1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates. 3 * All rights reserved. 4 */ 5 6 #include <rte_string_fns.h> 7 #include <rte_ether.h> 8 #include <rte_ethdev_driver.h> 9 #include <rte_ethdev_pci.h> 10 #include <rte_tcp.h> 11 #include <rte_atomic.h> 12 #include <rte_dev.h> 13 #include <rte_errno.h> 14 #include <rte_version.h> 15 #include <rte_net.h> 16 #include <rte_kvargs.h> 17 18 #include "ena_ethdev.h" 19 #include "ena_logs.h" 20 #include "ena_platform.h" 21 #include "ena_com.h" 22 #include "ena_eth_com.h" 23 24 #include <ena_common_defs.h> 25 #include <ena_regs_defs.h> 26 #include <ena_admin_defs.h> 27 #include <ena_eth_io_defs.h> 28 29 #define DRV_MODULE_VER_MAJOR 2 30 #define DRV_MODULE_VER_MINOR 2 31 #define DRV_MODULE_VER_SUBMINOR 0 32 33 #define ENA_IO_TXQ_IDX(q) (2 * (q)) 34 #define ENA_IO_RXQ_IDX(q) (2 * (q) + 1) 35 /*reverse version of ENA_IO_RXQ_IDX*/ 36 #define ENA_IO_RXQ_IDX_REV(q) ((q - 1) / 2) 37 38 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l) 39 #define TEST_BIT(val, bit_shift) (val & (1UL << bit_shift)) 40 41 #define GET_L4_HDR_LEN(mbuf) \ 42 ((rte_pktmbuf_mtod_offset(mbuf, struct rte_tcp_hdr *, \ 43 mbuf->l3_len + mbuf->l2_len)->data_off) >> 4) 44 45 #define ENA_RX_RSS_TABLE_LOG_SIZE 7 46 #define ENA_RX_RSS_TABLE_SIZE (1 << ENA_RX_RSS_TABLE_LOG_SIZE) 47 #define ENA_HASH_KEY_SIZE 40 48 #define ETH_GSTRING_LEN 32 49 50 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) 51 52 #define ENA_MIN_RING_DESC 128 53 54 enum ethtool_stringset { 55 ETH_SS_TEST = 0, 56 ETH_SS_STATS, 57 }; 58 59 struct ena_stats { 60 char name[ETH_GSTRING_LEN]; 61 int stat_offset; 62 }; 63 64 #define ENA_STAT_ENTRY(stat, stat_type) { \ 65 .name = #stat, \ 66 .stat_offset = offsetof(struct ena_stats_##stat_type, stat) \ 67 } 68 69 #define ENA_STAT_RX_ENTRY(stat) \ 70 ENA_STAT_ENTRY(stat, rx) 71 72 #define ENA_STAT_TX_ENTRY(stat) \ 73 ENA_STAT_ENTRY(stat, tx) 74 75 #define ENA_STAT_ENI_ENTRY(stat) \ 76 ENA_STAT_ENTRY(stat, eni) 77 78 #define ENA_STAT_GLOBAL_ENTRY(stat) \ 79 ENA_STAT_ENTRY(stat, dev) 80 81 /* Device arguments */ 82 #define ENA_DEVARG_LARGE_LLQ_HDR "large_llq_hdr" 83 84 /* 85 * Each rte_memzone should have unique name. 86 * To satisfy it, count number of allocation and add it to name. 87 */ 88 rte_atomic32_t ena_alloc_cnt; 89 90 static const struct ena_stats ena_stats_global_strings[] = { 91 ENA_STAT_GLOBAL_ENTRY(wd_expired), 92 ENA_STAT_GLOBAL_ENTRY(dev_start), 93 ENA_STAT_GLOBAL_ENTRY(dev_stop), 94 ENA_STAT_GLOBAL_ENTRY(tx_drops), 95 }; 96 97 static const struct ena_stats ena_stats_eni_strings[] = { 98 ENA_STAT_ENI_ENTRY(bw_in_allowance_exceeded), 99 ENA_STAT_ENI_ENTRY(bw_out_allowance_exceeded), 100 ENA_STAT_ENI_ENTRY(pps_allowance_exceeded), 101 ENA_STAT_ENI_ENTRY(conntrack_allowance_exceeded), 102 ENA_STAT_ENI_ENTRY(linklocal_allowance_exceeded), 103 }; 104 105 static const struct ena_stats ena_stats_tx_strings[] = { 106 ENA_STAT_TX_ENTRY(cnt), 107 ENA_STAT_TX_ENTRY(bytes), 108 ENA_STAT_TX_ENTRY(prepare_ctx_err), 109 ENA_STAT_TX_ENTRY(linearize), 110 ENA_STAT_TX_ENTRY(linearize_failed), 111 ENA_STAT_TX_ENTRY(tx_poll), 112 ENA_STAT_TX_ENTRY(doorbells), 113 ENA_STAT_TX_ENTRY(bad_req_id), 114 ENA_STAT_TX_ENTRY(available_desc), 115 }; 116 117 static const struct ena_stats ena_stats_rx_strings[] = { 118 ENA_STAT_RX_ENTRY(cnt), 119 ENA_STAT_RX_ENTRY(bytes), 120 ENA_STAT_RX_ENTRY(refill_partial), 121 ENA_STAT_RX_ENTRY(bad_csum), 122 ENA_STAT_RX_ENTRY(mbuf_alloc_fail), 123 ENA_STAT_RX_ENTRY(bad_desc_num), 124 ENA_STAT_RX_ENTRY(bad_req_id), 125 }; 126 127 #define ENA_STATS_ARRAY_GLOBAL ARRAY_SIZE(ena_stats_global_strings) 128 #define ENA_STATS_ARRAY_ENI ARRAY_SIZE(ena_stats_eni_strings) 129 #define ENA_STATS_ARRAY_TX ARRAY_SIZE(ena_stats_tx_strings) 130 #define ENA_STATS_ARRAY_RX ARRAY_SIZE(ena_stats_rx_strings) 131 132 #define QUEUE_OFFLOADS (DEV_TX_OFFLOAD_TCP_CKSUM |\ 133 DEV_TX_OFFLOAD_UDP_CKSUM |\ 134 DEV_TX_OFFLOAD_IPV4_CKSUM |\ 135 DEV_TX_OFFLOAD_TCP_TSO) 136 #define MBUF_OFFLOADS (PKT_TX_L4_MASK |\ 137 PKT_TX_IP_CKSUM |\ 138 PKT_TX_TCP_SEG) 139 140 /** Vendor ID used by Amazon devices */ 141 #define PCI_VENDOR_ID_AMAZON 0x1D0F 142 /** Amazon devices */ 143 #define PCI_DEVICE_ID_ENA_VF 0xEC20 144 #define PCI_DEVICE_ID_ENA_VF_RSERV0 0xEC21 145 146 #define ENA_TX_OFFLOAD_MASK (\ 147 PKT_TX_L4_MASK | \ 148 PKT_TX_IPV6 | \ 149 PKT_TX_IPV4 | \ 150 PKT_TX_IP_CKSUM | \ 151 PKT_TX_TCP_SEG) 152 153 #define ENA_TX_OFFLOAD_NOTSUP_MASK \ 154 (PKT_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK) 155 156 static const struct rte_pci_id pci_id_ena_map[] = { 157 { RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) }, 158 { RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF_RSERV0) }, 159 { .device_id = 0 }, 160 }; 161 162 static struct ena_aenq_handlers aenq_handlers; 163 164 static int ena_device_init(struct ena_com_dev *ena_dev, 165 struct ena_com_dev_get_features_ctx *get_feat_ctx, 166 bool *wd_state); 167 static int ena_dev_configure(struct rte_eth_dev *dev); 168 static void ena_tx_map_mbuf(struct ena_ring *tx_ring, 169 struct ena_tx_buffer *tx_info, 170 struct rte_mbuf *mbuf, 171 void **push_header, 172 uint16_t *header_len); 173 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf); 174 static void ena_tx_cleanup(struct ena_ring *tx_ring); 175 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, 176 uint16_t nb_pkts); 177 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, 178 uint16_t nb_pkts); 179 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx, 180 uint16_t nb_desc, unsigned int socket_id, 181 const struct rte_eth_txconf *tx_conf); 182 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx, 183 uint16_t nb_desc, unsigned int socket_id, 184 const struct rte_eth_rxconf *rx_conf, 185 struct rte_mempool *mp); 186 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len); 187 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring, 188 struct ena_com_rx_buf_info *ena_bufs, 189 uint32_t descs, 190 uint16_t *next_to_clean, 191 uint8_t offset); 192 static uint16_t eth_ena_recv_pkts(void *rx_queue, 193 struct rte_mbuf **rx_pkts, uint16_t nb_pkts); 194 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq, 195 struct rte_mbuf *mbuf, uint16_t id); 196 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count); 197 static void ena_init_rings(struct ena_adapter *adapter, 198 bool disable_meta_caching); 199 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu); 200 static int ena_start(struct rte_eth_dev *dev); 201 static int ena_stop(struct rte_eth_dev *dev); 202 static int ena_close(struct rte_eth_dev *dev); 203 static int ena_dev_reset(struct rte_eth_dev *dev); 204 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats); 205 static void ena_rx_queue_release_all(struct rte_eth_dev *dev); 206 static void ena_tx_queue_release_all(struct rte_eth_dev *dev); 207 static void ena_rx_queue_release(void *queue); 208 static void ena_tx_queue_release(void *queue); 209 static void ena_rx_queue_release_bufs(struct ena_ring *ring); 210 static void ena_tx_queue_release_bufs(struct ena_ring *ring); 211 static int ena_link_update(struct rte_eth_dev *dev, 212 int wait_to_complete); 213 static int ena_create_io_queue(struct ena_ring *ring); 214 static void ena_queue_stop(struct ena_ring *ring); 215 static void ena_queue_stop_all(struct rte_eth_dev *dev, 216 enum ena_ring_type ring_type); 217 static int ena_queue_start(struct ena_ring *ring); 218 static int ena_queue_start_all(struct rte_eth_dev *dev, 219 enum ena_ring_type ring_type); 220 static void ena_stats_restart(struct rte_eth_dev *dev); 221 static int ena_infos_get(struct rte_eth_dev *dev, 222 struct rte_eth_dev_info *dev_info); 223 static int ena_rss_reta_update(struct rte_eth_dev *dev, 224 struct rte_eth_rss_reta_entry64 *reta_conf, 225 uint16_t reta_size); 226 static int ena_rss_reta_query(struct rte_eth_dev *dev, 227 struct rte_eth_rss_reta_entry64 *reta_conf, 228 uint16_t reta_size); 229 static void ena_interrupt_handler_rte(void *cb_arg); 230 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg); 231 static void ena_destroy_device(struct rte_eth_dev *eth_dev); 232 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev); 233 static int ena_xstats_get_names(struct rte_eth_dev *dev, 234 struct rte_eth_xstat_name *xstats_names, 235 unsigned int n); 236 static int ena_xstats_get(struct rte_eth_dev *dev, 237 struct rte_eth_xstat *stats, 238 unsigned int n); 239 static int ena_xstats_get_by_id(struct rte_eth_dev *dev, 240 const uint64_t *ids, 241 uint64_t *values, 242 unsigned int n); 243 static int ena_process_bool_devarg(const char *key, 244 const char *value, 245 void *opaque); 246 static int ena_parse_devargs(struct ena_adapter *adapter, 247 struct rte_devargs *devargs); 248 static int ena_copy_eni_stats(struct ena_adapter *adapter); 249 250 static const struct eth_dev_ops ena_dev_ops = { 251 .dev_configure = ena_dev_configure, 252 .dev_infos_get = ena_infos_get, 253 .rx_queue_setup = ena_rx_queue_setup, 254 .tx_queue_setup = ena_tx_queue_setup, 255 .dev_start = ena_start, 256 .dev_stop = ena_stop, 257 .link_update = ena_link_update, 258 .stats_get = ena_stats_get, 259 .xstats_get_names = ena_xstats_get_names, 260 .xstats_get = ena_xstats_get, 261 .xstats_get_by_id = ena_xstats_get_by_id, 262 .mtu_set = ena_mtu_set, 263 .rx_queue_release = ena_rx_queue_release, 264 .tx_queue_release = ena_tx_queue_release, 265 .dev_close = ena_close, 266 .dev_reset = ena_dev_reset, 267 .reta_update = ena_rss_reta_update, 268 .reta_query = ena_rss_reta_query, 269 }; 270 271 void ena_rss_key_fill(void *key, size_t size) 272 { 273 static bool key_generated; 274 static uint8_t default_key[ENA_HASH_KEY_SIZE]; 275 size_t i; 276 277 RTE_ASSERT(size <= ENA_HASH_KEY_SIZE); 278 279 if (!key_generated) { 280 for (i = 0; i < ENA_HASH_KEY_SIZE; ++i) 281 default_key[i] = rte_rand() & 0xff; 282 key_generated = true; 283 } 284 285 rte_memcpy(key, default_key, size); 286 } 287 288 static inline void ena_rx_mbuf_prepare(struct rte_mbuf *mbuf, 289 struct ena_com_rx_ctx *ena_rx_ctx) 290 { 291 uint64_t ol_flags = 0; 292 uint32_t packet_type = 0; 293 294 if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) 295 packet_type |= RTE_PTYPE_L4_TCP; 296 else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP) 297 packet_type |= RTE_PTYPE_L4_UDP; 298 299 if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) { 300 packet_type |= RTE_PTYPE_L3_IPV4; 301 if (unlikely(ena_rx_ctx->l3_csum_err)) 302 ol_flags |= PKT_RX_IP_CKSUM_BAD; 303 else 304 ol_flags |= PKT_RX_IP_CKSUM_GOOD; 305 } else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) { 306 packet_type |= RTE_PTYPE_L3_IPV6; 307 } 308 309 if (!ena_rx_ctx->l4_csum_checked || ena_rx_ctx->frag) 310 ol_flags |= PKT_RX_L4_CKSUM_UNKNOWN; 311 else 312 if (unlikely(ena_rx_ctx->l4_csum_err)) 313 ol_flags |= PKT_RX_L4_CKSUM_BAD; 314 else 315 ol_flags |= PKT_RX_L4_CKSUM_GOOD; 316 317 mbuf->ol_flags = ol_flags; 318 mbuf->packet_type = packet_type; 319 } 320 321 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf, 322 struct ena_com_tx_ctx *ena_tx_ctx, 323 uint64_t queue_offloads, 324 bool disable_meta_caching) 325 { 326 struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta; 327 328 if ((mbuf->ol_flags & MBUF_OFFLOADS) && 329 (queue_offloads & QUEUE_OFFLOADS)) { 330 /* check if TSO is required */ 331 if ((mbuf->ol_flags & PKT_TX_TCP_SEG) && 332 (queue_offloads & DEV_TX_OFFLOAD_TCP_TSO)) { 333 ena_tx_ctx->tso_enable = true; 334 335 ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf); 336 } 337 338 /* check if L3 checksum is needed */ 