xref: /dpdk/drivers/net/ena/ena_ethdev.c (revision b53d106d34b5c638f5a2cbdfee0da5bd42d4383f)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
3  * All rights reserved.
4  */
5 
6 #include <rte_string_fns.h>
7 #include <rte_errno.h>
8 #include <rte_version.h>
9 #include <rte_net.h>
10 #include <rte_kvargs.h>
11 
12 #include "ena_ethdev.h"
13 #include "ena_logs.h"
14 #include "ena_platform.h"
15 #include "ena_com.h"
16 #include "ena_eth_com.h"
17 
18 #include <ena_common_defs.h>
19 #include <ena_regs_defs.h>
20 #include <ena_admin_defs.h>
21 #include <ena_eth_io_defs.h>
22 
23 #define DRV_MODULE_VER_MAJOR	2
24 #define DRV_MODULE_VER_MINOR	5
25 #define DRV_MODULE_VER_SUBMINOR	0
26 
27 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
28 
29 #define GET_L4_HDR_LEN(mbuf)					\
30 	((rte_pktmbuf_mtod_offset(mbuf,	struct rte_tcp_hdr *,	\
31 		mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
32 
33 #define ETH_GSTRING_LEN	32
34 
35 #define ARRAY_SIZE(x) RTE_DIM(x)
36 
37 #define ENA_MIN_RING_DESC	128
38 
39 #define ENA_PTYPE_HAS_HASH	(RTE_PTYPE_L4_TCP | RTE_PTYPE_L4_UDP)
40 
41 enum ethtool_stringset {
42 	ETH_SS_TEST             = 0,
43 	ETH_SS_STATS,
44 };
45 
46 struct ena_stats {
47 	char name[ETH_GSTRING_LEN];
48 	int stat_offset;
49 };
50 
51 #define ENA_STAT_ENTRY(stat, stat_type) { \
52 	.name = #stat, \
53 	.stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
54 }
55 
56 #define ENA_STAT_RX_ENTRY(stat) \
57 	ENA_STAT_ENTRY(stat, rx)
58 
59 #define ENA_STAT_TX_ENTRY(stat) \
60 	ENA_STAT_ENTRY(stat, tx)
61 
62 #define ENA_STAT_ENI_ENTRY(stat) \
63 	ENA_STAT_ENTRY(stat, eni)
64 
65 #define ENA_STAT_GLOBAL_ENTRY(stat) \
66 	ENA_STAT_ENTRY(stat, dev)
67 
68 /* Device arguments */
69 #define ENA_DEVARG_LARGE_LLQ_HDR "large_llq_hdr"
70 
71 /*
72  * Each rte_memzone should have unique name.
73  * To satisfy it, count number of allocation and add it to name.
74  */
75 rte_atomic64_t ena_alloc_cnt;
76 
77 static const struct ena_stats ena_stats_global_strings[] = {
78 	ENA_STAT_GLOBAL_ENTRY(wd_expired),
79 	ENA_STAT_GLOBAL_ENTRY(dev_start),
80 	ENA_STAT_GLOBAL_ENTRY(dev_stop),
81 	ENA_STAT_GLOBAL_ENTRY(tx_drops),
82 };
83 
84 static const struct ena_stats ena_stats_eni_strings[] = {
85 	ENA_STAT_ENI_ENTRY(bw_in_allowance_exceeded),
86 	ENA_STAT_ENI_ENTRY(bw_out_allowance_exceeded),
87 	ENA_STAT_ENI_ENTRY(pps_allowance_exceeded),
88 	ENA_STAT_ENI_ENTRY(conntrack_allowance_exceeded),
89 	ENA_STAT_ENI_ENTRY(linklocal_allowance_exceeded),
90 };
91 
92 static const struct ena_stats ena_stats_tx_strings[] = {
93 	ENA_STAT_TX_ENTRY(cnt),
94 	ENA_STAT_TX_ENTRY(bytes),
95 	ENA_STAT_TX_ENTRY(prepare_ctx_err),
96 	ENA_STAT_TX_ENTRY(linearize),
97 	ENA_STAT_TX_ENTRY(linearize_failed),
98 	ENA_STAT_TX_ENTRY(tx_poll),
99 	ENA_STAT_TX_ENTRY(doorbells),
100 	ENA_STAT_TX_ENTRY(bad_req_id),
101 	ENA_STAT_TX_ENTRY(available_desc),
102 	ENA_STAT_TX_ENTRY(missed_tx),
103 };
104 
105 static const struct ena_stats ena_stats_rx_strings[] = {
106 	ENA_STAT_RX_ENTRY(cnt),
107 	ENA_STAT_RX_ENTRY(bytes),
108 	ENA_STAT_RX_ENTRY(refill_partial),
109 	ENA_STAT_RX_ENTRY(bad_csum),
110 	ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
111 	ENA_STAT_RX_ENTRY(bad_desc_num),
112 	ENA_STAT_RX_ENTRY(bad_req_id),
113 };
114 
115 #define ENA_STATS_ARRAY_GLOBAL	ARRAY_SIZE(ena_stats_global_strings)
116 #define ENA_STATS_ARRAY_ENI	ARRAY_SIZE(ena_stats_eni_strings)
117 #define ENA_STATS_ARRAY_TX	ARRAY_SIZE(ena_stats_tx_strings)
118 #define ENA_STATS_ARRAY_RX	ARRAY_SIZE(ena_stats_rx_strings)
119 
120 #define QUEUE_OFFLOADS (RTE_ETH_TX_OFFLOAD_TCP_CKSUM |\
121 			RTE_ETH_TX_OFFLOAD_UDP_CKSUM |\
122 			RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |\
123 			RTE_ETH_TX_OFFLOAD_TCP_TSO)
124 #define MBUF_OFFLOADS (RTE_MBUF_F_TX_L4_MASK |\
125 		       RTE_MBUF_F_TX_IP_CKSUM |\
126 		       RTE_MBUF_F_TX_TCP_SEG)
127 
128 /** Vendor ID used by Amazon devices */
129 #define PCI_VENDOR_ID_AMAZON 0x1D0F
130 /** Amazon devices */
131 #define PCI_DEVICE_ID_ENA_VF		0xEC20
132 #define PCI_DEVICE_ID_ENA_VF_RSERV0	0xEC21
133 
134 #define	ENA_TX_OFFLOAD_MASK	(RTE_MBUF_F_TX_L4_MASK |         \
135 	RTE_MBUF_F_TX_IPV6 |            \
136 	RTE_MBUF_F_TX_IPV4 |            \
137 	RTE_MBUF_F_TX_IP_CKSUM |        \
138 	RTE_MBUF_F_TX_TCP_SEG)
139 
140 #define	ENA_TX_OFFLOAD_NOTSUP_MASK	\
141 	(RTE_MBUF_F_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
142 
143 /** HW specific offloads capabilities. */
144 /* IPv4 checksum offload. */
145 #define ENA_L3_IPV4_CSUM		0x0001
146 /* TCP/UDP checksum offload for IPv4 packets. */
147 #define ENA_L4_IPV4_CSUM		0x0002
148 /* TCP/UDP checksum offload for IPv4 packets with pseudo header checksum. */
149 #define ENA_L4_IPV4_CSUM_PARTIAL	0x0004
150 /* TCP/UDP checksum offload for IPv6 packets. */
151 #define ENA_L4_IPV6_CSUM		0x0008
152 /* TCP/UDP checksum offload for IPv6 packets with pseudo header checksum. */
153 #define ENA_L4_IPV6_CSUM_PARTIAL	0x0010
154 /* TSO support for IPv4 packets. */
155 #define ENA_IPV4_TSO			0x0020
156 
157 /* Device supports setting RSS hash. */
158 #define ENA_RX_RSS_HASH			0x0040
159 
160 static const struct rte_pci_id pci_id_ena_map[] = {
161 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
162 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF_RSERV0) },
163 	{ .device_id = 0 },
164 };
165 
166 static struct ena_aenq_handlers aenq_handlers;
167 
168 static int ena_device_init(struct ena_com_dev *ena_dev,
169 			   struct rte_pci_device *pdev,
170 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
171 			   bool *wd_state);
172 static int ena_dev_configure(struct rte_eth_dev *dev);
173 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
174 	struct ena_tx_buffer *tx_info,
175 	struct rte_mbuf *mbuf,
176 	void **push_header,
177 	uint16_t *header_len);
178 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf);
179 static void ena_tx_cleanup(struct ena_ring *tx_ring);
180 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
181 				  uint16_t nb_pkts);
182 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
183 		uint16_t nb_pkts);
184 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
185 			      uint16_t nb_desc, unsigned int socket_id,
186 			      const struct rte_eth_txconf *tx_conf);
187 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
188 			      uint16_t nb_desc, unsigned int socket_id,
189 			      const struct rte_eth_rxconf *rx_conf,
190 			      struct rte_mempool *mp);
191 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len);
192 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
193 				    struct ena_com_rx_buf_info *ena_bufs,
194 				    uint32_t descs,
195 				    uint16_t *next_to_clean,
196 				    uint8_t offset);
197 static uint16_t eth_ena_recv_pkts(void *rx_queue,
198 				  struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
199 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
200 				  struct rte_mbuf *mbuf, uint16_t id);
201 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
202 static void ena_init_rings(struct ena_adapter *adapter,
203 			   bool disable_meta_caching);
204 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
205 static int ena_start(struct rte_eth_dev *dev);
206 static int ena_stop(struct rte_eth_dev *dev);
207 static int ena_close(struct rte_eth_dev *dev);
208 static int ena_dev_reset(struct rte_eth_dev *dev);
209 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
210 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
211 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
212 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
213 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
214 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
215 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
216 static int ena_link_update(struct rte_eth_dev *dev,
217 			   int wait_to_complete);
218 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring);
219 static void ena_queue_stop(struct ena_ring *ring);
220 static void ena_queue_stop_all(struct rte_eth_dev *dev,
221 			      enum ena_ring_type ring_type);
222 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring);
223 static int ena_queue_start_all(struct rte_eth_dev *dev,
224 			       enum ena_ring_type ring_type);
225 static void ena_stats_restart(struct rte_eth_dev *dev);
226 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter);
227 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter);
228 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter);
229 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter);
230 static int ena_infos_get(struct rte_eth_dev *dev,
231 			 struct rte_eth_dev_info *dev_info);
232 static void ena_interrupt_handler_rte(void *cb_arg);
233 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
234 static void ena_destroy_device(struct rte_eth_dev *eth_dev);
235 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
236 static int ena_xstats_get_names(struct rte_eth_dev *dev,
237 				struct rte_eth_xstat_name *xstats_names,
238 				unsigned int n);
239 static int ena_xstats_get(struct rte_eth_dev *dev,
240 			  struct rte_eth_xstat *stats,
241 			  unsigned int n);
242 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
243 				const uint64_t *ids,
244 				uint64_t *values,
245 				unsigned int n);
246 static int ena_process_bool_devarg(const char *key,
247 				   const char *value,
248 				   void *opaque);
249 static int ena_parse_devargs(struct ena_adapter *adapter,
250 			     struct rte_devargs *devargs);
251 static int ena_copy_eni_stats(struct ena_adapter *adapter);
252 static int ena_setup_rx_intr(struct rte_eth_dev *dev);
253 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
254 				    uint16_t queue_id);
255 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
256 				     uint16_t queue_id);
257 
258 static const struct eth_dev_ops ena_dev_ops = {
259 	.dev_configure        = ena_dev_configure,
260 	.dev_infos_get        = ena_infos_get,
261 	.rx_queue_setup       = ena_rx_queue_setup,
262 	.tx_queue_setup       = ena_tx_queue_setup,
263 	.dev_start            = ena_start,
264 	.dev_stop             = ena_stop,
265 	.link_update          = ena_link_update,
266 	.stats_get            = ena_stats_get,
267 	.xstats_get_names     = ena_xstats_get_names,
268 	.xstats_get	      = ena_xstats_get,
269 	.xstats_get_by_id     = ena_xstats_get_by_id,
270 	.mtu_set              = ena_mtu_set,
271 	.rx_queue_release     = ena_rx_queue_release,
272 	.tx_queue_release     = ena_tx_queue_release,
273 	.dev_close            = ena_close,
274 	.dev_reset            = ena_dev_reset,
275 	.reta_update          = ena_rss_reta_update,
276 	.reta_query           = ena_rss_reta_query,
277 	.rx_queue_intr_enable = ena_rx_queue_intr_enable,
278 	.rx_queue_intr_disable = ena_rx_queue_intr_disable,
279 	.rss_hash_update      = ena_rss_hash_update,
280 	.rss_hash_conf_get    = ena_rss_hash_conf_get,
281 };
282 
283 static inline void ena_rx_mbuf_prepare(struct rte_mbuf *mbuf,
284 				       struct ena_com_rx_ctx *ena_rx_ctx,
285 				       bool fill_hash)
286 {
287 	uint64_t ol_flags = 0;
288 	uint32_t packet_type = 0;
289 
290 	if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
291 		packet_type |= RTE_PTYPE_L4_TCP;
292 	else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
293 		packet_type |= RTE_PTYPE_L4_UDP;
294 
295 	if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
296 		packet_type |= RTE_PTYPE_L3_IPV4;
297 		if (unlikely(ena_rx_ctx->l3_csum_err))
298 			ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
299 		else
300 			ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
301 	} else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
302 		packet_type |= RTE_PTYPE_L3_IPV6;
303 	}
304 
305 	if (!ena_rx_ctx->l4_csum_checked || ena_rx_ctx->frag)
306 		ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN;
307 	else
308 		if (unlikely(ena_rx_ctx->l4_csum_err))
309 			ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
310 		else
311 			ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
312 
313 	if (fill_hash &&
314 	    likely((packet_type & ENA_PTYPE_HAS_HASH) && !ena_rx_ctx->frag)) {
315 		ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
316 		mbuf->hash.rss = ena_rx_ctx->hash;
317 	}
318 
319 	mbuf->ol_flags = ol_flags;
320 	mbuf->packet_type = packet_type;
321 }
322 
323 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
324 				       struct ena_com_tx_ctx *ena_tx_ctx,
325 				       uint64_t queue_offloads,
326 				       bool disable_meta_caching)
327 {
328 	struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
329 
330 	if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
331 	    (queue_offloads & QUEUE_OFFLOADS)) {
332 		/* check if TSO is required */
333 		if ((mbuf->ol_flags & RTE_MBUF_F_TX_TCP_SEG) &&
334 		    (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_TSO)) {
335 			ena_tx_ctx->tso_enable = true;
336 
337 			ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
338 		}
339 
340 		/* check if L3 checksum is needed */
341 		if ((mbuf->ol_flags & RTE_MBUF_F_TX_IP_CKSUM) &&
342 		    (queue_offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM))
