xref: /dpdk/drivers/net/ena/ena_ethdev.c (revision bbbe38a6d59ccdda25917712701e629d0b10af6f)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
3  * All rights reserved.
4  */
5 
6 #include <rte_string_fns.h>
7 #include <rte_ether.h>
8 #include <ethdev_driver.h>
9 #include <ethdev_pci.h>
10 #include <rte_tcp.h>
11 #include <rte_atomic.h>
12 #include <rte_dev.h>
13 #include <rte_errno.h>
14 #include <rte_version.h>
15 #include <rte_net.h>
16 #include <rte_kvargs.h>
17 
18 #include "ena_ethdev.h"
19 #include "ena_logs.h"
20 #include "ena_platform.h"
21 #include "ena_com.h"
22 #include "ena_eth_com.h"
23 
24 #include <ena_common_defs.h>
25 #include <ena_regs_defs.h>
26 #include <ena_admin_defs.h>
27 #include <ena_eth_io_defs.h>
28 
29 #define DRV_MODULE_VER_MAJOR	2
30 #define DRV_MODULE_VER_MINOR	3
31 #define DRV_MODULE_VER_SUBMINOR	0
32 
33 #define ENA_IO_TXQ_IDX(q)	(2 * (q))
34 #define ENA_IO_RXQ_IDX(q)	(2 * (q) + 1)
35 /*reverse version of ENA_IO_RXQ_IDX*/
36 #define ENA_IO_RXQ_IDX_REV(q)	((q - 1) / 2)
37 
38 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
39 #define TEST_BIT(val, bit_shift) (val & (1UL << bit_shift))
40 
41 #define GET_L4_HDR_LEN(mbuf)					\
42 	((rte_pktmbuf_mtod_offset(mbuf,	struct rte_tcp_hdr *,	\
43 		mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
44 
45 #define ENA_RX_RSS_TABLE_LOG_SIZE  7
46 #define ENA_RX_RSS_TABLE_SIZE	(1 << ENA_RX_RSS_TABLE_LOG_SIZE)
47 #define ENA_HASH_KEY_SIZE	40
48 #define ETH_GSTRING_LEN	32
49 
50 #define ARRAY_SIZE(x) RTE_DIM(x)
51 
52 #define ENA_MIN_RING_DESC	128
53 
54 #define ENA_PTYPE_HAS_HASH	(RTE_PTYPE_L4_TCP | RTE_PTYPE_L4_UDP)
55 
56 enum ethtool_stringset {
57 	ETH_SS_TEST             = 0,
58 	ETH_SS_STATS,
59 };
60 
61 struct ena_stats {
62 	char name[ETH_GSTRING_LEN];
63 	int stat_offset;
64 };
65 
66 #define ENA_STAT_ENTRY(stat, stat_type) { \
67 	.name = #stat, \
68 	.stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
69 }
70 
71 #define ENA_STAT_RX_ENTRY(stat) \
72 	ENA_STAT_ENTRY(stat, rx)
73 
74 #define ENA_STAT_TX_ENTRY(stat) \
75 	ENA_STAT_ENTRY(stat, tx)
76 
77 #define ENA_STAT_ENI_ENTRY(stat) \
78 	ENA_STAT_ENTRY(stat, eni)
79 
80 #define ENA_STAT_GLOBAL_ENTRY(stat) \
81 	ENA_STAT_ENTRY(stat, dev)
82 
83 /* Device arguments */
84 #define ENA_DEVARG_LARGE_LLQ_HDR "large_llq_hdr"
85 
86 /*
87  * Each rte_memzone should have unique name.
88  * To satisfy it, count number of allocation and add it to name.
89  */
90 rte_atomic64_t ena_alloc_cnt;
91 
92 static const struct ena_stats ena_stats_global_strings[] = {
93 	ENA_STAT_GLOBAL_ENTRY(wd_expired),
94 	ENA_STAT_GLOBAL_ENTRY(dev_start),
95 	ENA_STAT_GLOBAL_ENTRY(dev_stop),
96 	ENA_STAT_GLOBAL_ENTRY(tx_drops),
97 };
98 
99 static const struct ena_stats ena_stats_eni_strings[] = {
100 	ENA_STAT_ENI_ENTRY(bw_in_allowance_exceeded),
101 	ENA_STAT_ENI_ENTRY(bw_out_allowance_exceeded),
102 	ENA_STAT_ENI_ENTRY(pps_allowance_exceeded),
103 	ENA_STAT_ENI_ENTRY(conntrack_allowance_exceeded),
104 	ENA_STAT_ENI_ENTRY(linklocal_allowance_exceeded),
105 };
106 
107 static const struct ena_stats ena_stats_tx_strings[] = {
108 	ENA_STAT_TX_ENTRY(cnt),
109 	ENA_STAT_TX_ENTRY(bytes),
110 	ENA_STAT_TX_ENTRY(prepare_ctx_err),
111 	ENA_STAT_TX_ENTRY(linearize),
112 	ENA_STAT_TX_ENTRY(linearize_failed),
113 	ENA_STAT_TX_ENTRY(tx_poll),
114 	ENA_STAT_TX_ENTRY(doorbells),
115 	ENA_STAT_TX_ENTRY(bad_req_id),
116 	ENA_STAT_TX_ENTRY(available_desc),
117 };
118 
119 static const struct ena_stats ena_stats_rx_strings[] = {
120 	ENA_STAT_RX_ENTRY(cnt),
121 	ENA_STAT_RX_ENTRY(bytes),
122 	ENA_STAT_RX_ENTRY(refill_partial),
123 	ENA_STAT_RX_ENTRY(bad_csum),
124 	ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
125 	ENA_STAT_RX_ENTRY(bad_desc_num),
126 	ENA_STAT_RX_ENTRY(bad_req_id),
127 };
128 
129 #define ENA_STATS_ARRAY_GLOBAL	ARRAY_SIZE(ena_stats_global_strings)
130 #define ENA_STATS_ARRAY_ENI	ARRAY_SIZE(ena_stats_eni_strings)
131 #define ENA_STATS_ARRAY_TX	ARRAY_SIZE(ena_stats_tx_strings)
132 #define ENA_STATS_ARRAY_RX	ARRAY_SIZE(ena_stats_rx_strings)
133 
134 #define QUEUE_OFFLOADS (DEV_TX_OFFLOAD_TCP_CKSUM |\
135 			DEV_TX_OFFLOAD_UDP_CKSUM |\
136 			DEV_TX_OFFLOAD_IPV4_CKSUM |\
137 			DEV_TX_OFFLOAD_TCP_TSO)
138 #define MBUF_OFFLOADS (PKT_TX_L4_MASK |\
139 		       PKT_TX_IP_CKSUM |\
140 		       PKT_TX_TCP_SEG)
141 
142 /** Vendor ID used by Amazon devices */
143 #define PCI_VENDOR_ID_AMAZON 0x1D0F
144 /** Amazon devices */
145 #define PCI_DEVICE_ID_ENA_VF		0xEC20
146 #define PCI_DEVICE_ID_ENA_VF_RSERV0	0xEC21
147 
148 #define	ENA_TX_OFFLOAD_MASK	(\
149 	PKT_TX_L4_MASK |         \
150 	PKT_TX_IPV6 |            \
151 	PKT_TX_IPV4 |            \
152 	PKT_TX_IP_CKSUM |        \
153 	PKT_TX_TCP_SEG)
154 
155 #define	ENA_TX_OFFLOAD_NOTSUP_MASK	\
156 	(PKT_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
157 
158 static const struct rte_pci_id pci_id_ena_map[] = {
159 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
160 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF_RSERV0) },
161 	{ .device_id = 0 },
162 };
163 
164 static struct ena_aenq_handlers aenq_handlers;
165 
166 static int ena_device_init(struct ena_com_dev *ena_dev,
167 			   struct rte_pci_device *pdev,
168 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
169 			   bool *wd_state);
170 static int ena_dev_configure(struct rte_eth_dev *dev);
171 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
172 	struct ena_tx_buffer *tx_info,
173 	struct rte_mbuf *mbuf,
174 	void **push_header,
175 	uint16_t *header_len);
176 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf);
177 static void ena_tx_cleanup(struct ena_ring *tx_ring);
178 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
179 				  uint16_t nb_pkts);
180 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
181 		uint16_t nb_pkts);
182 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
183 			      uint16_t nb_desc, unsigned int socket_id,
184 			      const struct rte_eth_txconf *tx_conf);
185 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
186 			      uint16_t nb_desc, unsigned int socket_id,
187 			      const struct rte_eth_rxconf *rx_conf,
188 			      struct rte_mempool *mp);
189 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len);
190 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
191 				    struct ena_com_rx_buf_info *ena_bufs,
192 				    uint32_t descs,
193 				    uint16_t *next_to_clean,
194 				    uint8_t offset);
195 static uint16_t eth_ena_recv_pkts(void *rx_queue,
196 				  struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
197 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
198 				  struct rte_mbuf *mbuf, uint16_t id);
199 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
200 static void ena_init_rings(struct ena_adapter *adapter,
201 			   bool disable_meta_caching);
202 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
203 static int ena_start(struct rte_eth_dev *dev);
204 static int ena_stop(struct rte_eth_dev *dev);
205 static int ena_close(struct rte_eth_dev *dev);
206 static int ena_dev_reset(struct rte_eth_dev *dev);
207 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
208 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
209 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
210 static void ena_rx_queue_release(void *queue);
211 static void ena_tx_queue_release(void *queue);
212 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
213 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
214 static int ena_link_update(struct rte_eth_dev *dev,
215 			   int wait_to_complete);
216 static int ena_create_io_queue(struct ena_ring *ring);
217 static void ena_queue_stop(struct ena_ring *ring);
218 static void ena_queue_stop_all(struct rte_eth_dev *dev,
219 			      enum ena_ring_type ring_type);
220 static int ena_queue_start(struct ena_ring *ring);
221 static int ena_queue_start_all(struct rte_eth_dev *dev,
222 			       enum ena_ring_type ring_type);
223 static void ena_stats_restart(struct rte_eth_dev *dev);
224 static int ena_infos_get(struct rte_eth_dev *dev,
225 			 struct rte_eth_dev_info *dev_info);
226 static int ena_rss_reta_update(struct rte_eth_dev *dev,
227 			       struct rte_eth_rss_reta_entry64 *reta_conf,
228 			       uint16_t reta_size);
229 static int ena_rss_reta_query(struct rte_eth_dev *dev,
230 			      struct rte_eth_rss_reta_entry64 *reta_conf,
231 			      uint16_t reta_size);
232 static void ena_interrupt_handler_rte(void *cb_arg);
233 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
234 static void ena_destroy_device(struct rte_eth_dev *eth_dev);
235 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
236 static int ena_xstats_get_names(struct rte_eth_dev *dev,
237 				struct rte_eth_xstat_name *xstats_names,
238 				unsigned int n);
239 static int ena_xstats_get(struct rte_eth_dev *dev,
240 			  struct rte_eth_xstat *stats,
241 			  unsigned int n);
242 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
243 				const uint64_t *ids,
244 				uint64_t *values,
245 				unsigned int n);
246 static int ena_process_bool_devarg(const char *key,
247 				   const char *value,
248 				   void *opaque);
249 static int ena_parse_devargs(struct ena_adapter *adapter,
250 			     struct rte_devargs *devargs);
251 static int ena_copy_eni_stats(struct ena_adapter *adapter);
252 
253 static const struct eth_dev_ops ena_dev_ops = {
254 	.dev_configure        = ena_dev_configure,
255 	.dev_infos_get        = ena_infos_get,
256 	.rx_queue_setup       = ena_rx_queue_setup,
257 	.tx_queue_setup       = ena_tx_queue_setup,
258 	.dev_start            = ena_start,
259 	.dev_stop             = ena_stop,
260 	.link_update          = ena_link_update,
261 	.stats_get            = ena_stats_get,
262 	.xstats_get_names     = ena_xstats_get_names,
263 	.xstats_get	      = ena_xstats_get,
264 	.xstats_get_by_id     = ena_xstats_get_by_id,
265 	.mtu_set              = ena_mtu_set,
266 	.rx_queue_release     = ena_rx_queue_release,
267 	.tx_queue_release     = ena_tx_queue_release,
268 	.dev_close            = ena_close,
269 	.dev_reset            = ena_dev_reset,
270 	.reta_update          = ena_rss_reta_update,
271 	.reta_query           = ena_rss_reta_query,
272 };
273 
274 void ena_rss_key_fill(void *key, size_t size)
275 {
276 	static bool key_generated;
277 	static uint8_t default_key[ENA_HASH_KEY_SIZE];
278 	size_t i;
279 
280 	RTE_ASSERT(size <= ENA_HASH_KEY_SIZE);
281 
282 	if (!key_generated) {
283 		for (i = 0; i < ENA_HASH_KEY_SIZE; ++i)
284 			default_key[i] = rte_rand() & 0xff;
285 		key_generated = true;
286 	}
287 
288 	rte_memcpy(key, default_key, size);
289 }
290 
291 static inline void ena_rx_mbuf_prepare(struct rte_mbuf *mbuf,
292 				       struct ena_com_rx_ctx *ena_rx_ctx)
293 {
294 	uint64_t ol_flags = 0;
295 	uint32_t packet_type = 0;
296 
297 	if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
298 		packet_type |= RTE_PTYPE_L4_TCP;
299 	else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
300 		packet_type |= RTE_PTYPE_L4_UDP;
301 
302 	if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
303 		packet_type |= RTE_PTYPE_L3_IPV4;
304 		if (unlikely(ena_rx_ctx->l3_csum_err))
305 			ol_flags |= PKT_RX_IP_CKSUM_BAD;
306 		else
307 			ol_flags |= PKT_RX_IP_CKSUM_GOOD;
308 	} else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
309 		packet_type |= RTE_PTYPE_L3_IPV6;
310 	}
311 
312 	if (!ena_rx_ctx->l4_csum_checked || ena_rx_ctx->frag)
313 		ol_flags |= PKT_RX_L4_CKSUM_UNKNOWN;
314 	else
315 		if (unlikely(ena_rx_ctx->l4_csum_err))
316 			ol_flags |= PKT_RX_L4_CKSUM_BAD;
317 		else
318 			ol_flags |= PKT_RX_L4_CKSUM_GOOD;
319 
320 	if (likely((packet_type & ENA_PTYPE_HAS_HASH) && !ena_rx_ctx->frag)) {
321 		ol_flags |= PKT_RX_RSS_HASH;
322 		mbuf->hash.rss = ena_rx_ctx->hash;
323 	}
324 
325 	mbuf->ol_flags = ol_flags;
326 	mbuf->packet_type = packet_type;
327 }
328 
329 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
330 				       struct ena_com_tx_ctx *ena_tx_ctx,
331 				       uint64_t queue_offloads,
332 				       bool disable_meta_caching)
333 {
334 	struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
335 
336 	if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
337 	    (queue_offloads & QUEUE_OFFLOADS)) {
338 		/* check if TSO is required */
339 		if ((mbuf->ol_flags & PKT_TX_TCP_SEG) &&
340 		    (queue_offloads & DEV_TX_OFFLOAD_TCP_TSO)) {