339 if ((mbuf->ol_flags & PKT_TX_IP_CKSUM) && 340 (queue_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM)) 341 ena_tx_ctx->l3_csum_enable = true; 342 343 if (mbuf->ol_flags & PKT_TX_IPV6) { 344 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6; 345 } else { 346 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4; 347 348 /* set don't fragment (DF) flag */ 349 if (mbuf->packet_type & 350 (RTE_PTYPE_L4_NONFRAG 351 | RTE_PTYPE_INNER_L4_NONFRAG)) 352 ena_tx_ctx->df = true; 353 } 354 355 /* check if L4 checksum is needed */ 356 if (((mbuf->ol_flags & PKT_TX_L4_MASK) == PKT_TX_TCP_CKSUM) && 357 (queue_offloads & DEV_TX_OFFLOAD_TCP_CKSUM)) { 358 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP; 359 ena_tx_ctx->l4_csum_enable = true; 360 } else if (((mbuf->ol_flags & PKT_TX_L4_MASK) == 361 PKT_TX_UDP_CKSUM) && 362 (queue_offloads & DEV_TX_OFFLOAD_UDP_CKSUM)) { 363 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP; 364 ena_tx_ctx->l4_csum_enable = true; 365 } else { 366 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN; 367 ena_tx_ctx->l4_csum_enable = false; 368 } 369 370 ena_meta->mss = mbuf->tso_segsz; 371 ena_meta->l3_hdr_len = mbuf->l3_len; 372 ena_meta->l3_hdr_offset = mbuf->l2_len; 373 374 ena_tx_ctx->meta_valid = true; 375 } else if (disable_meta_caching) { 376 memset(ena_meta, 0, sizeof(*ena_meta)); 377 ena_tx_ctx->meta_valid = true; 378 } else { 379 ena_tx_ctx->meta_valid = false; 380 } 381 } 382 383 static inline int validate_rx_req_id(struct ena_ring *rx_ring, uint16_t req_id) 384 { 385 if (likely(req_id < rx_ring->ring_size)) 386 return 0; 387 388 PMD_DRV_LOG(ERR, "Invalid rx req_id: %hu\n", req_id); 389 390 rx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID; 391 rx_ring->adapter->trigger_reset = true; 392 ++rx_ring->rx_stats.bad_req_id; 393 394 return -EFAULT; 395 } 396 397 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id) 398 { 399 struct ena_tx_buffer *tx_info = NULL; 400 401 if (likely(req_id < tx_ring->ring_size)) { 402 tx_info = &tx_ring->tx_buffer_info[req_id]; 403 if (likely(tx_info->mbuf)) 404 return 0; 405 } 406 407 if (tx_info) 408 PMD_DRV_LOG(ERR, "tx_info doesn't have valid mbuf\n"); 409 else 410 PMD_DRV_LOG(ERR, "Invalid req_id: %hu\n", req_id); 411 412 /* Trigger device reset */ 413 ++tx_ring->tx_stats.bad_req_id; 414 tx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID; 415 tx_ring->adapter->trigger_reset = true; 416 return -EFAULT; 417 } 418 419 static void ena_config_host_info(struct ena_com_dev *ena_dev) 420 { 421 struct ena_admin_host_info *host_info; 422 int rc; 423 424 /* Allocate only the host info */ 425 rc = ena_com_allocate_host_info(ena_dev); 426 if (rc) { 427 PMD_DRV_LOG(ERR, "Cannot allocate host info\n"); 428 return; 429 } 430 431 host_info = ena_dev->host_attr.host_info; 432 433 host_info->os_type = ENA_ADMIN_OS_DPDK; 434 host_info->kernel_ver = RTE_VERSION; 435 strlcpy((char *)host_info->kernel_ver_str, rte_version(), 436 sizeof(host_info->kernel_ver_str)); 437 host_info->os_dist = RTE_VERSION; 438 strlcpy((char *)host_info->os_dist_str, rte_version(), 439 sizeof(host_info->os_dist_str)); 440 host_info->driver_version = 441 (DRV_MODULE_VER_MAJOR) | 442 (DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) | 443 (DRV_MODULE_VER_SUBMINOR << 444 ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT); 445 host_info->num_cpus = rte_lcore_count(); 446 447 host_info->driver_supported_features = 448 ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK; 449 450 rc = ena_com_set_host_attributes(ena_dev); 451 if (rc) { 452 if (rc == -ENA_COM_UNSUPPORTED) 453 PMD_DRV_LOG(WARNING, "Cannot set host attributes\n"); 454 else 455 PMD_DRV_LOG(ERR, "Cannot set host attributes\n"); 456 457 goto err; 458 } 459 460 return; 461 462 err: 463 ena_com_delete_host_info(ena_dev); 464 } 465 466 /* This function calculates the number of xstats based on the current config */ 467 static unsigned int ena_xstats_calc_num(struct rte_eth_dev *dev) 468 { 469 return ENA_STATS_ARRAY_GLOBAL + ENA_STATS_ARRAY_ENI + 470 (dev->data->nb_tx_queues * ENA_STATS_ARRAY_TX) + 471 (dev->data->nb_rx_queues * ENA_STATS_ARRAY_RX); 472 } 473 474 static void ena_config_debug_area(struct ena_adapter *adapter) 475 { 476 u32 debug_area_size; 477 int rc, ss_count; 478 479 ss_count = ena_xstats_calc_num(adapter->rte_dev); 480 481 /* allocate 32 bytes for each string and 64bit for the value */ 482 debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count; 483 484 rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size); 485 if (rc) { 486 PMD_DRV_LOG(ERR, "Cannot allocate debug area\n"); 487 return; 488 } 489 490 rc = ena_com_set_host_attributes(&adapter->ena_dev); 491 if (rc) { 492 if (rc == -ENA_COM_UNSUPPORTED) 493 PMD_DRV_LOG(WARNING, "Cannot set host attributes\n"); 494 else 495 PMD_DRV_LOG(ERR, "Cannot set host attributes\n"); 496 497 goto err; 498 } 499 500 return; 501 err: 502 ena_com_delete_debug_area(&adapter->ena_dev); 503 } 504 505 static int ena_close(struct rte_eth_dev *dev) 506 { 507 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); 508 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; 509 struct ena_adapter *adapter = dev->data->dev_private; 510 int ret = 0; 511 512 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 513 return 0; 514 515 if (adapter->state == ENA_ADAPTER_STATE_RUNNING) 516 ret = ena_stop(dev); 517 adapter->state = ENA_ADAPTER_STATE_CLOSED; 518 519 ena_rx_queue_release_all(dev); 520 ena_tx_queue_release_all(dev); 521 522 rte_free(adapter->drv_stats); 523 adapter->drv_stats = NULL; 524 525 rte_intr_disable(intr_handle); 526 rte_intr_callback_unregister(intr_handle, 527 ena_interrupt_handler_rte, 528 adapter); 529 530 /* 531 * MAC is not allocated dynamically. Setting NULL should prevent from 532 * release of the resource in the rte_eth_dev_release_port(). 533 */ 534 dev->data->mac_addrs = NULL; 535 536 return ret; 537 } 538 539 static int 540 ena_dev_reset(struct rte_eth_dev *dev) 541 { 542 int rc = 0; 543 544 ena_destroy_device(dev); 545 rc = eth_ena_dev_init(dev); 546 if (rc) 547 PMD_INIT_LOG(CRIT, "Cannot initialize device"); 548 549 return rc; 550 } 551 552 static int ena_rss_reta_update(struct rte_eth_dev *dev, 553 struct rte_eth_rss_reta_entry64 *reta_conf, 554 uint16_t reta_size) 555 { 556 struct ena_adapter *adapter = dev->data->dev_private; 557 struct ena_com_dev *ena_dev = &adapter->ena_dev; 558 int rc, i; 559 u16 entry_value; 560 int conf_idx; 561 int idx; 562 563 if ((reta_size == 0) || (reta_conf == NULL)) 564 return -EINVAL; 565 566 if (reta_size > ENA_RX_RSS_TABLE_SIZE) { 567 PMD_DRV_LOG(WARNING, 568 "indirection table %d is bigger than supported (%d)\n", 569 reta_size, ENA_RX_RSS_TABLE_SIZE); 570 return -EINVAL; 571 } 572 573 for (i = 0 ; i < reta_size ; i++) { 574 /* each reta_conf is for 64 entries. 575 * to support 128 we use 2 conf of 64 576 */ 577 conf_idx = i / RTE_RETA_GROUP_SIZE; 578 idx = i % RTE_RETA_GROUP_SIZE; 579 if (TEST_BIT(reta_conf[conf_idx].mask, idx)) { 580 entry_value = 581 ENA_IO_RXQ_IDX(reta_conf[conf_idx].reta[idx]); 582 583 rc = ena_com_indirect_table_fill_entry(ena_dev, 584 i, 585 entry_value); 586 if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) { 587 PMD_DRV_LOG(ERR, 588 "Cannot fill indirect table\n"); 589 return rc; 590 } 591 } 592 } 593 594 rte_spinlock_lock(&adapter->admin_lock); 595 rc = ena_com_indirect_table_set(ena_dev); 596 rte_spinlock_unlock(&adapter->admin_lock); 597 if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) { 598 PMD_DRV_LOG(ERR, "Cannot flush the indirect table\n"); 599 return rc; 600 } 601 602 PMD_DRV_LOG(DEBUG, "%s(): RSS configured %d entries for port %d\n", 603 __func__, reta_size, adapter->rte_dev->data->port_id); 604 605 return 0; 606 } 607 608 /* Query redirection table. */ 609 static int ena_rss_reta_query(struct rte_eth_dev *dev, 610 struct rte_eth_rss_reta_entry64 *reta_conf, 611 uint16_t reta_size) 612 { 613 struct ena_adapter *adapter = dev->data->dev_private; 614 struct ena_com_dev *ena_dev = &adapter->ena_dev; 615 int rc; 616 int i; 617 u32 indirect_table[ENA_RX_RSS_TABLE_SIZE] = {0}; 618 int reta_conf_idx; 619 int reta_idx; 620 621 if (reta_size == 0 || reta_conf == NULL || 622 (reta_size > RTE_RETA_GROUP_SIZE && ((reta_conf + 1) == NULL))) 623 return -EINVAL; 624 625 rte_spinlock_lock(&adapter->admin_lock); 626 rc = ena_com_indirect_table_get(ena_dev, indirect_table); 627 rte_spinlock_unlock(&adapter->admin_lock); 628 if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) { 629 PMD_DRV_LOG(ERR, "cannot get indirect table\n"); 630 return -ENOTSUP; 631 } 632 633 for (i = 0 ; i < reta_size ; i++) { 634 reta_conf_idx = i / RTE_RETA_GROUP_SIZE; 635 reta_idx = i % RTE_RETA_GROUP_SIZE; 636 if (TEST_BIT(reta_conf[reta_conf_idx].mask, reta_idx)) 637 reta_conf[reta_conf_idx].reta[reta_idx] = 638 ENA_IO_RXQ_IDX_REV(indirect_table[i]); 639 } 640 641 return 0; 642 } 643 644 static int ena_rss_init_default(struct ena_adapter *adapter) 645 { 646 struct ena_com_dev *ena_dev = &adapter->ena_dev; 647 uint16_t nb_rx_queues = adapter->rte_dev->data->nb_rx_queues; 648 int rc, i; 649 u32 val; 650 651 rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE); 652 if (unlikely(rc)) { 653 PMD_DRV_LOG(ERR, "Cannot init indirect table\n"); 654 goto err_rss_init; 655 } 656 657 for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) { 658 val = i % nb_rx_queues; 659 rc = ena_com_indirect_table_fill_entry(ena_dev, i, 660 ENA_IO_RXQ_IDX(val)); 661 if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) { 662 PMD_DRV_LOG(ERR, "Cannot fill indirect table\n"); 663 goto err_fill_indir; 664 } 665 } 666 667 rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL, 668 ENA_HASH_KEY_SIZE, 0xFFFFFFFF); 669 if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) { 670 PMD_DRV_LOG(INFO, "Cannot fill hash function\n"); 671 goto err_fill_indir; 672 } 673 674 rc = ena_com_set_default_hash_ctrl(ena_dev); 675 if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) { 676 PMD_DRV_LOG(INFO, "Cannot fill hash control\n"); 677 goto err_fill_indir; 678 } 679 680 rc = ena_com_indirect_table_set(ena_dev); 681 if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) { 682 PMD_DRV_LOG(ERR, "Cannot flush the indirect table\n"); 683 goto err_fill_indir; 684 } 685 PMD_DRV_LOG(DEBUG, "RSS configured for port %d\n", 686 adapter->rte_dev->data->port_id); 687 688 return 0; 689 690 err_fill_indir: 691 ena_com_rss_destroy(ena_dev); 692 err_rss_init: 693 694 return rc; 695 } 696 697 static void ena_rx_queue_release_all(struct rte_eth_dev *dev) 698 { 699 struct ena_ring **queues = (struct ena_ring **)dev->data->rx_queues; 700 int nb_queues = dev->data->nb_rx_queues; 701 int i; 702 703 for (i = 0; i < nb_queues; i++) 704 ena_rx_queue_release(queues[i]); 705 } 706 707 static void ena_tx_queue_release_all(struct rte_eth_dev *dev) 708 { 709 struct ena_ring **queues = (struct ena_ring **)dev->data->tx_queues; 710 int nb_queues = dev->data->nb_tx_queues; 711 int i; 712 713 for (i = 0; i < nb_queues; i++) 714 ena_tx_queue_release(queues[i]); 715 } 716 717 static void ena_rx_queue_release(void *queue) 718 { 719 struct ena_ring *ring = (struct ena_ring *)queue; 720 721 /* Free ring resources */ 722 if (ring->rx_buffer_info) 723 rte_free(ring->rx_buffer_info); 724 ring->rx_buffer_info = NULL; 725 726 if (ring->rx_refill_buffer) 727 rte_free(ring->rx_refill_buffer); 728 ring->rx_refill_buffer = NULL; 729 730 if (ring->empty_rx_reqs) 731 rte_free(ring->empty_rx_reqs); 732 ring->empty_rx_reqs = NULL; 733 734 ring->configured = 0; 735 736 