343 			ena_tx_ctx->l3_csum_enable = true;
344 
345 		if (mbuf->ol_flags & RTE_MBUF_F_TX_IPV6) {
346 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
347 		} else {
348 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
349 
350 			/* set don't fragment (DF) flag */
351 			if (mbuf->packet_type &
352 				(RTE_PTYPE_L4_NONFRAG
353 				 | RTE_PTYPE_INNER_L4_NONFRAG))
354 				ena_tx_ctx->df = true;
355 		}
356 
357 		/* check if L4 checksum is needed */
358 		if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) == RTE_MBUF_F_TX_TCP_CKSUM) &&
359 		    (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) {
360 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
361 			ena_tx_ctx->l4_csum_enable = true;
362 		} else if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) ==
363 				RTE_MBUF_F_TX_UDP_CKSUM) &&
364 				(queue_offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM)) {
365 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
366 			ena_tx_ctx->l4_csum_enable = true;
367 		} else {
368 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
369 			ena_tx_ctx->l4_csum_enable = false;
370 		}
371 
372 		ena_meta->mss = mbuf->tso_segsz;
373 		ena_meta->l3_hdr_len = mbuf->l3_len;
374 		ena_meta->l3_hdr_offset = mbuf->l2_len;
375 
376 		ena_tx_ctx->meta_valid = true;
377 	} else if (disable_meta_caching) {
378 		memset(ena_meta, 0, sizeof(*ena_meta));
379 		ena_tx_ctx->meta_valid = true;
380 	} else {
381 		ena_tx_ctx->meta_valid = false;
382 	}
383 }
384 
385 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
386 {
387 	struct ena_tx_buffer *tx_info = NULL;
388 
389 	if (likely(req_id < tx_ring->ring_size)) {
390 		tx_info = &tx_ring->tx_buffer_info[req_id];
391 		if (likely(tx_info->mbuf))
392 			return 0;
393 	}
394 
395 	if (tx_info)
396 		PMD_TX_LOG(ERR, "tx_info doesn't have valid mbuf\n");
397 	else
398 		PMD_TX_LOG(ERR, "Invalid req_id: %hu\n", req_id);
399 
400 	/* Trigger device reset */
401 	++tx_ring->tx_stats.bad_req_id;
402 	tx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID;
403 	tx_ring->adapter->trigger_reset	= true;
404 	return -EFAULT;
405 }
406 
407 static void ena_config_host_info(struct ena_com_dev *ena_dev)
408 {
409 	struct ena_admin_host_info *host_info;
410 	int rc;
411 
412 	/* Allocate only the host info */
413 	rc = ena_com_allocate_host_info(ena_dev);
414 	if (rc) {
415 		PMD_DRV_LOG(ERR, "Cannot allocate host info\n");
416 		return;
417 	}
418 
419 	host_info = ena_dev->host_attr.host_info;
420 
421 	host_info->os_type = ENA_ADMIN_OS_DPDK;
422 	host_info->kernel_ver = RTE_VERSION;
423 	strlcpy((char *)host_info->kernel_ver_str, rte_version(),
424 		sizeof(host_info->kernel_ver_str));
425 	host_info->os_dist = RTE_VERSION;
426 	strlcpy((char *)host_info->os_dist_str, rte_version(),
427 		sizeof(host_info->os_dist_str));
428 	host_info->driver_version =
429 		(DRV_MODULE_VER_MAJOR) |
430 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
431 		(DRV_MODULE_VER_SUBMINOR <<
432 			ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
433 	host_info->num_cpus = rte_lcore_count();
434 
435 	host_info->driver_supported_features =
436 		ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK |
437 		ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK;
438 
439 	rc = ena_com_set_host_attributes(ena_dev);
440 	if (rc) {
441 		if (rc == -ENA_COM_UNSUPPORTED)
442 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
443 		else
444 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
445 
446 		goto err;
447 	}
448 
449 	return;
450 
451 err:
452 	ena_com_delete_host_info(ena_dev);
453 }
454 
455 /* This function calculates the number of xstats based on the current config */
456 static unsigned int ena_xstats_calc_num(struct rte_eth_dev_data *data)
457 {
458 	return ENA_STATS_ARRAY_GLOBAL + ENA_STATS_ARRAY_ENI +
459 		(data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
460 		(data->nb_rx_queues * ENA_STATS_ARRAY_RX);
461 }
462 
463 static void ena_config_debug_area(struct ena_adapter *adapter)
464 {
465 	u32 debug_area_size;
466 	int rc, ss_count;
467 
468 	ss_count = ena_xstats_calc_num(adapter->edev_data);
469 
470 	/* allocate 32 bytes for each string and 64bit for the value */
471 	debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
472 
473 	rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
474 	if (rc) {
475 		PMD_DRV_LOG(ERR, "Cannot allocate debug area\n");
476 		return;
477 	}
478 
479 	rc = ena_com_set_host_attributes(&adapter->ena_dev);
480 	if (rc) {
481 		if (rc == -ENA_COM_UNSUPPORTED)
482 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
483 		else
484 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
485 
486 		goto err;
487 	}
488 
489 	return;
490 err:
491 	ena_com_delete_debug_area(&adapter->ena_dev);
492 }
493 
494 static int ena_close(struct rte_eth_dev *dev)
495 {
496 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
497 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
498 	struct ena_adapter *adapter = dev->data->dev_private;
499 	int ret = 0;
500 
501 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
502 		return 0;
503 
504 	if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
505 		ret = ena_stop(dev);
506 	adapter->state = ENA_ADAPTER_STATE_CLOSED;
507 
508 	ena_rx_queue_release_all(dev);
509 	ena_tx_queue_release_all(dev);
510 
511 	rte_free(adapter->drv_stats);
512 	adapter->drv_stats = NULL;
513 
514 	rte_intr_disable(intr_handle);
515 	rte_intr_callback_unregister(intr_handle,
516 				     ena_interrupt_handler_rte,
517 				     dev);
518 
519 	/*
520 	 * MAC is not allocated dynamically. Setting NULL should prevent from
521 	 * release of the resource in the rte_eth_dev_release_port().
522 	 */
523 	dev->data->mac_addrs = NULL;
524 
525 	return ret;
526 }
527 
528 static int
529 ena_dev_reset(struct rte_eth_dev *dev)
530 {
531 	int rc = 0;
532 
533 	/* Cannot release memory in secondary process */
534 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
535 		PMD_DRV_LOG(WARNING, "dev_reset not supported in secondary.\n");
536 		return -EPERM;
537 	}
538 
539 	ena_destroy_device(dev);
540 	rc = eth_ena_dev_init(dev);
541 	if (rc)
542 		PMD_INIT_LOG(CRIT, "Cannot initialize device\n");
543 
544 	return rc;
545 }
546 
547 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
548 {
549 	int nb_queues = dev->data->nb_rx_queues;
550 	int i;
551 
552 	for (i = 0; i < nb_queues; i++)
553 		ena_rx_queue_release(dev, i);
554 }
555 
556 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
557 {
558 	int nb_queues = dev->data->nb_tx_queues;
559 	int i;
560 
561 	for (i = 0; i < nb_queues; i++)
562 		ena_tx_queue_release(dev, i);
563 }
564 
565 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
566 {
567 	struct ena_ring *ring = dev->data->rx_queues[qid];
568 
569 	/* Free ring resources */
570 	if (ring->rx_buffer_info)
571 		rte_free(ring->rx_buffer_info);
572 	ring->rx_buffer_info = NULL;
573 
574 	if (ring->rx_refill_buffer)
575 		rte_free(ring->rx_refill_buffer);
576 	ring->rx_refill_buffer = NULL;
577 
578 	if (ring->empty_rx_reqs)
579 		rte_free(ring->empty_rx_reqs);
580 	ring->empty_rx_reqs = NULL;
581 
582 	ring->configured = 0;
583 
584 	PMD_DRV_LOG(NOTICE, "Rx queue %d:%d released\n",
585 		ring->port_id, ring->id);
586 }
587 
588 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
589 {
590 	struct ena_ring *ring = dev->data->tx_queues[qid];
591 
592 	/* Free ring resources */
593 	if (ring->push_buf_intermediate_buf)
594 		rte_free(ring->push_buf_intermediate_buf);
595 
596 	if (ring->tx_buffer_info)
597 		rte_free(ring->tx_buffer_info);
598 
599 	if (ring->empty_tx_reqs)
600 		rte_free(ring->empty_tx_reqs);
601 
602 	ring->empty_tx_reqs = NULL;
603 	ring->tx_buffer_info = NULL;
604 	ring->push_buf_intermediate_buf = NULL;
605 
606 	ring->configured = 0;
607 
608 	PMD_DRV_LOG(NOTICE, "Tx queue %d:%d released\n",
609 		ring->port_id, ring->id);
610 }
611 
612 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
613 {
614 	unsigned int i;
615 
616 	for (i = 0; i < ring->ring_size; ++i) {
617 		struct ena_rx_buffer *rx_info = &ring->rx_buffer_info[i];
618 		if (rx_info->mbuf) {
619 			rte_mbuf_raw_free(rx_info->mbuf);
620 			rx_info->mbuf = NULL;
621 		}
622 	}
623 }
624 
625 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
626 {
627 	unsigned int i;
628 
629 	for (i = 0; i < ring->ring_size; ++i) {
630 		struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
631 
632 		if (tx_buf->mbuf) {
633 			rte_pktmbuf_free(tx_buf->mbuf);
634 			tx_buf->mbuf = NULL;
635 		}
636 	}
637 }
638 
639 static int ena_link_update(struct rte_eth_dev *dev,
640 			   __rte_unused int wait_to_complete)
641 {
642 	struct rte_eth_link *link = &dev->data->dev_link;
643 	struct ena_adapter *adapter = dev->data->dev_private;
644 
645 	link->link_status = adapter->link_status ? RTE_ETH_LINK_UP : RTE_ETH_LINK_DOWN;
646 	link->link_speed = RTE_ETH_SPEED_NUM_NONE;
647 	link->link_duplex = RTE_ETH_LINK_FULL_DUPLEX;
648 
649 	return 0;
650 }
651 
652 static int ena_queue_start_all(struct rte_eth_dev *dev,
653 			       enum ena_ring_type ring_type)
654 {
655 	struct ena_adapter *adapter = dev->data->dev_private;
656 	struct ena_ring *queues = NULL;
657 	int nb_queues;
658 	int i = 0;
659 	int rc = 0;
660 
661 	if (ring_type == ENA_RING_TYPE_RX) {
662 		queues = adapter->rx_ring;
663 		nb_queues = dev->data->nb_rx_queues;
664 	} else {
665 		queues = adapter->tx_ring;
666 		nb_queues = dev->data->nb_tx_queues;
667 	}
668 	for (i = 0; i < nb_queues; i++) {
669 		if (queues[i].configured) {
670 			if (ring_type == ENA_RING_TYPE_RX) {
671 				ena_assert_msg(
672 					dev->data->rx_queues[i] == &queues[i],
673 					"Inconsistent state of Rx queues\n");
674 			} else {
675 				ena_assert_msg(
676 					dev->data->tx_queues[i] == &queues[i],
677 					"Inconsistent state of Tx queues\n");
678 			}
679 
680 			rc = ena_queue_start(dev, &queues[i]);
681 
682 			if (rc) {
683 				PMD_INIT_LOG(ERR,
684 					"Failed to start queue[%d] of type(%d)\n",
685 					i, ring_type);
686 				goto err;
687 			}
688 		}
689 	}
690 
691 	return 0;
692 
693 err:
694 	while (i--)
695 		if (queues[i].configured)
696 			ena_queue_stop(&queues[i]);
697 
698 	return rc;
699 }
700 
701 static int ena_check_valid_conf(struct ena_adapter *adapter)
702 {
703 	uint32_t mtu = adapter->edev_data->mtu;
704 
705 	if (mtu > adapter->max_mtu || mtu < ENA_MIN_MTU) {
706 		PMD_INIT_LOG(ERR,
707 			"Unsupported MTU of %d. Max MTU: %d, min MTU: %d\n",
708 			mtu, adapter->max_mtu, ENA_MIN_MTU);
709 		return ENA_COM_UNSUPPORTED;
710 	}
711 
712 	return 0;
713 }
714 
715 static int
716 ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx,
717 		       bool use_large_llq_hdr)
718 {
719 	struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
720 	struct ena_com_dev *ena_dev = ctx->ena_dev;
721 	uint32_t max_tx_queue_size;
722 	uint32_t max_rx_queue_size;
723 
724 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
725 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
726 			&ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
727 		max_rx_queue_size = RTE_MIN(max_queue_ext->max_rx_cq_depth,
728 			max_queue_ext->max_rx_sq_depth);
729 		max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
730 
731 		if (ena_dev->tx_mem_queue_type ==
732 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
733 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
734 				llq->max_llq_depth);
735 		} else {
736 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
737 				max_queue_ext->max_tx_sq_depth);
738 		}
739 
740 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
741 			max_queue_ext->max_per_packet_rx_descs);
742 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
743 			max_queue_ext->max_per_packet_tx_descs);
744 	} else {
745 		struct ena_admin_queue_feature_desc *max_queues =
746 			&ctx->get_feat_ctx->max_queues;
747 		max_rx_queue_size = RTE_MIN(max_queues->max_cq_depth,
748 			max_queues->max_sq_depth);
749 		max_tx_queue_size = max_queues->max_cq_depth;
750 
751 		if (ena_dev->tx_mem_queue_type ==
752 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
753 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
754 				llq->max_llq_depth);
755 		} else {
756 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
757 				max_queues->max_sq_depth);
758 		}
759 
760 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
761 			max_queues->max_packet_rx_descs);
762 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
763 			max_queues->max_packet_tx_descs);
764 	}
765 
766 	/* Round down to the nearest power of 2 */
767 	max_rx_queue_size = rte_align32prevpow2(max_rx_queue_size);
768 	max_tx_queue_size = rte_align32prevpow2(max_tx_queue_size);
769 
770 	if (use_large_llq_hdr) {
771 		if ((llq->entry_size_ctrl_supported &
772 		     ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
773 		    (ena_dev->tx_mem_queue_type ==
774 		     ENA_ADMIN_PLACEMENT_POLICY_DEV)) {
775 			max_tx_queue_size /= 2;
776 			PMD_INIT_LOG(INFO,
777 				"Forcing large headers and decreasing maximum Tx queue size to %d\n",
778 				max_tx_queue_size);