341 			ena_tx_ctx->tso_enable = true;
342 
343 			ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
344 		}
345 
346 		/* check if L3 checksum is needed */
347 		if ((mbuf->ol_flags & PKT_TX_IP_CKSUM) &&
348 		    (queue_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM))
349 			ena_tx_ctx->l3_csum_enable = true;
350 
351 		if (mbuf->ol_flags & PKT_TX_IPV6) {
352 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
353 		} else {
354 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
355 
356 			/* set don't fragment (DF) flag */
357 			if (mbuf->packet_type &
358 				(RTE_PTYPE_L4_NONFRAG
359 				 | RTE_PTYPE_INNER_L4_NONFRAG))
360 				ena_tx_ctx->df = true;
361 		}
362 
363 		/* check if L4 checksum is needed */
364 		if (((mbuf->ol_flags & PKT_TX_L4_MASK) == PKT_TX_TCP_CKSUM) &&
365 		    (queue_offloads & DEV_TX_OFFLOAD_TCP_CKSUM)) {
366 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
367 			ena_tx_ctx->l4_csum_enable = true;
368 		} else if (((mbuf->ol_flags & PKT_TX_L4_MASK) ==
369 				PKT_TX_UDP_CKSUM) &&
370 				(queue_offloads & DEV_TX_OFFLOAD_UDP_CKSUM)) {
371 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
372 			ena_tx_ctx->l4_csum_enable = true;
373 		} else {
374 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
375 			ena_tx_ctx->l4_csum_enable = false;
376 		}
377 
378 		ena_meta->mss = mbuf->tso_segsz;
379 		ena_meta->l3_hdr_len = mbuf->l3_len;
380 		ena_meta->l3_hdr_offset = mbuf->l2_len;
381 
382 		ena_tx_ctx->meta_valid = true;
383 	} else if (disable_meta_caching) {
384 		memset(ena_meta, 0, sizeof(*ena_meta));
385 		ena_tx_ctx->meta_valid = true;
386 	} else {
387 		ena_tx_ctx->meta_valid = false;
388 	}
389 }
390 
391 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
392 {
393 	struct ena_tx_buffer *tx_info = NULL;
394 
395 	if (likely(req_id < tx_ring->ring_size)) {
396 		tx_info = &tx_ring->tx_buffer_info[req_id];
397 		if (likely(tx_info->mbuf))
398 			return 0;
399 	}
400 
401 	if (tx_info)
402 		PMD_DRV_LOG(ERR, "tx_info doesn't have valid mbuf\n");
403 	else
404 		PMD_DRV_LOG(ERR, "Invalid req_id: %hu\n", req_id);
405 
406 	/* Trigger device reset */
407 	++tx_ring->tx_stats.bad_req_id;
408 	tx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID;
409 	tx_ring->adapter->trigger_reset	= true;
410 	return -EFAULT;
411 }
412 
413 static void ena_config_host_info(struct ena_com_dev *ena_dev)
414 {
415 	struct ena_admin_host_info *host_info;
416 	int rc;
417 
418 	/* Allocate only the host info */
419 	rc = ena_com_allocate_host_info(ena_dev);
420 	if (rc) {
421 		PMD_DRV_LOG(ERR, "Cannot allocate host info\n");
422 		return;
423 	}
424 
425 	host_info = ena_dev->host_attr.host_info;
426 
427 	host_info->os_type = ENA_ADMIN_OS_DPDK;
428 	host_info->kernel_ver = RTE_VERSION;
429 	strlcpy((char *)host_info->kernel_ver_str, rte_version(),
430 		sizeof(host_info->kernel_ver_str));
431 	host_info->os_dist = RTE_VERSION;
432 	strlcpy((char *)host_info->os_dist_str, rte_version(),
433 		sizeof(host_info->os_dist_str));
434 	host_info->driver_version =
435 		(DRV_MODULE_VER_MAJOR) |
436 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
437 		(DRV_MODULE_VER_SUBMINOR <<
438 			ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
439 	host_info->num_cpus = rte_lcore_count();
440 
441 	host_info->driver_supported_features =
442 		ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK;
443 
444 	rc = ena_com_set_host_attributes(ena_dev);
445 	if (rc) {
446 		if (rc == -ENA_COM_UNSUPPORTED)
447 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
448 		else
449 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
450 
451 		goto err;
452 	}
453 
454 	return;
455 
456 err:
457 	ena_com_delete_host_info(ena_dev);
458 }
459 
460 /* This function calculates the number of xstats based on the current config */
461 static unsigned int ena_xstats_calc_num(struct rte_eth_dev_data *data)
462 {
463 	return ENA_STATS_ARRAY_GLOBAL + ENA_STATS_ARRAY_ENI +
464 		(data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
465 		(data->nb_rx_queues * ENA_STATS_ARRAY_RX);
466 }
467 
468 static void ena_config_debug_area(struct ena_adapter *adapter)
469 {
470 	u32 debug_area_size;
471 	int rc, ss_count;
472 
473 	ss_count = ena_xstats_calc_num(adapter->edev_data);
474 
475 	/* allocate 32 bytes for each string and 64bit for the value */
476 	debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
477 
478 	rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
479 	if (rc) {
480 		PMD_DRV_LOG(ERR, "Cannot allocate debug area\n");
481 		return;
482 	}
483 
484 	rc = ena_com_set_host_attributes(&adapter->ena_dev);
485 	if (rc) {
486 		if (rc == -ENA_COM_UNSUPPORTED)
487 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
488 		else
489 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
490 
491 		goto err;
492 	}
493 
494 	return;
495 err:
496 	ena_com_delete_debug_area(&adapter->ena_dev);
497 }
498 
499 static int ena_close(struct rte_eth_dev *dev)
500 {
501 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
502 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
503 	struct ena_adapter *adapter = dev->data->dev_private;
504 	int ret = 0;
505 
506 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
507 		return 0;
508 
509 	if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
510 		ret = ena_stop(dev);
511 	adapter->state = ENA_ADAPTER_STATE_CLOSED;
512 
513 	ena_rx_queue_release_all(dev);
514 	ena_tx_queue_release_all(dev);
515 
516 	rte_free(adapter->drv_stats);
517 	adapter->drv_stats = NULL;
518 
519 	rte_intr_disable(intr_handle);
520 	rte_intr_callback_unregister(intr_handle,
521 				     ena_interrupt_handler_rte,
522 				     dev);
523 
524 	/*
525 	 * MAC is not allocated dynamically. Setting NULL should prevent from
526 	 * release of the resource in the rte_eth_dev_release_port().
527 	 */
528 	dev->data->mac_addrs = NULL;
529 
530 	return ret;
531 }
532 
533 static int
534 ena_dev_reset(struct rte_eth_dev *dev)
535 {
536 	int rc = 0;
537 
538 	/* Cannot release memory in secondary process */
539 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
540 		PMD_DRV_LOG(WARNING, "dev_reset not supported in secondary.\n");
541 		return -EPERM;
542 	}
543 
544 	ena_destroy_device(dev);
545 	rc = eth_ena_dev_init(dev);
546 	if (rc)
547 		PMD_INIT_LOG(CRIT, "Cannot initialize device");
548 
549 	return rc;
550 }
551 
552 static int ena_rss_reta_update(struct rte_eth_dev *dev,
553 			       struct rte_eth_rss_reta_entry64 *reta_conf,
554 			       uint16_t reta_size)
555 {
556 	struct ena_adapter *adapter = dev->data->dev_private;
557 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
558 	int rc, i;
559 	u16 entry_value;
560 	int conf_idx;
561 	int idx;
562 
563 	if ((reta_size == 0) || (reta_conf == NULL))
564 		return -EINVAL;
565 
566 	if (reta_size > ENA_RX_RSS_TABLE_SIZE) {
567 		PMD_DRV_LOG(WARNING,
568 			"indirection table %d is bigger than supported (%d)\n",
569 			reta_size, ENA_RX_RSS_TABLE_SIZE);
570 		return -EINVAL;
571 	}
572 
573 	for (i = 0 ; i < reta_size ; i++) {
574 		/* each reta_conf is for 64 entries.
575 		 * to support 128 we use 2 conf of 64
576 		 */
577 		conf_idx = i / RTE_RETA_GROUP_SIZE;
578 		idx = i % RTE_RETA_GROUP_SIZE;
579 		if (TEST_BIT(reta_conf[conf_idx].mask, idx)) {
580 			entry_value =
581 				ENA_IO_RXQ_IDX(reta_conf[conf_idx].reta[idx]);
582 
583 			rc = ena_com_indirect_table_fill_entry(ena_dev,
584 							       i,
585 							       entry_value);
586 			if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
587 				PMD_DRV_LOG(ERR,
588 					"Cannot fill indirect table\n");
589 				return rc;
590 			}
591 		}
592 	}
593 
594 	rte_spinlock_lock(&adapter->admin_lock);
595 	rc = ena_com_indirect_table_set(ena_dev);
596 	rte_spinlock_unlock(&adapter->admin_lock);
597 	if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
598 		PMD_DRV_LOG(ERR, "Cannot flush the indirect table\n");
599 		return rc;
600 	}
601 
602 	PMD_DRV_LOG(DEBUG, "%s(): RSS configured %d entries  for port %d\n",
603 		__func__, reta_size, dev->data->port_id);
604 
605 	return 0;
606 }
607 
608 /* Query redirection table. */
609 static int ena_rss_reta_query(struct rte_eth_dev *dev,
610 			      struct rte_eth_rss_reta_entry64 *reta_conf,
611 			      uint16_t reta_size)
612 {
613 	struct ena_adapter *adapter = dev->data->dev_private;
614 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
615 	int rc;
616 	int i;
617 	u32 indirect_table[ENA_RX_RSS_TABLE_SIZE] = {0};
618 	int reta_conf_idx;
619 	int reta_idx;
620 
621 	if (reta_size == 0 || reta_conf == NULL ||
622 	    (reta_size > RTE_RETA_GROUP_SIZE && ((reta_conf + 1) == NULL)))
623 		return -EINVAL;
624 
625 	rte_spinlock_lock(&adapter->admin_lock);
626 	rc = ena_com_indirect_table_get(ena_dev, indirect_table);
627 	rte_spinlock_unlock(&adapter->admin_lock);
628 	if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
629 		PMD_DRV_LOG(ERR, "cannot get indirect table\n");
630 		return -ENOTSUP;
631 	}
632 
633 	for (i = 0 ; i < reta_size ; i++) {
634 		reta_conf_idx = i / RTE_RETA_GROUP_SIZE;
635 		reta_idx = i % RTE_RETA_GROUP_SIZE;
636 		if (TEST_BIT(reta_conf[reta_conf_idx].mask, reta_idx))
637 			reta_conf[reta_conf_idx].reta[reta_idx] =
638 				ENA_IO_RXQ_IDX_REV(indirect_table[i]);
639 	}
640 
641 	return 0;
642 }
643 
644 static int ena_rss_init_default(struct ena_adapter *adapter)
645 {
646 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
647 	uint16_t nb_rx_queues = adapter->edev_data->nb_rx_queues;
648 	int rc, i;
649 	u32 val;
650 
651 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
652 	if (unlikely(rc)) {
653 		PMD_DRV_LOG(ERR, "Cannot init indirect table\n");
654 		goto err_rss_init;
655 	}
656 
657 	for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
658 		val = i % nb_rx_queues;
659 		rc = ena_com_indirect_table_fill_entry(ena_dev, i,
660 						       ENA_IO_RXQ_IDX(val));
661 		if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
662 			PMD_DRV_LOG(ERR, "Cannot fill indirect table\n");
663 			goto err_fill_indir;
664 		}
665 	}
666 
667 	rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL,
668 					ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
669 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
670 		PMD_DRV_LOG(INFO, "Cannot fill hash function\n");
671 		goto err_fill_indir;
672 	}
673 
674 	rc = ena_com_set_default_hash_ctrl(ena_dev);
675 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
676 		PMD_DRV_LOG(INFO, "Cannot fill hash control\n");
677 		goto err_fill_indir;
678 	}
679 
680 	rc = ena_com_indirect_table_set(ena_dev);
681 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
682 		PMD_DRV_LOG(ERR, "Cannot flush the indirect table\n");
683 		goto err_fill_indir;
684 	}
685 	PMD_DRV_LOG(DEBUG, "RSS configured for port %d\n",
686 		adapter->edev_data->port_id);
687 
688 	return 0;
689 
690 err_fill_indir:
691 	ena_com_rss_destroy(ena_dev);
692 err_rss_init:
693 
694 	return rc;
695 }
696 
697 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
698 {
699 	struct ena_ring **queues = (struct ena_ring **)dev->data->rx_queues;
700 	int nb_queues = dev->data->nb_rx_queues;
701 	int i;
702 
703 	for (i = 0; i < nb_queues; i++)
704 		ena_rx_queue_release(queues[i]);
705 }
706 
707 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
708 {
709 	struct ena_ring **queues = (struct ena_ring **)dev->data->tx_queues;
710 	int nb_queues = dev->data->nb_tx_queues;
711 	int i;
712 
713 	for (i = 0; i < nb_queues; i++)
714 		ena_tx_queue_release(queues[i]);
715 }
716 
717 static void ena_rx_queue_release(void *queue)
718 {
719 	struct ena_ring *ring = (struct ena_ring *)queue;
720 
721 	/* Free ring resources */
722 	if (ring->rx_buffer_info)
723 		rte_free(ring->rx_buffer_info);
724 	ring->rx_buffer_info = NULL;
725 
726 	if (ring->rx_refill_buffer)
727 		rte_free(ring->rx_refill_buffer);
728 	ring->rx_refill_buffer = NULL;
729 
730 	if (ring->empty_rx_reqs)
731 		rte_free(ring->empty_rx_reqs);
732 	ring->empty_rx_reqs = NULL;
733 
734 	ring->configured = 0;
735 
736 	PMD_DRV_LOG(NOTICE, "RX Queue %d:%d released\n",
737 		ring->port_id, ring->id);
738 }
739 
740 static void ena_tx_queue_release(void *queue)
741 {
742 	struct ena_ring *ring = (struct ena_ring *)queue;
743 
744 	/* Free ring resources */
745 	if (ring->push_buf_intermediate_buf)
746 		rte_free(ring->push_buf_intermediate_buf);
