xref: /dpdk/drivers/net/ena/ena_ethdev.c (revision 9f220a959d4d7208491efea8ca8e0c4a96b98f0e)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
3  * All rights reserved.
4  */
5 
6 #include <rte_string_fns.h>
7 #include <rte_ether.h>
8 #include <ethdev_driver.h>
9 #include <ethdev_pci.h>
10 #include <rte_tcp.h>
11 #include <rte_atomic.h>
12 #include <rte_dev.h>
13 #include <rte_errno.h>
14 #include <rte_version.h>
15 #include <rte_net.h>
16 #include <rte_kvargs.h>
17 
18 #include "ena_ethdev.h"
19 #include "ena_logs.h"
20 #include "ena_platform.h"
21 #include "ena_com.h"
22 #include "ena_eth_com.h"
23 
24 #include <ena_common_defs.h>
25 #include <ena_regs_defs.h>
26 #include <ena_admin_defs.h>
27 #include <ena_eth_io_defs.h>
28 
29 #define DRV_MODULE_VER_MAJOR	2
30 #define DRV_MODULE_VER_MINOR	2
31 #define DRV_MODULE_VER_SUBMINOR	1
32 
33 #define ENA_IO_TXQ_IDX(q)	(2 * (q))
34 #define ENA_IO_RXQ_IDX(q)	(2 * (q) + 1)
35 /*reverse version of ENA_IO_RXQ_IDX*/
36 #define ENA_IO_RXQ_IDX_REV(q)	((q - 1) / 2)
37 
38 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
39 #define TEST_BIT(val, bit_shift) (val & (1UL << bit_shift))
40 
41 #define GET_L4_HDR_LEN(mbuf)					\
42 	((rte_pktmbuf_mtod_offset(mbuf,	struct rte_tcp_hdr *,	\
43 		mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
44 
45 #define ENA_RX_RSS_TABLE_LOG_SIZE  7
46 #define ENA_RX_RSS_TABLE_SIZE	(1 << ENA_RX_RSS_TABLE_LOG_SIZE)
47 #define ENA_HASH_KEY_SIZE	40
48 #define ETH_GSTRING_LEN	32
49 
50 #define ARRAY_SIZE(x) RTE_DIM(x)
51 
52 #define ENA_MIN_RING_DESC	128
53 
54 enum ethtool_stringset {
55 	ETH_SS_TEST             = 0,
56 	ETH_SS_STATS,
57 };
58 
59 struct ena_stats {
60 	char name[ETH_GSTRING_LEN];
61 	int stat_offset;
62 };
63 
64 #define ENA_STAT_ENTRY(stat, stat_type) { \
65 	.name = #stat, \
66 	.stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
67 }
68 
69 #define ENA_STAT_RX_ENTRY(stat) \
70 	ENA_STAT_ENTRY(stat, rx)
71 
72 #define ENA_STAT_TX_ENTRY(stat) \
73 	ENA_STAT_ENTRY(stat, tx)
74 
75 #define ENA_STAT_ENI_ENTRY(stat) \
76 	ENA_STAT_ENTRY(stat, eni)
77 
78 #define ENA_STAT_GLOBAL_ENTRY(stat) \
79 	ENA_STAT_ENTRY(stat, dev)
80 
81 /* Device arguments */
82 #define ENA_DEVARG_LARGE_LLQ_HDR "large_llq_hdr"
83 
84 /*
85  * Each rte_memzone should have unique name.
86  * To satisfy it, count number of allocation and add it to name.
87  */
88 rte_atomic64_t ena_alloc_cnt;
89 
90 static const struct ena_stats ena_stats_global_strings[] = {
91 	ENA_STAT_GLOBAL_ENTRY(wd_expired),
92 	ENA_STAT_GLOBAL_ENTRY(dev_start),
93 	ENA_STAT_GLOBAL_ENTRY(dev_stop),
94 	ENA_STAT_GLOBAL_ENTRY(tx_drops),
95 };
96 
97 static const struct ena_stats ena_stats_eni_strings[] = {
98 	ENA_STAT_ENI_ENTRY(bw_in_allowance_exceeded),
99 	ENA_STAT_ENI_ENTRY(bw_out_allowance_exceeded),
100 	ENA_STAT_ENI_ENTRY(pps_allowance_exceeded),
101 	ENA_STAT_ENI_ENTRY(conntrack_allowance_exceeded),
102 	ENA_STAT_ENI_ENTRY(linklocal_allowance_exceeded),
103 };
104 
105 static const struct ena_stats ena_stats_tx_strings[] = {
106 	ENA_STAT_TX_ENTRY(cnt),
107 	ENA_STAT_TX_ENTRY(bytes),
108 	ENA_STAT_TX_ENTRY(prepare_ctx_err),
109 	ENA_STAT_TX_ENTRY(linearize),
110 	ENA_STAT_TX_ENTRY(linearize_failed),
111 	ENA_STAT_TX_ENTRY(tx_poll),
112 	ENA_STAT_TX_ENTRY(doorbells),
113 	ENA_STAT_TX_ENTRY(bad_req_id),
114 	ENA_STAT_TX_ENTRY(available_desc),
115 };
116 
117 static const struct ena_stats ena_stats_rx_strings[] = {
118 	ENA_STAT_RX_ENTRY(cnt),
119 	ENA_STAT_RX_ENTRY(bytes),
120 	ENA_STAT_RX_ENTRY(refill_partial),
121 	ENA_STAT_RX_ENTRY(bad_csum),
122 	ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
123 	ENA_STAT_RX_ENTRY(bad_desc_num),
124 	ENA_STAT_RX_ENTRY(bad_req_id),
125 };
126 
127 #define ENA_STATS_ARRAY_GLOBAL	ARRAY_SIZE(ena_stats_global_strings)
128 #define ENA_STATS_ARRAY_ENI	ARRAY_SIZE(ena_stats_eni_strings)
129 #define ENA_STATS_ARRAY_TX	ARRAY_SIZE(ena_stats_tx_strings)
130 #define ENA_STATS_ARRAY_RX	ARRAY_SIZE(ena_stats_rx_strings)
131 
132 #define QUEUE_OFFLOADS (DEV_TX_OFFLOAD_TCP_CKSUM |\
133 			DEV_TX_OFFLOAD_UDP_CKSUM |\
134 			DEV_TX_OFFLOAD_IPV4_CKSUM |\
135 			DEV_TX_OFFLOAD_TCP_TSO)
136 #define MBUF_OFFLOADS (PKT_TX_L4_MASK |\
137 		       PKT_TX_IP_CKSUM |\
138 		       PKT_TX_TCP_SEG)
139 
140 /** Vendor ID used by Amazon devices */
141 #define PCI_VENDOR_ID_AMAZON 0x1D0F
142 /** Amazon devices */
143 #define PCI_DEVICE_ID_ENA_VF		0xEC20
144 #define PCI_DEVICE_ID_ENA_VF_RSERV0	0xEC21
145 
146 #define	ENA_TX_OFFLOAD_MASK	(\
147 	PKT_TX_L4_MASK |         \
148 	PKT_TX_IPV6 |            \
149 	PKT_TX_IPV4 |            \
150 	PKT_TX_IP_CKSUM |        \
151 	PKT_TX_TCP_SEG)
152 
153 #define	ENA_TX_OFFLOAD_NOTSUP_MASK	\
154 	(PKT_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
155 
156 static const struct rte_pci_id pci_id_ena_map[] = {
157 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
158 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF_RSERV0) },
159 	{ .device_id = 0 },
160 };
161 
162 static struct ena_aenq_handlers aenq_handlers;
163 
164 static int ena_device_init(struct ena_com_dev *ena_dev,
165 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
166 			   bool *wd_state);
167 static int ena_dev_configure(struct rte_eth_dev *dev);
168 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
169 	struct ena_tx_buffer *tx_info,
170 	struct rte_mbuf *mbuf,
171 	void **push_header,
172 	uint16_t *header_len);
173 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf);
174 static void ena_tx_cleanup(struct ena_ring *tx_ring);
175 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
176 				  uint16_t nb_pkts);
177 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
178 		uint16_t nb_pkts);
179 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
180 			      uint16_t nb_desc, unsigned int socket_id,
181 			      const struct rte_eth_txconf *tx_conf);
182 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
183 			      uint16_t nb_desc, unsigned int socket_id,
184 			      const struct rte_eth_rxconf *rx_conf,
185 			      struct rte_mempool *mp);
186 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len);
187 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
188 				    struct ena_com_rx_buf_info *ena_bufs,
189 				    uint32_t descs,
190 				    uint16_t *next_to_clean,
191 				    uint8_t offset);
192 static uint16_t eth_ena_recv_pkts(void *rx_queue,
193 				  struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
194 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
195 				  struct rte_mbuf *mbuf, uint16_t id);
196 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
197 static void ena_init_rings(struct ena_adapter *adapter,
198 			   bool disable_meta_caching);
199 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
200 static int ena_start(struct rte_eth_dev *dev);
201 static int ena_stop(struct rte_eth_dev *dev);
202 static int ena_close(struct rte_eth_dev *dev);
203 static int ena_dev_reset(struct rte_eth_dev *dev);
204 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
205 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
206 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
207 static void ena_rx_queue_release(void *queue);
208 static void ena_tx_queue_release(void *queue);
209 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
210 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
211 static int ena_link_update(struct rte_eth_dev *dev,
212 			   int wait_to_complete);
213 static int ena_create_io_queue(struct ena_ring *ring);
214 static void ena_queue_stop(struct ena_ring *ring);
215 static void ena_queue_stop_all(struct rte_eth_dev *dev,
216 			      enum ena_ring_type ring_type);
217 static int ena_queue_start(struct ena_ring *ring);
218 static int ena_queue_start_all(struct rte_eth_dev *dev,
219 			       enum ena_ring_type ring_type);
220 static void ena_stats_restart(struct rte_eth_dev *dev);
221 static int ena_infos_get(struct rte_eth_dev *dev,
222 			 struct rte_eth_dev_info *dev_info);
223 static int ena_rss_reta_update(struct rte_eth_dev *dev,
224 			       struct rte_eth_rss_reta_entry64 *reta_conf,
225 			       uint16_t reta_size);
226 static int ena_rss_reta_query(struct rte_eth_dev *dev,
227 			      struct rte_eth_rss_reta_entry64 *reta_conf,
228 			      uint16_t reta_size);
229 static void ena_interrupt_handler_rte(void *cb_arg);
230 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
231 static void ena_destroy_device(struct rte_eth_dev *eth_dev);
232 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
233 static int ena_xstats_get_names(struct rte_eth_dev *dev,
234 				struct rte_eth_xstat_name *xstats_names,
235 				unsigned int n);
236 static int ena_xstats_get(struct rte_eth_dev *dev,
237 			  struct rte_eth_xstat *stats,
238 			  unsigned int n);
239 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
240 				const uint64_t *ids,
241 				uint64_t *values,
242 				unsigned int n);
243 static int ena_process_bool_devarg(const char *key,
244 				   const char *value,
245 				   void *opaque);
246 static int ena_parse_devargs(struct ena_adapter *adapter,
247 			     struct rte_devargs *devargs);
248 static int ena_copy_eni_stats(struct ena_adapter *adapter);
249 
250 static const struct eth_dev_ops ena_dev_ops = {
251 	.dev_configure        = ena_dev_configure,
252 	.dev_infos_get        = ena_infos_get,
253 	.rx_queue_setup       = ena_rx_queue_setup,
254 	.tx_queue_setup       = ena_tx_queue_setup,
255 	.dev_start            = ena_start,
256 	.dev_stop             = ena_stop,
257 	.link_update          = ena_link_update,
258 	.stats_get            = ena_stats_get,
259 	.xstats_get_names     = ena_xstats_get_names,
260 	.xstats_get	      = ena_xstats_get,
261 	.xstats_get_by_id     = ena_xstats_get_by_id,
262 	.mtu_set              = ena_mtu_set,
263 	.rx_queue_release     = ena_rx_queue_release,
264 	.tx_queue_release     = ena_tx_queue_release,
265 	.dev_close            = ena_close,
266 	.dev_reset            = ena_dev_reset,
267 	.reta_update          = ena_rss_reta_update,
268 	.reta_query           = ena_rss_reta_query,
269 };
270 
271 void ena_rss_key_fill(void *key, size_t size)
272 {
273 	static bool key_generated;
274 	static uint8_t default_key[ENA_HASH_KEY_SIZE];
275 	size_t i;
276 
277 	RTE_ASSERT(size <= ENA_HASH_KEY_SIZE);
278 
279 	if (!key_generated) {
280 		for (i = 0; i < ENA_HASH_KEY_SIZE; ++i)
281 			default_key[i] = rte_rand() & 0xff;
282 		key_generated = true;
283 	}
284 
285 	rte_memcpy(key, default_key, size);
286 }
287 
288 static inline void ena_rx_mbuf_prepare(struct rte_mbuf *mbuf,
289 				       struct ena_com_rx_ctx *ena_rx_ctx)
290 {
291 	uint64_t ol_flags = 0;
292 	uint32_t packet_type = 0;
293 
294 	if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
295 		packet_type |= RTE_PTYPE_L4_TCP;
296 	else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
297 		packet_type |= RTE_PTYPE_L4_UDP;
298 
299 	if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
300 		packet_type |= RTE_PTYPE_L3_IPV4;
301 		if (unlikely(ena_rx_ctx->l3_csum_err))
302 			ol_flags |= PKT_RX_IP_CKSUM_BAD;
303 		else
304 			ol_flags |= PKT_RX_IP_CKSUM_GOOD;
305 	} else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
306 		packet_type |= RTE_PTYPE_L3_IPV6;
307 	}
308 
309 	if (!ena_rx_ctx->l4_csum_checked || ena_rx_ctx->frag)
310 		ol_flags |= PKT_RX_L4_CKSUM_UNKNOWN;
311 	else
312 		if (unlikely(ena_rx_ctx->l4_csum_err))
313 			ol_flags |= PKT_RX_L4_CKSUM_BAD;
314 		else
315 			ol_flags |= PKT_RX_L4_CKSUM_GOOD;
316 
317 	mbuf->ol_flags = ol_flags;
318 	mbuf->packet_type = packet_type;
319 }
320 
321 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
322 				       struct ena_com_tx_ctx *ena_tx_ctx,
323 				       uint64_t queue_offloads,
324 				       bool disable_meta_caching)
325 {
326 	struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
327 
328 	if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
329 	    (queue_offloads & QUEUE_OFFLOADS)) {
330 		/* check if TSO is required */
331 		if ((mbuf->ol_flags & PKT_TX_TCP_SEG) &&
332 		    (queue_offloads & DEV_TX_OFFLOAD_TCP_TSO)) {
333 			ena_tx_ctx->tso_enable = true;
334 
335 			ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
336 		}
337 
338 		/* check if L3 checksum is needed */
339 		if ((mbuf->ol_flags & PKT_TX_IP_CKSUM) &&
340 		    (queue_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM))
341 			ena_tx_ctx->l3_csum_enable = true;
342 
343 		if (mbuf->ol_flags & PKT_TX_IPV6) {
344 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
345 		} else {
346 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
347 
348 			/* set don't fragment (DF) flag */
349 			if (mbuf->packet_type &
350 				(RTE_PTYPE_L4_NONFRAG
351 				 | RTE_PTYPE_INNER_L4_NONFRAG))
352 				ena_tx_ctx->df = true;
353 		}
354 
355 		/* check if L4 checksum is needed */
356 		if (((mbuf->ol_flags & PKT_TX_L4_MASK) == PKT_TX_TCP_CKSUM) &&
357 		    (queue_offloads & DEV_TX_OFFLOAD_TCP_CKSUM)) {
358 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
359 			ena_tx_ctx->l4_csum_enable = true;
360 		} else if (((mbuf->ol_flags & PKT_TX_L4_MASK) ==
361 				PKT_TX_UDP_CKSUM) &&
362 				(queue_offloads & DEV_TX_OFFLOAD_UDP_CKSUM)) {
363 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
364 			ena_tx_ctx->l4_csum_enable = true;
365 		} else {
