xref: /dpdk/drivers/net/ena/ena_ethdev.c (revision badc3a6aa133a886a61b9e3ad666e5675f7ec3d3)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
3  * All rights reserved.
4  */
5 
6 #include <rte_string_fns.h>
7 #include <rte_ether.h>
8 #include <rte_ethdev_driver.h>
9 #include <rte_ethdev_pci.h>
10 #include <rte_tcp.h>
11 #include <rte_atomic.h>
12 #include <rte_dev.h>
13 #include <rte_errno.h>
14 #include <rte_version.h>
15 #include <rte_net.h>
16 
17 #include "ena_ethdev.h"
18 #include "ena_logs.h"
19 #include "ena_platform.h"
20 #include "ena_com.h"
21 #include "ena_eth_com.h"
22 
23 #include <ena_common_defs.h>
24 #include <ena_regs_defs.h>
25 #include <ena_admin_defs.h>
26 #include <ena_eth_io_defs.h>
27 
28 #define DRV_MODULE_VER_MAJOR	2
29 #define DRV_MODULE_VER_MINOR	0
30 #define DRV_MODULE_VER_SUBMINOR	3
31 
32 #define ENA_IO_TXQ_IDX(q)	(2 * (q))
33 #define ENA_IO_RXQ_IDX(q)	(2 * (q) + 1)
34 /*reverse version of ENA_IO_RXQ_IDX*/
35 #define ENA_IO_RXQ_IDX_REV(q)	((q - 1) / 2)
36 
37 /* While processing submitted and completed descriptors (rx and tx path
38  * respectively) in a loop it is desired to:
39  *  - perform batch submissions while populating sumbissmion queue
40  *  - avoid blocking transmission of other packets during cleanup phase
41  * Hence the utilization ratio of 1/8 of a queue size.
42  */
43 #define ENA_RING_DESCS_RATIO(ring_size)	(ring_size / 8)
44 
45 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
46 #define TEST_BIT(val, bit_shift) (val & (1UL << bit_shift))
47 
48 #define GET_L4_HDR_LEN(mbuf)					\
49 	((rte_pktmbuf_mtod_offset(mbuf,	struct rte_tcp_hdr *,	\
50 		mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
51 
52 #define ENA_RX_RSS_TABLE_LOG_SIZE  7
53 #define ENA_RX_RSS_TABLE_SIZE	(1 << ENA_RX_RSS_TABLE_LOG_SIZE)
54 #define ENA_HASH_KEY_SIZE	40
55 #define ETH_GSTRING_LEN	32
56 
57 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
58 
59 #define ENA_MIN_RING_DESC	128
60 
61 enum ethtool_stringset {
62 	ETH_SS_TEST             = 0,
63 	ETH_SS_STATS,
64 };
65 
66 struct ena_stats {
67 	char name[ETH_GSTRING_LEN];
68 	int stat_offset;
69 };
70 
71 #define ENA_STAT_ENTRY(stat, stat_type) { \
72 	.name = #stat, \
73 	.stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
74 }
75 
76 #define ENA_STAT_RX_ENTRY(stat) \
77 	ENA_STAT_ENTRY(stat, rx)
78 
79 #define ENA_STAT_TX_ENTRY(stat) \
80 	ENA_STAT_ENTRY(stat, tx)
81 
82 #define ENA_STAT_GLOBAL_ENTRY(stat) \
83 	ENA_STAT_ENTRY(stat, dev)
84 
85 #define ENA_MAX_RING_SIZE_RX 8192
86 #define ENA_MAX_RING_SIZE_TX 1024
87 
88 /*
89  * Each rte_memzone should have unique name.
90  * To satisfy it, count number of allocation and add it to name.
91  */
92 rte_atomic32_t ena_alloc_cnt;
93 
94 static const struct ena_stats ena_stats_global_strings[] = {
95 	ENA_STAT_GLOBAL_ENTRY(wd_expired),
96 	ENA_STAT_GLOBAL_ENTRY(dev_start),
97 	ENA_STAT_GLOBAL_ENTRY(dev_stop),
98 };
99 
100 static const struct ena_stats ena_stats_tx_strings[] = {
101 	ENA_STAT_TX_ENTRY(cnt),
102 	ENA_STAT_TX_ENTRY(bytes),
103 	ENA_STAT_TX_ENTRY(prepare_ctx_err),
104 	ENA_STAT_TX_ENTRY(linearize),
105 	ENA_STAT_TX_ENTRY(linearize_failed),
106 	ENA_STAT_TX_ENTRY(tx_poll),
107 	ENA_STAT_TX_ENTRY(doorbells),
108 	ENA_STAT_TX_ENTRY(bad_req_id),
109 	ENA_STAT_TX_ENTRY(available_desc),
110 };
111 
112 static const struct ena_stats ena_stats_rx_strings[] = {
113 	ENA_STAT_RX_ENTRY(cnt),
114 	ENA_STAT_RX_ENTRY(bytes),
115 	ENA_STAT_RX_ENTRY(refill_partial),
116 	ENA_STAT_RX_ENTRY(bad_csum),
117 	ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
118 	ENA_STAT_RX_ENTRY(bad_desc_num),
119 	ENA_STAT_RX_ENTRY(bad_req_id),
120 };
121 
122 #define ENA_STATS_ARRAY_GLOBAL	ARRAY_SIZE(ena_stats_global_strings)
123 #define ENA_STATS_ARRAY_TX	ARRAY_SIZE(ena_stats_tx_strings)
124 #define ENA_STATS_ARRAY_RX	ARRAY_SIZE(ena_stats_rx_strings)
125 
126 #define QUEUE_OFFLOADS (DEV_TX_OFFLOAD_TCP_CKSUM |\
127 			DEV_TX_OFFLOAD_UDP_CKSUM |\
128 			DEV_TX_OFFLOAD_IPV4_CKSUM |\
129 			DEV_TX_OFFLOAD_TCP_TSO)
130 #define MBUF_OFFLOADS (PKT_TX_L4_MASK |\
131 		       PKT_TX_IP_CKSUM |\
132 		       PKT_TX_TCP_SEG)
133 
134 /** Vendor ID used by Amazon devices */
135 #define PCI_VENDOR_ID_AMAZON 0x1D0F
136 /** Amazon devices */
137 #define PCI_DEVICE_ID_ENA_VF	0xEC20
138 #define PCI_DEVICE_ID_ENA_LLQ_VF	0xEC21
139 
140 #define	ENA_TX_OFFLOAD_MASK	(\
141 	PKT_TX_L4_MASK |         \
142 	PKT_TX_IPV6 |            \
143 	PKT_TX_IPV4 |            \
144 	PKT_TX_IP_CKSUM |        \
145 	PKT_TX_TCP_SEG)
146 
147 #define	ENA_TX_OFFLOAD_NOTSUP_MASK	\
148 	(PKT_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
149 
150 int ena_logtype_init;
151 int ena_logtype_driver;
152 
153 #ifdef RTE_LIBRTE_ENA_DEBUG_RX
154 int ena_logtype_rx;
155 #endif
156 #ifdef RTE_LIBRTE_ENA_DEBUG_TX
157 int ena_logtype_tx;
158 #endif
159 #ifdef RTE_LIBRTE_ENA_DEBUG_TX_FREE
160 int ena_logtype_tx_free;
161 #endif
162 #ifdef RTE_LIBRTE_ENA_COM_DEBUG
163 int ena_logtype_com;
164 #endif
165 
166 static const struct rte_pci_id pci_id_ena_map[] = {
167 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
168 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_LLQ_VF) },
169 	{ .device_id = 0 },
170 };
171 
172 static struct ena_aenq_handlers aenq_handlers;
173 
174 static int ena_device_init(struct ena_com_dev *ena_dev,
175 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
176 			   bool *wd_state);
177 static int ena_dev_configure(struct rte_eth_dev *dev);
178 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
179 				  uint16_t nb_pkts);
180 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
181 		uint16_t nb_pkts);
182 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
183 			      uint16_t nb_desc, unsigned int socket_id,
184 			      const struct rte_eth_txconf *tx_conf);
185 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
186 			      uint16_t nb_desc, unsigned int socket_id,
187 			      const struct rte_eth_rxconf *rx_conf,
188 			      struct rte_mempool *mp);
189 static uint16_t eth_ena_recv_pkts(void *rx_queue,
190 				  struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
191 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
192 static void ena_init_rings(struct ena_adapter *adapter);
193 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
194 static int ena_start(struct rte_eth_dev *dev);
195 static void ena_stop(struct rte_eth_dev *dev);
196 static void ena_close(struct rte_eth_dev *dev);
197 static int ena_dev_reset(struct rte_eth_dev *dev);
198 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
199 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
200 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
201 static void ena_rx_queue_release(void *queue);
202 static void ena_tx_queue_release(void *queue);
203 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
204 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
205 static int ena_link_update(struct rte_eth_dev *dev,
206 			   int wait_to_complete);
207 static int ena_create_io_queue(struct ena_ring *ring);
208 static void ena_queue_stop(struct ena_ring *ring);
209 static void ena_queue_stop_all(struct rte_eth_dev *dev,
210 			      enum ena_ring_type ring_type);
211 static int ena_queue_start(struct ena_ring *ring);
212 static int ena_queue_start_all(struct rte_eth_dev *dev,
213 			       enum ena_ring_type ring_type);
214 static void ena_stats_restart(struct rte_eth_dev *dev);
215 static int ena_infos_get(struct rte_eth_dev *dev,
216 			 struct rte_eth_dev_info *dev_info);
217 static int ena_rss_reta_update(struct rte_eth_dev *dev,
218 			       struct rte_eth_rss_reta_entry64 *reta_conf,
219 			       uint16_t reta_size);
220 static int ena_rss_reta_query(struct rte_eth_dev *dev,
221 			      struct rte_eth_rss_reta_entry64 *reta_conf,
222 			      uint16_t reta_size);
223 static void ena_interrupt_handler_rte(void *cb_arg);
224 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
225 static void ena_destroy_device(struct rte_eth_dev *eth_dev);
226 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
227 static int ena_xstats_get_names(struct rte_eth_dev *dev,
228 				struct rte_eth_xstat_name *xstats_names,
229 				unsigned int n);
230 static int ena_xstats_get(struct rte_eth_dev *dev,
231 			  struct rte_eth_xstat *stats,
232 			  unsigned int n);
233 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
234 				const uint64_t *ids,
235 				uint64_t *values,
236 				unsigned int n);
237 
238 static const struct eth_dev_ops ena_dev_ops = {
239 	.dev_configure        = ena_dev_configure,
240 	.dev_infos_get        = ena_infos_get,
241 	.rx_queue_setup       = ena_rx_queue_setup,
242 	.tx_queue_setup       = ena_tx_queue_setup,
243 	.dev_start            = ena_start,
244 	.dev_stop             = ena_stop,
245 	.link_update          = ena_link_update,
246 	.stats_get            = ena_stats_get,
247 	.xstats_get_names     = ena_xstats_get_names,
248 	.xstats_get	      = ena_xstats_get,
249 	.xstats_get_by_id     = ena_xstats_get_by_id,
250 	.mtu_set              = ena_mtu_set,
251 	.rx_queue_release     = ena_rx_queue_release,
252 	.tx_queue_release     = ena_tx_queue_release,
253 	.dev_close            = ena_close,
254 	.dev_reset            = ena_dev_reset,
255 	.reta_update          = ena_rss_reta_update,
256 	.reta_query           = ena_rss_reta_query,
257 };
258 
259 void ena_rss_key_fill(void *key, size_t size)
260 {
261 	static bool key_generated;
262 	static uint8_t default_key[ENA_HASH_KEY_SIZE];
263 	size_t i;
264 
265 	RTE_ASSERT(size <= ENA_HASH_KEY_SIZE);
266 
267 	if (!key_generated) {
268 		for (i = 0; i < ENA_HASH_KEY_SIZE; ++i)
269 			default_key[i] = rte_rand() & 0xff;
270 		key_generated = true;
271 	}
272 
273 	rte_memcpy(key, default_key, size);
274 }
275 
276 static inline void ena_rx_mbuf_prepare(struct rte_mbuf *mbuf,
277 				       struct ena_com_rx_ctx *ena_rx_ctx)
278 {
279 	uint64_t ol_flags = 0;
280 	uint32_t packet_type = 0;
281 
282 	if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
283 		packet_type |= RTE_PTYPE_L4_TCP;
284 	else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
285 		packet_type |= RTE_PTYPE_L4_UDP;
286 
287 	if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4)
288 		packet_type |= RTE_PTYPE_L3_IPV4;
289 	else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6)
290 		packet_type |= RTE_PTYPE_L3_IPV6;
291 
292 	if (!ena_rx_ctx->l4_csum_checked)
293 		ol_flags |= PKT_RX_L4_CKSUM_UNKNOWN;
294 	else
295 		if (unlikely(ena_rx_ctx->l4_csum_err) && !ena_rx_ctx->frag)
296 			ol_flags |= PKT_RX_L4_CKSUM_BAD;
297 		else
298 			ol_flags |= PKT_RX_L4_CKSUM_UNKNOWN;
299 
300 	if (unlikely(ena_rx_ctx->l3_csum_err))
301 		ol_flags |= PKT_RX_IP_CKSUM_BAD;
302 
303 	mbuf->ol_flags = ol_flags;
304 	mbuf->packet_type = packet_type;
305 }
306 
307 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
308 				       struct ena_com_tx_ctx *ena_tx_ctx,
309 				       uint64_t queue_offloads)
310 {
311 	struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
312 
313 	if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
314 	    (queue_offloads & QUEUE_OFFLOADS)) {
315 		/* check if TSO is required */
316 		if ((mbuf->ol_flags & PKT_TX_TCP_SEG) &&
317 		    (queue_offloads & DEV_TX_OFFLOAD_TCP_TSO)) {
318 			ena_tx_ctx->tso_enable = true;
319 
320 			ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
321 		}
322 
323 		/* check if L3 checksum is needed */
324 		if ((mbuf->ol_flags & PKT_TX_IP_CKSUM) &&
325 		    (queue_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM))
326 			ena_tx_ctx->l3_csum_enable = true;
327 
328 		if (mbuf->ol_flags & PKT_TX_IPV6) {
329 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
330 		} else {
