xref: /dpdk/drivers/net/ena/ena_ethdev.c (revision adec2a5ce47fa3fccd82c9796c71eeeb65e99700)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
3  * All rights reserved.
4  */
5 
6 #include <rte_alarm.h>
7 #include <rte_string_fns.h>
8 #include <rte_errno.h>
9 #include <rte_version.h>
10 #include <rte_net.h>
11 #include <rte_kvargs.h>
12 
13 #include "ena_ethdev.h"
14 #include "ena_logs.h"
15 #include "ena_platform.h"
16 #include "ena_com.h"
17 #include "ena_eth_com.h"
18 
19 #include <ena_common_defs.h>
20 #include <ena_regs_defs.h>
21 #include <ena_admin_defs.h>
22 #include <ena_eth_io_defs.h>
23 
24 #define DRV_MODULE_VER_MAJOR	2
25 #define DRV_MODULE_VER_MINOR	10
26 #define DRV_MODULE_VER_SUBMINOR	0
27 
28 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
29 
30 #define GET_L4_HDR_LEN(mbuf)					\
31 	((rte_pktmbuf_mtod_offset(mbuf,	struct rte_tcp_hdr *,	\
32 		mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
33 
34 #define ETH_GSTRING_LEN	32
35 
36 #define ARRAY_SIZE(x) RTE_DIM(x)
37 
38 #define ENA_MIN_RING_DESC	128
39 
40 #define USEC_PER_MSEC		1000UL
41 
42 #define BITS_PER_BYTE 8
43 
44 #define BITS_PER_TYPE(type) (sizeof(type) * BITS_PER_BYTE)
45 
46 #define DECIMAL_BASE 10
47 
48 #define MAX_WIDE_LLQ_DEPTH_UNSUPPORTED 0
49 
50 /*
51  * We should try to keep ENA_CLEANUP_BUF_THRESH lower than
52  * RTE_MEMPOOL_CACHE_MAX_SIZE, so we can fit this in mempool local cache.
53  */
54 #define ENA_CLEANUP_BUF_THRESH	256
55 
56 struct ena_stats {
57 	char name[ETH_GSTRING_LEN];
58 	int stat_offset;
59 };
60 
61 #define ENA_STAT_ENTRY(stat, stat_type) { \
62 	.name = #stat, \
63 	.stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
64 }
65 
66 #define ENA_STAT_RX_ENTRY(stat) \
67 	ENA_STAT_ENTRY(stat, rx)
68 
69 #define ENA_STAT_TX_ENTRY(stat) \
70 	ENA_STAT_ENTRY(stat, tx)
71 
72 #define ENA_STAT_METRICS_ENTRY(stat) \
73 	ENA_STAT_ENTRY(stat, metrics)
74 
75 #define ENA_STAT_GLOBAL_ENTRY(stat) \
76 	ENA_STAT_ENTRY(stat, dev)
77 
78 #define ENA_STAT_ENA_SRD_ENTRY(stat) \
79 	ENA_STAT_ENTRY(stat, srd)
80 
81 /* Device arguments */
82 #define ENA_DEVARG_LARGE_LLQ_HDR "large_llq_hdr"
83 #define ENA_DEVARG_NORMAL_LLQ_HDR "normal_llq_hdr"
84 /* Timeout in seconds after which a single uncompleted Tx packet should be
85  * considered as a missing.
86  */
87 #define ENA_DEVARG_MISS_TXC_TO "miss_txc_to"
88 /*
89  * Controls whether LLQ should be used (if available). Enabled by default.
90  * NOTE: It's highly not recommended to disable the LLQ, as it may lead to a
91  * huge performance degradation on 6th generation AWS instances.
92  */
93 #define ENA_DEVARG_ENABLE_LLQ "enable_llq"
94 /*
95  * Controls the period of time (in milliseconds) between two consecutive inspections of
96  * the control queues when the driver is in poll mode and not using interrupts.
97  * By default, this value is zero, indicating that the driver will not be in poll mode and will
98  * use interrupts. A non-zero value for this argument is mandatory when using uio_pci_generic
99  * driver.
100  */
101 #define ENA_DEVARG_CONTROL_PATH_POLL_INTERVAL "control_path_poll_interval"
102 
103 /*
104  * Each rte_memzone should have unique name.
105  * To satisfy it, count number of allocation and add it to name.
106  */
107 rte_atomic64_t ena_alloc_cnt;
108 
109 static const struct ena_stats ena_stats_global_strings[] = {
110 	ENA_STAT_GLOBAL_ENTRY(wd_expired),
111 	ENA_STAT_GLOBAL_ENTRY(dev_start),
112 	ENA_STAT_GLOBAL_ENTRY(dev_stop),
113 	ENA_STAT_GLOBAL_ENTRY(tx_drops),
114 };
115 
116 /*
117  * The legacy metrics (also known as eni stats) consisted of 5 stats, while the reworked
118  * metrics (also known as customer metrics) support an additional stat.
119  */
120 static struct ena_stats ena_stats_metrics_strings[] = {
121 	ENA_STAT_METRICS_ENTRY(bw_in_allowance_exceeded),
122 	ENA_STAT_METRICS_ENTRY(bw_out_allowance_exceeded),
123 	ENA_STAT_METRICS_ENTRY(pps_allowance_exceeded),
124 	ENA_STAT_METRICS_ENTRY(conntrack_allowance_exceeded),
125 	ENA_STAT_METRICS_ENTRY(linklocal_allowance_exceeded),
126 	ENA_STAT_METRICS_ENTRY(conntrack_allowance_available),
127 };
128 
129 static const struct ena_stats ena_stats_srd_strings[] = {
130 	ENA_STAT_ENA_SRD_ENTRY(ena_srd_mode),
131 	ENA_STAT_ENA_SRD_ENTRY(ena_srd_tx_pkts),
132 	ENA_STAT_ENA_SRD_ENTRY(ena_srd_eligible_tx_pkts),
133 	ENA_STAT_ENA_SRD_ENTRY(ena_srd_rx_pkts),
134 	ENA_STAT_ENA_SRD_ENTRY(ena_srd_resource_utilization),
135 };
136 
137 static const struct ena_stats ena_stats_tx_strings[] = {
138 	ENA_STAT_TX_ENTRY(cnt),
139 	ENA_STAT_TX_ENTRY(bytes),
140 	ENA_STAT_TX_ENTRY(prepare_ctx_err),
141 	ENA_STAT_TX_ENTRY(tx_poll),
142 	ENA_STAT_TX_ENTRY(doorbells),
143 	ENA_STAT_TX_ENTRY(bad_req_id),
144 	ENA_STAT_TX_ENTRY(available_desc),
145 	ENA_STAT_TX_ENTRY(missed_tx),
146 };
147 
148 static const struct ena_stats ena_stats_rx_strings[] = {
149 	ENA_STAT_RX_ENTRY(cnt),
150 	ENA_STAT_RX_ENTRY(bytes),
151 	ENA_STAT_RX_ENTRY(refill_partial),
152 	ENA_STAT_RX_ENTRY(l3_csum_bad),
153 	ENA_STAT_RX_ENTRY(l4_csum_bad),
154 	ENA_STAT_RX_ENTRY(l4_csum_good),
155 	ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
156 	ENA_STAT_RX_ENTRY(bad_desc_num),
157 	ENA_STAT_RX_ENTRY(bad_req_id),
158 };
159 
160 #define ENA_STATS_ARRAY_GLOBAL	ARRAY_SIZE(ena_stats_global_strings)
161 #define ENA_STATS_ARRAY_METRICS	ARRAY_SIZE(ena_stats_metrics_strings)
162 #define ENA_STATS_ARRAY_METRICS_LEGACY	(ENA_STATS_ARRAY_METRICS - 1)
163 #define ENA_STATS_ARRAY_ENA_SRD	ARRAY_SIZE(ena_stats_srd_strings)
164 #define ENA_STATS_ARRAY_TX	ARRAY_SIZE(ena_stats_tx_strings)
165 #define ENA_STATS_ARRAY_RX	ARRAY_SIZE(ena_stats_rx_strings)
166 
167 #define QUEUE_OFFLOADS (RTE_ETH_TX_OFFLOAD_TCP_CKSUM |\
168 			RTE_ETH_TX_OFFLOAD_UDP_CKSUM |\
169 			RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |\
170 			RTE_ETH_TX_OFFLOAD_TCP_TSO)
171 #define MBUF_OFFLOADS (RTE_MBUF_F_TX_L4_MASK |\
172 		       RTE_MBUF_F_TX_IP_CKSUM |\
173 		       RTE_MBUF_F_TX_TCP_SEG)
174 
175 /** Vendor ID used by Amazon devices */
176 #define PCI_VENDOR_ID_AMAZON 0x1D0F
177 /** Amazon devices */
178 #define PCI_DEVICE_ID_ENA_VF		0xEC20
179 #define PCI_DEVICE_ID_ENA_VF_RSERV0	0xEC21
180 
181 #define	ENA_TX_OFFLOAD_MASK	(RTE_MBUF_F_TX_L4_MASK |         \
182 	RTE_MBUF_F_TX_IPV6 |            \
183 	RTE_MBUF_F_TX_IPV4 |            \
184 	RTE_MBUF_F_TX_IP_CKSUM |        \
185 	RTE_MBUF_F_TX_TCP_SEG)
186 
187 #define	ENA_TX_OFFLOAD_NOTSUP_MASK	\
188 	(RTE_MBUF_F_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
189 
190 /** HW specific offloads capabilities. */
191 /* IPv4 checksum offload. */
192 #define ENA_L3_IPV4_CSUM		0x0001
193 /* TCP/UDP checksum offload for IPv4 packets. */
194 #define ENA_L4_IPV4_CSUM		0x0002
195 /* TCP/UDP checksum offload for IPv4 packets with pseudo header checksum. */
196 #define ENA_L4_IPV4_CSUM_PARTIAL	0x0004
197 /* TCP/UDP checksum offload for IPv6 packets. */
198 #define ENA_L4_IPV6_CSUM		0x0008
199 /* TCP/UDP checksum offload for IPv6 packets with pseudo header checksum. */
200 #define ENA_L4_IPV6_CSUM_PARTIAL	0x0010
201 /* TSO support for IPv4 packets. */
202 #define ENA_IPV4_TSO			0x0020
203 
204 /* Device supports setting RSS hash. */
205 #define ENA_RX_RSS_HASH			0x0040
206 
207 static const struct rte_pci_id pci_id_ena_map[] = {
208 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
209 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF_RSERV0) },
210 	{ .device_id = 0 },
211 };
212 
213 static struct ena_aenq_handlers aenq_handlers;
214 
215 static int ena_device_init(struct ena_adapter *adapter,
216 			   struct rte_pci_device *pdev,
217 			   struct ena_com_dev_get_features_ctx *get_feat_ctx);
218 static int ena_dev_configure(struct rte_eth_dev *dev);
219 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
220 	struct ena_tx_buffer *tx_info,
221 	struct rte_mbuf *mbuf,
222 	void **push_header,
223 	uint16_t *header_len);
224 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf);
225 static int ena_tx_cleanup(void *txp, uint32_t free_pkt_cnt);
226 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
227 				  uint16_t nb_pkts);
228 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
229 		uint16_t nb_pkts);
230 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
231 			      uint16_t nb_desc, unsigned int socket_id,
232 			      const struct rte_eth_txconf *tx_conf);
233 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
234 			      uint16_t nb_desc, unsigned int socket_id,
235 			      const struct rte_eth_rxconf *rx_conf,
236 			      struct rte_mempool *mp);
237 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len);
238 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
239 				    struct ena_com_rx_buf_info *ena_bufs,
240 				    uint32_t descs,
241 				    uint16_t *next_to_clean,
242 				    uint8_t offset);
243 static uint16_t eth_ena_recv_pkts(void *rx_queue,
244 				  struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
245 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
246 				  struct rte_mbuf *mbuf, uint16_t id);
247 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
248 static void ena_init_rings(struct ena_adapter *adapter,
249 			   bool disable_meta_caching);
250 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
251 static int ena_start(struct rte_eth_dev *dev);
252 static int ena_stop(struct rte_eth_dev *dev);
253 static int ena_close(struct rte_eth_dev *dev);
254 static int ena_dev_reset(struct rte_eth_dev *dev);
255 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
256 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
257 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
258 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
259 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
260 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
261 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
262 static int ena_link_update(struct rte_eth_dev *dev,
263 			   int wait_to_complete);
264 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring);
265 static void ena_queue_stop(struct ena_ring *ring);
266 static void ena_queue_stop_all(struct rte_eth_dev *dev,
267 			      enum ena_ring_type ring_type);
268 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring);
269 static int ena_queue_start_all(struct rte_eth_dev *dev,
270 			       enum ena_ring_type ring_type);
271 static void ena_stats_restart(struct rte_eth_dev *dev);
272 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter);
273 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter);
274 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter);
275 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter);
276 static int ena_infos_get(struct rte_eth_dev *dev,
277 			 struct rte_eth_dev_info *dev_info);
278 static void ena_control_path_handler(void *cb_arg);
279 static void ena_control_path_poll_handler(void *cb_arg);
280 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
281 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
282 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev);
283 static int ena_xstats_get_names(struct rte_eth_dev *dev,
284 				struct rte_eth_xstat_name *xstats_names,
285 				unsigned int n);
286 static int ena_xstats_get_names_by_id(struct rte_eth_dev *dev,
287 				      const uint64_t *ids,
288 				      struct rte_eth_xstat_name *xstats_names,
289 				      unsigned int size);
290 static int ena_xstats_get(struct rte_eth_dev *dev,
291 			  struct rte_eth_xstat *stats,
292 			  unsigned int n);
293 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
294 				const uint64_t *ids,
295 				uint64_t *values,
296 				unsigned int n);
297 static int ena_process_bool_devarg(const char *key,
298 				   const char *value,
299 				   void *opaque);
300 static int ena_parse_devargs(struct ena_adapter *adapter,
301 			     struct rte_devargs *devargs);
302 static void ena_copy_customer_metrics(struct ena_adapter *adapter,
303 					uint64_t *buf,
304 					size_t buf_size);
305 static void ena_copy_ena_srd_info(struct ena_adapter *adapter,
306 				  struct ena_stats_srd *srd_info);
307 static int ena_setup_rx_intr(struct rte_eth_dev *dev);
308 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
309 				    uint16_t queue_id);
310 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
311 				     uint16_t queue_id);
312 static int ena_configure_aenq(struct ena_adapter *adapter);
313 static int ena_mp_primary_handle(const struct rte_mp_msg *mp_msg,
314 				 const void *peer);
315 static ena_llq_policy ena_define_llq_hdr_policy(struct ena_adapter *adapter);
316 static bool ena_use_large_llq_hdr(struct ena_adapter *adapter, uint8_t recommended_entry_size);
317 
318 static const struct eth_dev_ops ena_dev_ops = {
319 	.dev_configure          = ena_dev_configure,
320 	.dev_infos_get          = ena_infos_get,
321 	.rx_queue_setup         = ena_rx_queue_setup,
322 	.tx_queue_setup         = ena_tx_queue_setup,
323 	.dev_start              = ena_start,
324 	.dev_stop               = ena_stop,
325 	.link_update            = ena_link_update,
326 	.stats_get              = ena_stats_get,
327 	.xstats_get_names       = ena_xstats_get_names,
328 	.xstats_get_names_by_id = ena_xstats_get_names_by_id,
329 	.xstats_get             = ena_xstats_get,
330 	.xstats_get_by_id       = ena_xstats_get_by_id,
331 	.mtu_set                = ena_mtu_set,
332 	.rx_queue_release       = ena_rx_queue_release,
333 	.tx_queue_release       = ena_tx_queue_release,
334 	.dev_close              = ena_close,
335 	.dev_reset              = ena_dev_reset,
336 	.reta_update            = ena_rss_reta_update,
337 	.reta_query             = ena_rss_reta_query,
338 	.rx_queue_intr_enable   = ena_rx_queue_intr_enable,
339 	.rx_queue_intr_disable  = ena_rx_queue_intr_disable,
340 	.rss_hash_update        = ena_rss_hash_update,
341 	.rss_hash_conf_get      = ena_rss_hash_conf_get,
342 	.tx_done_cleanup        = ena_tx_cleanup,
343 };
344 
345 /*********************************************************************
346  *  Multi-Process communication bits
347  *********************************************************************/
348 /* rte_mp IPC message name */
349 #define ENA_MP_NAME	"net_ena_mp"
350 /* Request timeout in seconds */
351 #define ENA_MP_REQ_TMO	5
352 
353 /** Proxy request type */
354 enum ena_mp_req {
355 	ENA_MP_DEV_STATS_GET,
356 	ENA_MP_ENI_STATS_GET,
357 	ENA_MP_MTU_SET,
358 	ENA_MP_IND_TBL_GET,
359 	ENA_MP_IND_TBL_SET,
360 	ENA_MP_CUSTOMER_METRICS_GET,
361 	ENA_MP_SRD_STATS_GET,
362 };
363 
364 /** Proxy message body. Shared between requests and responses. */
365 struct ena_mp_body {
366 	/* Message type */
367 	enum ena_mp_req type;
368 	int port_id;
369 	/* Processing result. Set in replies. 0 if message succeeded, negative
370 	 * error code otherwise.
371 	 */
372 	int result;
373 	union {
374 		int mtu; /* For ENA_MP_MTU_SET */
375 	} args;
376 };
377 
378 /**
379  * Initialize IPC message.
380  *
381  * @param[out] msg
382  *   Pointer to the message to initialize.
383  * @param[in] type
384  *   Message type.
385  * @param[in] port_id
386  *   Port ID of target device.
387  *
388  */
389 static void
390 mp_msg_init(struct rte_mp_msg *msg, enum ena_mp_req type, int port_id)
391 {
392 	struct ena_mp_body *body = (struct ena_mp_body *)&msg->param;
393 
394 	memset(msg, 0, sizeof(*msg));
395 	strlcpy(msg->name, ENA_MP_NAME, sizeof(msg->name));
396 	msg->len_param = sizeof(*body);
397 	body->type = type;
398 	body->port_id = port_id;
399 }
400 
401 /*********************************************************************
402  *  Multi-Process communication PMD API
403  *********************************************************************/
404 /**
405  * Define proxy request descriptor
406  *
407  * Used to define all structures and functions required for proxying a given
408  * function to the primary process including the code to perform to prepare the
409  * request and process the response.
410  *
411  * @param[in] f
412  *   Name of the function to proxy
413  * @param[in] t
414  *   Message type to use
415  * @param[in] prep
416  *   Body of a function to prepare the request in form of a statement
417  *   expression. It is passed all the original function arguments along with two
418  *   extra ones:
419  *   - struct ena_adapter *adapter - PMD data of the device calling the proxy.
420  *   - struct ena_mp_body *req - body of a request to prepare.
421  * @param[in] proc
422  *   Body of a function to process the response in form of a statement
423  *   expression. It is passed all the original function arguments along with two
424  *   extra ones:
425  *   - struct ena_adapter *adapter - PMD data of the device calling the proxy.
426  *   - struct ena_mp_body *rsp - body of a response to process.
427  * @param ...
428  *   Proxied function's arguments
429  *
430  * @note Inside prep and proc any parameters which aren't used should be marked
431  *       as such (with ENA_TOUCH or __rte_unused).
432  */
433 #define ENA_PROXY_DESC(f, t, prep, proc, ...)			\
434 	static const enum ena_mp_req mp_type_ ## f =  t;	\
435 	static const char *mp_name_ ## f = #t;			\
436 	static void mp_prep_ ## f(struct ena_adapter *adapter,	\
437 				  struct ena_mp_body *req,	\
438 				  __VA_ARGS__)			\
439 	{							\
440 		prep;						\
441 	}							\
442 	static void mp_proc_ ## f(struct ena_adapter *adapter,	\
443 				  struct ena_mp_body *rsp,	\
444 				  __VA_ARGS__)			\
445 	{							\
446 		proc;						\
447 	}
448 
449 /**
450  * Proxy wrapper for calling primary functions in a secondary process.
451  *
452  * Depending on whether called in primary or secondary process, calls the
453  * @p func directly or proxies the call to the primary process via rte_mp IPC.
454  * This macro requires a proxy request descriptor to be defined for @p func
455  * using ENA_PROXY_DESC() macro.
456  *
457  * @param[in/out] a
458  *   Device PMD data. Used for sending the message and sharing message results
459  *   between primary and secondary.
460  * @param[in] f
461  *   Function to proxy.
462  * @param ...
463  *   Arguments of @p func.
464  *
465  * @return
466  *   - 0: Processing succeeded and response handler was called.
467  *   - -EPERM: IPC is unavailable on this platform. This means only primary
468  *             process may call the proxied function.
469  *   - -EIO:   IPC returned error on request send. Inspect rte_errno detailed
470  *             error code.
471  *   - Negative error code from the proxied function.
472  *
473  * @note This mechanism is geared towards control-path tasks. Avoid calling it
474  *       in fast-path unless unbound delays are allowed. This is due to the IPC
475  *       mechanism itself (socket based).
476  * @note Due to IPC parameter size limitations the proxy logic shares call
477  *       results through the struct ena_adapter shared memory. This makes the
478  *       proxy mechanism strictly single-threaded. Therefore be sure to make all
479  *       calls to the same proxied function under the same lock.