779 		} else {
780 			PMD_INIT_LOG(ERR,
781 				"Forcing large headers failed: LLQ is disabled or device does not support large headers\n");
782 		}
783 	}
784 
785 	if (unlikely(max_rx_queue_size == 0 || max_tx_queue_size == 0)) {
786 		PMD_INIT_LOG(ERR, "Invalid queue size\n");
787 		return -EFAULT;
788 	}
789 
790 	ctx->max_tx_queue_size = max_tx_queue_size;
791 	ctx->max_rx_queue_size = max_rx_queue_size;
792 
793 	return 0;
794 }
795 
796 static void ena_stats_restart(struct rte_eth_dev *dev)
797 {
798 	struct ena_adapter *adapter = dev->data->dev_private;
799 
800 	rte_atomic64_init(&adapter->drv_stats->ierrors);
801 	rte_atomic64_init(&adapter->drv_stats->oerrors);
802 	rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
803 	adapter->drv_stats->rx_drops = 0;
804 }
805 
806 static int ena_stats_get(struct rte_eth_dev *dev,
807 			  struct rte_eth_stats *stats)
808 {
809 	struct ena_admin_basic_stats ena_stats;
810 	struct ena_adapter *adapter = dev->data->dev_private;
811 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
812 	int rc;
813 	int i;
814 	int max_rings_stats;
815 
816 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
817 		return -ENOTSUP;
818 
819 	memset(&ena_stats, 0, sizeof(ena_stats));
820 
821 	rte_spinlock_lock(&adapter->admin_lock);
822 	rc = ena_com_get_dev_basic_stats(ena_dev, &ena_stats);
823 	rte_spinlock_unlock(&adapter->admin_lock);
824 	if (unlikely(rc)) {
825 		PMD_DRV_LOG(ERR, "Could not retrieve statistics from ENA\n");
826 		return rc;
827 	}
828 
829 	/* Set of basic statistics from ENA */
830 	stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
831 					  ena_stats.rx_pkts_low);
832 	stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
833 					  ena_stats.tx_pkts_low);
834 	stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
835 					ena_stats.rx_bytes_low);
836 	stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
837 					ena_stats.tx_bytes_low);
838 
839 	/* Driver related stats */
840 	stats->imissed = adapter->drv_stats->rx_drops;
841 	stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
842 	stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
843 	stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
844 
845 	max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
846 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
847 	for (i = 0; i < max_rings_stats; ++i) {
848 		struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
849 
850 		stats->q_ibytes[i] = rx_stats->bytes;
851 		stats->q_ipackets[i] = rx_stats->cnt;
852 		stats->q_errors[i] = rx_stats->bad_desc_num +
853 			rx_stats->bad_req_id;
854 	}
855 
856 	max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
857 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
858 	for (i = 0; i < max_rings_stats; ++i) {
859 		struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
860 
861 		stats->q_obytes[i] = tx_stats->bytes;
862 		stats->q_opackets[i] = tx_stats->cnt;
863 	}
864 
865 	return 0;
866 }
867 
868 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
869 {
870 	struct ena_adapter *adapter;
871 	struct ena_com_dev *ena_dev;
872 	int rc = 0;
873 
874 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
875 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
876 	adapter = dev->data->dev_private;
877 
878 	ena_dev = &adapter->ena_dev;
879 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
880 
881 	if (mtu > adapter->max_mtu || mtu < ENA_MIN_MTU) {
882 		PMD_DRV_LOG(ERR,
883 			"Invalid MTU setting. New MTU: %d, max MTU: %d, min MTU: %d\n",
884 			mtu, adapter->max_mtu, ENA_MIN_MTU);
885 		return -EINVAL;
886 	}
887 
888 	rc = ena_com_set_dev_mtu(ena_dev, mtu);
889 	if (rc)
890 		PMD_DRV_LOG(ERR, "Could not set MTU: %d\n", mtu);
891 	else
892 		PMD_DRV_LOG(NOTICE, "MTU set to: %d\n", mtu);
893 
894 	return rc;
895 }
896 
897 static int ena_start(struct rte_eth_dev *dev)
898 {
899 	struct ena_adapter *adapter = dev->data->dev_private;
900 	uint64_t ticks;
901 	int rc = 0;
902 
903 	/* Cannot allocate memory in secondary process */
904 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
905 		PMD_DRV_LOG(WARNING, "dev_start not supported in secondary.\n");
906 		return -EPERM;
907 	}
908 
909 	rc = ena_check_valid_conf(adapter);
910 	if (rc)
911 		return rc;
912 
913 	rc = ena_setup_rx_intr(dev);
914 	if (rc)
915 		return rc;
916 
917 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
918 	if (rc)
919 		return rc;
920 
921 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
922 	if (rc)
923 		goto err_start_tx;
924 
925 	if (adapter->edev_data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG) {
926 		rc = ena_rss_configure(adapter);
927 		if (rc)
928 			goto err_rss_init;
929 	}
930 
931 	ena_stats_restart(dev);
932 
933 	adapter->timestamp_wd = rte_get_timer_cycles();
934 	adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
935 
936 	ticks = rte_get_timer_hz();
937 	rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
938 			ena_timer_wd_callback, dev);
939 
940 	++adapter->dev_stats.dev_start;
941 	adapter->state = ENA_ADAPTER_STATE_RUNNING;
942 
943 	return 0;
944 
945 err_rss_init:
946 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
947 err_start_tx:
948 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
949 	return rc;
950 }
951 
952 static int ena_stop(struct rte_eth_dev *dev)
953 {
954 	struct ena_adapter *adapter = dev->data->dev_private;
955 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
956 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
957 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
958 	int rc;
959 
960 	/* Cannot free memory in secondary process */
961 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
962 		PMD_DRV_LOG(WARNING, "dev_stop not supported in secondary.\n");
963 		return -EPERM;
964 	}
965 
966 	rte_timer_stop_sync(&adapter->timer_wd);
967 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
968 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
969 
970 	if (adapter->trigger_reset) {
971 		rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
972 		if (rc)
973 			PMD_DRV_LOG(ERR, "Device reset failed, rc: %d\n", rc);
974 	}
975 
976 	rte_intr_disable(intr_handle);
977 
978 	rte_intr_efd_disable(intr_handle);
979 
980 	/* Cleanup vector list */
981 	rte_intr_vec_list_free(intr_handle);
982 
983 	rte_intr_enable(intr_handle);
984 
985 	++adapter->dev_stats.dev_stop;
986 	adapter->state = ENA_ADAPTER_STATE_STOPPED;
987 	dev->data->dev_started = 0;
988 
989 	return 0;
990 }
991 
992 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring)
993 {
994 	struct ena_adapter *adapter = ring->adapter;
995 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
996 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
997 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
998 	struct ena_com_create_io_ctx ctx =
999 		/* policy set to _HOST just to satisfy icc compiler */
1000 		{ ENA_ADMIN_PLACEMENT_POLICY_HOST,
1001 		  0, 0, 0, 0, 0 };
1002 	uint16_t ena_qid;
1003 	unsigned int i;
1004 	int rc;
1005 
1006 	ctx.msix_vector = -1;
1007 	if (ring->type == ENA_RING_TYPE_TX) {
1008 		ena_qid = ENA_IO_TXQ_IDX(ring->id);
1009 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1010 		ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1011 		for (i = 0; i < ring->ring_size; i++)
1012 			ring->empty_tx_reqs[i] = i;
1013 	} else {
1014 		ena_qid = ENA_IO_RXQ_IDX(ring->id);
1015 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1016 		if (rte_intr_dp_is_en(intr_handle))
1017 			ctx.msix_vector =
1018 				rte_intr_vec_list_index_get(intr_handle,
1019 								   ring->id);
1020 
1021 		for (i = 0; i < ring->ring_size; i++)
1022 			ring->empty_rx_reqs[i] = i;
1023 	}
1024 	ctx.queue_size = ring->ring_size;
1025 	ctx.qid = ena_qid;
1026 	ctx.numa_node = ring->numa_socket_id;
1027 
1028 	rc = ena_com_create_io_queue(ena_dev, &ctx);
1029 	if (rc) {
1030 		PMD_DRV_LOG(ERR,
1031 			"Failed to create IO queue[%d] (qid:%d), rc: %d\n",
1032 			ring->id, ena_qid, rc);
1033 		return rc;
1034 	}
1035 
1036 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1037 				     &ring->ena_com_io_sq,
1038 				     &ring->ena_com_io_cq);
1039 	if (rc) {
1040 		PMD_DRV_LOG(ERR,
1041 			"Failed to get IO queue[%d] handlers, rc: %d\n",
1042 			ring->id, rc);
1043 		ena_com_destroy_io_queue(ena_dev, ena_qid);
1044 		return rc;
1045 	}
1046 
1047 	if (ring->type == ENA_RING_TYPE_TX)
1048 		ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1049 
1050 	/* Start with Rx interrupts being masked. */
1051 	if (ring->type == ENA_RING_TYPE_RX && rte_intr_dp_is_en(intr_handle))
1052 		ena_rx_queue_intr_disable(dev, ring->id);
1053 
1054 	return 0;
1055 }
1056 
1057 static void ena_queue_stop(struct ena_ring *ring)
1058 {
1059 	struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
1060 
1061 	if (ring->type == ENA_RING_TYPE_RX) {
1062 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
1063 		ena_rx_queue_release_bufs(ring);
1064 	} else {
1065 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
1066 		ena_tx_queue_release_bufs(ring);
1067 	}
1068 }
1069 
1070 static void ena_queue_stop_all(struct rte_eth_dev *dev,
1071 			      enum ena_ring_type ring_type)
1072 {
1073 	struct ena_adapter *adapter = dev->data->dev_private;
1074 	struct ena_ring *queues = NULL;
1075 	uint16_t nb_queues, i;
1076 
1077 	if (ring_type == ENA_RING_TYPE_RX) {
1078 		queues = adapter->rx_ring;
1079 		nb_queues = dev->data->nb_rx_queues;
1080 	} else {
1081 		queues = adapter->tx_ring;
1082 		nb_queues = dev->data->nb_tx_queues;
1083 	}
1084 
1085 	for (i = 0; i < nb_queues; ++i)
1086 		if (queues[i].configured)
1087 			ena_queue_stop(&queues[i]);
1088 }
1089 
1090 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring)
1091 {
1092 	int rc, bufs_num;
1093 
1094 	ena_assert_msg(ring->configured == 1,
1095 		       "Trying to start unconfigured queue\n");
1096 
1097 	rc = ena_create_io_queue(dev, ring);
1098 	if (rc) {
1099 		PMD_INIT_LOG(ERR, "Failed to create IO queue\n");
1100 		return rc;
1101 	}
1102 
1103 	ring->next_to_clean = 0;
1104 	ring->next_to_use = 0;
1105 
1106 	if (ring->type == ENA_RING_TYPE_TX) {
1107 		ring->tx_stats.available_desc =
1108 			ena_com_free_q_entries(ring->ena_com_io_sq);
1109 		return 0;
1110 	}
1111 
1112 	bufs_num = ring->ring_size - 1;
1113 	rc = ena_populate_rx_queue(ring, bufs_num);
1114 	if (rc != bufs_num) {
1115 		ena_com_destroy_io_queue(&ring->adapter->ena_dev,
1116 					 ENA_IO_RXQ_IDX(ring->id));
1117 		PMD_INIT_LOG(ERR, "Failed to populate Rx ring\n");
1118 		return ENA_COM_FAULT;
1119 	}
1120 	/* Flush per-core RX buffers pools cache as they can be used on other
1121 	 * cores as well.
1122 	 */
1123 	rte_mempool_cache_flush(NULL, ring->mb_pool);
1124 
1125 	return 0;
1126 }
1127 
1128 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1129 			      uint16_t queue_idx,
1130 			      uint16_t nb_desc,
1131 			      unsigned int socket_id,
1132 			      const struct rte_eth_txconf *tx_conf)
1133 {
1134 	struct ena_ring *txq = NULL;
1135 	struct ena_adapter *adapter = dev->data->dev_private;
1136 	unsigned int i;
1137 	uint16_t dyn_thresh;
1138 
1139 	txq = &adapter->tx_ring[queue_idx];
1140 
1141 	if (txq->configured) {
1142 		PMD_DRV_LOG(CRIT,
1143 			"API violation. Queue[%d] is already configured\n",
1144 			queue_idx);
1145 		return ENA_COM_FAULT;
1146 	}
1147 
1148 	if (!rte_is_power_of_2(nb_desc)) {
1149 		PMD_DRV_LOG(ERR,
1150 			"Unsupported size of Tx queue: %d is not a power of 2.\n",
1151 			nb_desc);
1152 		return -EINVAL;
1153 	}
1154 
1155 	if (nb_desc > adapter->max_tx_ring_size) {
1156 		PMD_DRV_LOG(ERR,
1157 			"Unsupported size of Tx queue (max size: %d)\n",
1158 			adapter->max_tx_ring_size);
1159 		return -EINVAL;
1160 	}
1161 
1162 	txq->port_id = dev->data->port_id;
1163 	txq->next_to_clean = 0;
1164 	txq->next_to_use = 0;
1165 	txq->ring_size = nb_desc;
1166 	txq->size_mask = nb_desc - 1;
1167 	txq->numa_socket_id = socket_id;
1168 	txq->pkts_without_db = false;
1169 	txq->last_cleanup_ticks = 0;
1170 
1171 	txq->tx_buffer_info = rte_zmalloc_socket("txq->tx_buffer_info",
1172 		sizeof(struct ena_tx_buffer) * txq->ring_size,
1173 		RTE_CACHE_LINE_SIZE,
1174 		socket_id);
1175 	if (!txq->tx_buffer_info) {
1176 		PMD_DRV_LOG(ERR,
1177 			"Failed to allocate memory for Tx buffer info\n");
1178 		return -ENOMEM;
1179 	}
1180 
1181 	txq->empty_tx_reqs = rte_zmalloc_socket("txq->empty_tx_reqs",
1182 		sizeof(uint16_t) * txq->ring_size,
1183 		RTE_CACHE_LINE_SIZE,
1184 		socket_id);
1185 	if (!txq->empty_tx_reqs) {
1186 		PMD_DRV_LOG(ERR,
1187 			"Failed to allocate memory for empty Tx requests\n");
1188 		rte_free(txq->tx_buffer_info);
1189 		return -ENOMEM;
1190 	}
1191 
1192 	txq->push_buf_intermediate_buf =
1193 		rte_zmalloc_socket("txq->push_buf_intermediate_buf",
1194 			txq->tx_max_header_size,
1195 			RTE_CACHE_LINE_SIZE,
1196 			socket_id);
1197 	if (!txq->push_buf_intermediate_buf) {
1198 		PMD_DRV_LOG(ERR, "Failed to alloc push buffer for LLQ\n");
1199 		rte_free(txq->tx_buffer_info);
1200 		rte_free(txq->empty_tx_reqs);
1201 		return -ENOMEM;
1202 	}
1203 
