xref: /dpdk/drivers/net/ena/ena_ethdev.c (revision 9ad3a41ab2a10db0059e1decdbf3ec038f348e08)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
3  * All rights reserved.
4  */
5 
6 #include <rte_string_fns.h>
7 #include <rte_errno.h>
8 #include <rte_version.h>
9 #include <rte_net.h>
10 #include <rte_kvargs.h>
11 
12 #include "ena_ethdev.h"
13 #include "ena_logs.h"
14 #include "ena_platform.h"
15 #include "ena_com.h"
16 #include "ena_eth_com.h"
17 
18 #include <ena_common_defs.h>
19 #include <ena_regs_defs.h>
20 #include <ena_admin_defs.h>
21 #include <ena_eth_io_defs.h>
22 
23 #define DRV_MODULE_VER_MAJOR	2
24 #define DRV_MODULE_VER_MINOR	6
25 #define DRV_MODULE_VER_SUBMINOR	0
26 
27 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
28 
29 #define GET_L4_HDR_LEN(mbuf)					\
30 	((rte_pktmbuf_mtod_offset(mbuf,	struct rte_tcp_hdr *,	\
31 		mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
32 
33 #define ETH_GSTRING_LEN	32
34 
35 #define ARRAY_SIZE(x) RTE_DIM(x)
36 
37 #define ENA_MIN_RING_DESC	128
38 
39 #define ENA_PTYPE_HAS_HASH	(RTE_PTYPE_L4_TCP | RTE_PTYPE_L4_UDP)
40 
41 struct ena_stats {
42 	char name[ETH_GSTRING_LEN];
43 	int stat_offset;
44 };
45 
46 #define ENA_STAT_ENTRY(stat, stat_type) { \
47 	.name = #stat, \
48 	.stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
49 }
50 
51 #define ENA_STAT_RX_ENTRY(stat) \
52 	ENA_STAT_ENTRY(stat, rx)
53 
54 #define ENA_STAT_TX_ENTRY(stat) \
55 	ENA_STAT_ENTRY(stat, tx)
56 
57 #define ENA_STAT_ENI_ENTRY(stat) \
58 	ENA_STAT_ENTRY(stat, eni)
59 
60 #define ENA_STAT_GLOBAL_ENTRY(stat) \
61 	ENA_STAT_ENTRY(stat, dev)
62 
63 /* Device arguments */
64 #define ENA_DEVARG_LARGE_LLQ_HDR "large_llq_hdr"
65 /* Timeout in seconds after which a single uncompleted Tx packet should be
66  * considered as a missing.
67  */
68 #define ENA_DEVARG_MISS_TXC_TO "miss_txc_to"
69 
70 /*
71  * Each rte_memzone should have unique name.
72  * To satisfy it, count number of allocation and add it to name.
73  */
74 rte_atomic64_t ena_alloc_cnt;
75 
76 static const struct ena_stats ena_stats_global_strings[] = {
77 	ENA_STAT_GLOBAL_ENTRY(wd_expired),
78 	ENA_STAT_GLOBAL_ENTRY(dev_start),
79 	ENA_STAT_GLOBAL_ENTRY(dev_stop),
80 	ENA_STAT_GLOBAL_ENTRY(tx_drops),
81 };
82 
83 static const struct ena_stats ena_stats_eni_strings[] = {
84 	ENA_STAT_ENI_ENTRY(bw_in_allowance_exceeded),
85 	ENA_STAT_ENI_ENTRY(bw_out_allowance_exceeded),
86 	ENA_STAT_ENI_ENTRY(pps_allowance_exceeded),
87 	ENA_STAT_ENI_ENTRY(conntrack_allowance_exceeded),
88 	ENA_STAT_ENI_ENTRY(linklocal_allowance_exceeded),
89 };
90 
91 static const struct ena_stats ena_stats_tx_strings[] = {
92 	ENA_STAT_TX_ENTRY(cnt),
93 	ENA_STAT_TX_ENTRY(bytes),
94 	ENA_STAT_TX_ENTRY(prepare_ctx_err),
95 	ENA_STAT_TX_ENTRY(tx_poll),
96 	ENA_STAT_TX_ENTRY(doorbells),
97 	ENA_STAT_TX_ENTRY(bad_req_id),
98 	ENA_STAT_TX_ENTRY(available_desc),
99 	ENA_STAT_TX_ENTRY(missed_tx),
100 };
101 
102 static const struct ena_stats ena_stats_rx_strings[] = {
103 	ENA_STAT_RX_ENTRY(cnt),
104 	ENA_STAT_RX_ENTRY(bytes),
105 	ENA_STAT_RX_ENTRY(refill_partial),
106 	ENA_STAT_RX_ENTRY(l3_csum_bad),
107 	ENA_STAT_RX_ENTRY(l4_csum_bad),
108 	ENA_STAT_RX_ENTRY(l4_csum_good),
109 	ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
110 	ENA_STAT_RX_ENTRY(bad_desc_num),
111 	ENA_STAT_RX_ENTRY(bad_req_id),
112 };
113 
114 #define ENA_STATS_ARRAY_GLOBAL	ARRAY_SIZE(ena_stats_global_strings)
115 #define ENA_STATS_ARRAY_ENI	ARRAY_SIZE(ena_stats_eni_strings)
116 #define ENA_STATS_ARRAY_TX	ARRAY_SIZE(ena_stats_tx_strings)
117 #define ENA_STATS_ARRAY_RX	ARRAY_SIZE(ena_stats_rx_strings)
118 
119 #define QUEUE_OFFLOADS (RTE_ETH_TX_OFFLOAD_TCP_CKSUM |\
120 			RTE_ETH_TX_OFFLOAD_UDP_CKSUM |\
121 			RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |\
122 			RTE_ETH_TX_OFFLOAD_TCP_TSO)
123 #define MBUF_OFFLOADS (RTE_MBUF_F_TX_L4_MASK |\
124 		       RTE_MBUF_F_TX_IP_CKSUM |\
125 		       RTE_MBUF_F_TX_TCP_SEG)
126 
127 /** Vendor ID used by Amazon devices */
128 #define PCI_VENDOR_ID_AMAZON 0x1D0F
129 /** Amazon devices */
130 #define PCI_DEVICE_ID_ENA_VF		0xEC20