480  */
481 #define ENA_PROXY(a, f, ...)						\
482 __extension__ ({							\
483 	struct ena_adapter *_a = (a);					\
484 	struct timespec ts = { .tv_sec = ENA_MP_REQ_TMO };		\
485 	struct ena_mp_body *req, *rsp;					\
486 	struct rte_mp_reply mp_rep;					\
487 	struct rte_mp_msg mp_req;					\
488 	int ret;							\
489 									\
490 	if (rte_eal_process_type() == RTE_PROC_PRIMARY) {		\
491 		ret = f(__VA_ARGS__);					\
492 	} else {							\
493 		/* Prepare and send request */				\
494 		req = (struct ena_mp_body *)&mp_req.param;		\
495 		mp_msg_init(&mp_req, mp_type_ ## f, _a->edev_data->port_id); \
496 		mp_prep_ ## f(_a, req, ## __VA_ARGS__);			\
497 									\
498 		ret = rte_mp_request_sync(&mp_req, &mp_rep, &ts);	\
499 		if (likely(!ret)) {					\
500 			RTE_ASSERT(mp_rep.nb_received == 1);		\
501 			rsp = (struct ena_mp_body *)&mp_rep.msgs[0].param; \
502 			ret = rsp->result;				\
503 			if (ret == 0) {					\
504 				mp_proc_##f(_a, rsp, ## __VA_ARGS__);	\
505 			} else {					\
506 				PMD_DRV_LOG_LINE(ERR,			\
507 					    "%s returned error: %d",	\
508 					    mp_name_ ## f, rsp->result);\
509 			}						\
510 			free(mp_rep.msgs);				\
511 		} else if (rte_errno == ENOTSUP) {			\
512 			PMD_DRV_LOG_LINE(ERR,				\
513 				    "No IPC, can't proxy to primary");\
514 			ret = -rte_errno;				\
515 		} else {						\
516 			PMD_DRV_LOG_LINE(ERR, "Request %s failed: %s",	\
517 				    mp_name_ ## f,			\
518 				    rte_strerror(rte_errno));		\
519 			ret = -EIO;					\
520 		}							\
521 	}								\
522 	ret;								\
523 })
524 
525 /*********************************************************************
526  *  Multi-Process communication request descriptors
527  *********************************************************************/
528 
529 ENA_PROXY_DESC(ena_com_get_dev_basic_stats, ENA_MP_DEV_STATS_GET,
530 __extension__ ({
531 	ENA_TOUCH(adapter);
532 	ENA_TOUCH(req);
533 	ENA_TOUCH(ena_dev);
534 	ENA_TOUCH(stats);
535 }),
536 __extension__ ({
537 	ENA_TOUCH(rsp);
538 	ENA_TOUCH(ena_dev);
539 	if (stats != &adapter->basic_stats)
540 		rte_memcpy(stats, &adapter->basic_stats, sizeof(*stats));
541 }),
542 	struct ena_com_dev *ena_dev, struct ena_admin_basic_stats *stats);
543 
544 ENA_PROXY_DESC(ena_com_get_eni_stats, ENA_MP_ENI_STATS_GET,
545 __extension__ ({
546 	ENA_TOUCH(adapter);
547 	ENA_TOUCH(req);
548 	ENA_TOUCH(ena_dev);
549 	ENA_TOUCH(stats);
550 }),
551 __extension__ ({
552 	ENA_TOUCH(rsp);
553 	ENA_TOUCH(ena_dev);
554 	if (stats != (struct ena_admin_eni_stats *)adapter->metrics_stats)
555 		rte_memcpy(stats, adapter->metrics_stats, sizeof(*stats));
556 }),
557 	struct ena_com_dev *ena_dev, struct ena_admin_eni_stats *stats);
558 
559 ENA_PROXY_DESC(ena_com_set_dev_mtu, ENA_MP_MTU_SET,
560 __extension__ ({
561 	ENA_TOUCH(adapter);
562 	ENA_TOUCH(ena_dev);
563 	req->args.mtu = mtu;
564 }),
565 __extension__ ({
566 	ENA_TOUCH(adapter);
567 	ENA_TOUCH(rsp);
568 	ENA_TOUCH(ena_dev);
569 	ENA_TOUCH(mtu);
570 }),
571 	struct ena_com_dev *ena_dev, int mtu);
572 
573 ENA_PROXY_DESC(ena_com_indirect_table_set, ENA_MP_IND_TBL_SET,
574 __extension__ ({
575 	ENA_TOUCH(adapter);
576 	ENA_TOUCH(req);
577 	ENA_TOUCH(ena_dev);
578 }),
579 __extension__ ({
580 	ENA_TOUCH(adapter);
581 	ENA_TOUCH(rsp);
582 	ENA_TOUCH(ena_dev);
583 }),
584 	struct ena_com_dev *ena_dev);
585 
586 ENA_PROXY_DESC(ena_com_indirect_table_get, ENA_MP_IND_TBL_GET,
587 __extension__ ({
588 	ENA_TOUCH(adapter);
589 	ENA_TOUCH(req);
590 	ENA_TOUCH(ena_dev);
591 	ENA_TOUCH(ind_tbl);
592 }),
593 __extension__ ({
594 	ENA_TOUCH(rsp);
595 	ENA_TOUCH(ena_dev);
596 	if (ind_tbl != adapter->indirect_table)
597 		rte_memcpy(ind_tbl, adapter->indirect_table,
598 			   sizeof(adapter->indirect_table));
599 }),
600 	struct ena_com_dev *ena_dev, u32 *ind_tbl);
601 
602 ENA_PROXY_DESC(ena_com_get_customer_metrics, ENA_MP_CUSTOMER_METRICS_GET,
603 __extension__ ({
604 	ENA_TOUCH(adapter);
605 	ENA_TOUCH(req);
606 	ENA_TOUCH(ena_dev);
607 	ENA_TOUCH(buf);
608 	ENA_TOUCH(buf_size);
609 }),
610 __extension__ ({
611 	ENA_TOUCH(rsp);
612 	ENA_TOUCH(ena_dev);
613 	if (buf != (char *)adapter->metrics_stats)
614 		rte_memcpy(buf, adapter->metrics_stats, buf_size);
615 }),
616 	struct ena_com_dev *ena_dev, char *buf, size_t buf_size);
617 
618 ENA_PROXY_DESC(ena_com_get_ena_srd_info, ENA_MP_SRD_STATS_GET,
619 __extension__ ({
620 	ENA_TOUCH(adapter);
621 	ENA_TOUCH(req);
622 	ENA_TOUCH(ena_dev);
623 	ENA_TOUCH(info);
624 }),
625 __extension__ ({
626 	ENA_TOUCH(rsp);
627 	ENA_TOUCH(ena_dev);
628 	if ((struct ena_stats_srd *)info != &adapter->srd_stats)
629 		rte_memcpy((struct ena_stats_srd *)info,
630 				&adapter->srd_stats,
631 				sizeof(struct ena_stats_srd));
632 }),
633 	struct ena_com_dev *ena_dev, struct ena_admin_ena_srd_info *info);
634 
635 static inline void ena_trigger_reset(struct ena_adapter *adapter,
636 				     enum ena_regs_reset_reason_types reason)
637 {
638 	if (likely(!adapter->trigger_reset)) {
639 		adapter->reset_reason = reason;
640 		adapter->trigger_reset = true;
641 	}
642 }
643 
644 static inline void ena_rx_mbuf_prepare(struct ena_ring *rx_ring,
645 				       struct rte_mbuf *mbuf,
646 				       struct ena_com_rx_ctx *ena_rx_ctx)
647 {
648 	struct ena_stats_rx *rx_stats = &rx_ring->rx_stats;
649 	uint64_t ol_flags = 0;
650 	uint32_t packet_type = 0;
651 
652 	switch (ena_rx_ctx->l3_proto) {
653 	case ENA_ETH_IO_L3_PROTO_IPV4:
654 		packet_type |= RTE_PTYPE_L3_IPV4;
655 		if (unlikely(ena_rx_ctx->l3_csum_err)) {
656 			++rx_stats->l3_csum_bad;
657 			ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
658 		} else {
659 			ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
660 		}
661 		break;
662 	case ENA_ETH_IO_L3_PROTO_IPV6:
663 		packet_type |= RTE_PTYPE_L3_IPV6;
664 		break;
665 	default:
666 		break;
667 	}
668 
669 	switch (ena_rx_ctx->l4_proto) {
670 	case ENA_ETH_IO_L4_PROTO_TCP:
671 		packet_type |= RTE_PTYPE_L4_TCP;
672 		break;
673 	case ENA_ETH_IO_L4_PROTO_UDP:
674 		packet_type |= RTE_PTYPE_L4_UDP;
675 		break;
676 	default:
677 		break;
678 	}
679 
680 	/* L4 csum is relevant only for TCP/UDP packets */
681 	if ((packet_type & (RTE_PTYPE_L4_TCP | RTE_PTYPE_L4_UDP)) && !ena_rx_ctx->frag) {
682 		if (ena_rx_ctx->l4_csum_checked) {
683 			if (likely(!ena_rx_ctx->l4_csum_err)) {
684 				++rx_stats->l4_csum_good;
685 				ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
686 			} else {
687 				++rx_stats->l4_csum_bad;
688 				ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
689 			}
690 		} else {
691 			ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN;
692 		}
693 
694 		if (rx_ring->offloads & RTE_ETH_RX_OFFLOAD_RSS_HASH) {
695 			ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
696 			mbuf->hash.rss = ena_rx_ctx->hash;
697 		}
698 	} else {
699 		ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN;
700 	}
701 
702 	mbuf->ol_flags = ol_flags;
703 	mbuf->packet_type = packet_type;
704 }
705 
706 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
707 				       struct ena_com_tx_ctx *ena_tx_ctx,
708 				       uint64_t queue_offloads,
709 				       bool disable_meta_caching)
710 {
711 	struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
712 
713 	if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
714 	    (queue_offloads & QUEUE_OFFLOADS)) {
715 		/* check if TSO is required */
716 		if ((mbuf->ol_flags & RTE_MBUF_F_TX_TCP_SEG) &&
717 		    (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_TSO)) {
718 			ena_tx_ctx->tso_enable = true;
719 
720 			ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
721 		}
722 
723 		/* check if L3 checksum is needed */
724 		if ((mbuf->ol_flags & RTE_MBUF_F_TX_IP_CKSUM) &&
725 		    (queue_offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM))
726 			ena_tx_ctx->l3_csum_enable = true;
727 
728 		if (mbuf->ol_flags & RTE_MBUF_F_TX_IPV6) {
729 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
730 			/* For the IPv6 packets, DF always needs to be true. */
731 			ena_tx_ctx->df = 1;
732 		} else {
733 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
734 
735 			/* set don't fragment (DF) flag */
736 			if (mbuf->packet_type &
737 				(RTE_PTYPE_L4_NONFRAG
738 				 | RTE_PTYPE_INNER_L4_NONFRAG))
739 				ena_tx_ctx->df = 1;
740 		}
741 
742 		/* check if L4 checksum is needed */
743 		if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) == RTE_MBUF_F_TX_TCP_CKSUM) &&
744 		    (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) {
745 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
746 			ena_tx_ctx->l4_csum_enable = true;
747 		} else if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) ==
748 				RTE_MBUF_F_TX_UDP_CKSUM) &&
749 				(queue_offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM)) {
750 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
751 			ena_tx_ctx->l4_csum_enable = true;
752 		} else {
753 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
754 			ena_tx_ctx->l4_csum_enable = false;
755 		}
756 
757 		ena_meta->mss = mbuf->tso_segsz;
758 		ena_meta->l3_hdr_len = mbuf->l3_len;
759 		ena_meta->l3_hdr_offset = mbuf->l2_len;
760 
761 		ena_tx_ctx->meta_valid = true;
762 	} else if (disable_meta_caching) {
763 		memset(ena_meta, 0, sizeof(*ena_meta));
764 		ena_tx_ctx->meta_valid = true;
765 	} else {
766 		ena_tx_ctx->meta_valid = false;
767 	}
768 }
769 
770 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
771 {
772 	struct ena_tx_buffer *tx_info = NULL;
773 
774 	if (likely(req_id < tx_ring->ring_size)) {
775 		tx_info = &tx_ring->tx_buffer_info[req_id];
776 		if (likely(tx_info->mbuf))
777 			return 0;
778 	}
779 
780 	if (tx_info)
781 		PMD_TX_LOG_LINE(ERR, "tx_info doesn't have valid mbuf. queue %d:%d req_id %u",
782 			tx_ring->port_id, tx_ring->id, req_id);
783 	else
784 		PMD_TX_LOG_LINE(ERR, "Invalid req_id: %hu in queue %d:%d",
785 			req_id, tx_ring->port_id, tx_ring->id);
786 
787 	/* Trigger device reset */
788 	++tx_ring->tx_stats.bad_req_id;
789 	ena_trigger_reset(tx_ring->adapter, ENA_REGS_RESET_INV_TX_REQ_ID);
790 	return -EFAULT;
791 }
792 
793 static void ena_config_host_info(struct ena_com_dev *ena_dev)
794 {
795 	struct ena_admin_host_info *host_info;
796 	int rc;
797 
798 	/* Allocate only the host info */
799 	rc = ena_com_allocate_host_info(ena_dev);
800 	if (rc) {
801 		PMD_DRV_LOG_LINE(ERR, "Cannot allocate host info");
802 		return;
803 	}
804 
805 	host_info = ena_dev->host_attr.host_info;
806 
807 	host_info->os_type = ENA_ADMIN_OS_DPDK;
808 	host_info->kernel_ver = RTE_VERSION;
809 	strlcpy((char *)host_info->kernel_ver_str, rte_version(),
810 		sizeof(host_info->kernel_ver_str));
811 	host_info->os_dist = RTE_VERSION;
812 	strlcpy((char *)host_info->os_dist_str, rte_version(),
813 		sizeof(host_info->os_dist_str));
814 	host_info->driver_version =
815 		(DRV_MODULE_VER_MAJOR) |
816 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
817 		(DRV_MODULE_VER_SUBMINOR <<
818 			ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
819 	host_info->num_cpus = rte_lcore_count();
820 
821 	host_info->driver_supported_features =
822 		ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK |
823 		ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK;
824 
825 	rc = ena_com_set_host_attributes(ena_dev);
826 	if (rc) {
827 		if (rc == ENA_COM_UNSUPPORTED)
828 			PMD_DRV_LOG_LINE(WARNING, "Cannot set host attributes");
829 		else
830 			PMD_DRV_LOG_LINE(ERR, "Cannot set host attributes");
831 
832 		goto err;
833 	}
834 
835 	return;
836 
837 err:
838 	ena_com_delete_host_info(ena_dev);
839 }
840 
841 /* This function calculates the number of xstats based on the current config */
842 static unsigned int ena_xstats_calc_num(struct rte_eth_dev_data *data)
843 {
844 	struct ena_adapter *adapter = data->dev_private;
845 
846 	return ENA_STATS_ARRAY_GLOBAL +
847 		adapter->metrics_num +
848 		ENA_STATS_ARRAY_ENA_SRD +
849 		(data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
850 		(data->nb_rx_queues * ENA_STATS_ARRAY_RX);
851 }
852 
853 static void ena_config_debug_area(struct ena_adapter *adapter)
854 {
855 	u32 debug_area_size;
856 	int rc, ss_count;
857 
858 	ss_count = ena_xstats_calc_num(adapter->edev_data);
859 
860 	/* allocate 32 bytes for each string and 64bit for the value */
861 	debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
862 
863 	rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
864 	if (rc) {
865 		PMD_DRV_LOG_LINE(ERR, "Cannot allocate debug area");
866 		return;
867 	}
868 
869 	rc = ena_com_set_host_attributes(&adapter->ena_dev);
870 	if (rc) {
871 		if (rc == ENA_COM_UNSUPPORTED)
872 			PMD_DRV_LOG_LINE(WARNING, "Cannot set host attributes");
873 		else
874 			PMD_DRV_LOG_LINE(ERR, "Cannot set host attributes");
875 
876 		goto err;
877 	}
878 
879 	return;
880 err:
881 	ena_com_delete_debug_area(&adapter->ena_dev);
882 }
883 
884 static int ena_close(struct rte_eth_dev *dev)
885 {
886 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
887 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
888 	struct ena_adapter *adapter = dev->data->dev_private;
889 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
890 	int ret = 0;
891 	int rc;
892 
893 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
894 		return 0;
895 
896 	if (adapter->state == ENA_ADAPTER_STATE_CLOSED)
897 		return 0;
898 
899 	if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
900 		ret = ena_stop(dev);
901 	adapter->state = ENA_ADAPTER_STATE_CLOSED;
902 
903 	if (!adapter->control_path_poll_interval) {
904 		rte_intr_disable(intr_handle);
905 		rc = rte_intr_callback_unregister_sync(intr_handle, ena_control_path_handler, dev);
906 		if (unlikely(rc != 0))
907 			PMD_INIT_LOG_LINE(ERR, "Failed to unregister interrupt handler");
908 	} else {
909 		rte_eal_alarm_cancel(ena_control_path_poll_handler, dev);
910 	}
911 
912 	ena_rx_queue_release_all(dev);
913 	ena_tx_queue_release_all(dev);
914 
915 	rte_free(adapter->drv_stats);
916 	adapter->drv_stats = NULL;
917 
918 	ena_com_set_admin_running_state(ena_dev, false);
919 
920 	ena_com_rss_destroy(ena_dev);
921 
922 	ena_com_delete_debug_area(ena_dev);
923 	ena_com_delete_host_info(ena_dev);
924 
925 	ena_com_abort_admin_commands(ena_dev);
926 	ena_com_wait_for_abort_completion(ena_dev);
927 	ena_com_admin_destroy(ena_dev);
928 	ena_com_mmio_reg_read_request_destroy(ena_dev);
929 	ena_com_delete_customer_metrics_buffer(ena_dev);
930 
931 	/*
932 	 * MAC is not allocated dynamically. Setting NULL should prevent from
933 	 * release of the resource in the rte_eth_dev_release_port().