331 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
332 
333 			/* set don't fragment (DF) flag */
334 			if (mbuf->packet_type &
335 				(RTE_PTYPE_L4_NONFRAG
336 				 | RTE_PTYPE_INNER_L4_NONFRAG))
337 				ena_tx_ctx->df = true;
338 		}
339 
340 		/* check if L4 checksum is needed */
341 		if (((mbuf->ol_flags & PKT_TX_L4_MASK) == PKT_TX_TCP_CKSUM) &&
342 		    (queue_offloads & DEV_TX_OFFLOAD_TCP_CKSUM)) {
343 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
344 			ena_tx_ctx->l4_csum_enable = true;
345 		} else if (((mbuf->ol_flags & PKT_TX_L4_MASK) ==
346 				PKT_TX_UDP_CKSUM) &&
347 				(queue_offloads & DEV_TX_OFFLOAD_UDP_CKSUM)) {
348 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
349 			ena_tx_ctx->l4_csum_enable = true;
350 		} else {
351 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
352 			ena_tx_ctx->l4_csum_enable = false;
353 		}
354 
355 		ena_meta->mss = mbuf->tso_segsz;
356 		ena_meta->l3_hdr_len = mbuf->l3_len;
357 		ena_meta->l3_hdr_offset = mbuf->l2_len;
358 
359 		ena_tx_ctx->meta_valid = true;
360 	} else {
361 		ena_tx_ctx->meta_valid = false;
362 	}
363 }
364 
365 static inline int validate_rx_req_id(struct ena_ring *rx_ring, uint16_t req_id)
366 {
367 	if (likely(req_id < rx_ring->ring_size))
368 		return 0;
369 
370 	PMD_DRV_LOG(ERR, "Invalid rx req_id: %hu\n", req_id);
371 
372 	rx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID;
373 	rx_ring->adapter->trigger_reset = true;
374 	++rx_ring->rx_stats.bad_req_id;
375 
376 	return -EFAULT;
377 }
378 
379 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
380 {
381 	struct ena_tx_buffer *tx_info = NULL;
382 
383 	if (likely(req_id < tx_ring->ring_size)) {
384 		tx_info = &tx_ring->tx_buffer_info[req_id];
385 		if (likely(tx_info->mbuf))
386 			return 0;
387 	}
388 
389 	if (tx_info)
390 		PMD_DRV_LOG(ERR, "tx_info doesn't have valid mbuf\n");
391 	else
392 		PMD_DRV_LOG(ERR, "Invalid req_id: %hu\n", req_id);
393 
394 	/* Trigger device reset */
395 	++tx_ring->tx_stats.bad_req_id;
396 	tx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID;
397 	tx_ring->adapter->trigger_reset	= true;
398 	return -EFAULT;
399 }
400 
401 static void ena_config_host_info(struct ena_com_dev *ena_dev)
402 {
403 	struct ena_admin_host_info *host_info;
404 	int rc;
405 
406 	/* Allocate only the host info */
407 	rc = ena_com_allocate_host_info(ena_dev);
408 	if (rc) {
409 		PMD_DRV_LOG(ERR, "Cannot allocate host info\n");
410 		return;
411 	}
412 
413 	host_info = ena_dev->host_attr.host_info;
414 
415 	host_info->os_type = ENA_ADMIN_OS_DPDK;
416 	host_info->kernel_ver = RTE_VERSION;
417 	strlcpy((char *)host_info->kernel_ver_str, rte_version(),
418 		sizeof(host_info->kernel_ver_str));
419 	host_info->os_dist = RTE_VERSION;
420 	strlcpy((char *)host_info->os_dist_str, rte_version(),
421 		sizeof(host_info->os_dist_str));
422 	host_info->driver_version =
423 		(DRV_MODULE_VER_MAJOR) |
424 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
425 		(DRV_MODULE_VER_SUBMINOR <<
426 			ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
427 	host_info->num_cpus = rte_lcore_count();
428 
429 	host_info->driver_supported_features =
430 		ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK;
431 
432 	rc = ena_com_set_host_attributes(ena_dev);
433 	if (rc) {
434 		if (rc == -ENA_COM_UNSUPPORTED)
435 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
436 		else
437 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
438 
439 		goto err;
440 	}
441 
442 	return;
443 
444 err:
445 	ena_com_delete_host_info(ena_dev);
446 }
447 
448 /* This function calculates the number of xstats based on the current config */
449 static unsigned int ena_xstats_calc_num(struct rte_eth_dev *dev)
450 {
451 	return ENA_STATS_ARRAY_GLOBAL +
452 		(dev->data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
453 		(dev->data->nb_rx_queues * ENA_STATS_ARRAY_RX);
454 }
455 
456 static void ena_config_debug_area(struct ena_adapter *adapter)
457 {
458 	u32 debug_area_size;
459 	int rc, ss_count;
460 
461 	ss_count = ena_xstats_calc_num(adapter->rte_dev);
462 
463 	/* allocate 32 bytes for each string and 64bit for the value */
464 	debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
465 
466 	rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
467 	if (rc) {
468 		PMD_DRV_LOG(ERR, "Cannot allocate debug area\n");
469 		return;
470 	}
471 
472 	rc = ena_com_set_host_attributes(&adapter->ena_dev);
473 	if (rc) {
474 		if (rc == -ENA_COM_UNSUPPORTED)
475 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
476 		else
477 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
478 
479 		goto err;
480 	}
481 
482 	return;
483 err:
484 	ena_com_delete_debug_area(&adapter->ena_dev);
485 }
486 
487 static void ena_close(struct rte_eth_dev *dev)
488 {
489 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
490 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
491 	struct ena_adapter *adapter = dev->data->dev_private;
492 
493 	if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
494 		ena_stop(dev);
495 	adapter->state = ENA_ADAPTER_STATE_CLOSED;
496 
497 	ena_rx_queue_release_all(dev);
498 	ena_tx_queue_release_all(dev);
499 
500 	rte_free(adapter->drv_stats);
501 	adapter->drv_stats = NULL;
502 
503 	rte_intr_disable(intr_handle);
504 	rte_intr_callback_unregister(intr_handle,
505 				     ena_interrupt_handler_rte,
506 				     adapter);
507 
508 	/*
509 	 * MAC is not allocated dynamically. Setting NULL should prevent from
510 	 * release of the resource in the rte_eth_dev_release_port().
511 	 */
512 	dev->data->mac_addrs = NULL;
513 }
514 
515 static int
516 ena_dev_reset(struct rte_eth_dev *dev)
517 {
518 	int rc = 0;
519 
520 	ena_destroy_device(dev);
521 	rc = eth_ena_dev_init(dev);
522 	if (rc)
523 		PMD_INIT_LOG(CRIT, "Cannot initialize device");
524 
525 	return rc;
526 }
527 
528 static int ena_rss_reta_update(struct rte_eth_dev *dev,
529 			       struct rte_eth_rss_reta_entry64 *reta_conf,
530 			       uint16_t reta_size)
531 {
532 	struct ena_adapter *adapter = dev->data->dev_private;
533 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
534 	int rc, i;
535 	u16 entry_value;
536 	int conf_idx;
537 	int idx;
538 
539 	if ((reta_size == 0) || (reta_conf == NULL))
540 		return -EINVAL;
541 
542 	if (reta_size > ENA_RX_RSS_TABLE_SIZE) {
543 		PMD_DRV_LOG(WARNING,
544 			"indirection table %d is bigger than supported (%d)\n",
545 			reta_size, ENA_RX_RSS_TABLE_SIZE);
546 		return -EINVAL;
547 	}
548 
549 	for (i = 0 ; i < reta_size ; i++) {
550 		/* each reta_conf is for 64 entries.
551 		 * to support 128 we use 2 conf of 64
552 		 */
553 		conf_idx = i / RTE_RETA_GROUP_SIZE;
554 		idx = i % RTE_RETA_GROUP_SIZE;
555 		if (TEST_BIT(reta_conf[conf_idx].mask, idx)) {
556 			entry_value =
557 				ENA_IO_RXQ_IDX(reta_conf[conf_idx].reta[idx]);
558 
559 			rc = ena_com_indirect_table_fill_entry(ena_dev,
560 							       i,
561 							       entry_value);
562 			if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
563 				PMD_DRV_LOG(ERR,
564 					"Cannot fill indirect table\n");
565 				return rc;
566 			}
567 		}
568 	}
569 
570 	rc = ena_com_indirect_table_set(ena_dev);
571 	if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
572 		PMD_DRV_LOG(ERR, "Cannot flush the indirect table\n");
573 		return rc;
574 	}
575 
576 	PMD_DRV_LOG(DEBUG, "%s(): RSS configured %d entries  for port %d\n",
577 		__func__, reta_size, adapter->rte_dev->data->port_id);
578 
579 	return 0;
580 }
581 
582 /* Query redirection table. */
583 static int ena_rss_reta_query(struct rte_eth_dev *dev,
584 			      struct rte_eth_rss_reta_entry64 *reta_conf,
585 			      uint16_t reta_size)
586 {
587 	struct ena_adapter *adapter = dev->data->dev_private;
588 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
589 	int rc;
590 	int i;
591 	u32 indirect_table[ENA_RX_RSS_TABLE_SIZE] = {0};
592 	int reta_conf_idx;
593 	int reta_idx;
594 
595 	if (reta_size == 0 || reta_conf == NULL ||
596 	    (reta_size > RTE_RETA_GROUP_SIZE && ((reta_conf + 1) == NULL)))
597 		return -EINVAL;
598 
599 	rc = ena_com_indirect_table_get(ena_dev, indirect_table);
600 	if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
601 		PMD_DRV_LOG(ERR, "cannot get indirect table\n");
602 		return -ENOTSUP;
603 	}
604 
605 	for (i = 0 ; i < reta_size ; i++) {
606 		reta_conf_idx = i / RTE_RETA_GROUP_SIZE;
607 		reta_idx = i % RTE_RETA_GROUP_SIZE;
608 		if (TEST_BIT(reta_conf[reta_conf_idx].mask, reta_idx))
609 			reta_conf[reta_conf_idx].reta[reta_idx] =
610 				ENA_IO_RXQ_IDX_REV(indirect_table[i]);
611 	}
612 
613 	return 0;
614 }
615 
616 static int ena_rss_init_default(struct ena_adapter *adapter)
617 {
618 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
619 	uint16_t nb_rx_queues = adapter->rte_dev->data->nb_rx_queues;
620 	int rc, i;
621 	u32 val;
622 
623 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
624 	if (unlikely(rc)) {
625 		PMD_DRV_LOG(ERR, "Cannot init indirect table\n");
626 		goto err_rss_init;
627 	}
628 
629 	for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
630 		val = i % nb_rx_queues;
631 		rc = ena_com_indirect_table_fill_entry(ena_dev, i,
632 						       ENA_IO_RXQ_IDX(val));
633 		if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
634 			PMD_DRV_LOG(ERR, "Cannot fill indirect table\n");
635 			goto err_fill_indir;
636 		}
637 	}
638 
639 	rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL,
640 					ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
641 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
642 		PMD_DRV_LOG(INFO, "Cannot fill hash function\n");
643 		goto err_fill_indir;
644 	}
645 
646 	rc = ena_com_set_default_hash_ctrl(ena_dev);
647 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
648 		PMD_DRV_LOG(INFO, "Cannot fill hash control\n");
649 		goto err_fill_indir;
650 	}
651 
652 	rc = ena_com_indirect_table_set(ena_dev);
653 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
654 		PMD_DRV_LOG(ERR, "Cannot flush the indirect table\n");
655 		goto err_fill_indir;
656 	}
657 	PMD_DRV_LOG(DEBUG, "RSS configured for port %d\n",
658 		adapter->rte_dev->data->port_id);
659 
660 	return 0;
661 
662 err_fill_indir:
663 	ena_com_rss_destroy(ena_dev);
664 err_rss_init:
665 
666 	return rc;
667 }
668 
669 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
670 {
671 	struct ena_ring **queues = (struct ena_ring **)dev->data->rx_queues;
672 	int nb_queues = dev->data->nb_rx_queues;
673 	int i;
674 
675 	for (i = 0; i < nb_queues; i++)
676 		ena_rx_queue_release(queues[i]);
677 }
678 
679 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
680 {
681 	struct ena_ring **queues = (struct ena_ring **)dev->data->tx_queues;
682 	int nb_queues = dev->data->nb_tx_queues;
683 	int i;
684 
685 	for (i = 0; i < nb_queues; i++)
686 		ena_tx_queue_release(queues[i]);
687 }
688 
689 static void ena_rx_queue_release(void *queue)
690 {
691 	struct ena_ring *ring = (struct ena_ring *)queue;
692 
693 	/* Free ring resources */
694 	if (ring->rx_buffer_info)
695 		rte_free(ring->rx_buffer_info);
696 	ring->rx_buffer_info = NULL;
697 
698 	if (ring->rx_refill_buffer)
699 		rte_free(ring->rx_refill_buffer);
700 	ring->rx_refill_buffer = NULL;
701 
702 	if (ring->empty_rx_reqs)
703 		rte_free(ring->empty_rx_reqs);
704 	ring->empty_rx_reqs = NULL;
705 
706 	ring->configured = 0;
707 
708 	PMD_DRV_LOG(NOTICE, "RX Queue %d:%d released\n",
709 		ring->port_id, ring->id);
710 }
711 
712 static void ena_tx_queue_release(void *queue)
713 {
714 	struct ena_ring *ring = (struct ena_ring *)queue;
715 
716 	/* Free ring resources */
717 	if (ring->push_buf_intermediate_buf)
718 		rte_free(ring->push_buf_intermediate_buf);