131 #define PCI_DEVICE_ID_ENA_VF_RSERV0	0xEC21
132 
133 #define	ENA_TX_OFFLOAD_MASK	(RTE_MBUF_F_TX_L4_MASK |         \
134 	RTE_MBUF_F_TX_IPV6 |            \
135 	RTE_MBUF_F_TX_IPV4 |            \
136 	RTE_MBUF_F_TX_IP_CKSUM |        \
137 	RTE_MBUF_F_TX_TCP_SEG)
138 
139 #define	ENA_TX_OFFLOAD_NOTSUP_MASK	\
140 	(RTE_MBUF_F_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
141 
142 /** HW specific offloads capabilities. */
143 /* IPv4 checksum offload. */
144 #define ENA_L3_IPV4_CSUM		0x0001
145 /* TCP/UDP checksum offload for IPv4 packets. */
146 #define ENA_L4_IPV4_CSUM		0x0002
147 /* TCP/UDP checksum offload for IPv4 packets with pseudo header checksum. */
148 #define ENA_L4_IPV4_CSUM_PARTIAL	0x0004
149 /* TCP/UDP checksum offload for IPv6 packets. */
150 #define ENA_L4_IPV6_CSUM		0x0008
151 /* TCP/UDP checksum offload for IPv6 packets with pseudo header checksum. */
152 #define ENA_L4_IPV6_CSUM_PARTIAL	0x0010
153 /* TSO support for IPv4 packets. */
154 #define ENA_IPV4_TSO			0x0020
155 
156 /* Device supports setting RSS hash. */
157 #define ENA_RX_RSS_HASH			0x0040
158 
159 static const struct rte_pci_id pci_id_ena_map[] = {
160 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
161 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF_RSERV0) },
162 	{ .device_id = 0 },
163 };
164 
165 static struct ena_aenq_handlers aenq_handlers;
166 
167 static int ena_device_init(struct ena_adapter *adapter,
168 			   struct rte_pci_device *pdev,
169 			   struct ena_com_dev_get_features_ctx *get_feat_ctx);
170 static int ena_dev_configure(struct rte_eth_dev *dev);
171 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
172 	struct ena_tx_buffer *tx_info,
173 	struct rte_mbuf *mbuf,
174 	void **push_header,
175 	uint16_t *header_len);
176 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf);
177 static int ena_tx_cleanup(void *txp, uint32_t free_pkt_cnt);
178 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
179 				  uint16_t nb_pkts);
180 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
181 		uint16_t nb_pkts);
182 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
183 			      uint16_t nb_desc, unsigned int socket_id,
184 			      const struct rte_eth_txconf *tx_conf);
185 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
186 			      uint16_t nb_desc, unsigned int socket_id,
187 			      const struct rte_eth_rxconf *rx_conf,
188 			      struct rte_mempool *mp);
189 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len);
190 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
191 				    struct ena_com_rx_buf_info *ena_bufs,
192 				    uint32_t descs,
193 				    uint16_t *next_to_clean,
194 				    uint8_t offset);
195 static uint16_t eth_ena_recv_pkts(void *rx_queue,
196 				  struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
197 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
198 				  struct rte_mbuf *mbuf, uint16_t id);
199 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
200 static void ena_init_rings(struct ena_adapter *adapter,
201 			   bool disable_meta_caching);
202 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
203 static int ena_start(struct rte_eth_dev *dev);
204 static int ena_stop(struct rte_eth_dev *dev);
205 static int ena_close(struct rte_eth_dev *dev);
206 static int ena_dev_reset(struct rte_eth_dev *dev);
207 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
208 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
209 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
210 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
211 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
212 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
213 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
214 static int ena_link_update(struct rte_eth_dev *dev,
215 			   int wait_to_complete);
216 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring);
217 static void ena_queue_stop(struct ena_ring *ring);
218 static void ena_queue_stop_all(struct rte_eth_dev *dev,
219 			      enum ena_ring_type ring_type);
220 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring);