934 	 */
935 	dev->data->mac_addrs = NULL;
936 
937 	return ret;
938 }
939 
940 static int
941 ena_dev_reset(struct rte_eth_dev *dev)
942 {
943 	int rc = 0;
944 
945 	/* Cannot release memory in secondary process */
946 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
947 		PMD_DRV_LOG_LINE(WARNING, "dev_reset not supported in secondary.");
948 		return -EPERM;
949 	}
950 
951 	rc = eth_ena_dev_uninit(dev);
952 	if (rc) {
953 		PMD_INIT_LOG_LINE(CRIT, "Failed to un-initialize device");
954 		return rc;
955 	}
956 
957 	rc = eth_ena_dev_init(dev);
958 	if (rc)
959 		PMD_INIT_LOG_LINE(CRIT, "Cannot initialize device");
960 
961 	return rc;
962 }
963 
964 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
965 {
966 	int nb_queues = dev->data->nb_rx_queues;
967 	int i;
968 
969 	for (i = 0; i < nb_queues; i++)
970 		ena_rx_queue_release(dev, i);
971 }
972 
973 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
974 {
975 	int nb_queues = dev->data->nb_tx_queues;
976 	int i;
977 
978 	for (i = 0; i < nb_queues; i++)
979 		ena_tx_queue_release(dev, i);
980 }
981 
982 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
983 {
984 	struct ena_ring *ring = dev->data->rx_queues[qid];
985 
986 	/* Free ring resources */
987 	rte_free(ring->rx_buffer_info);
988 	ring->rx_buffer_info = NULL;
989 
990 	rte_free(ring->rx_refill_buffer);
991 	ring->rx_refill_buffer = NULL;
992 
993 	rte_free(ring->empty_rx_reqs);
994 	ring->empty_rx_reqs = NULL;
995 
996 	ring->configured = 0;
997 
998 	PMD_DRV_LOG_LINE(NOTICE, "Rx queue %d:%d released",
999 		ring->port_id, ring->id);
1000 }
1001 
1002 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
1003 {
1004 	struct ena_ring *ring = dev->data->tx_queues[qid];
1005 
1006 	/* Free ring resources */
1007 	rte_free(ring->push_buf_intermediate_buf);
1008 
1009 	rte_free(ring->tx_buffer_info);
1010 
1011 	rte_free(ring->empty_tx_reqs);
1012 
1013 	ring->empty_tx_reqs = NULL;
1014 	ring->tx_buffer_info = NULL;
1015 	ring->push_buf_intermediate_buf = NULL;
1016 
1017 	ring->configured = 0;
1018 
1019 	PMD_DRV_LOG_LINE(NOTICE, "Tx queue %d:%d released",
1020 		ring->port_id, ring->id);
1021 }
1022 
1023 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
1024 {
1025 	unsigned int i;
1026 
1027 	for (i = 0; i < ring->ring_size; ++i) {
1028 		struct ena_rx_buffer *rx_info = &ring->rx_buffer_info[i];
1029 		if (rx_info->mbuf) {
1030 			rte_mbuf_raw_free(rx_info->mbuf);
1031 			rx_info->mbuf = NULL;
1032 		}
1033 	}
1034 }
1035 
1036 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
1037 {
1038 	unsigned int i;
1039 
1040 	for (i = 0; i < ring->ring_size; ++i) {
1041 		struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
1042 
1043 		if (tx_buf->mbuf) {
1044 			rte_pktmbuf_free(tx_buf->mbuf);
1045 			tx_buf->mbuf = NULL;
1046 		}
1047 	}
1048 }
1049 
1050 static int ena_link_update(struct rte_eth_dev *dev,
1051 			   __rte_unused int wait_to_complete)
1052 {
1053 	struct rte_eth_link *link = &dev->data->dev_link;
1054 	struct ena_adapter *adapter = dev->data->dev_private;
1055 
1056 	link->link_status = adapter->link_status ? RTE_ETH_LINK_UP : RTE_ETH_LINK_DOWN;
1057 	link->link_speed = RTE_ETH_SPEED_NUM_NONE;
1058 	link->link_duplex = RTE_ETH_LINK_FULL_DUPLEX;
1059 
1060 	return 0;
1061 }
1062 
1063 static int ena_queue_start_all(struct rte_eth_dev *dev,
1064 			       enum ena_ring_type ring_type)
1065 {
1066 	struct ena_adapter *adapter = dev->data->dev_private;
1067 	struct ena_ring *queues = NULL;
1068 	int nb_queues;
1069 	int i = 0;
1070 	int rc = 0;
1071 
1072 	if (ring_type == ENA_RING_TYPE_RX) {
1073 		queues = adapter->rx_ring;
1074 		nb_queues = dev->data->nb_rx_queues;
1075 	} else {
1076 		queues = adapter->tx_ring;
1077 		nb_queues = dev->data->nb_tx_queues;
1078 	}
1079 	for (i = 0; i < nb_queues; i++) {
1080 		if (queues[i].configured) {
1081 			if (ring_type == ENA_RING_TYPE_RX) {
1082 				ena_assert_msg(
1083 					dev->data->rx_queues[i] == &queues[i],
1084 					"Inconsistent state of Rx queues\n");
1085 			} else {
1086 				ena_assert_msg(
1087 					dev->data->tx_queues[i] == &queues[i],
1088 					"Inconsistent state of Tx queues\n");
1089 			}
1090 
1091 			rc = ena_queue_start(dev, &queues[i]);
1092 
1093 			if (rc) {
1094 				PMD_INIT_LOG_LINE(ERR,
1095 					"Failed to start queue[%d] of type(%d)",
1096 					i, ring_type);
1097 				goto err;
1098 			}
1099 		}
1100 	}
1101 
1102 	return 0;
1103 
1104 err:
1105 	while (i--)
1106 		if (queues[i].configured)
1107 			ena_queue_stop(&queues[i]);
1108 
1109 	return rc;
1110 }
1111 
1112 static int
1113 ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx,
1114 		       bool use_large_llq_hdr)
1115 {
1116 	struct ena_admin_feature_llq_desc *dev = &ctx->get_feat_ctx->llq;
1117 	struct ena_com_dev *ena_dev = ctx->ena_dev;
1118 	uint32_t max_tx_queue_size;
1119 	uint32_t max_rx_queue_size;
1120 
1121 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1122 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1123 			&ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
1124 		max_rx_queue_size = RTE_MIN(max_queue_ext->max_rx_cq_depth,
1125 			max_queue_ext->max_rx_sq_depth);
1126 		max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
1127 
1128 		if (ena_dev->tx_mem_queue_type ==
1129 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1130 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1131 				dev->max_llq_depth);
1132 		} else {
1133 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1134 				max_queue_ext->max_tx_sq_depth);
1135 		}
1136 
1137 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1138 			max_queue_ext->max_per_packet_rx_descs);
1139 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1140 			max_queue_ext->max_per_packet_tx_descs);
1141 	} else {
1142 		struct ena_admin_queue_feature_desc *max_queues =
1143 			&ctx->get_feat_ctx->max_queues;
1144 		max_rx_queue_size = RTE_MIN(max_queues->max_cq_depth,
1145 			max_queues->max_sq_depth);
1146 		max_tx_queue_size = max_queues->max_cq_depth;
1147 
1148 		if (ena_dev->tx_mem_queue_type ==
1149 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1150 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1151 				dev->max_llq_depth);
1152 		} else {
1153 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1154 				max_queues->max_sq_depth);
1155 		}
1156 
1157 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1158 			max_queues->max_packet_rx_descs);
1159 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1160 			max_queues->max_packet_tx_descs);
1161 	}
1162 
1163 	/* Round down to the nearest power of 2 */
1164 	max_rx_queue_size = rte_align32prevpow2(max_rx_queue_size);
1165 	max_tx_queue_size = rte_align32prevpow2(max_tx_queue_size);
1166 
1167 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV && use_large_llq_hdr) {
1168 		/* intersection between driver configuration and device capabilities */
1169 		if (dev->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B) {
1170 			if (dev->max_wide_llq_depth == MAX_WIDE_LLQ_DEPTH_UNSUPPORTED) {
1171 				/* Devices that do not support the double-sized ENA memory BAR will
1172 				 * report max_wide_llq_depth as 0. In such case, driver halves the
1173 				 * queue depth when working in large llq policy.
1174 				 */
1175 				max_tx_queue_size >>= 1;
1176 				PMD_INIT_LOG_LINE(INFO,
1177 					"large LLQ policy requires limiting Tx queue size to %u entries",
1178 				max_tx_queue_size);
1179 			} else if (dev->max_wide_llq_depth < max_tx_queue_size) {
1180 				/* In case the queue depth that the driver calculated exceeds
1181 				 * the maximal value that the device allows, it will be limited
1182 				 * to that maximal value
1183 				 */
1184 				max_tx_queue_size = dev->max_wide_llq_depth;
1185 			}
1186 		} else {
1187 			PMD_INIT_LOG_LINE(INFO,
1188 				"Forcing large LLQ headers failed since device lacks this support");
1189 		}
1190 	}
1191 
1192 	if (unlikely(max_rx_queue_size == 0 || max_tx_queue_size == 0)) {
1193 		PMD_INIT_LOG_LINE(ERR, "Invalid queue size");
1194 		return -EFAULT;
1195 	}
1196 
1197 	ctx->max_tx_queue_size = max_tx_queue_size;
1198 	ctx->max_rx_queue_size = max_rx_queue_size;
1199 
1200 	PMD_DRV_LOG_LINE(INFO, "tx queue size %u", max_tx_queue_size);
1201 	return 0;
1202 }
1203 
1204 static void ena_stats_restart(struct rte_eth_dev *dev)
1205 {
1206 	struct ena_adapter *adapter = dev->data->dev_private;
1207 
1208 	rte_atomic64_init(&adapter->drv_stats->ierrors);
1209 	rte_atomic64_init(&adapter->drv_stats->oerrors);
1210 	rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
1211 	adapter->drv_stats->rx_drops = 0;
1212 }
1213 
1214 static int ena_stats_get(struct rte_eth_dev *dev,
1215 			  struct rte_eth_stats *stats)
1216 {
1217 	struct ena_admin_basic_stats ena_stats;
1218 	struct ena_adapter *adapter = dev->data->dev_private;
1219 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1220 	int rc;
1221 	int i;
1222 	int max_rings_stats;
1223 
1224 	memset(&ena_stats, 0, sizeof(ena_stats));
1225 
1226 	rte_spinlock_lock(&adapter->admin_lock);
1227 	rc = ENA_PROXY(adapter, ena_com_get_dev_basic_stats, ena_dev,
1228 		       &ena_stats);
1229 	rte_spinlock_unlock(&adapter->admin_lock);
1230 	if (unlikely(rc)) {
1231 		PMD_DRV_LOG_LINE(ERR, "Could not retrieve statistics from ENA");
1232 		return rc;
1233 	}
1234 
1235 	/* Set of basic statistics from ENA */
1236 	stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
1237 					  ena_stats.rx_pkts_low);
1238 	stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
1239 					  ena_stats.tx_pkts_low);
1240 	stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
1241 					ena_stats.rx_bytes_low);
1242 	stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
1243 					ena_stats.tx_bytes_low);
1244 
1245 	/* Driver related stats */
1246 	stats->imissed = adapter->drv_stats->rx_drops;
1247 	stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
1248 	stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
1249 	stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
1250 
1251 	max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
1252 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
1253 	for (i = 0; i < max_rings_stats; ++i) {
1254 		struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
1255 
1256 		stats->q_ibytes[i] = rx_stats->bytes;
1257 		stats->q_ipackets[i] = rx_stats->cnt;
1258 		stats->q_errors[i] = rx_stats->bad_desc_num +
1259 			rx_stats->bad_req_id;
1260 	}
1261 
1262 	max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
1263 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
1264 	for (i = 0; i < max_rings_stats; ++i) {
1265 		struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
1266 
1267 		stats->q_obytes[i] = tx_stats->bytes;
1268 		stats->q_opackets[i] = tx_stats->cnt;
1269 	}
1270 
1271 	return 0;
1272 }
1273 
1274 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1275 {
1276 	struct ena_adapter *adapter;
1277 	struct ena_com_dev *ena_dev;
1278 	int rc = 0;
1279 
1280 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
1281 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
1282 	adapter = dev->data->dev_private;
1283 
1284 	ena_dev = &adapter->ena_dev;
1285 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
1286 
1287 	rc = ENA_PROXY(adapter, ena_com_set_dev_mtu, ena_dev, mtu);
1288 	if (rc)
1289 		PMD_DRV_LOG_LINE(ERR, "Could not set MTU: %d", mtu);
1290 	else
1291 		PMD_DRV_LOG_LINE(NOTICE, "MTU set to: %d", mtu);
1292 
1293 	return rc;
1294 }
1295 
1296 static int ena_start(struct rte_eth_dev *dev)
1297 {
1298 	struct ena_adapter *adapter = dev->data->dev_private;
1299 	uint64_t ticks;
1300 	int rc = 0;
1301 	uint16_t i;
1302 
1303 	/* Cannot allocate memory in secondary process */
1304 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1305 		PMD_DRV_LOG_LINE(WARNING, "dev_start not supported in secondary.");
1306 		return -EPERM;
1307 	}
1308 
1309 	rc = ena_setup_rx_intr(dev);
1310 	if (rc)
1311 		return rc;
1312 
1313 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
1314 	if (rc)
1315 		return rc;
1316 
1317 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
1318 	if (rc)
1319 		goto err_start_tx;
1320 
1321 	if (adapter->edev_data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG) {
1322 		rc = ena_rss_configure(adapter);
1323 		if (rc)
1324 			goto err_rss_init;
1325 	}
1326 
1327 	ena_stats_restart(dev);
1328 
1329 	adapter->timestamp_wd = rte_get_timer_cycles();
1330 	adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
1331 
1332 	ticks = rte_get_timer_hz();
1333 	rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
1334 			ena_timer_wd_callback, dev);
1335 
1336 	++adapter->dev_stats.dev_start;
1337 	adapter->state = ENA_ADAPTER_STATE_RUNNING;
1338 
1339 	for (i = 0; i < dev->data->nb_rx_queues; i++)
1340 		dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
1341 	for (i = 0; i < dev->data->nb_tx_queues; i++)
1342 		dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
1343 
1344 	return 0;
1345 
1346 err_rss_init:
1347 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1348 err_start_tx:
1349 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1350 	return rc;
1351 }
1352 
1353 static int ena_stop(struct rte_eth_dev *dev)
1354 {
1355 	struct ena_adapter *adapter = dev->data->dev_private;
1356 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1357 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1358 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
1359 	uint16_t i;
1360 	int rc;
1361 
1362 	/* Cannot free memory in secondary process */
1363 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1364 		PMD_DRV_LOG_LINE(WARNING, "dev_stop not supported in secondary.");
1365 		return -EPERM;
1366 	}
1367 
1368 	rte_timer_stop_sync(&adapter->timer_wd);
1369 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1370 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1371 
1372 	if (adapter->trigger_reset) {
1373 		rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
1374 		if (rc)
1375 			PMD_DRV_LOG_LINE(ERR, "Device reset failed, rc: %d", rc);
1376 	}
1377 
1378 	rte_intr_disable(intr_handle);
1379 
1380 	rte_intr_efd_disable(intr_handle);
1381 
1382 	/* Cleanup vector list */
1383 	rte_intr_vec_list_free(intr_handle);
1384 
1385 	rte_intr_enable(intr_handle);
1386 
1387 	++adapter->dev_stats.dev_stop;
1388 	adapter->state = ENA_ADAPTER_STATE_STOPPED;
1389 	dev->data->dev_started = 0;
1390 
1391 	for (i = 0; i < dev->data->nb_rx_queues; i++)
1392 		dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
1393 	for (i = 0; i < dev->data->nb_tx_queues; i++)
1394 		dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
1395 
1396 	return 0;
1397 }
1398 
1399 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring)
1400 {
1401 	struct ena_adapter *adapter = ring->adapter;
1402 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1403 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1404 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
1405 	struct ena_com_create_io_ctx ctx =
1406 		/* policy set to _HOST just to satisfy icc compiler */
1407 		{ ENA_ADMIN_PLACEMENT_POLICY_HOST,
1408 		  0, 0, 0, 0, 0 };
1409 	uint16_t ena_qid;
1410 	unsigned int i;
1411 	int rc;
1412 
1413 	ctx.msix_vector = -1;
1414 	if (ring->type == ENA_RING_TYPE_TX) {
1415 		ena_qid = ENA_IO_TXQ_IDX(ring->id);
1416 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1417 		ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1418 		for (i = 0; i < ring->ring_size; i++)
1419 			ring->empty_tx_reqs[i] = i;
1420 	} else {
1421 		ena_qid = ENA_IO_RXQ_IDX(ring->id);
1422 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1423 		if (rte_intr_dp_is_en(intr_handle))
1424 			ctx.msix_vector =
1425 				rte_intr_vec_list_index_get(intr_handle,
1426 								   ring->id);
1427 
1428 		for (i = 0; i < ring->ring_size; i++)
1429 			ring->empty_rx_reqs[i] = i;
1430 	}
1431 	ctx.queue_size = ring->ring_size;
1432 	ctx.qid = ena_qid;
1433 	ctx.numa_node = ring->numa_socket_id;
1434 
1435 	rc = ena_com_create_io_queue(ena_dev, &ctx);
1436 	if (rc) {
1437 		PMD_DRV_LOG_LINE(ERR,
1438 			"Failed to create IO queue[%d] (qid:%d), rc: %d",
1439 			ring->id, ena_qid, rc);
1440 		return rc;
1441 	}
1442 
1443 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1444 				     &ring->ena_com_io_sq,
1445 				     &ring->ena_com_io_cq);
1446 	if (rc) {
1447 		PMD_DRV_LOG_LINE(ERR,
1448 			"Failed to get IO queue[%d] handlers, rc: %d",
1449 			ring->id, rc);
1450 		ena_com_destroy_io_queue(ena_dev, ena_qid);
1451 		return rc;
1452 	}
1453 
1454 	if (ring->type == ENA_RING_TYPE_TX)
1455 		ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1456 
1457 	/* Start with Rx interrupts being masked. */
1458 	if (ring->type == ENA_RING_TYPE_RX && rte_intr_dp_is_en(intr_handle))
1459 		ena_rx_queue_intr_disable(dev, ring->id);
1460 
1461 	return 0;
1462 }
1463 
1464 static void ena_queue_stop(struct ena_ring *ring)
1465 {
1466 	struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
1467 
1468 	if (ring->type == ENA_RING_TYPE_RX) {
1469 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
1470 		ena_rx_queue_release_bufs(ring);
1471 	} else {
1472 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
1473 		ena_tx_queue_release_bufs(ring);
1474 	}
1475 }
1476 
1477 static void ena_queue_stop_all(struct rte_eth_dev *dev,
1478 			      enum ena_ring_type ring_type)
1479 {
1480 	struct ena_adapter *adapter = dev->data->dev_private;
1481 	struct ena_ring *queues = NULL;
1482 	uint16_t nb_queues, i;
1483 
1484 	if (ring_type == ENA_RING_TYPE_RX) {
1485 		queues = adapter->rx_ring;
1486 		nb_queues = dev->data->nb_rx_queues;
1487 	} else {
1488 		queues = adapter->tx_ring;
1489 		nb_queues = dev->data->nb_tx_queues;
1490 	}
1491 
1492 	for (i = 0; i < nb_queues; ++i)
1493 		if (queues[i].configured)
1494 			ena_queue_stop(&queues[i]);
1495 }
1496 
1497 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring)
1498 {
1499 	int rc, bufs_num;
1500 
1501 	ena_assert_msg(ring->configured == 1,
1502 		       "Trying to start unconfigured queue\n");
1503 
1504 	rc = ena_create_io_queue(dev, ring);
1505 	if (rc) {
1506 		PMD_INIT_LOG_LINE(ERR, "Failed to create IO queue");
1507 		return rc;
1508 	}
1509 
1510 	ring->next_to_clean = 0;
1511 	ring->next_to_use = 0;
1512 
1513 	if (ring->type == ENA_RING_TYPE_TX) {
1514 		ring->tx_stats.available_desc =
1515 			ena_com_free_q_entries(ring->ena_com_io_sq);
1516 		return 0;
1517 	}
1518 
1519 	bufs_num = ring->ring_size - 1;
1520 	rc = ena_populate_rx_queue(ring, bufs_num);
1521 	if (rc != bufs_num) {
1522 		ena_com_destroy_io_queue(&ring->adapter->ena_dev,
1523 					 ENA_IO_RXQ_IDX(ring->id));
1524 		PMD_INIT_LOG_LINE(ERR, "Failed to populate Rx ring");
1525 		return ENA_COM_FAULT;
1526 	}
1527 	/* Flush per-core RX buffers pools cache as they can be used on other
1528 	 * cores as well.
