
3068 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf)
3069 {
3070 	struct ena_tx_buffer *tx_info;
3071 	struct ena_com_tx_ctx ena_tx_ctx = { { 0 } };
3072 	uint16_t next_to_use;
3073 	uint16_t header_len;
3074 	uint16_t req_id;
3075 	void *push_header;
3076 	int nb_hw_desc;
3077 	int rc;
3078 
3079 	/* Checking for space for 2 additional metadata descriptors due to
3080 	 * possible header split and metadata descriptor
3081 	 */
3082 	if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
3083 					  mbuf->nb_segs + 2)) {
3084 		PMD_DRV_LOG(DEBUG, "Not enough space in the tx queue\n");
3085 		return ENA_COM_NO_MEM;
3086 	}
3087 
3088 	next_to_use = tx_ring->next_to_use;
3089 
3090 	req_id = tx_ring->empty_tx_reqs[next_to_use];
3091 	tx_info = &tx_ring->tx_buffer_info[req_id];
3092 	tx_info->num_of_bufs = 0;
3093 	RTE_ASSERT(tx_info->mbuf == NULL);
3094 
3095 	ena_tx_map_mbuf(tx_ring, tx_info, mbuf, &push_header, &header_len);
3096 
3097 	ena_tx_ctx.ena_bufs = tx_info->bufs;
3098 	ena_tx_ctx.push_header = push_header;
3099 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
3100 	ena_tx_ctx.req_id = req_id;
3101 	ena_tx_ctx.header_len = header_len;
3102 
3103 	/* Set Tx offloads flags, if applicable */
3104 	ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads,
3105 		tx_ring->disable_meta_caching);
3106 
3107 	if (unlikely(ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
3108 			&ena_tx_ctx))) {
3109 		PMD_TX_LOG(DEBUG,
3110 			"LLQ Tx max burst size of queue %d achieved, writing doorbell to send burst\n",
3111 			tx_ring->id);
3112 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
3113 		tx_ring->tx_stats.doorbells++;
3114 		tx_ring->pkts_without_db = false;
3115 	}
3116 
3117 	/* prepare the packet's descriptors to dma engine */
3118 	rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq,	&ena_tx_ctx,
3119 		&nb_hw_desc);
3120 	if (unlikely(rc)) {
3121 		PMD_DRV_LOG(ERR, "Failed to prepare Tx buffers, rc: %d\n", rc);
3122 		++tx_ring->tx_stats.prepare_ctx_err;
3123 		ena_trigger_reset(tx_ring->adapter,
3124 			ENA_REGS_RESET_DRIVER_INVALID_STATE);
3125 		return rc;
3126 	}
3127 
3128 	tx_info->tx_descs = nb_hw_desc;
3129 	tx_info->timestamp = rte_get_timer_cycles();
3130 
3131 	tx_ring->tx_stats.cnt++;
3132 	tx_ring->tx_stats.bytes += mbuf->pkt_len;
3133 
3134 	tx_ring->next_to_use = ENA_IDX_NEXT_MASKED(next_to_use,
3135 		tx_ring->size_mask);
3136 
3137 	return 0;
3138 }
3139 
3140 static __rte_always_inline size_t
3141 ena_tx_cleanup_mbuf_fast(struct rte_mbuf **mbufs_to_clean,
3142 			 struct rte_mbuf *mbuf,
3143 			 size_t mbuf_cnt,
3144 			 size_t buf_size)
3145 {
3146 	struct rte_mbuf *m_next;
3147 
3148 	while (mbuf != NULL) {
3149 		m_next = mbuf->next;
3150 		mbufs_to_clean[mbuf_cnt++] = mbuf;
3151 		if (mbuf_cnt == buf_size) {
3152 			rte_pktmbuf_free_bulk(mbufs_to_clean, mbuf_cnt);
3153 			mbuf_cnt = 0;
3154 		}
3155 		mbuf = m_next;
3156 	}
3157 
3158 	return mbuf_cnt;
3159 }
3160 
3161 static int ena_tx_cleanup(void *txp, uint32_t free_pkt_cnt)
3162 {
3163 	struct rte_mbuf *mbufs_to_clean[ENA_CLEANUP_BUF_SIZE];
3164 	struct ena_ring *tx_ring = (struct ena_ring *)txp;
3165 	size_t mbuf_cnt = 0;
3166 	unsigned int total_tx_descs = 0;
3167 	unsigned int total_tx_pkts = 0;
3168 	uint16_t cleanup_budget;
3169 	uint16_t next_to_clean = tx_ring->next_to_clean;
3170 	bool fast_free = tx_ring->offloads & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
3171 
3172 	/*
3173 	 * If free_pkt_cnt is equal to 0, it means that the user requested
3174 	 * full cleanup, so attempt to release all Tx descriptors
3175 	 * (ring_size - 1 -> size_mask)
3176 	 */
3177 	cleanup_budget = (free_pkt_cnt == 0) ? tx_ring->size_mask : free_pkt_cnt;
3178 
3179 	while (likely(total_tx_pkts < cleanup_budget)) {
3180 		struct rte_mbuf *mbuf;
3181 		struct ena_tx_buffer *tx_info;
3182 		uint16_t req_id;
3183 
3184 		if (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) != 0)
3185 			break;
3186 
3187 		if (unlikely(validate_tx_req_id(tx_ring, req_id) != 0))
3188 			break;
3189 
3190 		/* Get Tx info & store how many descs were processed  */
3191 		tx_info = &tx_ring->tx_buffer_info[req_id];
3192 		tx_info->timestamp = 0;
3193 
3194 		mbuf = tx_info->mbuf;
3195 		if (fast_free) {
3196 			mbuf_cnt = ena_tx_cleanup_mbuf_fast(mbufs_to_clean, mbuf, mbuf_cnt,
3197 				ENA_CLEANUP_BUF_SIZE);
3198 		} else {
3199 			rte_pktmbuf_free(mbuf);
3200 		}
3201 
3202 		tx_info->mbuf = NULL;