221 static int ena_queue_start_all(struct rte_eth_dev *dev,
222 			       enum ena_ring_type ring_type);
223 static void ena_stats_restart(struct rte_eth_dev *dev);
224 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter);
225 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter);
226 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter);
227 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter);
228 static int ena_infos_get(struct rte_eth_dev *dev,
229 			 struct rte_eth_dev_info *dev_info);
230 static void ena_interrupt_handler_rte(void *cb_arg);
231 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
232 static void ena_destroy_device(struct rte_eth_dev *eth_dev);
233 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
234 static int ena_xstats_get_names(struct rte_eth_dev *dev,
235 				struct rte_eth_xstat_name *xstats_names,
236 				unsigned int n);
237 static int ena_xstats_get_names_by_id(struct rte_eth_dev *dev,
238 				      const uint64_t *ids,
239 				      struct rte_eth_xstat_name *xstats_names,
240 				      unsigned int size);
241 static int ena_xstats_get(struct rte_eth_dev *dev,
242 			  struct rte_eth_xstat *stats,
243 			  unsigned int n);
244 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
245 				const uint64_t *ids,
246 				uint64_t *values,
247 				unsigned int n);
248 static int ena_process_bool_devarg(const char *key,
249 				   const char *value,
250 				   void *opaque);
251 static int ena_parse_devargs(struct ena_adapter *adapter,
252 			     struct rte_devargs *devargs);
253 static int ena_copy_eni_stats(struct ena_adapter *adapter,
254 			      struct ena_stats_eni *stats);
255 static int ena_setup_rx_intr(struct rte_eth_dev *dev);
256 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
257 				    uint16_t queue_id);
258 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
259 				     uint16_t queue_id);
260 static int ena_configure_aenq(struct ena_adapter *adapter);
261 static int ena_mp_primary_handle(const struct rte_mp_msg *mp_msg,
262 				 const void *peer);
263 
264 static const struct eth_dev_ops ena_dev_ops = {
265 	.dev_configure          = ena_dev_configure,
266 	.dev_infos_get          = ena_infos_get,
267 	.rx_queue_setup         = ena_rx_queue_setup,
268 	.tx_queue_setup         = ena_tx_queue_setup,
269 	.dev_start              = ena_start,
270 	.dev_stop               = ena_stop,
271 	.link_update            = ena_link_update,
272 	.stats_get              = ena_stats_get,
273 	.xstats_get_names       = ena_xstats_get_names,
274 	.xstats_get_names_by_id = ena_xstats_get_names_by_id,
275 	.xstats_get             = ena_xstats_get,
276 	.xstats_get_by_id       = ena_xstats_get_by_id,
277 	.mtu_set                = ena_mtu_set,
278 	.rx_queue_release       = ena_rx_queue_release,
279 	.tx_queue_release       = ena_tx_queue_release,
280 	.dev_close              = ena_close,
281 	.dev_reset              = ena_dev_reset,
282 	.reta_update            = ena_rss_reta_update,
283 	.reta_query             = ena_rss_reta_query,
284 	.rx_queue_intr_enable   = ena_rx_queue_intr_enable,
285 	.rx_queue_intr_disable  = ena_rx_queue_intr_disable,
286 	.rss_hash_update        = ena_rss_hash_update,
287 	.rss_hash_conf_get      = ena_rss_hash_conf_get,
288 	.tx_done_cleanup        = ena_tx_cleanup,
289 };
290 
291 /*********************************************************************
292  *  Multi-Process communication bits
293  *********************************************************************/
294 /* rte_mp IPC message name */
295 #define ENA_MP_NAME	"net_ena_mp"
296 /* Request timeout in seconds */
297 #define ENA_MP_REQ_TMO	5
298 
299 /** Proxy request type */
300 enum ena_mp_req {
301 	ENA_MP_DEV_STATS_GET,
302 	ENA_MP_ENI_STATS_GET,
303 	ENA_MP_MTU_SET,
304 	ENA_MP_IND_TBL_GET,
305 	ENA_MP_IND_TBL_SET
306 };
307 
308 /** Proxy message body. Shared between requests and responses. */
309 struct ena_mp_body {
310 	/* Message type */
311 	enum ena_mp_req type;
312 	int port_id;
313 	/* Processing result. Set in replies. 0 if message succeeded, negative
314 	 * error code otherwise.