1204 	for (i = 0; i < txq->ring_size; i++)
1205 		txq->empty_tx_reqs[i] = i;
1206 
1207 	txq->offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1208 
1209 	/* Check if caller provided the Tx cleanup threshold value. */
1210 	if (tx_conf->tx_free_thresh != 0) {
1211 		txq->tx_free_thresh = tx_conf->tx_free_thresh;
1212 	} else {
1213 		dyn_thresh = txq->ring_size -
1214 			txq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1215 		txq->tx_free_thresh = RTE_MAX(dyn_thresh,
1216 			txq->ring_size - ENA_REFILL_THRESH_PACKET);
1217 	}
1218 
1219 	txq->missing_tx_completion_threshold =
1220 		RTE_MIN(txq->ring_size / 2, ENA_DEFAULT_MISSING_COMP);
1221 
1222 	/* Store pointer to this queue in upper layer */
1223 	txq->configured = 1;
1224 	dev->data->tx_queues[queue_idx] = txq;
1225 
1226 	return 0;
1227 }
1228 
1229 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1230 			      uint16_t queue_idx,
1231 			      uint16_t nb_desc,
1232 			      unsigned int socket_id,
1233 			      const struct rte_eth_rxconf *rx_conf,
1234 			      struct rte_mempool *mp)
1235 {
1236 	struct ena_adapter *adapter = dev->data->dev_private;
1237 	struct ena_ring *rxq = NULL;
1238 	size_t buffer_size;
1239 	int i;
1240 	uint16_t dyn_thresh;
1241 
1242 	rxq = &adapter->rx_ring[queue_idx];
1243 	if (rxq->configured) {
1244 		PMD_DRV_LOG(CRIT,
1245 			"API violation. Queue[%d] is already configured\n",
1246 			queue_idx);
1247 		return ENA_COM_FAULT;
1248 	}
1249 
1250 	if (!rte_is_power_of_2(nb_desc)) {
1251 		PMD_DRV_LOG(ERR,
1252 			"Unsupported size of Rx queue: %d is not a power of 2.\n",
1253 			nb_desc);
1254 		return -EINVAL;
1255 	}
1256 
1257 	if (nb_desc > adapter->max_rx_ring_size) {
1258 		PMD_DRV_LOG(ERR,
1259 			"Unsupported size of Rx queue (max size: %d)\n",
1260 			adapter->max_rx_ring_size);
1261 		return -EINVAL;
1262 	}
1263 
1264 	/* ENA isn't supporting buffers smaller than 1400 bytes */
1265 	buffer_size = rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
1266 	if (buffer_size < ENA_RX_BUF_MIN_SIZE) {
1267 		PMD_DRV_LOG(ERR,
1268 			"Unsupported size of Rx buffer: %zu (min size: %d)\n",
1269 			buffer_size, ENA_RX_BUF_MIN_SIZE);
1270 		return -EINVAL;
1271 	}
1272 
1273 	rxq->port_id = dev->data->port_id;
1274 	rxq->next_to_clean = 0;
1275 	rxq->next_to_use = 0;
1276 	rxq->ring_size = nb_desc;
1277 	rxq->size_mask = nb_desc - 1;
1278 	rxq->numa_socket_id = socket_id;
1279 	rxq->mb_pool = mp;
1280 
1281 	rxq->rx_buffer_info = rte_zmalloc_socket("rxq->buffer_info",
1282 		sizeof(struct ena_rx_buffer) * nb_desc,
1283 		RTE_CACHE_LINE_SIZE,
1284 		socket_id);
1285 	if (!rxq->rx_buffer_info) {
1286 		PMD_DRV_LOG(ERR,
1287 			"Failed to allocate memory for Rx buffer info\n");
1288 		return -ENOMEM;
1289 	}
1290 
1291 	rxq->rx_refill_buffer = rte_zmalloc_socket("rxq->rx_refill_buffer",
1292 		sizeof(struct rte_mbuf *) * nb_desc,
1293 		RTE_CACHE_LINE_SIZE,
1294 		socket_id);
1295 	if (!rxq->rx_refill_buffer) {
1296 		PMD_DRV_LOG(ERR,
1297 			"Failed to allocate memory for Rx refill buffer\n");
1298 		rte_free(rxq->rx_buffer_info);
1299 		rxq->rx_buffer_info = NULL;
1300 		return -ENOMEM;
1301 	}
1302 
1303 	rxq->empty_rx_reqs = rte_zmalloc_socket("rxq->empty_rx_reqs",
1304 		sizeof(uint16_t) * nb_desc,
1305 		RTE_CACHE_LINE_SIZE,
1306 		socket_id);
1307 	if (!rxq->empty_rx_reqs) {
1308 		PMD_DRV_LOG(ERR,
1309 			"Failed to allocate memory for empty Rx requests\n");
1310 		rte_free(rxq->rx_buffer_info);
1311 		rxq->rx_buffer_info = NULL;
1312 		rte_free(rxq->rx_refill_buffer);
1313 		rxq->rx_refill_buffer = NULL;
1314 		return -ENOMEM;
1315 	}
1316 
1317 	for (i = 0; i < nb_desc; i++)
1318 		rxq->empty_rx_reqs[i] = i;
1319 
1320 	rxq->offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1321 
1322 	if (rx_conf->rx_free_thresh != 0) {
1323 		rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1324 	} else {
1325 		dyn_thresh = rxq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1326 		rxq->rx_free_thresh = RTE_MIN(dyn_thresh,
1327 			(uint16_t)(ENA_REFILL_THRESH_PACKET));
1328 	}
1329 
1330 	/* Store pointer to this queue in upper layer */
1331 	rxq->configured = 1;
1332 	dev->data->rx_queues[queue_idx] = rxq;
1333 
1334 	return 0;
1335 }
1336 
1337 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
1338 				  struct rte_mbuf *mbuf, uint16_t id)
1339 {
1340 	struct ena_com_buf ebuf;
1341 	int rc;
1342 
1343 	/* prepare physical address for DMA transaction */
1344 	ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1345 	ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1346 
1347 	/* pass resource to device */
1348 	rc = ena_com_add_single_rx_desc(io_sq, &ebuf, id);
1349 	if (unlikely(rc != 0))
1350 		PMD_RX_LOG(WARNING, "Failed adding Rx desc\n");
1351 
1352 	return rc;
1353 }
1354 
1355 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1356 {
1357 	unsigned int i;
1358 	int rc;
1359 	uint16_t next_to_use = rxq->next_to_use;
1360 	uint16_t req_id;
1361 #ifdef RTE_ETHDEV_DEBUG_RX
1362 	uint16_t in_use;
1363 #endif
1364 	struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1365 
1366 	if (unlikely(!count))
1367 		return 0;
1368 
1369 #ifdef RTE_ETHDEV_DEBUG_RX
1370 	in_use = rxq->ring_size - 1 -
1371 		ena_com_free_q_entries(rxq->ena_com_io_sq);
1372 	if (unlikely((in_use + count) >= rxq->ring_size))
1373 		PMD_RX_LOG(ERR, "Bad Rx ring state\n");
1374 #endif
1375 
1376 	/* get resources for incoming packets */
1377 	rc = rte_pktmbuf_alloc_bulk(rxq->mb_pool, mbufs, count);
1378 	if (unlikely(rc < 0)) {
1379 		rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1380 		++rxq->rx_stats.mbuf_alloc_fail;
1381 		PMD_RX_LOG(DEBUG, "There are not enough free buffers\n");
1382 		return 0;
1383 	}
1384 
1385 	for (i = 0; i < count; i++) {
1386 		struct rte_mbuf *mbuf = mbufs[i];
1387 		struct ena_rx_buffer *rx_info;
1388 
1389 		if (likely((i + 4) < count))
1390 			rte_prefetch0(mbufs[i + 4]);
1391 
1392 		req_id = rxq->empty_rx_reqs[next_to_use];
1393 		rx_info = &rxq->rx_buffer_info[req_id];
1394 
1395 		rc = ena_add_single_rx_desc(rxq->ena_com_io_sq, mbuf, req_id);
1396 		if (unlikely(rc != 0))
1397 			break;
1398 
1399 		rx_info->mbuf = mbuf;
1400 		next_to_use = ENA_IDX_NEXT_MASKED(next_to_use, rxq->size_mask);
1401 	}
1402 
1403 	if (unlikely(i < count)) {
1404 		PMD_RX_LOG(WARNING,
1405 			"Refilled Rx queue[%d] with only %d/%d buffers\n",
1406 			rxq->id, i, count);
1407 		rte_pktmbuf_free_bulk(&mbufs[i], count - i);
1408 		++rxq->rx_stats.refill_partial;
1409 	}
1410 
1411 	/* When we submitted free recources to device... */
1412 	if (likely(i > 0)) {
1413 		/* ...let HW know that it can fill buffers with data. */
1414 		ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1415 
1416 		rxq->next_to_use = next_to_use;
1417 	}
1418 
1419 	return i;
1420 }
1421 
1422 static int ena_device_init(struct ena_com_dev *ena_dev,
1423 			   struct rte_pci_device *pdev,
1424 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
1425 			   bool *wd_state)
1426 {
1427 	uint32_t aenq_groups;
1428 	int rc;
1429 	bool readless_supported;
1430 
1431 	/* Initialize mmio registers */
1432 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
1433 	if (rc) {
1434 		PMD_DRV_LOG(ERR, "Failed to init MMIO read less\n");
1435 		return rc;
1436 	}
1437 
1438 	/* The PCIe configuration space revision id indicate if mmio reg
1439 	 * read is disabled.
1440 	 */
1441 	readless_supported = !(pdev->id.class_id & ENA_MMIO_DISABLE_REG_READ);
1442 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1443 
1444 	/* reset device */
1445 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1446 	if (rc) {
1447 		PMD_DRV_LOG(ERR, "Cannot reset device\n");
1448 		goto err_mmio_read_less;
1449 	}
1450 
1451 	/* check FW version */
1452 	rc = ena_com_validate_version(ena_dev);
1453 	if (rc) {
1454 		PMD_DRV_LOG(ERR, "Device version is too low\n");
1455 		goto err_mmio_read_less;
1456 	}
1457 
1458 	ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1459 
1460 	/* ENA device administration layer init */
1461 	rc = ena_com_admin_init(ena_dev, &aenq_handlers);
1462 	if (rc) {
1463 		PMD_DRV_LOG(ERR,
1464 			"Cannot initialize ENA admin queue\n");
1465 		goto err_mmio_read_less;
1466 	}
1467 
1468 	/* To enable the msix interrupts the driver needs to know the number
1469 	 * of queues. So the driver uses polling mode to retrieve this
1470 	 * information.
1471 	 */
1472 	ena_com_set_admin_polling_mode(ena_dev, true);
1473 
1474 	ena_config_host_info(ena_dev);
1475 
1476 	/* Get Device Attributes and features */
1477 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1478 	if (rc) {
1479 		PMD_DRV_LOG(ERR,
1480 			"Cannot get attribute for ENA device, rc: %d\n", rc);
1481 		goto err_admin_init;
1482 	}
1483 
1484 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1485 		      BIT(ENA_ADMIN_NOTIFICATION) |
1486 		      BIT(ENA_ADMIN_KEEP_ALIVE) |
1487 		      BIT(ENA_ADMIN_FATAL_ERROR) |
1488 		      BIT(ENA_ADMIN_WARNING);
1489 
1490 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
1491 	rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
1492 	if (rc) {
1493 		PMD_DRV_LOG(ERR, "Cannot configure AENQ groups, rc: %d\n", rc);
1494 		goto err_admin_init;
1495 	}
1496 
1497 	*wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
1498 
1499 	return 0;
1500 
1501 err_admin_init:
1502 	ena_com_admin_destroy(ena_dev);
1503 
1504 err_mmio_read_less:
1505 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1506 
1507 	return rc;
1508 }
1509 
1510 static void ena_interrupt_handler_rte(void *cb_arg)
1511 {
1512 	struct rte_eth_dev *dev = cb_arg;
1513 	struct ena_adapter *adapter = dev->data->dev_private;
1514 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1515 
1516 	ena_com_admin_q_comp_intr_handler(ena_dev);
1517 	if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED))
1518 		ena_com_aenq_intr_handler(ena_dev, dev);
1519 }
1520 
1521 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1522 {
1523 	if (!adapter->wd_state)
1524 		return;
1525 
1526 	if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1527 		return;
1528 
1529 	if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1530 	    adapter->keep_alive_timeout)) {
1531 		PMD_DRV_LOG(ERR, "Keep alive timeout\n");
1532 		adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
1533 		adapter->trigger_reset = true;
1534 		++adapter->dev_stats.wd_expired;
1535 	}
1536 }
1537 
1538 /* Check if admin queue is enabled */
1539 static void check_for_admin_com_state(struct ena_adapter *adapter)
1540 {
1541 	if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1542 		PMD_DRV_LOG(ERR, "ENA admin queue is not in running state\n");
1543 		adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
1544 		adapter->trigger_reset = true;
1545 	}
1546 }
1547 
1548 static int check_for_tx_completion_in_queue(struct ena_adapter *adapter,
1549 					    struct ena_ring *tx_ring)
1550 {
1551 	struct ena_tx_buffer *tx_buf;
1552 	uint64_t timestamp;
1553 	uint64_t completion_delay;
1554 	uint32_t missed_tx = 0;
1555 	unsigned int i;
1556 	int rc = 0;
1557 
1558 	for (i = 0; i < tx_ring->ring_size; ++i) {
1559 		tx_buf = &tx_ring->tx_buffer_info[i];
1560 		timestamp = tx_buf->timestamp;
1561 
1562 		if (timestamp == 0)
1563 			continue;
1564 
1565 		completion_delay = rte_get_timer_cycles() - timestamp;
1566 		if (completion_delay > adapter->missing_tx_completion_to) {
1567 			if (unlikely(!tx_buf->print_once)) {
1568 				PMD_TX_LOG(WARNING,
1569 					"Found a Tx that wasn't completed on time, qid %d, index %d. "
1570 					"Missing Tx outstanding for %" PRIu64 " msecs.\n",
1571 					tx_ring->id, i,	completion_delay /
1572 					rte_get_timer_hz() * 1000);
1573 				tx_buf->print_once = true;
1574 			}
1575 			++missed_tx;
1576 		}
1577 	}
1578 
1579 	if (unlikely(missed_tx > tx_ring->missing_tx_completion_threshold)) {
1580 		PMD_DRV_LOG(ERR,
1581 			"The number of lost Tx completions is above the threshold (%d > %d). "
1582 			"Trigger the device reset.\n",
1583 			missed_tx,
1584 			tx_ring->missing_tx_completion_threshold);
1585 		adapter->reset_reason = ENA_REGS_RESET_MISS_TX_CMPL;
1586 		adapter->trigger_reset = true;
1587 		rc = -EIO;
1588 	}
1589 
1590 	tx_ring->tx_stats.missed_tx += missed_tx;
1591 
1592 	return rc;
1593 }
1594 
1595 static void check_for_tx_completions(struct ena_adapter *adapter)
1596 {
1597 	struct ena_ring *tx_ring;
1598 	uint64_t tx_cleanup_delay;
1599 	size_t qid;
1600 	int budget;
1601 	uint16_t nb_tx_queues = adapter->edev_data->nb_tx_queues;
1602 
1603 	if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT)
1604 		return;
1605 
1606 	nb_tx_queues = adapter->edev_data->nb_tx_queues;
1607 	budget = adapter->missing_tx_completion_budget;
1608 
1609 	qid = adapter->last_tx_comp_qid;
1610 	while (budget-- > 0) {
1611 		tx_ring = &adapter->tx_ring[qid];
1612 
1613 		/* Tx cleanup is called only by the burst function and can be
1614 		 * called dynamically by the application. Also cleanup is
1615 		 * limited by the threshold. To avoid false detection of the
1616 		 * missing HW Tx completion, get the delay since last cleanup
1617 		 * function was called.