3203 		tx_ring->empty_tx_reqs[next_to_clean] = req_id;
3204 
3205 		total_tx_descs += tx_info->tx_descs;
3206 		total_tx_pkts++;
3207 
3208 		/* Put back descriptor to the ring for reuse */
3209 		next_to_clean = ENA_IDX_NEXT_MASKED(next_to_clean,
3210 			tx_ring->size_mask);
3211 	}
3212 
3213 	if (likely(total_tx_descs > 0)) {
3214 		/* acknowledge completion of sent packets */
3215 		tx_ring->next_to_clean = next_to_clean;
3216 		ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
3217 	}
3218 
3219 	if (mbuf_cnt != 0)
3220 		rte_pktmbuf_free_bulk(mbufs_to_clean, mbuf_cnt);
3221 
3222 	/* Notify completion handler that full cleanup was performed */
3223 	if (free_pkt_cnt == 0 || total_tx_pkts < cleanup_budget)
3224 		tx_ring->last_cleanup_ticks = rte_get_timer_cycles();
3225 
3226 	return total_tx_pkts;
3227 }
3228 
3229 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
3230 				  uint16_t nb_pkts)
3231 {
3232 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
3233 	int available_desc;
3234 	uint16_t sent_idx = 0;
3235 
3236 #ifdef RTE_ETHDEV_DEBUG_TX
3237 	/* Check adapter state */
3238 	if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
3239 		PMD_TX_LOG(ALERT,
3240 			"Trying to xmit pkts while device is NOT running\n");
3241 		return 0;
3242 	}
3243 #endif
3244 
3245 	available_desc = ena_com_free_q_entries(tx_ring->ena_com_io_sq);
3246 	if (available_desc < tx_ring->tx_free_thresh)
3247 		ena_tx_cleanup((void *)tx_ring, 0);
3248 
3249 	for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
3250 		if (ena_xmit_mbuf(tx_ring, tx_pkts[sent_idx]))
3251 			break;
3252 		tx_ring->pkts_without_db = true;
3253 		rte_prefetch0(tx_pkts[ENA_IDX_ADD_MASKED(sent_idx, 4,
3254 			tx_ring->size_mask)]);
3255 	}
3256 
3257 	/* If there are ready packets to be xmitted... */
3258 	if (likely(tx_ring->pkts_without_db)) {
3259 		/* ...let HW do its best :-) */
3260 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
3261 		tx_ring->tx_stats.doorbells++;
3262 		tx_ring->pkts_without_db = false;
3263 	}
3264 
3265 	tx_ring->tx_stats.available_desc =
3266 		ena_com_free_q_entries(tx_ring->ena_com_io_sq);
3267 	tx_ring->tx_stats.tx_poll++;
3268 
3269 	return sent_idx;
3270 }
3271 
3272 static void ena_copy_customer_metrics(struct ena_adapter *adapter, uint64_t *buf,
3273 					     size_t num_metrics)
3274 {
3275 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
3276 	int rc;
3277 
3278 	if (ena_com_get_cap(ena_dev, ENA_ADMIN_CUSTOMER_METRICS)) {
3279 		if (num_metrics != ENA_STATS_ARRAY_METRICS) {
3280 			PMD_DRV_LOG(ERR, "Detected discrepancy in the number of customer metrics");
3281 			return;
3282 		}
3283 		rte_spinlock_lock(&adapter->admin_lock);
3284 		rc = ENA_PROXY(adapter,
3285 					ena_com_get_customer_metrics,
3286 					&adapter->ena_dev,
3287 					(char *)buf,
3288 					num_metrics * sizeof(uint64_t));
3289 		rte_spinlock_unlock(&adapter->admin_lock);
3290 		if (rc != 0) {
3291 			PMD_DRV_LOG(WARNING, "Failed to get customer metrics, rc: %d\n", rc);
3292 			return;
3293 		}
3294 
3295 	} else if (ena_com_get_cap(ena_dev, ENA_ADMIN_ENI_STATS)) {
3296 		if (num_metrics != ENA_STATS_ARRAY_METRICS_LEGACY) {
3297 			PMD_DRV_LOG(ERR, "Detected discrepancy in the number of legacy metrics");
3298 			return;
3299 		}
3300 
3301 		rte_spinlock_lock(&adapter->admin_lock);
3302 		rc = ENA_PROXY(adapter,
3303 			       ena_com_get_eni_stats,
3304 			       &adapter->ena_dev,
3305 			       (struct ena_admin_eni_stats *)buf);
3306 		rte_spinlock_unlock(&adapter->admin_lock);
3307 		if (rc != 0) {
3308 			PMD_DRV_LOG(WARNING,
3309 				"Failed to get ENI metrics, rc: %d\n", rc);
3310 			return;
3311 		}
3312 	}
3313 }
3314 
3315 static void ena_copy_ena_srd_info(struct ena_adapter *adapter,
3316 		struct ena_stats_srd *srd_info)
3317 {
3318 	int rc;
3319 
3320 	if (!ena_com_get_cap(&adapter->ena_dev, ENA_ADMIN_ENA_SRD_INFO))
3321 		return;
3322 
3323 	rte_spinlock_lock(&adapter->admin_lock);
3324 	rc = ENA_PROXY(adapter,
3325 		       ena_com_get_ena_srd_info,
3326 		       &adapter->ena_dev,
3327 		       (struct ena_admin_ena_srd_info *)srd_info);
3328 	rte_spinlock_unlock(&adapter->admin_lock);
3329 	if (rc != ENA_COM_OK && rc != ENA_COM_UNSUPPORTED) {
3330 		PMD_DRV_LOG(WARNING,
3331 				"Failed to get ENA express srd info, rc: %d\n", rc);
3332 		return;
3333 	}
3334 }
3335 
3336 /**
3337  * DPDK callback to retrieve names of extended device statistics
3338  *
3339  * @param dev
3340  *   Pointer to Ethernet device structure.