366 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
367 			ena_tx_ctx->l4_csum_enable = false;
368 		}
369 
370 		ena_meta->mss = mbuf->tso_segsz;
371 		ena_meta->l3_hdr_len = mbuf->l3_len;
372 		ena_meta->l3_hdr_offset = mbuf->l2_len;
373 
374 		ena_tx_ctx->meta_valid = true;
375 	} else if (disable_meta_caching) {
376 		memset(ena_meta, 0, sizeof(*ena_meta));
377 		ena_tx_ctx->meta_valid = true;
378 	} else {
379 		ena_tx_ctx->meta_valid = false;
380 	}
381 }
382 
383 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
384 {
385 	struct ena_tx_buffer *tx_info = NULL;
386 
387 	if (likely(req_id < tx_ring->ring_size)) {
388 		tx_info = &tx_ring->tx_buffer_info[req_id];
389 		if (likely(tx_info->mbuf))
390 			return 0;
391 	}
392 
393 	if (tx_info)
394 		PMD_DRV_LOG(ERR, "tx_info doesn't have valid mbuf\n");
395 	else
396 		PMD_DRV_LOG(ERR, "Invalid req_id: %hu\n", req_id);
397 
398 	/* Trigger device reset */
399 	++tx_ring->tx_stats.bad_req_id;
400 	tx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID;
401 	tx_ring->adapter->trigger_reset	= true;
402 	return -EFAULT;
403 }
404 
405 static void ena_config_host_info(struct ena_com_dev *ena_dev)
406 {
407 	struct ena_admin_host_info *host_info;
408 	int rc;
409 
410 	/* Allocate only the host info */
411 	rc = ena_com_allocate_host_info(ena_dev);
412 	if (rc) {
413 		PMD_DRV_LOG(ERR, "Cannot allocate host info\n");
414 		return;
415 	}
416 
417 	host_info = ena_dev->host_attr.host_info;
418 
419 	host_info->os_type = ENA_ADMIN_OS_DPDK;
420 	host_info->kernel_ver = RTE_VERSION;
421 	strlcpy((char *)host_info->kernel_ver_str, rte_version(),
422 		sizeof(host_info->kernel_ver_str));
423 	host_info->os_dist = RTE_VERSION;
424 	strlcpy((char *)host_info->os_dist_str, rte_version(),
425 		sizeof(host_info->os_dist_str));
426 	host_info->driver_version =
427 		(DRV_MODULE_VER_MAJOR) |
428 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
429 		(DRV_MODULE_VER_SUBMINOR <<
430 			ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
431 	host_info->num_cpus = rte_lcore_count();
432 
433 	host_info->driver_supported_features =
434 		ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK;
435 
436 	rc = ena_com_set_host_attributes(ena_dev);
437 	if (rc) {
438 		if (rc == -ENA_COM_UNSUPPORTED)
439 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
440 		else
441 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
442 
443 		goto err;
444 	}
445 
446 	return;
447 
448 err:
449 	ena_com_delete_host_info(ena_dev);
450 }
451 
452 /* This function calculates the number of xstats based on the current config */
453 static unsigned int ena_xstats_calc_num(struct rte_eth_dev *dev)
454 {
455 	return ENA_STATS_ARRAY_GLOBAL + ENA_STATS_ARRAY_ENI +
456 		(dev->data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
457 		(dev->data->nb_rx_queues * ENA_STATS_ARRAY_RX);
458 }
459 
460 static void ena_config_debug_area(struct ena_adapter *adapter)
461 {
462 	u32 debug_area_size;
463 	int rc, ss_count;
464 
465 	ss_count = ena_xstats_calc_num(adapter->rte_dev);
466 
467 	/* allocate 32 bytes for each string and 64bit for the value */
468 	debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
469 
470 	rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
471 	if (rc) {
472 		PMD_DRV_LOG(ERR, "Cannot allocate debug area\n");
473 		return;
474 	}
475 
476 	rc = ena_com_set_host_attributes(&adapter->ena_dev);
477 	if (rc) {
478 		if (rc == -ENA_COM_UNSUPPORTED)
479 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
480 		else
481 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
482 
483 		goto err;
484 	}
485 
486 	return;
487 err:
488 	ena_com_delete_debug_area(&adapter->ena_dev);
489 }
490 
491 static int ena_close(struct rte_eth_dev *dev)
492 {
493 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
494 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
495 	struct ena_adapter *adapter = dev->data->dev_private;
496 	int ret = 0;
497 
498 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
499 		return 0;
500 
501 	if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
502 		ret = ena_stop(dev);
503 	adapter->state = ENA_ADAPTER_STATE_CLOSED;
504 
505 	ena_rx_queue_release_all(dev);
506 	ena_tx_queue_release_all(dev);
507 
508 	rte_free(adapter->drv_stats);
509 	adapter->drv_stats = NULL;
510 
511 	rte_intr_disable(intr_handle);
512 	rte_intr_callback_unregister(intr_handle,
513 				     ena_interrupt_handler_rte,
514 				     adapter);
515 
516 	/*
517 	 * MAC is not allocated dynamically. Setting NULL should prevent from
518 	 * release of the resource in the rte_eth_dev_release_port().
519 	 */
520 	dev->data->mac_addrs = NULL;
521 
522 	return ret;
523 }
524 
525 static int
526 ena_dev_reset(struct rte_eth_dev *dev)
527 {
528 	int rc = 0;
529 
530 	ena_destroy_device(dev);
531 	rc = eth_ena_dev_init(dev);
532 	if (rc)
533 		PMD_INIT_LOG(CRIT, "Cannot initialize device");
534 
535 	return rc;
536 }
537 
538 static int ena_rss_reta_update(struct rte_eth_dev *dev,
539 			       struct rte_eth_rss_reta_entry64 *reta_conf,
540 			       uint16_t reta_size)
541 {
542 	struct ena_adapter *adapter = dev->data->dev_private;
543 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
544 	int rc, i;
545 	u16 entry_value;
546 	int conf_idx;
547 	int idx;
548 
549 	if ((reta_size == 0) || (reta_conf == NULL))
550 		return -EINVAL;
551 
552 	if (reta_size > ENA_RX_RSS_TABLE_SIZE) {
553 		PMD_DRV_LOG(WARNING,
554 			"indirection table %d is bigger than supported (%d)\n",
555 			reta_size, ENA_RX_RSS_TABLE_SIZE);
556 		return -EINVAL;
557 	}
558 
559 	for (i = 0 ; i < reta_size ; i++) {
560 		/* each reta_conf is for 64 entries.
561 		 * to support 128 we use 2 conf of 64
562 		 */
563 		conf_idx = i / RTE_RETA_GROUP_SIZE;
564 		idx = i % RTE_RETA_GROUP_SIZE;
565 		if (TEST_BIT(reta_conf[conf_idx].mask, idx)) {
566 			entry_value =
567 				ENA_IO_RXQ_IDX(reta_conf[conf_idx].reta[idx]);
568 
569 			rc = ena_com_indirect_table_fill_entry(ena_dev,
570 							       i,
571 							       entry_value);
572 			if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
573 				PMD_DRV_LOG(ERR,
574 					"Cannot fill indirect table\n");
575 				return rc;
576 			}
577 		}
578 	}
579 
580 	rte_spinlock_lock(&adapter->admin_lock);
581 	rc = ena_com_indirect_table_set(ena_dev);
582 	rte_spinlock_unlock(&adapter->admin_lock);
583 	if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
584 		PMD_DRV_LOG(ERR, "Cannot flush the indirect table\n");
585 		return rc;
586 	}
587 
588 	PMD_DRV_LOG(DEBUG, "%s(): RSS configured %d entries  for port %d\n",
589 		__func__, reta_size, adapter->rte_dev->data->port_id);
590 
591 	return 0;
592 }
593 
594 /* Query redirection table. */
595 static int ena_rss_reta_query(struct rte_eth_dev *dev,
596 			      struct rte_eth_rss_reta_entry64 *reta_conf,
597 			      uint16_t reta_size)
598 {
599 	struct ena_adapter *adapter = dev->data->dev_private;
600 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
601 	int rc;
602 	int i;
603 	u32 indirect_table[ENA_RX_RSS_TABLE_SIZE] = {0};
604 	int reta_conf_idx;
605 	int reta_idx;
606 
607 	if (reta_size == 0 || reta_conf == NULL ||
608 	    (reta_size > RTE_RETA_GROUP_SIZE && ((reta_conf + 1) == NULL)))
609 		return -EINVAL;
610 
611 	rte_spinlock_lock(&adapter->admin_lock);
612 	rc = ena_com_indirect_table_get(ena_dev, indirect_table);
613 	rte_spinlock_unlock(&adapter->admin_lock);
614 	if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
615 		PMD_DRV_LOG(ERR, "cannot get indirect table\n");
616 		return -ENOTSUP;
617 	}
618 
619 	for (i = 0 ; i < reta_size ; i++) {
620 		reta_conf_idx = i / RTE_RETA_GROUP_SIZE;
621 		reta_idx = i % RTE_RETA_GROUP_SIZE;
622 		if (TEST_BIT(reta_conf[reta_conf_idx].mask, reta_idx))
623 			reta_conf[reta_conf_idx].reta[reta_idx] =
624 				ENA_IO_RXQ_IDX_REV(indirect_table[i]);
625 	}
626 
627 	return 0;
628 }
629 
630 static int ena_rss_init_default(struct ena_adapter *adapter)
631 {
632 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
633 	uint16_t nb_rx_queues = adapter->rte_dev->data->nb_rx_queues;
634 	int rc, i;
635 	u32 val;
636 
637 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
638 	if (unlikely(rc)) {
639 		PMD_DRV_LOG(ERR, "Cannot init indirect table\n");
640 		goto err_rss_init;
641 	}
642 
643 	for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
644 		val = i % nb_rx_queues;
645 		rc = ena_com_indirect_table_fill_entry(ena_dev, i,
646 						       ENA_IO_RXQ_IDX(val));
647 		if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
648 			PMD_DRV_LOG(ERR, "Cannot fill indirect table\n");
649 			goto err_fill_indir;
650 		}
651 	}
652 
653 	rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL,
654 					ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
655 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
656 		PMD_DRV_LOG(INFO, "Cannot fill hash function\n");
657 		goto err_fill_indir;
658 	}
659 
660 	rc = ena_com_set_default_hash_ctrl(ena_dev);
661 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
662 		PMD_DRV_LOG(INFO, "Cannot fill hash control\n");
663 		goto err_fill_indir;
664 	}
665 
666 	rc = ena_com_indirect_table_set(ena_dev);
667 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
668 		PMD_DRV_LOG(ERR, "Cannot flush the indirect table\n");
669 		goto err_fill_indir;
670 	}
671 	PMD_DRV_LOG(DEBUG, "RSS configured for port %d\n",
672 		adapter->rte_dev->data->port_id);
673 
674 	return 0;
675 
676 err_fill_indir:
677 	ena_com_rss_destroy(ena_dev);
678 err_rss_init:
679 
680 	return rc;
681 }
682 
683 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
684 {
685 	struct ena_ring **queues = (struct ena_ring **)dev->data->rx_queues;
686 	int nb_queues = dev->data->nb_rx_queues;
687 	int i;
688 
689 	for (i = 0; i < nb_queues; i++)
690 		ena_rx_queue_release(queues[i]);
691 }
692 
693 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
694 {
695 	struct ena_ring **queues = (struct ena_ring **)dev->data->tx_queues;
696 	int nb_queues = dev->data->nb_tx_queues;
697 	int i;
698 
699 	for (i = 0; i < nb_queues; i++)
700 		ena_tx_queue_release(queues[i]);
701 }
702 
703 static void ena_rx_queue_release(void *queue)
704 {
705 	struct ena_ring *ring = (struct ena_ring *)queue;
706 
707 	/* Free ring resources */
708 	if (ring->rx_buffer_info)
709 		rte_free(ring->rx_buffer_info);
710 	ring->rx_buffer_info = NULL;
711 
712 	if (ring->rx_refill_buffer)
713 		rte_free(ring->rx_refill_buffer);
714 	ring->rx_refill_buffer = NULL;
715 
716 	if (ring->empty_rx_reqs)
717 		rte_free(ring->empty_rx_reqs);
718 	ring->empty_rx_reqs = NULL;
719 
720 	ring->configured = 0;
721 
722 	PMD_DRV_LOG(NOTICE, "RX Queue %d:%d released\n",
723 		ring->port_id, ring->id);
724 }
725 
726 static void ena_tx_queue_release(void *queue)
727 {
728 	struct ena_ring *ring = (struct ena_ring *)queue;
729 
730 	/* Free ring resources */
731 	if (ring->push_buf_intermediate_buf)
732 		rte_free(ring->push_buf_intermediate_buf);
733 
734 	if (ring->tx_buffer_info)
735 		rte_free(ring->tx_buffer_info);
736 
737 	if (ring->empty_tx_reqs)
738 		rte_free(ring->empty_tx_reqs);
739 
740 	ring->empty_tx_reqs = NULL;
741 	ring->tx_buffer_info = NULL;
742 	ring->push_buf_intermediate_buf = NULL;
743 
744 	ring->configured = 0;
745 
746 	PMD_DRV_LOG(NOTICE, "TX Queue %d:%d released\n",
747 		ring->port_id, ring->id);
748 }
749 
750 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
751 {
752 	unsigned int i;
753 
754 	for (i = 0; i < ring->ring_size; ++i) {
755 		struct ena_rx_buffer *rx_info = &ring->rx_buffer_info[i];
756 		if (rx_info->mbuf) {
757 			rte_mbuf_raw_free(rx_info->mbuf);
758 			rx_info->mbuf = NULL;
759 		}
760 	}
761 }
762 
763 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
764 {
765 	unsigned int i;
766 
767 	for (i = 0; i < ring->ring_size; ++i) {
768 		struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
769 
770 		if (tx_buf->mbuf) {
771 			rte_pktmbuf_free(tx_buf->mbuf);
772 			tx_buf->mbuf = NULL;
773 		}
774 	}
775 }
776 
777 static int ena_link_update(struct rte_eth_dev *dev,
778 			   __rte_unused int wait_to_complete)
779 {
780 	struct rte_eth_link *link = &dev->data->dev_link;
781 	struct ena_adapter *adapter = dev->data->dev_private;
782 
783 	link->link_status = adapter->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
784 	link->link_speed = ETH_SPEED_NUM_NONE;
785 	link->link_duplex = ETH_LINK_FULL_DUPLEX;
786 
787 	return 0;
788 }
789 
790 static int ena_queue_start_all(struct rte_eth_dev *dev,
791 			       enum ena_ring_type ring_type)
792 {
793 	struct ena_adapter *adapter = dev->data->dev_private;
794 	struct ena_ring *queues = NULL;
795 	int nb_queues;
796 	int i = 0;
797 	int rc = 0;
798 
799 	if (ring_type == ENA_RING_TYPE_RX) {
800 		queues = adapter->rx_ring;
801 		nb_queues = dev->data->nb_rx_queues;
802 	} else {
803 		queues = adapter->tx_ring;
804 		nb_queues = dev->data->nb_tx_queues;
805 	}
806 	for (i = 0; i < nb_queues; i++) {
807 		if (queues[i].configured) {
808 			if (ring_type == ENA_RING_TYPE_RX) {
809 				ena_assert_msg(
810 					dev->data->rx_queues[i] == &queues[i],
811 					"Inconsistent state of rx queues\n");
812 			} else {
813 				ena_assert_msg(
814 					dev->data->tx_queues[i] == &queues[i],
815 					"Inconsistent state of tx queues\n");
816 			}
817 