1529 	 */
1530 	rte_mempool_cache_flush(NULL, ring->mb_pool);
1531 
1532 	return 0;
1533 }
1534 
1535 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1536 			      uint16_t queue_idx,
1537 			      uint16_t nb_desc,
1538 			      unsigned int socket_id,
1539 			      const struct rte_eth_txconf *tx_conf)
1540 {
1541 	struct ena_ring *txq = NULL;
1542 	struct ena_adapter *adapter = dev->data->dev_private;
1543 	unsigned int i;
1544 	uint16_t dyn_thresh;
1545 
1546 	txq = &adapter->tx_ring[queue_idx];
1547 
1548 	if (txq->configured) {
1549 		PMD_DRV_LOG_LINE(CRIT,
1550 			"API violation. Queue[%d] is already configured",
1551 			queue_idx);
1552 		return ENA_COM_FAULT;
1553 	}
1554 
1555 	if (!rte_is_power_of_2(nb_desc)) {
1556 		PMD_DRV_LOG_LINE(ERR,
1557 			"Unsupported size of Tx queue: %d is not a power of 2.",
1558 			nb_desc);
1559 		return -EINVAL;
1560 	}
1561 
1562 	if (nb_desc > adapter->max_tx_ring_size) {
1563 		PMD_DRV_LOG_LINE(ERR,
1564 			"Unsupported size of Tx queue (max size: %d)",
1565 			adapter->max_tx_ring_size);
1566 		return -EINVAL;
1567 	}
1568 
1569 	txq->port_id = dev->data->port_id;
1570 	txq->next_to_clean = 0;
1571 	txq->next_to_use = 0;
1572 	txq->ring_size = nb_desc;
1573 	txq->size_mask = nb_desc - 1;
1574 	txq->numa_socket_id = socket_id;
1575 	txq->pkts_without_db = false;
1576 	txq->last_cleanup_ticks = 0;
1577 
1578 	txq->tx_buffer_info = rte_zmalloc_socket("txq->tx_buffer_info",
1579 		sizeof(struct ena_tx_buffer) * txq->ring_size,
1580 		RTE_CACHE_LINE_SIZE,
1581 		socket_id);
1582 	if (!txq->tx_buffer_info) {
1583 		PMD_DRV_LOG_LINE(ERR,
1584 			"Failed to allocate memory for Tx buffer info");
1585 		return -ENOMEM;
1586 	}
1587 
1588 	txq->empty_tx_reqs = rte_zmalloc_socket("txq->empty_tx_reqs",
1589 		sizeof(uint16_t) * txq->ring_size,
1590 		RTE_CACHE_LINE_SIZE,
1591 		socket_id);
1592 	if (!txq->empty_tx_reqs) {
1593 		PMD_DRV_LOG_LINE(ERR,
1594 			"Failed to allocate memory for empty Tx requests");
1595 		rte_free(txq->tx_buffer_info);
1596 		return -ENOMEM;
1597 	}
1598 
1599 	txq->push_buf_intermediate_buf =
1600 		rte_zmalloc_socket("txq->push_buf_intermediate_buf",
1601 			txq->tx_max_header_size,
1602 			RTE_CACHE_LINE_SIZE,
1603 			socket_id);
1604 	if (!txq->push_buf_intermediate_buf) {
1605 		PMD_DRV_LOG_LINE(ERR, "Failed to alloc push buffer for LLQ");
1606 		rte_free(txq->tx_buffer_info);
1607 		rte_free(txq->empty_tx_reqs);
1608 		return -ENOMEM;
1609 	}
1610 
1611 	for (i = 0; i < txq->ring_size; i++)
1612 		txq->empty_tx_reqs[i] = i;
1613 
1614 	txq->offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1615 
1616 	/* Check if caller provided the Tx cleanup threshold value. */
1617 	if (tx_conf->tx_free_thresh != 0) {
1618 		txq->tx_free_thresh = tx_conf->tx_free_thresh;
1619 	} else {
1620 		dyn_thresh = txq->ring_size -
1621 			txq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1622 		txq->tx_free_thresh = RTE_MAX(dyn_thresh,
1623 			txq->ring_size - ENA_REFILL_THRESH_PACKET);
1624 	}
1625 
1626 	txq->missing_tx_completion_threshold =
1627 		RTE_MIN(txq->ring_size / 2, ENA_DEFAULT_MISSING_COMP);
1628 
1629 	/* Store pointer to this queue in upper layer */
1630 	txq->configured = 1;
1631 	dev->data->tx_queues[queue_idx] = txq;
1632 
1633 	return 0;
1634 }
1635 
1636 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1637 			      uint16_t queue_idx,
1638 			      uint16_t nb_desc,
1639 			      unsigned int socket_id,
1640 			      const struct rte_eth_rxconf *rx_conf,
1641 			      struct rte_mempool *mp)
1642 {
1643 	struct ena_adapter *adapter = dev->data->dev_private;
1644 	struct ena_ring *rxq = NULL;
1645 	size_t buffer_size;
1646 	int i;
1647 	uint16_t dyn_thresh;
1648 
1649 	rxq = &adapter->rx_ring[queue_idx];
1650 	if (rxq->configured) {
1651 		PMD_DRV_LOG_LINE(CRIT,
1652 			"API violation. Queue[%d] is already configured",
1653 			queue_idx);
1654 		return ENA_COM_FAULT;
1655 	}
1656 
1657 	if (!rte_is_power_of_2(nb_desc)) {
1658 		PMD_DRV_LOG_LINE(ERR,
1659 			"Unsupported size of Rx queue: %d is not a power of 2.",
1660 			nb_desc);
1661 		return -EINVAL;
1662 	}
1663 
1664 	if (nb_desc > adapter->max_rx_ring_size) {
1665 		PMD_DRV_LOG_LINE(ERR,
1666 			"Unsupported size of Rx queue (max size: %d)",
1667 			adapter->max_rx_ring_size);
1668 		return -EINVAL;
1669 	}
1670 
1671 	/* ENA isn't supporting buffers smaller than 1400 bytes */
1672 	buffer_size = rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
1673 	if (buffer_size < ENA_RX_BUF_MIN_SIZE) {
1674 		PMD_DRV_LOG_LINE(ERR,
1675 			"Unsupported size of Rx buffer: %zu (min size: %d)",
1676 			buffer_size, ENA_RX_BUF_MIN_SIZE);
1677 		return -EINVAL;
1678 	}
1679 
1680 	rxq->port_id = dev->data->port_id;
1681 	rxq->next_to_clean = 0;
1682 	rxq->next_to_use = 0;
1683 	rxq->ring_size = nb_desc;
1684 	rxq->size_mask = nb_desc - 1;
1685 	rxq->numa_socket_id = socket_id;
1686 	rxq->mb_pool = mp;
1687 
1688 	rxq->rx_buffer_info = rte_zmalloc_socket("rxq->buffer_info",
1689 		sizeof(struct ena_rx_buffer) * nb_desc,
1690 		RTE_CACHE_LINE_SIZE,
1691 		socket_id);
1692 	if (!rxq->rx_buffer_info) {
1693 		PMD_DRV_LOG_LINE(ERR,
1694 			"Failed to allocate memory for Rx buffer info");
1695 		return -ENOMEM;
1696 	}
1697 
1698 	rxq->rx_refill_buffer = rte_zmalloc_socket("rxq->rx_refill_buffer",
1699 		sizeof(struct rte_mbuf *) * nb_desc,
1700 		RTE_CACHE_LINE_SIZE,
1701 		socket_id);
1702 	if (!rxq->rx_refill_buffer) {
1703 		PMD_DRV_LOG_LINE(ERR,
1704 			"Failed to allocate memory for Rx refill buffer");
1705 		rte_free(rxq->rx_buffer_info);
1706 		rxq->rx_buffer_info = NULL;
1707 		return -ENOMEM;
1708 	}
1709 
1710 	rxq->empty_rx_reqs = rte_zmalloc_socket("rxq->empty_rx_reqs",
1711 		sizeof(uint16_t) * nb_desc,
1712 		RTE_CACHE_LINE_SIZE,
1713 		socket_id);
1714 	if (!rxq->empty_rx_reqs) {
1715 		PMD_DRV_LOG_LINE(ERR,
1716 			"Failed to allocate memory for empty Rx requests");
1717 		rte_free(rxq->rx_buffer_info);
1718 		rxq->rx_buffer_info = NULL;
1719 		rte_free(rxq->rx_refill_buffer);
1720 		rxq->rx_refill_buffer = NULL;
1721 		return -ENOMEM;
1722 	}
1723 
1724 	for (i = 0; i < nb_desc; i++)
1725 		rxq->empty_rx_reqs[i] = i;
1726 
1727 	rxq->offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1728 
1729 	if (rx_conf->rx_free_thresh != 0) {
1730 		rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1731 	} else {
1732 		dyn_thresh = rxq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1733 		rxq->rx_free_thresh = RTE_MIN(dyn_thresh,
1734 			(uint16_t)(ENA_REFILL_THRESH_PACKET));
1735 	}
1736 
1737 	/* Store pointer to this queue in upper layer */
1738 	rxq->configured = 1;
1739 	dev->data->rx_queues[queue_idx] = rxq;
1740 
1741 	return 0;
1742 }
1743 
1744 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
1745 				  struct rte_mbuf *mbuf, uint16_t id)
1746 {
1747 	struct ena_com_buf ebuf;
1748 	int rc;
1749 
1750 	/* prepare physical address for DMA transaction */
1751 	ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1752 	ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1753 
1754 	/* pass resource to device */
1755 	rc = ena_com_add_single_rx_desc(io_sq, &ebuf, id);
1756 	if (unlikely(rc != 0))
1757 		PMD_RX_LOG_LINE(WARNING, "Failed adding Rx desc");
1758 
1759 	return rc;
1760 }
1761 
1762 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1763 {
1764 	unsigned int i;
1765 	int rc;
1766 	uint16_t next_to_use = rxq->next_to_use;
1767 	uint16_t req_id;
1768 #ifdef RTE_ETHDEV_DEBUG_RX
1769 	uint16_t in_use;
1770 #endif
1771 	struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1772 
1773 	if (unlikely(!count))
1774 		return 0;
1775 
1776 #ifdef RTE_ETHDEV_DEBUG_RX
1777 	in_use = rxq->ring_size - 1 -
1778 		ena_com_free_q_entries(rxq->ena_com_io_sq);
1779 	if (unlikely((in_use + count) >= rxq->ring_size))
1780 		PMD_RX_LOG_LINE(ERR, "Bad Rx ring state");
1781 #endif
1782 
1783 	/* get resources for incoming packets */
1784 	rc = rte_pktmbuf_alloc_bulk(rxq->mb_pool, mbufs, count);
1785 	if (unlikely(rc < 0)) {
1786 		rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1787 		++rxq->rx_stats.mbuf_alloc_fail;
1788 		PMD_RX_LOG_LINE(DEBUG, "There are not enough free buffers");
1789 		return 0;
1790 	}
1791 
1792 	for (i = 0; i < count; i++) {
1793 		struct rte_mbuf *mbuf = mbufs[i];
1794 		struct ena_rx_buffer *rx_info;
1795 
1796 		if (likely((i + 4) < count))
1797 			rte_prefetch0(mbufs[i + 4]);
1798 
1799 		req_id = rxq->empty_rx_reqs[next_to_use];
1800 		rx_info = &rxq->rx_buffer_info[req_id];
1801 
1802 		rc = ena_add_single_rx_desc(rxq->ena_com_io_sq, mbuf, req_id);
1803 		if (unlikely(rc != 0))
1804 			break;
1805 
1806 		rx_info->mbuf = mbuf;
1807 		next_to_use = ENA_IDX_NEXT_MASKED(next_to_use, rxq->size_mask);
1808 	}
1809 
1810 	if (unlikely(i < count)) {
1811 		PMD_RX_LOG_LINE(WARNING,
1812 			"Refilled Rx queue[%d] with only %d/%d buffers",
1813 			rxq->id, i, count);
1814 		rte_pktmbuf_free_bulk(&mbufs[i], count - i);
1815 		++rxq->rx_stats.refill_partial;
1816 	}
1817 
1818 	/* When we submitted free resources to device... */
1819 	if (likely(i > 0)) {
1820 		/* ...let HW know that it can fill buffers with data. */
1821 		ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1822 
1823 		rxq->next_to_use = next_to_use;
1824 	}
1825 
1826 	return i;
1827 }
1828 
1829 static size_t ena_get_metrics_entries(struct ena_adapter *adapter)
1830 {
1831 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1832 	size_t metrics_num = 0;
1833 
1834 	if (ena_com_get_cap(ena_dev, ENA_ADMIN_CUSTOMER_METRICS))
1835 		metrics_num = ENA_STATS_ARRAY_METRICS;
1836 	else if (ena_com_get_cap(ena_dev, ENA_ADMIN_ENI_STATS))
1837 		metrics_num = ENA_STATS_ARRAY_METRICS_LEGACY;
1838 	PMD_DRV_LOG_LINE(NOTICE, "0x%x customer metrics are supported", (unsigned int)metrics_num);
1839 	if (metrics_num > ENA_MAX_CUSTOMER_METRICS) {
1840 		PMD_DRV_LOG_LINE(NOTICE, "Not enough space for the requested customer metrics");
1841 		metrics_num = ENA_MAX_CUSTOMER_METRICS;
1842 	}
1843 	return metrics_num;
1844 }
1845 
1846 static int ena_device_init(struct ena_adapter *adapter,
1847 			   struct rte_pci_device *pdev,
1848 			   struct ena_com_dev_get_features_ctx *get_feat_ctx)
1849 {
1850 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1851 	uint32_t aenq_groups;
1852 	int rc;
1853 	bool readless_supported;
1854 
1855 	/* Initialize mmio registers */
1856 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
1857 	if (rc) {
1858 		PMD_DRV_LOG_LINE(ERR, "Failed to init MMIO read less");
1859 		return rc;
1860 	}
1861 
1862 	/* The PCIe configuration space revision id indicate if mmio reg
1863 	 * read is disabled.
1864 	 */
1865 	readless_supported = !(pdev->id.class_id & ENA_MMIO_DISABLE_REG_READ);
1866 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1867 
1868 	/* reset device */
1869 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1870 	if (rc) {
1871 		PMD_DRV_LOG_LINE(ERR, "Cannot reset device");
1872 		goto err_mmio_read_less;
1873 	}
1874 
1875 	/* check FW version */
1876 	rc = ena_com_validate_version(ena_dev);
1877 	if (rc) {
1878 		PMD_DRV_LOG_LINE(ERR, "Device version is too low");
1879 		goto err_mmio_read_less;
1880 	}
1881 
1882 	ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1883 
1884 	/* ENA device administration layer init */
1885 	rc = ena_com_admin_init(ena_dev, &aenq_handlers);
1886 	if (rc) {
1887 		PMD_DRV_LOG_LINE(ERR,
1888 			"Cannot initialize ENA admin queue");
1889 		goto err_mmio_read_less;
1890 	}
1891 
1892 	/* To enable the msix interrupts the driver needs to know the number
1893 	 * of queues. So the driver uses polling mode to retrieve this
1894 	 * information.
1895 	 */
1896 	ena_com_set_admin_polling_mode(ena_dev, true);
1897 
1898 	ena_config_host_info(ena_dev);
1899 
1900 	/* Get Device Attributes and features */
1901 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1902 	if (rc) {
1903 		PMD_DRV_LOG_LINE(ERR,
1904 			"Cannot get attribute for ENA device, rc: %d", rc);
1905 		goto err_admin_init;
1906 	}
1907 
1908 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1909 		      BIT(ENA_ADMIN_NOTIFICATION) |
1910 		      BIT(ENA_ADMIN_KEEP_ALIVE) |
1911 		      BIT(ENA_ADMIN_FATAL_ERROR) |
1912 		      BIT(ENA_ADMIN_WARNING) |
1913 		      BIT(ENA_ADMIN_CONF_NOTIFICATIONS);
1914 
1915 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
1916 
1917 	adapter->all_aenq_groups = aenq_groups;
1918 	/* The actual supported number of metrics is negotiated with the device at runtime */
1919 	adapter->metrics_num = ena_get_metrics_entries(adapter);
1920 
1921 	return 0;
1922 
1923 err_admin_init:
1924 	ena_com_admin_destroy(ena_dev);
1925 
1926 err_mmio_read_less:
1927 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1928 
1929 	return rc;
1930 }
1931 
1932 static void ena_control_path_handler(void *cb_arg)
1933 {
1934 	struct rte_eth_dev *dev = cb_arg;
1935 	struct ena_adapter *adapter = dev->data->dev_private;
1936 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1937 
1938 	if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED)) {
1939 		ena_com_admin_q_comp_intr_handler(ena_dev);
1940 		ena_com_aenq_intr_handler(ena_dev, dev);
1941 	}
1942 }
1943 
1944 static void ena_control_path_poll_handler(void *cb_arg)
1945 {
1946 	struct rte_eth_dev *dev = cb_arg;
1947 	struct ena_adapter *adapter = dev->data->dev_private;
1948 	int rc;
1949 
1950 	if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED)) {
1951 		ena_control_path_handler(cb_arg);
1952 		rc = rte_eal_alarm_set(adapter->control_path_poll_interval,
1953 				       ena_control_path_poll_handler, cb_arg);
1954 		if (unlikely(rc != 0)) {
1955 			PMD_DRV_LOG_LINE(ERR, "Failed to retrigger control path alarm");
1956 			ena_trigger_reset(adapter, ENA_REGS_RESET_GENERIC);
1957 		}
1958 	}
1959 }
1960 
1961 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1962 {
1963 	if (!(adapter->active_aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE)))
1964 		return;
1965 
1966 	if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1967 		return;
1968 
1969 	if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1970 	    adapter->keep_alive_timeout)) {
1971 		PMD_DRV_LOG_LINE(ERR, "Keep alive timeout");
1972 		ena_trigger_reset(adapter, ENA_REGS_RESET_KEEP_ALIVE_TO);
1973 		++adapter->dev_stats.wd_expired;
1974 	}
1975 }
1976 
1977 /* Check if admin queue is enabled */
1978 static void check_for_admin_com_state(struct ena_adapter *adapter)
1979 {
1980 	if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1981 		PMD_DRV_LOG_LINE(ERR, "ENA admin queue is not in running state");
1982 		ena_trigger_reset(adapter, ENA_REGS_RESET_ADMIN_TO);
1983 	}
1984 }
1985 
1986 static int check_for_tx_completion_in_queue(struct ena_adapter *adapter,
1987 					    struct ena_ring *tx_ring)
1988 {
1989 	struct ena_tx_buffer *tx_buf;
1990 	uint64_t timestamp;
1991 	uint64_t completion_delay;
1992 	uint32_t missed_tx = 0;
1993 	unsigned int i;
1994 	int rc = 0;
1995 
1996 	for (i = 0; i < tx_ring->ring_size; ++i) {
1997 		tx_buf = &tx_ring->tx_buffer_info[i];
1998 		timestamp = tx_buf->timestamp;
1999 
2000 		if (timestamp == 0)
2001 			continue;
2002 
2003 		completion_delay = rte_get_timer_cycles() - timestamp;
2004 		if (completion_delay > adapter->missing_tx_completion_to) {
2005 			if (unlikely(!tx_buf->print_once)) {
2006 				PMD_TX_LOG_LINE(WARNING,
2007 					"Found a Tx that wasn't completed on time, qid %d, index %d. "
2008 					"Missing Tx outstanding for %" PRIu64 " msecs.",
2009 					tx_ring->id, i,	completion_delay /
2010 					rte_get_timer_hz() * 1000);
2011 				tx_buf->print_once = true;
2012 			}
2013 			++missed_tx;
2014 		}
2015 	}
2016 
2017 	if (unlikely(missed_tx > tx_ring->missing_tx_completion_threshold)) {
2018 		PMD_DRV_LOG_LINE(ERR,
2019 			"The number of lost Tx completions is above the threshold (%d > %d). "
2020 			"Trigger the device reset.",
2021 			missed_tx,
2022 			tx_ring->missing_tx_completion_threshold);
2023 		adapter->reset_reason = ENA_REGS_RESET_MISS_TX_CMPL;
2024 		adapter->trigger_reset = true;
2025 		rc = -EIO;
2026 	}
2027 
2028 	tx_ring->tx_stats.missed_tx += missed_tx;
2029 
2030 	return rc;
2031 }
2032 
2033 static void check_for_tx_completions(struct ena_adapter *adapter)
2034 {
2035 	struct ena_ring *tx_ring;
2036 	uint64_t tx_cleanup_delay;
2037 	size_t qid;
2038 	int budget;
2039 	uint16_t nb_tx_queues = adapter->edev_data->nb_tx_queues;
2040 
2041 	if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT)
2042 		return;
2043 
2044 	nb_tx_queues = adapter->edev_data->nb_tx_queues;
2045 	budget = adapter->missing_tx_completion_budget;
2046 
2047 	qid = adapter->last_tx_comp_qid;
2048 	while (budget-- > 0) {
2049 		tx_ring = &adapter->tx_ring[qid];
2050 
2051 		/* Tx cleanup is called only by the burst function and can be
2052 		 * called dynamically by the application. Also cleanup is
2053 		 * limited by the threshold. To avoid false detection of the
2054 		 * missing HW Tx completion, get the delay since last cleanup
2055 		 * function was called.