3341  * @param[out] xstats_names
3342  *   Buffer to insert names into.
3343  * @param n
3344  *   Number of names.
3345  *
3346  * @return
3347  *   Number of xstats names.
3348  */
3349 static int ena_xstats_get_names(struct rte_eth_dev *dev,
3350 				struct rte_eth_xstat_name *xstats_names,
3351 				unsigned int n)
3352 {
3353 	struct ena_adapter *adapter = dev->data->dev_private;
3354 	unsigned int xstats_count = ena_xstats_calc_num(dev->data);
3355 	unsigned int stat, i, count = 0;
3356 
3357 	if (n < xstats_count || !xstats_names)
3358 		return xstats_count;
3359 
3360 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
3361 		strcpy(xstats_names[count].name,
3362 			ena_stats_global_strings[stat].name);
3363 
3364 	for (stat = 0; stat < adapter->metrics_num; stat++, count++)
3365 		rte_strscpy(xstats_names[count].name,
3366 			    ena_stats_metrics_strings[stat].name,
3367 			    RTE_ETH_XSTATS_NAME_SIZE);
3368 	for (stat = 0; stat < ENA_STATS_ARRAY_ENA_SRD; stat++, count++)
3369 		rte_strscpy(xstats_names[count].name,
3370 			    ena_stats_srd_strings[stat].name,
3371 			    RTE_ETH_XSTATS_NAME_SIZE);
3372 
3373 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
3374 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
3375 			snprintf(xstats_names[count].name,
3376 				sizeof(xstats_names[count].name),
3377 				"rx_q%d_%s", i,
3378 				ena_stats_rx_strings[stat].name);
3379 
3380 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
3381 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
3382 			snprintf(xstats_names[count].name,
3383 				sizeof(xstats_names[count].name),
3384 				"tx_q%d_%s", i,
3385 				ena_stats_tx_strings[stat].name);
3386 
3387 	return xstats_count;
3388 }
3389 
3390 /**
3391  * DPDK callback to retrieve names of extended device statistics for the given
3392  * ids.
3393  *
3394  * @param dev
3395  *   Pointer to Ethernet device structure.
3396  * @param[out] xstats_names
3397  *   Buffer to insert names into.
3398  * @param ids
3399  *   IDs array for which the names should be retrieved.
3400  * @param size
3401  *   Number of ids.
3402  *
3403  * @return
3404  *   Positive value: number of xstats names. Negative value: error code.
3405  */
3406 static int ena_xstats_get_names_by_id(struct rte_eth_dev *dev,
3407 				      const uint64_t *ids,
3408 				      struct rte_eth_xstat_name *xstats_names,
3409 				      unsigned int size)
3410 {
3411 	struct ena_adapter *adapter = dev->data->dev_private;
3412 	uint64_t xstats_count = ena_xstats_calc_num(dev->data);
3413 	uint64_t id, qid;
3414 	unsigned int i;
3415 
3416 	if (xstats_names == NULL)
3417 		return xstats_count;
3418 
3419 	for (i = 0; i < size; ++i) {
3420 		id = ids[i];
3421 		if (id > xstats_count) {
3422 			PMD_DRV_LOG(ERR,
3423 				"ID value out of range: id=%" PRIu64 ", xstats_num=%" PRIu64 "\n",
3424 				 id, xstats_count);
3425 			return -EINVAL;
3426 		}
3427 
3428 		if (id < ENA_STATS_ARRAY_GLOBAL) {
3429 			strcpy(xstats_names[i].name,
3430 			       ena_stats_global_strings[id].name);
3431 			continue;
3432 		}
3433 
3434 		id -= ENA_STATS_ARRAY_GLOBAL;
3435 		if (id < adapter->metrics_num) {
3436 			rte_strscpy(xstats_names[i].name,
3437 				    ena_stats_metrics_strings[id].name,
3438 				    RTE_ETH_XSTATS_NAME_SIZE);
3439 			continue;
3440 		}
3441 
3442 		id -= adapter->metrics_num;
3443 
3444 		if (id < ENA_STATS_ARRAY_ENA_SRD) {
3445 			rte_strscpy(xstats_names[i].name,
3446 				    ena_stats_srd_strings[id].name,
3447 				    RTE_ETH_XSTATS_NAME_SIZE);
3448 			continue;
3449 		}
3450 		id -= ENA_STATS_ARRAY_ENA_SRD;
3451 
3452 		if (id < ENA_STATS_ARRAY_RX) {
3453 			qid = id / dev->data->nb_rx_queues;
3454 			id %= dev->data->nb_rx_queues;
3455 			snprintf(xstats_names[i].name,
3456 				 sizeof(xstats_names[i].name),
3457 				 "rx_q%" PRIu64 "d_%s",
3458 				 qid, ena_stats_rx_strings[id].name);
3459 			continue;
3460 		}
3461 
3462 		id -= ENA_STATS_ARRAY_RX;
3463 		/* Although this condition is not needed, it was added for
3464 		 * compatibility if new xstat structure would be ever added.
3465 		 */
3466 		if (id < ENA_STATS_ARRAY_TX) {
3467 			qid = id / dev->data->nb_tx_queues;
3468 			id %= dev->data->nb_tx_queues;
3469 			snprintf(xstats_names[i].name,
3470 				 sizeof(xstats_names[i].name),
3471 				 "tx_q%" PRIu64 "_%s",
3472 				 qid, ena_stats_tx_strings[id].name);
3473 			continue;
3474 		}
3475 	}
3476 
3477 	return i;
3478 }
3479 
3480 /**
3481  * DPDK callback to get extended device statistics.
3482  *
3483  * @param dev
3484  *   Pointer to Ethernet device structure.
3485  * @param[out] stats
3486  *   Stats table output buffer.
3487  * @param n
3488  *   The size of the stats table.