PMD_DRV_LOG(NOTICE, "RX Queue %d:%d released\n", 737 ring->port_id, ring->id); 738 } 739 740 static void ena_tx_queue_release(void *queue) 741 { 742 struct ena_ring *ring = (struct ena_ring *)queue; 743 744 /* Free ring resources */ 745 if (ring->push_buf_intermediate_buf) 746 rte_free(ring->push_buf_intermediate_buf); 747 748 if (ring->tx_buffer_info) 749 rte_free(ring->tx_buffer_info); 750 751 if (ring->empty_tx_reqs) 752 rte_free(ring->empty_tx_reqs); 753 754 ring->empty_tx_reqs = NULL; 755 ring->tx_buffer_info = NULL; 756 ring->push_buf_intermediate_buf = NULL; 757 758 ring->configured = 0; 759 760 PMD_DRV_LOG(NOTICE, "TX Queue %d:%d released\n", 761 ring->port_id, ring->id); 762 } 763 764 static void ena_rx_queue_release_bufs(struct ena_ring *ring) 765 { 766 unsigned int i; 767 768 for (i = 0; i < ring->ring_size; ++i) { 769 struct ena_rx_buffer *rx_info = &ring->rx_buffer_info[i]; 770 if (rx_info->mbuf) { 771 rte_mbuf_raw_free(rx_info->mbuf); 772 rx_info->mbuf = NULL; 773 } 774 } 775 } 776 777 static void ena_tx_queue_release_bufs(struct ena_ring *ring) 778 { 779 unsigned int i; 780 781 for (i = 0; i < ring->ring_size; ++i) { 782 struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i]; 783 784 if (tx_buf->mbuf) 785 rte_pktmbuf_free(tx_buf->mbuf); 786 } 787 } 788 789 static int ena_link_update(struct rte_eth_dev *dev, 790 __rte_unused int wait_to_complete) 791 { 792 struct rte_eth_link *link = &dev->data->dev_link; 793 struct ena_adapter *adapter = dev->data->dev_private; 794 795 link->link_status = adapter->link_status ? ETH_LINK_UP : ETH_LINK_DOWN; 796 link->link_speed = ETH_SPEED_NUM_NONE; 797 link->link_duplex = ETH_LINK_FULL_DUPLEX; 798 799 return 0; 800 } 801 802 static int ena_queue_start_all(struct rte_eth_dev *dev, 803 enum ena_ring_type ring_type) 804 { 805 struct ena_adapter *adapter = dev->data->dev_private; 806 struct ena_ring *queues = NULL; 807 int nb_queues; 808 int i = 0; 809 int rc = 0; 810 811 if (ring_type == ENA_RING_TYPE_RX) { 812 queues = adapter->rx_ring; 813 nb_queues = dev->data->nb_rx_queues; 814 } else { 815 queues = adapter->tx_ring; 816 nb_queues = dev->data->nb_tx_queues; 817 } 818 for (i = 0; i < nb_queues; i++) { 819 if (queues[i].configured) { 820 if (ring_type == ENA_RING_TYPE_RX) { 821 ena_assert_msg( 822 dev->data->rx_queues[i] == &queues[i], 823 "Inconsistent state of rx queues\n"); 824 } else { 825 ena_assert_msg( 826 dev->data->tx_queues[i] == &queues[i], 827 "Inconsistent state of tx queues\n"); 828 } 829 830 rc = ena_queue_start(&queues[i]); 831 832 if (rc) { 833 PMD_INIT_LOG(ERR, 834 "failed to start queue %d type(%d)", 835 i, ring_type); 836 goto err; 837 } 838 } 839 } 840 841 return 0; 842 843 err: 844 while (i--) 845 if (queues[i].configured) 846 ena_queue_stop(&queues[i]); 847 848 return rc; 849 } 850 851 static uint32_t ena_get_mtu_conf(struct ena_adapter *adapter) 852 { 853 uint32_t max_frame_len = adapter->max_mtu; 854 855 if (adapter->rte_eth_dev_data->dev_conf.rxmode.offloads & 856 DEV_RX_OFFLOAD_JUMBO_FRAME) 857 max_frame_len = 858 adapter->rte_eth_dev_data->dev_conf.rxmode.max_rx_pkt_len; 859 860 return max_frame_len; 861 } 862 863 static int ena_check_valid_conf(struct ena_adapter *adapter) 864 { 865 uint32_t max_frame_len = ena_get_mtu_conf(adapter); 866 867 if (max_frame_len > adapter->max_mtu || max_frame_len < ENA_MIN_MTU) { 868 PMD_INIT_LOG(ERR, "Unsupported MTU of %d. " 869 "max mtu: %d, min mtu: %d", 870 max_frame_len, adapter->max_mtu, ENA_MIN_MTU); 871 return ENA_COM_UNSUPPORTED; 872 } 873 874 return 0; 875 } 876 877 static int 878 ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx, 879 bool use_large_llq_hdr) 880 { 881 struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq; 882 struct ena_com_dev *ena_dev = ctx->ena_dev; 883 uint32_t max_tx_queue_size; 884 uint32_t max_rx_queue_size; 885 886 if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) { 887 struct ena_admin_queue_ext_feature_fields *max_queue_ext = 888 &ctx->get_feat_ctx->max_queue_ext.max_queue_ext; 889 max_rx_queue_size = RTE_MIN(max_queue_ext->max_rx_cq_depth, 890 max_queue_ext->max_rx_sq_depth); 891 max_tx_queue_size = max_queue_ext->max_tx_cq_depth; 892 893 if (ena_dev->tx_mem_queue_type == 894 ENA_ADMIN_PLACEMENT_POLICY_DEV) { 895 max_tx_queue_size = RTE_MIN(max_tx_queue_size, 896 llq->max_llq_depth); 897 } else { 898 max_tx_queue_size = RTE_MIN(max_tx_queue_size, 899 max_queue_ext->max_tx_sq_depth); 900 } 901 902 ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS, 903 max_queue_ext->max_per_packet_rx_descs); 904 ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS, 905 max_queue_ext->max_per_packet_tx_descs); 906 } else { 907 struct ena_admin_queue_feature_desc *max_queues = 908 &ctx->get_feat_ctx->max_queues; 909 max_rx_queue_size = RTE_MIN(max_queues->max_cq_depth, 910 max_queues->max_sq_depth); 911 max_tx_queue_size = max_queues->max_cq_depth; 912 913 if (ena_dev->tx_mem_queue_type == 914 ENA_ADMIN_PLACEMENT_POLICY_DEV) { 915 max_tx_queue_size = RTE_MIN(max_tx_queue_size, 916 llq->max_llq_depth); 917 } else { 918 max_tx_queue_size = RTE_MIN(max_tx_queue_size, 919 max_queues->max_sq_depth); 920 } 921 922 ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS, 923 max_queues->max_packet_rx_descs); 924 ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS, 925 max_queues->max_packet_tx_descs); 926 } 927 928 /* Round down to the nearest power of 2 */ 929 max_rx_queue_size = rte_align32prevpow2(max_rx_queue_size); 930 max_tx_queue_size = rte_align32prevpow2(max_tx_queue_size); 931 932 if (use_large_llq_hdr) { 933 if ((llq->entry_size_ctrl_supported & 934 ENA_ADMIN_LIST_ENTRY_SIZE_256B) && 935 (ena_dev->tx_mem_queue_type == 936 ENA_ADMIN_PLACEMENT_POLICY_DEV)) { 937 max_tx_queue_size /= 2; 938 PMD_INIT_LOG(INFO, 939 "Forcing large headers and decreasing maximum TX queue size to %d\n", 940 max_tx_queue_size); 941 } else { 942 PMD_INIT_LOG(ERR, 943 "Forcing large headers failed: LLQ is disabled or device does not support large headers\n"); 944 } 945 } 946 947 if (unlikely(max_rx_queue_size == 0 || max_tx_queue_size == 0)) { 948 PMD_INIT_LOG(ERR, "Invalid queue size"); 949 return -EFAULT; 950 } 951 952 ctx->max_tx_queue_size = max_tx_queue_size; 953 ctx->max_rx_queue_size = max_rx_queue_size; 954 955 return 0; 956 } 957 958 static void ena_stats_restart(struct rte_eth_dev *dev) 959 { 960 struct ena_adapter *adapter = dev->data->dev_private; 961 962 rte_atomic64_init(&adapter->drv_stats->ierrors); 963 rte_atomic64_init(&adapter->drv_stats->oerrors); 964 rte_atomic64_init(&adapter->drv_stats->rx_nombuf); 965 adapter->drv_stats->rx_drops = 0; 966 } 967 968 static int ena_stats_get(struct rte_eth_dev *dev, 969 struct rte_eth_stats *stats) 970 { 971 struct ena_admin_basic_stats ena_stats; 972 struct ena_adapter *adapter = dev->data->dev_private; 973 struct ena_com_dev *ena_dev = &adapter->ena_dev; 974 int rc; 975 int i; 976 int max_rings_stats; 977 978 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 979 return -ENOTSUP; 980 981 memset(&ena_stats, 0, sizeof(ena_stats)); 982 983 rte_spinlock_lock(&adapter->admin_lock); 984 rc = ena_com_get_dev_basic_stats(ena_dev, &ena_stats); 985 rte_spinlock_unlock(&adapter->admin_lock); 986 if (unlikely(rc)) { 987 PMD_DRV_LOG(ERR, "Could not retrieve statistics from ENA\n"); 988 return rc; 989 } 990 991 /* Set of basic statistics from ENA */ 992 stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high, 993 ena_stats.rx_pkts_low); 994 stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high, 995 ena_stats.tx_pkts_low); 996 stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high, 997 ena_stats.rx_bytes_low); 998 stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high, 999 ena_stats.tx_bytes_low); 1000 1001 /* Driver related stats */ 1002 stats->imissed = adapter->drv_stats->rx_drops; 1003 stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors); 1004 stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors); 1005 stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf); 1006 1007 max_rings_stats = RTE_MIN(dev->data->nb_rx_queues, 1008 RTE_ETHDEV_QUEUE_STAT_CNTRS); 1009 for (i = 0; i < max_rings_stats; ++i) { 1010 struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats; 1011 1012 stats->q_ibytes[i] = rx_stats->bytes; 1013 stats->q_ipackets[i] = rx_stats->cnt; 1014 stats->q_errors[i] = rx_stats->bad_desc_num + 1015 rx_stats->bad_req_id; 1016 } 1017 1018 max_rings_stats = RTE_MIN(dev->data->nb_tx_queues, 1019 RTE_ETHDEV_QUEUE_STAT_CNTRS); 1020 for (i = 0; i < max_rings_stats; ++i) { 1021 struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats; 1022 1023 stats->q_obytes[i] = tx_stats->bytes; 1024 stats->q_opackets[i] = tx_stats->cnt; 1025 } 1026 1027 return 0; 1028 } 1029 1030 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu) 1031 { 1032 struct ena_adapter *adapter; 1033 struct ena_com_dev *ena_dev; 1034 int rc = 0; 1035 1036 ena_assert_msg(dev->data != NULL, "Uninitialized device\n"); 1037 ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n"); 1038 adapter = dev->data->dev_private; 1039 1040 ena_dev = &adapter->ena_dev; 1041 ena_assert_msg(ena_dev != NULL, "Uninitialized device\n"); 1042 1043 if (mtu > ena_get_mtu_conf(adapter) || mtu < ENA_MIN_MTU) { 1044 PMD_DRV_LOG(ERR, 1045 "Invalid MTU setting. new_mtu: %d " 1046 "max mtu: %d min mtu: %d\n", 1047 mtu, ena_get_mtu_conf(adapter), ENA_MIN_MTU); 1048 return -EINVAL; 1049 } 1050 1051 rc = ena_com_set_dev_mtu(ena_dev, mtu); 1052 if (rc) 1053 PMD_DRV_LOG(ERR, "Could not set MTU: %d\n", mtu); 1054 else 1055 PMD_DRV_LOG(NOTICE, "Set MTU: %d\n", mtu); 1056 1057 return rc; 1058 } 1059 1060 static int ena_start(struct rte_eth_dev *dev) 1061 { 1062 struct ena_adapter *adapter = dev->data->dev_private; 1063 uint64_t ticks; 1064 int rc = 0; 1065 1066 rc = ena_check_valid_conf(adapter); 1067 if (rc) 1068 return rc; 1069 1070 rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX); 1071 if (rc) 1072 return rc; 1073 1074 rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX); 1075 if (rc) 1076 goto err_start_tx; 1077 1078 if (adapter->rte_dev->data->dev_conf.rxmode.mq_mode & 1079 ETH_MQ_RX_RSS_FLAG && adapter->rte_dev->data->nb_rx_queues > 0) { 1080 rc = ena_rss_init_default(adapter); 1081 if (rc) 1082 goto err_rss_init; 1083 } 1084 1085 ena_stats_restart(dev); 1086 1087 adapter->timestamp_wd = rte_get_timer_cycles(); 1088 adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT; 1089 1090 ticks = rte_get_timer_hz(); 1091 rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(), 1092 ena_timer_wd_callback, adapter); 1093 1094 ++adapter->dev_stats.dev_start; 1095 adapter->state = ENA_ADAPTER_STATE_RUNNING; 1096 1097 return 0; 1098 1099 err_rss_init: 1100 ena_queue_stop_all(dev, ENA_RING_TYPE_TX); 1101 err_start_tx: 1102 ena_queue_stop_all(dev, ENA_RING_TYPE_RX); 1103 return rc; 1104 } 1105 1106 static int ena_stop(struct rte_eth_dev *dev) 1107 { 1108 struct ena_adapter *adapter = dev->data->dev_private; 1109 struct ena_com_dev *ena_dev = &adapter->ena_dev; 1110 int rc; 1111 1112 rte_timer_stop_sync(&adapter->timer_wd); 1113 ena_queue_stop_all(dev, ENA_RING_TYPE_TX); 1114 ena_queue_stop_all(dev, ENA_RING_TYPE_RX); 1115 1116 if (adapter->trigger_reset) { 1117 rc = ena_com_dev_reset(ena_dev, adapter->reset_reason); 1118 if (rc) 1119 PMD_DRV_LOG(ERR, "Device reset failed rc=%d\n", rc); 1120 } 1121 1122 ++adapter->dev_stats.dev_stop; 1123 adapter->state = ENA_ADAPTER_STATE_STOPPED; 1124 dev->data->dev_started = 0; 1125 1126 return 0; 1127 } 1128 1129 static int ena_create_io_queue(struct