747 
748 	if (ring->tx_buffer_info)
749 		rte_free(ring->tx_buffer_info);
750 
751 	if (ring->empty_tx_reqs)
752 		rte_free(ring->empty_tx_reqs);
753 
754 	ring->empty_tx_reqs = NULL;
755 	ring->tx_buffer_info = NULL;
756 	ring->push_buf_intermediate_buf = NULL;
757 
758 	ring->configured = 0;
759 
760 	PMD_DRV_LOG(NOTICE, "TX Queue %d:%d released\n",
761 		ring->port_id, ring->id);
762 }
763 
764 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
765 {
766 	unsigned int i;
767 
768 	for (i = 0; i < ring->ring_size; ++i) {
769 		struct ena_rx_buffer *rx_info = &ring->rx_buffer_info[i];
770 		if (rx_info->mbuf) {
771 			rte_mbuf_raw_free(rx_info->mbuf);
772 			rx_info->mbuf = NULL;
773 		}
774 	}
775 }
776 
777 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
778 {
779 	unsigned int i;
780 
781 	for (i = 0; i < ring->ring_size; ++i) {
782 		struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
783 
784 		if (tx_buf->mbuf) {
785 			rte_pktmbuf_free(tx_buf->mbuf);
786 			tx_buf->mbuf = NULL;
787 		}
788 	}
789 }
790 
791 static int ena_link_update(struct rte_eth_dev *dev,
792 			   __rte_unused int wait_to_complete)
793 {
794 	struct rte_eth_link *link = &dev->data->dev_link;
795 	struct ena_adapter *adapter = dev->data->dev_private;
796 
797 	link->link_status = adapter->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
798 	link->link_speed = ETH_SPEED_NUM_NONE;
799 	link->link_duplex = ETH_LINK_FULL_DUPLEX;
800 
801 	return 0;
802 }
803 
804 static int ena_queue_start_all(struct rte_eth_dev *dev,
805 			       enum ena_ring_type ring_type)
806 {
807 	struct ena_adapter *adapter = dev->data->dev_private;
808 	struct ena_ring *queues = NULL;
809 	int nb_queues;
810 	int i = 0;
811 	int rc = 0;
812 
813 	if (ring_type == ENA_RING_TYPE_RX) {
814 		queues = adapter->rx_ring;
815 		nb_queues = dev->data->nb_rx_queues;
816 	} else {
817 		queues = adapter->tx_ring;
818 		nb_queues = dev->data->nb_tx_queues;
819 	}
820 	for (i = 0; i < nb_queues; i++) {
821 		if (queues[i].configured) {
822 			if (ring_type == ENA_RING_TYPE_RX) {
823 				ena_assert_msg(
824 					dev->data->rx_queues[i] == &queues[i],
825 					"Inconsistent state of rx queues\n");
826 			} else {
827 				ena_assert_msg(
828 					dev->data->tx_queues[i] == &queues[i],
829 					"Inconsistent state of tx queues\n");
830 			}
831 
832 			rc = ena_queue_start(&queues[i]);
833 
834 			if (rc) {
835 				PMD_INIT_LOG(ERR,
836 					     "failed to start queue %d type(%d)",
837 					     i, ring_type);
838 				goto err;
839 			}
840 		}
841 	}
842 
843 	return 0;
844 
845 err:
846 	while (i--)
847 		if (queues[i].configured)
848 			ena_queue_stop(&queues[i]);
849 
850 	return rc;
851 }
852 
853 static uint32_t ena_get_mtu_conf(struct ena_adapter *adapter)
854 {
855 	uint32_t max_frame_len = adapter->max_mtu;
856 
857 	if (adapter->edev_data->dev_conf.rxmode.offloads &
858 	    DEV_RX_OFFLOAD_JUMBO_FRAME)
859 		max_frame_len =
860 			adapter->edev_data->dev_conf.rxmode.max_rx_pkt_len;
861 
862 	return max_frame_len;
863 }
864 
865 static int ena_check_valid_conf(struct ena_adapter *adapter)
866 {
867 	uint32_t max_frame_len = ena_get_mtu_conf(adapter);
868 
869 	if (max_frame_len > adapter->max_mtu || max_frame_len < ENA_MIN_MTU) {
870 		PMD_INIT_LOG(ERR, "Unsupported MTU of %d. "
871 				  "max mtu: %d, min mtu: %d",
872 			     max_frame_len, adapter->max_mtu, ENA_MIN_MTU);
873 		return ENA_COM_UNSUPPORTED;
874 	}
875 
876 	return 0;
877 }
878 
879 static int
880 ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx,
881 		       bool use_large_llq_hdr)
882 {
883 	struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
884 	struct ena_com_dev *ena_dev = ctx->ena_dev;
885 	uint32_t max_tx_queue_size;
886 	uint32_t max_rx_queue_size;
887 
888 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
889 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
890 			&ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
891 		max_rx_queue_size = RTE_MIN(max_queue_ext->max_rx_cq_depth,
892 			max_queue_ext->max_rx_sq_depth);
893 		max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
894 
895 		if (ena_dev->tx_mem_queue_type ==
896 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
897 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
898 				llq->max_llq_depth);
899 		} else {
900 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
901 				max_queue_ext->max_tx_sq_depth);
902 		}
903 
904 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
905 			max_queue_ext->max_per_packet_rx_descs);
906 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
907 			max_queue_ext->max_per_packet_tx_descs);
908 	} else {
909 		struct ena_admin_queue_feature_desc *max_queues =
910 			&ctx->get_feat_ctx->max_queues;
911 		max_rx_queue_size = RTE_MIN(max_queues->max_cq_depth,
912 			max_queues->max_sq_depth);
913 		max_tx_queue_size = max_queues->max_cq_depth;
914 
915 		if (ena_dev->tx_mem_queue_type ==
916 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
917 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
918 				llq->max_llq_depth);
919 		} else {
920 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
921 				max_queues->max_sq_depth);
922 		}
923 
924 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
925 			max_queues->max_packet_rx_descs);
926 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
927 			max_queues->max_packet_tx_descs);
928 	}
929 
930 	/* Round down to the nearest power of 2 */
931 	max_rx_queue_size = rte_align32prevpow2(max_rx_queue_size);
932 	max_tx_queue_size = rte_align32prevpow2(max_tx_queue_size);
933 
934 	if (use_large_llq_hdr) {
935 		if ((llq->entry_size_ctrl_supported &
936 		     ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
937 		    (ena_dev->tx_mem_queue_type ==
938 		     ENA_ADMIN_PLACEMENT_POLICY_DEV)) {
939 			max_tx_queue_size /= 2;
940 			PMD_INIT_LOG(INFO,
941 				"Forcing large headers and decreasing maximum TX queue size to %d\n",
942 				max_tx_queue_size);
943 		} else {
944 			PMD_INIT_LOG(ERR,
945 				"Forcing large headers failed: LLQ is disabled or device does not support large headers\n");
946 		}
947 	}
948 
949 	if (unlikely(max_rx_queue_size == 0 || max_tx_queue_size == 0)) {
950 		PMD_INIT_LOG(ERR, "Invalid queue size");
951 		return -EFAULT;
952 	}
953 
954 	ctx->max_tx_queue_size = max_tx_queue_size;
955 	ctx->max_rx_queue_size = max_rx_queue_size;
956 
957 	return 0;
958 }
959 
960 static void ena_stats_restart(struct rte_eth_dev *dev)
961 {
962 	struct ena_adapter *adapter = dev->data->dev_private;
963 
964 	rte_atomic64_init(&adapter->drv_stats->ierrors);
965 	rte_atomic64_init(&adapter->drv_stats->oerrors);
966 	rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
967 	adapter->drv_stats->rx_drops = 0;
968 }
969 
970 static int ena_stats_get(struct rte_eth_dev *dev,
971 			  struct rte_eth_stats *stats)
972 {
973 	struct ena_admin_basic_stats ena_stats;
974 	struct ena_adapter *adapter = dev->data->dev_private;
975 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
976 	int rc;
977 	int i;
978 	int max_rings_stats;
979 
980 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
981 		return -ENOTSUP;
982 
983 	memset(&ena_stats, 0, sizeof(ena_stats));
984 
985 	rte_spinlock_lock(&adapter->admin_lock);
986 	rc = ena_com_get_dev_basic_stats(ena_dev, &ena_stats);
987 	rte_spinlock_unlock(&adapter->admin_lock);
988 	if (unlikely(rc)) {
989 		PMD_DRV_LOG(ERR, "Could not retrieve statistics from ENA\n");
990 		return rc;
991 	}
992 
993 	/* Set of basic statistics from ENA */
994 	stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
995 					  ena_stats.rx_pkts_low);
996 	stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
997 					  ena_stats.tx_pkts_low);
998 	stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
999 					ena_stats.rx_bytes_low);
1000 	stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
1001 					ena_stats.tx_bytes_low);
1002 
1003 	/* Driver related stats */
1004 	stats->imissed = adapter->drv_stats->rx_drops;
1005 	stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
1006 	stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
1007 	stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
1008 
1009 	max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
1010 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
1011 	for (i = 0; i < max_rings_stats; ++i) {
1012 		struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
1013 
1014 		stats->q_ibytes[i] = rx_stats->bytes;
1015 		stats->q_ipackets[i] = rx_stats->cnt;
1016 		stats->q_errors[i] = rx_stats->bad_desc_num +
1017 			rx_stats->bad_req_id;
1018 	}
1019 
1020 	max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
1021 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
1022 	for (i = 0; i < max_rings_stats; ++i) {
1023 		struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
1024 
1025 		stats->q_obytes[i] = tx_stats->bytes;
1026 		stats->q_opackets[i] = tx_stats->cnt;
1027 	}
1028 
1029 	return 0;
1030 }
1031 
1032 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1033 {
1034 	struct ena_adapter *adapter;
1035 	struct ena_com_dev *ena_dev;
1036 	int rc = 0;
1037 
1038 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
1039 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
1040 	adapter = dev->data->dev_private;
1041 
1042 	ena_dev = &adapter->ena_dev;
1043 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
1044 
1045 	if (mtu > ena_get_mtu_conf(adapter) || mtu < ENA_MIN_MTU) {
1046 		PMD_DRV_LOG(ERR,
1047 			"Invalid MTU setting. new_mtu: %d "
1048 			"max mtu: %d min mtu: %d\n",
1049 			mtu, ena_get_mtu_conf(adapter), ENA_MIN_MTU);
1050 		return -EINVAL;
1051 	}
1052 
1053 	rc = ena_com_set_dev_mtu(ena_dev, mtu);
1054 	if (rc)
1055 		PMD_DRV_LOG(ERR, "Could not set MTU: %d\n", mtu);
1056 	else
1057 		PMD_DRV_LOG(NOTICE, "Set MTU: %d\n", mtu);
1058 
1059 	return rc;
1060 }
1061 
1062 static int ena_start(struct rte_eth_dev *dev)
1063 {
1064 	struct ena_adapter *adapter = dev->data->dev_private;
1065 	uint64_t ticks;
1066 	int rc = 0;
1067 
1068 	/* Cannot allocate memory in secondary process */
1069 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1070 		PMD_DRV_LOG(WARNING, "dev_start not supported in secondary.\n");
1071 		return -EPERM;
1072 	}
1073 
1074 	rc = ena_check_valid_conf(adapter);
1075 	if (rc)
1076 		return rc;
1077 
1078 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
1079 	if (rc)
1080 		return rc;
1081 
1082 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
1083 	if (rc)
1084 		goto err_start_tx;
1085 
1086 	if (adapter->edev_data->dev_conf.rxmode.mq_mode &
1087 	    ETH_MQ_RX_RSS_FLAG && adapter->edev_data->nb_rx_queues > 0) {
1088 		rc = ena_rss_init_default(adapter);
1089 		if (rc)
1090 			goto err_rss_init;
1091 	}
1092 
1093 	ena_stats_restart(dev);
1094 
1095 	adapter->timestamp_wd = rte_get_timer_cycles();
1096 	adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
1097 
1098 	ticks = rte_get_timer_hz();
1099 	rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
1100 			ena_timer_wd_callback, dev);
1101 
1102 	++adapter->dev_stats.dev_start;
1103 	adapter->state = ENA_ADAPTER_STATE_RUNNING;
1104 
1105 	return 0;
1106 
1107 err_rss_init:
1108 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1109 err_start_tx:
1110 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1111 	return rc;
1112 }
1113 
1114 static int ena_stop(struct rte_eth_dev *dev)
1115 {
1116 	struct ena_adapter *adapter = dev->data->dev_private;
1117 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1118 	int rc;
1119 
1120 	/* Cannot free memory in secondary process */
1121 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1122 		PMD_DRV_LOG(WARNING, "dev_stop not supported in secondary.\n");
1123 		return -EPERM;
1124 	}
1125 
1126 	rte_timer_stop_sync(&adapter->timer_wd);
1127 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1128 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1129 
1130 	if (adapter->trigger_reset) {
1131 		rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
1132 		if (rc)
1133 			PMD_DRV_LOG(ERR, "Device reset failed rc=%d\n", rc);
1134 	}
1135 
1136 	++adapter->dev_stats.dev_stop;
1137 	adapter->state = ENA_ADAPTER_STATE_STOPPED;
1138 	dev->data->dev_started = 0;
1139 
1140 	return 0;
1141 }
1142 