719 
720 	if (ring->tx_buffer_info)
721 		rte_free(ring->tx_buffer_info);
722 
723 	if (ring->empty_tx_reqs)
724 		rte_free(ring->empty_tx_reqs);
725 
726 	ring->empty_tx_reqs = NULL;
727 	ring->tx_buffer_info = NULL;
728 	ring->push_buf_intermediate_buf = NULL;
729 
730 	ring->configured = 0;
731 
732 	PMD_DRV_LOG(NOTICE, "TX Queue %d:%d released\n",
733 		ring->port_id, ring->id);
734 }
735 
736 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
737 {
738 	unsigned int i;
739 
740 	for (i = 0; i < ring->ring_size; ++i)
741 		if (ring->rx_buffer_info[i]) {
742 			rte_mbuf_raw_free(ring->rx_buffer_info[i]);
743 			ring->rx_buffer_info[i] = NULL;
744 		}
745 }
746 
747 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
748 {
749 	unsigned int i;
750 
751 	for (i = 0; i < ring->ring_size; ++i) {
752 		struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
753 
754 		if (tx_buf->mbuf)
755 			rte_pktmbuf_free(tx_buf->mbuf);
756 	}
757 }
758 
759 static int ena_link_update(struct rte_eth_dev *dev,
760 			   __rte_unused int wait_to_complete)
761 {
762 	struct rte_eth_link *link = &dev->data->dev_link;
763 	struct ena_adapter *adapter = dev->data->dev_private;
764 
765 	link->link_status = adapter->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
766 	link->link_speed = ETH_SPEED_NUM_NONE;
767 	link->link_duplex = ETH_LINK_FULL_DUPLEX;
768 
769 	return 0;
770 }
771 
772 static int ena_queue_start_all(struct rte_eth_dev *dev,
773 			       enum ena_ring_type ring_type)
774 {
775 	struct ena_adapter *adapter = dev->data->dev_private;
776 	struct ena_ring *queues = NULL;
777 	int nb_queues;
778 	int i = 0;
779 	int rc = 0;
780 
781 	if (ring_type == ENA_RING_TYPE_RX) {
782 		queues = adapter->rx_ring;
783 		nb_queues = dev->data->nb_rx_queues;
784 	} else {
785 		queues = adapter->tx_ring;
786 		nb_queues = dev->data->nb_tx_queues;
787 	}
788 	for (i = 0; i < nb_queues; i++) {
789 		if (queues[i].configured) {
790 			if (ring_type == ENA_RING_TYPE_RX) {
791 				ena_assert_msg(
792 					dev->data->rx_queues[i] == &queues[i],
793 					"Inconsistent state of rx queues\n");
794 			} else {
795 				ena_assert_msg(
796 					dev->data->tx_queues[i] == &queues[i],
797 					"Inconsistent state of tx queues\n");
798 			}
799 
800 			rc = ena_queue_start(&queues[i]);
801 
802 			if (rc) {
803 				PMD_INIT_LOG(ERR,
804 					     "failed to start queue %d type(%d)",
805 					     i, ring_type);
806 				goto err;
807 			}
808 		}
809 	}
810 
811 	return 0;
812 
813 err:
814 	while (i--)
815 		if (queues[i].configured)
816 			ena_queue_stop(&queues[i]);
817 
818 	return rc;
819 }
820 
821 static uint32_t ena_get_mtu_conf(struct ena_adapter *adapter)
822 {
823 	uint32_t max_frame_len = adapter->max_mtu;
824 
825 	if (adapter->rte_eth_dev_data->dev_conf.rxmode.offloads &
826 	    DEV_RX_OFFLOAD_JUMBO_FRAME)
827 		max_frame_len =
828 			adapter->rte_eth_dev_data->dev_conf.rxmode.max_rx_pkt_len;
829 
830 	return max_frame_len;
831 }
832 
833 static int ena_check_valid_conf(struct ena_adapter *adapter)
834 {
835 	uint32_t max_frame_len = ena_get_mtu_conf(adapter);
836 
837 	if (max_frame_len > adapter->max_mtu || max_frame_len < ENA_MIN_MTU) {
838 		PMD_INIT_LOG(ERR, "Unsupported MTU of %d. "
839 				  "max mtu: %d, min mtu: %d",
840 			     max_frame_len, adapter->max_mtu, ENA_MIN_MTU);
841 		return ENA_COM_UNSUPPORTED;
842 	}
843 
844 	return 0;
845 }
846 
847 static int
848 ena_calc_queue_size(struct ena_calc_queue_size_ctx *ctx)
849 {
850 	struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
851 	struct ena_com_dev *ena_dev = ctx->ena_dev;
852 	uint32_t tx_queue_size = ENA_MAX_RING_SIZE_TX;
853 	uint32_t rx_queue_size = ENA_MAX_RING_SIZE_RX;
854 
855 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
856 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
857 			&ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
858 		rx_queue_size = RTE_MIN(rx_queue_size,
859 			max_queue_ext->max_rx_cq_depth);
860 		rx_queue_size = RTE_MIN(rx_queue_size,
861 			max_queue_ext->max_rx_sq_depth);
862 		tx_queue_size = RTE_MIN(tx_queue_size,
863 			max_queue_ext->max_tx_cq_depth);
864 
865 		if (ena_dev->tx_mem_queue_type ==
866 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
867 			tx_queue_size = RTE_MIN(tx_queue_size,
868 				llq->max_llq_depth);
869 		} else {
870 			tx_queue_size = RTE_MIN(tx_queue_size,
871 				max_queue_ext->max_tx_sq_depth);
872 		}
873 
874 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
875 			max_queue_ext->max_per_packet_rx_descs);
876 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
877 			max_queue_ext->max_per_packet_tx_descs);
878 	} else {
879 		struct ena_admin_queue_feature_desc *max_queues =
880 			&ctx->get_feat_ctx->max_queues;
881 		rx_queue_size = RTE_MIN(rx_queue_size,
882 			max_queues->max_cq_depth);
883 		rx_queue_size = RTE_MIN(rx_queue_size,
884 			max_queues->max_sq_depth);
885 		tx_queue_size = RTE_MIN(tx_queue_size,
886 			max_queues->max_cq_depth);
887 
888 		if (ena_dev->tx_mem_queue_type ==
889 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
890 			tx_queue_size = RTE_MIN(tx_queue_size,
891 				llq->max_llq_depth);
892 		} else {
893 			tx_queue_size = RTE_MIN(tx_queue_size,
894 				max_queues->max_sq_depth);
895 		}
896 
897 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
898 			max_queues->max_packet_tx_descs);
899 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
900 			max_queues->max_packet_rx_descs);
901 	}
902 
903 	/* Round down to the nearest power of 2 */
904 	rx_queue_size = rte_align32prevpow2(rx_queue_size);
905 	tx_queue_size = rte_align32prevpow2(tx_queue_size);
906 
907 	if (unlikely(rx_queue_size == 0 || tx_queue_size == 0)) {
908 		PMD_INIT_LOG(ERR, "Invalid queue size");
909 		return -EFAULT;
910 	}
911 
912 	ctx->rx_queue_size = rx_queue_size;
913 	ctx->tx_queue_size = tx_queue_size;
914 
915 	return 0;
916 }
917 
918 static void ena_stats_restart(struct rte_eth_dev *dev)
919 {
920 	struct ena_adapter *adapter = dev->data->dev_private;
921 
922 	rte_atomic64_init(&adapter->drv_stats->ierrors);
923 	rte_atomic64_init(&adapter->drv_stats->oerrors);
924 	rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
925 	rte_atomic64_init(&adapter->drv_stats->rx_drops);
926 }
927 
928 static int ena_stats_get(struct rte_eth_dev *dev,
929 			  struct rte_eth_stats *stats)
930 {
931 	struct ena_admin_basic_stats ena_stats;
932 	struct ena_adapter *adapter = dev->data->dev_private;
933 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
934 	int rc;
935 	int i;
936 	int max_rings_stats;
937 
938 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
939 		return -ENOTSUP;
940 
941 	memset(&ena_stats, 0, sizeof(ena_stats));
942 	rc = ena_com_get_dev_basic_stats(ena_dev, &ena_stats);
943 	if (unlikely(rc)) {
944 		PMD_DRV_LOG(ERR, "Could not retrieve statistics from ENA\n");
945 		return rc;
946 	}
947 
948 	/* Set of basic statistics from ENA */
949 	stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
950 					  ena_stats.rx_pkts_low);
951 	stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
952 					  ena_stats.tx_pkts_low);
953 	stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
954 					ena_stats.rx_bytes_low);
955 	stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
956 					ena_stats.tx_bytes_low);
957 
958 	/* Driver related stats */
959 	stats->imissed = rte_atomic64_read(&adapter->drv_stats->rx_drops);
960 	stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
961 	stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
962 	stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
963 
964 	max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
965 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
966 	for (i = 0; i < max_rings_stats; ++i) {
967 		struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
968 
969 		stats->q_ibytes[i] = rx_stats->bytes;
970 		stats->q_ipackets[i] = rx_stats->cnt;
971 		stats->q_errors[i] = rx_stats->bad_desc_num +
972 			rx_stats->bad_req_id;
973 	}
974 
975 	max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
976 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
977 	for (i = 0; i < max_rings_stats; ++i) {
978 		struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
979 
980 		stats->q_obytes[i] = tx_stats->bytes;
981 		stats->q_opackets[i] = tx_stats->cnt;
982 	}
983 
984 	return 0;
985 }
986 
987 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
988 {
989 	struct ena_adapter *adapter;
990 	struct ena_com_dev *ena_dev;
991 	int rc = 0;
992 
993 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
994 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
995 	adapter = dev->data->dev_private;
996 
997 	ena_dev = &adapter->ena_dev;
998 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
999 
1000 	if (mtu > ena_get_mtu_conf(adapter) || mtu < ENA_MIN_MTU) {
1001 		PMD_DRV_LOG(ERR,
1002 			"Invalid MTU setting. new_mtu: %d "
1003 			"max mtu: %d min mtu: %d\n",
1004 			mtu, ena_get_mtu_conf(adapter), ENA_MIN_MTU);
1005 		return -EINVAL;
1006 	}
1007 
1008 	rc = ena_com_set_dev_mtu(ena_dev, mtu);
1009 	if (rc)
1010 		PMD_DRV_LOG(ERR, "Could not set MTU: %d\n", mtu);
1011 	else
1012 		PMD_DRV_LOG(NOTICE, "Set MTU: %d\n", mtu);
1013 
1014 	return rc;
1015 }
1016 
1017 static int ena_start(struct rte_eth_dev *dev)
1018 {
1019 	struct ena_adapter *adapter = dev->data->dev_private;
1020 	uint64_t ticks;
1021 	int rc = 0;
1022 
1023 	rc = ena_check_valid_conf(adapter);
1024 	if (rc)
1025 		return rc;
1026 
1027 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
1028 	if (rc)
1029 		return rc;
1030 
1031 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
1032 	if (rc)
1033 		goto err_start_tx;
1034 
1035 	if (adapter->rte_dev->data->dev_conf.rxmode.mq_mode &
1036 	    ETH_MQ_RX_RSS_FLAG && adapter->rte_dev->data->nb_rx_queues > 0) {
1037 		rc = ena_rss_init_default(adapter);
1038 		if (rc)
1039 			goto err_rss_init;
1040 	}
1041 
1042 	ena_stats_restart(dev);
1043 
1044 	adapter->timestamp_wd = rte_get_timer_cycles();
1045 	adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
1046 
1047 	ticks = rte_get_timer_hz();
1048 	rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
1049 			ena_timer_wd_callback, adapter);
1050 
1051 	++adapter->dev_stats.dev_start;
1052 	adapter->state = ENA_ADAPTER_STATE_RUNNING;
1053 
1054 	return 0;
1055 
1056 err_rss_init:
1057 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1058 err_start_tx:
1059 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1060 	return rc;
1061 }
1062 
1063 static void ena_stop(struct rte_eth_dev *dev)
1064 {
1065 	struct ena_adapter *adapter = dev->data->dev_private;
1066 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1067 	int rc;
1068 
1069 	rte_timer_stop_sync(&adapter->timer_wd);
1070 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1071 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1072 
1073 	if (adapter->trigger_reset) {
1074 		rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
1075 		if (rc)
1076 			PMD_DRV_LOG(ERR, "Device reset failed rc=%d\n", rc);
1077 	}
1078 
1079 	++adapter->dev_stats.dev_stop;
1080 	adapter->state = ENA_ADAPTER_STATE_STOPPED;
1081 }
1082 
1083 static int ena_create_io_queue(struct ena_ring *ring)
1084 {
1085 	struct ena_adapter *adapter;
1086 	struct ena_com_dev *ena_dev;
1087 	struct ena_com_create_io_ctx ctx =
1088 		/* policy set to _HOST just to satisfy icc compiler */
1089 		{ ENA_ADMIN_PLACEMENT_POLICY_HOST,
1090 		  0, 0, 0, 0, 0 };
1091 	uint16_t ena_qid;
1092 	unsigned int i;
1093 	int rc;
1094 
1095 	adapter = ring->adapter;
1096 	ena_dev = &adapter->ena_dev;
1097 