ena_ring *ring) 1130 { 1131 struct ena_adapter *adapter; 1132 struct ena_com_dev *ena_dev; 1133 struct ena_com_create_io_ctx ctx = 1134 /* policy set to _HOST just to satisfy icc compiler */ 1135 { ENA_ADMIN_PLACEMENT_POLICY_HOST, 1136 0, 0, 0, 0, 0 }; 1137 uint16_t ena_qid; 1138 unsigned int i; 1139 int rc; 1140 1141 adapter = ring->adapter; 1142 ena_dev = &adapter->ena_dev; 1143 1144 if (ring->type == ENA_RING_TYPE_TX) { 1145 ena_qid = ENA_IO_TXQ_IDX(ring->id); 1146 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX; 1147 ctx.mem_queue_type = ena_dev->tx_mem_queue_type; 1148 for (i = 0; i < ring->ring_size; i++) 1149 ring->empty_tx_reqs[i] = i; 1150 } else { 1151 ena_qid = ENA_IO_RXQ_IDX(ring->id); 1152 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX; 1153 for (i = 0; i < ring->ring_size; i++) 1154 ring->empty_rx_reqs[i] = i; 1155 } 1156 ctx.queue_size = ring->ring_size; 1157 ctx.qid = ena_qid; 1158 ctx.msix_vector = -1; /* interrupts not used */ 1159 ctx.numa_node = ring->numa_socket_id; 1160 1161 rc = ena_com_create_io_queue(ena_dev, &ctx); 1162 if (rc) { 1163 PMD_DRV_LOG(ERR, 1164 "failed to create io queue #%d (qid:%d) rc: %d\n", 1165 ring->id, ena_qid, rc); 1166 return rc; 1167 } 1168 1169 rc = ena_com_get_io_handlers(ena_dev, ena_qid, 1170 &ring->ena_com_io_sq, 1171 &ring->ena_com_io_cq); 1172 if (rc) { 1173 PMD_DRV_LOG(ERR, 1174 "Failed to get io queue handlers. queue num %d rc: %d\n", 1175 ring->id, rc); 1176 ena_com_destroy_io_queue(ena_dev, ena_qid); 1177 return rc; 1178 } 1179 1180 if (ring->type == ENA_RING_TYPE_TX) 1181 ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node); 1182 1183 return 0; 1184 } 1185 1186 static void ena_queue_stop(struct ena_ring *ring) 1187 { 1188 struct ena_com_dev *ena_dev = &ring->adapter->ena_dev; 1189 1190 if (ring->type == ENA_RING_TYPE_RX) { 1191 ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id)); 1192 ena_rx_queue_release_bufs(ring); 1193 } else { 1194 ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id)); 1195 ena_tx_queue_release_bufs(ring); 1196 } 1197 } 1198 1199 static void ena_queue_stop_all(struct rte_eth_dev *dev, 1200 enum ena_ring_type ring_type) 1201 { 1202 struct ena_adapter *adapter = dev->data->dev_private; 1203 struct ena_ring *queues = NULL; 1204 uint16_t nb_queues, i; 1205 1206 if (ring_type == ENA_RING_TYPE_RX) { 1207 queues = adapter->rx_ring; 1208 nb_queues = dev->data->nb_rx_queues; 1209 } else { 1210 queues = adapter->tx_ring; 1211 nb_queues = dev->data->nb_tx_queues; 1212 } 1213 1214 for (i = 0; i < nb_queues; ++i) 1215 if (queues[i].configured) 1216 ena_queue_stop(&queues[i]); 1217 } 1218 1219 static int ena_queue_start(struct ena_ring *ring) 1220 { 1221 int rc, bufs_num; 1222 1223 ena_assert_msg(ring->configured == 1, 1224 "Trying to start unconfigured queue\n"); 1225 1226 rc = ena_create_io_queue(ring); 1227 if (rc) { 1228 PMD_INIT_LOG(ERR, "Failed to create IO queue!"); 1229 return rc; 1230 } 1231 1232 ring->next_to_clean = 0; 1233 ring->next_to_use = 0; 1234 1235 if (ring->type == ENA_RING_TYPE_TX) { 1236 ring->tx_stats.available_desc = 1237 ena_com_free_q_entries(ring->ena_com_io_sq); 1238 return 0; 1239 } 1240 1241 bufs_num = ring->ring_size - 1; 1242 rc = ena_populate_rx_queue(ring, bufs_num); 1243 if (rc != bufs_num) { 1244 ena_com_destroy_io_queue(&ring->adapter->ena_dev, 1245 ENA_IO_RXQ_IDX(ring->id)); 1246 PMD_INIT_LOG(ERR, "Failed to populate rx ring !"); 1247 return ENA_COM_FAULT; 1248 } 1249 1250 return 0; 1251 } 1252 1253 static int ena_tx_queue_setup(struct rte_eth_dev *dev, 1254 uint16_t queue_idx, 1255 uint16_t nb_desc, 1256 unsigned int socket_id, 1257 const struct rte_eth_txconf *tx_conf) 1258 { 1259 struct ena_ring *txq = NULL; 1260 struct ena_adapter *adapter = dev->data->dev_private; 1261 unsigned int i; 1262 1263 txq = &adapter->tx_ring[queue_idx]; 1264 1265 if (txq->configured) { 1266 PMD_DRV_LOG(CRIT, 1267 "API violation. Queue %d is already configured\n", 1268 queue_idx); 1269 return ENA_COM_FAULT; 1270 } 1271 1272 if (!rte_is_power_of_2(nb_desc)) { 1273 PMD_DRV_LOG(ERR, 1274 "Unsupported size of TX queue: %d is not a power of 2.\n", 1275 nb_desc); 1276 return -EINVAL; 1277 } 1278 1279 if (nb_desc > adapter->max_tx_ring_size) { 1280 PMD_DRV_LOG(ERR, 1281 "Unsupported size of TX queue (max size: %d)\n", 1282 adapter->max_tx_ring_size); 1283 return -EINVAL; 1284 } 1285 1286 if (nb_desc == RTE_ETH_DEV_FALLBACK_TX_RINGSIZE) 1287 nb_desc = adapter->max_tx_ring_size; 1288 1289 txq->port_id = dev->data->port_id; 1290 txq->next_to_clean = 0; 1291 txq->next_to_use = 0; 1292 txq->ring_size = nb_desc; 1293 txq->size_mask = nb_desc - 1; 1294 txq->numa_socket_id = socket_id; 1295 1296 txq->tx_buffer_info = rte_zmalloc("txq->tx_buffer_info", 1297 sizeof(struct ena_tx_buffer) * 1298 txq->ring_size, 1299 RTE_CACHE_LINE_SIZE); 1300 if (!txq->tx_buffer_info) { 1301 PMD_DRV_LOG(ERR, "failed to alloc mem for tx buffer info\n"); 1302 return -ENOMEM; 1303 } 1304 1305 txq->empty_tx_reqs = rte_zmalloc("txq->empty_tx_reqs", 1306 sizeof(u16) * txq->ring_size, 1307 RTE_CACHE_LINE_SIZE); 1308 if (!txq->empty_tx_reqs) { 1309 PMD_DRV_LOG(ERR, "failed to alloc mem for tx reqs\n"); 1310 rte_free(txq->tx_buffer_info); 1311 return -ENOMEM; 1312 } 1313 1314 txq->push_buf_intermediate_buf = 1315 rte_zmalloc("txq->push_buf_intermediate_buf", 1316 txq->tx_max_header_size, 1317 RTE_CACHE_LINE_SIZE); 1318 if (!txq->push_buf_intermediate_buf) { 1319 PMD_DRV_LOG(ERR, "failed to alloc push buff for LLQ\n"); 1320 rte_free(txq->tx_buffer_info); 1321 rte_free(txq->empty_tx_reqs); 1322 return -ENOMEM; 1323 } 1324 1325 for (i = 0; i < txq->ring_size; i++) 1326 txq->empty_tx_reqs[i] = i; 1327 1328 if (tx_conf != NULL) { 1329 txq->offloads = 1330 tx_conf->offloads | dev->data->dev_conf.txmode.offloads; 1331 } 1332 /* Store pointer to this queue in upper layer */ 1333 txq->configured = 1; 1334 dev->data->tx_queues[queue_idx] = txq; 1335 1336 return 0; 1337 } 1338 1339 static int ena_rx_queue_setup(struct rte_eth_dev *dev, 1340 uint16_t queue_idx, 1341 uint16_t nb_desc, 1342 unsigned int socket_id, 1343 __rte_unused const struct rte_eth_rxconf *rx_conf, 1344 struct rte_mempool *mp) 1345 { 1346 struct ena_adapter *adapter = dev->data->dev_private; 1347 struct ena_ring *rxq = NULL; 1348 size_t buffer_size; 1349 int i; 1350 1351 rxq = &adapter->rx_ring[queue_idx]; 1352 if (rxq->configured) { 1353 PMD_DRV_LOG(CRIT, 1354 "API violation. Queue %d is already configured\n", 1355 queue_idx); 1356 return ENA_COM_FAULT; 1357 } 1358 1359 if (nb_desc == RTE_ETH_DEV_FALLBACK_RX_RINGSIZE) 1360 nb_desc = adapter->max_rx_ring_size; 1361 1362 if (!rte_is_power_of_2(nb_desc)) { 1363 PMD_DRV_LOG(ERR, 1364 "Unsupported size of RX queue: %d is not a power of 2.\n", 1365 nb_desc); 1366 return -EINVAL; 1367 } 1368 1369 if (nb_desc > adapter->max_rx_ring_size) { 1370 PMD_DRV_LOG(ERR, 1371 "Unsupported size of RX queue (max size: %d)\n", 1372 adapter->max_rx_ring_size); 1373 return -EINVAL; 1374 } 1375 1376 /* ENA isn't supporting buffers smaller than 1400 bytes */ 1377 buffer_size = rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM; 1378 if (buffer_size < ENA_RX_BUF_MIN_SIZE) { 1379 PMD_DRV_LOG(ERR, 1380 "Unsupported size of RX buffer: %zu (min size: %d)\n", 1381 buffer_size, ENA_RX_BUF_MIN_SIZE); 1382 return -EINVAL; 1383 } 1384 1385 rxq->port_id = dev->data->port_id; 1386 rxq->next_to_clean = 0; 1387 rxq->next_to_use = 0; 1388 rxq->ring_size = nb_desc; 1389 rxq->size_mask = nb_desc - 1; 1390 rxq->numa_socket_id = socket_id; 1391 rxq->mb_pool = mp; 1392 1393 rxq->rx_buffer_info = rte_zmalloc("rxq->buffer_info", 1394 sizeof(struct ena_rx_buffer) * nb_desc, 1395 RTE_CACHE_LINE_SIZE); 1396 if (!rxq->rx_buffer_info) { 1397 PMD_DRV_LOG(ERR, "failed to alloc mem for rx buffer info\n"); 1398 return -ENOMEM; 1399 } 1400 1401 rxq->rx_refill_buffer = rte_zmalloc("rxq->rx_refill_buffer", 1402 sizeof(struct rte_mbuf *) * nb_desc, 1403 RTE_CACHE_LINE_SIZE); 1404 1405 if (!rxq->rx_refill_buffer) { 1406 PMD_DRV_LOG(ERR, "failed to alloc mem for rx refill buffer\n"); 1407 rte_free(rxq->rx_buffer_info); 1408 rxq->rx_buffer_info = NULL; 1409 return -ENOMEM; 1410 } 1411 1412 rxq->empty_rx_reqs = rte_zmalloc("rxq->empty_rx_reqs", 1413 sizeof(uint16_t) * nb_desc, 1414 RTE_CACHE_LINE_SIZE); 1415 if (!rxq->empty_rx_reqs) { 1416 PMD_DRV_LOG(ERR, "failed to alloc mem for empty rx reqs\n"); 1417 rte_free(rxq->rx_buffer_info); 1418 rxq->rx_buffer_info = NULL; 1419 rte_free(rxq->rx_refill_buffer); 1420 rxq->rx_refill_buffer = NULL; 1421 return -ENOMEM; 1422 } 1423 1424 for (i = 0; i < nb_desc; i++) 1425 rxq->empty_rx_reqs[i] = i; 1426 1427 /* Store pointer to this queue in upper layer */ 1428 rxq->configured = 1; 1429 dev->data->rx_queues[queue_idx] = rxq; 1430 1431 return 0; 1432 } 1433 1434 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq, 1435 struct rte_mbuf *mbuf, uint16_t id) 1436 { 1437 struct ena_com_buf ebuf; 1438 int rc; 1439 1440 /* prepare physical address for DMA transaction */ 1441 ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM; 1442 ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM; 1443 1444 /* pass resource to device */ 1445 rc = ena_com_add_single_rx_desc(io_sq, &ebuf, id); 1446 if (unlikely(rc != 0)) 1447 PMD_DRV_LOG(WARNING, "failed adding rx desc\n"); 1448 1449 return rc; 1450 } 1451 1452 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count) 1453 { 1454 unsigned int i; 1455 int rc; 1456 uint16_t next_to_use = rxq->next_to_use; 1457 uint16_t in_use, req_id; 1458 struct rte_mbuf **mbufs = rxq->rx_refill_buffer; 1459 1460 if (unlikely(!count)) 1461 return 0; 1462 1463 in_use = rxq->ring_size - 1 - 1464 ena_com_free_q_entries(rxq->ena_com_io_sq); 1465 ena_assert_msg(((in_use + count) < rxq->ring_size), 1466 "bad ring state\n"); 1467 1468 /* get resources for incoming packets */ 1469 rc = rte_mempool_get_bulk(rxq->mb_pool, (void **)mbufs, count); 1470 if (unlikely(rc < 0)) { 1471 rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf); 1472 ++rxq->rx_stats.mbuf_alloc_fail; 1473 PMD_RX_LOG(DEBUG, "there are no enough free buffers"); 1474 return 0; 1475 } 1476 1477 for (i = 0; i < count; i++) { 1478 struct rte_mbuf *mbuf = mbufs[i]; 1479 struct ena_rx_buffer *rx_info; 1480 1481 if (likely((i + 4) < count)) 1482 rte_prefetch0(mbufs[i + 4]); 1483 1484 req_id = rxq->empty_rx_reqs[next_to_use]; 1485 rc = validate_rx_req_id(rxq, req_id); 1486 if (unlikely(rc)) 1487 break; 1488 1489 rx_info = &rxq->rx_buffer_info[req_id]; 1490 1491 rc = ena_add_single_rx_desc(rxq->ena_com_io_sq, mbuf, req_id); 1492 if (unlikely(rc != 0)) 1493 break; 1494 1495 rx_info->mbuf = mbuf; 1496 next_to_use = ENA_IDX_NEXT_MASKED(next_to_use, rxq->size_mask); 1497 } 1498 1499 if (unlikely(i < count)) { 1500 PMD_DRV_LOG(WARNING, "refilled rx qid %d with only %d " 1501 "buffers (from %d)\n", rxq->id, i, count); 1502 rte_mempool_put_bulk(rxq->mb_pool, (void **)(&mbufs[i]), 1503 count - i); 1504 ++rxq->rx_stats.refill_partial; 1505 } 1506 1507 /* When we submitted free recources to device... */ 1508 if (likely(i > 0)) { 1509 /* ...let HW know that it can fill buffers with data. */ 1510 ena_com_write_sq_doorbell(rxq->ena_com_io_sq); 1511 1512 rxq->next_to_use = next_to_use; 1513 } 1514 1515 return i; 1516 } 1517 1518 static int ena_device_init(struct ena_com_dev *ena_dev, 1519 struct ena_com_dev_get_features_ctx *get_feat_ctx, 1520 bool *wd_state) 1521 { 1522 uint32_t aenq_groups; 1523 int rc; 1524 bool readless_supported; 1525 1526 /* Initialize mmio registers */ 1527 rc = ena_com_mmio_reg_read_request_init(ena_dev); 1528 if (rc) { 1529 PMD_DRV_LOG(ERR, "failed to init mmio read less\n"); 1530 return rc; 1531 } 1532 1533 /* The PCIe configuration space revision id indicate if mmio reg 1534 * read is disabled. 