1618 		 */
1619 		tx_cleanup_delay = rte_get_timer_cycles() -
1620 			tx_ring->last_cleanup_ticks;
1621 		if (tx_cleanup_delay < adapter->tx_cleanup_stall_delay)
1622 			check_for_tx_completion_in_queue(adapter, tx_ring);
1623 		qid = (qid + 1) % nb_tx_queues;
1624 	}
1625 
1626 	adapter->last_tx_comp_qid = qid;
1627 }
1628 
1629 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
1630 				  void *arg)
1631 {
1632 	struct rte_eth_dev *dev = arg;
1633 	struct ena_adapter *adapter = dev->data->dev_private;
1634 
1635 	check_for_missing_keep_alive(adapter);
1636 	check_for_admin_com_state(adapter);
1637 	check_for_tx_completions(adapter);
1638 
1639 	if (unlikely(adapter->trigger_reset)) {
1640 		PMD_DRV_LOG(ERR, "Trigger reset is on\n");
1641 		rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
1642 			NULL);
1643 	}
1644 }
1645 
1646 static inline void
1647 set_default_llq_configurations(struct ena_llq_configurations *llq_config,
1648 			       struct ena_admin_feature_llq_desc *llq,
1649 			       bool use_large_llq_hdr)
1650 {
1651 	llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
1652 	llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
1653 	llq_config->llq_num_decs_before_header =
1654 		ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
1655 
1656 	if (use_large_llq_hdr &&
1657 	    (llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B)) {
1658 		llq_config->llq_ring_entry_size =
1659 			ENA_ADMIN_LIST_ENTRY_SIZE_256B;
1660 		llq_config->llq_ring_entry_size_value = 256;
1661 	} else {
1662 		llq_config->llq_ring_entry_size =
1663 			ENA_ADMIN_LIST_ENTRY_SIZE_128B;
1664 		llq_config->llq_ring_entry_size_value = 128;
1665 	}
1666 }
1667 
1668 static int
1669 ena_set_queues_placement_policy(struct ena_adapter *adapter,
1670 				struct ena_com_dev *ena_dev,
1671 				struct ena_admin_feature_llq_desc *llq,
1672 				struct ena_llq_configurations *llq_default_configurations)
1673 {
1674 	int rc;
1675 	u32 llq_feature_mask;
1676 
1677 	llq_feature_mask = 1 << ENA_ADMIN_LLQ;
1678 	if (!(ena_dev->supported_features & llq_feature_mask)) {
1679 		PMD_DRV_LOG(INFO,
1680 			"LLQ is not supported. Fallback to host mode policy.\n");
1681 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1682 		return 0;
1683 	}
1684 
1685 	rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
1686 	if (unlikely(rc)) {
1687 		PMD_INIT_LOG(WARNING,
1688 			"Failed to config dev mode. Fallback to host mode policy.\n");
1689 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1690 		return 0;
1691 	}
1692 
1693 	/* Nothing to config, exit */
1694 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1695 		return 0;
1696 
1697 	if (!adapter->dev_mem_base) {
1698 		PMD_DRV_LOG(ERR,
1699 			"Unable to access LLQ BAR resource. Fallback to host mode policy.\n");
1700 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1701 		return 0;
1702 	}
1703 
1704 	ena_dev->mem_bar = adapter->dev_mem_base;
1705 
1706 	return 0;
1707 }
1708 
1709 static uint32_t ena_calc_max_io_queue_num(struct ena_com_dev *ena_dev,
1710 	struct ena_com_dev_get_features_ctx *get_feat_ctx)
1711 {
1712 	uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
1713 
1714 	/* Regular queues capabilities */
1715 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1716 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1717 			&get_feat_ctx->max_queue_ext.max_queue_ext;
1718 		io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
1719 				    max_queue_ext->max_rx_cq_num);
1720 		io_tx_sq_num = max_queue_ext->max_tx_sq_num;
1721 		io_tx_cq_num = max_queue_ext->max_tx_cq_num;
1722 	} else {
1723 		struct ena_admin_queue_feature_desc *max_queues =
1724 			&get_feat_ctx->max_queues;
1725 		io_tx_sq_num = max_queues->max_sq_num;
1726 		io_tx_cq_num = max_queues->max_cq_num;
1727 		io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
1728 	}
1729 
1730 	/* In case of LLQ use the llq number in the get feature cmd */
1731 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
1732 		io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
1733 
1734 	max_num_io_queues = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
1735 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_sq_num);
1736 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_cq_num);
1737 
1738 	if (unlikely(max_num_io_queues == 0)) {
1739 		PMD_DRV_LOG(ERR, "Number of IO queues cannot not be 0\n");
1740 		return -EFAULT;
1741 	}
1742 
1743 	return max_num_io_queues;
1744 }
1745 
1746 static void
1747 ena_set_offloads(struct ena_offloads *offloads,
1748 		 struct ena_admin_feature_offload_desc *offload_desc)
1749 {
1750 	if (offload_desc->tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK)
1751 		offloads->tx_offloads |= ENA_IPV4_TSO;
1752 
1753 	/* Tx IPv4 checksum offloads */
1754 	if (offload_desc->tx &
1755 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)
1756 		offloads->tx_offloads |= ENA_L3_IPV4_CSUM;
1757 	if (offload_desc->tx &
1758 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK)
1759 		offloads->tx_offloads |= ENA_L4_IPV4_CSUM;
1760 	if (offload_desc->tx &
1761 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)
1762 		offloads->tx_offloads |= ENA_L4_IPV4_CSUM_PARTIAL;
1763 
1764 	/* Tx IPv6 checksum offloads */
1765 	if (offload_desc->tx &
1766 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK)
1767 		offloads->tx_offloads |= ENA_L4_IPV6_CSUM;
1768 	if (offload_desc->tx &
1769 	     ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)
1770 		offloads->tx_offloads |= ENA_L4_IPV6_CSUM_PARTIAL;
1771 
1772 	/* Rx IPv4 checksum offloads */
1773 	if (offload_desc->rx_supported &
1774 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)
1775 		offloads->rx_offloads |= ENA_L3_IPV4_CSUM;
1776 	if (offload_desc->rx_supported &
1777 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK)
1778 		offloads->rx_offloads |= ENA_L4_IPV4_CSUM;
1779 
1780 	/* Rx IPv6 checksum offloads */
1781 	if (offload_desc->rx_supported &
1782 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK)
1783 		offloads->rx_offloads |= ENA_L4_IPV6_CSUM;
1784 
1785 	if (offload_desc->rx_supported &
1786 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_HASH_MASK)
1787 		offloads->rx_offloads |= ENA_RX_RSS_HASH;
1788 }
1789 
1790 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
1791 {
1792 	struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
1793 	struct rte_pci_device *pci_dev;
1794 	struct rte_intr_handle *intr_handle;
1795 	struct ena_adapter *adapter = eth_dev->data->dev_private;
1796 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1797 	struct ena_com_dev_get_features_ctx get_feat_ctx;
1798 	struct ena_llq_configurations llq_config;
1799 	const char *queue_type_str;
1800 	uint32_t max_num_io_queues;
1801 	int rc;
1802 	static int adapters_found;
1803 	bool disable_meta_caching;
1804 	bool wd_state = false;
1805 
1806 	eth_dev->dev_ops = &ena_dev_ops;
1807 	eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
1808 	eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
1809 	eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
1810 
1811 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1812 		return 0;
1813 
1814 	eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
1815 
1816 	memset(adapter, 0, sizeof(struct ena_adapter));
1817 	ena_dev = &adapter->ena_dev;
1818 
1819 	adapter->edev_data = eth_dev->data;
1820 
1821 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1822 
1823 	PMD_INIT_LOG(INFO, "Initializing %x:%x:%x.%d\n",
1824 		     pci_dev->addr.domain,
1825 		     pci_dev->addr.bus,
1826 		     pci_dev->addr.devid,
1827 		     pci_dev->addr.function);
1828 
1829 	intr_handle = pci_dev->intr_handle;
1830 
1831 	adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
1832 	adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
1833 
1834 	if (!adapter->regs) {
1835 		PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)\n",
1836 			     ENA_REGS_BAR);
1837 		return -ENXIO;
1838 	}
1839 
1840 	ena_dev->reg_bar = adapter->regs;
1841 	/* This is a dummy pointer for ena_com functions. */
1842 	ena_dev->dmadev = adapter;
1843 
1844 	adapter->id_number = adapters_found;
1845 
1846 	snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
1847 		 adapter->id_number);
1848 
1849 	rc = ena_parse_devargs(adapter, pci_dev->device.devargs);
1850 	if (rc != 0) {
1851 		PMD_INIT_LOG(CRIT, "Failed to parse devargs\n");
1852 		goto err;
1853 	}
1854 
1855 	/* device specific initialization routine */
1856 	rc = ena_device_init(ena_dev, pci_dev, &get_feat_ctx, &wd_state);
1857 	if (rc) {
1858 		PMD_INIT_LOG(CRIT, "Failed to init ENA device\n");
1859 		goto err;
1860 	}
1861 	adapter->wd_state = wd_state;
1862 
1863 	set_default_llq_configurations(&llq_config, &get_feat_ctx.llq,
1864 		adapter->use_large_llq_hdr);
1865 	rc = ena_set_queues_placement_policy(adapter, ena_dev,
1866 					     &get_feat_ctx.llq, &llq_config);
1867 	if (unlikely(rc)) {
1868 		PMD_INIT_LOG(CRIT, "Failed to set placement policy\n");
1869 		return rc;
1870 	}
1871 
1872 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1873 		queue_type_str = "Regular";
1874 	else
1875 		queue_type_str = "Low latency";
1876 	PMD_DRV_LOG(INFO, "Placement policy: %s\n", queue_type_str);
1877 
1878 	calc_queue_ctx.ena_dev = ena_dev;
1879 	calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
1880 
1881 	max_num_io_queues = ena_calc_max_io_queue_num(ena_dev, &get_feat_ctx);
1882 	rc = ena_calc_io_queue_size(&calc_queue_ctx,
1883 		adapter->use_large_llq_hdr);
1884 	if (unlikely((rc != 0) || (max_num_io_queues == 0))) {
1885 		rc = -EFAULT;
1886 		goto err_device_destroy;
1887 	}
1888 
1889 	adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
1890 	adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
1891 	adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
1892 	adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
1893 	adapter->max_num_io_queues = max_num_io_queues;
1894 
1895 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1896 		disable_meta_caching =
1897 			!!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
1898 			BIT(ENA_ADMIN_DISABLE_META_CACHING));
1899 	} else {
1900 		disable_meta_caching = false;
1901 	}
1902 
1903 	/* prepare ring structures */
1904 	ena_init_rings(adapter, disable_meta_caching);
1905 
1906 	ena_config_debug_area(adapter);
1907 
1908 	/* Set max MTU for this device */
1909 	adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
1910 
1911 	ena_set_offloads(&adapter->offloads, &get_feat_ctx.offload);
1912 
1913 	/* Copy MAC address and point DPDK to it */
1914 	eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr;
1915 	rte_ether_addr_copy((struct rte_ether_addr *)
1916 			get_feat_ctx.dev_attr.mac_addr,
1917 			(struct rte_ether_addr *)adapter->mac_addr);
1918 
1919 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
1920 	if (unlikely(rc != 0)) {
1921 		PMD_DRV_LOG(ERR, "Failed to initialize RSS in ENA device\n");
1922 		goto err_delete_debug_area;
1923 	}
1924 
1925 	adapter->drv_stats = rte_zmalloc("adapter stats",
1926 					 sizeof(*adapter->drv_stats),
1927 					 RTE_CACHE_LINE_SIZE);
1928 	if (!adapter->drv_stats) {
1929 		PMD_DRV_LOG(ERR,
1930 			"Failed to allocate memory for adapter statistics\n");
1931 		rc = -ENOMEM;
1932 		goto err_rss_destroy;
1933 	}
1934 
1935 	rte_spinlock_init(&adapter->admin_lock);
1936 
1937 	rte_intr_callback_register(intr_handle,
1938 				   ena_interrupt_handler_rte,
1939 				   eth_dev);
1940 	rte_intr_enable(intr_handle);
1941 	ena_com_set_admin_polling_mode(ena_dev, false);
1942 	ena_com_admin_aenq_enable(ena_dev);
1943 
1944 	if (adapters_found == 0)
1945 		rte_timer_subsystem_init();
1946 	rte_timer_init(&adapter->timer_wd);
1947 
1948 	adapters_found++;
1949 	adapter->state = ENA_ADAPTER_STATE_INIT;
1950 
1951 	return 0;
1952 
1953 err_rss_destroy:
1954 	ena_com_rss_destroy(ena_dev);
1955 err_delete_debug_area:
1956 	ena_com_delete_debug_area(ena_dev);
1957 
1958 err_device_destroy:
1959 	ena_com_delete_host_info(ena_dev);
1960 	ena_com_admin_destroy(ena_dev);
1961 
1962 err:
1963 	return rc;
1964 }
1965 
1966 static void ena_destroy_device(struct rte_eth_dev *eth_dev)
1967 {
1968 	struct ena_adapter *adapter = eth_dev->data->dev_private;
1969 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1970 
1971 	if (adapter->state == ENA_ADAPTER_STATE_FREE)
1972 		return;
1973 
1974 	ena_com_set_admin_running_state(ena_dev, false);
1975 
1976 	if (adapter->state != ENA_ADAPTER_STATE_CLOSED)
1977 		ena_close(eth_dev);
1978 
1979 	ena_com_rss_destroy(ena_dev);
1980 
1981 	ena_com_delete_debug_area(ena_dev);
1982 	ena_com_delete_host_info(ena_dev);
1983 
1984 	ena_com_abort_admin_commands(ena_dev);
1985 	ena_com_wait_for_abort_completion(ena_dev);
1986 	ena_com_admin_destroy(ena_dev);
1987 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1988 
1989 	adapter->state = ENA_ADAPTER_STATE_FREE;
1990 }
1991 
1992 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
1993 {
1994 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1995 		return 0;
1996 
1997 	ena_destroy_device(eth_dev);
1998 
1999 	return 0;
2000 }
2001 
2002 static int ena_dev_configure(struct rte_eth_dev *dev)
2003 {
2004 	struct ena_adapter *adapter = dev->data->dev_private;
2005 
2006 	adapter->state = ENA_ADAPTER_STATE_CONFIG;
2007 
2008 	if (dev->data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG)
2009 		dev->data->dev_conf.rxmode.offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2010 	dev->data->dev_conf.txmode.offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2011 
2012 	/* Scattered Rx cannot be turned off in the HW, so this capability must
2013 	 * be forced.
2014 	 */
2015 	dev->data->scattered_rx = 1;
2016 
2017 	adapter->last_tx_comp_qid = 0;
2018 
2019 	adapter->missing_tx_completion_budget =
2020 		RTE_MIN(ENA_MONITORED_TX_QUEUES, dev->data->nb_tx_queues);
2021 
2022 	adapter->missing_tx_completion_to = ENA_TX_TIMEOUT;
2023 	/* To avoid detection of the spurious Tx completion timeout due to
2024 	 * application not calling the Tx cleanup function, set timeout for the
2025 	 * Tx queue which should be half of the missing completion timeout for a
2026 	 * safety. If there will be a lot of missing Tx completions in the
2027 	 * queue, they will be detected sooner or later.