818 			rc = ena_queue_start(&queues[i]);
819 
820 			if (rc) {
821 				PMD_INIT_LOG(ERR,
822 					     "failed to start queue %d type(%d)",
823 					     i, ring_type);
824 				goto err;
825 			}
826 		}
827 	}
828 
829 	return 0;
830 
831 err:
832 	while (i--)
833 		if (queues[i].configured)
834 			ena_queue_stop(&queues[i]);
835 
836 	return rc;
837 }
838 
839 static uint32_t ena_get_mtu_conf(struct ena_adapter *adapter)
840 {
841 	uint32_t max_frame_len = adapter->max_mtu;
842 
843 	if (adapter->rte_eth_dev_data->dev_conf.rxmode.offloads &
844 	    DEV_RX_OFFLOAD_JUMBO_FRAME)
845 		max_frame_len =
846 			adapter->rte_eth_dev_data->dev_conf.rxmode.max_rx_pkt_len;
847 
848 	return max_frame_len;
849 }
850 
851 static int ena_check_valid_conf(struct ena_adapter *adapter)
852 {
853 	uint32_t max_frame_len = ena_get_mtu_conf(adapter);
854 
855 	if (max_frame_len > adapter->max_mtu || max_frame_len < ENA_MIN_MTU) {
856 		PMD_INIT_LOG(ERR, "Unsupported MTU of %d. "
857 				  "max mtu: %d, min mtu: %d",
858 			     max_frame_len, adapter->max_mtu, ENA_MIN_MTU);
859 		return ENA_COM_UNSUPPORTED;
860 	}
861 
862 	return 0;
863 }
864 
865 static int
866 ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx,
867 		       bool use_large_llq_hdr)
868 {
869 	struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
870 	struct ena_com_dev *ena_dev = ctx->ena_dev;
871 	uint32_t max_tx_queue_size;
872 	uint32_t max_rx_queue_size;
873 
874 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
875 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
876 			&ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
877 		max_rx_queue_size = RTE_MIN(max_queue_ext->max_rx_cq_depth,
878 			max_queue_ext->max_rx_sq_depth);
879 		max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
880 
881 		if (ena_dev->tx_mem_queue_type ==
882 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
883 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
884 				llq->max_llq_depth);
885 		} else {
886 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
887 				max_queue_ext->max_tx_sq_depth);
888 		}
889 
890 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
891 			max_queue_ext->max_per_packet_rx_descs);
892 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
893 			max_queue_ext->max_per_packet_tx_descs);
894 	} else {
895 		struct ena_admin_queue_feature_desc *max_queues =
896 			&ctx->get_feat_ctx->max_queues;
897 		max_rx_queue_size = RTE_MIN(max_queues->max_cq_depth,
898 			max_queues->max_sq_depth);
899 		max_tx_queue_size = max_queues->max_cq_depth;
900 
901 		if (ena_dev->tx_mem_queue_type ==
902 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
903 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
904 				llq->max_llq_depth);
905 		} else {
906 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
907 				max_queues->max_sq_depth);
908 		}
909 
910 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
911 			max_queues->max_packet_rx_descs);
912 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
913 			max_queues->max_packet_tx_descs);
914 	}
915 
916 	/* Round down to the nearest power of 2 */
917 	max_rx_queue_size = rte_align32prevpow2(max_rx_queue_size);
918 	max_tx_queue_size = rte_align32prevpow2(max_tx_queue_size);
919 
920 	if (use_large_llq_hdr) {
921 		if ((llq->entry_size_ctrl_supported &
922 		     ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
923 		    (ena_dev->tx_mem_queue_type ==
924 		     ENA_ADMIN_PLACEMENT_POLICY_DEV)) {
925 			max_tx_queue_size /= 2;
926 			PMD_INIT_LOG(INFO,
927 				"Forcing large headers and decreasing maximum TX queue size to %d\n",
928 				max_tx_queue_size);
929 		} else {
930 			PMD_INIT_LOG(ERR,
931 				"Forcing large headers failed: LLQ is disabled or device does not support large headers\n");
932 		}
933 	}
934 
935 	if (unlikely(max_rx_queue_size == 0 || max_tx_queue_size == 0)) {
936 		PMD_INIT_LOG(ERR, "Invalid queue size");
937 		return -EFAULT;
938 	}
939 
940 	ctx->max_tx_queue_size = max_tx_queue_size;
941 	ctx->max_rx_queue_size = max_rx_queue_size;
942 
943 	return 0;
944 }
945 
946 static void ena_stats_restart(struct rte_eth_dev *dev)
947 {
948 	struct ena_adapter *adapter = dev->data->dev_private;
949 
950 	rte_atomic64_init(&adapter->drv_stats->ierrors);
951 	rte_atomic64_init(&adapter->drv_stats->oerrors);
952 	rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
953 	adapter->drv_stats->rx_drops = 0;
954 }
955 
956 static int ena_stats_get(struct rte_eth_dev *dev,
957 			  struct rte_eth_stats *stats)
958 {
959 	struct ena_admin_basic_stats ena_stats;
960 	struct ena_adapter *adapter = dev->data->dev_private;
961 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
962 	int rc;
963 	int i;
964 	int max_rings_stats;
965 
966 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
967 		return -ENOTSUP;
968 
969 	memset(&ena_stats, 0, sizeof(ena_stats));
970 
971 	rte_spinlock_lock(&adapter->admin_lock);
972 	rc = ena_com_get_dev_basic_stats(ena_dev, &ena_stats);
973 	rte_spinlock_unlock(&adapter->admin_lock);
974 	if (unlikely(rc)) {
975 		PMD_DRV_LOG(ERR, "Could not retrieve statistics from ENA\n");
976 		return rc;
977 	}
978 
979 	/* Set of basic statistics from ENA */
980 	stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
981 					  ena_stats.rx_pkts_low);
982 	stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
983 					  ena_stats.tx_pkts_low);
984 	stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
985 					ena_stats.rx_bytes_low);
986 	stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
987 					ena_stats.tx_bytes_low);
988 
989 	/* Driver related stats */
990 	stats->imissed = adapter->drv_stats->rx_drops;
991 	stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
992 	stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
993 	stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
994 
995 	max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
996 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
997 	for (i = 0; i < max_rings_stats; ++i) {
998 		struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
999 
1000 		stats->q_ibytes[i] = rx_stats->bytes;
1001 		stats->q_ipackets[i] = rx_stats->cnt;
1002 		stats->q_errors[i] = rx_stats->bad_desc_num +
1003 			rx_stats->bad_req_id;
1004 	}
1005 
1006 	max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
1007 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
1008 	for (i = 0; i < max_rings_stats; ++i) {
1009 		struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
1010 
1011 		stats->q_obytes[i] = tx_stats->bytes;
1012 		stats->q_opackets[i] = tx_stats->cnt;
1013 	}
1014 
1015 	return 0;
1016 }
1017 
1018 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1019 {
1020 	struct ena_adapter *adapter;
1021 	struct ena_com_dev *ena_dev;
1022 	int rc = 0;
1023 
1024 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
1025 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
1026 	adapter = dev->data->dev_private;
1027 
1028 	ena_dev = &adapter->ena_dev;
1029 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
1030 
1031 	if (mtu > ena_get_mtu_conf(adapter) || mtu < ENA_MIN_MTU) {
1032 		PMD_DRV_LOG(ERR,
1033 			"Invalid MTU setting. new_mtu: %d "
1034 			"max mtu: %d min mtu: %d\n",
1035 			mtu, ena_get_mtu_conf(adapter), ENA_MIN_MTU);
1036 		return -EINVAL;
1037 	}
1038 
1039 	rc = ena_com_set_dev_mtu(ena_dev, mtu);
1040 	if (rc)
1041 		PMD_DRV_LOG(ERR, "Could not set MTU: %d\n", mtu);
1042 	else
1043 		PMD_DRV_LOG(NOTICE, "Set MTU: %d\n", mtu);
1044 
1045 	return rc;
1046 }
1047 
1048 static int ena_start(struct rte_eth_dev *dev)
1049 {
1050 	struct ena_adapter *adapter = dev->data->dev_private;
1051 	uint64_t ticks;
1052 	int rc = 0;
1053 
1054 	rc = ena_check_valid_conf(adapter);
1055 	if (rc)
1056 		return rc;
1057 
1058 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
1059 	if (rc)
1060 		return rc;
1061 
1062 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
1063 	if (rc)
1064 		goto err_start_tx;
1065 
1066 	if (adapter->rte_dev->data->dev_conf.rxmode.mq_mode &
1067 	    ETH_MQ_RX_RSS_FLAG && adapter->rte_dev->data->nb_rx_queues > 0) {
1068 		rc = ena_rss_init_default(adapter);
1069 		if (rc)
1070 			goto err_rss_init;
1071 	}
1072 
1073 	ena_stats_restart(dev);
1074 
1075 	adapter->timestamp_wd = rte_get_timer_cycles();
1076 	adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
1077 
1078 	ticks = rte_get_timer_hz();
1079 	rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
1080 			ena_timer_wd_callback, adapter);
1081 
1082 	++adapter->dev_stats.dev_start;
1083 	adapter->state = ENA_ADAPTER_STATE_RUNNING;
1084 
1085 	return 0;
1086 
1087 err_rss_init:
1088 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1089 err_start_tx:
1090 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1091 	return rc;
1092 }
1093 
1094 static int ena_stop(struct rte_eth_dev *dev)
1095 {
1096 	struct ena_adapter *adapter = dev->data->dev_private;
1097 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1098 	int rc;
1099 
1100 	rte_timer_stop_sync(&adapter->timer_wd);
1101 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1102 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1103 
1104 	if (adapter->trigger_reset) {
1105 		rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
1106 		if (rc)
1107 			PMD_DRV_LOG(ERR, "Device reset failed rc=%d\n", rc);
1108 	}
1109 
1110 	++adapter->dev_stats.dev_stop;
1111 	adapter->state = ENA_ADAPTER_STATE_STOPPED;
1112 	dev->data->dev_started = 0;
1113 
1114 	return 0;
1115 }
1116 
1117 static int ena_create_io_queue(struct ena_ring *ring)
1118 {
1119 	struct ena_adapter *adapter;
1120 	struct ena_com_dev *ena_dev;
1121 	struct ena_com_create_io_ctx ctx =
1122 		/* policy set to _HOST just to satisfy icc compiler */
1123 		{ ENA_ADMIN_PLACEMENT_POLICY_HOST,
1124 		  0, 0, 0, 0, 0 };
1125 	uint16_t ena_qid;
1126 	unsigned int i;
1127 	int rc;
1128 
1129 	adapter = ring->adapter;
1130 	ena_dev = &adapter->ena_dev;
1131 
1132 	if (ring->type == ENA_RING_TYPE_TX) {
1133 		ena_qid = ENA_IO_TXQ_IDX(ring->id);
1134 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1135 		ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1136 		for (i = 0; i < ring->ring_size; i++)
1137 			ring->empty_tx_reqs[i] = i;
1138 	} else {
1139 		ena_qid = ENA_IO_RXQ_IDX(ring->id);
1140 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1141 		for (i = 0; i < ring->ring_size; i++)
1142 			ring->empty_rx_reqs[i] = i;
1143 	}
1144 	ctx.queue_size = ring->ring_size;
1145 	ctx.qid = ena_qid;
1146 	ctx.msix_vector = -1; /* interrupts not used */
1147 	ctx.numa_node = ring->numa_socket_id;
1148 
1149 	rc = ena_com_create_io_queue(ena_dev, &ctx);
1150 	if (rc) {
1151 		PMD_DRV_LOG(ERR,
1152 			"failed to create io queue #%d (qid:%d) rc: %d\n",
1153 			ring->id, ena_qid, rc);
1154 		return rc;
1155 	}
1156 
1157 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1158 				     &ring->ena_com_io_sq,
1159 				     &ring->ena_com_io_cq);
1160 	if (rc) {
1161 		PMD_DRV_LOG(ERR,
1162 			"Failed to get io queue handlers. queue num %d rc: %d\n",
1163 			ring->id, rc);
1164 		ena_com_destroy_io_queue(ena_dev, ena_qid);
1165 		return rc;
1166 	}
1167 
1168 	if (ring->type == ENA_RING_TYPE_TX)
1169 		ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1170 
1171 	return 0;
1172 }
1173 
1174 static void ena_queue_stop(struct ena_ring *ring)
1175 {
1176 	struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
1177 
1178 	if (ring->type == ENA_RING_TYPE_RX) {
1179 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
1180 		ena_rx_queue_release_bufs(ring);
1181 	} else {
1182 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
1183 		ena_tx_queue_release_bufs(ring);
1184 	}
1185 }
1186 
1187 static void ena_queue_stop_all(struct rte_eth_dev *dev,
1188 			      enum ena_ring_type ring_type)
1189 {
1190 	struct ena_adapter *adapter = dev->data->dev_private;
1191 	struct ena_ring *queues = NULL;
1192 	uint16_t nb_queues, i;
1193 
1194 	if (ring_type == ENA_RING_TYPE_RX) {
1195 		queues = adapter->rx_ring;
1196 		nb_queues = dev->data->nb_rx_queues;
1197 	} else {
1198 		queues = adapter->tx_ring;
1199 		nb_queues = dev->data->nb_tx_queues;
1200 	}
1201 
1202 	for (i = 0; i < nb_queues; ++i)
1203 		if (queues[i].configured)
1204 			ena_queue_stop(&queues[i]);
1205 }
1206 
1207 static int ena_queue_start(struct ena_ring *ring)
1208 {
1209 	int rc, bufs_num;
1210 
1211 	ena_assert_msg(ring->configured == 1,
1212 		       "Trying to start unconfigured queue\n");
1213 
1214 	rc = ena_create_io_queue(ring);
1215 	if (rc) {
1216 		PMD_INIT_LOG(ERR, "Failed to create IO queue!");
1217 		return rc;
1218 	}
1219 
1220 	ring->next_to_clean = 0;
1221 	ring->next_to_use = 0;
1222 
1223 	if (ring->type == ENA_RING_TYPE_TX) {
1224 		ring->tx_stats.available_desc =
1225 			ena_com_free_q_entries(ring->ena_com_io_sq);
1226 		return 0;
1227 	}
1228 
1229 	bufs_num = ring->ring_size - 1;
1230 	rc = ena_populate_rx_queue(ring, bufs_num);
1231 	if (rc != bufs_num) {
1232 		ena_com_destroy_io_queue(&ring->adapter->ena_dev,
1233 					 ENA_IO_RXQ_IDX(ring->id));
1234 		PMD_INIT_LOG(ERR, "Failed to populate rx ring !");
1235 		return ENA_COM_FAULT;
1236 	}
1237 	/* Flush per-core RX buffers pools cache as they can be used on other
1238 	 * cores as well.