1535 */ 1536 readless_supported = 1537 !(((struct rte_pci_device *)ena_dev->dmadev)->id.class_id 1538 & ENA_MMIO_DISABLE_REG_READ); 1539 ena_com_set_mmio_read_mode(ena_dev, readless_supported); 1540 1541 /* reset device */ 1542 rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL); 1543 if (rc) { 1544 PMD_DRV_LOG(ERR, "cannot reset device\n"); 1545 goto err_mmio_read_less; 1546 } 1547 1548 /* check FW version */ 1549 rc = ena_com_validate_version(ena_dev); 1550 if (rc) { 1551 PMD_DRV_LOG(ERR, "device version is too low\n"); 1552 goto err_mmio_read_less; 1553 } 1554 1555 ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev); 1556 1557 /* ENA device administration layer init */ 1558 rc = ena_com_admin_init(ena_dev, &aenq_handlers); 1559 if (rc) { 1560 PMD_DRV_LOG(ERR, 1561 "cannot initialize ena admin queue with device\n"); 1562 goto err_mmio_read_less; 1563 } 1564 1565 /* To enable the msix interrupts the driver needs to know the number 1566 * of queues. So the driver uses polling mode to retrieve this 1567 * information. 1568 */ 1569 ena_com_set_admin_polling_mode(ena_dev, true); 1570 1571 ena_config_host_info(ena_dev); 1572 1573 /* Get Device Attributes and features */ 1574 rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx); 1575 if (rc) { 1576 PMD_DRV_LOG(ERR, 1577 "cannot get attribute for ena device rc= %d\n", rc); 1578 goto err_admin_init; 1579 } 1580 1581 aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) | 1582 BIT(ENA_ADMIN_NOTIFICATION) | 1583 BIT(ENA_ADMIN_KEEP_ALIVE) | 1584 BIT(ENA_ADMIN_FATAL_ERROR) | 1585 BIT(ENA_ADMIN_WARNING); 1586 1587 aenq_groups &= get_feat_ctx->aenq.supported_groups; 1588 rc = ena_com_set_aenq_config(ena_dev, aenq_groups); 1589 if (rc) { 1590 PMD_DRV_LOG(ERR, "Cannot configure aenq groups rc: %d\n", rc); 1591 goto err_admin_init; 1592 } 1593 1594 *wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE)); 1595 1596 return 0; 1597 1598 err_admin_init: 1599 ena_com_admin_destroy(ena_dev); 1600 1601 err_mmio_read_less: 1602 ena_com_mmio_reg_read_request_destroy(ena_dev); 1603 1604 return rc; 1605 } 1606 1607 static void ena_interrupt_handler_rte(void *cb_arg) 1608 { 1609 struct ena_adapter *adapter = cb_arg; 1610 struct ena_com_dev *ena_dev = &adapter->ena_dev; 1611 1612 ena_com_admin_q_comp_intr_handler(ena_dev); 1613 if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED)) 1614 ena_com_aenq_intr_handler(ena_dev, adapter); 1615 } 1616 1617 static void check_for_missing_keep_alive(struct ena_adapter *adapter) 1618 { 1619 if (!adapter->wd_state) 1620 return; 1621 1622 if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT) 1623 return; 1624 1625 if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >= 1626 adapter->keep_alive_timeout)) { 1627 PMD_DRV_LOG(ERR, "Keep alive timeout\n"); 1628 adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO; 1629 adapter->trigger_reset = true; 1630 ++adapter->dev_stats.wd_expired; 1631 } 1632 } 1633 1634 /* Check if admin queue is enabled */ 1635 static void check_for_admin_com_state(struct ena_adapter *adapter) 1636 { 1637 if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) { 1638 PMD_DRV_LOG(ERR, "ENA admin queue is not in running state!\n"); 1639 adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO; 1640 adapter->trigger_reset = true; 1641 } 1642 } 1643 1644 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer, 1645 void *arg) 1646 { 1647 struct ena_adapter *adapter = arg; 1648 struct rte_eth_dev *dev = adapter->rte_dev; 1649 1650 check_for_missing_keep_alive(adapter); 1651 check_for_admin_com_state(adapter); 1652 1653 if (unlikely(adapter->trigger_reset)) { 1654 PMD_DRV_LOG(ERR, "Trigger reset is on\n"); 1655 rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET, 1656 NULL); 1657 } 1658 } 1659 1660 static inline void 1661 set_default_llq_configurations(struct ena_llq_configurations *llq_config, 1662 struct ena_admin_feature_llq_desc *llq, 1663 bool use_large_llq_hdr) 1664 { 1665 llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER; 1666 llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY; 1667 llq_config->llq_num_decs_before_header = 1668 ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2; 1669 1670 if (use_large_llq_hdr && 1671 (llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B)) { 1672 llq_config->llq_ring_entry_size = 1673 ENA_ADMIN_LIST_ENTRY_SIZE_256B; 1674 llq_config->llq_ring_entry_size_value = 256; 1675 } else { 1676 llq_config->llq_ring_entry_size = 1677 ENA_ADMIN_LIST_ENTRY_SIZE_128B; 1678 llq_config->llq_ring_entry_size_value = 128; 1679 } 1680 } 1681 1682 static int 1683 ena_set_queues_placement_policy(struct ena_adapter *adapter, 1684 struct ena_com_dev *ena_dev, 1685 struct ena_admin_feature_llq_desc *llq, 1686 struct ena_llq_configurations *llq_default_configurations) 1687 { 1688 int rc; 1689 u32 llq_feature_mask; 1690 1691 llq_feature_mask = 1 << ENA_ADMIN_LLQ; 1692 if (!(ena_dev->supported_features & llq_feature_mask)) { 1693 PMD_DRV_LOG(INFO, 1694 "LLQ is not supported. Fallback to host mode policy.\n"); 1695 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 1696 return 0; 1697 } 1698 1699 rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations); 1700 if (unlikely(rc)) { 1701 PMD_INIT_LOG(WARNING, "Failed to config dev mode. " 1702 "Fallback to host mode policy."); 1703 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 1704 return 0; 1705 } 1706 1707 /* Nothing to config, exit */ 1708 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST) 1709 return 0; 1710 1711 if (!adapter->dev_mem_base) { 1712 PMD_DRV_LOG(ERR, "Unable to access LLQ bar resource. " 1713 "Fallback to host mode policy.\n."); 1714 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 1715 return 0; 1716 } 1717 1718 ena_dev->mem_bar = adapter->dev_mem_base; 1719 1720 return 0; 1721 } 1722 1723 static uint32_t ena_calc_max_io_queue_num(struct ena_com_dev *ena_dev, 1724 struct ena_com_dev_get_features_ctx *get_feat_ctx) 1725 { 1726 uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues; 1727 1728 /* Regular queues capabilities */ 1729 if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) { 1730 struct ena_admin_queue_ext_feature_fields *max_queue_ext = 1731 &get_feat_ctx->max_queue_ext.max_queue_ext; 1732 io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num, 1733 max_queue_ext->max_rx_cq_num); 1734 io_tx_sq_num = max_queue_ext->max_tx_sq_num; 1735 io_tx_cq_num = max_queue_ext->max_tx_cq_num; 1736 } else { 1737 struct ena_admin_queue_feature_desc *max_queues = 1738 &get_feat_ctx->max_queues; 1739 io_tx_sq_num = max_queues->max_sq_num; 1740 io_tx_cq_num = max_queues->max_cq_num; 1741 io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num); 1742 } 1743 1744 /* In case of LLQ use the llq number in the get feature cmd */ 1745 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) 1746 io_tx_sq_num = get_feat_ctx->llq.max_llq_num; 1747 1748 max_num_io_queues = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num); 1749 max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_sq_num); 1750 max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_cq_num); 1751 1752 if (unlikely(max_num_io_queues == 0)) { 1753 PMD_DRV_LOG(ERR, "Number of IO queues should not be 0\n"); 1754 return -EFAULT; 1755 } 1756 1757 return max_num_io_queues; 1758 } 1759 1760 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev) 1761 { 1762 struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 }; 1763 struct rte_pci_device *pci_dev; 1764 struct rte_intr_handle *intr_handle; 1765 struct ena_adapter *adapter = eth_dev->data->dev_private; 1766 struct ena_com_dev *ena_dev = &adapter->ena_dev; 1767 struct ena_com_dev_get_features_ctx get_feat_ctx; 1768 struct ena_llq_configurations llq_config; 1769 const char *queue_type_str; 1770 uint32_t max_num_io_queues; 1771 int rc; 1772 static int adapters_found; 1773 bool disable_meta_caching; 1774 bool wd_state = false; 1775 1776 eth_dev->dev_ops = &ena_dev_ops; 1777 eth_dev->rx_pkt_burst = ð_ena_recv_pkts; 1778 eth_dev->tx_pkt_burst = ð_ena_xmit_pkts; 1779 eth_dev->tx_pkt_prepare = ð_ena_prep_pkts; 1780 1781 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 1782 return 0; 1783 1784 eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS; 1785 1786 memset(adapter, 0, sizeof(struct ena_adapter)); 1787 ena_dev = &adapter->ena_dev; 1788 1789 adapter->rte_eth_dev_data = eth_dev->data; 1790 adapter->rte_dev = eth_dev; 1791 1792 pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev); 1793 adapter->pdev = pci_dev; 1794 1795 PMD_INIT_LOG(INFO, "Initializing %x:%x:%x.%d", 1796 pci_dev->addr.domain, 1797 pci_dev->addr.bus, 1798 pci_dev->addr.devid, 1799 pci_dev->addr.function); 1800 1801 intr_handle = &pci_dev->intr_handle; 1802 1803 adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr; 1804 adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr; 1805 1806 if (!adapter->regs) { 1807 PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)", 1808 ENA_REGS_BAR); 1809 return -ENXIO; 1810 } 1811 1812 ena_dev->reg_bar = adapter->regs; 1813 ena_dev->dmadev = adapter->pdev; 1814 1815 adapter->id_number = adapters_found; 1816 1817 snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d", 1818 adapter->id_number); 1819 1820 rc = ena_parse_devargs(adapter, pci_dev->device.devargs); 1821 if (rc != 0) { 1822 PMD_INIT_LOG(CRIT, "Failed to parse devargs\n"); 1823 goto err; 1824 } 1825 1826 /* device specific initialization routine */ 1827 rc = ena_device_init(ena_dev, &get_feat_ctx, &wd_state); 1828 if (rc) { 1829 PMD_INIT_LOG(CRIT, "Failed to init ENA device"); 1830 goto err; 1831 } 1832 adapter->wd_state = wd_state; 1833 1834 set_default_llq_configurations(&llq_config, &get_feat_ctx.llq, 1835 adapter->use_large_llq_hdr); 1836 rc = ena_set_queues_placement_policy(adapter, ena_dev, 1837 &get_feat_ctx.llq, &llq_config); 1838 if (unlikely(rc)) { 1839 PMD_INIT_LOG(CRIT, "Failed to set placement policy"); 1840 return rc; 1841 } 1842 1843 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST) 1844 queue_type_str = "Regular"; 1845 else 1846 queue_type_str = "Low latency"; 1847 PMD_DRV_LOG(INFO, "Placement policy: %s\n", queue_type_str); 1848 1849 calc_queue_ctx.ena_dev = ena_dev; 1850 calc_queue_ctx.get_feat_ctx = &get_feat_ctx; 1851 1852 max_num_io_queues = ena_calc_max_io_queue_num(ena_dev, &get_feat_ctx); 1853 rc = ena_calc_io_queue_size(&calc_queue_ctx, 1854 adapter->use_large_llq_hdr); 1855 if (unlikely((rc != 0) || (max_num_io_queues == 0))) { 1856 rc = -EFAULT; 1857 goto err_device_destroy; 1858 } 1859 1860 adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size; 1861 adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size; 1862 adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size; 1863 adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size; 1864 adapter->max_num_io_queues = max_num_io_queues; 1865 1866 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) { 1867 disable_meta_caching = 1868 !!