xref: /dpdk/drivers/net/ena/ena_ethdev.c (revision bd03d3f1e4f1734c70bf6be32cdeb5e3ae6fa611)
1 /*-
2 * BSD LICENSE
3 *
4 * Copyright (c) 2015-2016 Amazon.com, Inc. or its affiliates.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * * Neither the name of copyright holder nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33 
34 #include <rte_ether.h>
35 #include <rte_ethdev_driver.h>
36 #include <rte_ethdev_pci.h>
37 #include <rte_tcp.h>
38 #include <rte_atomic.h>
39 #include <rte_dev.h>
40 #include <rte_errno.h>
41 #include <rte_version.h>
42 #include <rte_eal_memconfig.h>
43 #include <rte_net.h>
44 
45 #include "ena_ethdev.h"
46 #include "ena_logs.h"
47 #include "ena_platform.h"
48 #include "ena_com.h"
49 #include "ena_eth_com.h"
50 
51 #include <ena_common_defs.h>
52 #include <ena_regs_defs.h>
53 #include <ena_admin_defs.h>
54 #include <ena_eth_io_defs.h>
55 
56 #define DRV_MODULE_VER_MAJOR	2
57 #define DRV_MODULE_VER_MINOR	0
58 #define DRV_MODULE_VER_SUBMINOR	0
59 
60 #define ENA_IO_TXQ_IDX(q)	(2 * (q))
61 #define ENA_IO_RXQ_IDX(q)	(2 * (q) + 1)
62 /*reverse version of ENA_IO_RXQ_IDX*/
63 #define ENA_IO_RXQ_IDX_REV(q)	((q - 1) / 2)
64 
65 /* While processing submitted and completed descriptors (rx and tx path
66  * respectively) in a loop it is desired to:
67  *  - perform batch submissions while populating sumbissmion queue
68  *  - avoid blocking transmission of other packets during cleanup phase
69  * Hence the utilization ratio of 1/8 of a queue size.
70  */
71 #define ENA_RING_DESCS_RATIO(ring_size)	(ring_size / 8)
72 
73 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
74 #define TEST_BIT(val, bit_shift) (val & (1UL << bit_shift))
75 
76 #define GET_L4_HDR_LEN(mbuf)					\
77 	((rte_pktmbuf_mtod_offset(mbuf,	struct tcp_hdr *,	\
78 		mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
79 
80 #define ENA_RX_RSS_TABLE_LOG_SIZE  7
81 #define ENA_RX_RSS_TABLE_SIZE	(1 << ENA_RX_RSS_TABLE_LOG_SIZE)
82 #define ENA_HASH_KEY_SIZE	40
83 #define ETH_GSTRING_LEN	32
84 
85 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
86 
87 #define ENA_MIN_RING_DESC	128
88 
89 enum ethtool_stringset {
90 	ETH_SS_TEST             = 0,
91 	ETH_SS_STATS,
92 };
93 
94 struct ena_stats {
95 	char name[ETH_GSTRING_LEN];
96 	int stat_offset;
97 };
98 
99 #define ENA_STAT_ENTRY(stat, stat_type) { \
100 	.name = #stat, \
101 	.stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
102 }
103 
104 #define ENA_STAT_RX_ENTRY(stat) \
105 	ENA_STAT_ENTRY(stat, rx)
106 
107 #define ENA_STAT_TX_ENTRY(stat) \
108 	ENA_STAT_ENTRY(stat, tx)
109 
110 #define ENA_STAT_GLOBAL_ENTRY(stat) \
111 	ENA_STAT_ENTRY(stat, dev)
112 
113 #define ENA_MAX_RING_SIZE_RX 8192
114 #define ENA_MAX_RING_SIZE_TX 1024
115 
116 /*
117  * Each rte_memzone should have unique name.
118  * To satisfy it, count number of allocation and add it to name.
119  */
120 uint32_t ena_alloc_cnt;
121 
122 static const struct ena_stats ena_stats_global_strings[] = {
123 	ENA_STAT_GLOBAL_ENTRY(wd_expired),
124 	ENA_STAT_GLOBAL_ENTRY(dev_start),
125 	ENA_STAT_GLOBAL_ENTRY(dev_stop),
126 };
127 
128 static const struct ena_stats ena_stats_tx_strings[] = {
129 	ENA_STAT_TX_ENTRY(cnt),
130 	ENA_STAT_TX_ENTRY(bytes),
131 	ENA_STAT_TX_ENTRY(prepare_ctx_err),
132 	ENA_STAT_TX_ENTRY(linearize),
133 	ENA_STAT_TX_ENTRY(linearize_failed),
134 	ENA_STAT_TX_ENTRY(tx_poll),
135 	ENA_STAT_TX_ENTRY(doorbells),
136 	ENA_STAT_TX_ENTRY(bad_req_id),
137 	ENA_STAT_TX_ENTRY(available_desc),
138 };
139 
140 static const struct ena_stats ena_stats_rx_strings[] = {
141 	ENA_STAT_RX_ENTRY(cnt),
142 	ENA_STAT_RX_ENTRY(bytes),
143 	ENA_STAT_RX_ENTRY(refill_partial),
144 	ENA_STAT_RX_ENTRY(bad_csum),
145 	ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
146 	ENA_STAT_RX_ENTRY(bad_desc_num),
147 	ENA_STAT_RX_ENTRY(bad_req_id),
148 };
149 
150 #define ENA_STATS_ARRAY_GLOBAL	ARRAY_SIZE(ena_stats_global_strings)
151 #define ENA_STATS_ARRAY_TX	ARRAY_SIZE(ena_stats_tx_strings)
152 #define ENA_STATS_ARRAY_RX	ARRAY_SIZE(ena_stats_rx_strings)
153 
154 #define QUEUE_OFFLOADS (DEV_TX_OFFLOAD_TCP_CKSUM |\
155 			DEV_TX_OFFLOAD_UDP_CKSUM |\
156 			DEV_TX_OFFLOAD_IPV4_CKSUM |\
157 			DEV_TX_OFFLOAD_TCP_TSO)
158 #define MBUF_OFFLOADS (PKT_TX_L4_MASK |\
159 		       PKT_TX_IP_CKSUM |\
160 		       PKT_TX_TCP_SEG)
161 
162 /** Vendor ID used by Amazon devices */
163 #define PCI_VENDOR_ID_AMAZON 0x1D0F
164 /** Amazon devices */
165 #define PCI_DEVICE_ID_ENA_VF	0xEC20
166 #define PCI_DEVICE_ID_ENA_LLQ_VF	0xEC21
167 
168 #define	ENA_TX_OFFLOAD_MASK	(\
169 	PKT_TX_L4_MASK |         \
170 	PKT_TX_IPV6 |            \
171 	PKT_TX_IPV4 |            \
172 	PKT_TX_IP_CKSUM |        \
173 	PKT_TX_TCP_SEG)
174 
175 #define	ENA_TX_OFFLOAD_NOTSUP_MASK	\
176 	(PKT_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
177 
178 int ena_logtype_init;
179 int ena_logtype_driver;
180 
181 static const struct rte_pci_id pci_id_ena_map[] = {
182 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
183 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_LLQ_VF) },
184 	{ .device_id = 0 },
185 };
186 
187 static struct ena_aenq_handlers aenq_handlers;
188 
189 static int ena_device_init(struct ena_com_dev *ena_dev,
190 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
191 			   bool *wd_state);
192 static int ena_dev_configure(struct rte_eth_dev *dev);
193 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
194 				  uint16_t nb_pkts);
195 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
196 		uint16_t nb_pkts);
197 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
198 			      uint16_t nb_desc, unsigned int socket_id,
199 			      const struct rte_eth_txconf *tx_conf);
200 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
201 			      uint16_t nb_desc, unsigned int socket_id,
202 			      const struct rte_eth_rxconf *rx_conf,
203 			      struct rte_mempool *mp);
204 static uint16_t eth_ena_recv_pkts(void *rx_queue,
205 				  struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
206 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
207 static void ena_init_rings(struct ena_adapter *adapter);
208 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
209 static int ena_start(struct rte_eth_dev *dev);
210 static void ena_stop(struct rte_eth_dev *dev);
211 static void ena_close(struct rte_eth_dev *dev);
212 static int ena_dev_reset(struct rte_eth_dev *dev);
213 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
214 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
215 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
216 static void ena_rx_queue_release(void *queue);
217 static void ena_tx_queue_release(void *queue);
218 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
219 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
220 static int ena_link_update(struct rte_eth_dev *dev,
221 			   int wait_to_complete);
222 static int ena_create_io_queue(struct ena_ring *ring);
223 static void ena_queue_stop(struct ena_ring *ring);
224 static void ena_queue_stop_all(struct rte_eth_dev *dev,
225 			      enum ena_ring_type ring_type);
226 static int ena_queue_start(struct ena_ring *ring);
227 static int ena_queue_start_all(struct rte_eth_dev *dev,
228 			       enum ena_ring_type ring_type);
229 static void ena_stats_restart(struct rte_eth_dev *dev);
230 static void ena_infos_get(struct rte_eth_dev *dev,
231 			  struct rte_eth_dev_info *dev_info);
232 static int ena_rss_reta_update(struct rte_eth_dev *dev,
233 			       struct rte_eth_rss_reta_entry64 *reta_conf,
234 			       uint16_t reta_size);
235 static int ena_rss_reta_query(struct rte_eth_dev *dev,
236 			      struct rte_eth_rss_reta_entry64 *reta_conf,
237 			      uint16_t reta_size);
238 static void ena_interrupt_handler_rte(void *cb_arg);
239 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
240 static void ena_destroy_device(struct rte_eth_dev *eth_dev);
241 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
242 static int ena_xstats_get_names(struct rte_eth_dev *dev,
243 				struct rte_eth_xstat_name *xstats_names,
244 				unsigned int n);
245 static int ena_xstats_get(struct rte_eth_dev *dev,
246 			  struct rte_eth_xstat *stats,
247 			  unsigned int n);
248 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
249 				const uint64_t *ids,
250 				uint64_t *values,
251 				unsigned int n);
252 
253 static const struct eth_dev_ops ena_dev_ops = {
254 	.dev_configure        = ena_dev_configure,
255 	.dev_infos_get        = ena_infos_get,
256 	.rx_queue_setup       = ena_rx_queue_setup,
257 	.tx_queue_setup       = ena_tx_queue_setup,
258 	.dev_start            = ena_start,
259 	.dev_stop             = ena_stop,
260 	.link_update          = ena_link_update,
261 	.stats_get            = ena_stats_get,
262 	.xstats_get_names     = ena_xstats_get_names,
263 	.xstats_get	      = ena_xstats_get,
264 	.xstats_get_by_id     = ena_xstats_get_by_id,
265 	.mtu_set              = ena_mtu_set,
266 	.rx_queue_release     = ena_rx_queue_release,
267 	.tx_queue_release     = ena_tx_queue_release,
268 	.dev_close            = ena_close,
269 	.dev_reset            = ena_dev_reset,
270 	.reta_update          = ena_rss_reta_update,
271 	.reta_query           = ena_rss_reta_query,
272 };
273 
274 #define NUMA_NO_NODE	SOCKET_ID_ANY
275 
276 static inline int ena_cpu_to_node(int cpu)
277 {
278 	struct rte_config *config = rte_eal_get_configuration();
279 	struct rte_fbarray *arr = &config->mem_config->memzones;
280 	const struct rte_memzone *mz;
281 
282 	if (unlikely(cpu >= RTE_MAX_MEMZONE))
283 		return NUMA_NO_NODE;
284 
285 	mz = rte_fbarray_get(arr, cpu);
286 
287 	return mz->socket_id;
288 }
289 
290 static inline void ena_rx_mbuf_prepare(struct rte_mbuf *mbuf,
291 				       struct ena_com_rx_ctx *ena_rx_ctx)
292 {
293 	uint64_t ol_flags = 0;
294 	uint32_t packet_type = 0;
295 
296 	if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
297 		packet_type |= RTE_PTYPE_L4_TCP;
298 	else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
299 		packet_type |= RTE_PTYPE_L4_UDP;
300 
301 	if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4)
302 		packet_type |= RTE_PTYPE_L3_IPV4;
303 	else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6)
304 		packet_type |= RTE_PTYPE_L3_IPV6;
305 
306 	if (unlikely(ena_rx_ctx->l4_csum_err))
307 		ol_flags |= PKT_RX_L4_CKSUM_BAD;
308 	if (unlikely(ena_rx_ctx->l3_csum_err))
309 		ol_flags |= PKT_RX_IP_CKSUM_BAD;
310 
311 	mbuf->ol_flags = ol_flags;
312 	mbuf->packet_type = packet_type;
313 }
314 
315 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
316 				       struct ena_com_tx_ctx *ena_tx_ctx,
317 				       uint64_t queue_offloads)