1098 	if (ring->type == ENA_RING_TYPE_TX) {
1099 		ena_qid = ENA_IO_TXQ_IDX(ring->id);
1100 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1101 		ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1102 		for (i = 0; i < ring->ring_size; i++)
1103 			ring->empty_tx_reqs[i] = i;
1104 	} else {
1105 		ena_qid = ENA_IO_RXQ_IDX(ring->id);
1106 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1107 		for (i = 0; i < ring->ring_size; i++)
1108 			ring->empty_rx_reqs[i] = i;
1109 	}
1110 	ctx.queue_size = ring->ring_size;
1111 	ctx.qid = ena_qid;
1112 	ctx.msix_vector = -1; /* interrupts not used */
1113 	ctx.numa_node = ring->numa_socket_id;
1114 
1115 	rc = ena_com_create_io_queue(ena_dev, &ctx);
1116 	if (rc) {
1117 		PMD_DRV_LOG(ERR,
1118 			"failed to create io queue #%d (qid:%d) rc: %d\n",
1119 			ring->id, ena_qid, rc);
1120 		return rc;
1121 	}
1122 
1123 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1124 				     &ring->ena_com_io_sq,
1125 				     &ring->ena_com_io_cq);
1126 	if (rc) {
1127 		PMD_DRV_LOG(ERR,
1128 			"Failed to get io queue handlers. queue num %d rc: %d\n",
1129 			ring->id, rc);
1130 		ena_com_destroy_io_queue(ena_dev, ena_qid);
1131 		return rc;
1132 	}
1133 
1134 	if (ring->type == ENA_RING_TYPE_TX)
1135 		ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1136 
1137 	return 0;
1138 }
1139 
1140 static void ena_queue_stop(struct ena_ring *ring)
1141 {
1142 	struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
1143 
1144 	if (ring->type == ENA_RING_TYPE_RX) {
1145 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
1146 		ena_rx_queue_release_bufs(ring);
1147 	} else {
1148 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
1149 		ena_tx_queue_release_bufs(ring);
1150 	}
1151 }
1152 
1153 static void ena_queue_stop_all(struct rte_eth_dev *dev,
1154 			      enum ena_ring_type ring_type)
1155 {
1156 	struct ena_adapter *adapter = dev->data->dev_private;
1157 	struct ena_ring *queues = NULL;
1158 	uint16_t nb_queues, i;
1159 
1160 	if (ring_type == ENA_RING_TYPE_RX) {
1161 		queues = adapter->rx_ring;
1162 		nb_queues = dev->data->nb_rx_queues;
1163 	} else {
1164 		queues = adapter->tx_ring;
1165 		nb_queues = dev->data->nb_tx_queues;
1166 	}
1167 
1168 	for (i = 0; i < nb_queues; ++i)
1169 		if (queues[i].configured)
1170 			ena_queue_stop(&queues[i]);
1171 }
1172 
1173 static int ena_queue_start(struct ena_ring *ring)
1174 {
1175 	int rc, bufs_num;
1176 
1177 	ena_assert_msg(ring->configured == 1,
1178 		       "Trying to start unconfigured queue\n");
1179 
1180 	rc = ena_create_io_queue(ring);
1181 	if (rc) {
1182 		PMD_INIT_LOG(ERR, "Failed to create IO queue!");
1183 		return rc;
1184 	}
1185 
1186 	ring->next_to_clean = 0;
1187 	ring->next_to_use = 0;
1188 
1189 	if (ring->type == ENA_RING_TYPE_TX) {
1190 		ring->tx_stats.available_desc =
1191 			ena_com_free_q_entries(ring->ena_com_io_sq);
1192 		return 0;
1193 	}
1194 
1195 	bufs_num = ring->ring_size - 1;
1196 	rc = ena_populate_rx_queue(ring, bufs_num);
1197 	if (rc != bufs_num) {
1198 		ena_com_destroy_io_queue(&ring->adapter->ena_dev,
1199 					 ENA_IO_RXQ_IDX(ring->id));
1200 		PMD_INIT_LOG(ERR, "Failed to populate rx ring !");
1201 		return ENA_COM_FAULT;
1202 	}
1203 
1204 	return 0;
1205 }
1206 
1207 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1208 			      uint16_t queue_idx,
1209 			      uint16_t nb_desc,
1210 			      unsigned int socket_id,
1211 			      const struct rte_eth_txconf *tx_conf)
1212 {
1213 	struct ena_ring *txq = NULL;
1214 	struct ena_adapter *adapter = dev->data->dev_private;
1215 	unsigned int i;
1216 
1217 	txq = &adapter->tx_ring[queue_idx];
1218 
1219 	if (txq->configured) {
1220 		PMD_DRV_LOG(CRIT,
1221 			"API violation. Queue %d is already configured\n",
1222 			queue_idx);
1223 		return ENA_COM_FAULT;
1224 	}
1225 
1226 	if (!rte_is_power_of_2(nb_desc)) {
1227 		PMD_DRV_LOG(ERR,
1228 			"Unsupported size of TX queue: %d is not a power of 2.\n",
1229 			nb_desc);
1230 		return -EINVAL;
1231 	}
1232 
1233 	if (nb_desc > adapter->tx_ring_size) {
1234 		PMD_DRV_LOG(ERR,
1235 			"Unsupported size of TX queue (max size: %d)\n",
1236 			adapter->tx_ring_size);
1237 		return -EINVAL;
1238 	}
1239 
1240 	if (nb_desc == RTE_ETH_DEV_FALLBACK_TX_RINGSIZE)
1241 		nb_desc = adapter->tx_ring_size;
1242 
1243 	txq->port_id = dev->data->port_id;
1244 	txq->next_to_clean = 0;
1245 	txq->next_to_use = 0;
1246 	txq->ring_size = nb_desc;
1247 	txq->numa_socket_id = socket_id;
1248 
1249 	txq->tx_buffer_info = rte_zmalloc("txq->tx_buffer_info",
1250 					  sizeof(struct ena_tx_buffer) *
1251 					  txq->ring_size,
1252 					  RTE_CACHE_LINE_SIZE);
1253 	if (!txq->tx_buffer_info) {
1254 		PMD_DRV_LOG(ERR, "failed to alloc mem for tx buffer info\n");
1255 		return -ENOMEM;
1256 	}
1257 
1258 	txq->empty_tx_reqs = rte_zmalloc("txq->empty_tx_reqs",
1259 					 sizeof(u16) * txq->ring_size,
1260 					 RTE_CACHE_LINE_SIZE);
1261 	if (!txq->empty_tx_reqs) {
1262 		PMD_DRV_LOG(ERR, "failed to alloc mem for tx reqs\n");
1263 		rte_free(txq->tx_buffer_info);
1264 		return -ENOMEM;
1265 	}
1266 
1267 	txq->push_buf_intermediate_buf =
1268 		rte_zmalloc("txq->push_buf_intermediate_buf",
1269 			    txq->tx_max_header_size,
1270 			    RTE_CACHE_LINE_SIZE);
1271 	if (!txq->push_buf_intermediate_buf) {
1272 		PMD_DRV_LOG(ERR, "failed to alloc push buff for LLQ\n");
1273 		rte_free(txq->tx_buffer_info);
1274 		rte_free(txq->empty_tx_reqs);
1275 		return -ENOMEM;
1276 	}
1277 
1278 	for (i = 0; i < txq->ring_size; i++)
1279 		txq->empty_tx_reqs[i] = i;
1280 
1281 	if (tx_conf != NULL) {
1282 		txq->offloads =
1283 			tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1284 	}
1285 	/* Store pointer to this queue in upper layer */
1286 	txq->configured = 1;
1287 	dev->data->tx_queues[queue_idx] = txq;
1288 
1289 	return 0;
1290 }
1291 
1292 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1293 			      uint16_t queue_idx,
1294 			      uint16_t nb_desc,
1295 			      unsigned int socket_id,
1296 			      __rte_unused const struct rte_eth_rxconf *rx_conf,
1297 			      struct rte_mempool *mp)
1298 {
1299 	struct ena_adapter *adapter = dev->data->dev_private;
1300 	struct ena_ring *rxq = NULL;
1301 	size_t buffer_size;
1302 	int i;
1303 
1304 	rxq = &adapter->rx_ring[queue_idx];
1305 	if (rxq->configured) {
1306 		PMD_DRV_LOG(CRIT,
1307 			"API violation. Queue %d is already configured\n",
1308 			queue_idx);
1309 		return ENA_COM_FAULT;
1310 	}
1311 
1312 	if (nb_desc == RTE_ETH_DEV_FALLBACK_RX_RINGSIZE)
1313 		nb_desc = adapter->rx_ring_size;
1314 
1315 	if (!rte_is_power_of_2(nb_desc)) {
1316 		PMD_DRV_LOG(ERR,
1317 			"Unsupported size of RX queue: %d is not a power of 2.\n",
1318 			nb_desc);
1319 		return -EINVAL;
1320 	}
1321 
1322 	if (nb_desc > adapter->rx_ring_size) {
1323 		PMD_DRV_LOG(ERR,
1324 			"Unsupported size of RX queue (max size: %d)\n",
1325 			adapter->rx_ring_size);
1326 		return -EINVAL;
1327 	}
1328 
1329 	/* ENA isn't supporting buffers smaller than 1400 bytes */
1330 	buffer_size = rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
1331 	if (buffer_size < ENA_RX_BUF_MIN_SIZE) {
1332 		PMD_DRV_LOG(ERR,
1333 			"Unsupported size of RX buffer: %zu (min size: %d)\n",
1334 			buffer_size, ENA_RX_BUF_MIN_SIZE);
1335 		return -EINVAL;
1336 	}
1337 
1338 	rxq->port_id = dev->data->port_id;
1339 	rxq->next_to_clean = 0;
1340 	rxq->next_to_use = 0;
1341 	rxq->ring_size = nb_desc;
1342 	rxq->numa_socket_id = socket_id;
1343 	rxq->mb_pool = mp;
1344 
1345 	rxq->rx_buffer_info = rte_zmalloc("rxq->buffer_info",
1346 					  sizeof(struct rte_mbuf *) * nb_desc,
1347 					  RTE_CACHE_LINE_SIZE);
1348 	if (!rxq->rx_buffer_info) {
1349 		PMD_DRV_LOG(ERR, "failed to alloc mem for rx buffer info\n");
1350 		return -ENOMEM;
1351 	}
1352 
1353 	rxq->rx_refill_buffer = rte_zmalloc("rxq->rx_refill_buffer",
1354 					    sizeof(struct rte_mbuf *) * nb_desc,
1355 					    RTE_CACHE_LINE_SIZE);
1356 
1357 	if (!rxq->rx_refill_buffer) {
1358 		PMD_DRV_LOG(ERR, "failed to alloc mem for rx refill buffer\n");
1359 		rte_free(rxq->rx_buffer_info);
1360 		rxq->rx_buffer_info = NULL;
1361 		return -ENOMEM;
1362 	}
1363 
1364 	rxq->empty_rx_reqs = rte_zmalloc("rxq->empty_rx_reqs",
1365 					 sizeof(uint16_t) * nb_desc,
1366 					 RTE_CACHE_LINE_SIZE);
1367 	if (!rxq->empty_rx_reqs) {
1368 		PMD_DRV_LOG(ERR, "failed to alloc mem for empty rx reqs\n");
1369 		rte_free(rxq->rx_buffer_info);
1370 		rxq->rx_buffer_info = NULL;
1371 		rte_free(rxq->rx_refill_buffer);
1372 		rxq->rx_refill_buffer = NULL;
1373 		return -ENOMEM;
1374 	}
1375 
1376 	for (i = 0; i < nb_desc; i++)
1377 		rxq->empty_rx_reqs[i] = i;
1378 
1379 	/* Store pointer to this queue in upper layer */
1380 	rxq->configured = 1;
1381 	dev->data->rx_queues[queue_idx] = rxq;
1382 
1383 	return 0;
1384 }
1385 
1386 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1387 {
1388 	unsigned int i;
1389 	int rc;
1390 	uint16_t ring_size = rxq->ring_size;
1391 	uint16_t ring_mask = ring_size - 1;
1392 	uint16_t next_to_use = rxq->next_to_use;
1393 	uint16_t in_use, req_id;
1394 	struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1395 
1396 	if (unlikely(!count))
1397 		return 0;
1398 
1399 	in_use = rxq->next_to_use - rxq->next_to_clean;
1400 	ena_assert_msg(((in_use + count) < ring_size), "bad ring state\n");
1401 
1402 	/* get resources for incoming packets */
1403 	rc = rte_mempool_get_bulk(rxq->mb_pool, (void **)mbufs, count);
1404 	if (unlikely(rc < 0)) {
1405 		rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1406 		++rxq->rx_stats.mbuf_alloc_fail;
1407 		PMD_RX_LOG(DEBUG, "there are no enough free buffers");
1408 		return 0;
1409 	}
1410 
1411 	for (i = 0; i < count; i++) {
1412 		uint16_t next_to_use_masked = next_to_use & ring_mask;
1413 		struct rte_mbuf *mbuf = mbufs[i];
1414 		struct ena_com_buf ebuf;
1415 
1416 		if (likely((i + 4) < count))
1417 			rte_prefetch0(mbufs[i + 4]);
1418 
1419 		req_id = rxq->empty_rx_reqs[next_to_use_masked];
1420 		rc = validate_rx_req_id(rxq, req_id);
1421 		if (unlikely(rc < 0))
1422 			break;
1423 		rxq->rx_buffer_info[req_id] = mbuf;
1424 
1425 		/* prepare physical address for DMA transaction */
1426 		ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1427 		ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1428 		/* pass resource to device */
1429 		rc = ena_com_add_single_rx_desc(rxq->ena_com_io_sq,
1430 						&ebuf, req_id);
1431 		if (unlikely(rc)) {
1432 			PMD_DRV_LOG(WARNING, "failed adding rx desc\n");
1433 			rxq->rx_buffer_info[req_id] = NULL;
1434 			break;
1435 		}
1436 		next_to_use++;
1437 	}
1438 
1439 	if (unlikely(i < count)) {
1440 		PMD_DRV_LOG(WARNING, "refilled rx qid %d with only %d "
1441 			"buffers (from %d)\n", rxq->id, i, count);
1442 		rte_mempool_put_bulk(rxq->mb_pool, (void **)(&mbufs[i]),
1443 				     count - i);
1444 		++rxq->rx_stats.refill_partial;
1445 	}
1446 
1447 	/* When we submitted free recources to device... */
1448 	if (likely(i > 0)) {
1449 		/* ...let HW know that it can fill buffers with data
1450 		 *
1451 		 * Add memory barrier to make sure the desc were written before
1452 		 * issue a doorbell
1453 		 */
1454 		rte_wmb();
1455 		ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1456 
1457 		rxq->next_to_use = next_to_use;
1458 	}
1459 
1460 	return i;
1461 }
1462 
1463 static int ena_device_init(struct ena_com_dev *ena_dev,
1464 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
1465 			   bool *wd_state)
1466 {
1467 	uint32_t aenq_groups;
1468 	int rc;
1469 	bool readless_supported;
1470 
1471 	/* Initialize mmio registers */
1472 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
1473 	if (rc) {