1143 static int ena_create_io_queue(struct ena_ring *ring)
1144 {
1145 	struct ena_adapter *adapter;
1146 	struct ena_com_dev *ena_dev;
1147 	struct ena_com_create_io_ctx ctx =
1148 		/* policy set to _HOST just to satisfy icc compiler */
1149 		{ ENA_ADMIN_PLACEMENT_POLICY_HOST,
1150 		  0, 0, 0, 0, 0 };
1151 	uint16_t ena_qid;
1152 	unsigned int i;
1153 	int rc;
1154 
1155 	adapter = ring->adapter;
1156 	ena_dev = &adapter->ena_dev;
1157 
1158 	if (ring->type == ENA_RING_TYPE_TX) {
1159 		ena_qid = ENA_IO_TXQ_IDX(ring->id);
1160 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1161 		ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1162 		for (i = 0; i < ring->ring_size; i++)
1163 			ring->empty_tx_reqs[i] = i;
1164 	} else {
1165 		ena_qid = ENA_IO_RXQ_IDX(ring->id);
1166 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1167 		for (i = 0; i < ring->ring_size; i++)
1168 			ring->empty_rx_reqs[i] = i;
1169 	}
1170 	ctx.queue_size = ring->ring_size;
1171 	ctx.qid = ena_qid;
1172 	ctx.msix_vector = -1; /* interrupts not used */
1173 	ctx.numa_node = ring->numa_socket_id;
1174 
1175 	rc = ena_com_create_io_queue(ena_dev, &ctx);
1176 	if (rc) {
1177 		PMD_DRV_LOG(ERR,
1178 			"failed to create io queue #%d (qid:%d) rc: %d\n",
1179 			ring->id, ena_qid, rc);
1180 		return rc;
1181 	}
1182 
1183 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1184 				     &ring->ena_com_io_sq,
1185 				     &ring->ena_com_io_cq);
1186 	if (rc) {
1187 		PMD_DRV_LOG(ERR,
1188 			"Failed to get io queue handlers. queue num %d rc: %d\n",
1189 			ring->id, rc);
1190 		ena_com_destroy_io_queue(ena_dev, ena_qid);
1191 		return rc;
1192 	}
1193 
1194 	if (ring->type == ENA_RING_TYPE_TX)
1195 		ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1196 
1197 	return 0;
1198 }
1199 
1200 static void ena_queue_stop(struct ena_ring *ring)
1201 {
1202 	struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
1203 
1204 	if (ring->type == ENA_RING_TYPE_RX) {
1205 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
1206 		ena_rx_queue_release_bufs(ring);
1207 	} else {
1208 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
1209 		ena_tx_queue_release_bufs(ring);
1210 	}
1211 }
1212 
1213 static void ena_queue_stop_all(struct rte_eth_dev *dev,
1214 			      enum ena_ring_type ring_type)
1215 {
1216 	struct ena_adapter *adapter = dev->data->dev_private;
1217 	struct ena_ring *queues = NULL;
1218 	uint16_t nb_queues, i;
1219 
1220 	if (ring_type == ENA_RING_TYPE_RX) {
1221 		queues = adapter->rx_ring;
1222 		nb_queues = dev->data->nb_rx_queues;
1223 	} else {
1224 		queues = adapter->tx_ring;
1225 		nb_queues = dev->data->nb_tx_queues;
1226 	}
1227 
1228 	for (i = 0; i < nb_queues; ++i)
1229 		if (queues[i].configured)
1230 			ena_queue_stop(&queues[i]);
1231 }
1232 
1233 static int ena_queue_start(struct ena_ring *ring)
1234 {
1235 	int rc, bufs_num;
1236 
1237 	ena_assert_msg(ring->configured == 1,
1238 		       "Trying to start unconfigured queue\n");
1239 
1240 	rc = ena_create_io_queue(ring);
1241 	if (rc) {
1242 		PMD_INIT_LOG(ERR, "Failed to create IO queue!");
1243 		return rc;
1244 	}
1245 
1246 	ring->next_to_clean = 0;
1247 	ring->next_to_use = 0;
1248 
1249 	if (ring->type == ENA_RING_TYPE_TX) {
1250 		ring->tx_stats.available_desc =
1251 			ena_com_free_q_entries(ring->ena_com_io_sq);
1252 		return 0;
1253 	}
1254 
1255 	bufs_num = ring->ring_size - 1;
1256 	rc = ena_populate_rx_queue(ring, bufs_num);
1257 	if (rc != bufs_num) {
1258 		ena_com_destroy_io_queue(&ring->adapter->ena_dev,
1259 					 ENA_IO_RXQ_IDX(ring->id));
1260 		PMD_INIT_LOG(ERR, "Failed to populate rx ring !");
1261 		return ENA_COM_FAULT;
1262 	}
1263 	/* Flush per-core RX buffers pools cache as they can be used on other
1264 	 * cores as well.
1265 	 */
1266 	rte_mempool_cache_flush(NULL, ring->mb_pool);
1267 
1268 	return 0;
1269 }
1270 
1271 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1272 			      uint16_t queue_idx,
1273 			      uint16_t nb_desc,
1274 			      unsigned int socket_id,
1275 			      const struct rte_eth_txconf *tx_conf)
1276 {
1277 	struct ena_ring *txq = NULL;
1278 	struct ena_adapter *adapter = dev->data->dev_private;
1279 	unsigned int i;
1280 
1281 	txq = &adapter->tx_ring[queue_idx];
1282 
1283 	if (txq->configured) {
1284 		PMD_DRV_LOG(CRIT,
1285 			"API violation. Queue %d is already configured\n",
1286 			queue_idx);
1287 		return ENA_COM_FAULT;
1288 	}
1289 
1290 	if (!rte_is_power_of_2(nb_desc)) {
1291 		PMD_DRV_LOG(ERR,
1292 			"Unsupported size of TX queue: %d is not a power of 2.\n",
1293 			nb_desc);
1294 		return -EINVAL;
1295 	}
1296 
1297 	if (nb_desc > adapter->max_tx_ring_size) {
1298 		PMD_DRV_LOG(ERR,
1299 			"Unsupported size of TX queue (max size: %d)\n",
1300 			adapter->max_tx_ring_size);
1301 		return -EINVAL;
1302 	}
1303 
1304 	txq->port_id = dev->data->port_id;
1305 	txq->next_to_clean = 0;
1306 	txq->next_to_use = 0;
1307 	txq->ring_size = nb_desc;
1308 	txq->size_mask = nb_desc - 1;
1309 	txq->numa_socket_id = socket_id;
1310 	txq->pkts_without_db = false;
1311 
1312 	txq->tx_buffer_info = rte_zmalloc("txq->tx_buffer_info",
1313 					  sizeof(struct ena_tx_buffer) *
1314 					  txq->ring_size,
1315 					  RTE_CACHE_LINE_SIZE);
1316 	if (!txq->tx_buffer_info) {
1317 		PMD_DRV_LOG(ERR, "failed to alloc mem for tx buffer info\n");
1318 		return -ENOMEM;
1319 	}
1320 
1321 	txq->empty_tx_reqs = rte_zmalloc("txq->empty_tx_reqs",
1322 					 sizeof(u16) * txq->ring_size,
1323 					 RTE_CACHE_LINE_SIZE);
1324 	if (!txq->empty_tx_reqs) {
1325 		PMD_DRV_LOG(ERR, "failed to alloc mem for tx reqs\n");
1326 		rte_free(txq->tx_buffer_info);
1327 		return -ENOMEM;
1328 	}
1329 
1330 	txq->push_buf_intermediate_buf =
1331 		rte_zmalloc("txq->push_buf_intermediate_buf",
1332 			    txq->tx_max_header_size,
1333 			    RTE_CACHE_LINE_SIZE);
1334 	if (!txq->push_buf_intermediate_buf) {
1335 		PMD_DRV_LOG(ERR, "failed to alloc push buff for LLQ\n");
1336 		rte_free(txq->tx_buffer_info);
1337 		rte_free(txq->empty_tx_reqs);
1338 		return -ENOMEM;
1339 	}
1340 
1341 	for (i = 0; i < txq->ring_size; i++)
1342 		txq->empty_tx_reqs[i] = i;
1343 
1344 	if (tx_conf != NULL) {
1345 		txq->offloads =
1346 			tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1347 	}
1348 	/* Store pointer to this queue in upper layer */
1349 	txq->configured = 1;
1350 	dev->data->tx_queues[queue_idx] = txq;
1351 
1352 	return 0;
1353 }
1354 
1355 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1356 			      uint16_t queue_idx,
1357 			      uint16_t nb_desc,
1358 			      unsigned int socket_id,
1359 			      __rte_unused const struct rte_eth_rxconf *rx_conf,
1360 			      struct rte_mempool *mp)
1361 {
1362 	struct ena_adapter *adapter = dev->data->dev_private;
1363 	struct ena_ring *rxq = NULL;
1364 	size_t buffer_size;
1365 	int i;
1366 
1367 	rxq = &adapter->rx_ring[queue_idx];
1368 	if (rxq->configured) {
1369 		PMD_DRV_LOG(CRIT,
1370 			"API violation. Queue %d is already configured\n",
1371 			queue_idx);
1372 		return ENA_COM_FAULT;
1373 	}
1374 
1375 	if (!rte_is_power_of_2(nb_desc)) {
1376 		PMD_DRV_LOG(ERR,
1377 			"Unsupported size of RX queue: %d is not a power of 2.\n",
1378 			nb_desc);
1379 		return -EINVAL;
1380 	}
1381 
1382 	if (nb_desc > adapter->max_rx_ring_size) {
1383 		PMD_DRV_LOG(ERR,
1384 			"Unsupported size of RX queue (max size: %d)\n",
1385 			adapter->max_rx_ring_size);
1386 		return -EINVAL;
1387 	}
1388 
1389 	/* ENA isn't supporting buffers smaller than 1400 bytes */
1390 	buffer_size = rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
1391 	if (buffer_size < ENA_RX_BUF_MIN_SIZE) {
1392 		PMD_DRV_LOG(ERR,
1393 			"Unsupported size of RX buffer: %zu (min size: %d)\n",
1394 			buffer_size, ENA_RX_BUF_MIN_SIZE);
1395 		return -EINVAL;
1396 	}
1397 
1398 	rxq->port_id = dev->data->port_id;
1399 	rxq->next_to_clean = 0;
1400 	rxq->next_to_use = 0;
1401 	rxq->ring_size = nb_desc;
1402 	rxq->size_mask = nb_desc - 1;
1403 	rxq->numa_socket_id = socket_id;
1404 	rxq->mb_pool = mp;
1405 
1406 	rxq->rx_buffer_info = rte_zmalloc("rxq->buffer_info",
1407 		sizeof(struct ena_rx_buffer) * nb_desc,
1408 		RTE_CACHE_LINE_SIZE);
1409 	if (!rxq->rx_buffer_info) {
1410 		PMD_DRV_LOG(ERR, "failed to alloc mem for rx buffer info\n");
1411 		return -ENOMEM;
1412 	}
1413 
1414 	rxq->rx_refill_buffer = rte_zmalloc("rxq->rx_refill_buffer",
1415 					    sizeof(struct rte_mbuf *) * nb_desc,
1416 					    RTE_CACHE_LINE_SIZE);
1417 
1418 	if (!rxq->rx_refill_buffer) {
1419 		PMD_DRV_LOG(ERR, "failed to alloc mem for rx refill buffer\n");
1420 		rte_free(rxq->rx_buffer_info);
1421 		rxq->rx_buffer_info = NULL;
1422 		return -ENOMEM;
1423 	}
1424 
1425 	rxq->empty_rx_reqs = rte_zmalloc("rxq->empty_rx_reqs",
1426 					 sizeof(uint16_t) * nb_desc,
1427 					 RTE_CACHE_LINE_SIZE);
1428 	if (!rxq->empty_rx_reqs) {
1429 		PMD_DRV_LOG(ERR, "failed to alloc mem for empty rx reqs\n");
1430 		rte_free(rxq->rx_buffer_info);
1431 		rxq->rx_buffer_info = NULL;
1432 		rte_free(rxq->rx_refill_buffer);
1433 		rxq->rx_refill_buffer = NULL;
1434 		return -ENOMEM;
1435 	}
1436 
1437 	for (i = 0; i < nb_desc; i++)
1438 		rxq->empty_rx_reqs[i] = i;
1439 
1440 	/* Store pointer to this queue in upper layer */
1441 	rxq->configured = 1;
1442 	dev->data->rx_queues[queue_idx] = rxq;
1443 
1444 	return 0;
1445 }
1446 
1447 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
1448 				  struct rte_mbuf *mbuf, uint16_t id)
1449 {
1450 	struct ena_com_buf ebuf;
1451 	int rc;
1452 
1453 	/* prepare physical address for DMA transaction */
1454 	ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1455 	ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1456 
1457 	/* pass resource to device */
1458 	rc = ena_com_add_single_rx_desc(io_sq, &ebuf, id);
1459 	if (unlikely(rc != 0))
1460 		PMD_DRV_LOG(WARNING, "failed adding rx desc\n");
1461 
1462 	return rc;
1463 }
1464 
1465 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1466 {
1467 	unsigned int i;
1468 	int rc;
1469 	uint16_t next_to_use = rxq->next_to_use;
1470 	uint16_t in_use, req_id;
1471 	struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1472 
1473 	if (unlikely(!count))
1474 		return 0;
1475 
1476 	in_use = rxq->ring_size - 1 -
1477 		ena_com_free_q_entries(rxq->ena_com_io_sq);
1478 	ena_assert_msg(((in_use + count) < rxq->ring_size),
1479 		"bad ring state\n");
1480 
1481 	/* get resources for incoming packets */
1482 	rc = rte_pktmbuf_alloc_bulk(rxq->mb_pool, mbufs, count);
1483 	if (unlikely(rc < 0)) {
1484 		rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1485 		++rxq->rx_stats.mbuf_alloc_fail;
1486 		PMD_RX_LOG(DEBUG, "there are no enough free buffers");
1487 		return 0;
1488 	}
1489 
1490 	for (i = 0; i < count; i++) {
1491 		struct rte_mbuf *mbuf = mbufs[i];
1492 		struct ena_rx_buffer *rx_info;
1493 
1494 		if (likely((i + 4) < count))
1495 			rte_prefetch0(mbufs[i + 4]);
1496 
1497 		req_id = rxq->empty_rx_reqs[next_to_use];
1498 		rx_info = &rxq->rx_buffer_info[req_id];
1499 
1500 		rc = ena_add_single_rx_desc(rxq->ena_com_io_sq, mbuf, req_id);
1501 		if (unlikely(rc != 0))
1502 			break;
1503 
1504 		rx_info->mbuf = mbuf;
1505 		next_to_use = ENA_IDX_NEXT_MASKED(next_to_use, rxq->size_mask);
1506 	}
1507 
1508 	if (unlikely(i < count)) {
1509 		PMD_DRV_LOG(WARNING, "refilled rx qid %d with only %d "
1510 			"buffers (from %d)\n", rxq->id, i, count);
1511 		rte_pktmbuf_free_bulk(&mbufs[i], count - i);
1512 		++rxq->rx_stats.refill_partial;
1513 	}
1514 
1515 	/* When we submitted free recources to device... */
1516 	if (likely(i > 0)) {
1517 		/* ...let HW know that it can fill buffers with data. */
1518 		ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1519 
1520 		rxq->next_to_use = next_to_use;
1521 	}
1522 
1523 	return i;
1524 }
1525 
1526 static int ena_device_init(struct ena_com_dev *ena_dev,
1527 			   struct rte_pci_device *pdev,
1528 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
1529 			   bool *wd_state)
1530 {
1531 	uint32_t aenq_groups;
1532 	int rc;
1533 	bool readless_supported;
1534 
1535 	/* Initialize mmio registers */
1536 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
1537 	if (rc) {
1538 		PMD_DRV_LOG(ERR, "failed to init mmio read less\n");
1539 		return rc;
1540 	}
1541 
1542 	/* The PCIe configuration space revision id indicate if mmio reg
1543 	 * read is disabled.