(get_feat_ctx.llq.accel_mode.u.get.supported_flags & 1869 BIT(ENA_ADMIN_DISABLE_META_CACHING)); 1870 } else { 1871 disable_meta_caching = false; 1872 } 1873 1874 /* prepare ring structures */ 1875 ena_init_rings(adapter, disable_meta_caching); 1876 1877 ena_config_debug_area(adapter); 1878 1879 /* Set max MTU for this device */ 1880 adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu; 1881 1882 /* set device support for offloads */ 1883 adapter->offloads.tso4_supported = (get_feat_ctx.offload.tx & 1884 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) != 0; 1885 adapter->offloads.tx_csum_supported = (get_feat_ctx.offload.tx & 1886 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK) != 0; 1887 adapter->offloads.rx_csum_supported = 1888 (get_feat_ctx.offload.rx_supported & 1889 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK) != 0; 1890 1891 /* Copy MAC address and point DPDK to it */ 1892 eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr; 1893 rte_ether_addr_copy((struct rte_ether_addr *) 1894 get_feat_ctx.dev_attr.mac_addr, 1895 (struct rte_ether_addr *)adapter->mac_addr); 1896 1897 adapter->drv_stats = rte_zmalloc("adapter stats", 1898 sizeof(*adapter->drv_stats), 1899 RTE_CACHE_LINE_SIZE); 1900 if (!adapter->drv_stats) { 1901 PMD_DRV_LOG(ERR, "failed to alloc mem for adapter stats\n"); 1902 rc = -ENOMEM; 1903 goto err_delete_debug_area; 1904 } 1905 1906 rte_spinlock_init(&adapter->admin_lock); 1907 1908 rte_intr_callback_register(intr_handle, 1909 ena_interrupt_handler_rte, 1910 adapter); 1911 rte_intr_enable(intr_handle); 1912 ena_com_set_admin_polling_mode(ena_dev, false); 1913 ena_com_admin_aenq_enable(ena_dev); 1914 1915 if (adapters_found == 0) 1916 rte_timer_subsystem_init(); 1917 rte_timer_init(&adapter->timer_wd); 1918 1919 adapters_found++; 1920 adapter->state = ENA_ADAPTER_STATE_INIT; 1921 1922 return 0; 1923 1924 err_delete_debug_area: 1925 ena_com_delete_debug_area(ena_dev); 1926 1927 err_device_destroy: 1928 ena_com_delete_host_info(ena_dev); 1929 ena_com_admin_destroy(ena_dev); 1930 1931 err: 1932 return rc; 1933 } 1934 1935 static void ena_destroy_device(struct rte_eth_dev *eth_dev) 1936 { 1937 struct ena_adapter *adapter = eth_dev->data->dev_private; 1938 struct ena_com_dev *ena_dev = &adapter->ena_dev; 1939 1940 if (adapter->state == ENA_ADAPTER_STATE_FREE) 1941 return; 1942 1943 ena_com_set_admin_running_state(ena_dev, false); 1944 1945 if (adapter->state != ENA_ADAPTER_STATE_CLOSED) 1946 ena_close(eth_dev); 1947 1948 ena_com_delete_debug_area(ena_dev); 1949 ena_com_delete_host_info(ena_dev); 1950 1951 ena_com_abort_admin_commands(ena_dev); 1952 ena_com_wait_for_abort_completion(ena_dev); 1953 ena_com_admin_destroy(ena_dev); 1954 ena_com_mmio_reg_read_request_destroy(ena_dev); 1955 1956 adapter->state = ENA_ADAPTER_STATE_FREE; 1957 } 1958 1959 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev) 1960 { 1961 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 1962 return 0; 1963 1964 ena_destroy_device(eth_dev); 1965 1966 return 0; 1967 } 1968 1969 static int ena_dev_configure(struct rte_eth_dev *dev) 1970 { 1971 struct ena_adapter *adapter = dev->data->dev_private; 1972 1973 adapter->state = ENA_ADAPTER_STATE_CONFIG; 1974 1975 adapter->tx_selected_offloads = dev->data->dev_conf.txmode.offloads; 1976 adapter->rx_selected_offloads = dev->data->dev_conf.rxmode.offloads; 1977 return 0; 1978 } 1979 1980 static void ena_init_rings(struct ena_adapter *adapter, 1981 bool disable_meta_caching) 1982 { 1983 size_t i; 1984 1985 for (i = 0; i < adapter->max_num_io_queues; i++) { 1986 struct ena_ring *ring = &adapter->tx_ring[i]; 1987 1988 ring->configured = 0; 1989 ring->type = ENA_RING_TYPE_TX; 1990 ring->adapter = adapter; 1991 ring->id = i; 1992 ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type; 1993 ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size; 1994 ring->sgl_size = adapter->max_tx_sgl_size; 1995 ring->disable_meta_caching = disable_meta_caching; 1996 } 1997 1998 for (i = 0; i < adapter->max_num_io_queues; i++) { 1999 struct ena_ring *ring = &adapter->rx_ring[i]; 2000 2001 ring->configured = 0; 2002 ring->type = ENA_RING_TYPE_RX; 2003 ring->adapter = adapter; 2004 ring->id = i; 2005 ring->sgl_size = adapter->max_rx_sgl_size; 2006 } 2007 } 2008 2009 static int ena_infos_get(struct rte_eth_dev *dev, 2010 struct rte_eth_dev_info *dev_info) 2011 { 2012 struct ena_adapter *adapter; 2013 struct ena_com_dev *ena_dev; 2014 uint64_t rx_feat = 0, tx_feat = 0; 2015 2016 ena_assert_msg(dev->data != NULL, "Uninitialized device\n"); 2017 ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n"); 2018 adapter = dev->data->dev_private; 2019 2020 ena_dev = &adapter->ena_dev; 2021 ena_assert_msg(ena_dev != NULL, "Uninitialized device\n"); 2022 2023 dev_info->speed_capa = 2024 ETH_LINK_SPEED_1G | 2025 ETH_LINK_SPEED_2_5G | 2026 ETH_LINK_SPEED_5G | 2027 ETH_LINK_SPEED_10G | 2028 ETH_LINK_SPEED_25G | 2029 ETH_LINK_SPEED_40G | 2030 ETH_LINK_SPEED_50G | 2031 ETH_LINK_SPEED_100G; 2032 2033 /* Set Tx & Rx features available for device */ 2034 if (adapter->offloads.tso4_supported) 2035 tx_feat |= DEV_TX_OFFLOAD_TCP_TSO; 2036 2037 if (adapter->offloads.tx_csum_supported) 2038 tx_feat |= DEV_TX_OFFLOAD_IPV4_CKSUM | 2039 DEV_TX_OFFLOAD_UDP_CKSUM | 2040 DEV_TX_OFFLOAD_TCP_CKSUM; 2041 2042 if (adapter->offloads.rx_csum_supported) 2043 rx_feat |= DEV_RX_OFFLOAD_IPV4_CKSUM | 2044 DEV_RX_OFFLOAD_UDP_CKSUM | 2045 DEV_RX_OFFLOAD_TCP_CKSUM; 2046 2047 rx_feat |= DEV_RX_OFFLOAD_JUMBO_FRAME; 2048 2049 /* Inform framework about available features */ 2050 dev_info->rx_offload_capa = rx_feat; 2051 dev_info->rx_queue_offload_capa = rx_feat; 2052 dev_info->tx_offload_capa = tx_feat; 2053 dev_info->tx_queue_offload_capa = tx_feat; 2054 2055 dev_info->flow_type_rss_offloads = ETH_RSS_IP | ETH_RSS_TCP | 2056 ETH_RSS_UDP; 2057 2058 dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN; 2059 dev_info->max_rx_pktlen = adapter->max_mtu; 2060 dev_info->max_mac_addrs = 1; 2061 2062 dev_info->max_rx_queues = adapter->max_num_io_queues; 2063 dev_info->max_tx_queues = adapter->max_num_io_queues; 2064 dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE; 2065 2066 adapter->tx_supported_offloads = tx_feat; 2067 adapter->rx_supported_offloads = rx_feat; 2068 2069 dev_info->rx_desc_lim.nb_max = adapter->max_rx_ring_size; 2070 dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC; 2071 dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS, 2072 adapter->max_rx_sgl_size); 2073 dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS, 2074 adapter->max_rx_sgl_size); 2075 2076 dev_info->tx_desc_lim.nb_max = adapter->max_tx_ring_size; 2077 dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC; 2078 dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS, 2079 adapter->max_tx_sgl_size); 2080 dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS, 2081 adapter->max_tx_sgl_size); 2082 2083 return 0; 2084 } 2085 2086 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len) 2087 { 2088 mbuf->data_len = len; 2089 mbuf->data_off = RTE_PKTMBUF_HEADROOM; 2090 mbuf->refcnt = 1; 2091 mbuf->next = NULL; 2092 } 2093 2094 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring, 2095 struct ena_com_rx_buf_info *ena_bufs, 2096 uint32_t descs, 2097 uint16_t *next_to_clean, 2098 uint8_t offset) 2099 { 2100 struct rte_mbuf *mbuf; 2101 struct rte_mbuf *mbuf_head; 2102 struct ena_rx_buffer *rx_info; 2103 int rc; 2104 uint16_t ntc, len, req_id, buf = 0; 2105 2106 if (unlikely(descs == 0)) 2107 return NULL; 2108 2109 ntc = *next_to_clean; 2110 2111 len = ena_bufs[buf].len; 2112 req_id = ena_bufs[buf].req_id; 2113 if (unlikely(validate_rx_req_id(rx_ring, req_id))) 2114 return NULL; 2115 2116 rx_info = &rx_ring->rx_buffer_info[req_id]; 2117 2118 mbuf = rx_info->mbuf; 2119 RTE_ASSERT(mbuf != NULL); 2120 2121 ena_init_rx_mbuf(mbuf, len); 2122 2123 /* Fill the mbuf head with the data specific for 1st segment. */ 2124 mbuf_head = mbuf; 2125 mbuf_head->nb_segs = descs; 2126 mbuf_head->port = rx_ring->port_id; 2127 mbuf_head->pkt_len = len; 2128 mbuf_head->data_off += offset; 2129 2130 rx_info->mbuf = NULL; 2131 rx_ring->empty_rx_reqs[ntc] = req_id; 2132 ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask); 2133 2134 while (--descs) { 2135 ++buf; 2136 len = ena_bufs[buf].len; 2137 req_id = ena_bufs[buf].req_id; 2138 if (unlikely(validate_rx_req_id(rx_ring, req_id))) { 2139 rte_mbuf_raw_free(mbuf_head); 2140 return NULL; 2141 } 2142 2143 rx_info = &rx_ring->rx_buffer_info[req_id]; 2144 RTE_ASSERT(rx_info->mbuf != NULL); 2145 2146 if (unlikely(len == 0)) { 2147 /* 2148 * Some devices can pass descriptor with the length 0. 2149 * To avoid confusion, the PMD is simply putting the 2150 * descriptor back, as it was never used. We'll avoid 2151 * mbuf allocation that way. 2152 */ 2153 rc = ena_add_single_rx_desc(rx_ring->ena_com_io_sq, 2154 rx_info->mbuf, req_id); 2155 if (unlikely(rc != 0)) { 2156 /* Free the mbuf in case of an error. */ 2157 rte_mbuf_raw_free(rx_info->mbuf); 2158 } else { 2159 /* 2160 * If there was no error, just exit the loop as 2161 * 0 length descriptor is always the last one. 2162 */ 2163 break; 2164 } 2165 } else { 2166 /* Create an mbuf chain. */ 2167 mbuf->next = rx_info->mbuf; 2168 mbuf = mbuf->next; 2169 2170 ena_init_rx_mbuf(mbuf, len); 2171 mbuf_head->pkt_len += len; 2172 } 2173 2174 /* 2175 * Mark the descriptor as depleted and perform necessary 2176 * cleanup. 2177 * This code will execute in two cases: 2178 * 1. Descriptor len was greater than 0 - normal situation. 2179 * 2. Descriptor len was 0 and we failed to add the descriptor 2180 * to the device. In that situation, we should try to add 2181 * the mbuf again in the populate routine and mark the 2182 * descriptor as used up by the device. 2183 */ 2184 rx_info->mbuf = NULL; 2185 rx_ring->empty_rx_reqs[ntc] = req_id; 2186 ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask); 2187 } 2188 2189 *next_to_clean = ntc; 2190 2191 return mbuf_head; 2192 } 2193 2194 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, 2195 uint16_t nb_pkts) 2196 { 2197 struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue); 2198 unsigned int free_queue_entries; 2199 unsigned int refill_threshold; 2200 uint16_t next_to_clean = rx_ring->next_to_clean; 2201 uint16_t descs_in_use; 2202 struct rte_mbuf *mbuf; 2203 uint16_t completed; 2204 struct ena_com_rx_ctx ena_rx_ctx; 2205 int i, rc = 0; 2206 2207 /* Check adapter state */ 2208 if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) { 2209 PMD_DRV_LOG(ALERT, 2210 "Trying to receive pkts while device is NOT running\n"); 2211 return 0; 2212 } 2213 2214 descs_in_use = rx_ring->ring_size - 2215 ena_com_free_q_entries(rx_ring->ena_com_io_sq) - 1; 2216 nb_pkts = RTE_MIN(descs_in_use, nb_pkts); 2217 2218 for (completed = 0; completed < nb_pkts; completed++) { 2219 ena_rx_ctx.max_bufs = rx_ring->sgl_size; 2220 ena_rx_ctx.ena_bufs = rx_ring->ena_bufs; 2221 ena_rx_ctx.descs = 0; 2222 ena_rx_ctx.pkt_offset = 0; 2223 /* receive packet context */ 2224 rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq, 2225 rx_ring->ena_com_io_sq, 2226 &ena_rx_ctx); 2227 if (unlikely(rc)) { 2228 PMD_DRV_LOG(ERR, "ena_com_rx_pkt error %d\n", rc); 2229 rx_ring->adapter->reset_reason = 2230 ENA_REGS_RESET_TOO_MANY_RX_DESCS; 2231 rx_ring->adapter->trigger_reset = true; 2232 ++rx_ring->rx_stats.bad_desc_num; 2233 return 0; 2234 } 2235 2236 mbuf = ena_rx_mbuf(rx_ring, 2237 ena_rx_ctx.ena_bufs, 2238 ena_rx_ctx.descs, 2239 &next_to_clean, 2240 ena_rx_ctx.pkt_offset); 2241 if (unlikely(mbuf == NULL)) { 2242 for (i = 0; i < ena_rx_ctx.descs; ++i) { 2243 rx_ring->empty_rx_reqs[next_to_clean] = 2244 rx_ring->ena_bufs[i].req_id; 2245 next_to_clean = ENA_IDX_NEXT_MASKED( 2246 next_to_clean, rx_ring->size_mask); 2247 } 2248 break; 2249 } 2250 2251 /* fill mbuf attributes if any */ 2252 ena_rx_mbuf_prepare(mbuf, &ena_rx_ctx); 2253 2254 if (unlikely(mbuf->ol_flags & 2255 (PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD))) { 2256 rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors); 2257 ++rx_ring->rx_stats.bad_csum; 2258 } 2259 2260 mbuf->hash.rss = ena_rx_ctx.hash; 2261 2262 rx_pkts[completed] = mbuf; 2263 rx_ring->rx_stats.bytes += mbuf->pkt_len; 2264 } 2265 2266 rx_ring->rx_stats.cnt += completed; 2267 rx_ring->next_to_clean = next_to_clean; 2268 2269 free_queue_entries = ena_com_free_q_entries(rx_ring->ena_com_io_sq); 2270 refill_threshold = 2271 RTE_MIN(rx_ring->ring_size / ENA_REFILL_THRESH_DIVIDER, 2272 (unsigned int)ENA_REFILL_THRESH_PACKET); 2273 2274 /* Burst refill to save doorbells, memory barriers, const interval */ 2275 if (free_queue_entries > refill_threshold) { 2276 ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq); 2277 ena_populate_rx_queue(rx_ring, free_queue_entries); 2278 } 2279 2280 return completed; 2281 } 2282 2283 static uint16_t 2284 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, 2285 uint16_t nb_pkts) 2286 { 2287 int32_t ret; 2288 uint32_t i; 2289 struct rte_mbuf *m; 2290 struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue); 2291 struct rte_ipv4_hdr *ip_hdr; 2292 uint64_t ol_flags; 2293 uint16_t frag_field; 2294 2295 for (i = 0; i != nb_pkts; i++) { 2296 m = tx_pkts[i]; 2297 ol_flags = m->ol_flags; 2298 2299 if (!