3489  *
3490  * @return
3491  *   Number of xstats on success, negative on failure.
3492  */
3493 static int ena_xstats_get(struct rte_eth_dev *dev,
3494 			  struct rte_eth_xstat *xstats,
3495 			  unsigned int n)
3496 {
3497 	struct ena_adapter *adapter = dev->data->dev_private;
3498 	unsigned int xstats_count = ena_xstats_calc_num(dev->data);
3499 	unsigned int stat, i, count = 0;
3500 	int stat_offset;
3501 	void *stats_begin;
3502 	uint64_t metrics_stats[ENA_MAX_CUSTOMER_METRICS];
3503 	struct ena_stats_srd srd_info = {0};
3504 
3505 	if (n < xstats_count)
3506 		return xstats_count;
3507 
3508 	if (!xstats)
3509 		return 0;
3510 
3511 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
3512 		stat_offset = ena_stats_global_strings[stat].stat_offset;
3513 		stats_begin = &adapter->dev_stats;
3514 
3515 		xstats[count].id = count;
3516 		xstats[count].value = *((uint64_t *)
3517 			((char *)stats_begin + stat_offset));
3518 	}
3519 
3520 	ena_copy_customer_metrics(adapter, metrics_stats, adapter->metrics_num);
3521 	stats_begin = metrics_stats;
3522 	for (stat = 0; stat < adapter->metrics_num; stat++, count++) {
3523 		stat_offset = ena_stats_metrics_strings[stat].stat_offset;
3524 
3525 		xstats[count].id = count;
3526 		xstats[count].value = *((uint64_t *)
3527 		    ((char *)stats_begin + stat_offset));
3528 	}
3529 
3530 	ena_copy_ena_srd_info(adapter, &srd_info);
3531 	stats_begin = &srd_info;
3532 	for (stat = 0; stat < ENA_STATS_ARRAY_ENA_SRD; stat++, count++) {
3533 		stat_offset = ena_stats_srd_strings[stat].stat_offset;
3534 		xstats[count].id = count;
3535 		xstats[count].value = *((uint64_t *)
3536 		    ((char *)stats_begin + stat_offset));
3537 	}
3538 
3539 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
3540 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
3541 			stat_offset = ena_stats_rx_strings[stat].stat_offset;
3542 			stats_begin = &adapter->rx_ring[i].rx_stats;
3543 
3544 			xstats[count].id = count;
3545 			xstats[count].value = *((uint64_t *)
3546 				((char *)stats_begin + stat_offset));
3547 		}
3548 	}
3549 
3550 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
3551 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
3552 			stat_offset = ena_stats_tx_strings[stat].stat_offset;
3553 			stats_begin = &adapter->tx_ring[i].rx_stats;
3554 
3555 			xstats[count].id = count;
3556 			xstats[count].value = *((uint64_t *)
3557 				((char *)stats_begin + stat_offset));
3558 		}
3559 	}
3560 
3561 	return count;
3562 }
3563 
3564 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
3565 				const uint64_t *ids,
3566 				uint64_t *values,
3567 				unsigned int n)
3568 {
3569 	struct ena_adapter *adapter = dev->data->dev_private;
3570 	uint64_t id;
3571 	uint64_t rx_entries, tx_entries;
3572 	unsigned int i;
3573 	int qid;
3574 	int valid = 0;
3575 	bool were_metrics_copied = false;
3576 	bool was_srd_info_copied = false;
3577 	uint64_t metrics_stats[ENA_MAX_CUSTOMER_METRICS];
3578 	struct ena_stats_srd srd_info = {0};
3579 
3580 	for (i = 0; i < n; ++i) {
3581 		id = ids[i];
3582 		/* Check if id belongs to global statistics */
3583 		if (id < ENA_STATS_ARRAY_GLOBAL) {
3584 			values[i] = *((uint64_t *)&adapter->dev_stats + id);
3585 			++valid;
3586 			continue;
3587 		}
3588 
3589 		/* Check if id belongs to ENI statistics */
3590 		id -= ENA_STATS_ARRAY_GLOBAL;
3591 		if (id < adapter->metrics_num) {
3592 			/* Avoid reading metrics multiple times in a single
3593 			 * function call, as it requires communication with the
3594 			 * admin queue.
3595 			 */
3596 			if (!were_metrics_copied) {
3597 				were_metrics_copied = true;
3598 				ena_copy_customer_metrics(adapter,
3599 						metrics_stats,
3600 						adapter->metrics_num);
3601 			}
3602 
3603 			values[i] = *((uint64_t *)&metrics_stats + id);
3604 			++valid;
3605 			continue;
3606 		}
3607 
3608 		/* Check if id belongs to SRD info statistics */
3609 		id -= adapter->metrics_num;
3610 
3611 		if (id < ENA_STATS_ARRAY_ENA_SRD) {
3612 			/*
3613 			 * Avoid reading srd info multiple times in a single
3614 			 * function call, as it requires communication with the
3615 			 * admin queue.