1239 	 */
1240 	rte_mempool_cache_flush(NULL, ring->mb_pool);
1241 
1242 	return 0;
1243 }
1244 
1245 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1246 			      uint16_t queue_idx,
1247 			      uint16_t nb_desc,
1248 			      unsigned int socket_id,
1249 			      const struct rte_eth_txconf *tx_conf)
1250 {
1251 	struct ena_ring *txq = NULL;
1252 	struct ena_adapter *adapter = dev->data->dev_private;
1253 	unsigned int i;
1254 
1255 	txq = &adapter->tx_ring[queue_idx];
1256 
1257 	if (txq->configured) {
1258 		PMD_DRV_LOG(CRIT,
1259 			"API violation. Queue %d is already configured\n",
1260 			queue_idx);
1261 		return ENA_COM_FAULT;
1262 	}
1263 
1264 	if (!rte_is_power_of_2(nb_desc)) {
1265 		PMD_DRV_LOG(ERR,
1266 			"Unsupported size of TX queue: %d is not a power of 2.\n",
1267 			nb_desc);
1268 		return -EINVAL;
1269 	}
1270 
1271 	if (nb_desc > adapter->max_tx_ring_size) {
1272 		PMD_DRV_LOG(ERR,
1273 			"Unsupported size of TX queue (max size: %d)\n",
1274 			adapter->max_tx_ring_size);
1275 		return -EINVAL;
1276 	}
1277 
1278 	if (nb_desc == RTE_ETH_DEV_FALLBACK_TX_RINGSIZE)
1279 		nb_desc = adapter->max_tx_ring_size;
1280 
1281 	txq->port_id = dev->data->port_id;
1282 	txq->next_to_clean = 0;
1283 	txq->next_to_use = 0;
1284 	txq->ring_size = nb_desc;
1285 	txq->size_mask = nb_desc - 1;
1286 	txq->numa_socket_id = socket_id;
1287 	txq->pkts_without_db = false;
1288 
1289 	txq->tx_buffer_info = rte_zmalloc("txq->tx_buffer_info",
1290 					  sizeof(struct ena_tx_buffer) *
1291 					  txq->ring_size,
1292 					  RTE_CACHE_LINE_SIZE);
1293 	if (!txq->tx_buffer_info) {
1294 		PMD_DRV_LOG(ERR, "failed to alloc mem for tx buffer info\n");
1295 		return -ENOMEM;
1296 	}
1297 
1298 	txq->empty_tx_reqs = rte_zmalloc("txq->empty_tx_reqs",
1299 					 sizeof(u16) * txq->ring_size,
1300 					 RTE_CACHE_LINE_SIZE);
1301 	if (!txq->empty_tx_reqs) {
1302 		PMD_DRV_LOG(ERR, "failed to alloc mem for tx reqs\n");
1303 		rte_free(txq->tx_buffer_info);
1304 		return -ENOMEM;
1305 	}
1306 
1307 	txq->push_buf_intermediate_buf =
1308 		rte_zmalloc("txq->push_buf_intermediate_buf",
1309 			    txq->tx_max_header_size,
1310 			    RTE_CACHE_LINE_SIZE);
1311 	if (!txq->push_buf_intermediate_buf) {
1312 		PMD_DRV_LOG(ERR, "failed to alloc push buff for LLQ\n");
1313 		rte_free(txq->tx_buffer_info);
1314 		rte_free(txq->empty_tx_reqs);
1315 		return -ENOMEM;
1316 	}
1317 
1318 	for (i = 0; i < txq->ring_size; i++)
1319 		txq->empty_tx_reqs[i] = i;
1320 
1321 	if (tx_conf != NULL) {
1322 		txq->offloads =
1323 			tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1324 	}
1325 	/* Store pointer to this queue in upper layer */
1326 	txq->configured = 1;
1327 	dev->data->tx_queues[queue_idx] = txq;
1328 
1329 	return 0;
1330 }
1331 
1332 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1333 			      uint16_t queue_idx,
1334 			      uint16_t nb_desc,
1335 			      unsigned int socket_id,
1336 			      __rte_unused const struct rte_eth_rxconf *rx_conf,
1337 			      struct rte_mempool *mp)
1338 {
1339 	struct ena_adapter *adapter = dev->data->dev_private;
1340 	struct ena_ring *rxq = NULL;
1341 	size_t buffer_size;
1342 	int i;
1343 
1344 	rxq = &adapter->rx_ring[queue_idx];
1345 	if (rxq->configured) {
1346 		PMD_DRV_LOG(CRIT,
1347 			"API violation. Queue %d is already configured\n",
1348 			queue_idx);
1349 		return ENA_COM_FAULT;
1350 	}
1351 
1352 	if (nb_desc == RTE_ETH_DEV_FALLBACK_RX_RINGSIZE)
1353 		nb_desc = adapter->max_rx_ring_size;
1354 
1355 	if (!rte_is_power_of_2(nb_desc)) {
1356 		PMD_DRV_LOG(ERR,
1357 			"Unsupported size of RX queue: %d is not a power of 2.\n",
1358 			nb_desc);
1359 		return -EINVAL;
1360 	}
1361 
1362 	if (nb_desc > adapter->max_rx_ring_size) {
1363 		PMD_DRV_LOG(ERR,
1364 			"Unsupported size of RX queue (max size: %d)\n",
1365 			adapter->max_rx_ring_size);
1366 		return -EINVAL;
1367 	}
1368 
1369 	/* ENA isn't supporting buffers smaller than 1400 bytes */
1370 	buffer_size = rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
1371 	if (buffer_size < ENA_RX_BUF_MIN_SIZE) {
1372 		PMD_DRV_LOG(ERR,
1373 			"Unsupported size of RX buffer: %zu (min size: %d)\n",
1374 			buffer_size, ENA_RX_BUF_MIN_SIZE);
1375 		return -EINVAL;
1376 	}
1377 
1378 	rxq->port_id = dev->data->port_id;
1379 	rxq->next_to_clean = 0;
1380 	rxq->next_to_use = 0;
1381 	rxq->ring_size = nb_desc;
1382 	rxq->size_mask = nb_desc - 1;
1383 	rxq->numa_socket_id = socket_id;
1384 	rxq->mb_pool = mp;
1385 
1386 	rxq->rx_buffer_info = rte_zmalloc("rxq->buffer_info",
1387 		sizeof(struct ena_rx_buffer) * nb_desc,
1388 		RTE_CACHE_LINE_SIZE);
1389 	if (!rxq->rx_buffer_info) {
1390 		PMD_DRV_LOG(ERR, "failed to alloc mem for rx buffer info\n");
1391 		return -ENOMEM;
1392 	}
1393 
1394 	rxq->rx_refill_buffer = rte_zmalloc("rxq->rx_refill_buffer",
1395 					    sizeof(struct rte_mbuf *) * nb_desc,
1396 					    RTE_CACHE_LINE_SIZE);
1397 
1398 	if (!rxq->rx_refill_buffer) {
1399 		PMD_DRV_LOG(ERR, "failed to alloc mem for rx refill buffer\n");
1400 		rte_free(rxq->rx_buffer_info);
1401 		rxq->rx_buffer_info = NULL;
1402 		return -ENOMEM;
1403 	}
1404 
1405 	rxq->empty_rx_reqs = rte_zmalloc("rxq->empty_rx_reqs",
1406 					 sizeof(uint16_t) * nb_desc,
1407 					 RTE_CACHE_LINE_SIZE);
1408 	if (!rxq->empty_rx_reqs) {
1409 		PMD_DRV_LOG(ERR, "failed to alloc mem for empty rx reqs\n");
1410 		rte_free(rxq->rx_buffer_info);
1411 		rxq->rx_buffer_info = NULL;
1412 		rte_free(rxq->rx_refill_buffer);
1413 		rxq->rx_refill_buffer = NULL;
1414 		return -ENOMEM;
1415 	}
1416 
1417 	for (i = 0; i < nb_desc; i++)
1418 		rxq->empty_rx_reqs[i] = i;
1419 
1420 	/* Store pointer to this queue in upper layer */
1421 	rxq->configured = 1;
1422 	dev->data->rx_queues[queue_idx] = rxq;
1423 
1424 	return 0;
1425 }
1426 
1427 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
1428 				  struct rte_mbuf *mbuf, uint16_t id)
1429 {
1430 	struct ena_com_buf ebuf;
1431 	int rc;
1432 
1433 	/* prepare physical address for DMA transaction */
1434 	ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1435 	ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1436 
1437 	/* pass resource to device */
1438 	rc = ena_com_add_single_rx_desc(io_sq, &ebuf, id);
1439 	if (unlikely(rc != 0))
1440 		PMD_DRV_LOG(WARNING, "failed adding rx desc\n");
1441 
1442 	return rc;
1443 }
1444 
1445 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1446 {
1447 	unsigned int i;
1448 	int rc;
1449 	uint16_t next_to_use = rxq->next_to_use;
1450 	uint16_t in_use, req_id;
1451 	struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1452 
1453 	if (unlikely(!count))
1454 		return 0;
1455 
1456 	in_use = rxq->ring_size - 1 -
1457 		ena_com_free_q_entries(rxq->ena_com_io_sq);
1458 	ena_assert_msg(((in_use + count) < rxq->ring_size),
1459 		"bad ring state\n");
1460 
1461 	/* get resources for incoming packets */
1462 	rc = rte_pktmbuf_alloc_bulk(rxq->mb_pool, mbufs, count);
1463 	if (unlikely(rc < 0)) {
1464 		rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1465 		++rxq->rx_stats.mbuf_alloc_fail;
1466 		PMD_RX_LOG(DEBUG, "there are no enough free buffers");
1467 		return 0;
1468 	}
1469 
1470 	for (i = 0; i < count; i++) {
1471 		struct rte_mbuf *mbuf = mbufs[i];
1472 		struct ena_rx_buffer *rx_info;
1473 
1474 		if (likely((i + 4) < count))
1475 			rte_prefetch0(mbufs[i + 4]);
1476 
1477 		req_id = rxq->empty_rx_reqs[next_to_use];
1478 		rx_info = &rxq->rx_buffer_info[req_id];
1479 
1480 		rc = ena_add_single_rx_desc(rxq->ena_com_io_sq, mbuf, req_id);
1481 		if (unlikely(rc != 0))
1482 			break;
1483 
1484 		rx_info->mbuf = mbuf;
1485 		next_to_use = ENA_IDX_NEXT_MASKED(next_to_use, rxq->size_mask);
1486 	}
1487 
1488 	if (unlikely(i < count)) {
1489 		PMD_DRV_LOG(WARNING, "refilled rx qid %d with only %d "
1490 			"buffers (from %d)\n", rxq->id, i, count);
1491 		rte_pktmbuf_free_bulk(&mbufs[i], count - i);
1492 		++rxq->rx_stats.refill_partial;
1493 	}
1494 
1495 	/* When we submitted free recources to device... */
1496 	if (likely(i > 0)) {
1497 		/* ...let HW know that it can fill buffers with data. */
1498 		ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1499 
1500 		rxq->next_to_use = next_to_use;
1501 	}
1502 
1503 	return i;
1504 }
1505 
1506 static int ena_device_init(struct ena_com_dev *ena_dev,
1507 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
1508 			   bool *wd_state)
1509 {
1510 	uint32_t aenq_groups;
1511 	int rc;
1512 	bool readless_supported;
1513 
1514 	/* Initialize mmio registers */
1515 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
1516 	if (rc) {
1517 		PMD_DRV_LOG(ERR, "failed to init mmio read less\n");
1518 		return rc;
1519 	}
1520 
1521 	/* The PCIe configuration space revision id indicate if mmio reg
1522 	 * read is disabled.