2028 	 */
2029 	adapter->tx_cleanup_stall_delay = adapter->missing_tx_completion_to / 2;
2030 
2031 	adapter->tx_selected_offloads = dev->data->dev_conf.txmode.offloads;
2032 	adapter->rx_selected_offloads = dev->data->dev_conf.rxmode.offloads;
2033 
2034 	return 0;
2035 }
2036 
2037 static void ena_init_rings(struct ena_adapter *adapter,
2038 			   bool disable_meta_caching)
2039 {
2040 	size_t i;
2041 
2042 	for (i = 0; i < adapter->max_num_io_queues; i++) {
2043 		struct ena_ring *ring = &adapter->tx_ring[i];
2044 
2045 		ring->configured = 0;
2046 		ring->type = ENA_RING_TYPE_TX;
2047 		ring->adapter = adapter;
2048 		ring->id = i;
2049 		ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
2050 		ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
2051 		ring->sgl_size = adapter->max_tx_sgl_size;
2052 		ring->disable_meta_caching = disable_meta_caching;
2053 	}
2054 
2055 	for (i = 0; i < adapter->max_num_io_queues; i++) {
2056 		struct ena_ring *ring = &adapter->rx_ring[i];
2057 
2058 		ring->configured = 0;
2059 		ring->type = ENA_RING_TYPE_RX;
2060 		ring->adapter = adapter;
2061 		ring->id = i;
2062 		ring->sgl_size = adapter->max_rx_sgl_size;
2063 	}
2064 }
2065 
2066 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter)
2067 {
2068 	uint64_t port_offloads = 0;
2069 
2070 	if (adapter->offloads.rx_offloads & ENA_L3_IPV4_CSUM)
2071 		port_offloads |= RTE_ETH_RX_OFFLOAD_IPV4_CKSUM;
2072 
2073 	if (adapter->offloads.rx_offloads &
2074 	    (ENA_L4_IPV4_CSUM | ENA_L4_IPV6_CSUM))
2075 		port_offloads |=
2076 			RTE_ETH_RX_OFFLOAD_UDP_CKSUM | RTE_ETH_RX_OFFLOAD_TCP_CKSUM;
2077 
2078 	if (adapter->offloads.rx_offloads & ENA_RX_RSS_HASH)
2079 		port_offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2080 
2081 	port_offloads |= RTE_ETH_RX_OFFLOAD_SCATTER;
2082 
2083 	return port_offloads;
2084 }
2085 
2086 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter)
2087 {
2088 	uint64_t port_offloads = 0;
2089 
2090 	if (adapter->offloads.tx_offloads & ENA_IPV4_TSO)
2091 		port_offloads |= RTE_ETH_TX_OFFLOAD_TCP_TSO;
2092 
2093 	if (adapter->offloads.tx_offloads & ENA_L3_IPV4_CSUM)
2094 		port_offloads |= RTE_ETH_TX_OFFLOAD_IPV4_CKSUM;
2095 	if (adapter->offloads.tx_offloads &
2096 	    (ENA_L4_IPV4_CSUM_PARTIAL | ENA_L4_IPV4_CSUM |
2097 	     ENA_L4_IPV6_CSUM | ENA_L4_IPV6_CSUM_PARTIAL))
2098 		port_offloads |=
2099 			RTE_ETH_TX_OFFLOAD_UDP_CKSUM | RTE_ETH_TX_OFFLOAD_TCP_CKSUM;
2100 
2101 	port_offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2102 
2103 	return port_offloads;
2104 }
2105 
2106 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter)
2107 {
2108 	RTE_SET_USED(adapter);
2109 
2110 	return 0;
2111 }
2112 
2113 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter)
2114 {
2115 	RTE_SET_USED(adapter);
2116 
2117 	return 0;
2118 }
2119 
2120 static int ena_infos_get(struct rte_eth_dev *dev,
2121 			  struct rte_eth_dev_info *dev_info)
2122 {
2123 	struct ena_adapter *adapter;
2124 	struct ena_com_dev *ena_dev;
2125 
2126 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
2127 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
2128 	adapter = dev->data->dev_private;
2129 
2130 	ena_dev = &adapter->ena_dev;
2131 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
2132 
2133 	dev_info->speed_capa =
2134 			RTE_ETH_LINK_SPEED_1G   |
2135 			RTE_ETH_LINK_SPEED_2_5G |
2136 			RTE_ETH_LINK_SPEED_5G   |
2137 			RTE_ETH_LINK_SPEED_10G  |
2138 			RTE_ETH_LINK_SPEED_25G  |
2139 			RTE_ETH_LINK_SPEED_40G  |
2140 			RTE_ETH_LINK_SPEED_50G  |
2141 			RTE_ETH_LINK_SPEED_100G;
2142 
2143 	/* Inform framework about available features */
2144 	dev_info->rx_offload_capa = ena_get_rx_port_offloads(adapter);
2145 	dev_info->tx_offload_capa = ena_get_tx_port_offloads(adapter);
2146 	dev_info->rx_queue_offload_capa = ena_get_rx_queue_offloads(adapter);
2147 	dev_info->tx_queue_offload_capa = ena_get_tx_queue_offloads(adapter);
2148 
2149 	dev_info->flow_type_rss_offloads = ENA_ALL_RSS_HF;
2150 	dev_info->hash_key_size = ENA_HASH_KEY_SIZE;
2151 
2152 	dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
2153 	dev_info->max_rx_pktlen  = adapter->max_mtu + RTE_ETHER_HDR_LEN +
2154 		RTE_ETHER_CRC_LEN;
2155 	dev_info->min_mtu = ENA_MIN_MTU;
2156 	dev_info->max_mtu = adapter->max_mtu;
2157 	dev_info->max_mac_addrs = 1;
2158 
2159 	dev_info->max_rx_queues = adapter->max_num_io_queues;
2160 	dev_info->max_tx_queues = adapter->max_num_io_queues;
2161 	dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
2162 
2163 	dev_info->rx_desc_lim.nb_max = adapter->max_rx_ring_size;
2164 	dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2165 	dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2166 					adapter->max_rx_sgl_size);
2167 	dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2168 					adapter->max_rx_sgl_size);
2169 
2170 	dev_info->tx_desc_lim.nb_max = adapter->max_tx_ring_size;
2171 	dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2172 	dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2173 					adapter->max_tx_sgl_size);
2174 	dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2175 					adapter->max_tx_sgl_size);
2176 
2177 	dev_info->default_rxportconf.ring_size = ENA_DEFAULT_RING_SIZE;
2178 	dev_info->default_txportconf.ring_size = ENA_DEFAULT_RING_SIZE;
2179 
2180 	return 0;
2181 }
2182 
2183 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len)
2184 {
2185 	mbuf->data_len = len;
2186 	mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2187 	mbuf->refcnt = 1;
2188 	mbuf->next = NULL;
2189 }
2190 
2191 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
2192 				    struct ena_com_rx_buf_info *ena_bufs,
2193 				    uint32_t descs,
2194 				    uint16_t *next_to_clean,
2195 				    uint8_t offset)
2196 {
2197 	struct rte_mbuf *mbuf;
2198 	struct rte_mbuf *mbuf_head;
2199 	struct ena_rx_buffer *rx_info;
2200 	int rc;
2201 	uint16_t ntc, len, req_id, buf = 0;
2202 
2203 	if (unlikely(descs == 0))
2204 		return NULL;
2205 
2206 	ntc = *next_to_clean;
2207 
2208 	len = ena_bufs[buf].len;
2209 	req_id = ena_bufs[buf].req_id;
2210 
2211 	rx_info = &rx_ring->rx_buffer_info[req_id];
2212 
2213 	mbuf = rx_info->mbuf;
2214 	RTE_ASSERT(mbuf != NULL);
2215 
2216 	ena_init_rx_mbuf(mbuf, len);
2217 
2218 	/* Fill the mbuf head with the data specific for 1st segment. */
2219 	mbuf_head = mbuf;
2220 	mbuf_head->nb_segs = descs;
2221 	mbuf_head->port = rx_ring->port_id;
2222 	mbuf_head->pkt_len = len;
2223 	mbuf_head->data_off += offset;
2224 
2225 	rx_info->mbuf = NULL;
2226 	rx_ring->empty_rx_reqs[ntc] = req_id;
2227 	ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2228 
2229 	while (--descs) {
2230 		++buf;
2231 		len = ena_bufs[buf].len;
2232 		req_id = ena_bufs[buf].req_id;
2233 
2234 		rx_info = &rx_ring->rx_buffer_info[req_id];
2235 		RTE_ASSERT(rx_info->mbuf != NULL);
2236 
2237 		if (unlikely(len == 0)) {
2238 			/*
2239 			 * Some devices can pass descriptor with the length 0.
2240 			 * To avoid confusion, the PMD is simply putting the
2241 			 * descriptor back, as it was never used. We'll avoid
2242 			 * mbuf allocation that way.
2243 			 */
2244 			rc = ena_add_single_rx_desc(rx_ring->ena_com_io_sq,
2245 				rx_info->mbuf, req_id);
2246 			if (unlikely(rc != 0)) {
2247 				/* Free the mbuf in case of an error. */
2248 				rte_mbuf_raw_free(rx_info->mbuf);
2249 			} else {
2250 				/*
2251 				 * If there was no error, just exit the loop as
2252 				 * 0 length descriptor is always the last one.
2253 				 */
2254 				break;
2255 			}
2256 		} else {
2257 			/* Create an mbuf chain. */
2258 			mbuf->next = rx_info->mbuf;
2259 			mbuf = mbuf->next;
2260 
2261 			ena_init_rx_mbuf(mbuf, len);
2262 			mbuf_head->pkt_len += len;
2263 		}
2264 
2265 		/*
2266 		 * Mark the descriptor as depleted and perform necessary
2267 		 * cleanup.
2268 		 * This code will execute in two cases:
2269 		 *  1. Descriptor len was greater than 0 - normal situation.
2270 		 *  2. Descriptor len was 0 and we failed to add the descriptor
2271 		 *     to the device. In that situation, we should try to add
2272 		 *     the mbuf again in the populate routine and mark the
2273 		 *     descriptor as used up by the device.
2274 		 */
2275 		rx_info->mbuf = NULL;
2276 		rx_ring->empty_rx_reqs[ntc] = req_id;
2277 		ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2278 	}
2279 
2280 	*next_to_clean = ntc;
2281 
2282 	return mbuf_head;
2283 }
2284 
2285 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
2286 				  uint16_t nb_pkts)
2287 {
2288 	struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
2289 	unsigned int free_queue_entries;
2290 	uint16_t next_to_clean = rx_ring->next_to_clean;
2291 	uint16_t descs_in_use;
2292 	struct rte_mbuf *mbuf;
2293 	uint16_t completed;
2294 	struct ena_com_rx_ctx ena_rx_ctx;
2295 	int i, rc = 0;
2296 	bool fill_hash;
2297 
2298 #ifdef RTE_ETHDEV_DEBUG_RX
2299 	/* Check adapter state */
2300 	if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2301 		PMD_RX_LOG(ALERT,
2302 			"Trying to receive pkts while device is NOT running\n");
2303 		return 0;
2304 	}
2305 #endif
2306 
2307 	fill_hash = rx_ring->offloads & RTE_ETH_RX_OFFLOAD_RSS_HASH;
2308 
2309 	descs_in_use = rx_ring->ring_size -
2310 		ena_com_free_q_entries(rx_ring->ena_com_io_sq) - 1;
2311 	nb_pkts = RTE_MIN(descs_in_use, nb_pkts);
2312 
2313 	for (completed = 0; completed < nb_pkts; completed++) {
2314 		ena_rx_ctx.max_bufs = rx_ring->sgl_size;
2315 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
2316 		ena_rx_ctx.descs = 0;
2317 		ena_rx_ctx.pkt_offset = 0;
2318 		/* receive packet context */
2319 		rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
2320 				    rx_ring->ena_com_io_sq,
2321 				    &ena_rx_ctx);
2322 		if (unlikely(rc)) {
2323 			PMD_RX_LOG(ERR,
2324 				"Failed to get the packet from the device, rc: %d\n",
2325 				rc);
2326 			if (rc == ENA_COM_NO_SPACE) {
2327 				++rx_ring->rx_stats.bad_desc_num;
2328 				rx_ring->adapter->reset_reason =
2329 					ENA_REGS_RESET_TOO_MANY_RX_DESCS;
2330 			} else {
2331 				++rx_ring->rx_stats.bad_req_id;
2332 				rx_ring->adapter->reset_reason =
2333 					ENA_REGS_RESET_INV_RX_REQ_ID;
2334 			}
2335 			rx_ring->adapter->trigger_reset = true;
2336 			return 0;
2337 		}
2338 
2339 		mbuf = ena_rx_mbuf(rx_ring,
2340 			ena_rx_ctx.ena_bufs,
2341 			ena_rx_ctx.descs,
2342 			&next_to_clean,
2343 			ena_rx_ctx.pkt_offset);
2344 		if (unlikely(mbuf == NULL)) {
2345 			for (i = 0; i < ena_rx_ctx.descs; ++i) {
2346 				rx_ring->empty_rx_reqs[next_to_clean] =
2347 					rx_ring->ena_bufs[i].req_id;
2348 				next_to_clean = ENA_IDX_NEXT_MASKED(
2349 					next_to_clean, rx_ring->size_mask);
2350 			}
2351 			break;
2352 		}
2353 
2354 		/* fill mbuf attributes if any */
2355 		ena_rx_mbuf_prepare(mbuf, &ena_rx_ctx, fill_hash);
2356 
2357 		if (unlikely(mbuf->ol_flags &
2358 				(RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD))) {
2359 			rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors);
2360 			++rx_ring->rx_stats.bad_csum;
2361 		}
2362 
2363 		rx_pkts[completed] = mbuf;
2364 		rx_ring->rx_stats.bytes += mbuf->pkt_len;
2365 	}
2366 
2367 	rx_ring->rx_stats.cnt += completed;
2368 	rx_ring->next_to_clean = next_to_clean;
2369 
2370 	free_queue_entries = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
2371 
2372 	/* Burst refill to save doorbells, memory barriers, const interval */
2373 	if (free_queue_entries >= rx_ring->rx_free_thresh) {
2374 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
2375 		ena_populate_rx_queue(rx_ring, free_queue_entries);
2376 	}
2377 
2378 	return completed;
2379 }
2380 
2381 static uint16_t
2382 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2383 		uint16_t nb_pkts)
2384 {
2385 	int32_t ret;
2386 	uint32_t i;
2387 	struct rte_mbuf *m;
2388 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2389 	struct ena_adapter *adapter = tx_ring->adapter;
2390 	struct rte_ipv4_hdr *ip_hdr;
2391 	uint64_t ol_flags;
2392 	uint64_t l4_csum_flag;
2393 	uint64_t dev_offload_capa;
2394 	uint16_t frag_field;
2395 	bool need_pseudo_csum;
2396 
2397 	dev_offload_capa = adapter->offloads.tx_offloads;
2398 	for (i = 0; i != nb_pkts; i++) {
2399 		m = tx_pkts[i];
2400 		ol_flags = m->ol_flags;
2401 
2402 		/* Check if any offload flag was set */
2403 		if (ol_flags == 0)
2404 			continue;
2405 
2406 		l4_csum_flag = ol_flags & RTE_MBUF_F_TX_L4_MASK;
2407 		/* SCTP checksum offload is not supported by the ENA. */
2408 		if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) ||
2409 		    l4_csum_flag == RTE_MBUF_F_TX_SCTP_CKSUM) {
2410 			PMD_TX_LOG(DEBUG,
2411 				"mbuf[%" PRIu32 "] has unsupported offloads flags set: 0x%" PRIu64 "\n",
2412 				i, ol_flags);
2413 			rte_errno = ENOTSUP;
2414 			return i;
2415 		}
2416 
2417 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2418 		/* Check if requested offload is also enabled for the queue */
2419 		if ((ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
2420 		     !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM)) ||
2421 		    (l4_csum_flag == RTE_MBUF_F_TX_TCP_CKSUM &&
2422 		     !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) ||
2423 		    (l4_csum_flag == RTE_MBUF_F_TX_UDP_CKSUM &&
2424 		     !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM))) {
2425 			PMD_TX_LOG(DEBUG,
2426 				"mbuf[%" PRIu32 "]: requested offloads: %" PRIu16 " are not enabled for the queue[%u]\n",
2427 				i, m->nb_segs, tx_ring->id);
2428 			rte_errno = EINVAL;
2429 			return i;
2430 		}
2431 
2432 		/* The caller is obligated to set l2 and l3 len if any cksum
2433 		 * offload is enabled.
2434 		 */
2435 		if (unlikely(ol_flags & (RTE_MBUF_F_TX_IP_CKSUM | RTE_MBUF_F_TX_L4_MASK) &&
2436 		    (m->l2_len == 0 || m->l3_len == 0))) {
2437 			PMD_TX_LOG(DEBUG,
2438 				"mbuf[%" PRIu32 "]: l2_len or l3_len values are 0 while the offload was requested\n",
2439 				i);
2440 			rte_errno = EINVAL;
2441 			return i;
2442 		}
2443 		ret = rte_validate_tx_offload(m);
2444 		if (ret != 0) {
2445 			rte_errno = -ret;
2446 			return i;
2447 		}
2448 #endif
2449 
2450 		/* Verify HW support for requested offloads and determine if
2451 		 * pseudo header checksum is needed.
2452 		 */
2453 		need_pseudo_csum = false;
2454 		if (ol_flags & RTE_MBUF_F_TX_IPV4) {
2455 			if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
2456 			    !(dev_offload_capa & ENA_L3_IPV4_CSUM)) {
2457 				rte_errno = ENOTSUP;
2458 				return i;
2459 			}
2460 
2461 			if (ol_flags & RTE_MBUF_F_TX_TCP_SEG &&
2462 			    !(dev_offload_capa & ENA_IPV4_TSO)) {
2463 				rte_errno = ENOTSUP;
2464 				return i;
2465 			}
2466 
2467 			/* Check HW capabilities and if pseudo csum is needed
2468 			 * for L4 offloads.
2469 			 */
2470 			if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
2471 			    !(dev_offload_capa & ENA_L4_IPV4_CSUM)) {
2472 				if (dev_offload_capa &
2473 				    ENA_L4_IPV4_CSUM_PARTIAL) {
2474 					need_pseudo_csum = true;
2475 				} else {
2476 					rte_errno = ENOTSUP;
2477 					return i;
2478 				}
2479 			}
2480 
2481 			/* Parse the DF flag */
2482 			ip_hdr = rte_pktmbuf_mtod_offset(m,
2483 				struct rte_ipv4_hdr *, m->l2_len);
2484 			frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
2485 			if (frag_field & RTE_IPV4_HDR_DF_FLAG) {
2486 				m->packet_type |= RTE_PTYPE_L4_NONFRAG;
2487 			} else if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2488 				/* In case we are supposed to TSO and have DF
2489 				 * not set (DF=0) hardware must be provided with
2490 				 * partial checksum.