318 {
319 	struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
320 
321 	if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
322 	    (queue_offloads & QUEUE_OFFLOADS)) {
323 		/* check if TSO is required */
324 		if ((mbuf->ol_flags & PKT_TX_TCP_SEG) &&
325 		    (queue_offloads & DEV_TX_OFFLOAD_TCP_TSO)) {
326 			ena_tx_ctx->tso_enable = true;
327 
328 			ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
329 		}
330 
331 		/* check if L3 checksum is needed */
332 		if ((mbuf->ol_flags & PKT_TX_IP_CKSUM) &&
333 		    (queue_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM))
334 			ena_tx_ctx->l3_csum_enable = true;
335 
336 		if (mbuf->ol_flags & PKT_TX_IPV6) {
337 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
338 		} else {
339 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
340 
341 			/* set don't fragment (DF) flag */
342 			if (mbuf->packet_type &
343 				(RTE_PTYPE_L4_NONFRAG
344 				 | RTE_PTYPE_INNER_L4_NONFRAG))
345 				ena_tx_ctx->df = true;
346 		}
347 
348 		/* check if L4 checksum is needed */
349 		if ((mbuf->ol_flags & PKT_TX_TCP_CKSUM) &&
350 		    (queue_offloads & DEV_TX_OFFLOAD_TCP_CKSUM)) {
351 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
352 			ena_tx_ctx->l4_csum_enable = true;
353 		} else if ((mbuf->ol_flags & PKT_TX_UDP_CKSUM) &&
354 			   (queue_offloads & DEV_TX_OFFLOAD_UDP_CKSUM)) {
355 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
356 			ena_tx_ctx->l4_csum_enable = true;
357 		} else {
358 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
359 			ena_tx_ctx->l4_csum_enable = false;
360 		}
361 
362 		ena_meta->mss = mbuf->tso_segsz;
363 		ena_meta->l3_hdr_len = mbuf->l3_len;
364 		ena_meta->l3_hdr_offset = mbuf->l2_len;
365 
366 		ena_tx_ctx->meta_valid = true;
367 	} else {
368 		ena_tx_ctx->meta_valid = false;
369 	}
370 }
371 
372 static inline int validate_rx_req_id(struct ena_ring *rx_ring, uint16_t req_id)
373 {
374 	if (likely(req_id < rx_ring->ring_size))
375 		return 0;
376 
377 	RTE_LOG(ERR, PMD, "Invalid rx req_id: %hu\n", req_id);
378 
379 	rx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID;
380 	rx_ring->adapter->trigger_reset = true;
381 	++rx_ring->rx_stats.bad_req_id;
382 
383 	return -EFAULT;
384 }
385 
386 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
387 {
388 	struct ena_tx_buffer *tx_info = NULL;
389 
390 	if (likely(req_id < tx_ring->ring_size)) {
391 		tx_info = &tx_ring->tx_buffer_info[req_id];
392 		if (likely(tx_info->mbuf))
393 			return 0;
394 	}
395 
396 	if (tx_info)
397 		RTE_LOG(ERR, PMD, "tx_info doesn't have valid mbuf\n");
398 	else
399 		RTE_LOG(ERR, PMD, "Invalid req_id: %hu\n", req_id);
400 
401 	/* Trigger device reset */
402 	++tx_ring->tx_stats.bad_req_id;
403 	tx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID;
404 	tx_ring->adapter->trigger_reset	= true;
405 	return -EFAULT;
406 }
407 
408 static void ena_config_host_info(struct ena_com_dev *ena_dev)
409 {
410 	struct ena_admin_host_info *host_info;
411 	int rc;
412 
413 	/* Allocate only the host info */
414 	rc = ena_com_allocate_host_info(ena_dev);
415 	if (rc) {
416 		RTE_LOG(ERR, PMD, "Cannot allocate host info\n");
417 		return;
418 	}
419 
420 	host_info = ena_dev->host_attr.host_info;
421 
422 	host_info->os_type = ENA_ADMIN_OS_DPDK;
423 	host_info->kernel_ver = RTE_VERSION;
424 	snprintf((char *)host_info->kernel_ver_str,
425 		 sizeof(host_info->kernel_ver_str),
426 		 "%s", rte_version());
427 	host_info->os_dist = RTE_VERSION;
428 	snprintf((char *)host_info->os_dist_str,
429 		 sizeof(host_info->os_dist_str),
430 		 "%s", rte_version());
431 	host_info->driver_version =
432 		(DRV_MODULE_VER_MAJOR) |
433 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
434 		(DRV_MODULE_VER_SUBMINOR <<
435 			ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
436 	host_info->num_cpus = rte_lcore_count();
437 
438 	rc = ena_com_set_host_attributes(ena_dev);
439 	if (rc) {
440 		if (rc == -ENA_COM_UNSUPPORTED)
441 			RTE_LOG(WARNING, PMD, "Cannot set host attributes\n");
442 		else
443 			RTE_LOG(ERR, PMD, "Cannot set host attributes\n");
444 
445 		goto err;
446 	}
447 
448 	return;
449 
450 err:
451 	ena_com_delete_host_info(ena_dev);
452 }
453 
454 /* This function calculates the number of xstats based on the current config */
455 static unsigned int ena_xstats_calc_num(struct rte_eth_dev *dev)
456 {
457 	return ENA_STATS_ARRAY_GLOBAL +
458 		(dev->data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
459 		(dev->data->nb_rx_queues * ENA_STATS_ARRAY_RX);
460 }
461 
462 static void ena_config_debug_area(struct ena_adapter *adapter)
463 {
464 	u32 debug_area_size;
465 	int rc, ss_count;
466 
467 	ss_count = ena_xstats_calc_num(adapter->rte_dev);
468 
469 	/* allocate 32 bytes for each string and 64bit for the value */
470 	debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
471 
472 	rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
473 	if (rc) {
474 		RTE_LOG(ERR, PMD, "Cannot allocate debug area\n");
475 		return;
476 	}
477 
478 	rc = ena_com_set_host_attributes(&adapter->ena_dev);
479 	if (rc) {
480 		if (rc == -ENA_COM_UNSUPPORTED)
481 			RTE_LOG(WARNING, PMD, "Cannot set host attributes\n");
482 		else
483 			RTE_LOG(ERR, PMD, "Cannot set host attributes\n");
484 
485 		goto err;
486 	}
487 
488 	return;
489 err:
490 	ena_com_delete_debug_area(&adapter->ena_dev);
491 }
492 
493 static void ena_close(struct rte_eth_dev *dev)
494 {
495 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
496 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
497 	struct ena_adapter *adapter =
498 		(struct ena_adapter *)(dev->data->dev_private);
499 
500 	if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
501 		ena_stop(dev);
502 	adapter->state = ENA_ADAPTER_STATE_CLOSED;
503 
504 	ena_rx_queue_release_all(dev);
505 	ena_tx_queue_release_all(dev);
506 
507 	rte_free(adapter->drv_stats);
508 	adapter->drv_stats = NULL;
509 
510 	rte_intr_disable(intr_handle);
511 	rte_intr_callback_unregister(intr_handle,
512 				     ena_interrupt_handler_rte,
513 				     adapter);
514 
515 	/*
516 	 * MAC is not allocated dynamically. Setting NULL should prevent from
517 	 * release of the resource in the rte_eth_dev_release_port().
518 	 */
519 	dev->data->mac_addrs = NULL;
520 }
521 
522 static int
523 ena_dev_reset(struct rte_eth_dev *dev)
524 {
525 	int rc = 0;
526 
527 	ena_destroy_device(dev);
528 	rc = eth_ena_dev_init(dev);
529 	if (rc)
530 		PMD_INIT_LOG(CRIT, "Cannot initialize device");
531 
532 	return rc;
533 }
534 
535 static int ena_rss_reta_update(struct rte_eth_dev *dev,
536 			       struct rte_eth_rss_reta_entry64 *reta_conf,
537 			       uint16_t reta_size)
538 {
539 	struct ena_adapter *adapter =
540 		(struct ena_adapter *)(dev->data->dev_private);
541 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
542 	int rc, i;
543 	u16 entry_value;
544 	int conf_idx;
545 	int idx;
546 
547 	if ((reta_size == 0) || (reta_conf == NULL))
548 		return -EINVAL;
549 
550 	if (reta_size > ENA_RX_RSS_TABLE_SIZE) {
551 		RTE_LOG(WARNING, PMD,
552 			"indirection table %d is bigger than supported (%d)\n",
553 			reta_size, ENA_RX_RSS_TABLE_SIZE);
554 		return -EINVAL;
555 	}
556 
557 	for (i = 0 ; i < reta_size ; i++) {
558 		/* each reta_conf is for 64 entries.
559 		 * to support 128 we use 2 conf of 64
560 		 */
561 		conf_idx = i / RTE_RETA_GROUP_SIZE;
562 		idx = i % RTE_RETA_GROUP_SIZE;
563 		if (TEST_BIT(reta_conf[conf_idx].mask, idx)) {
564 			entry_value =
565 				ENA_IO_RXQ_IDX(reta_conf[conf_idx].reta[idx]);
566 
567 			rc = ena_com_indirect_table_fill_entry(ena_dev,
568 							       i,
569 							       entry_value);
570 			if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
571 				RTE_LOG(ERR, PMD,
572 					"Cannot fill indirect table\n");
573 				return rc;
574 			}
575 		}
576 	}
577 
578 	rc = ena_com_indirect_table_set(ena_dev);
579 	if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
580 		RTE_LOG(ERR, PMD, "Cannot flush the indirect table\n");
581 		return rc;
582 	}
583 
584 	RTE_LOG(DEBUG, PMD, "%s(): RSS configured %d entries  for port %d\n",
585 		__func__, reta_size, adapter->rte_dev->data->port_id);
586 
587 	return 0;
588 }
589 
590 /* Query redirection table. */
591 static int ena_rss_reta_query(struct rte_eth_dev *dev,
592 			      struct rte_eth_rss_reta_entry64 *reta_conf,
593 			      uint16_t reta_size)
594 {
595 	struct ena_adapter *adapter =
596 		(struct ena_adapter *)(dev->data->dev_private);
597 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
598 	int rc;
599 	int i;
600 	u32 indirect_table[ENA_RX_RSS_TABLE_SIZE] = {0};
601 	int reta_conf_idx;
602 	int reta_idx;
603 
604 	if (reta_size == 0 || reta_conf == NULL ||
605 	    (reta_size > RTE_RETA_GROUP_SIZE && ((reta_conf + 1) == NULL)))
606 		return -EINVAL;
607 
608 	rc = ena_com_indirect_table_get(ena_dev, indirect_table);
609 	if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
610 		RTE_LOG(ERR, PMD, "cannot get indirect table\n");
611 		return -ENOTSUP;
612 	}
613 
614 	for (i = 0 ; i < reta_size ; i++) {
615 		reta_conf_idx = i / RTE_RETA_GROUP_SIZE;
616 		reta_idx = i % RTE_RETA_GROUP_SIZE;
617 		if (TEST_BIT(reta_conf[reta_conf_idx].mask, reta_idx))
618 			reta_conf[reta_conf_idx].reta[reta_idx] =
619 				ENA_IO_RXQ_IDX_REV(indirect_table[i]);
620 	}
621 
622 	return 0;
623 }
624 
625 static int ena_rss_init_default(struct ena_adapter *adapter)
626 {
627 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
628 	uint16_t nb_rx_queues = adapter->rte_dev->data->nb_rx_queues;
629 	int rc, i;
630 	u32 val;
631 
632 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
633 	if (unlikely(rc)) {
634 		RTE_LOG(ERR, PMD, "Cannot init indirect table\n");
635 		goto err_rss_init;
636 	}
637 
638 	for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
639 		val = i % nb_rx_queues;
640 		rc = ena_com_indirect_table_fill_entry(ena_dev, i,
641 						       ENA_IO_RXQ_IDX(val));
642 		if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
643 			RTE_LOG(ERR, PMD, "Cannot fill indirect table\n");
644 			goto err_fill_indir;
645 		}
646 	}
647 
648 	rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL,
649 					ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
650 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
651 		RTE_LOG(INFO, PMD, "Cannot fill hash function\n");
652 		goto err_fill_indir;
653 	}
654 
655 	rc = ena_com_set_default_hash_ctrl(ena_dev);
656 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
657 		RTE_LOG(INFO, PMD, "Cannot fill hash control\n");
658 		goto err_fill_indir;
659 	}
660 