1523 	 */
1524 	readless_supported =
1525 		!(((struct rte_pci_device *)ena_dev->dmadev)->id.class_id
1526 			       & ENA_MMIO_DISABLE_REG_READ);
1527 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1528 
1529 	/* reset device */
1530 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1531 	if (rc) {
1532 		PMD_DRV_LOG(ERR, "cannot reset device\n");
1533 		goto err_mmio_read_less;
1534 	}
1535 
1536 	/* check FW version */
1537 	rc = ena_com_validate_version(ena_dev);
1538 	if (rc) {
1539 		PMD_DRV_LOG(ERR, "device version is too low\n");
1540 		goto err_mmio_read_less;
1541 	}
1542 
1543 	ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1544 
1545 	/* ENA device administration layer init */
1546 	rc = ena_com_admin_init(ena_dev, &aenq_handlers);
1547 	if (rc) {
1548 		PMD_DRV_LOG(ERR,
1549 			"cannot initialize ena admin queue with device\n");
1550 		goto err_mmio_read_less;
1551 	}
1552 
1553 	/* To enable the msix interrupts the driver needs to know the number
1554 	 * of queues. So the driver uses polling mode to retrieve this
1555 	 * information.
1556 	 */
1557 	ena_com_set_admin_polling_mode(ena_dev, true);
1558 
1559 	ena_config_host_info(ena_dev);
1560 
1561 	/* Get Device Attributes and features */
1562 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1563 	if (rc) {
1564 		PMD_DRV_LOG(ERR,
1565 			"cannot get attribute for ena device rc= %d\n", rc);
1566 		goto err_admin_init;
1567 	}
1568 
1569 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1570 		      BIT(ENA_ADMIN_NOTIFICATION) |
1571 		      BIT(ENA_ADMIN_KEEP_ALIVE) |
1572 		      BIT(ENA_ADMIN_FATAL_ERROR) |
1573 		      BIT(ENA_ADMIN_WARNING);
1574 
1575 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
1576 	rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
1577 	if (rc) {
1578 		PMD_DRV_LOG(ERR, "Cannot configure aenq groups rc: %d\n", rc);
1579 		goto err_admin_init;
1580 	}
1581 
1582 	*wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
1583 
1584 	return 0;
1585 
1586 err_admin_init:
1587 	ena_com_admin_destroy(ena_dev);
1588 
1589 err_mmio_read_less:
1590 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1591 
1592 	return rc;
1593 }
1594 
1595 static void ena_interrupt_handler_rte(void *cb_arg)
1596 {
1597 	struct ena_adapter *adapter = cb_arg;
1598 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1599 
1600 	ena_com_admin_q_comp_intr_handler(ena_dev);
1601 	if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED))
1602 		ena_com_aenq_intr_handler(ena_dev, adapter);
1603 }
1604 
1605 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1606 {
1607 	if (!adapter->wd_state)
1608 		return;
1609 
1610 	if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1611 		return;
1612 
1613 	if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1614 	    adapter->keep_alive_timeout)) {
1615 		PMD_DRV_LOG(ERR, "Keep alive timeout\n");
1616 		adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
1617 		adapter->trigger_reset = true;
1618 		++adapter->dev_stats.wd_expired;
1619 	}
1620 }
1621 
1622 /* Check if admin queue is enabled */
1623 static void check_for_admin_com_state(struct ena_adapter *adapter)
1624 {
1625 	if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1626 		PMD_DRV_LOG(ERR, "ENA admin queue is not in running state!\n");
1627 		adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
1628 		adapter->trigger_reset = true;
1629 	}
1630 }
1631 
1632 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
1633 				  void *arg)
1634 {
1635 	struct ena_adapter *adapter = arg;
1636 	struct rte_eth_dev *dev = adapter->rte_dev;
1637 
1638 	check_for_missing_keep_alive(adapter);
1639 	check_for_admin_com_state(adapter);
1640 
1641 	if (unlikely(adapter->trigger_reset)) {
1642 		PMD_DRV_LOG(ERR, "Trigger reset is on\n");
1643 		rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
1644 			NULL);
1645 	}
1646 }
1647 
1648 static inline void
1649 set_default_llq_configurations(struct ena_llq_configurations *llq_config,
1650 			       struct ena_admin_feature_llq_desc *llq,
1651 			       bool use_large_llq_hdr)
1652 {
1653 	llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
1654 	llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
1655 	llq_config->llq_num_decs_before_header =
1656 		ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
1657 
1658 	if (use_large_llq_hdr &&
1659 	    (llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B)) {
1660 		llq_config->llq_ring_entry_size =
1661 			ENA_ADMIN_LIST_ENTRY_SIZE_256B;
1662 		llq_config->llq_ring_entry_size_value = 256;
1663 	} else {
1664 		llq_config->llq_ring_entry_size =
1665 			ENA_ADMIN_LIST_ENTRY_SIZE_128B;
1666 		llq_config->llq_ring_entry_size_value = 128;
1667 	}
1668 }
1669 
1670 static int
1671 ena_set_queues_placement_policy(struct ena_adapter *adapter,
1672 				struct ena_com_dev *ena_dev,
1673 				struct ena_admin_feature_llq_desc *llq,
1674 				struct ena_llq_configurations *llq_default_configurations)
1675 {
1676 	int rc;
1677 	u32 llq_feature_mask;
1678 
1679 	llq_feature_mask = 1 << ENA_ADMIN_LLQ;
1680 	if (!(ena_dev->supported_features & llq_feature_mask)) {
1681 		PMD_DRV_LOG(INFO,
1682 			"LLQ is not supported. Fallback to host mode policy.\n");
1683 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1684 		return 0;
1685 	}
1686 
1687 	rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
1688 	if (unlikely(rc)) {
1689 		PMD_INIT_LOG(WARNING, "Failed to config dev mode. "
1690 			"Fallback to host mode policy.");
1691 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1692 		return 0;
1693 	}
1694 
1695 	/* Nothing to config, exit */
1696 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1697 		return 0;
1698 
1699 	if (!adapter->dev_mem_base) {
1700 		PMD_DRV_LOG(ERR, "Unable to access LLQ bar resource. "
1701 			"Fallback to host mode policy.\n.");
1702 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1703 		return 0;
1704 	}
1705 
1706 	ena_dev->mem_bar = adapter->dev_mem_base;
1707 
1708 	return 0;
1709 }
1710 
1711 static uint32_t ena_calc_max_io_queue_num(struct ena_com_dev *ena_dev,
1712 	struct ena_com_dev_get_features_ctx *get_feat_ctx)
1713 {
1714 	uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
1715 
1716 	/* Regular queues capabilities */
1717 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1718 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1719 			&get_feat_ctx->max_queue_ext.max_queue_ext;
1720 		io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
1721 				    max_queue_ext->max_rx_cq_num);
1722 		io_tx_sq_num = max_queue_ext->max_tx_sq_num;
1723 		io_tx_cq_num = max_queue_ext->max_tx_cq_num;
1724 	} else {
1725 		struct ena_admin_queue_feature_desc *max_queues =
1726 			&get_feat_ctx->max_queues;
1727 		io_tx_sq_num = max_queues->max_sq_num;
1728 		io_tx_cq_num = max_queues->max_cq_num;
1729 		io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
1730 	}
1731 
1732 	/* In case of LLQ use the llq number in the get feature cmd */
1733 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
1734 		io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
1735 
1736 	max_num_io_queues = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
1737 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_sq_num);
1738 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_cq_num);
1739 
1740 	if (unlikely(max_num_io_queues == 0)) {
1741 		PMD_DRV_LOG(ERR, "Number of IO queues should not be 0\n");
1742 		return -EFAULT;
1743 	}
1744 
1745 	return max_num_io_queues;
1746 }
1747 
1748 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
1749 {
1750 	struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
1751 	struct rte_pci_device *pci_dev;
1752 	struct rte_intr_handle *intr_handle;
1753 	struct ena_adapter *adapter = eth_dev->data->dev_private;
1754 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1755 	struct ena_com_dev_get_features_ctx get_feat_ctx;
1756 	struct ena_llq_configurations llq_config;
1757 	const char *queue_type_str;
1758 	uint32_t max_num_io_queues;
1759 	int rc;
1760 	static int adapters_found;
1761 	bool disable_meta_caching;
1762 	bool wd_state = false;
1763 
1764 	eth_dev->dev_ops = &ena_dev_ops;
1765 	eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
1766 	eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
1767 	eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
1768 
1769 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1770 		return 0;
1771 
1772 	eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
1773 
1774 	memset(adapter, 0, sizeof(struct ena_adapter));
1775 	ena_dev = &adapter->ena_dev;
1776 
1777 	adapter->rte_eth_dev_data = eth_dev->data;
1778 	adapter->rte_dev = eth_dev;
1779 
1780 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1781 	adapter->pdev = pci_dev;
1782 
1783 	PMD_INIT_LOG(INFO, "Initializing %x:%x:%x.%d",
1784 		     pci_dev->addr.domain,
1785 		     pci_dev->addr.bus,
1786 		     pci_dev->addr.devid,
1787 		     pci_dev->addr.function);
1788 
1789 	intr_handle = &pci_dev->intr_handle;
1790 
1791 	adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
1792 	adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
1793 
1794 	if (!adapter->regs) {
1795 		PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)",
1796 			     ENA_REGS_BAR);
1797 		return -ENXIO;
1798 	}
1799 
1800 	ena_dev->reg_bar = adapter->regs;
1801 	ena_dev->dmadev = adapter->pdev;
1802 
1803 	adapter->id_number = adapters_found;
1804 
1805 	snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
1806 		 adapter->id_number);
1807 
1808 	rc = ena_parse_devargs(adapter, pci_dev->device.devargs);
1809 	if (rc != 0) {
1810 		PMD_INIT_LOG(CRIT, "Failed to parse devargs\n");
1811 		goto err;
1812 	}
1813 
1814 	/* device specific initialization routine */
1815 	rc = ena_device_init(ena_dev, &get_feat_ctx, &wd_state);
1816 	if (rc) {
1817 		PMD_INIT_LOG(CRIT, "Failed to init ENA device");
1818 		goto err;
1819 	}
1820 	adapter->wd_state = wd_state;
1821 
1822 	set_default_llq_configurations(&llq_config, &get_feat_ctx.llq,
1823 		adapter->use_large_llq_hdr);
1824 	rc = ena_set_queues_placement_policy(adapter, ena_dev,
1825 					     &get_feat_ctx.llq, &llq_config);
1826 	if (unlikely(rc)) {
1827 		PMD_INIT_LOG(CRIT, "Failed to set placement policy");
1828 		return rc;
1829 	}
1830 
1831 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1832 		queue_type_str = "Regular";
1833 	else
1834 		queue_type_str = "Low latency";
1835 	PMD_DRV_LOG(INFO, "Placement policy: %s\n", queue_type_str);
1836 
1837 	calc_queue_ctx.ena_dev = ena_dev;
1838 	calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
1839 
1840 	max_num_io_queues = ena_calc_max_io_queue_num(ena_dev, &get_feat_ctx);
1841 	rc = ena_calc_io_queue_size(&calc_queue_ctx,
1842 		adapter->use_large_llq_hdr);
1843 	if (unlikely((rc != 0) || (max_num_io_queues == 0))) {
1844 		rc = -EFAULT;
1845 		goto err_device_destroy;
1846 	}
1847 
1848 	adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
1849 	adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
1850 	adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
1851 	adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
1852 	adapter->max_num_io_queues = max_num_io_queues;
1853 
1854 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1855 		disable_meta_caching =
1856 			!!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
1857 			BIT(ENA_ADMIN_DISABLE_META_CACHING));
1858 	} else {
1859 		disable_meta_caching = false;
1860 	}
1861 
1862 	/* prepare ring structures */
1863 	ena_init_rings(adapter, disable_meta_caching);
1864 
1865 	ena_config_debug_area(adapter);
1866 
1867 	/* Set max MTU for this device */
1868 	adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
1869 
1870 	/* set device support for offloads */
1871 	adapter->offloads.tso4_supported = (get_feat_ctx.offload.tx &
1872 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) != 0;
1873 	adapter->offloads.tx_csum_supported = (get_feat_ctx.offload.tx &
1874 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK) != 0;
1875 	adapter->offloads.rx_csum_supported =
1876 		(get_feat_ctx.offload.rx_supported &
1877 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK) != 0;
1878 
1879 	/* Copy MAC address and point DPDK to it */
1880 	eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr;
1881 	rte_ether_addr_copy((struct rte_ether_addr *)
1882 			get_feat_ctx.dev_attr.mac_addr,
1883 			(struct rte_ether_addr *)adapter->mac_addr);
1884 
1885 	adapter->drv_stats = rte_zmalloc("adapter stats",
1886 					 sizeof(*adapter->drv_stats),
1887 					 RTE_CACHE_LINE_SIZE);
1888 	if (!adapter->drv_stats) {
1889 		PMD_DRV_LOG(ERR, "failed to alloc mem for adapter stats\n");