1544 	 */
1545 	readless_supported = !(pdev->id.class_id & ENA_MMIO_DISABLE_REG_READ);
1546 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1547 
1548 	/* reset device */
1549 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1550 	if (rc) {
1551 		PMD_DRV_LOG(ERR, "cannot reset device\n");
1552 		goto err_mmio_read_less;
1553 	}
1554 
1555 	/* check FW version */
1556 	rc = ena_com_validate_version(ena_dev);
1557 	if (rc) {
1558 		PMD_DRV_LOG(ERR, "device version is too low\n");
1559 		goto err_mmio_read_less;
1560 	}
1561 
1562 	ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1563 
1564 	/* ENA device administration layer init */
1565 	rc = ena_com_admin_init(ena_dev, &aenq_handlers);
1566 	if (rc) {
1567 		PMD_DRV_LOG(ERR,
1568 			"cannot initialize ena admin queue with device\n");
1569 		goto err_mmio_read_less;
1570 	}
1571 
1572 	/* To enable the msix interrupts the driver needs to know the number
1573 	 * of queues. So the driver uses polling mode to retrieve this
1574 	 * information.
1575 	 */
1576 	ena_com_set_admin_polling_mode(ena_dev, true);
1577 
1578 	ena_config_host_info(ena_dev);
1579 
1580 	/* Get Device Attributes and features */
1581 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1582 	if (rc) {
1583 		PMD_DRV_LOG(ERR,
1584 			"cannot get attribute for ena device rc= %d\n", rc);
1585 		goto err_admin_init;
1586 	}
1587 
1588 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1589 		      BIT(ENA_ADMIN_NOTIFICATION) |
1590 		      BIT(ENA_ADMIN_KEEP_ALIVE) |
1591 		      BIT(ENA_ADMIN_FATAL_ERROR) |
1592 		      BIT(ENA_ADMIN_WARNING);
1593 
1594 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
1595 	rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
1596 	if (rc) {
1597 		PMD_DRV_LOG(ERR, "Cannot configure aenq groups rc: %d\n", rc);
1598 		goto err_admin_init;
1599 	}
1600 
1601 	*wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
1602 
1603 	return 0;
1604 
1605 err_admin_init:
1606 	ena_com_admin_destroy(ena_dev);
1607 
1608 err_mmio_read_less:
1609 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1610 
1611 	return rc;
1612 }
1613 
1614 static void ena_interrupt_handler_rte(void *cb_arg)
1615 {
1616 	struct rte_eth_dev *dev = cb_arg;
1617 	struct ena_adapter *adapter = dev->data->dev_private;
1618 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1619 
1620 	ena_com_admin_q_comp_intr_handler(ena_dev);
1621 	if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED))
1622 		ena_com_aenq_intr_handler(ena_dev, dev);
1623 }
1624 
1625 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1626 {
1627 	if (!adapter->wd_state)
1628 		return;
1629 
1630 	if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1631 		return;
1632 
1633 	if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1634 	    adapter->keep_alive_timeout)) {
1635 		PMD_DRV_LOG(ERR, "Keep alive timeout\n");
1636 		adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
1637 		adapter->trigger_reset = true;
1638 		++adapter->dev_stats.wd_expired;
1639 	}
1640 }
1641 
1642 /* Check if admin queue is enabled */
1643 static void check_for_admin_com_state(struct ena_adapter *adapter)
1644 {
1645 	if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1646 		PMD_DRV_LOG(ERR, "ENA admin queue is not in running state!\n");
1647 		adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
1648 		adapter->trigger_reset = true;
1649 	}
1650 }
1651 
1652 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
1653 				  void *arg)
1654 {
1655 	struct rte_eth_dev *dev = arg;
1656 	struct ena_adapter *adapter = dev->data->dev_private;
1657 
1658 	check_for_missing_keep_alive(adapter);
1659 	check_for_admin_com_state(adapter);
1660 
1661 	if (unlikely(adapter->trigger_reset)) {
1662 		PMD_DRV_LOG(ERR, "Trigger reset is on\n");
1663 		rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
1664 			NULL);
1665 	}
1666 }
1667 
1668 static inline void
1669 set_default_llq_configurations(struct ena_llq_configurations *llq_config,
1670 			       struct ena_admin_feature_llq_desc *llq,
1671 			       bool use_large_llq_hdr)
1672 {
1673 	llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
1674 	llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
1675 	llq_config->llq_num_decs_before_header =
1676 		ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
1677 
1678 	if (use_large_llq_hdr &&
1679 	    (llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B)) {
1680 		llq_config->llq_ring_entry_size =
1681 			ENA_ADMIN_LIST_ENTRY_SIZE_256B;
1682 		llq_config->llq_ring_entry_size_value = 256;
1683 	} else {
1684 		llq_config->llq_ring_entry_size =
1685 			ENA_ADMIN_LIST_ENTRY_SIZE_128B;
1686 		llq_config->llq_ring_entry_size_value = 128;
1687 	}
1688 }
1689 
1690 static int
1691 ena_set_queues_placement_policy(struct ena_adapter *adapter,
1692 				struct ena_com_dev *ena_dev,
1693 				struct ena_admin_feature_llq_desc *llq,
1694 				struct ena_llq_configurations *llq_default_configurations)
1695 {
1696 	int rc;
1697 	u32 llq_feature_mask;
1698 
1699 	llq_feature_mask = 1 << ENA_ADMIN_LLQ;
1700 	if (!(ena_dev->supported_features & llq_feature_mask)) {
1701 		PMD_DRV_LOG(INFO,
1702 			"LLQ is not supported. Fallback to host mode policy.\n");
1703 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1704 		return 0;
1705 	}
1706 
1707 	rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
1708 	if (unlikely(rc)) {
1709 		PMD_INIT_LOG(WARNING, "Failed to config dev mode. "
1710 			"Fallback to host mode policy.");
1711 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1712 		return 0;
1713 	}
1714 
1715 	/* Nothing to config, exit */
1716 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1717 		return 0;
1718 
1719 	if (!adapter->dev_mem_base) {
1720 		PMD_DRV_LOG(ERR, "Unable to access LLQ bar resource. "
1721 			"Fallback to host mode policy.\n.");
1722 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1723 		return 0;
1724 	}
1725 
1726 	ena_dev->mem_bar = adapter->dev_mem_base;
1727 
1728 	return 0;
1729 }
1730 
1731 static uint32_t ena_calc_max_io_queue_num(struct ena_com_dev *ena_dev,
1732 	struct ena_com_dev_get_features_ctx *get_feat_ctx)
1733 {
1734 	uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
1735 
1736 	/* Regular queues capabilities */
1737 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1738 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1739 			&get_feat_ctx->max_queue_ext.max_queue_ext;
1740 		io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
1741 				    max_queue_ext->max_rx_cq_num);
1742 		io_tx_sq_num = max_queue_ext->max_tx_sq_num;
1743 		io_tx_cq_num = max_queue_ext->max_tx_cq_num;
1744 	} else {
1745 		struct ena_admin_queue_feature_desc *max_queues =
1746 			&get_feat_ctx->max_queues;
1747 		io_tx_sq_num = max_queues->max_sq_num;
1748 		io_tx_cq_num = max_queues->max_cq_num;
1749 		io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
1750 	}
1751 
1752 	/* In case of LLQ use the llq number in the get feature cmd */
1753 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
1754 		io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
1755 
1756 	max_num_io_queues = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
1757 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_sq_num);
1758 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_cq_num);
1759 
1760 	if (unlikely(max_num_io_queues == 0)) {
1761 		PMD_DRV_LOG(ERR, "Number of IO queues should not be 0\n");
1762 		return -EFAULT;
1763 	}
1764 
1765 	return max_num_io_queues;
1766 }
1767 
1768 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
1769 {
1770 	struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
1771 	struct rte_pci_device *pci_dev;
1772 	struct rte_intr_handle *intr_handle;
1773 	struct ena_adapter *adapter = eth_dev->data->dev_private;
1774 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1775 	struct ena_com_dev_get_features_ctx get_feat_ctx;
1776 	struct ena_llq_configurations llq_config;
1777 	const char *queue_type_str;
1778 	uint32_t max_num_io_queues;
1779 	int rc;
1780 	static int adapters_found;
1781 	bool disable_meta_caching;
1782 	bool wd_state = false;
1783 
1784 	eth_dev->dev_ops = &ena_dev_ops;
1785 	eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
1786 	eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
1787 	eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
1788 
1789 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1790 		return 0;
1791 
1792 	eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
1793 
1794 	memset(adapter, 0, sizeof(struct ena_adapter));
1795 	ena_dev = &adapter->ena_dev;
1796 
1797 	adapter->edev_data = eth_dev->data;
1798 
1799 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1800 
1801 	PMD_INIT_LOG(INFO, "Initializing %x:%x:%x.%d",
1802 		     pci_dev->addr.domain,
1803 		     pci_dev->addr.bus,
1804 		     pci_dev->addr.devid,
1805 		     pci_dev->addr.function);
1806 
1807 	intr_handle = &pci_dev->intr_handle;
1808 
1809 	adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
1810 	adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
1811 
1812 	if (!adapter->regs) {
1813 		PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)",
1814 			     ENA_REGS_BAR);
1815 		return -ENXIO;
1816 	}
1817 
1818 	ena_dev->reg_bar = adapter->regs;
1819 	/* This is a dummy pointer for ena_com functions. */
1820 	ena_dev->dmadev = adapter;
1821 
1822 	adapter->id_number = adapters_found;
1823 
1824 	snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
1825 		 adapter->id_number);
1826 
1827 	rc = ena_parse_devargs(adapter, pci_dev->device.devargs);
1828 	if (rc != 0) {
1829 		PMD_INIT_LOG(CRIT, "Failed to parse devargs\n");
1830 		goto err;
1831 	}
1832 
1833 	/* device specific initialization routine */
1834 	rc = ena_device_init(ena_dev, pci_dev, &get_feat_ctx, &wd_state);
1835 	if (rc) {
1836 		PMD_INIT_LOG(CRIT, "Failed to init ENA device");
1837 		goto err;
1838 	}
1839 	adapter->wd_state = wd_state;
1840 
1841 	set_default_llq_configurations(&llq_config, &get_feat_ctx.llq,
1842 		adapter->use_large_llq_hdr);
1843 	rc = ena_set_queues_placement_policy(adapter, ena_dev,
1844 					     &get_feat_ctx.llq, &llq_config);
1845 	if (unlikely(rc)) {
1846 		PMD_INIT_LOG(CRIT, "Failed to set placement policy");
1847 		return rc;
1848 	}
1849 
1850 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1851 		queue_type_str = "Regular";
1852 	else
1853 		queue_type_str = "Low latency";
1854 	PMD_DRV_LOG(INFO, "Placement policy: %s\n", queue_type_str);
1855 
1856 	calc_queue_ctx.ena_dev = ena_dev;
1857 	calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
1858 
1859 	max_num_io_queues = ena_calc_max_io_queue_num(ena_dev, &get_feat_ctx);
1860 	rc = ena_calc_io_queue_size(&calc_queue_ctx,
1861 		adapter->use_large_llq_hdr);
1862 	if (unlikely((rc != 0) || (max_num_io_queues == 0))) {
1863 		rc = -EFAULT;
1864 		goto err_device_destroy;
1865 	}
1866 
1867 	adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
1868 	adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
1869 	adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
1870 	adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
1871 	adapter->max_num_io_queues = max_num_io_queues;
1872 
1873 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1874 		disable_meta_caching =
1875 			!!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
1876 			BIT(ENA_ADMIN_DISABLE_META_CACHING));
1877 	} else {
1878 		disable_meta_caching = false;
1879 	}
1880 
1881 	/* prepare ring structures */
1882 	ena_init_rings(adapter, disable_meta_caching);
1883 
1884 	ena_config_debug_area(adapter);
1885 
1886 	/* Set max MTU for this device */
1887 	adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
1888 
1889 	/* set device support for offloads */
1890 	adapter->offloads.tso4_supported = (get_feat_ctx.offload.tx &
1891 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) != 0;
1892 	adapter->offloads.tx_csum_supported = (get_feat_ctx.offload.tx &
1893 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK) != 0;
1894 	adapter->offloads.rx_csum_supported =
1895 		(get_feat_ctx.offload.rx_supported &
1896 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK) != 0;
1897 
1898 	/* Copy MAC address and point DPDK to it */
1899 	eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr;
1900 	rte_ether_addr_copy((struct rte_ether_addr *)
1901 			get_feat_ctx.dev_attr.mac_addr,
1902 			(struct rte_ether_addr *)adapter->mac_addr);
1903 
1904 	adapter->drv_stats = rte_zmalloc("adapter stats",
1905 					 sizeof(*adapter->drv_stats),
1906 					 RTE_CACHE_LINE_SIZE);
1907 	if (!adapter->drv_stats) {
1908 		PMD_DRV_LOG(ERR, "failed to alloc mem for adapter stats\n");
1909 		rc = -ENOMEM;
1910 		goto err_delete_debug_area;
1911 	}
1912 
1913 	rte_spinlock_init(&adapter->admin_lock);
1914 
1915 	rte_intr_callback_register(intr_handle,