2491 				 */
2492 				need_pseudo_csum = true;
2493 			}
2494 		} else if (ol_flags & RTE_MBUF_F_TX_IPV6) {
2495 			/* There is no support for IPv6 TSO as for now. */
2496 			if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2497 				rte_errno = ENOTSUP;
2498 				return i;
2499 			}
2500 
2501 			/* Check HW capabilities and if pseudo csum is needed */
2502 			if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
2503 			    !(dev_offload_capa & ENA_L4_IPV6_CSUM)) {
2504 				if (dev_offload_capa &
2505 				    ENA_L4_IPV6_CSUM_PARTIAL) {
2506 					need_pseudo_csum = true;
2507 				} else {
2508 					rte_errno = ENOTSUP;
2509 					return i;
2510 				}
2511 			}
2512 		}
2513 
2514 		if (need_pseudo_csum) {
2515 			ret = rte_net_intel_cksum_flags_prepare(m, ol_flags);
2516 			if (ret != 0) {
2517 				rte_errno = -ret;
2518 				return i;
2519 			}
2520 		}
2521 	}
2522 
2523 	return i;
2524 }
2525 
2526 static void ena_update_hints(struct ena_adapter *adapter,
2527 			     struct ena_admin_ena_hw_hints *hints)
2528 {
2529 	if (hints->admin_completion_tx_timeout)
2530 		adapter->ena_dev.admin_queue.completion_timeout =
2531 			hints->admin_completion_tx_timeout * 1000;
2532 
2533 	if (hints->mmio_read_timeout)
2534 		/* convert to usec */
2535 		adapter->ena_dev.mmio_read.reg_read_to =
2536 			hints->mmio_read_timeout * 1000;
2537 
2538 	if (hints->missing_tx_completion_timeout) {
2539 		if (hints->missing_tx_completion_timeout ==
2540 		    ENA_HW_HINTS_NO_TIMEOUT) {
2541 			adapter->missing_tx_completion_to =
2542 				ENA_HW_HINTS_NO_TIMEOUT;
2543 		} else {
2544 			/* Convert from msecs to ticks */
2545 			adapter->missing_tx_completion_to = rte_get_timer_hz() *
2546 				hints->missing_tx_completion_timeout / 1000;
2547 			adapter->tx_cleanup_stall_delay =
2548 				adapter->missing_tx_completion_to / 2;
2549 		}
2550 	}
2551 
2552 	if (hints->driver_watchdog_timeout) {
2553 		if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
2554 			adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
2555 		else
2556 			// Convert msecs to ticks
2557 			adapter->keep_alive_timeout =
2558 				(hints->driver_watchdog_timeout *
2559 				rte_get_timer_hz()) / 1000;
2560 	}
2561 }
2562 
2563 static int ena_check_space_and_linearize_mbuf(struct ena_ring *tx_ring,
2564 					      struct rte_mbuf *mbuf)
2565 {
2566 	struct ena_com_dev *ena_dev;
2567 	int num_segments, header_len, rc;
2568 
2569 	ena_dev = &tx_ring->adapter->ena_dev;
2570 	num_segments = mbuf->nb_segs;
2571 	header_len = mbuf->data_len;
2572 
2573 	if (likely(num_segments < tx_ring->sgl_size))
2574 		goto checkspace;
2575 
2576 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
2577 	    (num_segments == tx_ring->sgl_size) &&
2578 	    (header_len < tx_ring->tx_max_header_size))
2579 		goto checkspace;
2580 
2581 	/* Checking for space for 2 additional metadata descriptors due to
2582 	 * possible header split and metadata descriptor. Linearization will
2583 	 * be needed so we reduce the segments number from num_segments to 1
2584 	 */
2585 	if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 3)) {
2586 		PMD_TX_LOG(DEBUG, "Not enough space in the Tx queue\n");
2587 		return ENA_COM_NO_MEM;
2588 	}
2589 	++tx_ring->tx_stats.linearize;
2590 	rc = rte_pktmbuf_linearize(mbuf);
2591 	if (unlikely(rc)) {
2592 		PMD_TX_LOG(WARNING, "Mbuf linearize failed\n");
2593 		rte_atomic64_inc(&tx_ring->adapter->drv_stats->ierrors);
2594 		++tx_ring->tx_stats.linearize_failed;
2595 		return rc;
2596 	}
2597 
2598 	return 0;
2599 
2600 checkspace:
2601 	/* Checking for space for 2 additional metadata descriptors due to
2602 	 * possible header split and metadata descriptor
2603 	 */
2604 	if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
2605 					  num_segments + 2)) {
2606 		PMD_TX_LOG(DEBUG, "Not enough space in the Tx queue\n");
2607 		return ENA_COM_NO_MEM;
2608 	}
2609 
2610 	return 0;
2611 }
2612 
2613 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
2614 	struct ena_tx_buffer *tx_info,
2615 	struct rte_mbuf *mbuf,
2616 	void **push_header,
2617 	uint16_t *header_len)
2618 {
2619 	struct ena_com_buf *ena_buf;
2620 	uint16_t delta, seg_len, push_len;
2621 
2622 	delta = 0;
2623 	seg_len = mbuf->data_len;
2624 
2625 	tx_info->mbuf = mbuf;
2626 	ena_buf = tx_info->bufs;
2627 
2628 	if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2629 		/*
2630 		 * Tx header might be (and will be in most cases) smaller than
2631 		 * tx_max_header_size. But it's not an issue to send more data
2632 		 * to the device, than actually needed if the mbuf size is
2633 		 * greater than tx_max_header_size.
2634 		 */
2635 		push_len = RTE_MIN(mbuf->pkt_len, tx_ring->tx_max_header_size);
2636 		*header_len = push_len;
2637 
2638 		if (likely(push_len <= seg_len)) {
2639 			/* If the push header is in the single segment, then
2640 			 * just point it to the 1st mbuf data.
2641 			 */
2642 			*push_header = rte_pktmbuf_mtod(mbuf, uint8_t *);
2643 		} else {
2644 			/* If the push header lays in the several segments, copy
2645 			 * it to the intermediate buffer.
2646 			 */
2647 			rte_pktmbuf_read(mbuf, 0, push_len,
2648 				tx_ring->push_buf_intermediate_buf);
2649 			*push_header = tx_ring->push_buf_intermediate_buf;
2650 			delta = push_len - seg_len;
2651 		}
2652 	} else {
2653 		*push_header = NULL;
2654 		*header_len = 0;
2655 		push_len = 0;
2656 	}
2657 
2658 	/* Process first segment taking into consideration pushed header */
2659 	if (seg_len > push_len) {
2660 		ena_buf->paddr = mbuf->buf_iova +
2661 				mbuf->data_off +
2662 				push_len;
2663 		ena_buf->len = seg_len - push_len;
2664 		ena_buf++;
2665 		tx_info->num_of_bufs++;
2666 	}
2667 
2668 	while ((mbuf = mbuf->next) != NULL) {
2669 		seg_len = mbuf->data_len;
2670 
2671 		/* Skip mbufs if whole data is pushed as a header */
2672 		if (unlikely(delta > seg_len)) {
2673 			delta -= seg_len;
2674 			continue;
2675 		}
2676 
2677 		ena_buf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
2678 		ena_buf->len = seg_len - delta;
2679 		ena_buf++;
2680 		tx_info->num_of_bufs++;
2681 
2682 		delta = 0;
2683 	}
2684 }
2685 
2686 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf)
2687 {
2688 	struct ena_tx_buffer *tx_info;
2689 	struct ena_com_tx_ctx ena_tx_ctx = { { 0 } };
2690 	uint16_t next_to_use;
2691 	uint16_t header_len;
2692 	uint16_t req_id;
2693 	void *push_header;
2694 	int nb_hw_desc;
2695 	int rc;
2696 
2697 	rc = ena_check_space_and_linearize_mbuf(tx_ring, mbuf);
2698 	if (unlikely(rc))
2699 		return rc;
2700 
2701 	next_to_use = tx_ring->next_to_use;
2702 
2703 	req_id = tx_ring->empty_tx_reqs[next_to_use];
2704 	tx_info = &tx_ring->tx_buffer_info[req_id];
2705 	tx_info->num_of_bufs = 0;
2706 
2707 	ena_tx_map_mbuf(tx_ring, tx_info, mbuf, &push_header, &header_len);
2708 
2709 	ena_tx_ctx.ena_bufs = tx_info->bufs;
2710 	ena_tx_ctx.push_header = push_header;
2711 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2712 	ena_tx_ctx.req_id = req_id;
2713 	ena_tx_ctx.header_len = header_len;
2714 
2715 	/* Set Tx offloads flags, if applicable */
2716 	ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads,
2717 		tx_ring->disable_meta_caching);
2718 
2719 	if (unlikely(ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
2720 			&ena_tx_ctx))) {
2721 		PMD_TX_LOG(DEBUG,
2722 			"LLQ Tx max burst size of queue %d achieved, writing doorbell to send burst\n",
2723 			tx_ring->id);
2724 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2725 		tx_ring->tx_stats.doorbells++;
2726 		tx_ring->pkts_without_db = false;
2727 	}
2728 
2729 	/* prepare the packet's descriptors to dma engine */
2730 	rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq,	&ena_tx_ctx,
2731 		&nb_hw_desc);
2732 	if (unlikely(rc)) {
2733 		PMD_DRV_LOG(ERR, "Failed to prepare Tx buffers, rc: %d\n", rc);
2734 		++tx_ring->tx_stats.prepare_ctx_err;
2735 		tx_ring->adapter->reset_reason =
2736 		    ENA_REGS_RESET_DRIVER_INVALID_STATE;
2737 		tx_ring->adapter->trigger_reset = true;
2738 		return rc;
2739 	}
2740 
2741 	tx_info->tx_descs = nb_hw_desc;
2742 	tx_info->timestamp = rte_get_timer_cycles();
2743 
2744 	tx_ring->tx_stats.cnt++;
2745 	tx_ring->tx_stats.bytes += mbuf->pkt_len;
2746 
2747 	tx_ring->next_to_use = ENA_IDX_NEXT_MASKED(next_to_use,
2748 		tx_ring->size_mask);
2749 
2750 	return 0;
2751 }
2752 
2753 static void ena_tx_cleanup(struct ena_ring *tx_ring)
2754 {
2755 	unsigned int total_tx_descs = 0;
2756 	uint16_t cleanup_budget;
2757 	uint16_t next_to_clean = tx_ring->next_to_clean;
2758 
2759 	/* Attempt to release all Tx descriptors (ring_size - 1 -> size_mask) */
2760 	cleanup_budget = tx_ring->size_mask;
2761 
2762 	while (likely(total_tx_descs < cleanup_budget)) {
2763 		struct rte_mbuf *mbuf;
2764 		struct ena_tx_buffer *tx_info;
2765 		uint16_t req_id;
2766 
2767 		if (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) != 0)
2768 			break;
2769 
2770 		if (unlikely(validate_tx_req_id(tx_ring, req_id) != 0))
2771 			break;
2772 
2773 		/* Get Tx info & store how many descs were processed  */
2774 		tx_info = &tx_ring->tx_buffer_info[req_id];
2775 		tx_info->timestamp = 0;
2776 
2777 		mbuf = tx_info->mbuf;
2778 		rte_pktmbuf_free(mbuf);
2779 
2780 		tx_info->mbuf = NULL;
2781 		tx_ring->empty_tx_reqs[next_to_clean] = req_id;
2782 
2783 		total_tx_descs += tx_info->tx_descs;
2784 
2785 		/* Put back descriptor to the ring for reuse */
2786 		next_to_clean = ENA_IDX_NEXT_MASKED(next_to_clean,
2787 			tx_ring->size_mask);
2788 	}
2789 
2790 	if (likely(total_tx_descs > 0)) {
2791 		/* acknowledge completion of sent packets */
2792 		tx_ring->next_to_clean = next_to_clean;
2793 		ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
2794 		ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
2795 	}
2796 
2797 	/* Notify completion handler that the cleanup was just called */
2798 	tx_ring->last_cleanup_ticks = rte_get_timer_cycles();
2799 }
2800 
2801 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2802 				  uint16_t nb_pkts)
2803 {
2804 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2805 	int available_desc;
2806 	uint16_t sent_idx = 0;
2807 
2808 #ifdef RTE_ETHDEV_DEBUG_TX
2809 	/* Check adapter state */
2810 	if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2811 		PMD_TX_LOG(ALERT,
2812 			"Trying to xmit pkts while device is NOT running\n");
2813 		return 0;
2814 	}
2815 #endif
2816 
2817 	for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
2818 		if (ena_xmit_mbuf(tx_ring, tx_pkts[sent_idx]))
2819 			break;
2820 		tx_ring->pkts_without_db = true;
2821 		rte_prefetch0(tx_pkts[ENA_IDX_ADD_MASKED(sent_idx, 4,
2822 			tx_ring->size_mask)]);
2823 	}
2824 
2825 	available_desc = ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2826 	tx_ring->tx_stats.available_desc = available_desc;
2827 
2828 	/* If there are ready packets to be xmitted... */
2829 	if (likely(tx_ring->pkts_without_db)) {
2830 		/* ...let HW do its best :-) */
2831 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2832 		tx_ring->tx_stats.doorbells++;
2833 		tx_ring->pkts_without_db = false;
2834 	}
2835 
2836 	if (available_desc < tx_ring->tx_free_thresh)
2837 		ena_tx_cleanup(tx_ring);
2838 
2839 	tx_ring->tx_stats.available_desc =
2840 		ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2841 	tx_ring->tx_stats.tx_poll++;
2842 
2843 	return sent_idx;
2844 }
2845 
2846 int ena_copy_eni_stats(struct ena_adapter *adapter)
2847 {
2848 	struct ena_admin_eni_stats admin_eni_stats;
2849 	int rc;
2850 
2851 	rte_spinlock_lock(&adapter->admin_lock);
2852 	rc = ena_com_get_eni_stats(&adapter->ena_dev, &admin_eni_stats);
2853 	rte_spinlock_unlock(&adapter->admin_lock);
2854 	if (rc != 0) {
2855 		if (rc == ENA_COM_UNSUPPORTED) {
2856 			PMD_DRV_LOG(DEBUG,
2857 				"Retrieving ENI metrics is not supported\n");
2858 		} else {
2859 			PMD_DRV_LOG(WARNING,
2860 				"Failed to get ENI metrics, rc: %d\n", rc);
2861 		}
2862 		return rc;
2863 	}
2864 
2865 	rte_memcpy(&adapter->eni_stats, &admin_eni_stats,
2866 		sizeof(struct ena_stats_eni));
2867 
2868 	return 0;
2869 }
2870 
2871 /**
2872  * DPDK callback to retrieve names of extended device statistics
2873  *
2874  * @param dev
2875  *   Pointer to Ethernet device structure.
2876  * @param[out] xstats_names
2877  *   Buffer to insert names into.
2878  * @param n
2879  *   Number of names.
2880  *
2881  * @return
2882  *   Number of xstats names.
2883  */
2884 static int ena_xstats_get_names(struct rte_eth_dev *dev,
2885 				struct rte_eth_xstat_name *xstats_names,
2886 				unsigned int n)
2887 {
2888 	unsigned int xstats_count = ena_xstats_calc_num(dev->data);
2889 	unsigned int stat, i, count = 0;
2890 
2891 	if (n < xstats_count || !xstats_names)
2892 		return xstats_count;
2893 
2894 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
2895 		strcpy(xstats_names[count].name,
2896 			ena_stats_global_strings[stat].name);
2897 
2898 	for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++)
2899 		strcpy(xstats_names[count].name,
2900 			ena_stats_eni_strings[stat].name);
2901 
2902 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
2903 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
2904 			snprintf(xstats_names[count].name,
2905 				sizeof(xstats_names[count].name),
2906 				"rx_q%d_%s", i,
2907 				ena_stats_rx_strings[stat].name);
2908 
2909 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
2910 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
2911 			snprintf(xstats_names[count].name,
2912 				sizeof(xstats_names[count].name),
2913 				"tx_q%d_%s", i,
2914 				ena_stats_tx_strings[stat].name);
2915 
2916 	return xstats_count;
2917 }
2918 
2919 /**
2920  * DPDK callback to get extended device statistics.