3616 			 */
3617 			if (!was_srd_info_copied) {
3618 				was_srd_info_copied = true;
3619 				ena_copy_ena_srd_info(adapter, &srd_info);
3620 			}
3621 			values[i] = *((uint64_t *)&adapter->srd_stats + id);
3622 			++valid;
3623 			continue;
3624 		}
3625 
3626 		/* Check if id belongs to rx queue statistics */
3627 		id -= ENA_STATS_ARRAY_ENA_SRD;
3628 
3629 		rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
3630 		if (id < rx_entries) {
3631 			qid = id % dev->data->nb_rx_queues;
3632 			id /= dev->data->nb_rx_queues;
3633 			values[i] = *((uint64_t *)
3634 				&adapter->rx_ring[qid].rx_stats + id);
3635 			++valid;
3636 			continue;
3637 		}
3638 				/* Check if id belongs to rx queue statistics */
3639 		id -= rx_entries;
3640 		tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
3641 		if (id < tx_entries) {
3642 			qid = id % dev->data->nb_tx_queues;
3643 			id /= dev->data->nb_tx_queues;
3644 			values[i] = *((uint64_t *)
3645 				&adapter->tx_ring[qid].tx_stats + id);
3646 			++valid;
3647 			continue;
3648 		}
3649 	}
3650 
3651 	return valid;
3652 }
3653 
3654 static int ena_process_uint_devarg(const char *key,
3655 				  const char *value,
3656 				  void *opaque)
3657 {
3658 	struct ena_adapter *adapter = opaque;
3659 	char *str_end;
3660 	uint64_t uint_value;
3661 
3662 	uint_value = strtoull(value, &str_end, DECIMAL_BASE);
3663 	if (value == str_end) {
3664 		PMD_INIT_LOG(ERR,
3665 			"Invalid value for key '%s'. Only uint values are accepted.\n",
3666 			key);
3667 		return -EINVAL;
3668 	}
3669 
3670 	if (strcmp(key, ENA_DEVARG_MISS_TXC_TO) == 0) {
3671 		if (uint_value > ENA_MAX_TX_TIMEOUT_SECONDS) {
3672 			PMD_INIT_LOG(ERR,
3673 				"Tx timeout too high: %" PRIu64 " sec. Maximum allowed: %d sec.\n",
3674 				uint_value, ENA_MAX_TX_TIMEOUT_SECONDS);
3675 			return -EINVAL;
3676 		} else if (uint_value == 0) {
3677 			PMD_INIT_LOG(INFO,
3678 				"Check for missing Tx completions has been disabled.\n");
3679 			adapter->missing_tx_completion_to =
3680 				ENA_HW_HINTS_NO_TIMEOUT;
3681 		} else {
3682 			PMD_INIT_LOG(INFO,
3683 				"Tx packet completion timeout set to %" PRIu64 " seconds.\n",
3684 				uint_value);
3685 			adapter->missing_tx_completion_to =
3686 				uint_value * rte_get_timer_hz();
3687 		}
3688 	}
3689 
3690 	return 0;
3691 }
3692 
3693 static int ena_process_bool_devarg(const char *key,
3694 				   const char *value,
3695 				   void *opaque)
3696 {
3697 	struct ena_adapter *adapter = opaque;
3698 	bool bool_value;
3699 
3700 	/* Parse the value. */
3701 	if (strcmp(value, "1") == 0) {
3702 		bool_value = true;
3703 	} else if (strcmp(value, "0") == 0) {
3704 		bool_value = false;
3705 	} else {
3706 		PMD_INIT_LOG(ERR,
3707 			"Invalid value: '%s' for key '%s'. Accepted: '0' or '1'\n",
3708 			value, key);
3709 		return -EINVAL;
3710 	}
3711 
3712 	/* Now, assign it to the proper adapter field. */
3713 	if (strcmp(key, ENA_DEVARG_LARGE_LLQ_HDR) == 0)
3714 		adapter->use_large_llq_hdr = bool_value;
3715 	else if (strcmp(key, ENA_DEVARG_NORMAL_LLQ_HDR) == 0)
3716 		adapter->use_normal_llq_hdr = bool_value;
3717 	else if (strcmp(key, ENA_DEVARG_ENABLE_LLQ) == 0)
3718 		adapter->enable_llq = bool_value;
3719 
3720 	return 0;
3721 }
3722 
3723 static int ena_parse_devargs(struct ena_adapter *adapter,
3724 			     struct rte_devargs *devargs)
3725 {
3726 	static const char * const allowed_args[] = {
3727 		ENA_DEVARG_LARGE_LLQ_HDR,
3728 		ENA_DEVARG_NORMAL_LLQ_HDR,
3729 		ENA_DEVARG_MISS_TXC_TO,
3730 		ENA_DEVARG_ENABLE_LLQ,
3731 		NULL,
3732 	};
3733 	struct rte_kvargs *kvlist;
3734 	int rc;
3735 
3736 	if (devargs == NULL)
3737 		return 0;
3738 
3739 	kvlist = rte_kvargs_parse(devargs->args, allowed_args);
3740 	if (kvlist == NULL) {
3741 		PMD_INIT_LOG(ERR, "Invalid device arguments: %s\n",
3742 			devargs->args);
3743 		return -EINVAL;
3744 	}
3745 
3746 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_LARGE_LLQ_HDR,
3747 		ena_process_bool_devarg, adapter);
3748 	if (rc != 0)
3749 		goto exit;
3750 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_NORMAL_LLQ_HDR,
3751 		ena_process_bool_devarg, adapter);
3752 	if (rc != 0)
3753 		goto exit;
3754 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_MISS_TXC_TO,
3755 		ena_process_uint_devarg, adapter);
3756 	if (rc != 0)
3757 		goto exit;
3758 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_ENABLE_LLQ,
3759 		ena_process_bool_devarg, adapter);
3760 
3761 exit:
3762 	rte_kvargs_free(kvlist);
3763 
3764 	return rc;
3765 }
3766 
3767 static int ena_setup_rx_intr(struct rte_eth_dev *dev)
3768 {
3769 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3770 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
3771 	int rc;
3772 	uint16_t vectors_nb, i;
3773 	bool rx_intr_requested = dev->data->dev_conf.intr_conf.rxq;
3774 