2056 		 */
2057 		tx_cleanup_delay = rte_get_timer_cycles() -
2058 			tx_ring->last_cleanup_ticks;
2059 		if (tx_cleanup_delay < adapter->tx_cleanup_stall_delay)
2060 			check_for_tx_completion_in_queue(adapter, tx_ring);
2061 		qid = (qid + 1) % nb_tx_queues;
2062 	}
2063 
2064 	adapter->last_tx_comp_qid = qid;
2065 }
2066 
2067 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
2068 				  void *arg)
2069 {
2070 	struct rte_eth_dev *dev = arg;
2071 	struct ena_adapter *adapter = dev->data->dev_private;
2072 
2073 	if (unlikely(adapter->trigger_reset))
2074 		return;
2075 
2076 	check_for_missing_keep_alive(adapter);
2077 	check_for_admin_com_state(adapter);
2078 	check_for_tx_completions(adapter);
2079 
2080 	if (unlikely(adapter->trigger_reset)) {
2081 		PMD_DRV_LOG_LINE(ERR, "Trigger reset is on");
2082 		rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
2083 			NULL);
2084 	}
2085 }
2086 
2087 static inline void
2088 set_default_llq_configurations(struct ena_llq_configurations *llq_config,
2089 			       struct ena_admin_feature_llq_desc *llq,
2090 			       bool use_large_llq_hdr)
2091 {
2092 	llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
2093 	llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
2094 	llq_config->llq_num_decs_before_header =
2095 		ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
2096 
2097 	if (use_large_llq_hdr &&
2098 	    (llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B)) {
2099 		llq_config->llq_ring_entry_size =
2100 			ENA_ADMIN_LIST_ENTRY_SIZE_256B;
2101 		llq_config->llq_ring_entry_size_value = 256;
2102 	} else {
2103 		llq_config->llq_ring_entry_size =
2104 			ENA_ADMIN_LIST_ENTRY_SIZE_128B;
2105 		llq_config->llq_ring_entry_size_value = 128;
2106 	}
2107 }
2108 
2109 static int
2110 ena_set_queues_placement_policy(struct ena_adapter *adapter,
2111 				struct ena_com_dev *ena_dev,
2112 				struct ena_admin_feature_llq_desc *llq,
2113 				struct ena_llq_configurations *llq_default_configurations)
2114 {
2115 	int rc;
2116 	u32 llq_feature_mask;
2117 
2118 	if (adapter->llq_header_policy == ENA_LLQ_POLICY_DISABLED) {
2119 		PMD_DRV_LOG_LINE(WARNING,
2120 			"NOTE: LLQ has been disabled as per user's request. "
2121 			"This may lead to a huge performance degradation!");
2122 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
2123 		return 0;
2124 	}
2125 
2126 	llq_feature_mask = 1 << ENA_ADMIN_LLQ;
2127 	if (!(ena_dev->supported_features & llq_feature_mask)) {
2128 		PMD_DRV_LOG_LINE(INFO,
2129 			"LLQ is not supported. Fallback to host mode policy.");
2130 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
2131 		return 0;
2132 	}
2133 
2134 	if (adapter->dev_mem_base == NULL) {
2135 		PMD_DRV_LOG_LINE(ERR,
2136 			"LLQ is advertised as supported, but device doesn't expose mem bar");
2137 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
2138 		return 0;
2139 	}
2140 
2141 	rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
2142 	if (unlikely(rc)) {
2143 		PMD_INIT_LOG_LINE(WARNING,
2144 			"Failed to config dev mode. Fallback to host mode policy.");
2145 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
2146 		return 0;
2147 	}
2148 
2149 	/* Nothing to config, exit */
2150 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
2151 		return 0;
2152 
2153 	ena_dev->mem_bar = adapter->dev_mem_base;
2154 
2155 	return 0;
2156 }
2157 
2158 static uint32_t ena_calc_max_io_queue_num(struct ena_com_dev *ena_dev,
2159 	struct ena_com_dev_get_features_ctx *get_feat_ctx)
2160 {
2161 	uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
2162 
2163 	/* Regular queues capabilities */
2164 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
2165 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
2166 			&get_feat_ctx->max_queue_ext.max_queue_ext;
2167 		io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
2168 				    max_queue_ext->max_rx_cq_num);
2169 		io_tx_sq_num = max_queue_ext->max_tx_sq_num;
2170 		io_tx_cq_num = max_queue_ext->max_tx_cq_num;
2171 	} else {
2172 		struct ena_admin_queue_feature_desc *max_queues =
2173 			&get_feat_ctx->max_queues;
2174 		io_tx_sq_num = max_queues->max_sq_num;
2175 		io_tx_cq_num = max_queues->max_cq_num;
2176 		io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
2177 	}
2178 
2179 	/* In case of LLQ use the llq number in the get feature cmd */
2180 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
2181 		io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
2182 
2183 	max_num_io_queues = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
2184 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_sq_num);
2185 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_cq_num);
2186 
2187 	if (unlikely(max_num_io_queues == 0)) {
2188 		PMD_DRV_LOG_LINE(ERR, "Number of IO queues cannot not be 0");
2189 		return -EFAULT;
2190 	}
2191 
2192 	return max_num_io_queues;
2193 }
2194 
2195 static void
2196 ena_set_offloads(struct ena_offloads *offloads,
2197 		 struct ena_admin_feature_offload_desc *offload_desc)
2198 {
2199 	if (offload_desc->tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK)
2200 		offloads->tx_offloads |= ENA_IPV4_TSO;
2201 
2202 	/* Tx IPv4 checksum offloads */
2203 	if (offload_desc->tx &
2204 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)
2205 		offloads->tx_offloads |= ENA_L3_IPV4_CSUM;
2206 	if (offload_desc->tx &
2207 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK)
2208 		offloads->tx_offloads |= ENA_L4_IPV4_CSUM;
2209 	if (offload_desc->tx &
2210 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)
2211 		offloads->tx_offloads |= ENA_L4_IPV4_CSUM_PARTIAL;
2212 
2213 	/* Tx IPv6 checksum offloads */
2214 	if (offload_desc->tx &
2215 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK)
2216 		offloads->tx_offloads |= ENA_L4_IPV6_CSUM;
2217 	if (offload_desc->tx &
2218 	     ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)
2219 		offloads->tx_offloads |= ENA_L4_IPV6_CSUM_PARTIAL;
2220 
2221 	/* Rx IPv4 checksum offloads */
2222 	if (offload_desc->rx_supported &
2223 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)
2224 		offloads->rx_offloads |= ENA_L3_IPV4_CSUM;
2225 	if (offload_desc->rx_supported &
2226 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK)
2227 		offloads->rx_offloads |= ENA_L4_IPV4_CSUM;
2228 
2229 	/* Rx IPv6 checksum offloads */
2230 	if (offload_desc->rx_supported &
2231 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK)
2232 		offloads->rx_offloads |= ENA_L4_IPV6_CSUM;
2233 
2234 	if (offload_desc->rx_supported &
2235 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_HASH_MASK)
2236 		offloads->rx_offloads |= ENA_RX_RSS_HASH;
2237 }
2238 
2239 static int ena_init_once(void)
2240 {
2241 	static bool init_done;
2242 
2243 	if (init_done)
2244 		return 0;
2245 
2246 	if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
2247 		/* Init timer subsystem for the ENA timer service. */
2248 		rte_timer_subsystem_init();
2249 		/* Register handler for requests from secondary processes. */
2250 		rte_mp_action_register(ENA_MP_NAME, ena_mp_primary_handle);
2251 	}
2252 
2253 	init_done = true;
2254 	return 0;
2255 }
2256 
2257 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
2258 {
2259 	struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
2260 	struct rte_pci_device *pci_dev;
2261 	struct rte_intr_handle *intr_handle;
2262 	struct ena_adapter *adapter = eth_dev->data->dev_private;
2263 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
2264 	struct ena_com_dev_get_features_ctx get_feat_ctx;
2265 	struct ena_llq_configurations llq_config;
2266 	const char *queue_type_str;
2267 	uint32_t max_num_io_queues;
2268 	int rc;
2269 	static int adapters_found;
2270 	bool disable_meta_caching;
2271 
2272 	eth_dev->dev_ops = &ena_dev_ops;
2273 	eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
2274 	eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
2275 	eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
2276 
2277 	rc = ena_init_once();
2278 	if (rc != 0)
2279 		return rc;
2280 
2281 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2282 		return 0;
2283 
2284 	eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
2285 
2286 	memset(adapter, 0, sizeof(struct ena_adapter));
2287 	ena_dev = &adapter->ena_dev;
2288 
2289 	adapter->edev_data = eth_dev->data;
2290 
2291 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2292 
2293 	PMD_INIT_LOG_LINE(INFO, "Initializing " PCI_PRI_FMT,
2294 		     pci_dev->addr.domain,
2295 		     pci_dev->addr.bus,
2296 		     pci_dev->addr.devid,
2297 		     pci_dev->addr.function);
2298 
2299 	intr_handle = pci_dev->intr_handle;
2300 
2301 	adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
2302 	adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
2303 
2304 	if (!adapter->regs) {
2305 		PMD_INIT_LOG_LINE(CRIT, "Failed to access registers BAR(%d)",
2306 			     ENA_REGS_BAR);
2307 		return -ENXIO;
2308 	}
2309 
2310 	ena_dev->reg_bar = adapter->regs;
2311 	/* Pass device data as a pointer which can be passed to the IO functions
2312 	 * by the ena_com (for example - the memory allocation).
2313 	 */
2314 	ena_dev->dmadev = eth_dev->data;
2315 
2316 	adapter->id_number = adapters_found;
2317 
2318 	snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
2319 		 adapter->id_number);
2320 
2321 	/* Assign default devargs values */
2322 	adapter->missing_tx_completion_to = ENA_TX_TIMEOUT;
2323 	adapter->enable_llq = true;
2324 	adapter->use_large_llq_hdr = false;
2325 	adapter->use_normal_llq_hdr = false;
2326 
2327 	/* Get user bypass */
2328 	rc = ena_parse_devargs(adapter, pci_dev->device.devargs);
2329 	if (rc != 0) {
2330 		PMD_INIT_LOG_LINE(CRIT, "Failed to parse devargs");
2331 		goto err;
2332 	}
2333 	adapter->llq_header_policy = ena_define_llq_hdr_policy(adapter);
2334 
2335 	rc = ena_com_allocate_customer_metrics_buffer(ena_dev);
2336 	if (rc != 0) {
2337 		PMD_INIT_LOG_LINE(CRIT, "Failed to allocate customer metrics buffer");
2338 		goto err;
2339 	}
2340 
2341 	/* device specific initialization routine */
2342 	rc = ena_device_init(adapter, pci_dev, &get_feat_ctx);
2343 	if (rc) {
2344 		PMD_INIT_LOG_LINE(CRIT, "Failed to init ENA device");
2345 		goto err_metrics_delete;
2346 	}
2347 
2348 	/* Check if device supports LSC */
2349 	if (!(adapter->all_aenq_groups & BIT(ENA_ADMIN_LINK_CHANGE)))
2350 		adapter->edev_data->dev_flags &= ~RTE_ETH_DEV_INTR_LSC;
2351 
2352 	bool use_large_llq_hdr = ena_use_large_llq_hdr(adapter,
2353 						       get_feat_ctx.llq.entry_size_recommended);
2354 	set_default_llq_configurations(&llq_config, &get_feat_ctx.llq, use_large_llq_hdr);
2355 	rc = ena_set_queues_placement_policy(adapter, ena_dev,
2356 					     &get_feat_ctx.llq, &llq_config);
2357 	if (unlikely(rc)) {
2358 		PMD_INIT_LOG_LINE(CRIT, "Failed to set placement policy");
2359 		return rc;
2360 	}
2361 
2362 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST) {
2363 		queue_type_str = "Regular";
2364 	} else {
2365 		queue_type_str = "Low latency";
2366 		PMD_DRV_LOG_LINE(INFO, "LLQ entry size %uB", llq_config.llq_ring_entry_size_value);
2367 	}
2368 	PMD_DRV_LOG_LINE(INFO, "Placement policy: %s", queue_type_str);
2369 
2370 	calc_queue_ctx.ena_dev = ena_dev;
2371 	calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
2372 
2373 	max_num_io_queues = ena_calc_max_io_queue_num(ena_dev, &get_feat_ctx);
2374 	rc = ena_calc_io_queue_size(&calc_queue_ctx, use_large_llq_hdr);
2375 	if (unlikely((rc != 0) || (max_num_io_queues == 0))) {
2376 		rc = -EFAULT;
2377 		goto err_device_destroy;
2378 	}
2379 
2380 	adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
2381 	adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
2382 	adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
2383 	adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
2384 	adapter->max_num_io_queues = max_num_io_queues;
2385 
2386 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2387 		disable_meta_caching =
2388 			!!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
2389 			BIT(ENA_ADMIN_DISABLE_META_CACHING));
2390 	} else {
2391 		disable_meta_caching = false;
2392 	}
2393 
2394 	/* prepare ring structures */
2395 	ena_init_rings(adapter, disable_meta_caching);
2396 
2397 	ena_config_debug_area(adapter);
2398 
2399 	/* Set max MTU for this device */
2400 	adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
2401 
2402 	ena_set_offloads(&adapter->offloads, &get_feat_ctx.offload);
2403 
2404 	/* Copy MAC address and point DPDK to it */
2405 	eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr;
2406 	rte_ether_addr_copy((struct rte_ether_addr *)
2407 			get_feat_ctx.dev_attr.mac_addr,
2408 			(struct rte_ether_addr *)adapter->mac_addr);
2409 
2410 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
2411 	if (unlikely(rc != 0)) {
2412 		PMD_DRV_LOG_LINE(ERR, "Failed to initialize RSS in ENA device");
2413 		goto err_delete_debug_area;
2414 	}
2415 
2416 	adapter->drv_stats = rte_zmalloc("adapter stats",
2417 					 sizeof(*adapter->drv_stats),
2418 					 RTE_CACHE_LINE_SIZE);
2419 	if (!adapter->drv_stats) {
2420 		PMD_DRV_LOG_LINE(ERR,
2421 			"Failed to allocate memory for adapter statistics");
2422 		rc = -ENOMEM;
2423 		goto err_rss_destroy;
2424 	}
2425 
2426 	rte_spinlock_init(&adapter->admin_lock);
2427 
2428 	if (!adapter->control_path_poll_interval) {
2429 		/* Control path interrupt mode */
2430 		rte_intr_callback_register(intr_handle, ena_control_path_handler, eth_dev);
2431 		rte_intr_enable(intr_handle);
2432 		ena_com_set_admin_polling_mode(ena_dev, false);
2433 	} else {
2434 		/* Control path polling mode */
2435 		rc = rte_eal_alarm_set(adapter->control_path_poll_interval,
2436 				       ena_control_path_poll_handler, eth_dev);
2437 		if (unlikely(rc != 0)) {
2438 			PMD_DRV_LOG_LINE(ERR, "Failed to set control path alarm");
2439 			goto err_control_path_destroy;
2440 		}
2441 	}
2442 	ena_com_admin_aenq_enable(ena_dev);
2443 	rte_timer_init(&adapter->timer_wd);
2444 
2445 	adapters_found++;
2446 	adapter->state = ENA_ADAPTER_STATE_INIT;
2447 
2448 	return 0;
2449 err_control_path_destroy:
2450 	rte_free(adapter->drv_stats);
2451 err_rss_destroy:
2452 	ena_com_rss_destroy(ena_dev);
2453 err_delete_debug_area:
2454 	ena_com_delete_debug_area(ena_dev);
2455 
2456 err_device_destroy:
2457 	ena_com_delete_host_info(ena_dev);
2458 	ena_com_admin_destroy(ena_dev);
2459 err_metrics_delete:
2460 	ena_com_delete_customer_metrics_buffer(ena_dev);
2461 err:
2462 	return rc;
2463 }
2464 
2465 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
2466 {
2467 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2468 		return 0;
2469 
2470 	ena_close(eth_dev);
2471 
2472 	return 0;
2473 }
2474 
2475 static int ena_dev_configure(struct rte_eth_dev *dev)
2476 {
2477 	struct ena_adapter *adapter = dev->data->dev_private;
2478 	int rc;
2479 
2480 	adapter->state = ENA_ADAPTER_STATE_CONFIG;
2481 
2482 	if (dev->data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG)
2483 		dev->data->dev_conf.rxmode.offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2484 	dev->data->dev_conf.txmode.offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2485 
2486 	/* Scattered Rx cannot be turned off in the HW, so this capability must
2487 	 * be forced.
2488 	 */
2489 	dev->data->scattered_rx = 1;
2490 
2491 	adapter->last_tx_comp_qid = 0;
2492 
2493 	adapter->missing_tx_completion_budget =
2494 		RTE_MIN(ENA_MONITORED_TX_QUEUES, dev->data->nb_tx_queues);
2495 
2496 	/* To avoid detection of the spurious Tx completion timeout due to
2497 	 * application not calling the Tx cleanup function, set timeout for the
2498 	 * Tx queue which should be half of the missing completion timeout for a
2499 	 * safety. If there will be a lot of missing Tx completions in the
2500 	 * queue, they will be detected sooner or later.
2501 	 */
2502 	adapter->tx_cleanup_stall_delay = adapter->missing_tx_completion_to / 2;
2503 
2504 	rc = ena_configure_aenq(adapter);
2505 
2506 	return rc;
2507 }
2508 
2509 static void ena_init_rings(struct ena_adapter *adapter,
2510 			   bool disable_meta_caching)
2511 {
2512 	size_t i;
2513 
2514 	for (i = 0; i < adapter->max_num_io_queues; i++) {
2515 		struct ena_ring *ring = &adapter->tx_ring[i];
2516 
2517 		ring->configured = 0;
2518 		ring->type = ENA_RING_TYPE_TX;
2519 		ring->adapter = adapter;
2520 		ring->id = i;
2521 		ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
2522 		ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
2523 		ring->sgl_size = adapter->max_tx_sgl_size;
2524 		ring->disable_meta_caching = disable_meta_caching;
2525 	}
2526 
2527 	for (i = 0; i < adapter->max_num_io_queues; i++) {
2528 		struct ena_ring *ring = &adapter->rx_ring[i];
2529 
2530 		ring->configured = 0;
2531 		ring->type = ENA_RING_TYPE_RX;
2532 		ring->adapter = adapter;
2533 		ring->id = i;
2534 		ring->sgl_size = adapter->max_rx_sgl_size;
2535 	}
2536 }
2537 
2538 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter)
2539 {
2540 	uint64_t port_offloads = 0;
2541 
2542 	if (adapter->offloads.rx_offloads & ENA_L3_IPV4_CSUM)
2543 		port_offloads |= RTE_ETH_RX_OFFLOAD_IPV4_CKSUM;
2544 
2545 	if (adapter->offloads.rx_offloads &
2546 	    (ENA_L4_IPV4_CSUM | ENA_L4_IPV6_CSUM))
2547 		port_offloads |=
2548 			RTE_ETH_RX_OFFLOAD_UDP_CKSUM | RTE_ETH_RX_OFFLOAD_TCP_CKSUM;
2549 
2550 	if (adapter->offloads.rx_offloads & ENA_RX_RSS_HASH)
2551 		port_offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2552 
2553 	port_offloads |= RTE_ETH_RX_OFFLOAD_SCATTER;
2554 
2555 	return port_offloads;
2556 }
2557 
2558 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter)
2559 {
2560 	uint64_t port_offloads = 0;
2561 
2562 	if (adapter->offloads.tx_offloads & ENA_IPV4_TSO)
2563 		port_offloads |= RTE_ETH_TX_OFFLOAD_TCP_TSO;
2564 
2565 	if (adapter->offloads.tx_offloads & ENA_L3_IPV4_CSUM)
2566 		port_offloads |= RTE_ETH_TX_OFFLOAD_IPV4_CKSUM;
2567 	if (adapter->offloads.tx_offloads &
2568 	    (ENA_L4_IPV4_CSUM_PARTIAL | ENA_L4_IPV4_CSUM |
2569 	     ENA_L4_IPV6_CSUM | ENA_L4_IPV6_CSUM_PARTIAL))
2570 		port_offloads |=
2571 			RTE_ETH_TX_OFFLOAD_UDP_CKSUM | RTE_ETH_TX_OFFLOAD_TCP_CKSUM;
2572 
2573 	port_offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2574 
2575 	port_offloads |= RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
2576 
2577 	return port_offloads;
2578 }
2579 
2580 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter)
2581 {
2582 	RTE_SET_USED(adapter);
2583 
2584 	return 0;
2585 }
2586 
2587 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter)
2588 {
2589 	uint64_t queue_offloads = 0;
2590 	RTE_SET_USED(adapter);
2591 
2592 	queue_offloads |= RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
2593 
2594 	return queue_offloads;
2595 }
2596 
2597 static int ena_infos_get(struct rte_eth_dev *dev,
2598 			  struct rte_eth_dev_info *dev_info)
2599 {
2600 	struct ena_adapter *adapter;
2601 	struct ena_com_dev *ena_dev;
2602 
2603 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
2604 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
2605 	adapter = dev->data->dev_private;
2606 
2607 	ena_dev = &adapter->ena_dev;
2608 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
2609 
2610 	dev_info->speed_capa =
2611 			RTE_ETH_LINK_SPEED_1G   |
2612 			RTE_ETH_LINK_SPEED_2_5G |
2613 			RTE_ETH_LINK_SPEED_5G   |
2614 			RTE_ETH_LINK_SPEED_10G  |
2615 			RTE_ETH_LINK_SPEED_25G  |
2616 			RTE_ETH_LINK_SPEED_40G  |
2617 			RTE_ETH_LINK_SPEED_50G  |
2618 			RTE_ETH_LINK_SPEED_100G |
2619 			RTE_ETH_LINK_SPEED_200G |
2620 			RTE_ETH_LINK_SPEED_400G;
2621 
2622 	/* Inform framework about available features */
2623 	dev_info->rx_offload_capa = ena_get_rx_port_offloads(adapter);
2624 	dev_info->tx_offload_capa = ena_get_tx_port_offloads(adapter);
2625 	dev_info->rx_queue_offload_capa = ena_get_rx_queue_offloads(adapter);
2626 	dev_info->tx_queue_offload_capa = ena_get_tx_queue_offloads(adapter);
2627 
2628 	dev_info->flow_type_rss_offloads = ENA_ALL_RSS_HF;
2629 	dev_info->hash_key_size = ENA_HASH_KEY_SIZE;
2630 
2631 	dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
2632 	dev_info->max_rx_pktlen  = adapter->max_mtu + RTE_ETHER_HDR_LEN +
2633 		RTE_ETHER_CRC_LEN;
2634 	dev_info->min_mtu = ENA_MIN_MTU;
2635 	dev_info->max_mtu = adapter->max_mtu;
2636 	dev_info->max_mac_addrs = 1;
2637 
2638 	dev_info->max_rx_queues = adapter->max_num_io_queues;
2639 	dev_info->max_tx_queues = adapter->max_num_io_queues;
2640 	dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
2641 
2642 	dev_info->rx_desc_lim.nb_max = adapter->max_rx_ring_size;
2643 	dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2644 	dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2645 					adapter->max_rx_sgl_size);
2646 	dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2647 					adapter->max_rx_sgl_size);
2648 
2649 	dev_info->tx_desc_lim.nb_max = adapter->max_tx_ring_size;
2650 	dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2651 	dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2652 					adapter->max_tx_sgl_size);
2653 	dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2654 					adapter->max_tx_sgl_size);
2655 
2656 	dev_info->default_rxportconf.ring_size = RTE_MIN(ENA_DEFAULT_RING_SIZE,
2657 							 dev_info->rx_desc_lim.nb_max);
2658 	dev_info->default_txportconf.ring_size = RTE_MIN(ENA_DEFAULT_RING_SIZE,
2659 							 dev_info->tx_desc_lim.nb_max);
2660 
2661 	dev_info->err_handle_mode = RTE_ETH_ERROR_HANDLE_MODE_PASSIVE;
2662 
2663 	return 0;
2664 }
2665 
2666 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len)
2667 {
2668 	mbuf->data_len = len;
2669 	mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2670 	mbuf->refcnt = 1;
2671 	mbuf->next = NULL;
2672 }
2673 
2674 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
2675 				    struct ena_com_rx_buf_info *ena_bufs,
2676 				    uint32_t descs,
2677 				    uint16_t *next_to_clean,
2678 				    uint8_t offset)
2679 {
2680 	struct rte_mbuf *mbuf;
2681 	struct rte_mbuf *mbuf_head;
2682 	struct ena_rx_buffer *rx_info;
2683 	int rc;
2684 	uint16_t ntc, len, req_id, buf = 0;
2685 
2686 	if (unlikely(descs == 0))
2687 		return NULL;
2688 
2689 	ntc = *next_to_clean;
2690 
2691 	len = ena_bufs[buf].len;
2692 	req_id = ena_bufs[buf].req_id;
2693 
2694 	rx_info = &rx_ring->rx_buffer_info[req_id];
2695 
2696 	mbuf = rx_info->mbuf;
2697 	RTE_ASSERT(mbuf != NULL);
2698 
2699 	ena_init_rx_mbuf(mbuf, len);
2700 
2701 	/* Fill the mbuf head with the data specific for 1st segment. */
2702 	mbuf_head = mbuf;
2703 	mbuf_head->nb_segs = descs;
2704 	mbuf_head->port = rx_ring->port_id;
2705 	mbuf_head->pkt_len = len;
2706 	mbuf_head->data_off += offset;
2707 
2708 	rx_info->mbuf = NULL;
2709 	rx_ring->empty_rx_reqs[ntc] = req_id;
2710 	ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2711 
2712 	while (--descs) {
2713 		++buf;
2714 		len = ena_bufs[buf].len;
2715 		req_id = ena_bufs[buf].req_id;
2716 
2717 		rx_info = &rx_ring->rx_buffer_info[req_id];
2718 		RTE_ASSERT(rx_info->mbuf != NULL);
2719 
2720 		if (unlikely(len == 0)) {
2721 			/*
2722 			 * Some devices can pass descriptor with the length 0.