1474 		PMD_DRV_LOG(ERR, "failed to init mmio read less\n");
1475 		return rc;
1476 	}
1477 
1478 	/* The PCIe configuration space revision id indicate if mmio reg
1479 	 * read is disabled.
1480 	 */
1481 	readless_supported =
1482 		!(((struct rte_pci_device *)ena_dev->dmadev)->id.class_id
1483 			       & ENA_MMIO_DISABLE_REG_READ);
1484 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1485 
1486 	/* reset device */
1487 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1488 	if (rc) {
1489 		PMD_DRV_LOG(ERR, "cannot reset device\n");
1490 		goto err_mmio_read_less;
1491 	}
1492 
1493 	/* check FW version */
1494 	rc = ena_com_validate_version(ena_dev);
1495 	if (rc) {
1496 		PMD_DRV_LOG(ERR, "device version is too low\n");
1497 		goto err_mmio_read_less;
1498 	}
1499 
1500 	ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1501 
1502 	/* ENA device administration layer init */
1503 	rc = ena_com_admin_init(ena_dev, &aenq_handlers);
1504 	if (rc) {
1505 		PMD_DRV_LOG(ERR,
1506 			"cannot initialize ena admin queue with device\n");
1507 		goto err_mmio_read_less;
1508 	}
1509 
1510 	/* To enable the msix interrupts the driver needs to know the number
1511 	 * of queues. So the driver uses polling mode to retrieve this
1512 	 * information.
1513 	 */
1514 	ena_com_set_admin_polling_mode(ena_dev, true);
1515 
1516 	ena_config_host_info(ena_dev);
1517 
1518 	/* Get Device Attributes and features */
1519 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1520 	if (rc) {
1521 		PMD_DRV_LOG(ERR,
1522 			"cannot get attribute for ena device rc= %d\n", rc);
1523 		goto err_admin_init;
1524 	}
1525 
1526 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1527 		      BIT(ENA_ADMIN_NOTIFICATION) |
1528 		      BIT(ENA_ADMIN_KEEP_ALIVE) |
1529 		      BIT(ENA_ADMIN_FATAL_ERROR) |
1530 		      BIT(ENA_ADMIN_WARNING);
1531 
1532 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
1533 	rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
1534 	if (rc) {
1535 		PMD_DRV_LOG(ERR, "Cannot configure aenq groups rc: %d\n", rc);
1536 		goto err_admin_init;
1537 	}
1538 
1539 	*wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
1540 
1541 	return 0;
1542 
1543 err_admin_init:
1544 	ena_com_admin_destroy(ena_dev);
1545 
1546 err_mmio_read_less:
1547 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1548 
1549 	return rc;
1550 }
1551 
1552 static void ena_interrupt_handler_rte(void *cb_arg)
1553 {
1554 	struct ena_adapter *adapter = cb_arg;
1555 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1556 
1557 	ena_com_admin_q_comp_intr_handler(ena_dev);
1558 	if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED))
1559 		ena_com_aenq_intr_handler(ena_dev, adapter);
1560 }
1561 
1562 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1563 {
1564 	if (!adapter->wd_state)
1565 		return;
1566 
1567 	if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1568 		return;
1569 
1570 	if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1571 	    adapter->keep_alive_timeout)) {
1572 		PMD_DRV_LOG(ERR, "Keep alive timeout\n");
1573 		adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
1574 		adapter->trigger_reset = true;
1575 		++adapter->dev_stats.wd_expired;
1576 	}
1577 }
1578 
1579 /* Check if admin queue is enabled */
1580 static void check_for_admin_com_state(struct ena_adapter *adapter)
1581 {
1582 	if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1583 		PMD_DRV_LOG(ERR, "ENA admin queue is not in running state!\n");
1584 		adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
1585 		adapter->trigger_reset = true;
1586 	}
1587 }
1588 
1589 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
1590 				  void *arg)
1591 {
1592 	struct ena_adapter *adapter = arg;
1593 	struct rte_eth_dev *dev = adapter->rte_dev;
1594 
1595 	check_for_missing_keep_alive(adapter);
1596 	check_for_admin_com_state(adapter);
1597 
1598 	if (unlikely(adapter->trigger_reset)) {
1599 		PMD_DRV_LOG(ERR, "Trigger reset is on\n");
1600 		_rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
1601 			NULL);
1602 	}
1603 }
1604 
1605 static inline void
1606 set_default_llq_configurations(struct ena_llq_configurations *llq_config)
1607 {
1608 	llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
1609 	llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_128B;
1610 	llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
1611 	llq_config->llq_num_decs_before_header =
1612 		ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
1613 	llq_config->llq_ring_entry_size_value = 128;
1614 }
1615 
1616 static int
1617 ena_set_queues_placement_policy(struct ena_adapter *adapter,
1618 				struct ena_com_dev *ena_dev,
1619 				struct ena_admin_feature_llq_desc *llq,
1620 				struct ena_llq_configurations *llq_default_configurations)
1621 {
1622 	int rc;
1623 	u32 llq_feature_mask;
1624 
1625 	llq_feature_mask = 1 << ENA_ADMIN_LLQ;
1626 	if (!(ena_dev->supported_features & llq_feature_mask)) {
1627 		PMD_DRV_LOG(INFO,
1628 			"LLQ is not supported. Fallback to host mode policy.\n");
1629 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1630 		return 0;
1631 	}
1632 
1633 	rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
1634 	if (unlikely(rc)) {
1635 		PMD_INIT_LOG(WARNING, "Failed to config dev mode. "
1636 			"Fallback to host mode policy.");
1637 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1638 		return 0;
1639 	}
1640 
1641 	/* Nothing to config, exit */
1642 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1643 		return 0;
1644 
1645 	if (!adapter->dev_mem_base) {
1646 		PMD_DRV_LOG(ERR, "Unable to access LLQ bar resource. "
1647 			"Fallback to host mode policy.\n.");
1648 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1649 		return 0;
1650 	}
1651 
1652 	ena_dev->mem_bar = adapter->dev_mem_base;
1653 
1654 	return 0;
1655 }
1656 
1657 static int ena_calc_io_queue_num(struct ena_com_dev *ena_dev,
1658 				 struct ena_com_dev_get_features_ctx *get_feat_ctx)
1659 {
1660 	uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, io_queue_num;
1661 
1662 	/* Regular queues capabilities */
1663 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1664 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1665 			&get_feat_ctx->max_queue_ext.max_queue_ext;
1666 		io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
1667 				    max_queue_ext->max_rx_cq_num);
1668 		io_tx_sq_num = max_queue_ext->max_tx_sq_num;
1669 		io_tx_cq_num = max_queue_ext->max_tx_cq_num;
1670 	} else {
1671 		struct ena_admin_queue_feature_desc *max_queues =
1672 			&get_feat_ctx->max_queues;
1673 		io_tx_sq_num = max_queues->max_sq_num;
1674 		io_tx_cq_num = max_queues->max_cq_num;
1675 		io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
1676 	}
1677 
1678 	/* In case of LLQ use the llq number in the get feature cmd */
1679 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
1680 		io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
1681 
1682 	io_queue_num = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
1683 	io_queue_num = RTE_MIN(io_queue_num, io_tx_sq_num);
1684 	io_queue_num = RTE_MIN(io_queue_num, io_tx_cq_num);
1685 
1686 	if (unlikely(io_queue_num == 0)) {
1687 		PMD_DRV_LOG(ERR, "Number of IO queues should not be 0\n");
1688 		return -EFAULT;
1689 	}
1690 
1691 	return io_queue_num;
1692 }
1693 
1694 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
1695 {
1696 	struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
1697 	struct rte_pci_device *pci_dev;
1698 	struct rte_intr_handle *intr_handle;
1699 	struct ena_adapter *adapter = eth_dev->data->dev_private;
1700 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1701 	struct ena_com_dev_get_features_ctx get_feat_ctx;
1702 	struct ena_llq_configurations llq_config;
1703 	const char *queue_type_str;
1704 	int rc;
1705 
1706 	static int adapters_found;
1707 	bool wd_state;
1708 
1709 	eth_dev->dev_ops = &ena_dev_ops;
1710 	eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
1711 	eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
1712 	eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
1713 
1714 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1715 		return 0;
1716 
1717 	memset(adapter, 0, sizeof(struct ena_adapter));
1718 	ena_dev = &adapter->ena_dev;
1719 
1720 	adapter->rte_eth_dev_data = eth_dev->data;
1721 	adapter->rte_dev = eth_dev;
1722 
1723 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1724 	adapter->pdev = pci_dev;
1725 
1726 	PMD_INIT_LOG(INFO, "Initializing %x:%x:%x.%d",
1727 		     pci_dev->addr.domain,
1728 		     pci_dev->addr.bus,
1729 		     pci_dev->addr.devid,
1730 		     pci_dev->addr.function);
1731 
1732 	intr_handle = &pci_dev->intr_handle;
1733 
1734 	adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
1735 	adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
1736 
1737 	if (!adapter->regs) {
1738 		PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)",
1739 			     ENA_REGS_BAR);
1740 		return -ENXIO;
1741 	}
1742 
1743 	ena_dev->reg_bar = adapter->regs;
1744 	ena_dev->dmadev = adapter->pdev;
1745 
1746 	adapter->id_number = adapters_found;
1747 
1748 	snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
1749 		 adapter->id_number);
1750 
1751 	/* device specific initialization routine */
1752 	rc = ena_device_init(ena_dev, &get_feat_ctx, &wd_state);
1753 	if (rc) {
1754 		PMD_INIT_LOG(CRIT, "Failed to init ENA device");
1755 		goto err;
1756 	}
1757 	adapter->wd_state = wd_state;
1758 
1759 	set_default_llq_configurations(&llq_config);
1760 	rc = ena_set_queues_placement_policy(adapter, ena_dev,
1761 					     &get_feat_ctx.llq, &llq_config);
1762 	if (unlikely(rc)) {
1763 		PMD_INIT_LOG(CRIT, "Failed to set placement policy");
1764 		return rc;
1765 	}
1766 
1767 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1768 		queue_type_str = "Regular";
1769 	else
1770 		queue_type_str = "Low latency";
1771 	PMD_DRV_LOG(INFO, "Placement policy: %s\n", queue_type_str);
1772 
1773 	calc_queue_ctx.ena_dev = ena_dev;
1774 	calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
1775 	adapter->num_queues = ena_calc_io_queue_num(ena_dev,
1776 						    &get_feat_ctx);
1777 
1778 	rc = ena_calc_queue_size(&calc_queue_ctx);
1779 	if (unlikely((rc != 0) || (adapter->num_queues <= 0))) {
1780 		rc = -EFAULT;
1781 		goto err_device_destroy;
1782 	}
1783 
1784 	adapter->tx_ring_size = calc_queue_ctx.tx_queue_size;
1785 	adapter->rx_ring_size = calc_queue_ctx.rx_queue_size;
1786 
1787 	adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
1788 	adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
1789 
1790 	/* prepare ring structures */
1791 	ena_init_rings(adapter);
1792 
1793 	ena_config_debug_area(adapter);
1794 
1795 	/* Set max MTU for this device */
1796 	adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
1797 
1798 	/* set device support for offloads */
1799 	adapter->offloads.tso4_supported = (get_feat_ctx.offload.tx &
1800 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) != 0;
1801 	adapter->offloads.tx_csum_supported = (get_feat_ctx.offload.tx &
1802 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK) != 0;
1803 	adapter->offloads.rx_csum_supported =
1804 		(get_feat_ctx.offload.rx_supported &
1805 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK) != 0;
1806 
1807 	/* Copy MAC address and point DPDK to it */
1808 	eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr;
1809 	rte_ether_addr_copy((struct rte_ether_addr *)
1810 			get_feat_ctx.dev_attr.mac_addr,
1811 			(struct rte_ether_addr *)adapter->mac_addr);
1812 
1813 	/*
1814 	 * Pass the information to the rte_eth_dev_close() that it should also
1815 	 * release the private port resources.