661 	rc = ena_com_indirect_table_set(ena_dev);
662 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
663 		RTE_LOG(ERR, PMD, "Cannot flush the indirect table\n");
664 		goto err_fill_indir;
665 	}
666 	RTE_LOG(DEBUG, PMD, "RSS configured for port %d\n",
667 		adapter->rte_dev->data->port_id);
668 
669 	return 0;
670 
671 err_fill_indir:
672 	ena_com_rss_destroy(ena_dev);
673 err_rss_init:
674 
675 	return rc;
676 }
677 
678 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
679 {
680 	struct ena_ring **queues = (struct ena_ring **)dev->data->rx_queues;
681 	int nb_queues = dev->data->nb_rx_queues;
682 	int i;
683 
684 	for (i = 0; i < nb_queues; i++)
685 		ena_rx_queue_release(queues[i]);
686 }
687 
688 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
689 {
690 	struct ena_ring **queues = (struct ena_ring **)dev->data->tx_queues;
691 	int nb_queues = dev->data->nb_tx_queues;
692 	int i;
693 
694 	for (i = 0; i < nb_queues; i++)
695 		ena_tx_queue_release(queues[i]);
696 }
697 
698 static void ena_rx_queue_release(void *queue)
699 {
700 	struct ena_ring *ring = (struct ena_ring *)queue;
701 
702 	/* Free ring resources */
703 	if (ring->rx_buffer_info)
704 		rte_free(ring->rx_buffer_info);
705 	ring->rx_buffer_info = NULL;
706 
707 	if (ring->rx_refill_buffer)
708 		rte_free(ring->rx_refill_buffer);
709 	ring->rx_refill_buffer = NULL;
710 
711 	if (ring->empty_rx_reqs)
712 		rte_free(ring->empty_rx_reqs);
713 	ring->empty_rx_reqs = NULL;
714 
715 	ring->configured = 0;
716 
717 	RTE_LOG(NOTICE, PMD, "RX Queue %d:%d released\n",
718 		ring->port_id, ring->id);
719 }
720 
721 static void ena_tx_queue_release(void *queue)
722 {
723 	struct ena_ring *ring = (struct ena_ring *)queue;
724 
725 	/* Free ring resources */
726 	if (ring->push_buf_intermediate_buf)
727 		rte_free(ring->push_buf_intermediate_buf);
728 
729 	if (ring->tx_buffer_info)
730 		rte_free(ring->tx_buffer_info);
731 
732 	if (ring->empty_tx_reqs)
733 		rte_free(ring->empty_tx_reqs);
734 
735 	ring->empty_tx_reqs = NULL;
736 	ring->tx_buffer_info = NULL;
737 	ring->push_buf_intermediate_buf = NULL;
738 
739 	ring->configured = 0;
740 
741 	RTE_LOG(NOTICE, PMD, "TX Queue %d:%d released\n",
742 		ring->port_id, ring->id);
743 }
744 
745 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
746 {
747 	unsigned int i;
748 
749 	for (i = 0; i < ring->ring_size; ++i)
750 		if (ring->rx_buffer_info[i]) {
751 			rte_mbuf_raw_free(ring->rx_buffer_info[i]);
752 			ring->rx_buffer_info[i] = NULL;
753 		}
754 }
755 
756 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
757 {
758 	unsigned int i;
759 
760 	for (i = 0; i < ring->ring_size; ++i) {
761 		struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
762 
763 		if (tx_buf->mbuf)
764 			rte_pktmbuf_free(tx_buf->mbuf);
765 	}
766 }
767 
768 static int ena_link_update(struct rte_eth_dev *dev,
769 			   __rte_unused int wait_to_complete)
770 {
771 	struct rte_eth_link *link = &dev->data->dev_link;
772 	struct ena_adapter *adapter;
773 
774 	adapter = (struct ena_adapter *)(dev->data->dev_private);
775 
776 	link->link_status = adapter->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
777 	link->link_speed = ETH_SPEED_NUM_NONE;
778 	link->link_duplex = ETH_LINK_FULL_DUPLEX;
779 
780 	return 0;
781 }
782 
783 static int ena_queue_start_all(struct rte_eth_dev *dev,
784 			       enum ena_ring_type ring_type)
785 {
786 	struct ena_adapter *adapter =
787 		(struct ena_adapter *)(dev->data->dev_private);
788 	struct ena_ring *queues = NULL;
789 	int nb_queues;
790 	int i = 0;
791 	int rc = 0;
792 
793 	if (ring_type == ENA_RING_TYPE_RX) {
794 		queues = adapter->rx_ring;
795 		nb_queues = dev->data->nb_rx_queues;
796 	} else {
797 		queues = adapter->tx_ring;
798 		nb_queues = dev->data->nb_tx_queues;
799 	}
800 	for (i = 0; i < nb_queues; i++) {
801 		if (queues[i].configured) {
802 			if (ring_type == ENA_RING_TYPE_RX) {
803 				ena_assert_msg(
804 					dev->data->rx_queues[i] == &queues[i],
805 					"Inconsistent state of rx queues\n");
806 			} else {
807 				ena_assert_msg(
808 					dev->data->tx_queues[i] == &queues[i],
809 					"Inconsistent state of tx queues\n");
810 			}
811 
812 			rc = ena_queue_start(&queues[i]);
813 
814 			if (rc) {
815 				PMD_INIT_LOG(ERR,
816 					     "failed to start queue %d type(%d)",
817 					     i, ring_type);
818 				goto err;
819 			}
820 		}
821 	}
822 
823 	return 0;
824 
825 err:
826 	while (i--)
827 		if (queues[i].configured)
828 			ena_queue_stop(&queues[i]);
829 
830 	return rc;
831 }
832 
833 static uint32_t ena_get_mtu_conf(struct ena_adapter *adapter)
834 {
835 	uint32_t max_frame_len = adapter->max_mtu;
836 
837 	if (adapter->rte_eth_dev_data->dev_conf.rxmode.offloads &
838 	    DEV_RX_OFFLOAD_JUMBO_FRAME)
839 		max_frame_len =
840 			adapter->rte_eth_dev_data->dev_conf.rxmode.max_rx_pkt_len;
841 
842 	return max_frame_len;
843 }
844 
845 static int ena_check_valid_conf(struct ena_adapter *adapter)
846 {
847 	uint32_t max_frame_len = ena_get_mtu_conf(adapter);
848 
849 	if (max_frame_len > adapter->max_mtu || max_frame_len < ENA_MIN_MTU) {
850 		PMD_INIT_LOG(ERR, "Unsupported MTU of %d. "
851 				  "max mtu: %d, min mtu: %d",
852 			     max_frame_len, adapter->max_mtu, ENA_MIN_MTU);
853 		return ENA_COM_UNSUPPORTED;
854 	}
855 
856 	return 0;
857 }
858 
859 static int
860 ena_calc_queue_size(struct ena_calc_queue_size_ctx *ctx)
861 {
862 	struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
863 	struct ena_com_dev *ena_dev = ctx->ena_dev;
864 	uint32_t tx_queue_size = ENA_MAX_RING_SIZE_TX;
865 	uint32_t rx_queue_size = ENA_MAX_RING_SIZE_RX;
866 
867 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
868 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
869 			&ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
870 		rx_queue_size = RTE_MIN(rx_queue_size,
871 			max_queue_ext->max_rx_cq_depth);
872 		rx_queue_size = RTE_MIN(rx_queue_size,
873 			max_queue_ext->max_rx_sq_depth);
874 		tx_queue_size = RTE_MIN(tx_queue_size,
875 			max_queue_ext->max_tx_cq_depth);
876 
877 		if (ena_dev->tx_mem_queue_type ==
878 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
879 			tx_queue_size = RTE_MIN(tx_queue_size,
880 				llq->max_llq_depth);
881 		} else {
882 			tx_queue_size = RTE_MIN(tx_queue_size,
883 				max_queue_ext->max_tx_sq_depth);
884 		}
885 
886 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
887 			max_queue_ext->max_per_packet_rx_descs);
888 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
889 			max_queue_ext->max_per_packet_tx_descs);
890 	} else {
891 		struct ena_admin_queue_feature_desc *max_queues =
892 			&ctx->get_feat_ctx->max_queues;
893 		rx_queue_size = RTE_MIN(rx_queue_size,
894 			max_queues->max_cq_depth);
895 		rx_queue_size = RTE_MIN(rx_queue_size,
896 			max_queues->max_sq_depth);
897 		tx_queue_size = RTE_MIN(tx_queue_size,
898 			max_queues->max_cq_depth);
899 
900 		if (ena_dev->tx_mem_queue_type ==
901 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
902 			tx_queue_size = RTE_MIN(tx_queue_size,
903 				llq->max_llq_depth);
904 		} else {
905 			tx_queue_size = RTE_MIN(tx_queue_size,
906 				max_queues->max_sq_depth);
907 		}
908 
909 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
910 			max_queues->max_packet_tx_descs);
911 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
912 			max_queues->max_packet_rx_descs);
913 	}
914 
915 	/* Round down to the nearest power of 2 */
916 	rx_queue_size = rte_align32prevpow2(rx_queue_size);
917 	tx_queue_size = rte_align32prevpow2(tx_queue_size);
918 
919 	if (unlikely(rx_queue_size == 0 || tx_queue_size == 0)) {
920 		PMD_INIT_LOG(ERR, "Invalid queue size");
921 		return -EFAULT;
922 	}
923 
924 	ctx->rx_queue_size = rx_queue_size;
925 	ctx->tx_queue_size = tx_queue_size;
926 
927 	return 0;
928 }
929 
930 static void ena_stats_restart(struct rte_eth_dev *dev)
931 {
932 	struct ena_adapter *adapter =
933 		(struct ena_adapter *)(dev->data->dev_private);
934 
935 	rte_atomic64_init(&adapter->drv_stats->ierrors);
936 	rte_atomic64_init(&adapter->drv_stats->oerrors);
937 	rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
938 	rte_atomic64_init(&adapter->drv_stats->rx_drops);
939 }
940 
941 static int ena_stats_get(struct rte_eth_dev *dev,
942 			  struct rte_eth_stats *stats)
943 {
944 	struct ena_admin_basic_stats ena_stats;
945 	struct ena_adapter *adapter =
946 		(struct ena_adapter *)(dev->data->dev_private);
947 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
948 	int rc;
949 	int i;
950 	int max_rings_stats;
951 
952 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
953 		return -ENOTSUP;
954 
955 	memset(&ena_stats, 0, sizeof(ena_stats));
956 	rc = ena_com_get_dev_basic_stats(ena_dev, &ena_stats);
957 	if (unlikely(rc)) {
958 		RTE_LOG(ERR, PMD, "Could not retrieve statistics from ENA\n");
959 		return rc;
960 	}
961 
962 	/* Set of basic statistics from ENA */
963 	stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
964 					  ena_stats.rx_pkts_low);
965 	stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
966 					  ena_stats.tx_pkts_low);
967 	stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
968 					ena_stats.rx_bytes_low);
969 	stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
970 					ena_stats.tx_bytes_low);
971 
972 	/* Driver related stats */
973 	stats->imissed = rte_atomic64_read(&adapter->drv_stats->rx_drops);
974 	stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
975 	stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
976 	stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
977 
978 	max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
979 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
980 	for (i = 0; i < max_rings_stats; ++i) {
981 		struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
982 
983 		stats->q_ibytes[i] = rx_stats->bytes;
984 		stats->q_ipackets[i] = rx_stats->cnt;
985 		stats->q_errors[i] = rx_stats->bad_desc_num +
986 			rx_stats->bad_req_id;
987 	}
988 
989 	max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
990 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
991 	for (i = 0; i < max_rings_stats; ++i) {
992 		struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
993 
994 		stats->q_obytes[i] = tx_stats->bytes;
995 		stats->q_opackets[i] = tx_stats->cnt;
996 	}
997 
998 	return 0;
999 }
1000 
1001 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1002 {
1003 	struct ena_adapter *adapter;
1004 	struct ena_com_dev *ena_dev;
1005 	int rc = 0;
1006 
1007 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
1008 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