1890 		rc = -ENOMEM;
1891 		goto err_delete_debug_area;
1892 	}
1893 
1894 	rte_spinlock_init(&adapter->admin_lock);
1895 
1896 	rte_intr_callback_register(intr_handle,
1897 				   ena_interrupt_handler_rte,
1898 				   adapter);
1899 	rte_intr_enable(intr_handle);
1900 	ena_com_set_admin_polling_mode(ena_dev, false);
1901 	ena_com_admin_aenq_enable(ena_dev);
1902 
1903 	if (adapters_found == 0)
1904 		rte_timer_subsystem_init();
1905 	rte_timer_init(&adapter->timer_wd);
1906 
1907 	adapters_found++;
1908 	adapter->state = ENA_ADAPTER_STATE_INIT;
1909 
1910 	return 0;
1911 
1912 err_delete_debug_area:
1913 	ena_com_delete_debug_area(ena_dev);
1914 
1915 err_device_destroy:
1916 	ena_com_delete_host_info(ena_dev);
1917 	ena_com_admin_destroy(ena_dev);
1918 
1919 err:
1920 	return rc;
1921 }
1922 
1923 static void ena_destroy_device(struct rte_eth_dev *eth_dev)
1924 {
1925 	struct ena_adapter *adapter = eth_dev->data->dev_private;
1926 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1927 
1928 	if (adapter->state == ENA_ADAPTER_STATE_FREE)
1929 		return;
1930 
1931 	ena_com_set_admin_running_state(ena_dev, false);
1932 
1933 	if (adapter->state != ENA_ADAPTER_STATE_CLOSED)
1934 		ena_close(eth_dev);
1935 
1936 	ena_com_delete_debug_area(ena_dev);
1937 	ena_com_delete_host_info(ena_dev);
1938 
1939 	ena_com_abort_admin_commands(ena_dev);
1940 	ena_com_wait_for_abort_completion(ena_dev);
1941 	ena_com_admin_destroy(ena_dev);
1942 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1943 
1944 	adapter->state = ENA_ADAPTER_STATE_FREE;
1945 }
1946 
1947 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
1948 {
1949 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1950 		return 0;
1951 
1952 	ena_destroy_device(eth_dev);
1953 
1954 	return 0;
1955 }
1956 
1957 static int ena_dev_configure(struct rte_eth_dev *dev)
1958 {
1959 	struct ena_adapter *adapter = dev->data->dev_private;
1960 
1961 	adapter->state = ENA_ADAPTER_STATE_CONFIG;
1962 
1963 	adapter->tx_selected_offloads = dev->data->dev_conf.txmode.offloads;
1964 	adapter->rx_selected_offloads = dev->data->dev_conf.rxmode.offloads;
1965 	return 0;
1966 }
1967 
1968 static void ena_init_rings(struct ena_adapter *adapter,
1969 			   bool disable_meta_caching)
1970 {
1971 	size_t i;
1972 
1973 	for (i = 0; i < adapter->max_num_io_queues; i++) {
1974 		struct ena_ring *ring = &adapter->tx_ring[i];
1975 
1976 		ring->configured = 0;
1977 		ring->type = ENA_RING_TYPE_TX;
1978 		ring->adapter = adapter;
1979 		ring->id = i;
1980 		ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
1981 		ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
1982 		ring->sgl_size = adapter->max_tx_sgl_size;
1983 		ring->disable_meta_caching = disable_meta_caching;
1984 	}
1985 
1986 	for (i = 0; i < adapter->max_num_io_queues; i++) {
1987 		struct ena_ring *ring = &adapter->rx_ring[i];
1988 
1989 		ring->configured = 0;
1990 		ring->type = ENA_RING_TYPE_RX;
1991 		ring->adapter = adapter;
1992 		ring->id = i;
1993 		ring->sgl_size = adapter->max_rx_sgl_size;
1994 	}
1995 }
1996 
1997 static int ena_infos_get(struct rte_eth_dev *dev,
1998 			  struct rte_eth_dev_info *dev_info)
1999 {
2000 	struct ena_adapter *adapter;
2001 	struct ena_com_dev *ena_dev;
2002 	uint64_t rx_feat = 0, tx_feat = 0;
2003 
2004 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
2005 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
2006 	adapter = dev->data->dev_private;
2007 
2008 	ena_dev = &adapter->ena_dev;
2009 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
2010 
2011 	dev_info->speed_capa =
2012 			ETH_LINK_SPEED_1G   |
2013 			ETH_LINK_SPEED_2_5G |
2014 			ETH_LINK_SPEED_5G   |
2015 			ETH_LINK_SPEED_10G  |
2016 			ETH_LINK_SPEED_25G  |
2017 			ETH_LINK_SPEED_40G  |
2018 			ETH_LINK_SPEED_50G  |
2019 			ETH_LINK_SPEED_100G;
2020 
2021 	/* Set Tx & Rx features available for device */
2022 	if (adapter->offloads.tso4_supported)
2023 		tx_feat	|= DEV_TX_OFFLOAD_TCP_TSO;
2024 
2025 	if (adapter->offloads.tx_csum_supported)
2026 		tx_feat |= DEV_TX_OFFLOAD_IPV4_CKSUM |
2027 			DEV_TX_OFFLOAD_UDP_CKSUM |
2028 			DEV_TX_OFFLOAD_TCP_CKSUM;
2029 
2030 	if (adapter->offloads.rx_csum_supported)
2031 		rx_feat |= DEV_RX_OFFLOAD_IPV4_CKSUM |
2032 			DEV_RX_OFFLOAD_UDP_CKSUM  |
2033 			DEV_RX_OFFLOAD_TCP_CKSUM;
2034 
2035 	rx_feat |= DEV_RX_OFFLOAD_JUMBO_FRAME;
2036 
2037 	/* Inform framework about available features */
2038 	dev_info->rx_offload_capa = rx_feat;
2039 	dev_info->rx_queue_offload_capa = rx_feat;
2040 	dev_info->tx_offload_capa = tx_feat;
2041 	dev_info->tx_queue_offload_capa = tx_feat;
2042 
2043 	dev_info->flow_type_rss_offloads = ETH_RSS_IP | ETH_RSS_TCP |
2044 					   ETH_RSS_UDP;
2045 
2046 	dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
2047 	dev_info->max_rx_pktlen  = adapter->max_mtu;
2048 	dev_info->max_mac_addrs = 1;
2049 
2050 	dev_info->max_rx_queues = adapter->max_num_io_queues;
2051 	dev_info->max_tx_queues = adapter->max_num_io_queues;
2052 	dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
2053 
2054 	adapter->tx_supported_offloads = tx_feat;
2055 	adapter->rx_supported_offloads = rx_feat;
2056 
2057 	dev_info->rx_desc_lim.nb_max = adapter->max_rx_ring_size;
2058 	dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2059 	dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2060 					adapter->max_rx_sgl_size);
2061 	dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2062 					adapter->max_rx_sgl_size);
2063 
2064 	dev_info->tx_desc_lim.nb_max = adapter->max_tx_ring_size;
2065 	dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2066 	dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2067 					adapter->max_tx_sgl_size);
2068 	dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2069 					adapter->max_tx_sgl_size);
2070 
2071 	return 0;
2072 }
2073 
2074 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len)
2075 {
2076 	mbuf->data_len = len;
2077 	mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2078 	mbuf->refcnt = 1;
2079 	mbuf->next = NULL;
2080 }
2081 
2082 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
2083 				    struct ena_com_rx_buf_info *ena_bufs,
2084 				    uint32_t descs,
2085 				    uint16_t *next_to_clean,
2086 				    uint8_t offset)
2087 {
2088 	struct rte_mbuf *mbuf;
2089 	struct rte_mbuf *mbuf_head;
2090 	struct ena_rx_buffer *rx_info;
2091 	int rc;
2092 	uint16_t ntc, len, req_id, buf = 0;
2093 
2094 	if (unlikely(descs == 0))
2095 		return NULL;
2096 
2097 	ntc = *next_to_clean;
2098 
2099 	len = ena_bufs[buf].len;
2100 	req_id = ena_bufs[buf].req_id;
2101 
2102 	rx_info = &rx_ring->rx_buffer_info[req_id];
2103 
2104 	mbuf = rx_info->mbuf;
2105 	RTE_ASSERT(mbuf != NULL);
2106 
2107 	ena_init_rx_mbuf(mbuf, len);
2108 
2109 	/* Fill the mbuf head with the data specific for 1st segment. */
2110 	mbuf_head = mbuf;
2111 	mbuf_head->nb_segs = descs;
2112 	mbuf_head->port = rx_ring->port_id;
2113 	mbuf_head->pkt_len = len;
2114 	mbuf_head->data_off += offset;
2115 
2116 	rx_info->mbuf = NULL;
2117 	rx_ring->empty_rx_reqs[ntc] = req_id;
2118 	ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2119 
2120 	while (--descs) {
2121 		++buf;
2122 		len = ena_bufs[buf].len;
2123 		req_id = ena_bufs[buf].req_id;
2124 
2125 		rx_info = &rx_ring->rx_buffer_info[req_id];
2126 		RTE_ASSERT(rx_info->mbuf != NULL);
2127 
2128 		if (unlikely(len == 0)) {
2129 			/*
2130 			 * Some devices can pass descriptor with the length 0.
2131 			 * To avoid confusion, the PMD is simply putting the
2132 			 * descriptor back, as it was never used. We'll avoid
2133 			 * mbuf allocation that way.
2134 			 */
2135 			rc = ena_add_single_rx_desc(rx_ring->ena_com_io_sq,
2136 				rx_info->mbuf, req_id);
2137 			if (unlikely(rc != 0)) {
2138 				/* Free the mbuf in case of an error. */
2139 				rte_mbuf_raw_free(rx_info->mbuf);
2140 			} else {
2141 				/*
2142 				 * If there was no error, just exit the loop as
2143 				 * 0 length descriptor is always the last one.
2144 				 */
2145 				break;
2146 			}
2147 		} else {
2148 			/* Create an mbuf chain. */
2149 			mbuf->next = rx_info->mbuf;
2150 			mbuf = mbuf->next;
2151 
2152 			ena_init_rx_mbuf(mbuf, len);
2153 			mbuf_head->pkt_len += len;
2154 		}
2155 
2156 		/*
2157 		 * Mark the descriptor as depleted and perform necessary
2158 		 * cleanup.
2159 		 * This code will execute in two cases:
2160 		 *  1. Descriptor len was greater than 0 - normal situation.
2161 		 *  2. Descriptor len was 0 and we failed to add the descriptor
2162 		 *     to the device. In that situation, we should try to add
2163 		 *     the mbuf again in the populate routine and mark the
2164 		 *     descriptor as used up by the device.
2165 		 */
2166 		rx_info->mbuf = NULL;
2167 		rx_ring->empty_rx_reqs[ntc] = req_id;
2168 		ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2169 	}
2170 
2171 	*next_to_clean = ntc;
2172 
2173 	return mbuf_head;
2174 }
2175 
2176 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
2177 				  uint16_t nb_pkts)
2178 {
2179 	struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
2180 	unsigned int free_queue_entries;
2181 	unsigned int refill_threshold;
2182 	uint16_t next_to_clean = rx_ring->next_to_clean;
2183 	uint16_t descs_in_use;
2184 	struct rte_mbuf *mbuf;
2185 	uint16_t completed;
2186 	struct ena_com_rx_ctx ena_rx_ctx;
2187 	int i, rc = 0;
2188 
2189 	/* Check adapter state */
2190 	if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2191 		PMD_DRV_LOG(ALERT,
2192 			"Trying to receive pkts while device is NOT running\n");
2193 		return 0;
2194 	}
2195 
2196 	descs_in_use = rx_ring->ring_size -
2197 		ena_com_free_q_entries(rx_ring->ena_com_io_sq) - 1;
2198 	nb_pkts = RTE_MIN(descs_in_use, nb_pkts);
2199 
2200 	for (completed = 0; completed < nb_pkts; completed++) {
2201 		ena_rx_ctx.max_bufs = rx_ring->sgl_size;
2202 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
2203 		ena_rx_ctx.descs = 0;
2204 		ena_rx_ctx.pkt_offset = 0;
2205 		/* receive packet context */
2206 		rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
2207 				    rx_ring->ena_com_io_sq,
2208 				    &ena_rx_ctx);
2209 		if (unlikely(rc)) {
2210 			PMD_DRV_LOG(ERR, "ena_com_rx_pkt error %d\n", rc);
2211 			if (rc == ENA_COM_NO_SPACE) {
2212 				++rx_ring->rx_stats.bad_desc_num;
2213 				rx_ring->adapter->reset_reason =
2214 					ENA_REGS_RESET_TOO_MANY_RX_DESCS;
2215 			} else {
2216 				++rx_ring->rx_stats.bad_req_id;
2217 				rx_ring->adapter->reset_reason =
2218 					ENA_REGS_RESET_INV_RX_REQ_ID;
2219 			}
2220 			rx_ring->adapter->trigger_reset = true;
2221 			return 0;
2222 		}
2223 
2224 		mbuf = ena_rx_mbuf(rx_ring,
2225 			ena_rx_ctx.ena_bufs,
2226 			ena_rx_ctx.descs,
2227 			&next_to_clean,
2228 			ena_rx_ctx.pkt_offset);
2229 		if (unlikely(mbuf == NULL)) {
2230 			for (i = 0; i < ena_rx_ctx.descs; ++i) {
2231 				rx_ring->empty_rx_reqs[next_to_clean] =
2232 					rx_ring->ena_bufs[i].req_id;
2233 				next_to_clean = ENA_IDX_NEXT_MASKED(
2234 					next_to_clean, rx_ring->size_mask);
2235 			}
2236 			break;
2237 		}
2238 
2239 		/* fill mbuf attributes if any */
2240 		ena_rx_mbuf_prepare(mbuf, &ena_rx_ctx);
2241 
2242 		if (unlikely(mbuf->ol_flags &
2243 				(PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD))) {
2244 			rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors);
2245 			++rx_ring->rx_stats.bad_csum;
2246 		}
2247 
2248 		mbuf->hash.rss = ena_rx_ctx.hash;
2249 
2250 		rx_pkts[completed] = mbuf;
2251 		rx_ring->rx_stats.bytes += mbuf->pkt_len;
2252 	}
2253 
2254 	rx_ring->rx_stats.cnt += completed;
2255 	rx_ring->next_to_clean = next_to_clean;
2256 
2257 	free_queue_entries = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
2258 	refill_threshold =
2259 		RTE_MIN(rx_ring->ring_size / ENA_REFILL_THRESH_DIVIDER,
2260 		(unsigned int)ENA_REFILL_THRESH_PACKET);
2261 
2262 	/* Burst refill to save doorbells, memory barriers, const interval */
2263 	if (free_queue_entries > refill_threshold) {
2264 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
2265 		ena_populate_rx_queue(rx_ring, free_queue_entries);
2266 	}
2267 
2268 	return completed;
2269 }
2270 
2271 static uint16_t
2272 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2273 		uint16_t nb_pkts)
2274 {
2275 	int32_t ret;
2276 	uint32_t i;
2277 	struct rte_mbuf *m;
2278 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2279 	struct rte_ipv4_hdr *ip_hdr;
2280 	uint64_t ol_flags;
2281 	uint16_t frag_field;
2282 
2283 	for (i = 0; i != nb_pkts; i++) {
2284 		m = tx_pkts[i];
2285 		ol_flags = m->ol_flags;
2286 
2287 		if (!(ol_flags & PKT_TX_IPV4))
2288 			continue;
2289 
2290 		/* If there was not L2 header length specified, assume it is
2291 		 * length of the ethernet header.