1816 	 */
1817 	eth_dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE;
1818 
1819 	adapter->drv_stats = rte_zmalloc("adapter stats",
1820 					 sizeof(*adapter->drv_stats),
1821 					 RTE_CACHE_LINE_SIZE);
1822 	if (!adapter->drv_stats) {
1823 		PMD_DRV_LOG(ERR, "failed to alloc mem for adapter stats\n");
1824 		rc = -ENOMEM;
1825 		goto err_delete_debug_area;
1826 	}
1827 
1828 	rte_intr_callback_register(intr_handle,
1829 				   ena_interrupt_handler_rte,
1830 				   adapter);
1831 	rte_intr_enable(intr_handle);
1832 	ena_com_set_admin_polling_mode(ena_dev, false);
1833 	ena_com_admin_aenq_enable(ena_dev);
1834 
1835 	if (adapters_found == 0)
1836 		rte_timer_subsystem_init();
1837 	rte_timer_init(&adapter->timer_wd);
1838 
1839 	adapters_found++;
1840 	adapter->state = ENA_ADAPTER_STATE_INIT;
1841 
1842 	return 0;
1843 
1844 err_delete_debug_area:
1845 	ena_com_delete_debug_area(ena_dev);
1846 
1847 err_device_destroy:
1848 	ena_com_delete_host_info(ena_dev);
1849 	ena_com_admin_destroy(ena_dev);
1850 
1851 err:
1852 	return rc;
1853 }
1854 
1855 static void ena_destroy_device(struct rte_eth_dev *eth_dev)
1856 {
1857 	struct ena_adapter *adapter = eth_dev->data->dev_private;
1858 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1859 
1860 	if (adapter->state == ENA_ADAPTER_STATE_FREE)
1861 		return;
1862 
1863 	ena_com_set_admin_running_state(ena_dev, false);
1864 
1865 	if (adapter->state != ENA_ADAPTER_STATE_CLOSED)
1866 		ena_close(eth_dev);
1867 
1868 	ena_com_delete_debug_area(ena_dev);
1869 	ena_com_delete_host_info(ena_dev);
1870 
1871 	ena_com_abort_admin_commands(ena_dev);
1872 	ena_com_wait_for_abort_completion(ena_dev);
1873 	ena_com_admin_destroy(ena_dev);
1874 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1875 
1876 	adapter->state = ENA_ADAPTER_STATE_FREE;
1877 }
1878 
1879 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
1880 {
1881 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1882 		return 0;
1883 
1884 	ena_destroy_device(eth_dev);
1885 
1886 	eth_dev->dev_ops = NULL;
1887 	eth_dev->rx_pkt_burst = NULL;
1888 	eth_dev->tx_pkt_burst = NULL;
1889 	eth_dev->tx_pkt_prepare = NULL;
1890 
1891 	return 0;
1892 }
1893 
1894 static int ena_dev_configure(struct rte_eth_dev *dev)
1895 {
1896 	struct ena_adapter *adapter = dev->data->dev_private;
1897 
1898 	adapter->state = ENA_ADAPTER_STATE_CONFIG;
1899 
1900 	adapter->tx_selected_offloads = dev->data->dev_conf.txmode.offloads;
1901 	adapter->rx_selected_offloads = dev->data->dev_conf.rxmode.offloads;
1902 	return 0;
1903 }
1904 
1905 static void ena_init_rings(struct ena_adapter *adapter)
1906 {
1907 	int i;
1908 
1909 	for (i = 0; i < adapter->num_queues; i++) {
1910 		struct ena_ring *ring = &adapter->tx_ring[i];
1911 
1912 		ring->configured = 0;
1913 		ring->type = ENA_RING_TYPE_TX;
1914 		ring->adapter = adapter;
1915 		ring->id = i;
1916 		ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
1917 		ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
1918 		ring->sgl_size = adapter->max_tx_sgl_size;
1919 	}
1920 
1921 	for (i = 0; i < adapter->num_queues; i++) {
1922 		struct ena_ring *ring = &adapter->rx_ring[i];
1923 
1924 		ring->configured = 0;
1925 		ring->type = ENA_RING_TYPE_RX;
1926 		ring->adapter = adapter;
1927 		ring->id = i;
1928 		ring->sgl_size = adapter->max_rx_sgl_size;
1929 	}
1930 }
1931 
1932 static int ena_infos_get(struct rte_eth_dev *dev,
1933 			  struct rte_eth_dev_info *dev_info)
1934 {
1935 	struct ena_adapter *adapter;
1936 	struct ena_com_dev *ena_dev;
1937 	uint64_t rx_feat = 0, tx_feat = 0;
1938 
1939 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
1940 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
1941 	adapter = dev->data->dev_private;
1942 
1943 	ena_dev = &adapter->ena_dev;
1944 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
1945 
1946 	dev_info->speed_capa =
1947 			ETH_LINK_SPEED_1G   |
1948 			ETH_LINK_SPEED_2_5G |
1949 			ETH_LINK_SPEED_5G   |
1950 			ETH_LINK_SPEED_10G  |
1951 			ETH_LINK_SPEED_25G  |
1952 			ETH_LINK_SPEED_40G  |
1953 			ETH_LINK_SPEED_50G  |
1954 			ETH_LINK_SPEED_100G;
1955 
1956 	/* Set Tx & Rx features available for device */
1957 	if (adapter->offloads.tso4_supported)
1958 		tx_feat	|= DEV_TX_OFFLOAD_TCP_TSO;
1959 
1960 	if (adapter->offloads.tx_csum_supported)
1961 		tx_feat |= DEV_TX_OFFLOAD_IPV4_CKSUM |
1962 			DEV_TX_OFFLOAD_UDP_CKSUM |
1963 			DEV_TX_OFFLOAD_TCP_CKSUM;
1964 
1965 	if (adapter->offloads.rx_csum_supported)
1966 		rx_feat |= DEV_RX_OFFLOAD_IPV4_CKSUM |
1967 			DEV_RX_OFFLOAD_UDP_CKSUM  |
1968 			DEV_RX_OFFLOAD_TCP_CKSUM;
1969 
1970 	rx_feat |= DEV_RX_OFFLOAD_JUMBO_FRAME;
1971 
1972 	/* Inform framework about available features */
1973 	dev_info->rx_offload_capa = rx_feat;
1974 	dev_info->rx_queue_offload_capa = rx_feat;
1975 	dev_info->tx_offload_capa = tx_feat;
1976 	dev_info->tx_queue_offload_capa = tx_feat;
1977 
1978 	dev_info->flow_type_rss_offloads = ETH_RSS_IP | ETH_RSS_TCP |
1979 					   ETH_RSS_UDP;
1980 
1981 	dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
1982 	dev_info->max_rx_pktlen  = adapter->max_mtu;
1983 	dev_info->max_mac_addrs = 1;
1984 
1985 	dev_info->max_rx_queues = adapter->num_queues;
1986 	dev_info->max_tx_queues = adapter->num_queues;
1987 	dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
1988 
1989 	adapter->tx_supported_offloads = tx_feat;
1990 	adapter->rx_supported_offloads = rx_feat;
1991 
1992 	dev_info->rx_desc_lim.nb_max = adapter->rx_ring_size;
1993 	dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
1994 	dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
1995 					adapter->max_rx_sgl_size);
1996 	dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
1997 					adapter->max_rx_sgl_size);
1998 
1999 	dev_info->tx_desc_lim.nb_max = adapter->tx_ring_size;
2000 	dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2001 	dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2002 					adapter->max_tx_sgl_size);
2003 	dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2004 					adapter->max_tx_sgl_size);
2005 
2006 	return 0;
2007 }
2008 
2009 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
2010 				  uint16_t nb_pkts)
2011 {
2012 	struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
2013 	unsigned int ring_size = rx_ring->ring_size;
2014 	unsigned int ring_mask = ring_size - 1;
2015 	uint16_t next_to_clean = rx_ring->next_to_clean;
2016 	uint16_t desc_in_use = 0;
2017 	uint16_t req_id;
2018 	unsigned int recv_idx = 0;
2019 	struct rte_mbuf *mbuf = NULL;
2020 	struct rte_mbuf *mbuf_head = NULL;
2021 	struct rte_mbuf *mbuf_prev = NULL;
2022 	struct rte_mbuf **rx_buff_info = rx_ring->rx_buffer_info;
2023 	unsigned int completed;
2024 
2025 	struct ena_com_rx_ctx ena_rx_ctx;
2026 	int rc = 0;
2027 
2028 	/* Check adapter state */
2029 	if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2030 		PMD_DRV_LOG(ALERT,
2031 			"Trying to receive pkts while device is NOT running\n");
2032 		return 0;
2033 	}
2034 
2035 	desc_in_use = rx_ring->next_to_use - next_to_clean;
2036 	if (unlikely(nb_pkts > desc_in_use))
2037 		nb_pkts = desc_in_use;
2038 
2039 	for (completed = 0; completed < nb_pkts; completed++) {
2040 		int segments = 0;
2041 
2042 		ena_rx_ctx.max_bufs = rx_ring->sgl_size;
2043 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
2044 		ena_rx_ctx.descs = 0;
2045 		ena_rx_ctx.pkt_offset = 0;
2046 		/* receive packet context */
2047 		rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
2048 				    rx_ring->ena_com_io_sq,
2049 				    &ena_rx_ctx);
2050 		if (unlikely(rc)) {
2051 			PMD_DRV_LOG(ERR, "ena_com_rx_pkt error %d\n", rc);
2052 			rx_ring->adapter->reset_reason =
2053 				ENA_REGS_RESET_TOO_MANY_RX_DESCS;
2054 			rx_ring->adapter->trigger_reset = true;
2055 			++rx_ring->rx_stats.bad_desc_num;
2056 			return 0;
2057 		}
2058 
2059 		if (unlikely(ena_rx_ctx.descs == 0))
2060 			break;
2061 
2062 		while (segments < ena_rx_ctx.descs) {
2063 			req_id = ena_rx_ctx.ena_bufs[segments].req_id;
2064 			rc = validate_rx_req_id(rx_ring, req_id);
2065 			if (unlikely(rc)) {