3775 	if (!rx_intr_requested)
3776 		return 0;
3777 
3778 	if (!rte_intr_cap_multiple(intr_handle)) {
3779 		PMD_DRV_LOG(ERR,
3780 			"Rx interrupt requested, but it isn't supported by the PCI driver\n");
3781 		return -ENOTSUP;
3782 	}
3783 
3784 	/* Disable interrupt mapping before the configuration starts. */
3785 	rte_intr_disable(intr_handle);
3786 
3787 	/* Verify if there are enough vectors available. */
3788 	vectors_nb = dev->data->nb_rx_queues;
3789 	if (vectors_nb > RTE_MAX_RXTX_INTR_VEC_ID) {
3790 		PMD_DRV_LOG(ERR,
3791 			"Too many Rx interrupts requested, maximum number: %d\n",
3792 			RTE_MAX_RXTX_INTR_VEC_ID);
3793 		rc = -ENOTSUP;
3794 		goto enable_intr;
3795 	}
3796 
3797 	/* Allocate the vector list */
3798 	if (rte_intr_vec_list_alloc(intr_handle, "intr_vec",
3799 					   dev->data->nb_rx_queues)) {
3800 		PMD_DRV_LOG(ERR,
3801 			"Failed to allocate interrupt vector for %d queues\n",
3802 			dev->data->nb_rx_queues);
3803 		rc = -ENOMEM;
3804 		goto enable_intr;
3805 	}
3806 
3807 	rc = rte_intr_efd_enable(intr_handle, vectors_nb);
3808 	if (rc != 0)
3809 		goto free_intr_vec;
3810 
3811 	if (!rte_intr_allow_others(intr_handle)) {
3812 		PMD_DRV_LOG(ERR,
3813 			"Not enough interrupts available to use both ENA Admin and Rx interrupts\n");
3814 		goto disable_intr_efd;
3815 	}
3816 
3817 	for (i = 0; i < vectors_nb; ++i)
3818 		if (rte_intr_vec_list_index_set(intr_handle, i,
3819 					   RTE_INTR_VEC_RXTX_OFFSET + i))
3820 			goto disable_intr_efd;
3821 
3822 	rte_intr_enable(intr_handle);
3823 	return 0;
3824 
3825 disable_intr_efd:
3826 	rte_intr_efd_disable(intr_handle);
3827 free_intr_vec:
3828 	rte_intr_vec_list_free(intr_handle);
3829 enable_intr:
3830 	rte_intr_enable(intr_handle);
3831 	return rc;
3832 }
3833 
3834 static void ena_rx_queue_intr_set(struct rte_eth_dev *dev,
3835 				 uint16_t queue_id,
3836 				 bool unmask)
3837 {
3838 	struct ena_adapter *adapter = dev->data->dev_private;
3839 	struct ena_ring *rxq = &adapter->rx_ring[queue_id];
3840 	struct ena_eth_io_intr_reg intr_reg;
3841 
3842 	ena_com_update_intr_reg(&intr_reg, 0, 0, unmask, 1);
3843 	ena_com_unmask_intr(rxq->ena_com_io_cq, &intr_reg);
3844 }
3845 
3846 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
3847 				    uint16_t queue_id)
3848 {
3849 	ena_rx_queue_intr_set(dev, queue_id, true);
3850 
3851 	return 0;
3852 }
3853 
3854 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
3855 				     uint16_t queue_id)
3856 {
3857 	ena_rx_queue_intr_set(dev, queue_id, false);
3858 
3859 	return 0;
3860 }
3861 
3862 static int ena_configure_aenq(struct ena_adapter *adapter)
3863 {
3864 	uint32_t aenq_groups = adapter->all_aenq_groups;
3865 	int rc;
3866 
3867 	/* All_aenq_groups holds all AENQ functions supported by the device and
3868 	 * the HW, so at first we need to be sure the LSC request is valid.
3869 	 */
3870 	if (adapter->edev_data->dev_conf.intr_conf.lsc != 0) {
3871 		if (!(aenq_groups & BIT(ENA_ADMIN_LINK_CHANGE))) {
3872 			PMD_DRV_LOG(ERR,
3873 				"LSC requested, but it's not supported by the AENQ\n");
3874 			return -EINVAL;
3875 		}
3876 	} else {
3877 		/* If LSC wasn't enabled by the app, let's enable all supported
3878 		 * AENQ procedures except the LSC.
3879 		 */
3880 		aenq_groups &= ~BIT(ENA_ADMIN_LINK_CHANGE);
3881 	}
3882 
3883 	rc = ena_com_set_aenq_config(&adapter->ena_dev, aenq_groups);
3884 	if (rc != 0) {
3885 		PMD_DRV_LOG(ERR, "Cannot configure AENQ groups, rc=%d\n", rc);
3886 		return rc;
3887 	}
3888 
3889 	adapter->active_aenq_groups = aenq_groups;
3890 
3891 	return 0;
3892 }
3893 
3894 int ena_mp_indirect_table_set(struct ena_adapter *adapter)
3895 {
3896 	return ENA_PROXY(adapter, ena_com_indirect_table_set, &adapter->ena_dev);
3897 }
3898 
3899 int ena_mp_indirect_table_get(struct ena_adapter *adapter,
3900 			      uint32_t *indirect_table)
3901 {
3902 	return ENA_PROXY(adapter, ena_com_indirect_table_get, &adapter->ena_dev,
3903 		indirect_table);
3904 }
3905 
3906 /*********************************************************************
3907  *  ena_plat_dpdk.h functions implementations
3908  *********************************************************************/
3909 
3910 const struct rte_memzone *
3911 ena_mem_alloc_coherent(struct rte_eth_dev_data *data, size_t size,
3912 		       int socket_id, unsigned int alignment, void **virt_addr,
3913 		       dma_addr_t *phys_addr)
3914 {
3915 	char z_name[RTE_MEMZONE_NAMESIZE];
3916 	struct ena_adapter *adapter = data->dev_private;
3917 	const struct rte_memzone *memzone;
3918 	int rc;
3919 
3920 	rc = snprintf(z_name, RTE_MEMZONE_NAMESIZE, "ena_p%d_mz%" PRIu64 "",
3921 		data->port_id, adapter->memzone_cnt);
3922 	if (rc >= RTE_MEMZONE_NAMESIZE) {
3923 		PMD_DRV_LOG(ERR,
3924 			"Name for the ena_com memzone is too long. Port: %d, mz_num: %" PRIu64 "\n",