2292 		 */
2293 		if (unlikely(m->l2_len == 0))
2294 			m->l2_len = sizeof(struct rte_ether_hdr);
2295 
2296 		ip_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *,
2297 						 m->l2_len);
2298 		frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
2299 
2300 		if ((frag_field & RTE_IPV4_HDR_DF_FLAG) != 0) {
2301 			m->packet_type |= RTE_PTYPE_L4_NONFRAG;
2302 
2303 			/* If IPv4 header has DF flag enabled and TSO support is
2304 			 * disabled, partial chcecksum should not be calculated.
2305 			 */
2306 			if (!tx_ring->adapter->offloads.tso4_supported)
2307 				continue;
2308 		}
2309 
2310 		if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) != 0 ||
2311 				(ol_flags & PKT_TX_L4_MASK) ==
2312 				PKT_TX_SCTP_CKSUM) {
2313 			rte_errno = ENOTSUP;
2314 			return i;
2315 		}
2316 
2317 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2318 		ret = rte_validate_tx_offload(m);
2319 		if (ret != 0) {
2320 			rte_errno = -ret;
2321 			return i;
2322 		}
2323 #endif
2324 
2325 		/* In case we are supposed to TSO and have DF not set (DF=0)
2326 		 * hardware must be provided with partial checksum, otherwise
2327 		 * it will take care of necessary calculations.
2328 		 */
2329 
2330 		ret = rte_net_intel_cksum_flags_prepare(m,
2331 			ol_flags & ~PKT_TX_TCP_SEG);
2332 		if (ret != 0) {
2333 			rte_errno = -ret;
2334 			return i;
2335 		}
2336 	}
2337 
2338 	return i;
2339 }
2340 
2341 static void ena_update_hints(struct ena_adapter *adapter,
2342 			     struct ena_admin_ena_hw_hints *hints)
2343 {
2344 	if (hints->admin_completion_tx_timeout)
2345 		adapter->ena_dev.admin_queue.completion_timeout =
2346 			hints->admin_completion_tx_timeout * 1000;
2347 
2348 	if (hints->mmio_read_timeout)
2349 		/* convert to usec */
2350 		adapter->ena_dev.mmio_read.reg_read_to =
2351 			hints->mmio_read_timeout * 1000;
2352 
2353 	if (hints->driver_watchdog_timeout) {
2354 		if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
2355 			adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
2356 		else
2357 			// Convert msecs to ticks
2358 			adapter->keep_alive_timeout =
2359 				(hints->driver_watchdog_timeout *
2360 				rte_get_timer_hz()) / 1000;
2361 	}
2362 }
2363 
2364 static int ena_check_space_and_linearize_mbuf(struct ena_ring *tx_ring,
2365 					      struct rte_mbuf *mbuf)
2366 {
2367 	struct ena_com_dev *ena_dev;
2368 	int num_segments, header_len, rc;
2369 
2370 	ena_dev = &tx_ring->adapter->ena_dev;
2371 	num_segments = mbuf->nb_segs;
2372 	header_len = mbuf->data_len;
2373 
2374 	if (likely(num_segments < tx_ring->sgl_size))
2375 		goto checkspace;
2376 
2377 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
2378 	    (num_segments == tx_ring->sgl_size) &&
2379 	    (header_len < tx_ring->tx_max_header_size))
2380 		goto checkspace;
2381 
2382 	/* Checking for space for 2 additional metadata descriptors due to
2383 	 * possible header split and metadata descriptor. Linearization will
2384 	 * be needed so we reduce the segments number from num_segments to 1
2385 	 */
2386 	if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 3)) {
2387 		PMD_DRV_LOG(DEBUG, "Not enough space in the tx queue\n");
2388 		return ENA_COM_NO_MEM;
2389 	}
2390 	++tx_ring->tx_stats.linearize;
2391 	rc = rte_pktmbuf_linearize(mbuf);
2392 	if (unlikely(rc)) {
2393 		PMD_DRV_LOG(WARNING, "Mbuf linearize failed\n");
2394 		rte_atomic64_inc(&tx_ring->adapter->drv_stats->ierrors);
2395 		++tx_ring->tx_stats.linearize_failed;
2396 		return rc;
2397 	}
2398 
2399 	return 0;
2400 
2401 checkspace:
2402 	/* Checking for space for 2 additional metadata descriptors due to
2403 	 * possible header split and metadata descriptor
2404 	 */
2405 	if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
2406 					  num_segments + 2)) {
2407 		PMD_DRV_LOG(DEBUG, "Not enough space in the tx queue\n");
2408 		return ENA_COM_NO_MEM;
2409 	}
2410 
2411 	return 0;
2412 }
2413 
2414 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
2415 	struct ena_tx_buffer *tx_info,
2416 	struct rte_mbuf *mbuf,
2417 	void **push_header,
2418 	uint16_t *header_len)
2419 {
2420 	struct ena_com_buf *ena_buf;
2421 	uint16_t delta, seg_len, push_len;
2422 
2423 	delta = 0;
2424 	seg_len = mbuf->data_len;
2425 
2426 	tx_info->mbuf = mbuf;
2427 	ena_buf = tx_info->bufs;
2428 
2429 	if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2430 		/*
2431 		 * Tx header might be (and will be in most cases) smaller than
2432 		 * tx_max_header_size. But it's not an issue to send more data
2433 		 * to the device, than actually needed if the mbuf size is
2434 		 * greater than tx_max_header_size.
2435 		 */
2436 		push_len = RTE_MIN(mbuf->pkt_len, tx_ring->tx_max_header_size);
2437 		*header_len = push_len;
2438 
2439 		if (likely(push_len <= seg_len)) {
2440 			/* If the push header is in the single segment, then
2441 			 * just point it to the 1st mbuf data.
2442 			 */
2443 			*push_header = rte_pktmbuf_mtod(mbuf, uint8_t *);
2444 		} else {
2445 			/* If the push header lays in the several segments, copy
2446 			 * it to the intermediate buffer.
2447 			 */
2448 			rte_pktmbuf_read(mbuf, 0, push_len,
2449 				tx_ring->push_buf_intermediate_buf);
2450 			*push_header = tx_ring->push_buf_intermediate_buf;
2451 			delta = push_len - seg_len;
2452 		}
2453 	} else {
2454 		*push_header = NULL;
2455 		*header_len = 0;
2456 		push_len = 0;
2457 	}
2458 
2459 	/* Process first segment taking into consideration pushed header */
2460 	if (seg_len > push_len) {
2461 		ena_buf->paddr = mbuf->buf_iova +
2462 				mbuf->data_off +
2463 				push_len;
2464 		ena_buf->len = seg_len - push_len;
2465 		ena_buf++;
2466 		tx_info->num_of_bufs++;
2467 	}
2468 
2469 	while ((mbuf = mbuf->next) != NULL) {
2470 		seg_len = mbuf->data_len;
2471 
2472 		/* Skip mbufs if whole data is pushed as a header */
2473 		if (unlikely(delta > seg_len)) {
2474 			delta -= seg_len;
2475 			continue;
2476 		}
2477 
2478 		ena_buf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
2479 		ena_buf->len = seg_len - delta;
2480 		ena_buf++;
2481 		tx_info->num_of_bufs++;
2482 
2483 		delta = 0;
2484 	}
2485 }
2486 
2487 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf)
2488 {
2489 	struct ena_tx_buffer *tx_info;
2490 	struct ena_com_tx_ctx ena_tx_ctx = { { 0 } };
2491 	uint16_t next_to_use;
2492 	uint16_t header_len;
2493 	uint16_t req_id;
2494 	void *push_header;
2495 	int nb_hw_desc;
2496 	int rc;
2497 
2498 	rc = ena_check_space_and_linearize_mbuf(tx_ring, mbuf);
2499 	if (unlikely(rc))
2500 		return rc;
2501 
2502 	next_to_use = tx_ring->next_to_use;
2503 
2504 	req_id = tx_ring->empty_tx_reqs[next_to_use];
2505 	tx_info = &tx_ring->tx_buffer_info[req_id];
2506 	tx_info->num_of_bufs = 0;
2507 
2508 	ena_tx_map_mbuf(tx_ring, tx_info, mbuf, &push_header, &header_len);
2509 
2510 	ena_tx_ctx.ena_bufs = tx_info->bufs;
2511 	ena_tx_ctx.push_header = push_header;
2512 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2513 	ena_tx_ctx.req_id = req_id;
2514 	ena_tx_ctx.header_len = header_len;
2515 
2516 	/* Set Tx offloads flags, if applicable */
2517 	ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads,
2518 		tx_ring->disable_meta_caching);
2519 
2520 	if (unlikely(ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
2521 			&ena_tx_ctx))) {
2522 		PMD_DRV_LOG(DEBUG,
2523 			"llq tx max burst size of queue %d achieved, writing doorbell to send burst\n",
2524 			tx_ring->id);
2525 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2526 		tx_ring->tx_stats.doorbells++;
2527 		tx_ring->pkts_without_db = false;
2528 	}
2529 
2530 	/* prepare the packet's descriptors to dma engine */
2531 	rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq,	&ena_tx_ctx,
2532 		&nb_hw_desc);
2533 	if (unlikely(rc)) {
2534 		++tx_ring->tx_stats.prepare_ctx_err;
2535 		return rc;
2536 	}
2537 
2538 	tx_info->tx_descs = nb_hw_desc;
2539 
2540 	tx_ring->tx_stats.cnt++;
2541 	tx_ring->tx_stats.bytes += mbuf->pkt_len;
2542 
2543 	tx_ring->next_to_use = ENA_IDX_NEXT_MASKED(next_to_use,
2544 		tx_ring->size_mask);
2545 
2546 	return 0;
2547 }
2548 
2549 static void ena_tx_cleanup(struct ena_ring *tx_ring)
2550 {
2551 	unsigned int cleanup_budget;
2552 	unsigned int total_tx_descs = 0;
2553 	uint16_t next_to_clean = tx_ring->next_to_clean;
2554 
2555 	cleanup_budget = RTE_MIN(tx_ring->ring_size / ENA_REFILL_THRESH_DIVIDER,
2556 		(unsigned int)ENA_REFILL_THRESH_PACKET);
2557 
2558 	while (likely(total_tx_descs < cleanup_budget)) {
2559 		struct rte_mbuf *mbuf;
2560 		struct ena_tx_buffer *tx_info;
2561 		uint16_t req_id;
2562 
2563 		if (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) != 0)
2564 			break;
2565 
2566 		if (unlikely(validate_tx_req_id(tx_ring, req_id) != 0))
2567 			break;
2568 
2569 		/* Get Tx info & store how many descs were processed  */
2570 		tx_info = &tx_ring->tx_buffer_info[req_id];
2571 
2572 		mbuf = tx_info->mbuf;
2573 		rte_pktmbuf_free(mbuf);
2574 
2575 		tx_info->mbuf = NULL;
2576 		tx_ring->empty_tx_reqs[next_to_clean] = req_id;
2577 
2578 		total_tx_descs += tx_info->tx_descs;
2579 
2580 		/* Put back descriptor to the ring for reuse */
2581 		next_to_clean = ENA_IDX_NEXT_MASKED(next_to_clean,
2582 			tx_ring->size_mask);
2583 	}
2584 
2585 	if (likely(total_tx_descs > 0)) {
2586 		/* acknowledge completion of sent packets */
2587 		tx_ring->next_to_clean = next_to_clean;
2588 		ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
2589 		ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
2590 	}
2591 }
2592 
2593 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2594 				  uint16_t nb_pkts)
2595 {
2596 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2597 	uint16_t sent_idx = 0;
2598 
2599 	/* Check adapter state */
2600 	if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2601 		PMD_DRV_LOG(ALERT,
2602 			"Trying to xmit pkts while device is NOT running\n");
2603 		return 0;
2604 	}
2605 
2606 	for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
2607 		if (ena_xmit_mbuf(tx_ring, tx_pkts[sent_idx]))
2608 			break;
2609 		tx_ring->pkts_without_db = true;
2610 		rte_prefetch0(tx_pkts[ENA_IDX_ADD_MASKED(sent_idx, 4,
2611 			tx_ring->size_mask)]);
2612 	}
2613 
2614 	tx_ring->tx_stats.available_desc =
2615 		ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2616 
2617 	/* If there are ready packets to be xmitted... */
2618 	if (likely(tx_ring->pkts_without_db)) {
2619 		/* ...let HW do its best :-) */
2620 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2621 		tx_ring->tx_stats.doorbells++;
2622 		tx_ring->pkts_without_db = false;
2623 	}
2624 
2625 	ena_tx_cleanup(tx_ring);
2626 
2627 	tx_ring->tx_stats.available_desc =
2628 		ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2629 	tx_ring->tx_stats.tx_poll++;
2630 
2631 	return sent_idx;
2632 }
2633 
2634 int ena_copy_eni_stats(struct ena_adapter *adapter)
2635 {
2636 	struct ena_admin_eni_stats admin_eni_stats;
2637 	int rc;
2638 
2639 	rte_spinlock_lock(&adapter->admin_lock);
2640 	rc = ena_com_get_eni_stats(&adapter->ena_dev, &admin_eni_stats);
2641 	rte_spinlock_unlock(&adapter->admin_lock);
2642 	if (rc != 0) {
2643 		if (rc == ENA_COM_UNSUPPORTED) {
2644 			PMD_DRV_LOG(DEBUG,
2645 				"Retrieving ENI metrics is not supported.\n");
2646 		} else {
2647 			PMD_DRV_LOG(WARNING,
2648 				"Failed to get ENI metrics: %d\n", rc);
2649 		}
2650 		return rc;
2651 	}
2652 
2653 	rte_memcpy(&adapter->eni_stats, &admin_eni_stats,
2654 		sizeof(struct ena_stats_eni));
2655 
2656 	return 0;
2657 }
2658 
2659 /**
2660  * DPDK callback to retrieve names of extended device statistics
2661  *
2662  * @param dev
2663  *   Pointer to Ethernet device structure.