2723 			 * To avoid confusion, the PMD is simply putting the
2724 			 * descriptor back, as it was never used. We'll avoid
2725 			 * mbuf allocation that way.
2726 			 */
2727 			rc = ena_add_single_rx_desc(rx_ring->ena_com_io_sq,
2728 				rx_info->mbuf, req_id);
2729 			if (unlikely(rc != 0)) {
2730 				/* Free the mbuf in case of an error. */
2731 				rte_mbuf_raw_free(rx_info->mbuf);
2732 			} else {
2733 				/*
2734 				 * If there was no error, just exit the loop as
2735 				 * 0 length descriptor is always the last one.
2736 				 */
2737 				break;
2738 			}
2739 		} else {
2740 			/* Create an mbuf chain. */
2741 			mbuf->next = rx_info->mbuf;
2742 			mbuf = mbuf->next;
2743 
2744 			ena_init_rx_mbuf(mbuf, len);
2745 			mbuf_head->pkt_len += len;
2746 		}
2747 
2748 		/*
2749 		 * Mark the descriptor as depleted and perform necessary
2750 		 * cleanup.
2751 		 * This code will execute in two cases:
2752 		 *  1. Descriptor len was greater than 0 - normal situation.
2753 		 *  2. Descriptor len was 0 and we failed to add the descriptor
2754 		 *     to the device. In that situation, we should try to add
2755 		 *     the mbuf again in the populate routine and mark the
2756 		 *     descriptor as used up by the device.
2757 		 */
2758 		rx_info->mbuf = NULL;
2759 		rx_ring->empty_rx_reqs[ntc] = req_id;
2760 		ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2761 	}
2762 
2763 	*next_to_clean = ntc;
2764 
2765 	return mbuf_head;
2766 }
2767 
2768 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
2769 				  uint16_t nb_pkts)
2770 {
2771 	struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
2772 	unsigned int free_queue_entries;
2773 	uint16_t next_to_clean = rx_ring->next_to_clean;
2774 	uint16_t descs_in_use;
2775 	struct rte_mbuf *mbuf;
2776 	uint16_t completed;
2777 	struct ena_com_rx_ctx ena_rx_ctx;
2778 	int i, rc = 0;
2779 
2780 #ifdef RTE_ETHDEV_DEBUG_RX
2781 	/* Check adapter state */
2782 	if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2783 		PMD_RX_LOG_LINE(ALERT,
2784 			"Trying to receive pkts while device is NOT running");
2785 		return 0;
2786 	}
2787 #endif
2788 
2789 	descs_in_use = rx_ring->ring_size -
2790 		ena_com_free_q_entries(rx_ring->ena_com_io_sq) - 1;
2791 	nb_pkts = RTE_MIN(descs_in_use, nb_pkts);
2792 
2793 	for (completed = 0; completed < nb_pkts; completed++) {
2794 		ena_rx_ctx.max_bufs = rx_ring->sgl_size;
2795 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
2796 		ena_rx_ctx.descs = 0;
2797 		ena_rx_ctx.pkt_offset = 0;
2798 		/* receive packet context */
2799 		rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
2800 				    rx_ring->ena_com_io_sq,
2801 				    &ena_rx_ctx);
2802 		if (unlikely(rc)) {
2803 			PMD_RX_LOG_LINE(ERR,
2804 				"Failed to get the packet from the device, rc: %d",
2805 				rc);
2806 			if (rc == ENA_COM_NO_SPACE) {
2807 				++rx_ring->rx_stats.bad_desc_num;
2808 				ena_trigger_reset(rx_ring->adapter,
2809 					ENA_REGS_RESET_TOO_MANY_RX_DESCS);
2810 			} else {
2811 				++rx_ring->rx_stats.bad_req_id;
2812 				ena_trigger_reset(rx_ring->adapter,
2813 					ENA_REGS_RESET_INV_RX_REQ_ID);
2814 			}
2815 			return 0;
2816 		}
2817 
2818 		mbuf = ena_rx_mbuf(rx_ring,
2819 			ena_rx_ctx.ena_bufs,
2820 			ena_rx_ctx.descs,
2821 			&next_to_clean,
2822 			ena_rx_ctx.pkt_offset);
2823 		if (unlikely(mbuf == NULL)) {
2824 			for (i = 0; i < ena_rx_ctx.descs; ++i) {
2825 				rx_ring->empty_rx_reqs[next_to_clean] =
2826 					rx_ring->ena_bufs[i].req_id;
2827 				next_to_clean = ENA_IDX_NEXT_MASKED(
2828 					next_to_clean, rx_ring->size_mask);
2829 			}
2830 			break;
2831 		}
2832 
2833 		/* fill mbuf attributes if any */
2834 		ena_rx_mbuf_prepare(rx_ring, mbuf, &ena_rx_ctx);
2835 
2836 		if (unlikely(mbuf->ol_flags &
2837 				(RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD)))
2838 			rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors);
2839 
2840 		rx_pkts[completed] = mbuf;
2841 		rx_ring->rx_stats.bytes += mbuf->pkt_len;
2842 	}
2843 
2844 	rx_ring->rx_stats.cnt += completed;
2845 	rx_ring->next_to_clean = next_to_clean;
2846 
2847 	free_queue_entries = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
2848 
2849 	/* Burst refill to save doorbells, memory barriers, const interval */
2850 	if (free_queue_entries >= rx_ring->rx_free_thresh) {
2851 		ena_populate_rx_queue(rx_ring, free_queue_entries);
2852 	}
2853 
2854 	return completed;
2855 }
2856 
2857 static uint16_t
2858 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2859 		uint16_t nb_pkts)
2860 {
2861 	int32_t ret;
2862 	uint32_t i;
2863 	struct rte_mbuf *m;
2864 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2865 	struct ena_adapter *adapter = tx_ring->adapter;
2866 	struct rte_ipv4_hdr *ip_hdr;
2867 	uint64_t ol_flags;
2868 	uint64_t l4_csum_flag;
2869 	uint64_t dev_offload_capa;
2870 	uint16_t frag_field;
2871 	bool need_pseudo_csum;
2872 
2873 	dev_offload_capa = adapter->offloads.tx_offloads;
2874 	for (i = 0; i != nb_pkts; i++) {
2875 		m = tx_pkts[i];
2876 		ol_flags = m->ol_flags;
2877 
2878 		/* Check if any offload flag was set */
2879 		if (ol_flags == 0)
2880 			continue;
2881 
2882 		l4_csum_flag = ol_flags & RTE_MBUF_F_TX_L4_MASK;
2883 		/* SCTP checksum offload is not supported by the ENA. */
2884 		if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) ||
2885 		    l4_csum_flag == RTE_MBUF_F_TX_SCTP_CKSUM) {
2886 			PMD_TX_LOG_LINE(DEBUG,
2887 				"mbuf[%" PRIu32 "] has unsupported offloads flags set: 0x%" PRIu64,
2888 				i, ol_flags);
2889 			rte_errno = ENOTSUP;
2890 			return i;
2891 		}
2892 
2893 		if (unlikely(m->nb_segs >= tx_ring->sgl_size &&
2894 		    !(tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
2895 		      m->nb_segs == tx_ring->sgl_size &&
2896 		      m->data_len < tx_ring->tx_max_header_size))) {
2897 			PMD_TX_LOG_LINE(DEBUG,
2898 				"mbuf[%" PRIu32 "] has too many segments: %" PRIu16,
2899 				i, m->nb_segs);
2900 			rte_errno = EINVAL;
2901 			return i;
2902 		}
2903 
2904 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2905 		/* Check if requested offload is also enabled for the queue */
2906 		if ((ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
2907 		     !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM)) ||
2908 		    (l4_csum_flag == RTE_MBUF_F_TX_TCP_CKSUM &&
2909 		     !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) ||
2910 		    (l4_csum_flag == RTE_MBUF_F_TX_UDP_CKSUM &&
2911 		     !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM))) {
2912 			PMD_TX_LOG_LINE(DEBUG,
2913 				"mbuf[%" PRIu32 "]: requested offloads: %" PRIu16 " are not enabled for the queue[%u]",
2914 				i, m->nb_segs, tx_ring->id);
2915 			rte_errno = EINVAL;
2916 			return i;
2917 		}
2918 
2919 		/* The caller is obligated to set l2 and l3 len if any cksum
2920 		 * offload is enabled.
2921 		 */
2922 		if (unlikely(ol_flags & (RTE_MBUF_F_TX_IP_CKSUM | RTE_MBUF_F_TX_L4_MASK) &&
2923 		    (m->l2_len == 0 || m->l3_len == 0))) {
2924 			PMD_TX_LOG_LINE(DEBUG,
2925 				"mbuf[%" PRIu32 "]: l2_len or l3_len values are 0 while the offload was requested",
2926 				i);
2927 			rte_errno = EINVAL;
2928 			return i;
2929 		}
2930 		ret = rte_validate_tx_offload(m);
2931 		if (ret != 0) {
2932 			rte_errno = -ret;
2933 			return i;
2934 		}
2935 #endif
2936 
2937 		/* Verify HW support for requested offloads and determine if
2938 		 * pseudo header checksum is needed.
2939 		 */
2940 		need_pseudo_csum = false;
2941 		if (ol_flags & RTE_MBUF_F_TX_IPV4) {
2942 			if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
2943 			    !(dev_offload_capa & ENA_L3_IPV4_CSUM)) {
2944 				rte_errno = ENOTSUP;
2945 				return i;
2946 			}
2947 
2948 			if (ol_flags & RTE_MBUF_F_TX_TCP_SEG &&
2949 			    !(dev_offload_capa & ENA_IPV4_TSO)) {
2950 				rte_errno = ENOTSUP;
2951 				return i;
2952 			}
2953 
2954 			/* Check HW capabilities and if pseudo csum is needed
2955 			 * for L4 offloads.
2956 			 */
2957 			if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
2958 			    !(dev_offload_capa & ENA_L4_IPV4_CSUM)) {
2959 				if (dev_offload_capa &
2960 				    ENA_L4_IPV4_CSUM_PARTIAL) {
2961 					need_pseudo_csum = true;
2962 				} else {
2963 					rte_errno = ENOTSUP;
2964 					return i;
2965 				}
2966 			}
2967 
2968 			/* Parse the DF flag */
2969 			ip_hdr = rte_pktmbuf_mtod_offset(m,
2970 				struct rte_ipv4_hdr *, m->l2_len);
2971 			frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
2972 			if (frag_field & RTE_IPV4_HDR_DF_FLAG) {
2973 				m->packet_type |= RTE_PTYPE_L4_NONFRAG;
2974 			} else if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2975 				/* In case we are supposed to TSO and have DF
2976 				 * not set (DF=0) hardware must be provided with
2977 				 * partial checksum.
2978 				 */
2979 				need_pseudo_csum = true;
2980 			}
2981 		} else if (ol_flags & RTE_MBUF_F_TX_IPV6) {
2982 			/* There is no support for IPv6 TSO as for now. */
2983 			if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2984 				rte_errno = ENOTSUP;
2985 				return i;
2986 			}
2987 
2988 			/* Check HW capabilities and if pseudo csum is needed */
2989 			if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
2990 			    !(dev_offload_capa & ENA_L4_IPV6_CSUM)) {
2991 				if (dev_offload_capa &
2992 				    ENA_L4_IPV6_CSUM_PARTIAL) {
2993 					need_pseudo_csum = true;
2994 				} else {
2995 					rte_errno = ENOTSUP;
2996 					return i;
2997 				}
2998 			}
2999 		}
3000 
3001 		if (need_pseudo_csum) {
3002 			ret = rte_net_intel_cksum_flags_prepare(m, ol_flags);
3003 			if (ret != 0) {
3004 				rte_errno = -ret;
3005 				return i;
3006 			}
3007 		}
3008 	}
3009 
3010 	return i;
3011 }
3012 
3013 static void ena_update_hints(struct ena_adapter *adapter,
3014 			     struct ena_admin_ena_hw_hints *hints)
3015 {
3016 	if (hints->admin_completion_tx_timeout)
3017 		adapter->ena_dev.admin_queue.completion_timeout =
3018 			hints->admin_completion_tx_timeout * 1000;
3019 
3020 	if (hints->mmio_read_timeout)
3021 		/* convert to usec */
3022 		adapter->ena_dev.mmio_read.reg_read_to =
3023 			hints->mmio_read_timeout * 1000;
3024 
3025 	if (hints->driver_watchdog_timeout) {
3026 		if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
3027 			adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
3028 		else
3029 			// Convert msecs to ticks
3030 			adapter->keep_alive_timeout =
3031 				(hints->driver_watchdog_timeout *
3032 				rte_get_timer_hz()) / 1000;
3033 	}
3034 }
3035 
3036 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
3037 	struct ena_tx_buffer *tx_info,
3038 	struct rte_mbuf *mbuf,
3039 	void **push_header,
3040 	uint16_t *header_len)
3041 {
3042 	struct ena_com_buf *ena_buf;
3043 	uint16_t delta, seg_len, push_len;
3044 
3045 	delta = 0;
3046 	seg_len = mbuf->data_len;
3047 
3048 	tx_info->mbuf = mbuf;
3049 	ena_buf = tx_info->bufs;
3050 
3051 	if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
3052 		/*
3053 		 * Tx header might be (and will be in most cases) smaller than
3054 		 * tx_max_header_size. But it's not an issue to send more data
3055 		 * to the device, than actually needed if the mbuf size is
3056 		 * greater than tx_max_header_size.
3057 		 */
3058 		push_len = RTE_MIN(mbuf->pkt_len, tx_ring->tx_max_header_size);
3059 		*header_len = push_len;
3060 
3061 		if (likely(push_len <= seg_len)) {
3062 			/* If the push header is in the single segment, then
3063 			 * just point it to the 1st mbuf data.
3064 			 */
3065 			*push_header = rte_pktmbuf_mtod(mbuf, uint8_t *);
3066 		} else {
3067 			/* If the push header lays in the several segments, copy
3068 			 * it to the intermediate buffer.