1916 				   ena_interrupt_handler_rte,
1917 				   eth_dev);
1918 	rte_intr_enable(intr_handle);
1919 	ena_com_set_admin_polling_mode(ena_dev, false);
1920 	ena_com_admin_aenq_enable(ena_dev);
1921 
1922 	if (adapters_found == 0)
1923 		rte_timer_subsystem_init();
1924 	rte_timer_init(&adapter->timer_wd);
1925 
1926 	adapters_found++;
1927 	adapter->state = ENA_ADAPTER_STATE_INIT;
1928 
1929 	return 0;
1930 
1931 err_delete_debug_area:
1932 	ena_com_delete_debug_area(ena_dev);
1933 
1934 err_device_destroy:
1935 	ena_com_delete_host_info(ena_dev);
1936 	ena_com_admin_destroy(ena_dev);
1937 
1938 err:
1939 	return rc;
1940 }
1941 
1942 static void ena_destroy_device(struct rte_eth_dev *eth_dev)
1943 {
1944 	struct ena_adapter *adapter = eth_dev->data->dev_private;
1945 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1946 
1947 	if (adapter->state == ENA_ADAPTER_STATE_FREE)
1948 		return;
1949 
1950 	ena_com_set_admin_running_state(ena_dev, false);
1951 
1952 	if (adapter->state != ENA_ADAPTER_STATE_CLOSED)
1953 		ena_close(eth_dev);
1954 
1955 	ena_com_delete_debug_area(ena_dev);
1956 	ena_com_delete_host_info(ena_dev);
1957 
1958 	ena_com_abort_admin_commands(ena_dev);
1959 	ena_com_wait_for_abort_completion(ena_dev);
1960 	ena_com_admin_destroy(ena_dev);
1961 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1962 
1963 	adapter->state = ENA_ADAPTER_STATE_FREE;
1964 }
1965 
1966 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
1967 {
1968 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1969 		return 0;
1970 
1971 	ena_destroy_device(eth_dev);
1972 
1973 	return 0;
1974 }
1975 
1976 static int ena_dev_configure(struct rte_eth_dev *dev)
1977 {
1978 	struct ena_adapter *adapter = dev->data->dev_private;
1979 
1980 	adapter->state = ENA_ADAPTER_STATE_CONFIG;
1981 
1982 	if (dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG)
1983 		dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
1984 
1985 	adapter->tx_selected_offloads = dev->data->dev_conf.txmode.offloads;
1986 	adapter->rx_selected_offloads = dev->data->dev_conf.rxmode.offloads;
1987 	return 0;
1988 }
1989 
1990 static void ena_init_rings(struct ena_adapter *adapter,
1991 			   bool disable_meta_caching)
1992 {
1993 	size_t i;
1994 
1995 	for (i = 0; i < adapter->max_num_io_queues; i++) {
1996 		struct ena_ring *ring = &adapter->tx_ring[i];
1997 
1998 		ring->configured = 0;
1999 		ring->type = ENA_RING_TYPE_TX;
2000 		ring->adapter = adapter;
2001 		ring->id = i;
2002 		ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
2003 		ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
2004 		ring->sgl_size = adapter->max_tx_sgl_size;
2005 		ring->disable_meta_caching = disable_meta_caching;
2006 	}
2007 
2008 	for (i = 0; i < adapter->max_num_io_queues; i++) {
2009 		struct ena_ring *ring = &adapter->rx_ring[i];
2010 
2011 		ring->configured = 0;
2012 		ring->type = ENA_RING_TYPE_RX;
2013 		ring->adapter = adapter;
2014 		ring->id = i;
2015 		ring->sgl_size = adapter->max_rx_sgl_size;
2016 	}
2017 }
2018 
2019 static int ena_infos_get(struct rte_eth_dev *dev,
2020 			  struct rte_eth_dev_info *dev_info)
2021 {
2022 	struct ena_adapter *adapter;
2023 	struct ena_com_dev *ena_dev;
2024 	uint64_t rx_feat = 0, tx_feat = 0;
2025 
2026 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
2027 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
2028 	adapter = dev->data->dev_private;
2029 
2030 	ena_dev = &adapter->ena_dev;
2031 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
2032 
2033 	dev_info->speed_capa =
2034 			ETH_LINK_SPEED_1G   |
2035 			ETH_LINK_SPEED_2_5G |
2036 			ETH_LINK_SPEED_5G   |
2037 			ETH_LINK_SPEED_10G  |
2038 			ETH_LINK_SPEED_25G  |
2039 			ETH_LINK_SPEED_40G  |
2040 			ETH_LINK_SPEED_50G  |
2041 			ETH_LINK_SPEED_100G;
2042 
2043 	/* Set Tx & Rx features available for device */
2044 	if (adapter->offloads.tso4_supported)
2045 		tx_feat	|= DEV_TX_OFFLOAD_TCP_TSO;
2046 
2047 	if (adapter->offloads.tx_csum_supported)
2048 		tx_feat |= DEV_TX_OFFLOAD_IPV4_CKSUM |
2049 			DEV_TX_OFFLOAD_UDP_CKSUM |
2050 			DEV_TX_OFFLOAD_TCP_CKSUM;
2051 
2052 	if (adapter->offloads.rx_csum_supported)
2053 		rx_feat |= DEV_RX_OFFLOAD_IPV4_CKSUM |
2054 			DEV_RX_OFFLOAD_UDP_CKSUM  |
2055 			DEV_RX_OFFLOAD_TCP_CKSUM;
2056 
2057 	rx_feat |= DEV_RX_OFFLOAD_JUMBO_FRAME;
2058 
2059 	/* Inform framework about available features */
2060 	dev_info->rx_offload_capa = rx_feat;
2061 	dev_info->rx_offload_capa |= DEV_RX_OFFLOAD_RSS_HASH;
2062 	dev_info->rx_queue_offload_capa = rx_feat;
2063 	dev_info->tx_offload_capa = tx_feat;
2064 	dev_info->tx_queue_offload_capa = tx_feat;
2065 
2066 	dev_info->flow_type_rss_offloads = ETH_RSS_IP | ETH_RSS_TCP |
2067 					   ETH_RSS_UDP;
2068 
2069 	dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
2070 	dev_info->max_rx_pktlen  = adapter->max_mtu;
2071 	dev_info->max_mac_addrs = 1;
2072 
2073 	dev_info->max_rx_queues = adapter->max_num_io_queues;
2074 	dev_info->max_tx_queues = adapter->max_num_io_queues;
2075 	dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
2076 
2077 	adapter->tx_supported_offloads = tx_feat;
2078 	adapter->rx_supported_offloads = rx_feat;
2079 
2080 	dev_info->rx_desc_lim.nb_max = adapter->max_rx_ring_size;
2081 	dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2082 	dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2083 					adapter->max_rx_sgl_size);
2084 	dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2085 					adapter->max_rx_sgl_size);
2086 
2087 	dev_info->tx_desc_lim.nb_max = adapter->max_tx_ring_size;
2088 	dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2089 	dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2090 					adapter->max_tx_sgl_size);
2091 	dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2092 					adapter->max_tx_sgl_size);
2093 
2094 	dev_info->default_rxportconf.ring_size = ENA_DEFAULT_RING_SIZE;
2095 	dev_info->default_txportconf.ring_size = ENA_DEFAULT_RING_SIZE;
2096 
2097 	return 0;
2098 }
2099 
2100 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len)
2101 {
2102 	mbuf->data_len = len;
2103 	mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2104 	mbuf->refcnt = 1;
2105 	mbuf->next = NULL;
2106 }
2107 
2108 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
2109 				    struct ena_com_rx_buf_info *ena_bufs,
2110 				    uint32_t descs,
2111 				    uint16_t *next_to_clean,
2112 				    uint8_t offset)
2113 {
2114 	struct rte_mbuf *mbuf;
2115 	struct rte_mbuf *mbuf_head;
2116 	struct ena_rx_buffer *rx_info;
2117 	int rc;
2118 	uint16_t ntc, len, req_id, buf = 0;
2119 
2120 	if (unlikely(descs == 0))
2121 		return NULL;
2122 
2123 	ntc = *next_to_clean;
2124 
2125 	len = ena_bufs[buf].len;
2126 	req_id = ena_bufs[buf].req_id;
2127 
2128 	rx_info = &rx_ring->rx_buffer_info[req_id];
2129 
2130 	mbuf = rx_info->mbuf;
2131 	RTE_ASSERT(mbuf != NULL);
2132 
2133 	ena_init_rx_mbuf(mbuf, len);
2134 
2135 	/* Fill the mbuf head with the data specific for 1st segment. */
2136 	mbuf_head = mbuf;
2137 	mbuf_head->nb_segs = descs;
2138 	mbuf_head->port = rx_ring->port_id;
2139 	mbuf_head->pkt_len = len;
2140 	mbuf_head->data_off += offset;
2141 
2142 	rx_info->mbuf = NULL;
2143 	rx_ring->empty_rx_reqs[ntc] = req_id;
2144 	ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2145 
2146 	while (--descs) {
2147 		++buf;
2148 		len = ena_bufs[buf].len;
2149 		req_id = ena_bufs[buf].req_id;
2150 
2151 		rx_info = &rx_ring->rx_buffer_info[req_id];
2152 		RTE_ASSERT(rx_info->mbuf != NULL);
2153 
2154 		if (unlikely(len == 0)) {
2155 			/*
2156 			 * Some devices can pass descriptor with the length 0.
2157 			 * To avoid confusion, the PMD is simply putting the
2158 			 * descriptor back, as it was never used. We'll avoid
2159 			 * mbuf allocation that way.
2160 			 */
2161 			rc = ena_add_single_rx_desc(rx_ring->ena_com_io_sq,
2162 				rx_info->mbuf, req_id);
2163 			if (unlikely(rc != 0)) {
2164 				/* Free the mbuf in case of an error. */
2165 				rte_mbuf_raw_free(rx_info->mbuf);
2166 			} else {
2167 				/*
2168 				 * If there was no error, just exit the loop as
2169 				 * 0 length descriptor is always the last one.
2170 				 */
2171 				break;
2172 			}
2173 		} else {
2174 			/* Create an mbuf chain. */
2175 			mbuf->next = rx_info->mbuf;
2176 			mbuf = mbuf->next;
2177 
2178 			ena_init_rx_mbuf(mbuf, len);
2179 			mbuf_head->pkt_len += len;
2180 		}
2181 
2182 		/*
2183 		 * Mark the descriptor as depleted and perform necessary
2184 		 * cleanup.
2185 		 * This code will execute in two cases:
2186 		 *  1. Descriptor len was greater than 0 - normal situation.
2187 		 *  2. Descriptor len was 0 and we failed to add the descriptor
2188 		 *     to the device. In that situation, we should try to add
2189 		 *     the mbuf again in the populate routine and mark the
2190 		 *     descriptor as used up by the device.
2191 		 */
2192 		rx_info->mbuf = NULL;
2193 		rx_ring->empty_rx_reqs[ntc] = req_id;
2194 		ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2195 	}
2196 
2197 	*next_to_clean = ntc;
2198 
2199 	return mbuf_head;
2200 }
2201 
2202 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
2203 				  uint16_t nb_pkts)
2204 {
2205 	struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
2206 	unsigned int free_queue_entries;
2207 	unsigned int refill_threshold;
2208 	uint16_t next_to_clean = rx_ring->next_to_clean;
2209 	uint16_t descs_in_use;
2210 	struct rte_mbuf *mbuf;
2211 	uint16_t completed;
2212 	struct ena_com_rx_ctx ena_rx_ctx;
2213 	int i, rc = 0;
2214 
2215 	/* Check adapter state */
2216 	if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2217 		PMD_DRV_LOG(ALERT,
2218 			"Trying to receive pkts while device is NOT running\n");
2219 		return 0;
2220 	}
2221 
2222 	descs_in_use = rx_ring->ring_size -
2223 		ena_com_free_q_entries(rx_ring->ena_com_io_sq) - 1;
2224 	nb_pkts = RTE_MIN(descs_in_use, nb_pkts);
2225 
2226 	for (completed = 0; completed < nb_pkts; completed++) {
2227 		ena_rx_ctx.max_bufs = rx_ring->sgl_size;
2228 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
2229 		ena_rx_ctx.descs = 0;
2230 		ena_rx_ctx.pkt_offset = 0;
2231 		/* receive packet context */
2232 		rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
2233 				    rx_ring->ena_com_io_sq,
2234 				    &ena_rx_ctx);
2235 		if (unlikely(rc)) {
2236 			PMD_DRV_LOG(ERR, "ena_com_rx_pkt error %d\n", rc);
2237 			if (rc == ENA_COM_NO_SPACE) {
2238 				++rx_ring->rx_stats.bad_desc_num;
2239 				rx_ring->adapter->reset_reason =
2240 					ENA_REGS_RESET_TOO_MANY_RX_DESCS;
2241 			} else {
2242 				++rx_ring->rx_stats.bad_req_id;
2243 				rx_ring->adapter->reset_reason =
2244 					ENA_REGS_RESET_INV_RX_REQ_ID;
2245 			}
2246 			rx_ring->adapter->trigger_reset = true;
2247 			return 0;
2248 		}
2249 
2250 		mbuf = ena_rx_mbuf(rx_ring,
2251 			ena_rx_ctx.ena_bufs,
2252 			ena_rx_ctx.descs,
2253 			&next_to_clean,
2254 			ena_rx_ctx.pkt_offset);
2255 		if (unlikely(mbuf == NULL)) {
2256 			for (i = 0; i < ena_rx_ctx.descs; ++i) {
2257 				rx_ring->empty_rx_reqs[next_to_clean] =
2258 					rx_ring->ena_bufs[i].req_id;
2259 				next_to_clean = ENA_IDX_NEXT_MASKED(
2260 					next_to_clean, rx_ring->size_mask);
2261 			}
2262 			break;
2263 		}
2264 
2265 		/* fill mbuf attributes if any */
2266 		ena_rx_mbuf_prepare(mbuf, &ena_rx_ctx);
2267 
2268 		if (unlikely(mbuf->ol_flags &
2269 				(PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD))) {
2270 			rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors);
2271 			++rx_ring->rx_stats.bad_csum;
2272 		}
2273 
2274 		rx_pkts[completed] = mbuf;
2275 		rx_ring->rx_stats.bytes += mbuf->pkt_len;
2276 	}
2277 
2278 	rx_ring->rx_stats.cnt += completed;
2279 	rx_ring->next_to_clean = next_to_clean;
2280 
2281 	free_queue_entries = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
2282 	refill_threshold =
2283 		RTE_MIN(rx_ring->ring_size / ENA_REFILL_THRESH_DIVIDER,
2284 		(unsigned int)ENA_REFILL_THRESH_PACKET);
2285 
2286 	/* Burst refill to save doorbells, memory barriers, const interval */
2287 	if (free_queue_entries > refill_threshold) {
2288 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
2289 		ena_populate_rx_queue(rx_ring, free_queue_entries);
2290 	}
2291 
2292 	return completed;
2293 }
2294 
2295 static uint16_t
2296 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2297 		uint16_t nb_pkts)
2298 {
2299 	int32_t ret;
2300 	uint32_t i;
2301 	struct rte_mbuf *m;
2302 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2303 	struct rte_ipv4_hdr *ip_hdr;
2304 	uint64_t ol_flags;
2305 	uint16_t frag_field;
2306 
2307 	for (i = 0; i != nb_pkts; i++) {
2308 		m = tx_pkts[i];
2309 		ol_flags = m->ol_flags;
2310 
2311 		if (!(ol_flags & PKT_TX_IPV4))
2312 			continue;
2313 
2314 		/* If there was not L2 header length specified, assume it is
2315 		 * length of the ethernet header.