3925 			data->port_id, adapter->memzone_cnt);
3926 		goto error;
3927 	}
3928 	adapter->memzone_cnt++;
3929 
3930 	memzone = rte_memzone_reserve_aligned(z_name, size, socket_id,
3931 		RTE_MEMZONE_IOVA_CONTIG, alignment);
3932 	if (memzone == NULL) {
3933 		PMD_DRV_LOG(ERR, "Failed to allocate ena_com memzone: %s\n",
3934 			z_name);
3935 		goto error;
3936 	}
3937 
3938 	memset(memzone->addr, 0, size);
3939 	*virt_addr = memzone->addr;
3940 	*phys_addr = memzone->iova;
3941 
3942 	return memzone;
3943 
3944 error:
3945 	*virt_addr = NULL;
3946 	*phys_addr = 0;
3947 
3948 	return NULL;
3949 }
3950 
3951 
3952 /*********************************************************************
3953  *  PMD configuration
3954  *********************************************************************/
3955 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
3956 	struct rte_pci_device *pci_dev)
3957 {
3958 	return rte_eth_dev_pci_generic_probe(pci_dev,
3959 		sizeof(struct ena_adapter), eth_ena_dev_init);
3960 }
3961 
3962 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
3963 {
3964 	return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
3965 }
3966 
3967 static struct rte_pci_driver rte_ena_pmd = {
3968 	.id_table = pci_id_ena_map,
3969 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
3970 		     RTE_PCI_DRV_WC_ACTIVATE,
3971 	.probe = eth_ena_pci_probe,
3972 	.remove = eth_ena_pci_remove,
3973 };
3974 
3975 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
3976 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
3977 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
3978 RTE_PMD_REGISTER_PARAM_STRING(net_ena,
3979 	ENA_DEVARG_LARGE_LLQ_HDR "=<0|1> "
3980 	ENA_DEVARG_NORMAL_LLQ_HDR "=<0|1> "
3981 	ENA_DEVARG_ENABLE_LLQ "=<0|1> "
3982 	ENA_DEVARG_MISS_TXC_TO "=<uint>");
3983 RTE_LOG_REGISTER_SUFFIX(ena_logtype_init, init, NOTICE);
3984 RTE_LOG_REGISTER_SUFFIX(ena_logtype_driver, driver, NOTICE);
3985 #ifdef RTE_ETHDEV_DEBUG_RX
3986 RTE_LOG_REGISTER_SUFFIX(ena_logtype_rx, rx, DEBUG);
3987 #endif
3988 #ifdef RTE_ETHDEV_DEBUG_TX
3989 RTE_LOG_REGISTER_SUFFIX(ena_logtype_tx, tx, DEBUG);
3990 #endif
3991 RTE_LOG_REGISTER_SUFFIX(ena_logtype_com, com, WARNING);
3992 
3993 /******************************************************************************
3994  ******************************** AENQ Handlers *******************************
3995  *****************************************************************************/
3996 static void ena_update_on_link_change(void *adapter_data,
3997 				      struct ena_admin_aenq_entry *aenq_e)
3998 {
3999 	struct rte_eth_dev *eth_dev = adapter_data;
4000 	struct ena_adapter *adapter = eth_dev->data->dev_private;
4001 	struct ena_admin_aenq_link_change_desc *aenq_link_desc;
4002 	uint32_t status;
4003 
4004 	aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
4005 
4006 	status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
4007 	adapter->link_status = status;
4008 
4009 	ena_link_update(eth_dev, 0);
4010 	rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
4011 }
4012 
4013 static void ena_notification(void *adapter_data,
4014 			     struct ena_admin_aenq_entry *aenq_e)
4015 {
4016 	struct rte_eth_dev *eth_dev = adapter_data;
4017 	struct ena_adapter *adapter = eth_dev->data->dev_private;
4018 	struct ena_admin_ena_hw_hints *hints;
4019 
4020 	if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
4021 		PMD_DRV_LOG(WARNING, "Invalid AENQ group: %x. Expected: %x\n",
4022 			aenq_e->aenq_common_desc.group,
4023 			ENA_ADMIN_NOTIFICATION);
4024 
4025 	switch (aenq_e->aenq_common_desc.syndrome) {
4026 	case ENA_ADMIN_UPDATE_HINTS:
4027 		hints = (struct ena_admin_ena_hw_hints *)
4028 			(&aenq_e->inline_data_w4);
4029 		ena_update_hints(adapter, hints);
4030 		break;
4031 	default:
4032 		PMD_DRV_LOG(ERR, "Invalid AENQ notification link state: %d\n",
4033 			aenq_e->aenq_common_desc.syndrome);
4034 	}
4035 }
4036 
4037 static void ena_keep_alive(void *adapter_data,
4038 			   __rte_unused struct ena_admin_aenq_entry *aenq_e)
4039 {
4040 	struct rte_eth_dev *eth_dev = adapter_data;
4041 	struct ena_adapter *adapter = eth_dev->data->dev_private;
4042 	struct ena_admin_aenq_keep_alive_desc *desc;
4043 	uint64_t rx_drops;
4044 	uint64_t tx_drops;
4045 	uint64_t rx_overruns;
4046 
4047 	adapter->timestamp_wd = rte_get_timer_cycles();
4048 
4049 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
4050 	rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
4051 	tx_drops = ((uint64_t)desc->tx_drops_high << 32) | desc->tx_drops_low;
4052 	rx_overruns = ((uint64_t)desc->rx_overruns_high << 32) | desc->rx_overruns_low;
4053 
4054 	/*
4055 	 * Depending on its acceleration support, the device updates a different statistic when
4056 	 * Rx packet is dropped because there are no available buffers to accommodate it.