3069 			 */
3070 			rte_pktmbuf_read(mbuf, 0, push_len,
3071 				tx_ring->push_buf_intermediate_buf);
3072 			*push_header = tx_ring->push_buf_intermediate_buf;
3073 			delta = push_len - seg_len;
3074 		}
3075 	} else {
3076 		*push_header = NULL;
3077 		*header_len = 0;
3078 		push_len = 0;
3079 	}
3080 
3081 	/* Process first segment taking into consideration pushed header */
3082 	if (seg_len > push_len) {
3083 		ena_buf->paddr = mbuf->buf_iova +
3084 				mbuf->data_off +
3085 				push_len;
3086 		ena_buf->len = seg_len - push_len;
3087 		ena_buf++;
3088 		tx_info->num_of_bufs++;
3089 	}
3090 
3091 	while ((mbuf = mbuf->next) != NULL) {
3092 		seg_len = mbuf->data_len;
3093 
3094 		/* Skip mbufs if whole data is pushed as a header */
3095 		if (unlikely(delta > seg_len)) {
3096 			delta -= seg_len;
3097 			continue;
3098 		}
3099 
3100 		ena_buf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
3101 		ena_buf->len = seg_len - delta;
3102 		ena_buf++;
3103 		tx_info->num_of_bufs++;
3104 
3105 		delta = 0;
3106 	}
3107 }
3108 
3109 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf)
3110 {
3111 	struct ena_tx_buffer *tx_info;
3112 	struct ena_com_tx_ctx ena_tx_ctx = { { 0 } };
3113 	uint16_t next_to_use;
3114 	uint16_t header_len;
3115 	uint16_t req_id;
3116 	void *push_header;
3117 	int nb_hw_desc;
3118 	int rc;
3119 
3120 	/* Checking for space for 2 additional metadata descriptors due to
3121 	 * possible header split and metadata descriptor
3122 	 */
3123 	if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
3124 					  mbuf->nb_segs + 2)) {
3125 		PMD_TX_LOG_LINE(DEBUG, "Not enough space in the tx queue");
3126 		return ENA_COM_NO_MEM;
3127 	}
3128 
3129 	next_to_use = tx_ring->next_to_use;
3130 
3131 	req_id = tx_ring->empty_tx_reqs[next_to_use];
3132 	tx_info = &tx_ring->tx_buffer_info[req_id];
3133 	tx_info->num_of_bufs = 0;
3134 	RTE_ASSERT(tx_info->mbuf == NULL);
3135 
3136 	ena_tx_map_mbuf(tx_ring, tx_info, mbuf, &push_header, &header_len);
3137 
3138 	ena_tx_ctx.ena_bufs = tx_info->bufs;
3139 	ena_tx_ctx.push_header = push_header;
3140 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
3141 	ena_tx_ctx.req_id = req_id;
3142 	ena_tx_ctx.header_len = header_len;
3143 
3144 	/* Set Tx offloads flags, if applicable */
3145 	ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads,
3146 		tx_ring->disable_meta_caching);
3147 
3148 	if (unlikely(ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
3149 			&ena_tx_ctx))) {
3150 		PMD_TX_LOG_LINE(DEBUG,
3151 			"LLQ Tx max burst size of queue %d achieved, writing doorbell to send burst",
3152 			tx_ring->id);
3153 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
3154 		tx_ring->tx_stats.doorbells++;
3155 		tx_ring->pkts_without_db = false;
3156 	}
3157 
3158 	/* prepare the packet's descriptors to dma engine */
3159 	rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq,	&ena_tx_ctx,
3160 		&nb_hw_desc);
3161 	if (unlikely(rc)) {
3162 		PMD_DRV_LOG_LINE(ERR, "Failed to prepare Tx buffers, rc: %d", rc);
3163 		++tx_ring->tx_stats.prepare_ctx_err;
3164 		ena_trigger_reset(tx_ring->adapter,
3165 			ENA_REGS_RESET_DRIVER_INVALID_STATE);
3166 		return rc;
3167 	}
3168 
3169 	tx_info->tx_descs = nb_hw_desc;
3170 	tx_info->timestamp = rte_get_timer_cycles();
3171 
3172 	tx_ring->tx_stats.cnt++;
3173 	tx_ring->tx_stats.bytes += mbuf->pkt_len;
3174 
3175 	tx_ring->next_to_use = ENA_IDX_NEXT_MASKED(next_to_use,
3176 		tx_ring->size_mask);
3177 
3178 	return 0;
3179 }
3180 
3181 static int ena_tx_cleanup(void *txp, uint32_t free_pkt_cnt)
3182 {
3183 	struct rte_mbuf *pkts_to_clean[ENA_CLEANUP_BUF_THRESH];
3184 	struct ena_ring *tx_ring = (struct ena_ring *)txp;
3185 	size_t mbuf_cnt = 0;
3186 	size_t pkt_cnt = 0;
3187 	unsigned int total_tx_descs = 0;
3188 	unsigned int total_tx_pkts = 0;
3189 	uint16_t cleanup_budget;
3190 	uint16_t next_to_clean = tx_ring->next_to_clean;
3191 	bool fast_free = tx_ring->offloads & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
3192 
3193 	/*
3194 	 * If free_pkt_cnt is equal to 0, it means that the user requested
3195 	 * full cleanup, so attempt to release all Tx descriptors
3196 	 * (ring_size - 1 -> size_mask)
3197 	 */
3198 	cleanup_budget = (free_pkt_cnt == 0) ? tx_ring->size_mask : free_pkt_cnt;
3199 
3200 	while (likely(total_tx_pkts < cleanup_budget)) {
3201 		struct rte_mbuf *mbuf;
3202 		struct ena_tx_buffer *tx_info;
3203 		uint16_t req_id;
3204 
3205 		if (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) != 0)
3206 			break;
3207 
3208 		if (unlikely(validate_tx_req_id(tx_ring, req_id) != 0))
3209 			break;
3210 
3211 		/* Get Tx info & store how many descs were processed  */
3212 		tx_info = &tx_ring->tx_buffer_info[req_id];
3213 		tx_info->timestamp = 0;
3214 
3215 		mbuf = tx_info->mbuf;
3216 		if (fast_free) {
3217 			pkts_to_clean[pkt_cnt++] = mbuf;
3218 			mbuf_cnt += mbuf->nb_segs;
3219 			if (mbuf_cnt >= ENA_CLEANUP_BUF_THRESH) {
3220 				rte_pktmbuf_free_bulk(pkts_to_clean, pkt_cnt);
3221 				mbuf_cnt = 0;
3222 				pkt_cnt = 0;
3223 			}
3224 		} else {
3225 			rte_pktmbuf_free(mbuf);
3226 		}
3227 
3228 		tx_info->mbuf = NULL;
3229 		tx_ring->empty_tx_reqs[next_to_clean] = req_id;
3230 
3231 		total_tx_descs += tx_info->tx_descs;
3232 		total_tx_pkts++;
3233 
3234 		/* Put back descriptor to the ring for reuse */
3235 		next_to_clean = ENA_IDX_NEXT_MASKED(next_to_clean,
3236 			tx_ring->size_mask);
3237 	}
3238 
3239 	if (likely(total_tx_descs > 0)) {
3240 		/* acknowledge completion of sent packets */
3241 		tx_ring->next_to_clean = next_to_clean;
3242 		ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
3243 	}
3244 
3245 	if (mbuf_cnt != 0)
3246 		rte_pktmbuf_free_bulk(pkts_to_clean, pkt_cnt);
3247 
3248 	/* Notify completion handler that full cleanup was performed */
3249 	if (free_pkt_cnt == 0 || total_tx_pkts < cleanup_budget)
3250 		tx_ring->last_cleanup_ticks = rte_get_timer_cycles();
3251 
3252 	return total_tx_pkts;
3253 }
3254 
3255 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
3256 				  uint16_t nb_pkts)
3257 {
3258 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
3259 	int available_desc;
3260 	uint16_t sent_idx = 0;
3261 
3262 #ifdef RTE_ETHDEV_DEBUG_TX
3263 	/* Check adapter state */
3264 	if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
3265 		PMD_TX_LOG_LINE(ALERT,
3266 			"Trying to xmit pkts while device is NOT running");
3267 		return 0;
3268 	}
3269 #endif
3270 
3271 	available_desc = ena_com_free_q_entries(tx_ring->ena_com_io_sq);
3272 	if (available_desc < tx_ring->tx_free_thresh)
3273 		ena_tx_cleanup((void *)tx_ring, 0);
3274 
3275 	for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
3276 		if (ena_xmit_mbuf(tx_ring, tx_pkts[sent_idx]))
3277 			break;
3278 		tx_ring->pkts_without_db = true;
3279 		rte_prefetch0(tx_pkts[ENA_IDX_ADD_MASKED(sent_idx, 4,
3280 			tx_ring->size_mask)]);
3281 	}
3282 
3283 	/* If there are ready packets to be xmitted... */
3284 	if (likely(tx_ring->pkts_without_db)) {
3285 		/* ...let HW do its best :-) */
3286 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
3287 		tx_ring->tx_stats.doorbells++;
3288 		tx_ring->pkts_without_db = false;
3289 	}
3290 
3291 	tx_ring->tx_stats.available_desc =
3292 		ena_com_free_q_entries(tx_ring->ena_com_io_sq);
3293 	tx_ring->tx_stats.tx_poll++;
3294 
3295 	return sent_idx;
3296 }
3297 
3298 static void ena_copy_customer_metrics(struct ena_adapter *adapter, uint64_t *buf,
3299 					     size_t num_metrics)
3300 {
3301 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
3302 	int rc;
3303 
3304 	if (ena_com_get_cap(ena_dev, ENA_ADMIN_CUSTOMER_METRICS)) {
3305 		if (num_metrics != ENA_STATS_ARRAY_METRICS) {
3306 			PMD_DRV_LOG_LINE(ERR, "Detected discrepancy in the number of customer metrics");
3307 			return;
3308 		}
3309 		rte_spinlock_lock(&adapter->admin_lock);
3310 		rc = ENA_PROXY(adapter,
3311 					ena_com_get_customer_metrics,
3312 					&adapter->ena_dev,
3313 					(char *)buf,
3314 					num_metrics * sizeof(uint64_t));
3315 		rte_spinlock_unlock(&adapter->admin_lock);
3316 		if (rc != 0) {
3317 			PMD_DRV_LOG_LINE(WARNING, "Failed to get customer metrics, rc: %d", rc);
3318 			return;
3319 		}
3320 
3321 	} else if (ena_com_get_cap(ena_dev, ENA_ADMIN_ENI_STATS)) {
3322 		if (num_metrics != ENA_STATS_ARRAY_METRICS_LEGACY) {
3323 			PMD_DRV_LOG_LINE(ERR, "Detected discrepancy in the number of legacy metrics");
3324 			return;
3325 		}
3326 
3327 		rte_spinlock_lock(&adapter->admin_lock);
3328 		rc = ENA_PROXY(adapter,
3329 			       ena_com_get_eni_stats,
3330 			       &adapter->ena_dev,
3331 			       (struct ena_admin_eni_stats *)buf);
3332 		rte_spinlock_unlock(&adapter->admin_lock);
3333 		if (rc != 0) {
3334 			PMD_DRV_LOG_LINE(WARNING,
3335 				"Failed to get ENI metrics, rc: %d", rc);
3336 			return;
3337 		}
3338 	}
3339 }
3340 
3341 static void ena_copy_ena_srd_info(struct ena_adapter *adapter,
3342 		struct ena_stats_srd *srd_info)
3343 {
3344 	int rc;
3345 
3346 	if (!ena_com_get_cap(&adapter->ena_dev, ENA_ADMIN_ENA_SRD_INFO))
3347 		return;
3348 
3349 	rte_spinlock_lock(&adapter->admin_lock);
3350 	rc = ENA_PROXY(adapter,
3351 		       ena_com_get_ena_srd_info,
3352 		       &adapter->ena_dev,
3353 		       (struct ena_admin_ena_srd_info *)srd_info);
3354 	rte_spinlock_unlock(&adapter->admin_lock);
3355 	if (rc != ENA_COM_OK && rc != ENA_COM_UNSUPPORTED) {
3356 		PMD_DRV_LOG_LINE(WARNING,
3357 				"Failed to get ENA express srd info, rc: %d", rc);
3358 		return;
3359 	}
3360 }
3361 
3362 /**
3363  * DPDK callback to retrieve names of extended device statistics
3364  *
3365  * @param dev
3366  *   Pointer to Ethernet device structure.
3367  * @param[out] xstats_names
3368  *   Buffer to insert names into.
3369  * @param n
3370  *   Number of names.
3371  *
3372  * @return
3373  *   Number of xstats names.
3374  */
3375 static int ena_xstats_get_names(struct rte_eth_dev *dev,
3376 				struct rte_eth_xstat_name *xstats_names,
3377 				unsigned int n)
3378 {
3379 	struct ena_adapter *adapter = dev->data->dev_private;
3380 	unsigned int xstats_count = ena_xstats_calc_num(dev->data);
3381 	unsigned int stat, i, count = 0;
3382 
3383 	if (n < xstats_count || !xstats_names)
3384 		return xstats_count;
3385 
3386 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
3387 		strcpy(xstats_names[count].name,
3388 			ena_stats_global_strings[stat].name);
3389 
3390 	for (stat = 0; stat < adapter->metrics_num; stat++, count++)
3391 		rte_strscpy(xstats_names[count].name,
3392 			    ena_stats_metrics_strings[stat].name,
3393 			    RTE_ETH_XSTATS_NAME_SIZE);
3394 	for (stat = 0; stat < ENA_STATS_ARRAY_ENA_SRD; stat++, count++)
3395 		rte_strscpy(xstats_names[count].name,
3396 			    ena_stats_srd_strings[stat].name,
3397 			    RTE_ETH_XSTATS_NAME_SIZE);
3398 
3399 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
3400 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
3401 			snprintf(xstats_names[count].name,
3402 				sizeof(xstats_names[count].name),
3403 				"rx_q%d_%s", i,
3404 				ena_stats_rx_strings[stat].name);
3405 
3406 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
3407 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
3408 			snprintf(xstats_names[count].name,
3409 				sizeof(xstats_names[count].name),
3410 				"tx_q%d_%s", i,
3411 				ena_stats_tx_strings[stat].name);
3412 
3413 	return xstats_count;
3414 }
3415 
3416 /**
3417  * DPDK callback to retrieve names of extended device statistics for the given
3418  * ids.
3419  *
3420  * @param dev
3421  *   Pointer to Ethernet device structure.
3422  * @param[out] xstats_names
3423  *   Buffer to insert names into.
3424  * @param ids
3425  *   IDs array for which the names should be retrieved.
3426  * @param size
3427  *   Number of ids.
3428  *
3429  * @return
3430  *   Positive value: number of xstats names. Negative value: error code.
3431  */
3432 static int ena_xstats_get_names_by_id(struct rte_eth_dev *dev,
3433 				      const uint64_t *ids,
3434 				      struct rte_eth_xstat_name *xstats_names,
3435 				      unsigned int size)
3436 {
3437 	struct ena_adapter *adapter = dev->data->dev_private;
3438 	uint64_t xstats_count = ena_xstats_calc_num(dev->data);
3439 	uint64_t id, qid;
3440 	unsigned int i;
3441 
3442 	if (xstats_names == NULL)
3443 		return xstats_count;
3444 
3445 	for (i = 0; i < size; ++i) {
3446 		id = ids[i];
3447 		if (id > xstats_count) {
3448 			PMD_DRV_LOG_LINE(ERR,
3449 				"ID value out of range: id=%" PRIu64 ", xstats_num=%" PRIu64,
3450 				 id, xstats_count);
3451 			return -EINVAL;
3452 		}
3453 
3454 		if (id < ENA_STATS_ARRAY_GLOBAL) {
3455 			strcpy(xstats_names[i].name,
3456 			       ena_stats_global_strings[id].name);
3457 			continue;
3458 		}
3459 
3460 		id -= ENA_STATS_ARRAY_GLOBAL;
3461 		if (id < adapter->metrics_num) {
3462 			rte_strscpy(xstats_names[i].name,
3463 				    ena_stats_metrics_strings[id].name,
3464 				    RTE_ETH_XSTATS_NAME_SIZE);
3465 			continue;
3466 		}
3467 
3468 		id -= adapter->metrics_num;
3469 
3470 		if (id < ENA_STATS_ARRAY_ENA_SRD) {
3471 			rte_strscpy(xstats_names[i].name,
3472 				    ena_stats_srd_strings[id].name,
3473 				    RTE_ETH_XSTATS_NAME_SIZE);
3474 			continue;
3475 		}
3476 		id -= ENA_STATS_ARRAY_ENA_SRD;
3477 
3478 		if (id < ENA_STATS_ARRAY_RX) {
3479 			qid = id / dev->data->nb_rx_queues;
3480 			id %= dev->data->nb_rx_queues;
3481 			snprintf(xstats_names[i].name,
3482 				 sizeof(xstats_names[i].name),
3483 				 "rx_q%" PRIu64 "d_%s",
3484 				 qid, ena_stats_rx_strings[id].name);
3485 			continue;
3486 		}
3487 
3488 		id -= ENA_STATS_ARRAY_RX;
3489 		/* Although this condition is not needed, it was added for
3490 		 * compatibility if new xstat structure would be ever added.
3491 		 */
3492 		if (id < ENA_STATS_ARRAY_TX) {
3493 			qid = id / dev->data->nb_tx_queues;
3494 			id %= dev->data->nb_tx_queues;
3495 			snprintf(xstats_names[i].name,
3496 				 sizeof(xstats_names[i].name),
3497 				 "tx_q%" PRIu64 "_%s",
3498 				 qid, ena_stats_tx_strings[id].name);
3499 			continue;
3500 		}
3501 	}
3502 
3503 	return i;
3504 }
3505 
3506 /**
3507  * DPDK callback to get extended device statistics.
3508  *
3509  * @param dev
3510  *   Pointer to Ethernet device structure.
3511  * @param[out] stats
3512  *   Stats table output buffer.
3513  * @param n
3514  *   The size of the stats table.
3515  *
3516  * @return
3517  *   Number of xstats on success, negative on failure.
3518  */
3519 static int ena_xstats_get(struct rte_eth_dev *dev,
3520 			  struct rte_eth_xstat *xstats,
3521 			  unsigned int n)
3522 {
3523 	struct ena_adapter *adapter = dev->data->dev_private;
3524 	unsigned int xstats_count = ena_xstats_calc_num(dev->data);
3525 	unsigned int stat, i, count = 0;
3526 	int stat_offset;
3527 	void *stats_begin;
3528 	uint64_t metrics_stats[ENA_MAX_CUSTOMER_METRICS];
3529 	struct ena_stats_srd srd_info = {0};
3530 
3531 	if (n < xstats_count)
3532 		return xstats_count;
3533 
3534 	if (!xstats)
3535 		return 0;
3536 
3537 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
3538 		stat_offset = ena_stats_global_strings[stat].stat_offset;
3539 		stats_begin = &adapter->dev_stats;
3540 
3541 		xstats[count].id = count;
3542 		xstats[count].value = *((uint64_t *)
3543 			((char *)stats_begin + stat_offset));
3544 	}
3545 
3546 	ena_copy_customer_metrics(adapter, metrics_stats, adapter->metrics_num);
3547 	stats_begin = metrics_stats;
3548 	for (stat = 0; stat < adapter->metrics_num; stat++, count++) {
3549 		stat_offset = ena_stats_metrics_strings[stat].stat_offset;
3550 
3551 		xstats[count].id = count;
3552 		xstats[count].value = *((uint64_t *)
3553 		    ((char *)stats_begin + stat_offset));
3554 	}
3555 
3556 	ena_copy_ena_srd_info(adapter, &srd_info);
3557 	stats_begin = &srd_info;
3558 	for (stat = 0; stat < ENA_STATS_ARRAY_ENA_SRD; stat++, count++) {
3559 		stat_offset = ena_stats_srd_strings[stat].stat_offset;
3560 		xstats[count].id = count;
3561 		xstats[count].value = *((uint64_t *)
3562 		    ((char *)stats_begin + stat_offset));
3563 	}
3564 
3565 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
3566 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
3567 			stat_offset = ena_stats_rx_strings[stat].stat_offset;
3568 			stats_begin = &adapter->rx_ring[i].rx_stats;
3569 
3570 			xstats[count].id = count;
3571 			xstats[count].value = *((uint64_t *)
3572 				((char *)stats_begin + stat_offset));
3573 		}
3574 	}
3575 
3576 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
3577 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
3578 			stat_offset = ena_stats_tx_strings[stat].stat_offset;
3579 			stats_begin = &adapter->tx_ring[i].rx_stats;
3580 
3581 			xstats[count].id = count;
3582 			xstats[count].value = *((uint64_t *)
3583 				((char *)stats_begin + stat_offset));
3584 		}
3585 	}
3586 
3587 	return count;
3588 }
3589 
3590 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
3591 				const uint64_t *ids,
3592 				uint64_t *values,
3593 				unsigned int n)
3594 {
3595 	struct ena_adapter *adapter = dev->data->dev_private;
3596 	uint64_t id;
3597 	uint64_t rx_entries, tx_entries;
3598 	unsigned int i;
3599 	int qid;
3600 	int valid = 0;
3601 	bool were_metrics_copied = false;
3602 	bool was_srd_info_copied = false;
3603 	uint64_t metrics_stats[ENA_MAX_CUSTOMER_METRICS];
3604 	struct ena_stats_srd srd_info = {0};
3605 
3606 	for (i = 0; i < n; ++i) {
3607 		id = ids[i];
3608 		/* Check if id belongs to global statistics */
3609 		if (id < ENA_STATS_ARRAY_GLOBAL) {
3610 			values[i] = *((uint64_t *)&adapter->dev_stats + id);
3611 			++valid;
3612 			continue;
3613 		}
3614 
3615 		/* Check if id belongs to ENI statistics */
3616 		id -= ENA_STATS_ARRAY_GLOBAL;
3617 		if (id < adapter->metrics_num) {
3618 			/* Avoid reading metrics multiple times in a single
3619 			 * function call, as it requires communication with the
3620 			 * admin queue.
3621 			 */
3622 			if (!were_metrics_copied) {
3623 				were_metrics_copied = true;
3624 				ena_copy_customer_metrics(adapter,
3625 						metrics_stats,
3626 						adapter->metrics_num);
3627 			}
3628 
3629 			values[i] = *((uint64_t *)&metrics_stats + id);
3630 			++valid;
3631 			continue;
3632 		}
3633 
3634 		/* Check if id belongs to SRD info statistics */
3635 		id -= adapter->metrics_num;
3636 
3637 		if (id < ENA_STATS_ARRAY_ENA_SRD) {
3638 			/*
3639 			 * Avoid reading srd info multiple times in a single
3640 			 * function call, as it requires communication with the
3641 			 * admin queue.