2316 		 */
2317 		if (unlikely(m->l2_len == 0))
2318 			m->l2_len = sizeof(struct rte_ether_hdr);
2319 
2320 		ip_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *,
2321 						 m->l2_len);
2322 		frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
2323 
2324 		if ((frag_field & RTE_IPV4_HDR_DF_FLAG) != 0) {
2325 			m->packet_type |= RTE_PTYPE_L4_NONFRAG;
2326 
2327 			/* If IPv4 header has DF flag enabled and TSO support is
2328 			 * disabled, partial chcecksum should not be calculated.
2329 			 */
2330 			if (!tx_ring->adapter->offloads.tso4_supported)
2331 				continue;
2332 		}
2333 
2334 		if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) != 0 ||
2335 				(ol_flags & PKT_TX_L4_MASK) ==
2336 				PKT_TX_SCTP_CKSUM) {
2337 			rte_errno = ENOTSUP;
2338 			return i;
2339 		}
2340 
2341 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2342 		ret = rte_validate_tx_offload(m);
2343 		if (ret != 0) {
2344 			rte_errno = -ret;
2345 			return i;
2346 		}
2347 #endif
2348 
2349 		/* In case we are supposed to TSO and have DF not set (DF=0)
2350 		 * hardware must be provided with partial checksum, otherwise
2351 		 * it will take care of necessary calculations.
2352 		 */
2353 
2354 		ret = rte_net_intel_cksum_flags_prepare(m,
2355 			ol_flags & ~PKT_TX_TCP_SEG);
2356 		if (ret != 0) {
2357 			rte_errno = -ret;
2358 			return i;
2359 		}
2360 	}
2361 
2362 	return i;
2363 }
2364 
2365 static void ena_update_hints(struct ena_adapter *adapter,
2366 			     struct ena_admin_ena_hw_hints *hints)
2367 {
2368 	if (hints->admin_completion_tx_timeout)
2369 		adapter->ena_dev.admin_queue.completion_timeout =
2370 			hints->admin_completion_tx_timeout * 1000;
2371 
2372 	if (hints->mmio_read_timeout)
2373 		/* convert to usec */
2374 		adapter->ena_dev.mmio_read.reg_read_to =
2375 			hints->mmio_read_timeout * 1000;
2376 
2377 	if (hints->driver_watchdog_timeout) {
2378 		if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
2379 			adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
2380 		else
2381 			// Convert msecs to ticks
2382 			adapter->keep_alive_timeout =
2383 				(hints->driver_watchdog_timeout *
2384 				rte_get_timer_hz()) / 1000;
2385 	}
2386 }
2387 
2388 static int ena_check_space_and_linearize_mbuf(struct ena_ring *tx_ring,
2389 					      struct rte_mbuf *mbuf)
2390 {
2391 	struct ena_com_dev *ena_dev;
2392 	int num_segments, header_len, rc;
2393 
2394 	ena_dev = &tx_ring->adapter->ena_dev;
2395 	num_segments = mbuf->nb_segs;
2396 	header_len = mbuf->data_len;
2397 
2398 	if (likely(num_segments < tx_ring->sgl_size))
2399 		goto checkspace;
2400 
2401 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
2402 	    (num_segments == tx_ring->sgl_size) &&
2403 	    (header_len < tx_ring->tx_max_header_size))
2404 		goto checkspace;
2405 
2406 	/* Checking for space for 2 additional metadata descriptors due to
2407 	 * possible header split and metadata descriptor. Linearization will
2408 	 * be needed so we reduce the segments number from num_segments to 1
2409 	 */
2410 	if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 3)) {
2411 		PMD_DRV_LOG(DEBUG, "Not enough space in the tx queue\n");
2412 		return ENA_COM_NO_MEM;
2413 	}
2414 	++tx_ring->tx_stats.linearize;
2415 	rc = rte_pktmbuf_linearize(mbuf);
2416 	if (unlikely(rc)) {
2417 		PMD_DRV_LOG(WARNING, "Mbuf linearize failed\n");
2418 		rte_atomic64_inc(&tx_ring->adapter->drv_stats->ierrors);
2419 		++tx_ring->tx_stats.linearize_failed;
2420 		return rc;
2421 	}
2422 
2423 	return 0;
2424 
2425 checkspace:
2426 	/* Checking for space for 2 additional metadata descriptors due to
2427 	 * possible header split and metadata descriptor
2428 	 */
2429 	if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
2430 					  num_segments + 2)) {
2431 		PMD_DRV_LOG(DEBUG, "Not enough space in the tx queue\n");
2432 		return ENA_COM_NO_MEM;
2433 	}
2434 
2435 	return 0;
2436 }
2437 
2438 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
2439 	struct ena_tx_buffer *tx_info,
2440 	struct rte_mbuf *mbuf,
2441 	void **push_header,
2442 	uint16_t *header_len)
2443 {
2444 	struct ena_com_buf *ena_buf;
2445 	uint16_t delta, seg_len, push_len;
2446 
2447 	delta = 0;
2448 	seg_len = mbuf->data_len;
2449 
2450 	tx_info->mbuf = mbuf;
2451 	ena_buf = tx_info->bufs;
2452 
2453 	if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2454 		/*
2455 		 * Tx header might be (and will be in most cases) smaller than
2456 		 * tx_max_header_size. But it's not an issue to send more data
2457 		 * to the device, than actually needed if the mbuf size is
2458 		 * greater than tx_max_header_size.
2459 		 */
2460 		push_len = RTE_MIN(mbuf->pkt_len, tx_ring->tx_max_header_size);
2461 		*header_len = push_len;
2462 
2463 		if (likely(push_len <= seg_len)) {
2464 			/* If the push header is in the single segment, then
2465 			 * just point it to the 1st mbuf data.
2466 			 */
2467 			*push_header = rte_pktmbuf_mtod(mbuf, uint8_t *);
2468 		} else {
2469 			/* If the push header lays in the several segments, copy
2470 			 * it to the intermediate buffer.
2471 			 */
2472 			rte_pktmbuf_read(mbuf, 0, push_len,
2473 				tx_ring->push_buf_intermediate_buf);
2474 			*push_header = tx_ring->push_buf_intermediate_buf;
2475 			delta = push_len - seg_len;
2476 		}
2477 	} else {
2478 		*push_header = NULL;
2479 		*header_len = 0;
2480 		push_len = 0;
2481 	}
2482 
2483 	/* Process first segment taking into consideration pushed header */
2484 	if (seg_len > push_len) {
2485 		ena_buf->paddr = mbuf->buf_iova +
2486 				mbuf->data_off +
2487 				push_len;
2488 		ena_buf->len = seg_len - push_len;
2489 		ena_buf++;
2490 		tx_info->num_of_bufs++;
2491 	}
2492 
2493 	while ((mbuf = mbuf->next) != NULL) {
2494 		seg_len = mbuf->data_len;
2495 
2496 		/* Skip mbufs if whole data is pushed as a header */
2497 		if (unlikely(delta > seg_len)) {
2498 			delta -= seg_len;
2499 			continue;
2500 		}
2501 
2502 		ena_buf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
2503 		ena_buf->len = seg_len - delta;
2504 		ena_buf++;
2505 		tx_info->num_of_bufs++;
2506 
2507 		delta = 0;
2508 	}
2509 }
2510 
2511 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf)
2512 {
2513 	struct ena_tx_buffer *tx_info;
2514 	struct ena_com_tx_ctx ena_tx_ctx = { { 0 } };
2515 	uint16_t next_to_use;
2516 	uint16_t header_len;
2517 	uint16_t req_id;
2518 	void *push_header;
2519 	int nb_hw_desc;
2520 	int rc;
2521 
2522 	rc = ena_check_space_and_linearize_mbuf(tx_ring, mbuf);
2523 	if (unlikely(rc))
2524 		return rc;
2525 
2526 	next_to_use = tx_ring->next_to_use;
2527 
2528 	req_id = tx_ring->empty_tx_reqs[next_to_use];
2529 	tx_info = &tx_ring->tx_buffer_info[req_id];
2530 	tx_info->num_of_bufs = 0;
2531 
2532 	ena_tx_map_mbuf(tx_ring, tx_info, mbuf, &push_header, &header_len);
2533 
2534 	ena_tx_ctx.ena_bufs = tx_info->bufs;
2535 	ena_tx_ctx.push_header = push_header;
2536 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2537 	ena_tx_ctx.req_id = req_id;
2538 	ena_tx_ctx.header_len = header_len;
2539 
2540 	/* Set Tx offloads flags, if applicable */
2541 	ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads,
2542 		tx_ring->disable_meta_caching);
2543 
2544 	if (unlikely(ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
2545 			&ena_tx_ctx))) {
2546 		PMD_DRV_LOG(DEBUG,
2547 			"llq tx max burst size of queue %d achieved, writing doorbell to send burst\n",
2548 			tx_ring->id);
2549 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2550 		tx_ring->tx_stats.doorbells++;
2551 		tx_ring->pkts_without_db = false;
2552 	}
2553 
2554 	/* prepare the packet's descriptors to dma engine */
2555 	rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq,	&ena_tx_ctx,
2556 		&nb_hw_desc);
2557 	if (unlikely(rc)) {
2558 		++tx_ring->tx_stats.prepare_ctx_err;
2559 		return rc;
2560 	}
2561 
2562 	tx_info->tx_descs = nb_hw_desc;
2563 
2564 	tx_ring->tx_stats.cnt++;
2565 	tx_ring->tx_stats.bytes += mbuf->pkt_len;
2566 
2567 	tx_ring->next_to_use = ENA_IDX_NEXT_MASKED(next_to_use,
2568 		tx_ring->size_mask);
2569 
2570 	return 0;
2571 }
2572 
2573 static void ena_tx_cleanup(struct ena_ring *tx_ring)
2574 {
2575 	unsigned int cleanup_budget;
2576 	unsigned int total_tx_descs = 0;
2577 	uint16_t next_to_clean = tx_ring->next_to_clean;
2578 
2579 	cleanup_budget = RTE_MIN(tx_ring->ring_size / ENA_REFILL_THRESH_DIVIDER,
2580 		(unsigned int)ENA_REFILL_THRESH_PACKET);
2581 
2582 	while (likely(total_tx_descs < cleanup_budget)) {
2583 		struct rte_mbuf *mbuf;
2584 		struct ena_tx_buffer *tx_info;
2585 		uint16_t req_id;
2586 
2587 		if (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) != 0)
2588 			break;
2589 
2590 		if (unlikely(validate_tx_req_id(tx_ring, req_id) != 0))
2591 			break;
2592 
2593 		/* Get Tx info & store how many descs were processed  */
2594 		tx_info = &tx_ring->tx_buffer_info[req_id];
2595 
2596 		mbuf = tx_info->mbuf;
2597 		rte_pktmbuf_free(mbuf);
2598 
2599 		tx_info->mbuf = NULL;
2600 		tx_ring->empty_tx_reqs[next_to_clean] = req_id;
2601 
2602 		total_tx_descs += tx_info->tx_descs;
2603 
2604 		/* Put back descriptor to the ring for reuse */
2605 		next_to_clean = ENA_IDX_NEXT_MASKED(next_to_clean,
2606 			tx_ring->size_mask);
2607 	}
2608 
2609 	if (likely(total_tx_descs > 0)) {
2610 		/* acknowledge completion of sent packets */
2611 		tx_ring->next_to_clean = next_to_clean;
2612 		ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
2613 		ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
2614 	}
2615 }
2616 
2617 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2618 				  uint16_t nb_pkts)
2619 {
2620 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2621 	uint16_t sent_idx = 0;
2622 
2623 	/* Check adapter state */
2624 	if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2625 		PMD_DRV_LOG(ALERT,
2626 			"Trying to xmit pkts while device is NOT running\n");
2627 		return 0;
2628 	}
2629 
2630 	for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
2631 		if (ena_xmit_mbuf(tx_ring, tx_pkts[sent_idx]))
2632 			break;
2633 		tx_ring->pkts_without_db = true;
2634 		rte_prefetch0(tx_pkts[ENA_IDX_ADD_MASKED(sent_idx, 4,
2635 			tx_ring->size_mask)]);
2636 	}
2637 
2638 	tx_ring->tx_stats.available_desc =
2639 		ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2640 
2641 	/* If there are ready packets to be xmitted... */
2642 	if (likely(tx_ring->pkts_without_db)) {
2643 		/* ...let HW do its best :-) */
2644 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2645 		tx_ring->tx_stats.doorbells++;
2646 		tx_ring->pkts_without_db = false;
2647 	}
2648 
2649 	ena_tx_cleanup(tx_ring);
2650 
2651 	tx_ring->tx_stats.available_desc =
2652 		ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2653 	tx_ring->tx_stats.tx_poll++;
2654 
2655 	return sent_idx;
2656 }
2657 
2658 int ena_copy_eni_stats(struct ena_adapter *adapter)
2659 {
2660 	struct ena_admin_eni_stats admin_eni_stats;
2661 	int rc;
2662 
2663 	rte_spinlock_lock(&adapter->admin_lock);
2664 	rc = ena_com_get_eni_stats(&adapter->ena_dev, &admin_eni_stats);
2665 	rte_spinlock_unlock(&adapter->admin_lock);
2666 	if (rc != 0) {
2667 		if (rc == ENA_COM_UNSUPPORTED) {
2668 			PMD_DRV_LOG(DEBUG,
2669 				"Retrieving ENI metrics is not supported.\n");
2670 		} else {
2671 			PMD_DRV_LOG(WARNING,
2672 				"Failed to get ENI metrics: %d\n", rc);
2673 		}
2674 		return rc;
2675 	}
2676 
2677 	rte_memcpy(&adapter->eni_stats, &admin_eni_stats,
2678 		sizeof(struct ena_stats_eni));
2679 
2680 	return 0;
2681 }
2682 
2683 /**
2684  * DPDK callback to retrieve names of extended device statistics
2685  *
2686  * @param dev
2687  *   Pointer to Ethernet device structure.