1009 	adapter = (struct ena_adapter *)(dev->data->dev_private);
1010 
1011 	ena_dev = &adapter->ena_dev;
1012 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
1013 
1014 	if (mtu > ena_get_mtu_conf(adapter) || mtu < ENA_MIN_MTU) {
1015 		RTE_LOG(ERR, PMD,
1016 			"Invalid MTU setting. new_mtu: %d "
1017 			"max mtu: %d min mtu: %d\n",
1018 			mtu, ena_get_mtu_conf(adapter), ENA_MIN_MTU);
1019 		return -EINVAL;
1020 	}
1021 
1022 	rc = ena_com_set_dev_mtu(ena_dev, mtu);
1023 	if (rc)
1024 		RTE_LOG(ERR, PMD, "Could not set MTU: %d\n", mtu);
1025 	else
1026 		RTE_LOG(NOTICE, PMD, "Set MTU: %d\n", mtu);
1027 
1028 	return rc;
1029 }
1030 
1031 static int ena_start(struct rte_eth_dev *dev)
1032 {
1033 	struct ena_adapter *adapter =
1034 		(struct ena_adapter *)(dev->data->dev_private);
1035 	uint64_t ticks;
1036 	int rc = 0;
1037 
1038 	rc = ena_check_valid_conf(adapter);
1039 	if (rc)
1040 		return rc;
1041 
1042 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
1043 	if (rc)
1044 		return rc;
1045 
1046 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
1047 	if (rc)
1048 		goto err_start_tx;
1049 
1050 	if (adapter->rte_dev->data->dev_conf.rxmode.mq_mode &
1051 	    ETH_MQ_RX_RSS_FLAG && adapter->rte_dev->data->nb_rx_queues > 0) {
1052 		rc = ena_rss_init_default(adapter);
1053 		if (rc)
1054 			goto err_rss_init;
1055 	}
1056 
1057 	ena_stats_restart(dev);
1058 
1059 	adapter->timestamp_wd = rte_get_timer_cycles();
1060 	adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
1061 
1062 	ticks = rte_get_timer_hz();
1063 	rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
1064 			ena_timer_wd_callback, adapter);
1065 
1066 	++adapter->dev_stats.dev_start;
1067 	adapter->state = ENA_ADAPTER_STATE_RUNNING;
1068 
1069 	return 0;
1070 
1071 err_rss_init:
1072 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1073 err_start_tx:
1074 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1075 	return rc;
1076 }
1077 
1078 static void ena_stop(struct rte_eth_dev *dev)
1079 {
1080 	struct ena_adapter *adapter =
1081 		(struct ena_adapter *)(dev->data->dev_private);
1082 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1083 	int rc;
1084 
1085 	rte_timer_stop_sync(&adapter->timer_wd);
1086 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1087 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1088 
1089 	if (adapter->trigger_reset) {
1090 		rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
1091 		if (rc)
1092 			RTE_LOG(ERR, PMD, "Device reset failed rc=%d\n", rc);
1093 	}
1094 
1095 	++adapter->dev_stats.dev_stop;
1096 	adapter->state = ENA_ADAPTER_STATE_STOPPED;
1097 }
1098 
1099 static int ena_create_io_queue(struct ena_ring *ring)
1100 {
1101 	struct ena_adapter *adapter;
1102 	struct ena_com_dev *ena_dev;
1103 	struct ena_com_create_io_ctx ctx =
1104 		/* policy set to _HOST just to satisfy icc compiler */
1105 		{ ENA_ADMIN_PLACEMENT_POLICY_HOST,
1106 		  0, 0, 0, 0, 0 };
1107 	uint16_t ena_qid;
1108 	unsigned int i;
1109 	int rc;
1110 
1111 	adapter = ring->adapter;
1112 	ena_dev = &adapter->ena_dev;
1113 
1114 	if (ring->type == ENA_RING_TYPE_TX) {
1115 		ena_qid = ENA_IO_TXQ_IDX(ring->id);
1116 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1117 		ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1118 		ctx.queue_size = adapter->tx_ring_size;
1119 		for (i = 0; i < ring->ring_size; i++)
1120 			ring->empty_tx_reqs[i] = i;
1121 	} else {
1122 		ena_qid = ENA_IO_RXQ_IDX(ring->id);
1123 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1124 		ctx.queue_size = adapter->rx_ring_size;
1125 		for (i = 0; i < ring->ring_size; i++)
1126 			ring->empty_rx_reqs[i] = i;
1127 	}
1128 	ctx.qid = ena_qid;
1129 	ctx.msix_vector = -1; /* interrupts not used */
1130 	ctx.numa_node = ena_cpu_to_node(ring->id);
1131 
1132 	rc = ena_com_create_io_queue(ena_dev, &ctx);
1133 	if (rc) {
1134 		RTE_LOG(ERR, PMD,
1135 			"failed to create io queue #%d (qid:%d) rc: %d\n",
1136 			ring->id, ena_qid, rc);
1137 		return rc;
1138 	}
1139 
1140 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1141 				     &ring->ena_com_io_sq,
1142 				     &ring->ena_com_io_cq);
1143 	if (rc) {
1144 		RTE_LOG(ERR, PMD,
1145 			"Failed to get io queue handlers. queue num %d rc: %d\n",
1146 			ring->id, rc);
1147 		ena_com_destroy_io_queue(ena_dev, ena_qid);
1148 		return rc;
1149 	}
1150 
1151 	if (ring->type == ENA_RING_TYPE_TX)
1152 		ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1153 
1154 	return 0;
1155 }
1156 
1157 static void ena_queue_stop(struct ena_ring *ring)
1158 {
1159 	struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
1160 
1161 	if (ring->type == ENA_RING_TYPE_RX) {
1162 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
1163 		ena_rx_queue_release_bufs(ring);
1164 	} else {
1165 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
1166 		ena_tx_queue_release_bufs(ring);
1167 	}
1168 }
1169 
1170 static void ena_queue_stop_all(struct rte_eth_dev *dev,
1171 			      enum ena_ring_type ring_type)
1172 {
1173 	struct ena_adapter *adapter =
1174 		(struct ena_adapter *)(dev->data->dev_private);
1175 	struct ena_ring *queues = NULL;
1176 	uint16_t nb_queues, i;
1177 
1178 	if (ring_type == ENA_RING_TYPE_RX) {
1179 		queues = adapter->rx_ring;
1180 		nb_queues = dev->data->nb_rx_queues;
1181 	} else {
1182 		queues = adapter->tx_ring;
1183 		nb_queues = dev->data->nb_tx_queues;
1184 	}
1185 
1186 	for (i = 0; i < nb_queues; ++i)
1187 		if (queues[i].configured)
1188 			ena_queue_stop(&queues[i]);
1189 }
1190 
1191 static int ena_queue_start(struct ena_ring *ring)
1192 {
1193 	int rc, bufs_num;
1194 
1195 	ena_assert_msg(ring->configured == 1,
1196 		       "Trying to start unconfigured queue\n");
1197 
1198 	rc = ena_create_io_queue(ring);
1199 	if (rc) {
1200 		PMD_INIT_LOG(ERR, "Failed to create IO queue!");
1201 		return rc;
1202 	}
1203 
1204 	ring->next_to_clean = 0;
1205 	ring->next_to_use = 0;
1206 
1207 	if (ring->type == ENA_RING_TYPE_TX) {
1208 		ring->tx_stats.available_desc =
1209 			ena_com_free_desc(ring->ena_com_io_sq);
1210 		return 0;
1211 	}
1212 
1213 	bufs_num = ring->ring_size - 1;
1214 	rc = ena_populate_rx_queue(ring, bufs_num);
1215 	if (rc != bufs_num) {
1216 		ena_com_destroy_io_queue(&ring->adapter->ena_dev,
1217 					 ENA_IO_RXQ_IDX(ring->id));
1218 		PMD_INIT_LOG(ERR, "Failed to populate rx ring !");
1219 		return ENA_COM_FAULT;
1220 	}
1221 
1222 	return 0;
1223 }
1224 
1225 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1226 			      uint16_t queue_idx,
1227 			      uint16_t nb_desc,
1228 			      __rte_unused unsigned int socket_id,
1229 			      const struct rte_eth_txconf *tx_conf)
1230 {
1231 	struct ena_ring *txq = NULL;
1232 	struct ena_adapter *adapter =
1233 		(struct ena_adapter *)(dev->data->dev_private);
1234 	unsigned int i;
1235 
1236 	txq = &adapter->tx_ring[queue_idx];
1237 
1238 	if (txq->configured) {
1239 		RTE_LOG(CRIT, PMD,
1240 			"API violation. Queue %d is already configured\n",
1241 			queue_idx);
1242 		return ENA_COM_FAULT;
1243 	}
1244 
1245 	if (!rte_is_power_of_2(nb_desc)) {
1246 		RTE_LOG(ERR, PMD,
1247 			"Unsupported size of TX queue: %d is not a power of 2.\n",
1248 			nb_desc);
1249 		return -EINVAL;
1250 	}
1251 
1252 	if (nb_desc > adapter->tx_ring_size) {
1253 		RTE_LOG(ERR, PMD,
1254 			"Unsupported size of TX queue (max size: %d)\n",
1255 			adapter->tx_ring_size);
1256 		return -EINVAL;
1257 	}
1258 
1259 	if (nb_desc == RTE_ETH_DEV_FALLBACK_TX_RINGSIZE)
1260 		nb_desc = adapter->tx_ring_size;
1261 
1262 	txq->port_id = dev->data->port_id;
1263 	txq->next_to_clean = 0;
1264 	txq->next_to_use = 0;
1265 	txq->ring_size = nb_desc;
1266 
1267 	txq->tx_buffer_info = rte_zmalloc("txq->tx_buffer_info",
1268 					  sizeof(struct ena_tx_buffer) *
1269 					  txq->ring_size,
1270 					  RTE_CACHE_LINE_SIZE);
1271 	if (!txq->tx_buffer_info) {
1272 		RTE_LOG(ERR, PMD, "failed to alloc mem for tx buffer info\n");
1273 		return -ENOMEM;
1274 	}
1275 
1276 	txq->empty_tx_reqs = rte_zmalloc("txq->empty_tx_reqs",
1277 					 sizeof(u16) * txq->ring_size,
1278 					 RTE_CACHE_LINE_SIZE);
1279 	if (!txq->empty_tx_reqs) {
1280 		RTE_LOG(ERR, PMD, "failed to alloc mem for tx reqs\n");
1281 		rte_free(txq->tx_buffer_info);
1282 		return -ENOMEM;
1283 	}
1284 
1285 	txq->push_buf_intermediate_buf =
1286 		rte_zmalloc("txq->push_buf_intermediate_buf",
1287 			    txq->tx_max_header_size,
1288 			    RTE_CACHE_LINE_SIZE);
1289 	if (!txq->push_buf_intermediate_buf) {
1290 		RTE_LOG(ERR, PMD, "failed to alloc push buff for LLQ\n");
1291 		rte_free(txq->tx_buffer_info);
1292 		rte_free(txq->empty_tx_reqs);
1293 		return -ENOMEM;
1294 	}
1295 
1296 	for (i = 0; i < txq->ring_size; i++)
1297 		txq->empty_tx_reqs[i] = i;
1298 
1299 	if (tx_conf != NULL) {
1300 		txq->offloads =
1301 			tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1302 	}
1303 	/* Store pointer to this queue in upper layer */
1304 	txq->configured = 1;
1305 	dev->data->tx_queues[queue_idx] = txq;
1306 
1307 	return 0;
1308 }
1309 
1310 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1311 			      uint16_t queue_idx,
1312 			      uint16_t nb_desc,
1313 			      __rte_unused unsigned int socket_id,
1314 			      __rte_unused const struct rte_eth_rxconf *rx_conf,
1315 			      struct rte_mempool *mp)
1316 {
1317 	struct ena_adapter *adapter =
1318 		(struct ena_adapter *)(dev->data->dev_private);
1319 	struct ena_ring *rxq = NULL;
1320 	int i;
1321 
1322 	rxq = &adapter->rx_ring[queue_idx];
1323 	if (rxq->configured) {
1324 		RTE_LOG(CRIT, PMD,
1325 			"API violation. Queue %d is already configured\n",
1326 			queue_idx);
1327 		return ENA_COM_FAULT;
1328 	}
1329 
1330 	if (nb_desc == RTE_ETH_DEV_FALLBACK_RX_RINGSIZE)
1331 		nb_desc = adapter->rx_ring_size;
1332 
1333 	if (!rte_is_power_of_2(nb_desc)) {
1334 		RTE_LOG(ERR, PMD,
1335 			"Unsupported size of RX queue: %d is not a power of 2.\n",
1336 			nb_desc);
1337 		return -EINVAL;
1338 	}
1339 
1340 	if (nb_desc > adapter->rx_ring_size) {
1341 		RTE_LOG(ERR, PMD,
1342 			"Unsupported size of RX queue (max size: %d)\n",
1343 			adapter->rx_ring_size);
1344 		return -EINVAL;
1345 	}
1346 
1347 	rxq->port_id = dev->data->port_id;
1348 	rxq->next_to_clean = 0;
1349 	rxq->next_to_use = 0;
1350 	rxq->ring_size = nb_desc;
1351 	rxq->mb_pool = mp;
1352 
1353 	rxq->rx_buffer_info = rte_zmalloc("rxq->buffer_info",
1354 					  sizeof(struct rte_mbuf *) * nb_desc,
1355 					  RTE_CACHE_LINE_SIZE);
1356 	if (!rxq->rx_buffer_info) {
1357 		RTE_LOG(ERR, PMD, "failed to alloc mem for rx buffer info\n");
1358 		return -ENOMEM;
1359 	}
1360 