315 	 */
316 	int result;
317 	union {
318 		int mtu; /* For ENA_MP_MTU_SET */
319 	} args;
320 };
321 
322 /**
323  * Initialize IPC message.
324  *
325  * @param[out] msg
326  *   Pointer to the message to initialize.
327  * @param[in] type
328  *   Message type.
329  * @param[in] port_id
330  *   Port ID of target device.
331  *
332  */
333 static void
334 mp_msg_init(struct rte_mp_msg *msg, enum ena_mp_req type, int port_id)
335 {
336 	struct ena_mp_body *body = (struct ena_mp_body *)&msg->param;
337 
338 	memset(msg, 0, sizeof(*msg));
339 	strlcpy(msg->name, ENA_MP_NAME, sizeof(msg->name));
340 	msg->len_param = sizeof(*body);
341 	body->type = type;
342 	body->port_id = port_id;
343 }
344 
345 /*********************************************************************
346  *  Multi-Process communication PMD API
347  *********************************************************************/
348 /**
349  * Define proxy request descriptor
350  *
351  * Used to define all structures and functions required for proxying a given
352  * function to the primary process including the code to perform to prepare the
353  * request and process the response.
354  *
355  * @param[in] f
356  *   Name of the function to proxy
357  * @param[in] t
358  *   Message type to use
359  * @param[in] prep
360  *   Body of a function to prepare the request in form of a statement
361  *   expression. It is passed all the original function arguments along with two
362  *   extra ones:
363  *   - struct ena_adapter *adapter - PMD data of the device calling the proxy.
364  *   - struct ena_mp_body *req - body of a request to prepare.
365  * @param[in] proc
366  *   Body of a function to process the response in form of a statement
367  *   expression. It is passed all the original function arguments along with two
368  *   extra ones:
369  *   - struct ena_adapter *adapter - PMD data of the device calling the proxy.
370  *   - struct ena_mp_body *rsp - body of a response to process.
371  * @param ...
372  *   Proxied function's arguments
373  *
374  * @note Inside prep and proc any parameters which aren't used should be marked
375  *       as such (with ENA_TOUCH or __rte_unused).
376  */
377 #define ENA_PROXY_DESC(f, t, prep, proc, ...)			\
378 	static const enum ena_mp_req mp_type_ ## f =  t;	\
379 	static const char *mp_name_ ## f = #t;			\
380 	static void mp_prep_ ## f(struct ena_adapter *adapter,	\
381 				  struct ena_mp_body *req,	\
382 				  __VA_ARGS__)			\
383 	{							\
384 		prep;						\
385 	}							\
386 	static void mp_proc_ ## f(struct ena_adapter *adapter,	\
387 				  struct ena_mp_body *rsp,	\
388 				  __VA_ARGS__)			\
389 	{							\
390 		proc;						\
391 	}
392 
393 /**
394  * Proxy wrapper for calling primary functions in a secondary process.
395  *
396  * Depending on whether called in primary or secondary process, calls the
397  * @p func directly or proxies the call to the primary process via rte_mp IPC.
398  * This macro requires a proxy request descriptor to be defined for @p func
399  * using ENA_PROXY_DESC() macro.
400  *
401  * @param[in/out] a
402  *   Device PMD data. Used for sending the message and sharing message results
403  *   between primary and secondary.
404  * @param[in] f
405  *   Function to proxy.
406  * @param ...
407  *   Arguments of @p func.
408  *
409  * @return
410  *   - 0: Processing succeeded and response handler was called.
411  *   - -EPERM: IPC is unavailable on this platform. This means only primary
412  *             process may call the proxied function.
413  *   - -EIO:   IPC returned error on request send. Inspect rte_errno detailed
414  *             error code.