2066 				if (segments != 0)
2067 					rte_mbuf_raw_free(mbuf_head);
2068 				break;
2069 			}
2070 
2071 			mbuf = rx_buff_info[req_id];
2072 			rx_buff_info[req_id] = NULL;
2073 			mbuf->data_len = ena_rx_ctx.ena_bufs[segments].len;
2074 			mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2075 			mbuf->refcnt = 1;
2076 			mbuf->next = NULL;
2077 			if (unlikely(segments == 0)) {
2078 				mbuf->nb_segs = ena_rx_ctx.descs;
2079 				mbuf->port = rx_ring->port_id;
2080 				mbuf->pkt_len = 0;
2081 				mbuf->data_off += ena_rx_ctx.pkt_offset;
2082 				mbuf_head = mbuf;
2083 			} else {
2084 				/* for multi-segment pkts create mbuf chain */
2085 				mbuf_prev->next = mbuf;
2086 			}
2087 			mbuf_head->pkt_len += mbuf->data_len;
2088 
2089 			mbuf_prev = mbuf;
2090 			rx_ring->empty_rx_reqs[next_to_clean & ring_mask] =
2091 				req_id;
2092 			segments++;
2093 			next_to_clean++;
2094 		}
2095 		if (unlikely(rc))
2096 			break;
2097 
2098 		/* fill mbuf attributes if any */
2099 		ena_rx_mbuf_prepare(mbuf_head, &ena_rx_ctx);
2100 
2101 		if (unlikely(mbuf_head->ol_flags &
2102 				(PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD))) {
2103 			rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors);
2104 			++rx_ring->rx_stats.bad_csum;
2105 		}
2106 
2107 		mbuf_head->hash.rss = ena_rx_ctx.hash;
2108 
2109 		/* pass to DPDK application head mbuf */
2110 		rx_pkts[recv_idx] = mbuf_head;
2111 		recv_idx++;
2112 		rx_ring->rx_stats.bytes += mbuf_head->pkt_len;
2113 	}
2114 
2115 	rx_ring->rx_stats.cnt += recv_idx;
2116 	rx_ring->next_to_clean = next_to_clean;
2117 
2118 	desc_in_use = desc_in_use - completed + 1;
2119 	/* Burst refill to save doorbells, memory barriers, const interval */
2120 	if (ring_size - desc_in_use > ENA_RING_DESCS_RATIO(ring_size)) {
2121 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
2122 		ena_populate_rx_queue(rx_ring, ring_size - desc_in_use);
2123 	}
2124 
2125 	return recv_idx;
2126 }
2127 
2128 static uint16_t
2129 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2130 		uint16_t nb_pkts)
2131 {
2132 	int32_t ret;
2133 	uint32_t i;
2134 	struct rte_mbuf *m;
2135 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2136 	struct rte_ipv4_hdr *ip_hdr;
2137 	uint64_t ol_flags;
2138 	uint16_t frag_field;
2139 
2140 	for (i = 0; i != nb_pkts; i++) {
2141 		m = tx_pkts[i];
2142 		ol_flags = m->ol_flags;
2143 
2144 		if (!(ol_flags & PKT_TX_IPV4))
2145 			continue;
2146 
2147 		/* If there was not L2 header length specified, assume it is
2148 		 * length of the ethernet header.
2149 		 */
2150 		if (unlikely(m->l2_len == 0))
2151 			m->l2_len = sizeof(struct rte_ether_hdr);
2152 
2153 		ip_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *,
2154 						 m->l2_len);
2155 		frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
2156 
2157 		if ((frag_field & RTE_IPV4_HDR_DF_FLAG) != 0) {
2158 			m->packet_type |= RTE_PTYPE_L4_NONFRAG;
2159 
2160 			/* If IPv4 header has DF flag enabled and TSO support is
2161 			 * disabled, partial chcecksum should not be calculated.
2162 			 */
2163 			if (!tx_ring->adapter->offloads.tso4_supported)
2164 				continue;
2165 		}
2166 
2167 		if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) != 0 ||
2168 				(ol_flags & PKT_TX_L4_MASK) ==
2169 				PKT_TX_SCTP_CKSUM) {
2170 			rte_errno = ENOTSUP;
2171 			return i;
2172 		}
2173 
2174 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2175 		ret = rte_validate_tx_offload(m);
2176 		if (ret != 0) {
2177 			rte_errno = -ret;
2178 			return i;
2179 		}
2180 #endif
2181 
2182 		/* In case we are supposed to TSO and have DF not set (DF=0)
2183 		 * hardware must be provided with partial checksum, otherwise
2184 		 * it will take care of necessary calculations.
2185 		 */
2186 
2187 		ret = rte_net_intel_cksum_flags_prepare(m,
2188 			ol_flags & ~PKT_TX_TCP_SEG);
2189 		if (ret != 0) {
2190 			rte_errno = -ret;
2191 			return i;
2192 		}
2193 	}
2194 
2195 	return i;
2196 }
2197 
2198 static void ena_update_hints(struct ena_adapter *adapter,
2199 			     struct ena_admin_ena_hw_hints *hints)
2200 {
2201 	if (hints->admin_completion_tx_timeout)
2202 		adapter->ena_dev.admin_queue.completion_timeout =
2203 			hints->admin_completion_tx_timeout * 1000;
2204 
2205 	if (hints->mmio_read_timeout)
2206 		/* convert to usec */
2207 		adapter->ena_dev.mmio_read.reg_read_to =
2208 			hints->mmio_read_timeout * 1000;
2209 
2210 	if (hints->driver_watchdog_timeout) {
2211 		if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
2212 			adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
2213 		else
2214 			// Convert msecs to ticks
2215 			adapter->keep_alive_timeout =
2216 				(hints->driver_watchdog_timeout *
2217 				rte_get_timer_hz()) / 1000;
2218 	}
2219 }
2220 
2221 static int ena_check_and_linearize_mbuf(struct ena_ring *tx_ring,
2222 					struct rte_mbuf *mbuf)
2223 {
2224 	struct ena_com_dev *ena_dev;
2225 	int num_segments, header_len, rc;
2226 
2227 	ena_dev = &tx_ring->adapter->ena_dev;
2228 	num_segments = mbuf->nb_segs;
2229 	header_len = mbuf->data_len;
2230 
2231 	if (likely(num_segments < tx_ring->sgl_size))
2232 		return 0;
2233 
2234 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
2235 	    (num_segments == tx_ring->sgl_size) &&
2236 	    (header_len < tx_ring->tx_max_header_size))
2237 		return 0;
2238 
2239 	++tx_ring->tx_stats.linearize;
2240 	rc = rte_pktmbuf_linearize(mbuf);
2241 	if (unlikely(rc)) {
2242 		PMD_DRV_LOG(WARNING, "Mbuf linearize failed\n");
2243 		rte_atomic64_inc(&tx_ring->adapter->drv_stats->ierrors);
2244 		++tx_ring->tx_stats.linearize_failed;
2245 		return rc;
2246 	}
2247 
2248 	return rc;
2249 }
2250 
2251 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2252 				  uint16_t nb_pkts)
2253 {
2254 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2255 	uint16_t next_to_use = tx_ring->next_to_use;
2256 	uint16_t next_to_clean = tx_ring->next_to_clean;
2257 	struct rte_mbuf *mbuf;
2258 	uint16_t seg_len;
2259 	unsigned int ring_size = tx_ring->ring_size;
2260 	unsigned int ring_mask = ring_size - 1;
2261 	struct ena_com_tx_ctx ena_tx_ctx;
2262 	struct ena_tx_buffer *tx_info;
2263 	struct ena_com_buf *ebuf;
2264 	uint16_t rc, req_id, total_tx_descs = 0;
2265 	uint16_t sent_idx = 0, empty_tx_reqs;
2266 	uint16_t push_len = 0;
2267 	uint16_t delta = 0;
2268 	int nb_hw_desc;
2269 	uint32_t total_length;
2270 
2271 	/* Check adapter state */
2272 	if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2273 		PMD_DRV_LOG(ALERT,
2274 			"Trying to xmit pkts while device is NOT running\n");
2275 		return 0;
2276 	}
2277 
2278 	empty_tx_reqs = ring_size - (next_to_use - next_to_clean);
2279 	if (nb_pkts > empty_tx_reqs)
2280 		nb_pkts = empty_tx_reqs;
2281 
2282 	for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
2283 		mbuf = tx_pkts[sent_idx];
2284 		total_length = 0;
2285 
2286 		rc = ena_check_and_linearize_mbuf(tx_ring, mbuf);
2287 		if (unlikely(rc))
2288 			break;
2289 
2290 		req_id = tx_ring->empty_tx_reqs[next_to_use & ring_mask];
2291 		tx_info = &tx_ring->tx_buffer_info[req_id];
2292 		tx_info->mbuf = mbuf;
2293 		tx_info->num_of_bufs = 0;
2294 		ebuf = tx_info->bufs;
2295 
2296 		/* Prepare TX context */
2297 		memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
2298 		memset(&ena_tx_ctx.ena_meta, 0x0,
2299 		       sizeof(struct ena_com_tx_meta));
2300 		ena_tx_ctx.ena_bufs = ebuf;
2301 		ena_tx_ctx.req_id = req_id;
2302 
2303 		delta = 0;
2304 		seg_len = mbuf->data_len;
2305 
2306 		if (tx_ring->tx_mem_queue_type ==
2307 				ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2308 			push_len = RTE_MIN(mbuf->pkt_len,
2309 					   tx_ring->tx_max_header_size);
2310 			ena_tx_ctx.header_len = push_len;
2311 
2312 			if (likely(push_len <= seg_len)) {
2313 				/* If the push header is in the single segment,
2314 				 * then just point it to the 1st mbuf data.
2315 				 */
2316 				ena_tx_ctx.push_header =
2317 					rte_pktmbuf_mtod(mbuf, uint8_t *);
2318 			} else {
2319 				/* If the push header lays in the several
2320 				 * segments, copy it to the intermediate buffer.