(ol_flags & PKT_TX_IPV4)) 2300 continue; 2301 2302 /* If there was not L2 header length specified, assume it is 2303 * length of the ethernet header. 2304 */ 2305 if (unlikely(m->l2_len == 0)) 2306 m->l2_len = sizeof(struct rte_ether_hdr); 2307 2308 ip_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *, 2309 m->l2_len); 2310 frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset); 2311 2312 if ((frag_field & RTE_IPV4_HDR_DF_FLAG) != 0) { 2313 m->packet_type |= RTE_PTYPE_L4_NONFRAG; 2314 2315 /* If IPv4 header has DF flag enabled and TSO support is 2316 * disabled, partial chcecksum should not be calculated. 2317 */ 2318 if (!tx_ring->adapter->offloads.tso4_supported) 2319 continue; 2320 } 2321 2322 if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) != 0 || 2323 (ol_flags & PKT_TX_L4_MASK) == 2324 PKT_TX_SCTP_CKSUM) { 2325 rte_errno = ENOTSUP; 2326 return i; 2327 } 2328 2329 #ifdef RTE_LIBRTE_ETHDEV_DEBUG 2330 ret = rte_validate_tx_offload(m); 2331 if (ret != 0) { 2332 rte_errno = -ret; 2333 return i; 2334 } 2335 #endif 2336 2337 /* In case we are supposed to TSO and have DF not set (DF=0) 2338 * hardware must be provided with partial checksum, otherwise 2339 * it will take care of necessary calculations. 2340 */ 2341 2342 ret = rte_net_intel_cksum_flags_prepare(m, 2343 ol_flags & ~PKT_TX_TCP_SEG); 2344 if (ret != 0) { 2345 rte_errno = -ret; 2346 return i; 2347 } 2348 } 2349 2350 return i; 2351 } 2352 2353 static void ena_update_hints(struct ena_adapter *adapter, 2354 struct ena_admin_ena_hw_hints *hints) 2355 { 2356 if (hints->admin_completion_tx_timeout) 2357 adapter->ena_dev.admin_queue.completion_timeout = 2358 hints->admin_completion_tx_timeout * 1000; 2359 2360 if (hints->mmio_read_timeout) 2361 /* convert to usec */ 2362 adapter->ena_dev.mmio_read.reg_read_to = 2363 hints->mmio_read_timeout * 1000; 2364 2365 if (hints->driver_watchdog_timeout) { 2366 if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT) 2367 adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT; 2368 else 2369 // Convert msecs to ticks 2370 adapter->keep_alive_timeout = 2371 (hints->driver_watchdog_timeout * 2372 rte_get_timer_hz()) / 1000; 2373 } 2374 } 2375 2376 static int ena_check_and_linearize_mbuf(struct ena_ring *tx_ring, 2377 struct rte_mbuf *mbuf) 2378 { 2379 struct ena_com_dev *ena_dev; 2380 int num_segments, header_len, rc; 2381 2382 ena_dev = &tx_ring->adapter->ena_dev; 2383 num_segments = mbuf->nb_segs; 2384 header_len = mbuf->data_len; 2385 2386 if (likely(num_segments < tx_ring->sgl_size)) 2387 return 0; 2388 2389 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV && 2390 (num_segments == tx_ring->sgl_size) && 2391 (header_len < tx_ring->tx_max_header_size)) 2392 return 0; 2393 2394 ++tx_ring->tx_stats.linearize; 2395 rc = rte_pktmbuf_linearize(mbuf); 2396 if (unlikely(rc)) { 2397 PMD_DRV_LOG(WARNING, "Mbuf linearize failed\n"); 2398 rte_atomic64_inc(&tx_ring->adapter->drv_stats->ierrors); 2399 ++tx_ring->tx_stats.linearize_failed; 2400 return rc; 2401 } 2402 2403 return rc; 2404 } 2405 2406 static void ena_tx_map_mbuf(struct ena_ring *tx_ring, 2407 struct ena_tx_buffer *tx_info, 2408 struct rte_mbuf *mbuf, 2409 void **push_header, 2410 uint16_t *header_len) 2411 { 2412 struct ena_com_buf *ena_buf; 2413 uint16_t delta, seg_len, push_len; 2414 2415 delta = 0; 2416 seg_len = mbuf->data_len; 2417 2418 tx_info->mbuf = mbuf; 2419 ena_buf = tx_info->bufs; 2420 2421 if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) { 2422 /* 2423 * Tx header might be (and will be in most cases) smaller than 2424 * tx_max_header_size. But it's not an issue to send more data 2425 * to the device, than actually needed if the mbuf size is 2426 * greater than tx_max_header_size. 2427 */ 2428 push_len = RTE_MIN(mbuf->pkt_len, tx_ring->tx_max_header_size); 2429 *header_len = push_len; 2430 2431 if (likely(push_len <= seg_len)) { 2432 /* If the push header is in the single segment, then 2433 * just point it to the 1st mbuf data. 2434 */ 2435 *push_header = rte_pktmbuf_mtod(mbuf, uint8_t *); 2436 } else { 2437 /* If the push header lays in the several segments, copy 2438 * it to the intermediate buffer. 2439 */ 2440 rte_pktmbuf_read(mbuf, 0, push_len, 2441 tx_ring->push_buf_intermediate_buf); 2442 *push_header = tx_ring->push_buf_intermediate_buf; 2443 delta = push_len - seg_len; 2444 } 2445 } else { 2446 *push_header = NULL; 2447 *header_len = 0; 2448 push_len = 0; 2449 } 2450 2451 /* Process first segment taking into consideration pushed header */ 2452 if (seg_len > push_len) { 2453 ena_buf->paddr = mbuf->buf_iova + 2454 mbuf->data_off + 2455 push_len; 2456 ena_buf->len = seg_len - push_len; 2457 ena_buf++; 2458 tx_info->num_of_bufs++; 2459 } 2460 2461 while ((mbuf = mbuf->next) != NULL) { 2462 seg_len = mbuf->data_len; 2463 2464 /* Skip mbufs if whole data is pushed as a header */ 2465 if (unlikely(delta > seg_len)) { 2466 delta -= seg_len; 2467 continue; 2468 } 2469 2470 ena_buf->paddr = mbuf->buf_iova + mbuf->data_off + delta; 2471 ena_buf->len = seg_len - delta; 2472 ena_buf++; 2473 tx_info->num_of_bufs++; 2474 2475 delta = 0; 2476 } 2477 } 2478 2479 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf) 2480 { 2481 struct ena_tx_buffer *tx_info; 2482 struct ena_com_tx_ctx ena_tx_ctx = { { 0 } }; 2483 uint16_t next_to_use; 2484 uint16_t header_len; 2485 uint16_t req_id; 2486 void *push_header; 2487 int nb_hw_desc; 2488 int rc; 2489 2490 rc = ena_check_and_linearize_mbuf(tx_ring, mbuf); 2491 if (unlikely(rc)) 2492 return rc; 2493 2494 next_to_use = tx_ring->next_to_use; 2495 2496 req_id = tx_ring->empty_tx_reqs[next_to_use]; 2497 tx_info = &tx_ring->tx_buffer_info[req_id]; 2498 tx_info->num_of_bufs = 0; 2499 2500 ena_tx_map_mbuf(tx_ring, tx_info, mbuf, &push_header, &header_len); 2501 2502 ena_tx_ctx.ena_bufs = tx_info->bufs; 2503 ena_tx_ctx.push_header = push_header; 2504 ena_tx_ctx.num_bufs = tx_info->num_of_bufs; 2505 ena_tx_ctx.req_id = req_id; 2506 ena_tx_ctx.header_len = header_len; 2507 2508 /* Set Tx offloads flags, if applicable */ 2509 ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads, 2510 tx_ring->disable_meta_caching); 2511 2512 if (unlikely(ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq, 2513 &ena_tx_ctx))) { 2514 PMD_DRV_LOG(DEBUG, 2515 "llq tx max burst size of queue %d achieved, writing doorbell to send burst\n", 2516 tx_ring->id); 2517 ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq); 2518 } 2519 2520 /* prepare the packet's descriptors to dma engine */ 2521 rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq, &ena_tx_ctx, 2522 &nb_hw_desc); 2523 if (unlikely(rc)) { 2524 ++tx_ring->tx_stats.prepare_ctx_err; 2525 return rc; 2526 } 2527 2528 tx_info->tx_descs = nb_hw_desc; 2529 2530 tx_ring->tx_stats.cnt++; 2531 tx_ring->tx_stats.bytes += mbuf->pkt_len; 2532 2533 tx_ring->next_to_use = ENA_IDX_NEXT_MASKED(next_to_use, 2534 tx_ring->size_mask); 2535 2536 return 0; 2537 } 2538 2539 static void ena_tx_cleanup(struct ena_ring *tx_ring) 2540 { 2541 unsigned int cleanup_budget; 2542 unsigned int total_tx_descs = 0; 2543 uint16_t next_to_clean = tx_ring->next_to_clean; 2544 2545 cleanup_budget = RTE_MIN(tx_ring->ring_size / ENA_REFILL_THRESH_DIVIDER, 2546 (unsigned int)ENA_REFILL_THRESH_PACKET); 2547 2548 while (likely(total_tx_descs < cleanup_budget)) { 2549 struct rte_mbuf *mbuf; 2550 struct ena_tx_buffer *tx_info; 2551 uint16_t req_id; 2552 2553 if (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) != 0) 2554 break; 2555 2556 if (unlikely(validate_tx_req_id(tx_ring, req_id) != 0)) 2557 break; 2558 2559 /* Get Tx info & store how many descs were processed */ 2560 tx_info = &tx_ring->tx_buffer_info[req_id]; 2561 2562 mbuf = tx_info->mbuf; 2563 rte_pktmbuf_free(mbuf); 2564 2565 tx_info->mbuf = NULL; 2566 tx_ring->empty_tx_reqs[next_to_clean] = req_id; 2567 2568 total_tx_descs += tx_info->tx_descs; 2569 2570 /* Put back descriptor to the ring for reuse */ 2571 next_to_clean = ENA_IDX_NEXT_MASKED(next_to_clean, 2572 tx_ring->size_mask); 2573 } 2574 2575 if (likely(total_tx_descs > 0)) { 2576 /* acknowledge completion of sent packets */ 2577 tx_ring->next_to_clean = next_to_clean; 2578 ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs); 2579 ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq); 2580 } 2581 } 2582 2583 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, 2584 uint16_t nb_pkts) 2585 { 2586 struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue); 2587 uint16_t sent_idx = 0; 2588 2589 /* Check adapter state */ 2590 if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) { 2591 PMD_DRV_LOG(ALERT, 2592 "Trying to xmit pkts while device is NOT running\n"); 2593 return 0; 2594 } 2595 2596 nb_pkts = RTE_MIN(ena_com_free_q_entries(tx_ring->ena_com_io_sq), 2597 nb_pkts); 2598 2599 for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) { 2600 if (ena_xmit_mbuf(tx_ring, tx_pkts[sent_idx])) 2601 break; 2602 2603 rte_prefetch0(tx_pkts[ENA_IDX_ADD_MASKED(sent_idx, 4, 2604 tx_ring->size_mask)]); 2605 } 2606 2607 tx_ring->tx_stats.available_desc = 2608 ena_com_free_q_entries(tx_ring->ena_com_io_sq); 2609 2610 /* If there are ready packets to be xmitted... */ 2611 if (sent_idx > 0) { 2612 /* ...let HW do its best :-) */ 2613 ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq); 2614 tx_ring->tx_stats.doorbells++; 2615 } 2616 2617 ena_tx_cleanup(tx_ring); 2618 2619 tx_ring->tx_stats.available_desc = 2620 ena_com_free_q_entries(tx_ring->ena_com_io_sq); 2621 tx_ring->tx_stats.tx_poll++; 2622 2623 return sent_idx; 2624 } 2625 2626 int ena_copy_eni_stats(struct ena_adapter *adapter) 2627 { 2628 struct ena_admin_eni_stats admin_eni_stats; 2629 int rc; 2630 2631 rte_spinlock_lock(&adapter->admin_lock); 2632 rc = ena_com_get_eni_stats(&adapter->ena_dev, &admin_eni_stats); 2633 rte_spinlock_unlock(&adapter->admin_lock); 2634 if (rc != 0) { 2635 if (rc == ENA_COM_UNSUPPORTED) { 2636 PMD_DRV_LOG(DEBUG, 2637 "Retrieving ENI metrics is not supported.\n"); 2638 } else { 2639 PMD_DRV_LOG(WARNING, 2640 "Failed to get ENI metrics: %d\n", rc); 2641 } 2642 return rc; 2643 } 2644 2645 rte_memcpy(&adapter->eni_stats, &admin_eni_stats, 2646 sizeof(struct ena_stats_eni)); 2647 2648 return 0; 2649 } 2650 2651 /** 2652 * DPDK callback to retrieve names of extended device statistics 2653 * 2654 * @param dev 2655 * Pointer to Ethernet device structure. 