2664  * @param[out] xstats_names
2665  *   Buffer to insert names into.
2666  * @param n
2667  *   Number of names.
2668  *
2669  * @return
2670  *   Number of xstats names.
2671  */
2672 static int ena_xstats_get_names(struct rte_eth_dev *dev,
2673 				struct rte_eth_xstat_name *xstats_names,
2674 				unsigned int n)
2675 {
2676 	unsigned int xstats_count = ena_xstats_calc_num(dev);
2677 	unsigned int stat, i, count = 0;
2678 
2679 	if (n < xstats_count || !xstats_names)
2680 		return xstats_count;
2681 
2682 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
2683 		strcpy(xstats_names[count].name,
2684 			ena_stats_global_strings[stat].name);
2685 
2686 	for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++)
2687 		strcpy(xstats_names[count].name,
2688 			ena_stats_eni_strings[stat].name);
2689 
2690 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
2691 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
2692 			snprintf(xstats_names[count].name,
2693 				sizeof(xstats_names[count].name),
2694 				"rx_q%d_%s", i,
2695 				ena_stats_rx_strings[stat].name);
2696 
2697 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
2698 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
2699 			snprintf(xstats_names[count].name,
2700 				sizeof(xstats_names[count].name),
2701 				"tx_q%d_%s", i,
2702 				ena_stats_tx_strings[stat].name);
2703 
2704 	return xstats_count;
2705 }
2706 
2707 /**
2708  * DPDK callback to get extended device statistics.
2709  *
2710  * @param dev
2711  *   Pointer to Ethernet device structure.
2712  * @param[out] stats
2713  *   Stats table output buffer.
2714  * @param n
2715  *   The size of the stats table.
2716  *
2717  * @return
2718  *   Number of xstats on success, negative on failure.
2719  */
2720 static int ena_xstats_get(struct rte_eth_dev *dev,
2721 			  struct rte_eth_xstat *xstats,
2722 			  unsigned int n)
2723 {
2724 	struct ena_adapter *adapter = dev->data->dev_private;
2725 	unsigned int xstats_count = ena_xstats_calc_num(dev);
2726 	unsigned int stat, i, count = 0;
2727 	int stat_offset;
2728 	void *stats_begin;
2729 
2730 	if (n < xstats_count)
2731 		return xstats_count;
2732 
2733 	if (!xstats)
2734 		return 0;
2735 
2736 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
2737 		stat_offset = ena_stats_global_strings[stat].stat_offset;
2738 		stats_begin = &adapter->dev_stats;
2739 
2740 		xstats[count].id = count;
2741 		xstats[count].value = *((uint64_t *)
2742 			((char *)stats_begin + stat_offset));
2743 	}
2744 
2745 	/* Even if the function below fails, we should copy previous (or initial
2746 	 * values) to keep structure of rte_eth_xstat consistent.
2747 	 */
2748 	ena_copy_eni_stats(adapter);
2749 	for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++) {
2750 		stat_offset = ena_stats_eni_strings[stat].stat_offset;
2751 		stats_begin = &adapter->eni_stats;
2752 
2753 		xstats[count].id = count;
2754 		xstats[count].value = *((uint64_t *)
2755 		    ((char *)stats_begin + stat_offset));
2756 	}
2757 
2758 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
2759 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
2760 			stat_offset = ena_stats_rx_strings[stat].stat_offset;
2761 			stats_begin = &adapter->rx_ring[i].rx_stats;
2762 
2763 			xstats[count].id = count;
2764 			xstats[count].value = *((uint64_t *)
2765 				((char *)stats_begin + stat_offset));
2766 		}
2767 	}
2768 
2769 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
2770 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
2771 			stat_offset = ena_stats_tx_strings[stat].stat_offset;
2772 			stats_begin = &adapter->tx_ring[i].rx_stats;
2773 
2774 			xstats[count].id = count;
2775 			xstats[count].value = *((uint64_t *)
2776 				((char *)stats_begin + stat_offset));
2777 		}
2778 	}
2779 
2780 	return count;
2781 }
2782 
2783 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
2784 				const uint64_t *ids,
2785 				uint64_t *values,
2786 				unsigned int n)
2787 {
2788 	struct ena_adapter *adapter = dev->data->dev_private;
2789 	uint64_t id;
2790 	uint64_t rx_entries, tx_entries;
2791 	unsigned int i;
2792 	int qid;
2793 	int valid = 0;
2794 	bool was_eni_copied = false;
2795 
2796 	for (i = 0; i < n; ++i) {
2797 		id = ids[i];
2798 		/* Check if id belongs to global statistics */
2799 		if (id < ENA_STATS_ARRAY_GLOBAL) {
2800 			values[i] = *((uint64_t *)&adapter->dev_stats + id);
2801 			++valid;
2802 			continue;
2803 		}
2804 
2805 		/* Check if id belongs to ENI statistics */
2806 		id -= ENA_STATS_ARRAY_GLOBAL;
2807 		if (id < ENA_STATS_ARRAY_ENI) {
2808 			/* Avoid reading ENI stats multiple times in a single
2809 			 * function call, as it requires communication with the
2810 			 * admin queue.
2811 			 */
2812 			if (!was_eni_copied) {
2813 				was_eni_copied = true;
2814 				ena_copy_eni_stats(adapter);
2815 			}
2816 			values[i] = *((uint64_t *)&adapter->eni_stats + id);
2817 			++valid;
2818 			continue;
2819 		}
2820 
2821 		/* Check if id belongs to rx queue statistics */
2822 		id -= ENA_STATS_ARRAY_ENI;
2823 		rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
2824 		if (id < rx_entries) {
2825 			qid = id % dev->data->nb_rx_queues;
2826 			id /= dev->data->nb_rx_queues;
2827 			values[i] = *((uint64_t *)
2828 				&adapter->rx_ring[qid].rx_stats + id);
2829 			++valid;
2830 			continue;
2831 		}
2832 				/* Check if id belongs to rx queue statistics */
2833 		id -= rx_entries;
2834 		tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
2835 		if (id < tx_entries) {
2836 			qid = id % dev->data->nb_tx_queues;
2837 			id /= dev->data->nb_tx_queues;
2838 			values[i] = *((uint64_t *)
2839 				&adapter->tx_ring[qid].tx_stats + id);
2840 			++valid;
2841 			continue;
2842 		}
2843 	}
2844 
2845 	return valid;
2846 }
2847 
2848 static int ena_process_bool_devarg(const char *key,
2849 				   const char *value,
2850 				   void *opaque)
2851 {
2852 	struct ena_adapter *adapter = opaque;
2853 	bool bool_value;
2854 
2855 	/* Parse the value. */
2856 	if (strcmp(value, "1") == 0) {
2857 		bool_value = true;
2858 	} else if (strcmp(value, "0") == 0) {
2859 		bool_value = false;
2860 	} else {
2861 		PMD_INIT_LOG(ERR,
2862 			"Invalid value: '%s' for key '%s'. Accepted: '0' or '1'\n",
2863 			value, key);
2864 		return -EINVAL;
2865 	}
2866 
2867 	/* Now, assign it to the proper adapter field. */
2868 	if (strcmp(key, ENA_DEVARG_LARGE_LLQ_HDR) == 0)
2869 		adapter->use_large_llq_hdr = bool_value;
2870 
2871 	return 0;
2872 }
2873 
2874 static int ena_parse_devargs(struct ena_adapter *adapter,
2875 			     struct rte_devargs *devargs)
2876 {
2877 	static const char * const allowed_args[] = {
2878 		ENA_DEVARG_LARGE_LLQ_HDR,
2879 		NULL,
2880 	};
2881 	struct rte_kvargs *kvlist;
2882 	int rc;
2883 
2884 	if (devargs == NULL)
2885 		return 0;
2886 
2887 	kvlist = rte_kvargs_parse(devargs->args, allowed_args);
2888 	if (kvlist == NULL) {
2889 		PMD_INIT_LOG(ERR, "Invalid device arguments: %s\n",
2890 			devargs->args);
2891 		return -EINVAL;
2892 	}
2893 
2894 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_LARGE_LLQ_HDR,
2895 		ena_process_bool_devarg, adapter);
2896 
2897 	rte_kvargs_free(kvlist);
2898 
2899 	return rc;
2900 }
2901 
2902 /*********************************************************************
2903  *  PMD configuration
2904  *********************************************************************/
2905 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2906 	struct rte_pci_device *pci_dev)
2907 {
2908 	return rte_eth_dev_pci_generic_probe(pci_dev,
2909 		sizeof(struct ena_adapter), eth_ena_dev_init);
2910 }
2911 
2912 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
2913 {
2914 	return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
2915 }
2916 
2917 static struct rte_pci_driver rte_ena_pmd = {
2918 	.id_table = pci_id_ena_map,
2919 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
2920 		     RTE_PCI_DRV_WC_ACTIVATE,
2921 	.probe = eth_ena_pci_probe,
2922 	.remove = eth_ena_pci_remove,
2923 };
2924 
2925 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
2926 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
2927 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
2928 RTE_PMD_REGISTER_PARAM_STRING(net_ena, ENA_DEVARG_LARGE_LLQ_HDR "=<0|1>");
2929 RTE_LOG_REGISTER_SUFFIX(ena_logtype_init, init, NOTICE);
2930 RTE_LOG_REGISTER_SUFFIX(ena_logtype_driver, driver, NOTICE);
2931 #ifdef RTE_LIBRTE_ENA_DEBUG_RX
2932 RTE_LOG_REGISTER_SUFFIX(ena_logtype_rx, rx, NOTICE);
2933 #endif
2934 #ifdef RTE_LIBRTE_ENA_DEBUG_TX
2935 RTE_LOG_REGISTER_SUFFIX(ena_logtype_tx, tx, NOTICE);
2936 #endif
2937 #ifdef RTE_LIBRTE_ENA_DEBUG_TX_FREE
2938 RTE_LOG_REGISTER_SUFFIX(ena_logtype_tx_free, tx_free, NOTICE);
2939 #endif
2940 #ifdef RTE_LIBRTE_ENA_COM_DEBUG
2941 RTE_LOG_REGISTER_SUFFIX(ena_logtype_com, com, NOTICE);
2942 #endif
2943 
2944 /******************************************************************************
2945  ******************************** AENQ Handlers *******************************
2946  *****************************************************************************/
2947 static void ena_update_on_link_change(void *adapter_data,
2948 				      struct ena_admin_aenq_entry *aenq_e)
2949 {
2950 	struct rte_eth_dev *eth_dev;
2951 	struct ena_adapter *adapter;
2952 	struct ena_admin_aenq_link_change_desc *aenq_link_desc;
2953 	uint32_t status;
2954 
2955 	adapter = adapter_data;
2956 	aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
2957 	eth_dev = adapter->rte_dev;
2958 
2959 	status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
2960 	adapter->link_status = status;
2961 
2962 	ena_link_update(eth_dev, 0);
2963 	rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
2964 }
2965 
2966 static void ena_notification(void *data,
2967 			     struct ena_admin_aenq_entry *aenq_e)
2968 {
2969 	struct ena_adapter *adapter = data;
2970 	struct ena_admin_ena_hw_hints *hints;
2971 
2972 	if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
2973 		PMD_DRV_LOG(WARNING, "Invalid group(%x) expected %x\n",
2974 			aenq_e->aenq_common_desc.group,
2975 			ENA_ADMIN_NOTIFICATION);
2976 
2977 	switch (aenq_e->aenq_common_desc.syndrome) {
2978 	case ENA_ADMIN_UPDATE_HINTS:
2979 		hints = (struct ena_admin_ena_hw_hints *)
2980 			(&aenq_e->inline_data_w4);
2981 		ena_update_hints(adapter, hints);
2982 		break;
2983 	default:
2984 		PMD_DRV_LOG(ERR, "Invalid aenq notification link state %d\n",
2985 			aenq_e->aenq_common_desc.syndrome);
2986 	}
2987 }
2988 
2989 static void ena_keep_alive(void *adapter_data,
2990 			   __rte_unused struct ena_admin_aenq_entry *aenq_e)
2991 {
2992 	struct ena_adapter *adapter = adapter_data;
2993 	struct ena_admin_aenq_keep_alive_desc *desc;
2994 	uint64_t rx_drops;
2995 	uint64_t tx_drops;
2996 
2997 	adapter->timestamp_wd = rte_get_timer_cycles();
2998 
2999 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
3000 	rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
3001 	tx_drops = ((uint64_t)desc->tx_drops_high << 32) | desc->tx_drops_low;
3002 
3003 	adapter->drv_stats->rx_drops = rx_drops;
3004 	adapter->dev_stats.tx_drops = tx_drops;
3005 }
3006 
3007 /**
3008  * This handler will called for unknown event group or unimplemented handlers
3009  **/
3010 static void unimplemented_aenq_handler(__rte_unused void *data,
3011 				       __rte_unused struct ena_admin_aenq_entry *aenq_e)
3012 {
3013 	PMD_DRV_LOG(ERR, "Unknown event was received or event with "
3014 			  "unimplemented handler\n");
3015 }
3016 
3017 static struct ena_aenq_handlers aenq_handlers = {
3018 	.handlers = {
3019 		[ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
3020 		[ENA_ADMIN_NOTIFICATION] = ena_notification,
3021 		[ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive
3022 	},
3023 	.unimplemented_handler = unimplemented_aenq_handler
3024 };
3025