2688  * @param[out] xstats_names
2689  *   Buffer to insert names into.
2690  * @param n
2691  *   Number of names.
2692  *
2693  * @return
2694  *   Number of xstats names.
2695  */
2696 static int ena_xstats_get_names(struct rte_eth_dev *dev,
2697 				struct rte_eth_xstat_name *xstats_names,
2698 				unsigned int n)
2699 {
2700 	unsigned int xstats_count = ena_xstats_calc_num(dev->data);
2701 	unsigned int stat, i, count = 0;
2702 
2703 	if (n < xstats_count || !xstats_names)
2704 		return xstats_count;
2705 
2706 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
2707 		strcpy(xstats_names[count].name,
2708 			ena_stats_global_strings[stat].name);
2709 
2710 	for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++)
2711 		strcpy(xstats_names[count].name,
2712 			ena_stats_eni_strings[stat].name);
2713 
2714 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
2715 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
2716 			snprintf(xstats_names[count].name,
2717 				sizeof(xstats_names[count].name),
2718 				"rx_q%d_%s", i,
2719 				ena_stats_rx_strings[stat].name);
2720 
2721 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
2722 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
2723 			snprintf(xstats_names[count].name,
2724 				sizeof(xstats_names[count].name),
2725 				"tx_q%d_%s", i,
2726 				ena_stats_tx_strings[stat].name);
2727 
2728 	return xstats_count;
2729 }
2730 
2731 /**
2732  * DPDK callback to get extended device statistics.
2733  *
2734  * @param dev
2735  *   Pointer to Ethernet device structure.
2736  * @param[out] stats
2737  *   Stats table output buffer.
2738  * @param n
2739  *   The size of the stats table.
2740  *
2741  * @return
2742  *   Number of xstats on success, negative on failure.
2743  */
2744 static int ena_xstats_get(struct rte_eth_dev *dev,
2745 			  struct rte_eth_xstat *xstats,
2746 			  unsigned int n)
2747 {
2748 	struct ena_adapter *adapter = dev->data->dev_private;
2749 	unsigned int xstats_count = ena_xstats_calc_num(dev->data);
2750 	unsigned int stat, i, count = 0;
2751 	int stat_offset;
2752 	void *stats_begin;
2753 
2754 	if (n < xstats_count)
2755 		return xstats_count;
2756 
2757 	if (!xstats)
2758 		return 0;
2759 
2760 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
2761 		stat_offset = ena_stats_global_strings[stat].stat_offset;
2762 		stats_begin = &adapter->dev_stats;
2763 
2764 		xstats[count].id = count;
2765 		xstats[count].value = *((uint64_t *)
2766 			((char *)stats_begin + stat_offset));
2767 	}
2768 
2769 	/* Even if the function below fails, we should copy previous (or initial
2770 	 * values) to keep structure of rte_eth_xstat consistent.
2771 	 */
2772 	ena_copy_eni_stats(adapter);
2773 	for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++) {
2774 		stat_offset = ena_stats_eni_strings[stat].stat_offset;
2775 		stats_begin = &adapter->eni_stats;
2776 
2777 		xstats[count].id = count;
2778 		xstats[count].value = *((uint64_t *)
2779 		    ((char *)stats_begin + stat_offset));
2780 	}
2781 
2782 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
2783 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
2784 			stat_offset = ena_stats_rx_strings[stat].stat_offset;
2785 			stats_begin = &adapter->rx_ring[i].rx_stats;
2786 
2787 			xstats[count].id = count;
2788 			xstats[count].value = *((uint64_t *)
2789 				((char *)stats_begin + stat_offset));
2790 		}
2791 	}
2792 
2793 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
2794 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
2795 			stat_offset = ena_stats_tx_strings[stat].stat_offset;
2796 			stats_begin = &adapter->tx_ring[i].rx_stats;
2797 
2798 			xstats[count].id = count;
2799 			xstats[count].value = *((uint64_t *)
2800 				((char *)stats_begin + stat_offset));
2801 		}
2802 	}
2803 
2804 	return count;
2805 }
2806 
2807 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
2808 				const uint64_t *ids,
2809 				uint64_t *values,
2810 				unsigned int n)
2811 {
2812 	struct ena_adapter *adapter = dev->data->dev_private;
2813 	uint64_t id;
2814 	uint64_t rx_entries, tx_entries;
2815 	unsigned int i;
2816 	int qid;
2817 	int valid = 0;
2818 	bool was_eni_copied = false;
2819 
2820 	for (i = 0; i < n; ++i) {
2821 		id = ids[i];
2822 		/* Check if id belongs to global statistics */
2823 		if (id < ENA_STATS_ARRAY_GLOBAL) {
2824 			values[i] = *((uint64_t *)&adapter->dev_stats + id);
2825 			++valid;
2826 			continue;
2827 		}
2828 
2829 		/* Check if id belongs to ENI statistics */
2830 		id -= ENA_STATS_ARRAY_GLOBAL;
2831 		if (id < ENA_STATS_ARRAY_ENI) {
2832 			/* Avoid reading ENI stats multiple times in a single
2833 			 * function call, as it requires communication with the
2834 			 * admin queue.
2835 			 */
2836 			if (!was_eni_copied) {
2837 				was_eni_copied = true;
2838 				ena_copy_eni_stats(adapter);
2839 			}
2840 			values[i] = *((uint64_t *)&adapter->eni_stats + id);
2841 			++valid;
2842 			continue;
2843 		}
2844 
2845 		/* Check if id belongs to rx queue statistics */
2846 		id -= ENA_STATS_ARRAY_ENI;
2847 		rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
2848 		if (id < rx_entries) {
2849 			qid = id % dev->data->nb_rx_queues;
2850 			id /= dev->data->nb_rx_queues;
2851 			values[i] = *((uint64_t *)
2852 				&adapter->rx_ring[qid].rx_stats + id);
2853 			++valid;
2854 			continue;
2855 		}
2856 				/* Check if id belongs to rx queue statistics */
2857 		id -= rx_entries;
2858 		tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
2859 		if (id < tx_entries) {
2860 			qid = id % dev->data->nb_tx_queues;
2861 			id /= dev->data->nb_tx_queues;
2862 			values[i] = *((uint64_t *)
2863 				&adapter->tx_ring[qid].tx_stats + id);
2864 			++valid;
2865 			continue;
2866 		}
2867 	}
2868 
2869 	return valid;
2870 }
2871 
2872 static int ena_process_bool_devarg(const char *key,
2873 				   const char *value,
2874 				   void *opaque)
2875 {
2876 	struct ena_adapter *adapter = opaque;
2877 	bool bool_value;
2878 
2879 	/* Parse the value. */
2880 	if (strcmp(value, "1") == 0) {
2881 		bool_value = true;
2882 	} else if (strcmp(value, "0") == 0) {
2883 		bool_value = false;
2884 	} else {
2885 		PMD_INIT_LOG(ERR,
2886 			"Invalid value: '%s' for key '%s'. Accepted: '0' or '1'\n",
2887 			value, key);
2888 		return -EINVAL;
2889 	}
2890 
2891 	/* Now, assign it to the proper adapter field. */
2892 	if (strcmp(key, ENA_DEVARG_LARGE_LLQ_HDR) == 0)
2893 		adapter->use_large_llq_hdr = bool_value;
2894 
2895 	return 0;
2896 }
2897 
2898 static int ena_parse_devargs(struct ena_adapter *adapter,
2899 			     struct rte_devargs *devargs)
2900 {
2901 	static const char * const allowed_args[] = {
2902 		ENA_DEVARG_LARGE_LLQ_HDR,
2903 		NULL,
2904 	};
2905 	struct rte_kvargs *kvlist;
2906 	int rc;
2907 
2908 	if (devargs == NULL)
2909 		return 0;
2910 
2911 	kvlist = rte_kvargs_parse(devargs->args, allowed_args);
2912 	if (kvlist == NULL) {
2913 		PMD_INIT_LOG(ERR, "Invalid device arguments: %s\n",
2914 			devargs->args);
2915 		return -EINVAL;
2916 	}
2917 
2918 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_LARGE_LLQ_HDR,
2919 		ena_process_bool_devarg, adapter);
2920 
2921 	rte_kvargs_free(kvlist);
2922 
2923 	return rc;
2924 }
2925 
2926 /*********************************************************************
2927  *  PMD configuration
2928  *********************************************************************/
2929 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2930 	struct rte_pci_device *pci_dev)
2931 {
2932 	return rte_eth_dev_pci_generic_probe(pci_dev,
2933 		sizeof(struct ena_adapter), eth_ena_dev_init);
2934 }
2935 
2936 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
2937 {
2938 	return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
2939 }
2940 
2941 static struct rte_pci_driver rte_ena_pmd = {
2942 	.id_table = pci_id_ena_map,
2943 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
2944 		     RTE_PCI_DRV_WC_ACTIVATE,
2945 	.probe = eth_ena_pci_probe,
2946 	.remove = eth_ena_pci_remove,
2947 };
2948 
2949 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
2950 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
2951 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
2952 RTE_PMD_REGISTER_PARAM_STRING(net_ena, ENA_DEVARG_LARGE_LLQ_HDR "=<0|1>");
2953 RTE_LOG_REGISTER_SUFFIX(ena_logtype_init, init, NOTICE);
2954 RTE_LOG_REGISTER_SUFFIX(ena_logtype_driver, driver, NOTICE);
2955 #ifdef RTE_LIBRTE_ENA_DEBUG_RX
2956 RTE_LOG_REGISTER_SUFFIX(ena_logtype_rx, rx, NOTICE);
2957 #endif
2958 #ifdef RTE_LIBRTE_ENA_DEBUG_TX
2959 RTE_LOG_REGISTER_SUFFIX(ena_logtype_tx, tx, NOTICE);
2960 #endif
2961 #ifdef RTE_LIBRTE_ENA_DEBUG_TX_FREE
2962 RTE_LOG_REGISTER_SUFFIX(ena_logtype_tx_free, tx_free, NOTICE);
2963 #endif
2964 #ifdef RTE_LIBRTE_ENA_COM_DEBUG
2965 RTE_LOG_REGISTER_SUFFIX(ena_logtype_com, com, NOTICE);
2966 #endif
2967 
2968 /******************************************************************************
2969  ******************************** AENQ Handlers *******************************
2970  *****************************************************************************/
2971 static void ena_update_on_link_change(void *adapter_data,
2972 				      struct ena_admin_aenq_entry *aenq_e)
2973 {
2974 	struct rte_eth_dev *eth_dev = adapter_data;
2975 	struct ena_adapter *adapter = eth_dev->data->dev_private;
2976 	struct ena_admin_aenq_link_change_desc *aenq_link_desc;
2977 	uint32_t status;
2978 
2979 	aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
2980 
2981 	status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
2982 	adapter->link_status = status;
2983 
2984 	ena_link_update(eth_dev, 0);
2985 	rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
2986 }
2987 
2988 static void ena_notification(void *adapter_data,
2989 			     struct ena_admin_aenq_entry *aenq_e)
2990 {
2991 	struct rte_eth_dev *eth_dev = adapter_data;
2992 	struct ena_adapter *adapter = eth_dev->data->dev_private;
2993 	struct ena_admin_ena_hw_hints *hints;
2994 
2995 	if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
2996 		PMD_DRV_LOG(WARNING, "Invalid group(%x) expected %x\n",
2997 			aenq_e->aenq_common_desc.group,
2998 			ENA_ADMIN_NOTIFICATION);
2999 
3000 	switch (aenq_e->aenq_common_desc.syndrome) {
3001 	case ENA_ADMIN_UPDATE_HINTS:
3002 		hints = (struct ena_admin_ena_hw_hints *)
3003 			(&aenq_e->inline_data_w4);
3004 		ena_update_hints(adapter, hints);
3005 		break;
3006 	default:
3007 		PMD_DRV_LOG(ERR, "Invalid aenq notification link state %d\n",
3008 			aenq_e->aenq_common_desc.syndrome);
3009 	}
3010 }
3011 
3012 static void ena_keep_alive(void *adapter_data,
3013 			   __rte_unused struct ena_admin_aenq_entry *aenq_e)
3014 {
3015 	struct rte_eth_dev *eth_dev = adapter_data;
3016 	struct ena_adapter *adapter = eth_dev->data->dev_private;
3017 	struct ena_admin_aenq_keep_alive_desc *desc;
3018 	uint64_t rx_drops;
3019 	uint64_t tx_drops;
3020 
3021 	adapter->timestamp_wd = rte_get_timer_cycles();
3022 
3023 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
3024 	rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
3025 	tx_drops = ((uint64_t)desc->tx_drops_high << 32) | desc->tx_drops_low;
3026 
3027 	adapter->drv_stats->rx_drops = rx_drops;
3028 	adapter->dev_stats.tx_drops = tx_drops;
3029 }
3030 
3031 /**
3032  * This handler will called for unknown event group or unimplemented handlers
3033  **/
3034 static void unimplemented_aenq_handler(__rte_unused void *data,
3035 				       __rte_unused struct ena_admin_aenq_entry *aenq_e)
3036 {
3037 	PMD_DRV_LOG(ERR, "Unknown event was received or event with "
3038 			  "unimplemented handler\n");
3039 }
3040 
3041 static struct ena_aenq_handlers aenq_handlers = {
3042 	.handlers = {
3043 		[ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
3044 		[ENA_ADMIN_NOTIFICATION] = ena_notification,
3045 		[ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive
3046 	},
3047 	.unimplemented_handler = unimplemented_aenq_handler
3048 };
3049