3642 			 */
3643 			if (!was_srd_info_copied) {
3644 				was_srd_info_copied = true;
3645 				ena_copy_ena_srd_info(adapter, &srd_info);
3646 			}
3647 			values[i] = *((uint64_t *)&adapter->srd_stats + id);
3648 			++valid;
3649 			continue;
3650 		}
3651 
3652 		/* Check if id belongs to rx queue statistics */
3653 		id -= ENA_STATS_ARRAY_ENA_SRD;
3654 
3655 		rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
3656 		if (id < rx_entries) {
3657 			qid = id % dev->data->nb_rx_queues;
3658 			id /= dev->data->nb_rx_queues;
3659 			values[i] = *((uint64_t *)
3660 				&adapter->rx_ring[qid].rx_stats + id);
3661 			++valid;
3662 			continue;
3663 		}
3664 				/* Check if id belongs to rx queue statistics */
3665 		id -= rx_entries;
3666 		tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
3667 		if (id < tx_entries) {
3668 			qid = id % dev->data->nb_tx_queues;
3669 			id /= dev->data->nb_tx_queues;
3670 			values[i] = *((uint64_t *)
3671 				&adapter->tx_ring[qid].tx_stats + id);
3672 			++valid;
3673 			continue;
3674 		}
3675 	}
3676 
3677 	return valid;
3678 }
3679 
3680 static int ena_process_uint_devarg(const char *key,
3681 				  const char *value,
3682 				  void *opaque)
3683 {
3684 	struct ena_adapter *adapter = opaque;
3685 	char *str_end;
3686 	uint64_t uint64_value;
3687 
3688 	uint64_value = strtoull(value, &str_end, DECIMAL_BASE);
3689 	if (value == str_end) {
3690 		PMD_INIT_LOG_LINE(ERR,
3691 			"Invalid value for key '%s'. Only uint values are accepted.",
3692 			key);
3693 		return -EINVAL;
3694 	}
3695 
3696 	if (strcmp(key, ENA_DEVARG_MISS_TXC_TO) == 0) {
3697 		if (uint64_value > ENA_MAX_TX_TIMEOUT_SECONDS) {
3698 			PMD_INIT_LOG_LINE(ERR,
3699 				"Tx timeout too high: %" PRIu64 " sec. Maximum allowed: %d sec.",
3700 				uint64_value, ENA_MAX_TX_TIMEOUT_SECONDS);
3701 			return -EINVAL;
3702 		} else if (uint64_value == 0) {
3703 			PMD_INIT_LOG_LINE(INFO,
3704 				"Check for missing Tx completions has been disabled.");
3705 			adapter->missing_tx_completion_to =
3706 				ENA_HW_HINTS_NO_TIMEOUT;
3707 		} else {
3708 			PMD_INIT_LOG_LINE(INFO,
3709 				"Tx packet completion timeout set to %" PRIu64 " seconds.",
3710 				uint64_value);
3711 			adapter->missing_tx_completion_to =
3712 				uint64_value * rte_get_timer_hz();
3713 		}
3714 	} else if (strcmp(key, ENA_DEVARG_CONTROL_PATH_POLL_INTERVAL) == 0) {
3715 		if (uint64_value > ENA_MAX_CONTROL_PATH_POLL_INTERVAL_MSEC) {
3716 			PMD_INIT_LOG_LINE(ERR,
3717 				"Control path polling interval is too long: %" PRIu64 " msecs. "
3718 				"Maximum allowed: %d msecs.",
3719 				uint64_value, ENA_MAX_CONTROL_PATH_POLL_INTERVAL_MSEC);
3720 			return -EINVAL;
3721 		} else if (uint64_value == 0) {
3722 			PMD_INIT_LOG_LINE(INFO,
3723 				"Control path polling interval is set to zero. Operating in "
3724 				"interrupt mode.");
3725 				adapter->control_path_poll_interval = 0;
3726 		} else {
3727 			PMD_INIT_LOG_LINE(INFO,
3728 				"Control path polling interval is set to %" PRIu64 " msecs.",
3729 				uint64_value);
3730 				adapter->control_path_poll_interval = uint64_value * USEC_PER_MSEC;
3731 		}
3732 	}
3733 
3734 	return 0;
3735 }
3736 
3737 static int ena_process_bool_devarg(const char *key,
3738 				   const char *value,
3739 				   void *opaque)
3740 {
3741 	struct ena_adapter *adapter = opaque;
3742 	bool bool_value;
3743 
3744 	/* Parse the value. */
3745 	if (strcmp(value, "1") == 0) {
3746 		bool_value = true;
3747 	} else if (strcmp(value, "0") == 0) {
3748 		bool_value = false;
3749 	} else {
3750 		PMD_INIT_LOG_LINE(ERR,
3751 			"Invalid value: '%s' for key '%s'. Accepted: '0' or '1'",
3752 			value, key);
3753 		return -EINVAL;
3754 	}
3755 
3756 	/* Now, assign it to the proper adapter field. */
3757 	if (strcmp(key, ENA_DEVARG_LARGE_LLQ_HDR) == 0)
3758 		adapter->use_large_llq_hdr = bool_value;
3759 	else if (strcmp(key, ENA_DEVARG_NORMAL_LLQ_HDR) == 0)
3760 		adapter->use_normal_llq_hdr = bool_value;
3761 	else if (strcmp(key, ENA_DEVARG_ENABLE_LLQ) == 0)
3762 		adapter->enable_llq = bool_value;
3763 
3764 	return 0;
3765 }
3766 
3767 static int ena_parse_devargs(struct ena_adapter *adapter,
3768 			     struct rte_devargs *devargs)
3769 {
3770 	static const char * const allowed_args[] = {
3771 		ENA_DEVARG_LARGE_LLQ_HDR,
3772 		ENA_DEVARG_NORMAL_LLQ_HDR,
3773 		ENA_DEVARG_MISS_TXC_TO,
3774 		ENA_DEVARG_ENABLE_LLQ,
3775 		ENA_DEVARG_CONTROL_PATH_POLL_INTERVAL,
3776 		NULL,
3777 	};
3778 	struct rte_kvargs *kvlist;
3779 	int rc;
3780 
3781 	if (devargs == NULL)
3782 		return 0;
3783 
3784 	kvlist = rte_kvargs_parse(devargs->args, allowed_args);
3785 	if (kvlist == NULL) {
3786 		PMD_INIT_LOG_LINE(ERR, "Invalid device arguments: %s",
3787 			devargs->args);
3788 		return -EINVAL;
3789 	}
3790 
3791 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_LARGE_LLQ_HDR,
3792 		ena_process_bool_devarg, adapter);
3793 	if (rc != 0)
3794 		goto exit;
3795 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_NORMAL_LLQ_HDR,
3796 		ena_process_bool_devarg, adapter);
3797 	if (rc != 0)
3798 		goto exit;
3799 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_MISS_TXC_TO,
3800 		ena_process_uint_devarg, adapter);
3801 	if (rc != 0)
3802 		goto exit;
3803 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_ENABLE_LLQ,
3804 		ena_process_bool_devarg, adapter);
3805 	if (rc != 0)
3806 		goto exit;
3807 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_CONTROL_PATH_POLL_INTERVAL,
3808 		ena_process_uint_devarg, adapter);
3809 	if (rc != 0)
3810 		goto exit;
3811 
3812 exit:
3813 	rte_kvargs_free(kvlist);
3814 
3815 	return rc;
3816 }
3817 
3818 static int ena_setup_rx_intr(struct rte_eth_dev *dev)
3819 {
3820 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3821 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
3822 	int rc;
3823 	uint16_t vectors_nb, i;
3824 	bool rx_intr_requested = dev->data->dev_conf.intr_conf.rxq;
3825 
3826 	if (!rx_intr_requested)
3827 		return 0;
3828 
3829 	if (!rte_intr_cap_multiple(intr_handle)) {
3830 		PMD_DRV_LOG_LINE(ERR,
3831 			"Rx interrupt requested, but it isn't supported by the PCI driver");
3832 		return -ENOTSUP;
3833 	}
3834 
3835 	/* Disable interrupt mapping before the configuration starts. */
3836 	rte_intr_disable(intr_handle);
3837 
3838 	/* Verify if there are enough vectors available. */
3839 	vectors_nb = dev->data->nb_rx_queues;
3840 	if (vectors_nb > RTE_MAX_RXTX_INTR_VEC_ID) {
3841 		PMD_DRV_LOG_LINE(ERR,
3842 			"Too many Rx interrupts requested, maximum number: %d",
3843 			RTE_MAX_RXTX_INTR_VEC_ID);
3844 		rc = -ENOTSUP;
3845 		goto enable_intr;
3846 	}
3847 
3848 	/* Allocate the vector list */
3849 	if (rte_intr_vec_list_alloc(intr_handle, "intr_vec",
3850 					   dev->data->nb_rx_queues)) {
3851 		PMD_DRV_LOG_LINE(ERR,
3852 			"Failed to allocate interrupt vector for %d queues",
3853 			dev->data->nb_rx_queues);
3854 		rc = -ENOMEM;
3855 		goto enable_intr;
3856 	}
3857 
3858 	rc = rte_intr_efd_enable(intr_handle, vectors_nb);
3859 	if (rc != 0)
3860 		goto free_intr_vec;
3861 
3862 	if (!rte_intr_allow_others(intr_handle)) {
3863 		PMD_DRV_LOG_LINE(ERR,
3864 			"Not enough interrupts available to use both ENA Admin and Rx interrupts");
3865 		goto disable_intr_efd;
3866 	}
3867 
3868 	for (i = 0; i < vectors_nb; ++i)
3869 		if (rte_intr_vec_list_index_set(intr_handle, i,
3870 					   RTE_INTR_VEC_RXTX_OFFSET + i))
3871 			goto disable_intr_efd;
3872 
3873 	rte_intr_enable(intr_handle);
3874 	return 0;
3875 
3876 disable_intr_efd:
3877 	rte_intr_efd_disable(intr_handle);
3878 free_intr_vec:
3879 	rte_intr_vec_list_free(intr_handle);
3880 enable_intr:
3881 	rte_intr_enable(intr_handle);
3882 	return rc;
3883 }
3884 
3885 static void ena_rx_queue_intr_set(struct rte_eth_dev *dev,
3886 				 uint16_t queue_id,
3887 				 bool unmask)
3888 {
3889 	struct ena_adapter *adapter = dev->data->dev_private;
3890 	struct ena_ring *rxq = &adapter->rx_ring[queue_id];
3891 	struct ena_eth_io_intr_reg intr_reg;
3892 
3893 	ena_com_update_intr_reg(&intr_reg, 0, 0, unmask, 1);
3894 	ena_com_unmask_intr(rxq->ena_com_io_cq, &intr_reg);
3895 }
3896 
3897 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
3898 				    uint16_t queue_id)
3899 {
3900 	ena_rx_queue_intr_set(dev, queue_id, true);
3901 
3902 	return 0;
3903 }
3904 
3905 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
3906 				     uint16_t queue_id)
3907 {
3908 	ena_rx_queue_intr_set(dev, queue_id, false);
3909 
3910 	return 0;
3911 }
3912 
3913 static int ena_configure_aenq(struct ena_adapter *adapter)
3914 {
3915 	uint32_t aenq_groups = adapter->all_aenq_groups;
3916 	int rc;
3917 
3918 	/* All_aenq_groups holds all AENQ functions supported by the device and
3919 	 * the HW, so at first we need to be sure the LSC request is valid.
3920 	 */
3921 	if (adapter->edev_data->dev_conf.intr_conf.lsc != 0) {
3922 		if (!(aenq_groups & BIT(ENA_ADMIN_LINK_CHANGE))) {
3923 			PMD_DRV_LOG_LINE(ERR,
3924 				"LSC requested, but it's not supported by the AENQ");
3925 			return -EINVAL;
3926 		}
3927 	} else {
3928 		/* If LSC wasn't enabled by the app, let's enable all supported
3929 		 * AENQ procedures except the LSC.
3930 		 */
3931 		aenq_groups &= ~BIT(ENA_ADMIN_LINK_CHANGE);
3932 	}
3933 
3934 	rc = ena_com_set_aenq_config(&adapter->ena_dev, aenq_groups);
3935 	if (rc != 0) {
3936 		PMD_DRV_LOG_LINE(ERR, "Cannot configure AENQ groups, rc=%d", rc);
3937 		return rc;
3938 	}
3939 
3940 	adapter->active_aenq_groups = aenq_groups;
3941 
3942 	return 0;
3943 }
3944 
3945 int ena_mp_indirect_table_set(struct ena_adapter *adapter)
3946 {
3947 	return ENA_PROXY(adapter, ena_com_indirect_table_set, &adapter->ena_dev);
3948 }
3949 
3950 int ena_mp_indirect_table_get(struct ena_adapter *adapter,
3951 			      uint32_t *indirect_table)
3952 {
3953 	return ENA_PROXY(adapter, ena_com_indirect_table_get, &adapter->ena_dev,
3954 		indirect_table);
3955 }
3956 
3957 /*********************************************************************
3958  *  ena_plat_dpdk.h functions implementations
3959  *********************************************************************/
3960 
3961 const struct rte_memzone *
3962 ena_mem_alloc_coherent(struct rte_eth_dev_data *data, size_t size,
3963 		       int socket_id, unsigned int alignment, void **virt_addr,
3964 		       dma_addr_t *phys_addr)
3965 {
3966 	char z_name[RTE_MEMZONE_NAMESIZE];
3967 	struct ena_adapter *adapter = data->dev_private;
3968 	const struct rte_memzone *memzone;
3969 	int rc;
3970 
3971 	rc = snprintf(z_name, RTE_MEMZONE_NAMESIZE, "ena_p%d_mz%" PRIu64 "",
3972 		data->port_id, adapter->memzone_cnt);
3973 	if (rc >= RTE_MEMZONE_NAMESIZE) {
3974 		PMD_DRV_LOG_LINE(ERR,
3975 			"Name for the ena_com memzone is too long. Port: %d, mz_num: %" PRIu64,
3976 			data->port_id, adapter->memzone_cnt);
3977 		goto error;
3978 	}
3979 	adapter->memzone_cnt++;
3980 
3981 	memzone = rte_memzone_reserve_aligned(z_name, size, socket_id,
3982 		RTE_MEMZONE_IOVA_CONTIG, alignment);
3983 	if (memzone == NULL) {
3984 		PMD_DRV_LOG_LINE(ERR, "Failed to allocate ena_com memzone: %s",
3985 			z_name);
3986 		goto error;
3987 	}
3988 
3989 	memset(memzone->addr, 0, size);
3990 	*virt_addr = memzone->addr;
3991 	*phys_addr = memzone->iova;
3992 
3993 	return memzone;
3994 
3995 error:
3996 	*virt_addr = NULL;
3997 	*phys_addr = 0;
3998 
3999 	return NULL;
4000 }
4001 
4002 
4003 /*********************************************************************
4004  *  PMD configuration
4005  *********************************************************************/
4006 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
4007 	struct rte_pci_device *pci_dev)
4008 {
4009 	return rte_eth_dev_pci_generic_probe(pci_dev,
4010 		sizeof(struct ena_adapter), eth_ena_dev_init);
4011 }
4012 
4013 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
4014 {
4015 	return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
4016 }
4017 
4018 static struct rte_pci_driver rte_ena_pmd = {
4019 	.id_table = pci_id_ena_map,
4020 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
4021 		     RTE_PCI_DRV_WC_ACTIVATE,
4022 	.probe = eth_ena_pci_probe,
4023 	.remove = eth_ena_pci_remove,
4024 };
4025 
4026 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
4027 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
4028 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
4029 RTE_PMD_REGISTER_PARAM_STRING(net_ena,
4030 	ENA_DEVARG_LARGE_LLQ_HDR "=<0|1> "
4031 	ENA_DEVARG_NORMAL_LLQ_HDR "=<0|1> "
4032 	ENA_DEVARG_ENABLE_LLQ "=<0|1> "
4033 	ENA_DEVARG_MISS_TXC_TO "=<uint>"
4034 	ENA_DEVARG_CONTROL_PATH_POLL_INTERVAL "=<0-1000>");
4035 RTE_LOG_REGISTER_SUFFIX(ena_logtype_init, init, NOTICE);
4036 RTE_LOG_REGISTER_SUFFIX(ena_logtype_driver, driver, NOTICE);
4037 #ifdef RTE_ETHDEV_DEBUG_RX
4038 RTE_LOG_REGISTER_SUFFIX(ena_logtype_rx, rx, DEBUG);
4039 #endif
4040 #ifdef RTE_ETHDEV_DEBUG_TX
4041 RTE_LOG_REGISTER_SUFFIX(ena_logtype_tx, tx, DEBUG);
4042 #endif
4043 RTE_LOG_REGISTER_SUFFIX(ena_logtype_com, com, WARNING);
4044 
4045 /******************************************************************************
4046  ******************************** AENQ Handlers *******************************
4047  *****************************************************************************/
4048 static void ena_update_on_link_change(void *adapter_data,
4049 				      struct ena_admin_aenq_entry *aenq_e)
4050 {
4051 	struct rte_eth_dev *eth_dev = adapter_data;
4052 	struct ena_adapter *adapter = eth_dev->data->dev_private;
4053 	struct ena_admin_aenq_link_change_desc *aenq_link_desc;
4054 	uint32_t status;
4055 
4056 	aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
4057 
4058 	status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
4059 	adapter->link_status = status;
4060 
4061 	ena_link_update(eth_dev, 0);
4062 	rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
4063 }
4064 
4065 static void ena_notification(void *adapter_data,
4066 			     struct ena_admin_aenq_entry *aenq_e)
4067 {
4068 	struct rte_eth_dev *eth_dev = adapter_data;
4069 	struct ena_adapter *adapter = eth_dev->data->dev_private;
4070 	struct ena_admin_ena_hw_hints *hints;
4071 
4072 	if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
4073 		PMD_DRV_LOG_LINE(WARNING, "Invalid AENQ group: %x. Expected: %x",
4074 			aenq_e->aenq_common_desc.group,
4075 			ENA_ADMIN_NOTIFICATION);
4076 
4077 	switch (aenq_e->aenq_common_desc.syndrome) {
4078 	case ENA_ADMIN_UPDATE_HINTS:
4079 		hints = (struct ena_admin_ena_hw_hints *)
4080 			(&aenq_e->inline_data_w4);
4081 		ena_update_hints(adapter, hints);
4082 		break;
4083 	default:
4084 		PMD_DRV_LOG_LINE(ERR, "Invalid AENQ notification link state: %d",
4085 			aenq_e->aenq_common_desc.syndrome);
4086 	}
4087 }
4088 
4089 static void ena_keep_alive(void *adapter_data,
4090 			   __rte_unused struct ena_admin_aenq_entry *aenq_e)
4091 {
4092 	struct rte_eth_dev *eth_dev = adapter_data;
4093 	struct ena_adapter *adapter = eth_dev->data->dev_private;
4094 	struct ena_admin_aenq_keep_alive_desc *desc;
4095 	uint64_t rx_drops;
4096 	uint64_t tx_drops;
4097 	uint64_t rx_overruns;
4098 
4099 	adapter->timestamp_wd = rte_get_timer_cycles();
4100 
4101 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
4102 	rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
4103 	tx_drops = ((uint64_t)desc->tx_drops_high << 32) | desc->tx_drops_low;
4104 	rx_overruns = ((uint64_t)desc->rx_overruns_high << 32) | desc->rx_overruns_low;
4105 
4106 	/*
4107 	 * Depending on its acceleration support, the device updates a different statistic when
4108 	 * Rx packet is dropped because there are no available buffers to accommodate it.
4109 	 */
4110 	adapter->drv_stats->rx_drops = rx_drops + rx_overruns;
4111 	adapter->dev_stats.tx_drops = tx_drops;
4112 }
4113 
4114 static void ena_suboptimal_configuration(__rte_unused void *adapter_data,
4115 					 struct ena_admin_aenq_entry *aenq_e)
4116 {
4117 	struct ena_admin_aenq_conf_notifications_desc *desc;
4118 	int bit, num_bits;
4119 
4120 	desc = (struct ena_admin_aenq_conf_notifications_desc *)aenq_e;
4121 	num_bits = BITS_PER_TYPE(desc->notifications_bitmap);
4122 	for (bit = 0; bit < num_bits; bit++) {
4123 		if (desc->notifications_bitmap & RTE_BIT64(bit)) {
4124 			PMD_DRV_LOG_LINE(WARNING,
4125 				"Sub-optimal configuration notification code: %d", bit + 1);
4126 		}
4127 	}
4128 }
4129 
4130 /**
4131  * This handler will called for unknown event group or unimplemented handlers
4132  **/
4133 static void unimplemented_aenq_handler(__rte_unused void *data,
4134 				       __rte_unused struct ena_admin_aenq_entry *aenq_e)
4135 {
4136 	PMD_DRV_LOG_LINE(ERR,
4137 		"Unknown event was received or event with unimplemented handler");
4138 }
4139 
4140 static struct ena_aenq_handlers aenq_handlers = {
4141 	.handlers = {
4142 		[ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
4143 		[ENA_ADMIN_NOTIFICATION] = ena_notification,
4144 		[ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive,
4145 		[ENA_ADMIN_CONF_NOTIFICATIONS] = ena_suboptimal_configuration
4146 	},
4147 	.unimplemented_handler = unimplemented_aenq_handler
4148 };
4149 
4150 /*********************************************************************
4151  *  Multi-Process communication request handling (in primary)
4152  *********************************************************************/
4153 static int
4154 ena_mp_primary_handle(const struct rte_mp_msg *mp_msg, const void *peer)
4155 {
4156 	const struct ena_mp_body *req =
4157 		(const struct ena_mp_body *)mp_msg->param;
4158 	struct ena_adapter *adapter;
4159 	struct ena_com_dev *ena_dev;
4160 	struct ena_mp_body *rsp;
4161 	struct rte_mp_msg mp_rsp;
4162 	struct rte_eth_dev *dev;
4163 	int res = 0;
4164 
4165 	rsp = (struct ena_mp_body *)&mp_rsp.param;
4166 	mp_msg_init(&mp_rsp, req->type, req->port_id);
4167 
4168 	if (!rte_eth_dev_is_valid_port(req->port_id)) {
4169 		rte_errno = ENODEV;
4170 		res = -rte_errno;
4171 		PMD_DRV_LOG_LINE(ERR, "Unknown port %d in request %d",
4172 			    req->port_id, req->type);
4173 		goto end;
4174 	}
4175 	dev = &rte_eth_devices[req->port_id];
4176 	adapter = dev->data->dev_private;
4177 	ena_dev = &adapter->ena_dev;
4178 
4179 	switch (req->type) {
4180 	case ENA_MP_DEV_STATS_GET:
4181 		res = ena_com_get_dev_basic_stats(ena_dev,
4182 						  &adapter->basic_stats);
4183 		break;
4184 	case ENA_MP_ENI_STATS_GET:
4185 		res = ena_com_get_eni_stats(ena_dev,
4186 			(struct ena_admin_eni_stats *)&adapter->metrics_stats);
4187 		break;
4188 	case ENA_MP_MTU_SET:
4189 		res = ena_com_set_dev_mtu(ena_dev, req->args.mtu);
4190 		break;
4191 	case ENA_MP_IND_TBL_GET:
4192 		res = ena_com_indirect_table_get(ena_dev,
4193 						 adapter->indirect_table);
4194 		break;
4195 	case ENA_MP_IND_TBL_SET:
4196 		res = ena_com_indirect_table_set(ena_dev);
4197 		break;
4198 	case ENA_MP_CUSTOMER_METRICS_GET:
4199 		res = ena_com_get_customer_metrics(ena_dev,
4200 				(char *)adapter->metrics_stats,
4201 				adapter->metrics_num * sizeof(uint64_t));
4202 		break;
4203 	case ENA_MP_SRD_STATS_GET:
4204 		res = ena_com_get_ena_srd_info(ena_dev,
4205 				(struct ena_admin_ena_srd_info *)&adapter->srd_stats);
4206 		break;
4207 	default:
4208 		PMD_DRV_LOG_LINE(ERR, "Unknown request type %d", req->type);
4209 		res = -EINVAL;
4210 		break;
4211 	}
4212 
4213 end:
4214 	/* Save processing result in the reply */
4215 	rsp->result = res;
4216 	/* Return just IPC processing status */
4217 	return rte_mp_reply(&mp_rsp, peer);
4218 }
4219 
4220 static ena_llq_policy ena_define_llq_hdr_policy(struct ena_adapter *adapter)
4221 {
4222 	if (!adapter->enable_llq)
4223 		return ENA_LLQ_POLICY_DISABLED;
4224 	if (adapter->use_large_llq_hdr)
4225 		return ENA_LLQ_POLICY_LARGE;
4226 	if (adapter->use_normal_llq_hdr)
4227 		return ENA_LLQ_POLICY_NORMAL;
4228 	return ENA_LLQ_POLICY_RECOMMENDED;
4229 }
4230 
4231 static bool ena_use_large_llq_hdr(struct ena_adapter *adapter, uint8_t recommended_entry_size)
4232 {
4233 	if (adapter->llq_header_policy == ENA_LLQ_POLICY_LARGE) {
4234 		return true;
4235 	} else if (adapter->llq_header_policy == ENA_LLQ_POLICY_RECOMMENDED) {
4236 		PMD_DRV_LOG_LINE(INFO, "Recommended device entry size policy %u",
4237 			recommended_entry_size);
4238 		if (recommended_entry_size == ENA_ADMIN_LIST_ENTRY_SIZE_256B)
4239 			return true;
4240 	}
4241 	return false;
4242 }
4243