2656 * @param[out] xstats_names 2657 * Buffer to insert names into. 2658 * @param n 2659 * Number of names. 2660 * 2661 * @return 2662 * Number of xstats names. 2663 */ 2664 static int ena_xstats_get_names(struct rte_eth_dev *dev, 2665 struct rte_eth_xstat_name *xstats_names, 2666 unsigned int n) 2667 { 2668 unsigned int xstats_count = ena_xstats_calc_num(dev); 2669 unsigned int stat, i, count = 0; 2670 2671 if (n < xstats_count || !xstats_names) 2672 return xstats_count; 2673 2674 for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) 2675 strcpy(xstats_names[count].name, 2676 ena_stats_global_strings[stat].name); 2677 2678 for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++) 2679 strcpy(xstats_names[count].name, 2680 ena_stats_eni_strings[stat].name); 2681 2682 for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) 2683 for (i = 0; i < dev->data->nb_rx_queues; i++, count++) 2684 snprintf(xstats_names[count].name, 2685 sizeof(xstats_names[count].name), 2686 "rx_q%d_%s", i, 2687 ena_stats_rx_strings[stat].name); 2688 2689 for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) 2690 for (i = 0; i < dev->data->nb_tx_queues; i++, count++) 2691 snprintf(xstats_names[count].name, 2692 sizeof(xstats_names[count].name), 2693 "tx_q%d_%s", i, 2694 ena_stats_tx_strings[stat].name); 2695 2696 return xstats_count; 2697 } 2698 2699 /** 2700 * DPDK callback to get extended device statistics. 2701 * 2702 * @param dev 2703 * Pointer to Ethernet device structure. 2704 * @param[out] stats 2705 * Stats table output buffer. 2706 * @param n 2707 * The size of the stats table. 2708 * 2709 * @return 2710 * Number of xstats on success, negative on failure. 2711 */ 2712 static int ena_xstats_get(struct rte_eth_dev *dev, 2713 struct rte_eth_xstat *xstats, 2714 unsigned int n) 2715 { 2716 struct ena_adapter *adapter = dev->data->dev_private; 2717 unsigned int xstats_count = ena_xstats_calc_num(dev); 2718 unsigned int stat, i, count = 0; 2719 int stat_offset; 2720 void *stats_begin; 2721 2722 if (n < xstats_count) 2723 return xstats_count; 2724 2725 if (!xstats) 2726 return 0; 2727 2728 for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) { 2729 stat_offset = ena_stats_global_strings[stat].stat_offset; 2730 stats_begin = &adapter->dev_stats; 2731 2732 xstats[count].id = count; 2733 xstats[count].value = *((uint64_t *) 2734 ((char *)stats_begin + stat_offset)); 2735 } 2736 2737 /* Even if the function below fails, we should copy previous (or initial 2738 * values) to keep structure of rte_eth_xstat consistent. 2739 */ 2740 ena_copy_eni_stats(adapter); 2741 for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++) { 2742 stat_offset = ena_stats_eni_strings[stat].stat_offset; 2743 stats_begin = &adapter->eni_stats; 2744 2745 xstats[count].id = count; 2746 xstats[count].value = *((uint64_t *) 2747 ((char *)stats_begin + stat_offset)); 2748 } 2749 2750 for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) { 2751 for (i = 0; i < dev->data->nb_rx_queues; i++, count++) { 2752 stat_offset = ena_stats_rx_strings[stat].stat_offset; 2753 stats_begin = &adapter->rx_ring[i].rx_stats; 2754 2755 xstats[count].id = count; 2756 xstats[count].value = *((uint64_t *) 2757 ((char *)stats_begin + stat_offset)); 2758 } 2759 } 2760 2761 for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) { 2762 for (i = 0; i < dev->data->nb_tx_queues; i++, count++) { 2763 stat_offset = ena_stats_tx_strings[stat].stat_offset; 2764 stats_begin = &adapter->tx_ring[i].rx_stats; 2765 2766 xstats[count].id = count; 2767 xstats[count].value = *((uint64_t *) 2768 ((char *)stats_begin + stat_offset)); 2769 } 2770 } 2771 2772 return count; 2773 } 2774 2775 static int ena_xstats_get_by_id(struct rte_eth_dev *dev, 2776 const uint64_t *ids, 2777 uint64_t *values, 2778 unsigned int n) 2779 { 2780 struct ena_adapter *adapter = dev->data->dev_private; 2781 uint64_t id; 2782 uint64_t rx_entries, tx_entries; 2783 unsigned int i; 2784 int qid; 2785 int valid = 0; 2786 bool was_eni_copied = false; 2787 2788 for (i = 0; i < n; ++i) { 2789 id = ids[i]; 2790 /* Check if id belongs to global statistics */ 2791 if (id < ENA_STATS_ARRAY_GLOBAL) { 2792 values[i] = *((uint64_t *)&adapter->dev_stats + id); 2793 ++valid; 2794 continue; 2795 } 2796 2797 /* Check if id belongs to ENI statistics */ 2798 id -= ENA_STATS_ARRAY_GLOBAL; 2799 if (id < ENA_STATS_ARRAY_ENI) { 2800 /* Avoid reading ENI stats multiple times in a single 2801 * function call, as it requires communication with the 2802 * admin queue. 2803 */ 2804 if (!was_eni_copied) { 2805 was_eni_copied = true; 2806 ena_copy_eni_stats(adapter); 2807 } 2808 values[i] = *((uint64_t *)&adapter->eni_stats + id); 2809 ++valid; 2810 continue; 2811 } 2812 2813 /* Check if id belongs to rx queue statistics */ 2814 id -= ENA_STATS_ARRAY_ENI; 2815 rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues; 2816 if (id < rx_entries) { 2817 qid = id % dev->data->nb_rx_queues; 2818 id /= dev->data->nb_rx_queues; 2819 values[i] = *((uint64_t *) 2820 &adapter->rx_ring[qid].rx_stats + id); 2821 ++valid; 2822 continue; 2823 } 2824 /* Check if id belongs to rx queue statistics */ 2825 id -= rx_entries; 2826 tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues; 2827 if (id < tx_entries) { 2828 qid = id % dev->data->nb_tx_queues; 2829 id /= dev->data->nb_tx_queues; 2830 values[i] = *((uint64_t *) 2831 &adapter->tx_ring[qid].tx_stats + id); 2832 ++valid; 2833 continue; 2834 } 2835 } 2836 2837 return valid; 2838 } 2839 2840 static int ena_process_bool_devarg(const char *key, 2841 const char *value, 2842 void *opaque) 2843 { 2844 struct ena_adapter *adapter = opaque; 2845 bool bool_value; 2846 2847 /* Parse the value. */ 2848 if (strcmp(value, "1") == 0) { 2849 bool_value = true; 2850 } else if (strcmp(value, "0") == 0) { 2851 bool_value = false; 2852 } else { 2853 PMD_INIT_LOG(ERR, 2854 "Invalid value: '%s' for key '%s'. Accepted: '0' or '1'\n", 2855 value, key); 2856 return -EINVAL; 2857 } 2858 2859 /* Now, assign it to the proper adapter field. */ 2860 if (strcmp(key, ENA_DEVARG_LARGE_LLQ_HDR)) 2861 adapter->use_large_llq_hdr = bool_value; 2862 2863 return 0; 2864 } 2865 2866 static int ena_parse_devargs(struct ena_adapter *adapter, 2867 struct rte_devargs *devargs) 2868 { 2869 static const char * const allowed_args[] = { 2870 ENA_DEVARG_LARGE_LLQ_HDR, 2871 }; 2872 struct rte_kvargs *kvlist; 2873 int rc; 2874 2875 if (devargs == NULL) 2876 return 0; 2877 2878 kvlist = rte_kvargs_parse(devargs->args, allowed_args); 2879 if (kvlist == NULL) { 2880 PMD_INIT_LOG(ERR, "Invalid device arguments: %s\n", 2881 devargs->args); 2882 return -EINVAL; 2883 } 2884 2885 rc = rte_kvargs_process(kvlist, ENA_DEVARG_LARGE_LLQ_HDR, 2886 ena_process_bool_devarg, adapter); 2887 2888 rte_kvargs_free(kvlist); 2889 2890 return rc; 2891 } 2892 2893 /********************************************************************* 2894 * PMD configuration 2895 *********************************************************************/ 2896 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, 2897 struct rte_pci_device *pci_dev) 2898 { 2899 return rte_eth_dev_pci_generic_probe(pci_dev, 2900 sizeof(struct ena_adapter), eth_ena_dev_init); 2901 } 2902 2903 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev) 2904 { 2905 return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit); 2906 } 2907 2908 static struct rte_pci_driver rte_ena_pmd = { 2909 .id_table = pci_id_ena_map, 2910 .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC | 2911 RTE_PCI_DRV_WC_ACTIVATE, 2912 .probe = eth_ena_pci_probe, 2913 .remove = eth_ena_pci_remove, 2914 }; 2915 2916 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd); 2917 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map); 2918 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci"); 2919 RTE_PMD_REGISTER_PARAM_STRING(net_ena, ENA_DEVARG_LARGE_LLQ_HDR "=<0|1>"); 2920 RTE_LOG_REGISTER(ena_logtype_init, pmd.net.ena.init, NOTICE); 2921 RTE_LOG_REGISTER(ena_logtype_driver, pmd.net.ena.driver, NOTICE); 2922 #ifdef RTE_LIBRTE_ENA_DEBUG_RX 2923 RTE_LOG_REGISTER(ena_logtype_rx, pmd.net.ena.rx, NOTICE); 2924 #endif 2925 #ifdef RTE_LIBRTE_ENA_DEBUG_TX 2926 RTE_LOG_REGISTER(ena_logtype_tx, pmd.net.ena.tx, NOTICE); 2927 #endif 2928 #ifdef RTE_LIBRTE_ENA_DEBUG_TX_FREE 2929 RTE_LOG_REGISTER(ena_logtype_tx_free, pmd.net.ena.tx_free, NOTICE); 2930 #endif 2931 #ifdef RTE_LIBRTE_ENA_COM_DEBUG 2932 RTE_LOG_REGISTER(ena_logtype_com, pmd.net.ena.com, NOTICE); 2933 #endif 2934 2935 /****************************************************************************** 2936 ******************************** AENQ Handlers ******************************* 2937 *****************************************************************************/ 2938 static void ena_update_on_link_change(void *adapter_data, 2939 struct ena_admin_aenq_entry *aenq_e) 2940 { 2941 struct rte_eth_dev *eth_dev; 2942 struct ena_adapter *adapter; 2943 struct ena_admin_aenq_link_change_desc *aenq_link_desc; 2944 uint32_t status; 2945 2946 adapter = adapter_data; 2947 aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e; 2948 eth_dev = adapter->rte_dev; 2949 2950 status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc); 2951 adapter->link_status = status; 2952 2953 ena_link_update(eth_dev, 0); 2954 rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL); 2955 } 2956 2957 static void ena_notification(void *data, 2958 struct ena_admin_aenq_entry *aenq_e) 2959 { 2960 struct ena_adapter *adapter = data; 2961 struct ena_admin_ena_hw_hints *hints; 2962 2963 if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION) 2964 PMD_DRV_LOG(WARNING, "Invalid group(%x) expected %x\n", 2965 aenq_e->aenq_common_desc.group, 2966 ENA_ADMIN_NOTIFICATION); 2967 2968 switch (aenq_e->aenq_common_desc.syndrom) { 2969 case ENA_ADMIN_UPDATE_HINTS: 2970 hints = (struct ena_admin_ena_hw_hints *) 2971 (&aenq_e->inline_data_w4); 2972 ena_update_hints(adapter, hints); 2973 break; 2974 default: 2975 PMD_DRV_LOG(ERR, "Invalid aenq notification link state %d\n", 2976 aenq_e->aenq_common_desc.syndrom); 2977 } 2978 } 2979 2980 static void ena_keep_alive(void *adapter_data, 2981 __rte_unused struct ena_admin_aenq_entry *aenq_e) 2982 { 2983 struct ena_adapter *adapter = adapter_data; 2984 struct ena_admin_aenq_keep_alive_desc *desc; 2985 uint64_t rx_drops; 2986 uint64_t tx_drops; 2987 2988 adapter->timestamp_wd = rte_get_timer_cycles(); 2989 2990 desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e; 2991 rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low; 2992 tx_drops = ((uint64_t)desc->tx_drops_high << 32) | desc->tx_drops_low; 2993 2994 adapter->drv_stats->rx_drops = rx_drops; 2995 adapter->dev_stats.tx_drops = tx_drops; 2996 } 2997 2998 /** 2999 * This handler will called for unknown event group or unimplemented handlers 3000 **/ 3001 static void unimplemented_aenq_handler(__rte_unused void *data, 3002 __rte_unused struct ena_admin_aenq_entry *aenq_e) 3003 { 3004 PMD_DRV_LOG(ERR, "Unknown event was received or event with " 3005 "unimplemented handler\n"); 3006 } 3007 3008 static struct ena_aenq_handlers aenq_handlers = { 3009 .handlers = { 3010 [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change, 3011 [ENA_ADMIN_NOTIFICATION] = ena_notification, 3012 [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive 3013 }, 3014 .unimplemented_handler = unimplemented_aenq_handler 3015 }; 3016