1361 	rxq->rx_refill_buffer = rte_zmalloc("rxq->rx_refill_buffer",
1362 					    sizeof(struct rte_mbuf *) * nb_desc,
1363 					    RTE_CACHE_LINE_SIZE);
1364 
1365 	if (!rxq->rx_refill_buffer) {
1366 		RTE_LOG(ERR, PMD, "failed to alloc mem for rx refill buffer\n");
1367 		rte_free(rxq->rx_buffer_info);
1368 		rxq->rx_buffer_info = NULL;
1369 		return -ENOMEM;
1370 	}
1371 
1372 	rxq->empty_rx_reqs = rte_zmalloc("rxq->empty_rx_reqs",
1373 					 sizeof(uint16_t) * nb_desc,
1374 					 RTE_CACHE_LINE_SIZE);
1375 	if (!rxq->empty_rx_reqs) {
1376 		RTE_LOG(ERR, PMD, "failed to alloc mem for empty rx reqs\n");
1377 		rte_free(rxq->rx_buffer_info);
1378 		rxq->rx_buffer_info = NULL;
1379 		rte_free(rxq->rx_refill_buffer);
1380 		rxq->rx_refill_buffer = NULL;
1381 		return -ENOMEM;
1382 	}
1383 
1384 	for (i = 0; i < nb_desc; i++)
1385 		rxq->empty_rx_reqs[i] = i;
1386 
1387 	/* Store pointer to this queue in upper layer */
1388 	rxq->configured = 1;
1389 	dev->data->rx_queues[queue_idx] = rxq;
1390 
1391 	return 0;
1392 }
1393 
1394 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1395 {
1396 	unsigned int i;
1397 	int rc;
1398 	uint16_t ring_size = rxq->ring_size;
1399 	uint16_t ring_mask = ring_size - 1;
1400 	uint16_t next_to_use = rxq->next_to_use;
1401 	uint16_t in_use, req_id;
1402 	struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1403 
1404 	if (unlikely(!count))
1405 		return 0;
1406 
1407 	in_use = rxq->next_to_use - rxq->next_to_clean;
1408 	ena_assert_msg(((in_use + count) < ring_size), "bad ring state\n");
1409 
1410 	/* get resources for incoming packets */
1411 	rc = rte_mempool_get_bulk(rxq->mb_pool, (void **)mbufs, count);
1412 	if (unlikely(rc < 0)) {
1413 		rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1414 		++rxq->rx_stats.mbuf_alloc_fail;
1415 		PMD_RX_LOG(DEBUG, "there are no enough free buffers");
1416 		return 0;
1417 	}
1418 
1419 	for (i = 0; i < count; i++) {
1420 		uint16_t next_to_use_masked = next_to_use & ring_mask;
1421 		struct rte_mbuf *mbuf = mbufs[i];
1422 		struct ena_com_buf ebuf;
1423 
1424 		if (likely((i + 4) < count))
1425 			rte_prefetch0(mbufs[i + 4]);
1426 
1427 		req_id = rxq->empty_rx_reqs[next_to_use_masked];
1428 		rc = validate_rx_req_id(rxq, req_id);
1429 		if (unlikely(rc < 0))
1430 			break;
1431 		rxq->rx_buffer_info[req_id] = mbuf;
1432 
1433 		/* prepare physical address for DMA transaction */
1434 		ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1435 		ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1436 		/* pass resource to device */
1437 		rc = ena_com_add_single_rx_desc(rxq->ena_com_io_sq,
1438 						&ebuf, req_id);
1439 		if (unlikely(rc)) {
1440 			RTE_LOG(WARNING, PMD, "failed adding rx desc\n");
1441 			rxq->rx_buffer_info[req_id] = NULL;
1442 			break;
1443 		}
1444 		next_to_use++;
1445 	}
1446 
1447 	if (unlikely(i < count)) {
1448 		RTE_LOG(WARNING, PMD, "refilled rx qid %d with only %d "
1449 			"buffers (from %d)\n", rxq->id, i, count);
1450 		rte_mempool_put_bulk(rxq->mb_pool, (void **)(&mbufs[i]),
1451 				     count - i);
1452 		++rxq->rx_stats.refill_partial;
1453 	}
1454 
1455 	/* When we submitted free recources to device... */
1456 	if (likely(i > 0)) {
1457 		/* ...let HW know that it can fill buffers with data
1458 		 *
1459 		 * Add memory barrier to make sure the desc were written before
1460 		 * issue a doorbell
1461 		 */
1462 		rte_wmb();
1463 		ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1464 
1465 		rxq->next_to_use = next_to_use;
1466 	}
1467 
1468 	return i;
1469 }
1470 
1471 static int ena_device_init(struct ena_com_dev *ena_dev,
1472 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
1473 			   bool *wd_state)
1474 {
1475 	uint32_t aenq_groups;
1476 	int rc;
1477 	bool readless_supported;
1478 
1479 	/* Initialize mmio registers */
1480 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
1481 	if (rc) {
1482 		RTE_LOG(ERR, PMD, "failed to init mmio read less\n");
1483 		return rc;
1484 	}
1485 
1486 	/* The PCIe configuration space revision id indicate if mmio reg
1487 	 * read is disabled.
1488 	 */
1489 	readless_supported =
1490 		!(((struct rte_pci_device *)ena_dev->dmadev)->id.class_id
1491 			       & ENA_MMIO_DISABLE_REG_READ);
1492 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1493 
1494 	/* reset device */
1495 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1496 	if (rc) {
1497 		RTE_LOG(ERR, PMD, "cannot reset device\n");
1498 		goto err_mmio_read_less;
1499 	}
1500 
1501 	/* check FW version */
1502 	rc = ena_com_validate_version(ena_dev);
1503 	if (rc) {
1504 		RTE_LOG(ERR, PMD, "device version is too low\n");
1505 		goto err_mmio_read_less;
1506 	}
1507 
1508 	ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1509 
1510 	/* ENA device administration layer init */
1511 	rc = ena_com_admin_init(ena_dev, &aenq_handlers);
1512 	if (rc) {
1513 		RTE_LOG(ERR, PMD,
1514 			"cannot initialize ena admin queue with device\n");
1515 		goto err_mmio_read_less;
1516 	}
1517 
1518 	/* To enable the msix interrupts the driver needs to know the number
1519 	 * of queues. So the driver uses polling mode to retrieve this
1520 	 * information.
1521 	 */
1522 	ena_com_set_admin_polling_mode(ena_dev, true);
1523 
1524 	ena_config_host_info(ena_dev);
1525 
1526 	/* Get Device Attributes and features */
1527 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1528 	if (rc) {
1529 		RTE_LOG(ERR, PMD,
1530 			"cannot get attribute for ena device rc= %d\n", rc);
1531 		goto err_admin_init;
1532 	}
1533 
1534 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1535 		      BIT(ENA_ADMIN_NOTIFICATION) |
1536 		      BIT(ENA_ADMIN_KEEP_ALIVE) |
1537 		      BIT(ENA_ADMIN_FATAL_ERROR) |
1538 		      BIT(ENA_ADMIN_WARNING);
1539 
1540 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
1541 	rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
1542 	if (rc) {
1543 		RTE_LOG(ERR, PMD, "Cannot configure aenq groups rc: %d\n", rc);
1544 		goto err_admin_init;
1545 	}
1546 
1547 	*wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
1548 
1549 	return 0;
1550 
1551 err_admin_init:
1552 	ena_com_admin_destroy(ena_dev);
1553 
1554 err_mmio_read_less:
1555 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1556 
1557 	return rc;
1558 }
1559 
1560 static void ena_interrupt_handler_rte(void *cb_arg)
1561 {
1562 	struct ena_adapter *adapter = (struct ena_adapter *)cb_arg;
1563 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1564 
1565 	ena_com_admin_q_comp_intr_handler(ena_dev);
1566 	if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED))
1567 		ena_com_aenq_intr_handler(ena_dev, adapter);
1568 }
1569 
1570 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1571 {
1572 	if (!adapter->wd_state)
1573 		return;
1574 
1575 	if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1576 		return;
1577 
1578 	if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1579 	    adapter->keep_alive_timeout)) {
1580 		RTE_LOG(ERR, PMD, "Keep alive timeout\n");
1581 		adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
1582 		adapter->trigger_reset = true;
1583 		++adapter->dev_stats.wd_expired;
1584 	}
1585 }
1586 
1587 /* Check if admin queue is enabled */
1588 static void check_for_admin_com_state(struct ena_adapter *adapter)
1589 {
1590 	if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1591 		RTE_LOG(ERR, PMD, "ENA admin queue is not in running state!\n");
1592 		adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
1593 		adapter->trigger_reset = true;
1594 	}
1595 }
1596 
1597 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
1598 				  void *arg)
1599 {
1600 	struct ena_adapter *adapter = (struct ena_adapter *)arg;
1601 	struct rte_eth_dev *dev = adapter->rte_dev;
1602 
1603 	check_for_missing_keep_alive(adapter);
1604 	check_for_admin_com_state(adapter);
1605 
1606 	if (unlikely(adapter->trigger_reset)) {
1607 		RTE_LOG(ERR, PMD, "Trigger reset is on\n");
1608 		_rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
1609 			NULL);
1610 	}
1611 }
1612 
1613 static inline void
1614 set_default_llq_configurations(struct ena_llq_configurations *llq_config)
1615 {
1616 	llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
1617 	llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_128B;
1618 	llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
1619 	llq_config->llq_num_decs_before_header =
1620 		ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
1621 	llq_config->llq_ring_entry_size_value = 128;
1622 }
1623 
1624 static int
1625 ena_set_queues_placement_policy(struct ena_adapter *adapter,
1626 				struct ena_com_dev *ena_dev,
1627 				struct ena_admin_feature_llq_desc *llq,
1628 				struct ena_llq_configurations *llq_default_configurations)
1629 {
1630 	int rc;
1631 	u32 llq_feature_mask;
1632 
1633 	llq_feature_mask = 1 << ENA_ADMIN_LLQ;
1634 	if (!(ena_dev->supported_features & llq_feature_mask)) {
1635 		RTE_LOG(INFO, PMD,
1636 			"LLQ is not supported. Fallback to host mode policy.\n");
1637 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1638 		return 0;
1639 	}
1640 
1641 	rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
1642 	if (unlikely(rc)) {
1643 		PMD_INIT_LOG(WARNING, "Failed to config dev mode. "
1644 			"Fallback to host mode policy.");
1645 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1646 		return 0;
1647 	}
1648 
1649 	/* Nothing to config, exit */
1650 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1651 		return 0;
1652 
1653 	if (!adapter->dev_mem_base) {
1654 		RTE_LOG(ERR, PMD, "Unable to access LLQ bar resource. "
1655 			"Fallback to host mode policy.\n.");
1656 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1657 		return 0;
1658 	}
1659 
1660 	ena_dev->mem_bar = adapter->dev_mem_base;
1661 
1662 	return 0;
1663 }
1664 
1665 static int ena_calc_io_queue_num(struct ena_com_dev *ena_dev,
1666 				 struct ena_com_dev_get_features_ctx *get_feat_ctx)
1667 {
1668 	uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, io_queue_num;
1669 
1670 	/* Regular queues capabilities */
1671 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1672 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1673 			&get_feat_ctx->max_queue_ext.max_queue_ext;
1674 		io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
1675 				    max_queue_ext->max_rx_cq_num);
1676 		io_tx_sq_num = max_queue_ext->max_tx_sq_num;
1677 		io_tx_cq_num = max_queue_ext->max_tx_cq_num;
1678 	} else {
1679 		struct ena_admin_queue_feature_desc *max_queues =
1680 			&get_feat_ctx->max_queues;
1681 		io_tx_sq_num = max_queues->max_sq_num;
1682 		io_tx_cq_num = max_queues->max_cq_num;