4057 	 */
4058 	adapter->drv_stats->rx_drops = rx_drops + rx_overruns;
4059 	adapter->dev_stats.tx_drops = tx_drops;
4060 }
4061 
4062 static void ena_suboptimal_configuration(__rte_unused void *adapter_data,
4063 					 struct ena_admin_aenq_entry *aenq_e)
4064 {
4065 	struct ena_admin_aenq_conf_notifications_desc *desc;
4066 	int bit, num_bits;
4067 
4068 	desc = (struct ena_admin_aenq_conf_notifications_desc *)aenq_e;
4069 	num_bits = BITS_PER_TYPE(desc->notifications_bitmap);
4070 	for (bit = 0; bit < num_bits; bit++) {
4071 		if (desc->notifications_bitmap & RTE_BIT64(bit)) {
4072 			PMD_DRV_LOG(WARNING,
4073 				"Sub-optimal configuration notification code: %d\n", bit + 1);
4074 		}
4075 	}
4076 }
4077 
4078 /**
4079  * This handler will called for unknown event group or unimplemented handlers
4080  **/
4081 static void unimplemented_aenq_handler(__rte_unused void *data,
4082 				       __rte_unused struct ena_admin_aenq_entry *aenq_e)
4083 {
4084 	PMD_DRV_LOG(ERR,
4085 		"Unknown event was received or event with unimplemented handler\n");
4086 }
4087 
4088 static struct ena_aenq_handlers aenq_handlers = {
4089 	.handlers = {
4090 		[ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
4091 		[ENA_ADMIN_NOTIFICATION] = ena_notification,
4092 		[ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive,
4093 		[ENA_ADMIN_CONF_NOTIFICATIONS] = ena_suboptimal_configuration
4094 	},
4095 	.unimplemented_handler = unimplemented_aenq_handler
4096 };
4097 
4098 /*********************************************************************
4099  *  Multi-Process communication request handling (in primary)
4100  *********************************************************************/
4101 static int
4102 ena_mp_primary_handle(const struct rte_mp_msg *mp_msg, const void *peer)
4103 {
4104 	const struct ena_mp_body *req =
4105 		(const struct ena_mp_body *)mp_msg->param;
4106 	struct ena_adapter *adapter;
4107 	struct ena_com_dev *ena_dev;
4108 	struct ena_mp_body *rsp;
4109 	struct rte_mp_msg mp_rsp;
4110 	struct rte_eth_dev *dev;
4111 	int res = 0;
4112 
4113 	rsp = (struct ena_mp_body *)&mp_rsp.param;
4114 	mp_msg_init(&mp_rsp, req->type, req->port_id);
4115 
4116 	if (!rte_eth_dev_is_valid_port(req->port_id)) {
4117 		rte_errno = ENODEV;
4118 		res = -rte_errno;
4119 		PMD_DRV_LOG(ERR, "Unknown port %d in request %d\n",
4120 			    req->port_id, req->type);
4121 		goto end;
4122 	}
4123 	dev = &rte_eth_devices[req->port_id];
4124 	adapter = dev->data->dev_private;
4125 	ena_dev = &adapter->ena_dev;
4126 
4127 	switch (req->type) {
4128 	case ENA_MP_DEV_STATS_GET:
4129 		res = ena_com_get_dev_basic_stats(ena_dev,
4130 						  &adapter->basic_stats);
4131 		break;
4132 	case ENA_MP_ENI_STATS_GET:
4133 		res = ena_com_get_eni_stats(ena_dev,
4134 			(struct ena_admin_eni_stats *)&adapter->metrics_stats);
4135 		break;
4136 	case ENA_MP_MTU_SET:
4137 		res = ena_com_set_dev_mtu(ena_dev, req->args.mtu);
4138 		break;
4139 	case ENA_MP_IND_TBL_GET:
4140 		res = ena_com_indirect_table_get(ena_dev,
4141 						 adapter->indirect_table);
4142 		break;
4143 	case ENA_MP_IND_TBL_SET:
4144 		res = ena_com_indirect_table_set(ena_dev);
4145 		break;
4146 	case ENA_MP_CUSTOMER_METRICS_GET:
4147 		res = ena_com_get_customer_metrics(ena_dev,
4148 				(char *)adapter->metrics_stats,
4149 				adapter->metrics_num * sizeof(uint64_t));
4150 		break;
4151 	case ENA_MP_SRD_STATS_GET:
4152 		res = ena_com_get_ena_srd_info(ena_dev,
4153 				(struct ena_admin_ena_srd_info *)&adapter->srd_stats);
4154 		break;
4155 	default:
4156 		PMD_DRV_LOG(ERR, "Unknown request type %d\n", req->type);
4157 		res = -EINVAL;
4158 		break;
4159 	}
4160 
4161 end:
4162 	/* Save processing result in the reply */
4163 	rsp->result = res;
4164 	/* Return just IPC processing status */
4165 	return rte_mp_reply(&mp_rsp, peer);
4166 }
4167 
4168 static ena_llq_policy ena_define_llq_hdr_policy(struct ena_adapter *adapter)
4169 {
4170 	if (!adapter->enable_llq)
4171 		return ENA_LLQ_POLICY_DISABLED;
4172 	if (adapter->use_large_llq_hdr)
4173 		return ENA_LLQ_POLICY_LARGE;
4174 	if (adapter->use_normal_llq_hdr)
4175 		return ENA_LLQ_POLICY_NORMAL;
4176 	return ENA_LLQ_POLICY_RECOMMENDED;
4177 }
4178 
4179 static bool ena_use_large_llq_hdr(struct ena_adapter *adapter, uint8_t recommended_entry_size)
4180 {
4181 	if (adapter->llq_header_policy == ENA_LLQ_POLICY_LARGE) {
4182 		return true;
4183 	} else if (adapter->llq_header_policy == ENA_LLQ_POLICY_RECOMMENDED) {
4184 		PMD_DRV_LOG(INFO, "Recommended device entry size policy %u\n",
4185 			recommended_entry_size);
4186 		if (recommended_entry_size == ENA_ADMIN_LIST_ENTRY_SIZE_256B)
4187 			return true;
4188 	}
4189 	return false;
4190 }
4191