2921  *
2922  * @param dev
2923  *   Pointer to Ethernet device structure.
2924  * @param[out] stats
2925  *   Stats table output buffer.
2926  * @param n
2927  *   The size of the stats table.
2928  *
2929  * @return
2930  *   Number of xstats on success, negative on failure.
2931  */
2932 static int ena_xstats_get(struct rte_eth_dev *dev,
2933 			  struct rte_eth_xstat *xstats,
2934 			  unsigned int n)
2935 {
2936 	struct ena_adapter *adapter = dev->data->dev_private;
2937 	unsigned int xstats_count = ena_xstats_calc_num(dev->data);
2938 	unsigned int stat, i, count = 0;
2939 	int stat_offset;
2940 	void *stats_begin;
2941 
2942 	if (n < xstats_count)
2943 		return xstats_count;
2944 
2945 	if (!xstats)
2946 		return 0;
2947 
2948 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
2949 		stat_offset = ena_stats_global_strings[stat].stat_offset;
2950 		stats_begin = &adapter->dev_stats;
2951 
2952 		xstats[count].id = count;
2953 		xstats[count].value = *((uint64_t *)
2954 			((char *)stats_begin + stat_offset));
2955 	}
2956 
2957 	/* Even if the function below fails, we should copy previous (or initial
2958 	 * values) to keep structure of rte_eth_xstat consistent.
2959 	 */
2960 	ena_copy_eni_stats(adapter);
2961 	for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++) {
2962 		stat_offset = ena_stats_eni_strings[stat].stat_offset;
2963 		stats_begin = &adapter->eni_stats;
2964 
2965 		xstats[count].id = count;
2966 		xstats[count].value = *((uint64_t *)
2967 		    ((char *)stats_begin + stat_offset));
2968 	}
2969 
2970 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
2971 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
2972 			stat_offset = ena_stats_rx_strings[stat].stat_offset;
2973 			stats_begin = &adapter->rx_ring[i].rx_stats;
2974 
2975 			xstats[count].id = count;
2976 			xstats[count].value = *((uint64_t *)
2977 				((char *)stats_begin + stat_offset));
2978 		}
2979 	}
2980 
2981 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
2982 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
2983 			stat_offset = ena_stats_tx_strings[stat].stat_offset;
2984 			stats_begin = &adapter->tx_ring[i].rx_stats;
2985 
2986 			xstats[count].id = count;
2987 			xstats[count].value = *((uint64_t *)
2988 				((char *)stats_begin + stat_offset));
2989 		}
2990 	}
2991 
2992 	return count;
2993 }
2994 
2995 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
2996 				const uint64_t *ids,
2997 				uint64_t *values,
2998 				unsigned int n)
2999 {
3000 	struct ena_adapter *adapter = dev->data->dev_private;
3001 	uint64_t id;
3002 	uint64_t rx_entries, tx_entries;
3003 	unsigned int i;
3004 	int qid;
3005 	int valid = 0;
3006 	bool was_eni_copied = false;
3007 
3008 	for (i = 0; i < n; ++i) {
3009 		id = ids[i];
3010 		/* Check if id belongs to global statistics */
3011 		if (id < ENA_STATS_ARRAY_GLOBAL) {
3012 			values[i] = *((uint64_t *)&adapter->dev_stats + id);
3013 			++valid;
3014 			continue;
3015 		}
3016 
3017 		/* Check if id belongs to ENI statistics */
3018 		id -= ENA_STATS_ARRAY_GLOBAL;
3019 		if (id < ENA_STATS_ARRAY_ENI) {
3020 			/* Avoid reading ENI stats multiple times in a single
3021 			 * function call, as it requires communication with the
3022 			 * admin queue.
3023 			 */
3024 			if (!was_eni_copied) {
3025 				was_eni_copied = true;
3026 				ena_copy_eni_stats(adapter);
3027 			}
3028 			values[i] = *((uint64_t *)&adapter->eni_stats + id);
3029 			++valid;
3030 			continue;
3031 		}
3032 
3033 		/* Check if id belongs to rx queue statistics */
3034 		id -= ENA_STATS_ARRAY_ENI;
3035 		rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
3036 		if (id < rx_entries) {
3037 			qid = id % dev->data->nb_rx_queues;
3038 			id /= dev->data->nb_rx_queues;
3039 			values[i] = *((uint64_t *)
3040 				&adapter->rx_ring[qid].rx_stats + id);
3041 			++valid;
3042 			continue;
3043 		}
3044 				/* Check if id belongs to rx queue statistics */
3045 		id -= rx_entries;
3046 		tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
3047 		if (id < tx_entries) {
3048 			qid = id % dev->data->nb_tx_queues;
3049 			id /= dev->data->nb_tx_queues;
3050 			values[i] = *((uint64_t *)
3051 				&adapter->tx_ring[qid].tx_stats + id);
3052 			++valid;
3053 			continue;
3054 		}
3055 	}
3056 
3057 	return valid;
3058 }
3059 
3060 static int ena_process_bool_devarg(const char *key,
3061 				   const char *value,
3062 				   void *opaque)
3063 {
3064 	struct ena_adapter *adapter = opaque;
3065 	bool bool_value;
3066 
3067 	/* Parse the value. */
3068 	if (strcmp(value, "1") == 0) {
3069 		bool_value = true;
3070 	} else if (strcmp(value, "0") == 0) {
3071 		bool_value = false;
3072 	} else {
3073 		PMD_INIT_LOG(ERR,
3074 			"Invalid value: '%s' for key '%s'. Accepted: '0' or '1'\n",
3075 			value, key);
3076 		return -EINVAL;
3077 	}
3078 
3079 	/* Now, assign it to the proper adapter field. */
3080 	if (strcmp(key, ENA_DEVARG_LARGE_LLQ_HDR) == 0)
3081 		adapter->use_large_llq_hdr = bool_value;
3082 
3083 	return 0;
3084 }
3085 
3086 static int ena_parse_devargs(struct ena_adapter *adapter,
3087 			     struct rte_devargs *devargs)
3088 {
3089 	static const char * const allowed_args[] = {
3090 		ENA_DEVARG_LARGE_LLQ_HDR,
3091 		NULL,
3092 	};
3093 	struct rte_kvargs *kvlist;
3094 	int rc;
3095 
3096 	if (devargs == NULL)
3097 		return 0;
3098 
3099 	kvlist = rte_kvargs_parse(devargs->args, allowed_args);
3100 	if (kvlist == NULL) {
3101 		PMD_INIT_LOG(ERR, "Invalid device arguments: %s\n",
3102 			devargs->args);
3103 		return -EINVAL;
3104 	}
3105 
3106 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_LARGE_LLQ_HDR,
3107 		ena_process_bool_devarg, adapter);
3108 
3109 	rte_kvargs_free(kvlist);
3110 
3111 	return rc;
3112 }
3113 
3114 static int ena_setup_rx_intr(struct rte_eth_dev *dev)
3115 {
3116 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3117 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
3118 	int rc;
3119 	uint16_t vectors_nb, i;
3120 	bool rx_intr_requested = dev->data->dev_conf.intr_conf.rxq;
3121 
3122 	if (!rx_intr_requested)
3123 		return 0;
3124 
3125 	if (!rte_intr_cap_multiple(intr_handle)) {
3126 		PMD_DRV_LOG(ERR,
3127 			"Rx interrupt requested, but it isn't supported by the PCI driver\n");
3128 		return -ENOTSUP;
3129 	}
3130 
3131 	/* Disable interrupt mapping before the configuration starts. */
3132 	rte_intr_disable(intr_handle);
3133 
3134 	/* Verify if there are enough vectors available. */
3135 	vectors_nb = dev->data->nb_rx_queues;
3136 	if (vectors_nb > RTE_MAX_RXTX_INTR_VEC_ID) {
3137 		PMD_DRV_LOG(ERR,
3138 			"Too many Rx interrupts requested, maximum number: %d\n",
3139 			RTE_MAX_RXTX_INTR_VEC_ID);
3140 		rc = -ENOTSUP;
3141 		goto enable_intr;
3142 	}
3143 
3144 	/* Allocate the vector list */
3145 	if (rte_intr_vec_list_alloc(intr_handle, "intr_vec",
3146 					   dev->data->nb_rx_queues)) {
3147 		PMD_DRV_LOG(ERR,
3148 			"Failed to allocate interrupt vector for %d queues\n",
3149 			dev->data->nb_rx_queues);
3150 		rc = -ENOMEM;
3151 		goto enable_intr;
3152 	}
3153 
3154 	rc = rte_intr_efd_enable(intr_handle, vectors_nb);
3155 	if (rc != 0)
3156 		goto free_intr_vec;
3157 
3158 	if (!rte_intr_allow_others(intr_handle)) {
3159 		PMD_DRV_LOG(ERR,
3160 			"Not enough interrupts available to use both ENA Admin and Rx interrupts\n");
3161 		goto disable_intr_efd;
3162 	}
3163 
3164 	for (i = 0; i < vectors_nb; ++i)
3165 		if (rte_intr_vec_list_index_set(intr_handle, i,
3166 					   RTE_INTR_VEC_RXTX_OFFSET + i))
3167 			goto disable_intr_efd;
3168 
3169 	rte_intr_enable(intr_handle);
3170 	return 0;
3171 
3172 disable_intr_efd:
3173 	rte_intr_efd_disable(intr_handle);
3174 free_intr_vec:
3175 	rte_intr_vec_list_free(intr_handle);
3176 enable_intr:
3177 	rte_intr_enable(intr_handle);
3178 	return rc;
3179 }
3180 
3181 static void ena_rx_queue_intr_set(struct rte_eth_dev *dev,
3182 				 uint16_t queue_id,
3183 				 bool unmask)
3184 {
3185 	struct ena_adapter *adapter = dev->data->dev_private;
3186 	struct ena_ring *rxq = &adapter->rx_ring[queue_id];
3187 	struct ena_eth_io_intr_reg intr_reg;
3188 
3189 	ena_com_update_intr_reg(&intr_reg, 0, 0, unmask);
3190 	ena_com_unmask_intr(rxq->ena_com_io_cq, &intr_reg);
3191 }
3192 
3193 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
3194 				    uint16_t queue_id)
3195 {
3196 	ena_rx_queue_intr_set(dev, queue_id, true);
3197 
3198 	return 0;
3199 }
3200 
3201 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
3202 				     uint16_t queue_id)
3203 {
3204 	ena_rx_queue_intr_set(dev, queue_id, false);
3205 
3206 	return 0;
3207 }
3208 
3209 /*********************************************************************
3210  *  PMD configuration
3211  *********************************************************************/
3212 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
3213 	struct rte_pci_device *pci_dev)
3214 {
3215 	return rte_eth_dev_pci_generic_probe(pci_dev,
3216 		sizeof(struct ena_adapter), eth_ena_dev_init);
3217 }
3218 
3219 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
3220 {
3221 	return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
3222 }
3223 
3224 static struct rte_pci_driver rte_ena_pmd = {
3225 	.id_table = pci_id_ena_map,
3226 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
3227 		     RTE_PCI_DRV_WC_ACTIVATE,
3228 	.probe = eth_ena_pci_probe,
3229 	.remove = eth_ena_pci_remove,
3230 };
3231 
3232 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
3233 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
3234 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
3235 RTE_PMD_REGISTER_PARAM_STRING(net_ena, ENA_DEVARG_LARGE_LLQ_HDR "=<0|1>");
3236 RTE_LOG_REGISTER_SUFFIX(ena_logtype_init, init, NOTICE);
3237 RTE_LOG_REGISTER_SUFFIX(ena_logtype_driver, driver, NOTICE);
3238 #ifdef RTE_ETHDEV_DEBUG_RX
3239 RTE_LOG_REGISTER_SUFFIX(ena_logtype_rx, rx, DEBUG);
3240 #endif
3241 #ifdef RTE_ETHDEV_DEBUG_TX
3242 RTE_LOG_REGISTER_SUFFIX(ena_logtype_tx, tx, DEBUG);
3243 #endif
3244 RTE_LOG_REGISTER_SUFFIX(ena_logtype_com, com, WARNING);
3245 
3246 /******************************************************************************
3247  ******************************** AENQ Handlers *******************************
3248  *****************************************************************************/
3249 static void ena_update_on_link_change(void *adapter_data,
3250 				      struct ena_admin_aenq_entry *aenq_e)
3251 {
3252 	struct rte_eth_dev *eth_dev = adapter_data;
3253 	struct ena_adapter *adapter = eth_dev->data->dev_private;
3254 	struct ena_admin_aenq_link_change_desc *aenq_link_desc;
3255 	uint32_t status;
3256 
3257 	aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
3258 
3259 	status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
3260 	adapter->link_status = status;
3261 
3262 	ena_link_update(eth_dev, 0);
3263 	rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
3264 }
3265 
3266 static void ena_notification(void *adapter_data,
3267 			     struct ena_admin_aenq_entry *aenq_e)
3268 {
3269 	struct rte_eth_dev *eth_dev = adapter_data;
3270 	struct ena_adapter *adapter = eth_dev->data->dev_private;
3271 	struct ena_admin_ena_hw_hints *hints;
3272 
3273 	if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
3274 		PMD_DRV_LOG(WARNING, "Invalid AENQ group: %x. Expected: %x\n",
3275 			aenq_e->aenq_common_desc.group,
3276 			ENA_ADMIN_NOTIFICATION);
3277 
3278 	switch (aenq_e->aenq_common_desc.syndrome) {
3279 	case ENA_ADMIN_UPDATE_HINTS:
3280 		hints = (struct ena_admin_ena_hw_hints *)
3281 			(&aenq_e->inline_data_w4);
3282 		ena_update_hints(adapter, hints);
3283 		break;
3284 	default:
3285 		PMD_DRV_LOG(ERR, "Invalid AENQ notification link state: %d\n",
3286 			aenq_e->aenq_common_desc.syndrome);
3287 	}
3288 }
3289 
3290 static void ena_keep_alive(void *adapter_data,
3291 			   __rte_unused struct ena_admin_aenq_entry *aenq_e)
3292 {
3293 	struct rte_eth_dev *eth_dev = adapter_data;
3294 	struct ena_adapter *adapter = eth_dev->data->dev_private;
3295 	struct ena_admin_aenq_keep_alive_desc *desc;
3296 	uint64_t rx_drops;
3297 	uint64_t tx_drops;
3298 
3299 	adapter->timestamp_wd = rte_get_timer_cycles();
3300 
3301 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
3302 	rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
3303 	tx_drops = ((uint64_t)desc->tx_drops_high << 32) | desc->tx_drops_low;
3304 
3305 	adapter->drv_stats->rx_drops = rx_drops;
3306 	adapter->dev_stats.tx_drops = tx_drops;
3307 }
3308 
3309 /**
3310  * This handler will called for unknown event group or unimplemented handlers
3311  **/
3312 static void unimplemented_aenq_handler(__rte_unused void *data,
3313 				       __rte_unused struct ena_admin_aenq_entry *aenq_e)
3314 {
3315 	PMD_DRV_LOG(ERR,
3316 		"Unknown event was received or event with unimplemented handler\n");
3317 }
3318 
3319 static struct ena_aenq_handlers aenq_handlers = {
3320 	.handlers = {
3321 		[ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
3322 		[ENA_ADMIN_NOTIFICATION] = ena_notification,
3323 		[ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive
3324 	},
3325 	.unimplemented_handler = unimplemented_aenq_handler
3326 };
3327