1683 		io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
1684 	}
1685 
1686 	/* In case of LLQ use the llq number in the get feature cmd */
1687 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
1688 		io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
1689 
1690 	io_queue_num = RTE_MIN(rte_lcore_count(), ENA_MAX_NUM_IO_QUEUES);
1691 	io_queue_num = RTE_MIN(io_queue_num, io_rx_num);
1692 	io_queue_num = RTE_MIN(io_queue_num, io_tx_sq_num);
1693 	io_queue_num = RTE_MIN(io_queue_num, io_tx_cq_num);
1694 
1695 	if (unlikely(io_queue_num == 0)) {
1696 		RTE_LOG(ERR, PMD, "Number of IO queues should not be 0\n");
1697 		return -EFAULT;
1698 	}
1699 
1700 	return io_queue_num;
1701 }
1702 
1703 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
1704 {
1705 	struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
1706 	struct rte_pci_device *pci_dev;
1707 	struct rte_intr_handle *intr_handle;
1708 	struct ena_adapter *adapter =
1709 		(struct ena_adapter *)(eth_dev->data->dev_private);
1710 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1711 	struct ena_com_dev_get_features_ctx get_feat_ctx;
1712 	struct ena_llq_configurations llq_config;
1713 	const char *queue_type_str;
1714 	int rc;
1715 
1716 	static int adapters_found;
1717 	bool wd_state;
1718 
1719 	memset(adapter, 0, sizeof(struct ena_adapter));
1720 	ena_dev = &adapter->ena_dev;
1721 
1722 	eth_dev->dev_ops = &ena_dev_ops;
1723 	eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
1724 	eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
1725 	eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
1726 	adapter->rte_eth_dev_data = eth_dev->data;
1727 	adapter->rte_dev = eth_dev;
1728 
1729 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1730 		return 0;
1731 
1732 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1733 	adapter->pdev = pci_dev;
1734 
1735 	PMD_INIT_LOG(INFO, "Initializing %x:%x:%x.%d",
1736 		     pci_dev->addr.domain,
1737 		     pci_dev->addr.bus,
1738 		     pci_dev->addr.devid,
1739 		     pci_dev->addr.function);
1740 
1741 	intr_handle = &pci_dev->intr_handle;
1742 
1743 	adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
1744 	adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
1745 
1746 	if (!adapter->regs) {
1747 		PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)",
1748 			     ENA_REGS_BAR);
1749 		return -ENXIO;
1750 	}
1751 
1752 	ena_dev->reg_bar = adapter->regs;
1753 	ena_dev->dmadev = adapter->pdev;
1754 
1755 	adapter->id_number = adapters_found;
1756 
1757 	snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
1758 		 adapter->id_number);
1759 
1760 	/* device specific initialization routine */
1761 	rc = ena_device_init(ena_dev, &get_feat_ctx, &wd_state);
1762 	if (rc) {
1763 		PMD_INIT_LOG(CRIT, "Failed to init ENA device");
1764 		goto err;
1765 	}
1766 	adapter->wd_state = wd_state;
1767 
1768 	set_default_llq_configurations(&llq_config);
1769 	rc = ena_set_queues_placement_policy(adapter, ena_dev,
1770 					     &get_feat_ctx.llq, &llq_config);
1771 	if (unlikely(rc)) {
1772 		PMD_INIT_LOG(CRIT, "Failed to set placement policy");
1773 		return rc;
1774 	}
1775 
1776 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1777 		queue_type_str = "Regular";
1778 	else
1779 		queue_type_str = "Low latency";
1780 	RTE_LOG(INFO, PMD, "Placement policy: %s\n", queue_type_str);
1781 
1782 	calc_queue_ctx.ena_dev = ena_dev;
1783 	calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
1784 	adapter->num_queues = ena_calc_io_queue_num(ena_dev,
1785 						    &get_feat_ctx);
1786 
1787 	rc = ena_calc_queue_size(&calc_queue_ctx);
1788 	if (unlikely((rc != 0) || (adapter->num_queues <= 0))) {
1789 		rc = -EFAULT;
1790 		goto err_device_destroy;
1791 	}
1792 
1793 	adapter->tx_ring_size = calc_queue_ctx.tx_queue_size;
1794 	adapter->rx_ring_size = calc_queue_ctx.rx_queue_size;
1795 
1796 	adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
1797 	adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
1798 
1799 	/* prepare ring structures */
1800 	ena_init_rings(adapter);
1801 
1802 	ena_config_debug_area(adapter);
1803 
1804 	/* Set max MTU for this device */
1805 	adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
1806 
1807 	/* set device support for TSO */
1808 	adapter->tso4_supported = get_feat_ctx.offload.tx &
1809 				  ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK;
1810 
1811 	/* Copy MAC address and point DPDK to it */
1812 	eth_dev->data->mac_addrs = (struct ether_addr *)adapter->mac_addr;
1813 	ether_addr_copy((struct ether_addr *)get_feat_ctx.dev_attr.mac_addr,
1814 			(struct ether_addr *)adapter->mac_addr);
1815 
1816 	/*
1817 	 * Pass the information to the rte_eth_dev_close() that it should also
1818 	 * release the private port resources.
1819 	 */
1820 	eth_dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE;
1821 
1822 	adapter->drv_stats = rte_zmalloc("adapter stats",
1823 					 sizeof(*adapter->drv_stats),
1824 					 RTE_CACHE_LINE_SIZE);
1825 	if (!adapter->drv_stats) {
1826 		RTE_LOG(ERR, PMD, "failed to alloc mem for adapter stats\n");
1827 		rc = -ENOMEM;
1828 		goto err_delete_debug_area;
1829 	}
1830 
1831 	rte_intr_callback_register(intr_handle,
1832 				   ena_interrupt_handler_rte,
1833 				   adapter);
1834 	rte_intr_enable(intr_handle);
1835 	ena_com_set_admin_polling_mode(ena_dev, false);
1836 	ena_com_admin_aenq_enable(ena_dev);
1837 
1838 	if (adapters_found == 0)
1839 		rte_timer_subsystem_init();
1840 	rte_timer_init(&adapter->timer_wd);
1841 
1842 	adapters_found++;
1843 	adapter->state = ENA_ADAPTER_STATE_INIT;
1844 
1845 	return 0;
1846 
1847 err_delete_debug_area:
1848 	ena_com_delete_debug_area(ena_dev);
1849 
1850 err_device_destroy:
1851 	ena_com_delete_host_info(ena_dev);
1852 	ena_com_admin_destroy(ena_dev);
1853 
1854 err:
1855 	return rc;
1856 }
1857 
1858 static void ena_destroy_device(struct rte_eth_dev *eth_dev)
1859 {
1860 	struct ena_adapter *adapter =
1861 		(struct ena_adapter *)(eth_dev->data->dev_private);
1862 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1863 
1864 	if (adapter->state == ENA_ADAPTER_STATE_FREE)
1865 		return;
1866 
1867 	ena_com_set_admin_running_state(ena_dev, false);
1868 
1869 	if (adapter->state != ENA_ADAPTER_STATE_CLOSED)
1870 		ena_close(eth_dev);
1871 
1872 	ena_com_delete_debug_area(ena_dev);
1873 	ena_com_delete_host_info(ena_dev);
1874 
1875 	ena_com_abort_admin_commands(ena_dev);
1876 	ena_com_wait_for_abort_completion(ena_dev);
1877 	ena_com_admin_destroy(ena_dev);
1878 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1879 
1880 	adapter->state = ENA_ADAPTER_STATE_FREE;
1881 }
1882 
1883 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
1884 {
1885 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1886 		return 0;
1887 
1888 	ena_destroy_device(eth_dev);
1889 
1890 	eth_dev->dev_ops = NULL;
1891 	eth_dev->rx_pkt_burst = NULL;
1892 	eth_dev->tx_pkt_burst = NULL;
1893 	eth_dev->tx_pkt_prepare = NULL;
1894 
1895 	return 0;
1896 }
1897 
1898 static int ena_dev_configure(struct rte_eth_dev *dev)
1899 {
1900 	struct ena_adapter *adapter =
1901 		(struct ena_adapter *)(dev->data->dev_private);
1902 
1903 	adapter->state = ENA_ADAPTER_STATE_CONFIG;
1904 
1905 	adapter->tx_selected_offloads = dev->data->dev_conf.txmode.offloads;
1906 	adapter->rx_selected_offloads = dev->data->dev_conf.rxmode.offloads;
1907 	return 0;
1908 }
1909 
1910 static void ena_init_rings(struct ena_adapter *adapter)
1911 {
1912 	int i;
1913 
1914 	for (i = 0; i < adapter->num_queues; i++) {
1915 		struct ena_ring *ring = &adapter->tx_ring[i];
1916 
1917 		ring->configured = 0;
1918 		ring->type = ENA_RING_TYPE_TX;
1919 		ring->adapter = adapter;
1920 		ring->id = i;
1921 		ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
1922 		ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
1923 		ring->sgl_size = adapter->max_tx_sgl_size;
1924 	}
1925 
1926 	for (i = 0; i < adapter->num_queues; i++) {
1927 		struct ena_ring *ring = &adapter->rx_ring[i];
1928 
1929 		ring->configured = 0;
1930 		ring->type = ENA_RING_TYPE_RX;
1931 		ring->adapter = adapter;
1932 		ring->id = i;
1933 		ring->sgl_size = adapter->max_rx_sgl_size;
1934 	}
1935 }
1936 
1937 static void ena_infos_get(struct rte_eth_dev *dev,
1938 			  struct rte_eth_dev_info *dev_info)
1939 {
1940 	struct ena_adapter *adapter;
1941 	struct ena_com_dev *ena_dev;
1942 	struct ena_com_dev_get_features_ctx feat;
1943 	uint64_t rx_feat = 0, tx_feat = 0;
1944 	int rc = 0;
1945 
1946 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
1947 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
1948 	adapter = (struct ena_adapter *)(dev->data->dev_private);
1949 
1950 	ena_dev = &adapter->ena_dev;
1951 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
1952 
1953 	dev_info->speed_capa =
1954 			ETH_LINK_SPEED_1G   |
1955 			ETH_LINK_SPEED_2_5G |
1956 			ETH_LINK_SPEED_5G   |
1957 			ETH_LINK_SPEED_10G  |
1958 			ETH_LINK_SPEED_25G  |
1959 			ETH_LINK_SPEED_40G  |
1960 			ETH_LINK_SPEED_50G  |
1961 			ETH_LINK_SPEED_100G;
1962 
1963 	/* Get supported features from HW */
1964 	rc = ena_com_get_dev_attr_feat(ena_dev, &feat);
1965 	if (unlikely(rc)) {
1966 		RTE_LOG(ERR, PMD,
1967 			"Cannot get attribute for ena device rc= %d\n", rc);
1968 		return;
1969 	}
1970 
1971 	/* Set Tx & Rx features available for device */
1972 	if (feat.offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK)
1973 		tx_feat	|= DEV_TX_OFFLOAD_TCP_TSO;
1974 
1975 	if (feat.offload.tx &
1976 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)
1977 		tx_feat |= DEV_TX_OFFLOAD_IPV4_CKSUM |
1978 			DEV_TX_OFFLOAD_UDP_CKSUM |
1979 			DEV_TX_OFFLOAD_TCP_CKSUM;
1980 
1981 	if (feat.offload.rx_supported &
1982 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK)
1983 		rx_feat |= DEV_RX_OFFLOAD_IPV4_CKSUM |
1984 			DEV_RX_OFFLOAD_UDP_CKSUM  |
1985 			DEV_RX_OFFLOAD_TCP_CKSUM;
1986 
1987 	rx_feat |= DEV_RX_OFFLOAD_JUMBO_FRAME;
1988 
1989 	/* Inform framework about available features */
1990 	dev_info->rx_offload_capa = rx_feat;
1991 	dev_info->rx_queue_offload_capa = rx_feat;
1992 	dev_info->tx_offload_capa = tx_feat;
1993 	dev_info->tx_queue_offload_capa = tx_feat;
1994 
1995 	dev_info->flow_type_rss_offloads = ETH_RSS_IP | ETH_RSS_TCP |
1996 					   ETH_RSS_UDP;
1997 
1998 	dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
1999 	dev_info->max_rx_pktlen  = adapter->max_mtu;
2000 	dev_info->max_mac_addrs = 1;
2001 
2002 	dev_info->max_rx_queues = adapter->num_queues;
2003 	dev_info->max_tx_queues = adapter->num_queues;
2004 	dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
2005 