2321 				 */
2322 				rte_pktmbuf_read(mbuf, 0, push_len,
2323 					tx_ring->push_buf_intermediate_buf);
2324 				ena_tx_ctx.push_header =
2325 					tx_ring->push_buf_intermediate_buf;
2326 				delta = push_len - seg_len;
2327 			}
2328 		} /* there's no else as we take advantage of memset zeroing */
2329 
2330 		/* Set TX offloads flags, if applicable */
2331 		ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads);
2332 
2333 		rte_prefetch0(tx_pkts[(sent_idx + 4) & ring_mask]);
2334 
2335 		/* Process first segment taking into
2336 		 * consideration pushed header
2337 		 */
2338 		if (seg_len > push_len) {
2339 			ebuf->paddr = mbuf->buf_iova +
2340 				      mbuf->data_off +
2341 				      push_len;
2342 			ebuf->len = seg_len - push_len;
2343 			ebuf++;
2344 			tx_info->num_of_bufs++;
2345 		}
2346 		total_length += mbuf->data_len;
2347 
2348 		while ((mbuf = mbuf->next) != NULL) {
2349 			seg_len = mbuf->data_len;
2350 
2351 			/* Skip mbufs if whole data is pushed as a header */
2352 			if (unlikely(delta > seg_len)) {
2353 				delta -= seg_len;
2354 				continue;
2355 			}
2356 
2357 			ebuf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
2358 			ebuf->len = seg_len - delta;
2359 			total_length += ebuf->len;
2360 			ebuf++;
2361 			tx_info->num_of_bufs++;
2362 
2363 			delta = 0;
2364 		}
2365 
2366 		ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2367 
2368 		if (ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
2369 					       &ena_tx_ctx)) {
2370 			PMD_DRV_LOG(DEBUG, "llq tx max burst size of queue %d"
2371 				" achieved, writing doorbell to send burst\n",
2372 				tx_ring->id);
2373 			rte_wmb();
2374 			ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2375 		}
2376 
2377 		/* prepare the packet's descriptors to dma engine */
2378 		rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq,
2379 					&ena_tx_ctx, &nb_hw_desc);
2380 		if (unlikely(rc)) {
2381 			++tx_ring->tx_stats.prepare_ctx_err;
2382 			break;
2383 		}
2384 		tx_info->tx_descs = nb_hw_desc;
2385 
2386 		next_to_use++;
2387 		tx_ring->tx_stats.cnt++;
2388 		tx_ring->tx_stats.bytes += total_length;
2389 	}
2390 	tx_ring->tx_stats.available_desc =
2391 		ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2392 
2393 	/* If there are ready packets to be xmitted... */
2394 	if (sent_idx > 0) {
2395 		/* ...let HW do its best :-) */
2396 		rte_wmb();
2397 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2398 		tx_ring->tx_stats.doorbells++;
2399 		tx_ring->next_to_use = next_to_use;
2400 	}
2401 
2402 	/* Clear complete packets  */
2403 	while (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) >= 0) {
2404 		rc = validate_tx_req_id(tx_ring, req_id);
2405 		if (rc)
2406 			break;
2407 
2408 		/* Get Tx info & store how many descs were processed  */
2409 		tx_info = &tx_ring->tx_buffer_info[req_id];
2410 		total_tx_descs += tx_info->tx_descs;
2411 
2412 		/* Free whole mbuf chain  */
2413 		mbuf = tx_info->mbuf;
2414 		rte_pktmbuf_free(mbuf);
2415 		tx_info->mbuf = NULL;
2416 
2417 		/* Put back descriptor to the ring for reuse */
2418 		tx_ring->empty_tx_reqs[next_to_clean & ring_mask] = req_id;
2419 		next_to_clean++;
2420 
2421 		/* If too many descs to clean, leave it for another run */
2422 		if (unlikely(total_tx_descs > ENA_RING_DESCS_RATIO(ring_size)))
2423 			break;
2424 	}
2425 	tx_ring->tx_stats.available_desc =
2426 		ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2427 
2428 	if (total_tx_descs > 0) {
2429 		/* acknowledge completion of sent packets */
2430 		tx_ring->next_to_clean = next_to_clean;
2431 		ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
2432 		ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
2433 	}
2434 
2435 	tx_ring->tx_stats.tx_poll++;
2436 
2437 	return sent_idx;
2438 }
2439 
2440 /**
2441  * DPDK callback to retrieve names of extended device statistics
2442  *
2443  * @param dev
2444  *   Pointer to Ethernet device structure.
2445  * @param[out] xstats_names
2446  *   Buffer to insert names into.
2447  * @param n
2448  *   Number of names.
2449  *
2450  * @return
2451  *   Number of xstats names.
2452  */
2453 static int ena_xstats_get_names(struct rte_eth_dev *dev,
2454 				struct rte_eth_xstat_name *xstats_names,
2455 				unsigned int n)
2456 {
2457 	unsigned int xstats_count = ena_xstats_calc_num(dev);
2458 	unsigned int stat, i, count = 0;
2459 
2460 	if (n < xstats_count || !xstats_names)
2461 		return xstats_count;
2462 
2463 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
2464 		strcpy(xstats_names[count].name,
2465 			ena_stats_global_strings[stat].name);
2466 
2467 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
2468 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
2469 			snprintf(xstats_names[count].name,
2470 				sizeof(xstats_names[count].name),
2471 				"rx_q%d_%s", i,
2472 				ena_stats_rx_strings[stat].name);
2473 
2474 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
2475 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
2476 			snprintf(xstats_names[count].name,
2477 				sizeof(xstats_names[count].name),
2478 				"tx_q%d_%s", i,
2479 				ena_stats_tx_strings[stat].name);
2480 
2481 	return xstats_count;
2482 }
2483 
2484 /**
2485  * DPDK callback to get extended device statistics.
2486  *
2487  * @param dev
2488  *   Pointer to Ethernet device structure.
2489  * @param[out] stats
2490  *   Stats table output buffer.
2491  * @param n
2492  *   The size of the stats table.
2493  *
2494  * @return
2495  *   Number of xstats on success, negative on failure.
2496  */
2497 static int ena_xstats_get(struct rte_eth_dev *dev,
2498 			  struct rte_eth_xstat *xstats,
2499 			  unsigned int n)
2500 {
2501 	struct ena_adapter *adapter = dev->data->dev_private;
2502 	unsigned int xstats_count = ena_xstats_calc_num(dev);
2503 	unsigned int stat, i, count = 0;
2504 	int stat_offset;
2505 	void *stats_begin;
2506 
2507 	if (n < xstats_count)
2508 		return xstats_count;
2509 
2510 	if (!xstats)
2511 		return 0;
2512 
2513 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
2514 		stat_offset = ena_stats_rx_strings[stat].stat_offset;
2515 		stats_begin = &adapter->dev_stats;
2516 
2517 		xstats[count].id = count;
2518 		xstats[count].value = *((uint64_t *)
2519 			((char *)stats_begin + stat_offset));
2520 	}
2521 
2522 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
2523 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
2524 			stat_offset = ena_stats_rx_strings[stat].stat_offset;
2525 			stats_begin = &adapter->rx_ring[i].rx_stats;
2526 
2527 			xstats[count].id = count;
2528 			xstats[count].value = *((uint64_t *)
2529 				((char *)stats_begin + stat_offset));
2530 		}
2531 	}
2532 
2533 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
2534 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
2535 			stat_offset = ena_stats_tx_strings[stat].stat_offset;
2536 			stats_begin = &adapter->tx_ring[i].rx_stats;
2537 
2538 			xstats[count].id = count;
2539 			xstats[count].value = *((uint64_t *)
2540 				((char *)stats_begin + stat_offset));
2541 		}
2542 	}
2543 
2544 	return count;
2545 }
2546 
2547 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
2548 				const uint64_t *ids,
2549 				uint64_t *values,
2550 				unsigned int n)
2551 {
2552 	struct ena_adapter *adapter = dev->data->dev_private;
2553 	uint64_t id;
2554 	uint64_t rx_entries, tx_entries;
2555 	unsigned int i;
2556 	int qid;
2557 	int valid = 0;
2558 	for (i = 0; i < n; ++i) {
2559 		id = ids[i];
2560 		/* Check if id belongs to global statistics */
2561 		if (id < ENA_STATS_ARRAY_GLOBAL) {
2562 			values[i] = *((uint64_t *)&adapter->dev_stats + id);
2563 			++valid;
2564 			continue;
2565 		}
2566 
2567 		/* Check if id belongs to rx queue statistics */
2568 		id -= ENA_STATS_ARRAY_GLOBAL;
2569 		rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
2570 		if (id < rx_entries) {
2571 			qid = id % dev->data->nb_rx_queues;
2572 			id /= dev->data->nb_rx_queues;
2573 			values[i] = *((uint64_t *)
2574 				&adapter->rx_ring[qid].rx_stats + id);
2575 			++valid;
2576 			continue;
2577 		}
2578 				/* Check if id belongs to rx queue statistics */
2579 		id -= rx_entries;
2580 		tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
2581 		if (id < tx_entries) {
2582 			qid = id % dev->data->nb_tx_queues;
2583 			id /= dev->data->nb_tx_queues;
2584 			values[i] = *((uint64_t *)
2585 				&adapter->tx_ring[qid].tx_stats + id);
2586 			++valid;
2587 			continue;
2588 		}
2589 	}
2590 
2591 	return valid;
2592 }
2593 
2594 /*********************************************************************
2595  *  PMD configuration
2596  *********************************************************************/
2597 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2598 	struct rte_pci_device *pci_dev)
2599 {
2600 	return rte_eth_dev_pci_generic_probe(pci_dev,
2601 		sizeof(struct ena_adapter), eth_ena_dev_init);
2602 }
2603 
2604 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
2605 {
2606 	return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
2607 }
2608 
2609 static struct rte_pci_driver rte_ena_pmd = {
2610 	.id_table = pci_id_ena_map,
2611 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
2612 		     RTE_PCI_DRV_WC_ACTIVATE,
2613 	.probe = eth_ena_pci_probe,
2614 	.remove = eth_ena_pci_remove,
2615 };
2616 
2617 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
2618 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
2619 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
2620 
2621 RTE_INIT(ena_init_log)
2622 {
2623 	ena_logtype_init = rte_log_register("pmd.net.ena.init");
2624 	if (ena_logtype_init >= 0)
2625 		rte_log_set_level(ena_logtype_init, RTE_LOG_NOTICE);
2626 	ena_logtype_driver = rte_log_register("pmd.net.ena.driver");
2627 	if (ena_logtype_driver >= 0)
2628 		rte_log_set_level(ena_logtype_driver, RTE_LOG_NOTICE);
2629 
2630 #ifdef RTE_LIBRTE_ENA_DEBUG_RX
2631 	ena_logtype_rx = rte_log_register("pmd.net.ena.rx");
2632 	if (ena_logtype_rx >= 0)
2633 		rte_log_set_level(ena_logtype_rx, RTE_LOG_NOTICE);
2634 #endif
2635 
2636 #ifdef RTE_LIBRTE_ENA_DEBUG_TX
2637 	ena_logtype_tx = rte_log_register("pmd.net.ena.tx");
2638 	if (ena_logtype_tx >= 0)
2639 		rte_log_set_level(ena_logtype_tx, RTE_LOG_NOTICE);
2640 #endif
2641 
2642 #ifdef RTE_LIBRTE_ENA_DEBUG_TX_FREE
2643 	ena_logtype_tx_free = rte_log_register("pmd.net.ena.tx_free");
2644 	if (ena_logtype_tx_free >= 0)
2645 		rte_log_set_level(ena_logtype_tx_free, RTE_LOG_NOTICE);
2646 #endif
2647 
2648 #ifdef RTE_LIBRTE_ENA_COM_DEBUG
2649 	ena_logtype_com = rte_log_register("pmd.net.ena.com");
2650 	if (ena_logtype_com >= 0)
2651 		rte_log_set_level(ena_logtype_com, RTE_LOG_NOTICE);
2652 #endif
2653 }
2654 
2655 /******************************************************************************
2656  ******************************** AENQ Handlers *******************************
2657  *****************************************************************************/
2658 static void ena_update_on_link_change(void *adapter_data,
2659 				      struct ena_admin_aenq_entry *aenq_e)
2660 {
2661 	struct rte_eth_dev *eth_dev;
2662 	struct ena_adapter *adapter;
2663 	struct ena_admin_aenq_link_change_desc *aenq_link_desc;
2664 	uint32_t status;
2665 
2666 	adapter = adapter_data;
2667 	aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
2668 	eth_dev = adapter->rte_dev;
2669 
2670 	status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
2671 	adapter->link_status = status;
2672 
2673 	ena_link_update(eth_dev, 0);
2674 	_rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
2675 }
2676 
2677 static void ena_notification(void *data,
2678 			     struct ena_admin_aenq_entry *aenq_e)
2679 {
2680 	struct ena_adapter *adapter = data;
2681 	struct ena_admin_ena_hw_hints *hints;
2682 
2683 	if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
2684 		PMD_DRV_LOG(WARNING, "Invalid group(%x) expected %x\n",
2685 			aenq_e->aenq_common_desc.group,
2686 			ENA_ADMIN_NOTIFICATION);
2687 
2688 	switch (aenq_e->aenq_common_desc.syndrom) {
2689 	case ENA_ADMIN_UPDATE_HINTS:
2690 		hints = (struct ena_admin_ena_hw_hints *)
2691 			(&aenq_e->inline_data_w4);
2692 		ena_update_hints(adapter, hints);
2693 		break;
2694 	default:
2695 		PMD_DRV_LOG(ERR, "Invalid aenq notification link state %d\n",
2696 			aenq_e->aenq_common_desc.syndrom);
2697 	}
2698 }
2699 
2700 static void ena_keep_alive(void *adapter_data,
2701 			   __rte_unused struct ena_admin_aenq_entry *aenq_e)
2702 {
2703 	struct ena_adapter *adapter = adapter_data;
2704 	struct ena_admin_aenq_keep_alive_desc *desc;
2705 	uint64_t rx_drops;
2706 
2707 	adapter->timestamp_wd = rte_get_timer_cycles();
2708 
2709 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
2710 	rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
2711 	rte_atomic64_set(&adapter->drv_stats->rx_drops, rx_drops);
2712 }
2713 
2714 /**
2715  * This handler will called for unknown event group or unimplemented handlers
2716  **/
2717 static void unimplemented_aenq_handler(__rte_unused void *data,
2718 				       __rte_unused struct ena_admin_aenq_entry *aenq_e)
2719 {
2720 	PMD_DRV_LOG(ERR, "Unknown event was received or event with "
2721 			  "unimplemented handler\n");
2722 }
2723 
2724 static struct ena_aenq_handlers aenq_handlers = {
2725 	.handlers = {
2726 		[ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
2727 		[ENA_ADMIN_NOTIFICATION] = ena_notification,
2728 		[ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive
2729 	},
2730 	.unimplemented_handler = unimplemented_aenq_handler
2731 };
2732