2006 	adapter->tx_supported_offloads = tx_feat;
2007 	adapter->rx_supported_offloads = rx_feat;
2008 
2009 	dev_info->rx_desc_lim.nb_max = adapter->rx_ring_size;
2010 	dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2011 	dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2012 					adapter->max_rx_sgl_size);
2013 	dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2014 					adapter->max_rx_sgl_size);
2015 
2016 	dev_info->tx_desc_lim.nb_max = adapter->tx_ring_size;
2017 	dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2018 	dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2019 					adapter->max_tx_sgl_size);
2020 	dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2021 					adapter->max_tx_sgl_size);
2022 }
2023 
2024 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
2025 				  uint16_t nb_pkts)
2026 {
2027 	struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
2028 	unsigned int ring_size = rx_ring->ring_size;
2029 	unsigned int ring_mask = ring_size - 1;
2030 	uint16_t next_to_clean = rx_ring->next_to_clean;
2031 	uint16_t desc_in_use = 0;
2032 	uint16_t req_id;
2033 	unsigned int recv_idx = 0;
2034 	struct rte_mbuf *mbuf = NULL;
2035 	struct rte_mbuf *mbuf_head = NULL;
2036 	struct rte_mbuf *mbuf_prev = NULL;
2037 	struct rte_mbuf **rx_buff_info = rx_ring->rx_buffer_info;
2038 	unsigned int completed;
2039 
2040 	struct ena_com_rx_ctx ena_rx_ctx;
2041 	int rc = 0;
2042 
2043 	/* Check adapter state */
2044 	if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2045 		RTE_LOG(ALERT, PMD,
2046 			"Trying to receive pkts while device is NOT running\n");
2047 		return 0;
2048 	}
2049 
2050 	desc_in_use = rx_ring->next_to_use - next_to_clean;
2051 	if (unlikely(nb_pkts > desc_in_use))
2052 		nb_pkts = desc_in_use;
2053 
2054 	for (completed = 0; completed < nb_pkts; completed++) {
2055 		int segments = 0;
2056 
2057 		ena_rx_ctx.max_bufs = rx_ring->sgl_size;
2058 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
2059 		ena_rx_ctx.descs = 0;
2060 		/* receive packet context */
2061 		rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
2062 				    rx_ring->ena_com_io_sq,
2063 				    &ena_rx_ctx);
2064 		if (unlikely(rc)) {
2065 			RTE_LOG(ERR, PMD, "ena_com_rx_pkt error %d\n", rc);
2066 			rx_ring->adapter->reset_reason =
2067 				ENA_REGS_RESET_TOO_MANY_RX_DESCS;
2068 			rx_ring->adapter->trigger_reset = true;
2069 			++rx_ring->rx_stats.bad_desc_num;
2070 			return 0;
2071 		}
2072 
2073 		if (unlikely(ena_rx_ctx.descs == 0))
2074 			break;
2075 
2076 		while (segments < ena_rx_ctx.descs) {
2077 			req_id = ena_rx_ctx.ena_bufs[segments].req_id;
2078 			rc = validate_rx_req_id(rx_ring, req_id);
2079 			if (unlikely(rc)) {
2080 				if (segments != 0)
2081 					rte_mbuf_raw_free(mbuf_head);
2082 				break;
2083 			}
2084 
2085 			mbuf = rx_buff_info[req_id];
2086 			rx_buff_info[req_id] = NULL;
2087 			mbuf->data_len = ena_rx_ctx.ena_bufs[segments].len;
2088 			mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2089 			mbuf->refcnt = 1;
2090 			mbuf->next = NULL;
2091 			if (unlikely(segments == 0)) {
2092 				mbuf->nb_segs = ena_rx_ctx.descs;
2093 				mbuf->port = rx_ring->port_id;
2094 				mbuf->pkt_len = 0;
2095 				mbuf_head = mbuf;
2096 			} else {
2097 				/* for multi-segment pkts create mbuf chain */
2098 				mbuf_prev->next = mbuf;
2099 			}
2100 			mbuf_head->pkt_len += mbuf->data_len;
2101 
2102 			mbuf_prev = mbuf;
2103 			rx_ring->empty_rx_reqs[next_to_clean & ring_mask] =
2104 				req_id;
2105 			segments++;
2106 			next_to_clean++;
2107 		}
2108 		if (unlikely(rc))
2109 			break;
2110 
2111 		/* fill mbuf attributes if any */
2112 		ena_rx_mbuf_prepare(mbuf_head, &ena_rx_ctx);
2113 
2114 		if (unlikely(mbuf_head->ol_flags &
2115 			(PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD)))
2116 			++rx_ring->rx_stats.bad_csum;
2117 
2118 		mbuf_head->hash.rss = ena_rx_ctx.hash;
2119 
2120 		/* pass to DPDK application head mbuf */
2121 		rx_pkts[recv_idx] = mbuf_head;
2122 		recv_idx++;
2123 		rx_ring->rx_stats.bytes += mbuf_head->pkt_len;
2124 	}
2125 
2126 	rx_ring->rx_stats.cnt += recv_idx;
2127 	rx_ring->next_to_clean = next_to_clean;
2128 
2129 	desc_in_use = desc_in_use - completed + 1;
2130 	/* Burst refill to save doorbells, memory barriers, const interval */
2131 	if (ring_size - desc_in_use > ENA_RING_DESCS_RATIO(ring_size)) {
2132 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
2133 		ena_populate_rx_queue(rx_ring, ring_size - desc_in_use);
2134 	}
2135 
2136 	return recv_idx;
2137 }
2138 
2139 static uint16_t
2140 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2141 		uint16_t nb_pkts)
2142 {
2143 	int32_t ret;
2144 	uint32_t i;
2145 	struct rte_mbuf *m;
2146 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2147 	struct ipv4_hdr *ip_hdr;
2148 	uint64_t ol_flags;
2149 	uint16_t frag_field;
2150 
2151 	for (i = 0; i != nb_pkts; i++) {
2152 		m = tx_pkts[i];
2153 		ol_flags = m->ol_flags;
2154 
2155 		if (!(ol_flags & PKT_TX_IPV4))
2156 			continue;
2157 
2158 		/* If there was not L2 header length specified, assume it is
2159 		 * length of the ethernet header.
2160 		 */
2161 		if (unlikely(m->l2_len == 0))
2162 			m->l2_len = sizeof(struct ether_hdr);
2163 
2164 		ip_hdr = rte_pktmbuf_mtod_offset(m, struct ipv4_hdr *,
2165 						 m->l2_len);
2166 		frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
2167 
2168 		if ((frag_field & IPV4_HDR_DF_FLAG) != 0) {
2169 			m->packet_type |= RTE_PTYPE_L4_NONFRAG;
2170 
2171 			/* If IPv4 header has DF flag enabled and TSO support is
2172 			 * disabled, partial chcecksum should not be calculated.
2173 			 */
2174 			if (!tx_ring->adapter->tso4_supported)
2175 				continue;
2176 		}
2177 
2178 		if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) != 0 ||
2179 				(ol_flags & PKT_TX_L4_MASK) ==
2180 				PKT_TX_SCTP_CKSUM) {
2181 			rte_errno = -ENOTSUP;
2182 			return i;
2183 		}
2184 
2185 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2186 		ret = rte_validate_tx_offload(m);
2187 		if (ret != 0) {
2188 			rte_errno = ret;
2189 			return i;
2190 		}
2191 #endif
2192 
2193 		/* In case we are supposed to TSO and have DF not set (DF=0)
2194 		 * hardware must be provided with partial checksum, otherwise
2195 		 * it will take care of necessary calculations.
2196 		 */
2197 
2198 		ret = rte_net_intel_cksum_flags_prepare(m,
2199 			ol_flags & ~PKT_TX_TCP_SEG);
2200 		if (ret != 0) {
2201 			rte_errno = ret;
2202 			return i;
2203 		}
2204 	}
2205 
2206 	return i;
2207 }
2208 
2209 static void ena_update_hints(struct ena_adapter *adapter,
2210 			     struct ena_admin_ena_hw_hints *hints)
2211 {
2212 	if (hints->admin_completion_tx_timeout)
2213 		adapter->ena_dev.admin_queue.completion_timeout =
2214 			hints->admin_completion_tx_timeout * 1000;
2215 
2216 	if (hints->mmio_read_timeout)
2217 		/* convert to usec */
2218 		adapter->ena_dev.mmio_read.reg_read_to =
2219 			hints->mmio_read_timeout * 1000;
2220 
2221 	if (hints->driver_watchdog_timeout) {
2222 		if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
2223 			adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
2224 		else
2225 			// Convert msecs to ticks
2226 			adapter->keep_alive_timeout =
2227 				(hints->driver_watchdog_timeout *
2228 				rte_get_timer_hz()) / 1000;
2229 	}
2230 }
2231 
2232 static int ena_check_and_linearize_mbuf(struct ena_ring *tx_ring,
2233 					struct rte_mbuf *mbuf)
2234 {
2235 	struct ena_com_dev *ena_dev;
2236 	int num_segments, header_len, rc;
2237 
2238 	ena_dev = &tx_ring->adapter->ena_dev;
2239 	num_segments = mbuf->nb_segs;
2240 	header_len = mbuf->data_len;
2241 
2242 	if (likely(num_segments < tx_ring->sgl_size))
2243 		return 0;
2244 
2245 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
2246 	    (num_segments == tx_ring->sgl_size) &&
2247 	    (header_len < tx_ring->tx_max_header_size))
2248 		return 0;
2249 
2250 	++tx_ring->tx_stats.linearize;
2251 	rc = rte_pktmbuf_linearize(mbuf);
2252 	if (unlikely(rc)) {
2253 		RTE_LOG(WARNING, PMD, "Mbuf linearize failed\n");
2254 		rte_atomic64_inc(&tx_ring->adapter->drv_stats->ierrors);
2255 		++tx_ring->tx_stats.linearize_failed;
2256 		return rc;
2257 	}
2258 
2259 	return rc;
2260 }
2261 
2262 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2263 				  uint16_t nb_pkts)
2264 {
2265 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2266 	uint16_t next_to_use = tx_ring->next_to_use;
2267 	uint16_t next_to_clean = tx_ring->next_to_clean;
2268 	struct rte_mbuf *mbuf;
2269 	uint16_t seg_len;
2270 	unsigned int ring_size = tx_ring->ring_size;
2271 	unsigned int ring_mask = ring_size - 1;
2272 	struct ena_com_tx_ctx ena_tx_ctx;
2273 	struct ena_tx_buffer *tx_info;
2274 	struct ena_com_buf *ebuf;
2275 	uint16_t rc, req_id, total_tx_descs = 0;
2276 	uint16_t sent_idx = 0, empty_tx_reqs;
2277 	uint16_t push_len = 0;
2278 	uint16_t delta = 0;
2279 	int nb_hw_desc;
2280 	uint32_t total_length;
2281 
2282 	/* Check adapter state */
2283 	if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2284 		RTE_LOG(ALERT, PMD,
2285 			"Trying to xmit pkts while device is NOT running\n");
2286 		return 0;
2287 	}
2288 
2289 	empty_tx_reqs = ring_size - (next_to_use - next_to_clean);
2290 	if (nb_pkts > empty_tx_reqs)
2291 		nb_pkts = empty_tx_reqs;
2292 
2293 	for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
2294 		mbuf = tx_pkts[sent_idx];
2295 		total_length = 0;
2296 
2297 		rc = ena_check_and_linearize_mbuf(tx_ring, mbuf);
2298 		if (unlikely(rc))
2299 			break;
2300 
2301 		req_id = tx_ring->empty_tx_reqs[next_to_use & ring_mask];
2302 		tx_info = &tx_ring->tx_buffer_info[req_id];
2303 		tx_info->mbuf = mbuf;
2304 		tx_info->num_of_bufs = 0;
2305 		ebuf = tx_info->bufs;
2306 
2307 		/* Prepare TX context */
2308 		memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
2309 		memset(&ena_tx_ctx.ena_meta, 0x0,
2310 		       sizeof(struct ena_com_tx_meta));
2311 		ena_tx_ctx.ena_bufs = ebuf;
2312 		ena_tx_ctx.req_id = req_id;
2313 
2314 		delta = 0;
2315 		seg_len = mbuf->data_len;
2316 
2317 		if (tx_ring->tx_mem_queue_type ==
2318 				ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2319 			push_len = RTE_MIN(mbuf->pkt_len,
2320 					   tx_ring->tx_max_header_size);
2321 			ena_tx_ctx.header_len = push_len;
2322 
2323 			if (likely(push_len <= seg_len)) {
2324 				/* If the push header is in the single segment,
2325 				 * then just point it to the 1st mbuf data.
2326 				 */
2327 				ena_tx_ctx.push_header =
2328 					rte_pktmbuf_mtod(mbuf, uint8_t *);
2329 			} else {
2330 				/* If the push header lays in the several
2331 				 * segments, copy it to the intermediate buffer.
2332 				 */
2333 				rte_pktmbuf_read(mbuf, 0, push_len,
2334 					tx_ring->push_buf_intermediate_buf);
2335 				ena_tx_ctx.push_header =
2336 					tx_ring->push_buf_intermediate_buf;
2337 				delta = push_len - seg_len;
2338 			}
2339 		} /* there's no else as we take advantage of memset zeroing */
2340 
2341 		/* Set TX offloads flags, if applicable */
2342 		ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads);
2343 
2344 		if (unlikely(mbuf->ol_flags &
2345 			     (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD)))
2346 			rte_atomic64_inc(&tx_ring->adapter->drv_stats->ierrors);
2347 
2348 		rte_prefetch0(tx_pkts[(sent_idx + 4) & ring_mask]);
2349 
2350 		/* Process first segment taking into
2351 		 * consideration pushed header
2352 		 */
2353 		if (seg_len > push_len) {
2354 			ebuf->paddr = mbuf->buf_iova +
2355 				      mbuf->data_off +
2356 				      push_len;
2357 			ebuf->len = seg_len - push_len;
2358 			ebuf++;
2359 			tx_info->num_of_bufs++;
2360 		}
2361 		total_length += mbuf->data_len;
2362 
2363 		while ((mbuf = mbuf->next) != NULL) {
2364 			seg_len = mbuf->data_len;
2365 
2366 			/* Skip mbufs if whole data is pushed as a header */
2367 			if (unlikely(delta > seg_len)) {
2368 				delta -= seg_len;
2369 				continue;
2370 			}
2371 
2372 			ebuf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
2373 			ebuf->len = seg_len - delta;
2374 			total_length += ebuf->len;
2375 			ebuf++;
2376 			tx_info->num_of_bufs++;
2377 
2378 			delta = 0;
2379 		}
2380 
2381 		ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2382 
2383 		if (ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
2384 					       &ena_tx_ctx)) {
2385 			RTE_LOG(DEBUG, PMD, "llq tx max burst size of queue %d"
2386 				" achieved, writing doorbell to send burst\n",
2387 				tx_ring->id);
2388 			rte_wmb();
2389 			ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2390 		}
2391 
2392 		/* prepare the packet's descriptors to dma engine */
2393 		rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq,
2394 					&ena_tx_ctx, &nb_hw_desc);
2395 		if (unlikely(rc)) {
2396 			++tx_ring->tx_stats.prepare_ctx_err;
2397 			break;
2398 		}
2399 		tx_info->tx_descs = nb_hw_desc;
2400 
2401 		next_to_use++;
2402 		tx_ring->tx_stats.cnt += tx_info->num_of_bufs;
2403 		tx_ring->tx_stats.bytes += total_length;
2404 	}
2405 	tx_ring->tx_stats.available_desc =
2406 		ena_com_free_desc(tx_ring->ena_com_io_sq);
2407 
2408 	/* If there are ready packets to be xmitted... */
2409 	if (sent_idx > 0) {
2410 		/* ...let HW do its best :-) */
2411 		rte_wmb();
2412 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2413 		tx_ring->tx_stats.doorbells++;
2414 		tx_ring->next_to_use = next_to_use;
2415 	}
2416 
2417 	/* Clear complete packets  */
2418 	while (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) >= 0) {
2419 		rc = validate_tx_req_id(tx_ring, req_id);
2420 		if (rc)
2421 			break;
2422 
2423 		/* Get Tx info & store how many descs were processed  */
2424 		tx_info = &tx_ring->tx_buffer_info[req_id];
2425 		total_tx_descs += tx_info->tx_descs;
2426 
2427 		/* Free whole mbuf chain  */
2428 		mbuf = tx_info->mbuf;
2429 		rte_pktmbuf_free(mbuf);
2430 		tx_info->mbuf = NULL;
2431 
2432 		/* Put back descriptor to the ring for reuse */
2433 		tx_ring->empty_tx_reqs[next_to_clean & ring_mask] = req_id;
2434 		next_to_clean++;
2435 
2436 		/* If too many descs to clean, leave it for another run */
2437 		if (unlikely(total_tx_descs > ENA_RING_DESCS_RATIO(ring_size)))
2438 			break;
2439 	}
2440 	tx_ring->tx_stats.available_desc =
2441 		ena_com_free_desc(tx_ring->ena_com_io_sq);
2442 
2443 	if (total_tx_descs > 0) {
2444 		/* acknowledge completion of sent packets */
2445 		tx_ring->next_to_clean = next_to_clean;
2446 		ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
2447 		ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
2448 	}
2449 
2450 	tx_ring->tx_stats.tx_poll++;
2451 
2452 	return sent_idx;
2453 }
2454 
2455 /**
2456  * DPDK callback to retrieve names of extended device statistics
2457  *
2458  * @param dev
2459  *   Pointer to Ethernet device structure.
2460  * @param[out] xstats_names
2461  *   Buffer to insert names into.
2462  * @param n
2463  *   Number of names.
2464  *
2465  * @return
2466  *   Number of xstats names.
2467  */
2468 static int ena_xstats_get_names(struct rte_eth_dev *dev,
2469 				struct rte_eth_xstat_name *xstats_names,
2470 				unsigned int n)
2471 {
2472 	unsigned int xstats_count = ena_xstats_calc_num(dev);
2473 	unsigned int stat, i, count = 0;
2474 
2475 	if (n < xstats_count || !xstats_names)
2476 		return xstats_count;
2477 
2478 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
2479 		strcpy(xstats_names[count].name,
2480 			ena_stats_global_strings[stat].name);
2481 
2482 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
2483 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
2484 			snprintf(xstats_names[count].name,
2485 				sizeof(xstats_names[count].name),
2486 				"rx_q%d_%s", i,
2487 				ena_stats_rx_strings[stat].name);
2488 
2489 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
2490 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
2491 			snprintf(xstats_names[count].name,
2492 				sizeof(xstats_names[count].name),
2493 				"tx_q%d_%s", i,
2494 				ena_stats_tx_strings[stat].name);
2495 
2496 	return xstats_count;
2497 }
2498 
2499 /**
2500  * DPDK callback to get extended device statistics.
2501  *
2502  * @param dev
2503  *   Pointer to Ethernet device structure.
2504  * @param[out] stats
2505  *   Stats table output buffer.
2506  * @param n
2507  *   The size of the stats table.
2508  *
2509  * @return
2510  *   Number of xstats on success, negative on failure.
2511  */
2512 static int ena_xstats_get(struct rte_eth_dev *dev,
2513 			  struct rte_eth_xstat *xstats,
2514 			  unsigned int n)
2515 {
2516 	struct ena_adapter *adapter =
2517 			(struct ena_adapter *)(dev->data->dev_private);
2518 	unsigned int xstats_count = ena_xstats_calc_num(dev);
2519 	unsigned int stat, i, count = 0;
2520 	int stat_offset;
2521 	void *stats_begin;
2522 
2523 	if (n < xstats_count)
2524 		return xstats_count;
2525 
2526 	if (!xstats)
2527 		return 0;
2528 
2529 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
2530 		stat_offset = ena_stats_rx_strings[stat].stat_offset;
2531 		stats_begin = &adapter->dev_stats;
2532 
2533 		xstats[count].id = count;
2534 		xstats[count].value = *((uint64_t *)
2535 			((char *)stats_begin + stat_offset));
2536 	}
2537 
2538 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
2539 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
2540 			stat_offset = ena_stats_rx_strings[stat].stat_offset;
2541 			stats_begin = &adapter->rx_ring[i].rx_stats;
2542 
2543 			xstats[count].id = count;
2544 			xstats[count].value = *((uint64_t *)
2545 				((char *)stats_begin + stat_offset));
2546 		}
2547 	}
2548 
2549 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
2550 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
2551 			stat_offset = ena_stats_tx_strings[stat].stat_offset;
2552 			stats_begin = &adapter->tx_ring[i].rx_stats;
2553 
2554 			xstats[count].id = count;
2555 			xstats[count].value = *((uint64_t *)
2556 				((char *)stats_begin + stat_offset));
2557 		}
2558 	}
2559 
2560 	return count;
2561 }
2562 
2563 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
2564 				const uint64_t *ids,
2565 				uint64_t *values,
2566 				unsigned int n)
2567 {
2568 	struct ena_adapter *adapter =
2569 		(struct ena_adapter *)(dev->data->dev_private);
2570 	uint64_t id;
2571 	uint64_t rx_entries, tx_entries;
2572 	unsigned int i;
2573 	int qid;
2574 	int valid = 0;
2575 	for (i = 0; i < n; ++i) {
2576 		id = ids[i];
2577 		/* Check if id belongs to global statistics */
2578 		if (id < ENA_STATS_ARRAY_GLOBAL) {
2579 			values[i] = *((uint64_t *)&adapter->dev_stats + id);
2580 			++valid;
2581 			continue;
2582 		}
2583 
2584 		/* Check if id belongs to rx queue statistics */
2585 		id -= ENA_STATS_ARRAY_GLOBAL;
2586 		rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
2587 		if (id < rx_entries) {
2588 			qid = id % dev->data->nb_rx_queues;
2589 			id /= dev->data->nb_rx_queues;
2590 			values[i] = *((uint64_t *)
2591 				&adapter->rx_ring[qid].rx_stats + id);
2592 			++valid;
2593 			continue;
2594 		}
2595 				/* Check if id belongs to rx queue statistics */
2596 		id -= rx_entries;
2597 		tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
2598 		if (id < tx_entries) {
2599 			qid = id % dev->data->nb_tx_queues;
2600 			id /= dev->data->nb_tx_queues;
2601 			values[i] = *((uint64_t *)
2602 				&adapter->tx_ring[qid].tx_stats + id);
2603 			++valid;
2604 			continue;
2605 		}
2606 	}
2607 
2608 	return valid;
2609 }
2610 
2611 /*********************************************************************
2612  *  PMD configuration
2613  *********************************************************************/
2614 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2615 	struct rte_pci_device *pci_dev)
2616 {
2617 	return rte_eth_dev_pci_generic_probe(pci_dev,
2618 		sizeof(struct ena_adapter), eth_ena_dev_init);
2619 }
2620 
2621 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
2622 {
2623 	return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
2624 }
2625 
2626 static struct rte_pci_driver rte_ena_pmd = {
2627 	.id_table = pci_id_ena_map,
2628 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
2629 		     RTE_PCI_DRV_WC_ACTIVATE,
2630 	.probe = eth_ena_pci_probe,
2631 	.remove = eth_ena_pci_remove,
2632 };
2633 
2634 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
2635 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
2636 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
2637 
2638 RTE_INIT(ena_init_log)
2639 {
2640 	ena_logtype_init = rte_log_register("pmd.net.ena.init");
2641 	if (ena_logtype_init >= 0)
2642 		rte_log_set_level(ena_logtype_init, RTE_LOG_NOTICE);
2643 	ena_logtype_driver = rte_log_register("pmd.net.ena.driver");
2644 	if (ena_logtype_driver >= 0)
2645 		rte_log_set_level(ena_logtype_driver, RTE_LOG_NOTICE);
2646 }
2647 
2648 /******************************************************************************
2649  ******************************** AENQ Handlers *******************************
2650  *****************************************************************************/
2651 static void ena_update_on_link_change(void *adapter_data,
2652 				      struct ena_admin_aenq_entry *aenq_e)
2653 {
2654 	struct rte_eth_dev *eth_dev;
2655 	struct ena_adapter *adapter;
2656 	struct ena_admin_aenq_link_change_desc *aenq_link_desc;
2657 	uint32_t status;
2658 
2659 	adapter = (struct ena_adapter *)adapter_data;
2660 	aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
2661 	eth_dev = adapter->rte_dev;
2662 
2663 	status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
2664 	adapter->link_status = status;
2665 
2666 	ena_link_update(eth_dev, 0);
2667 	_rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
2668 }
2669 
2670 static void ena_notification(void *data,
2671 			     struct ena_admin_aenq_entry *aenq_e)
2672 {
2673 	struct ena_adapter *adapter = (struct ena_adapter *)data;
2674 	struct ena_admin_ena_hw_hints *hints;
2675 
2676 	if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
2677 		RTE_LOG(WARNING, PMD, "Invalid group(%x) expected %x\n",
2678 			aenq_e->aenq_common_desc.group,
2679 			ENA_ADMIN_NOTIFICATION);
2680 
2681 	switch (aenq_e->aenq_common_desc.syndrom) {
2682 	case ENA_ADMIN_UPDATE_HINTS:
2683 		hints = (struct ena_admin_ena_hw_hints *)
2684 			(&aenq_e->inline_data_w4);
2685 		ena_update_hints(adapter, hints);
2686 		break;
2687 	default:
2688 		RTE_LOG(ERR, PMD, "Invalid aenq notification link state %d\n",
2689 			aenq_e->aenq_common_desc.syndrom);
2690 	}
2691 }
2692 
2693 static void ena_keep_alive(void *adapter_data,
2694 			   __rte_unused struct ena_admin_aenq_entry *aenq_e)
2695 {
2696 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
2697 	struct ena_admin_aenq_keep_alive_desc *desc;
2698 	uint64_t rx_drops;
2699 
2700 	adapter->timestamp_wd = rte_get_timer_cycles();
2701 
2702 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
2703 	rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
2704 	rte_atomic64_set(&adapter->drv_stats->rx_drops, rx_drops);
2705 }
2706 
2707 /**
2708  * This handler will called for unknown event group or unimplemented handlers
2709  **/
2710 static void unimplemented_aenq_handler(__rte_unused void *data,
2711 				       __rte_unused struct ena_admin_aenq_entry *aenq_e)
2712 {
2713 	RTE_LOG(ERR, PMD, "Unknown event was received or event with "
2714 			  "unimplemented handler\n");
2715 }
2716 
2717 static struct ena_aenq_handlers aenq_handlers = {
2718 	.handlers = {
2719 		[ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
2720 		[ENA_ADMIN_NOTIFICATION] = ena_notification,
2721 		[ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive
2722 	},
2723 	.unimplemented_handler = unimplemented_aenq_handler
2724 };
2725