415  *   - Negative error code from the proxied function.
416  *
417  * @note This mechanism is geared towards control-path tasks. Avoid calling it
418  *       in fast-path unless unbound delays are allowed. This is due to the IPC
419  *       mechanism itself (socket based).
420  * @note Due to IPC parameter size limitations the proxy logic shares call
421  *       results through the struct ena_adapter shared memory. This makes the
422  *       proxy mechanism strictly single-threaded. Therefore be sure to make all
423  *       calls to the same proxied function under the same lock.
424  */
425 #define ENA_PROXY(a, f, ...)						\
426 ({									\
427 	struct ena_adapter *_a = (a);					\
428 	struct timespec ts = { .tv_sec = ENA_MP_REQ_TMO };		\
429 	struct ena_mp_body *req, *rsp;					\
430 	struct rte_mp_reply mp_rep;					\
431 	struct rte_mp_msg mp_req;					\
432 	int ret;							\
433 									\
434 	if (rte_eal_process_type() == RTE_PROC_PRIMARY) {		\
435 		ret = f(__VA_ARGS__);					\
436 	} else {							\
437 		/* Prepare and send request */				\
438 		req = (struct ena_mp_body *)&mp_req.param;		\
439 		mp_msg_init(&mp_req, mp_type_ ## f, _a->edev_data->port_id); \
440 		mp_prep_ ## f(_a, req, ## __VA_ARGS__);			\
441 									\
442 		ret = rte_mp_request_sync(&mp_req, &mp_rep, &ts);	\
443 		if (likely(!ret)) {					\
444 			RTE_ASSERT(mp_rep.nb_received == 1);		\
445 			rsp = (struct ena_mp_body *)&mp_rep.msgs[0].param; \
446 			ret = rsp->result;				\
447 			if (ret == 0) {					\
448 				mp_proc_##f(_a, rsp, ## __VA_ARGS__);	\
449 			} else {					\
450 				PMD_DRV_LOG(ERR,			\
451 					    "%s returned error: %d\n",	\
452 					    mp_name_ ## f, rsp->result);\
453 			}						\
454 			free(mp_rep.msgs);				\
455 		} else if (rte_errno == ENOTSUP) {			\
456 			PMD_DRV_LOG(ERR,				\
457 				    "No IPC, can't proxy to primary\n");\
458 			ret = -rte_errno;				\
459 		} else {						\
460 			PMD_DRV_LOG(ERR, "Request %s failed: %s\n",	\
461 				    mp_name_ ## f,			\
462 				    rte_strerror(rte_errno));		\
463 			ret = -EIO;					\
464 		}							\
465 	}								\
466 	ret;								\
467 })
468 
469 /*********************************************************************
470  *  Multi-Process communication request descriptors
471  *********************************************************************/
472 
473 ENA_PROXY_DESC(ena_com_get_dev_basic_stats, ENA_MP_DEV_STATS_GET,
474 ({
475 	ENA_TOUCH(adapter);
476 	ENA_TOUCH(req);
477 	ENA_TOUCH(ena_dev);
478 	ENA_TOUCH(stats);
479 }),
480 ({
481 	ENA_TOUCH(rsp);
482 	ENA_TOUCH(ena_dev);
483 	if (stats != &adapter->basic_stats)
484 		rte_memcpy(stats, &adapter->basic_stats, sizeof(*stats));
485 }),
486 	struct ena_com_dev *ena_dev, struct ena_admin_basic_stats *stats);
487 
488 ENA_PROXY_DESC(ena_com_get_eni_stats, ENA_MP_ENI_STATS_GET,
489 ({
490 	ENA_TOUCH(adapter);
491 	ENA_TOUCH(req);
492 	ENA_TOUCH(ena_dev);
493 	ENA_TOUCH(stats);
494 }),
495 ({
496 	ENA_TOUCH(rsp);
497 	ENA_TOUCH(ena_dev);
498 	if (stats != (struct ena_admin_eni_stats *)&adapter->eni_stats)
499 		rte_memcpy(stats, &adapter->eni_stats, sizeof(*stats));
500 }),
501 	struct ena_com_dev *ena_dev, struct ena_admin_eni_stats *stats);
502 
503 ENA_PROXY_DESC(ena_com_set_dev_mtu, ENA_MP_MTU_SET,
504 ({
505 	ENA_TOUCH(adapter);
506 	ENA_TOUCH(ena_dev);
507 	req->args.mtu = mtu;
508 }),
509 ({
510 	ENA_TOUCH(adapter);
511 	ENA_TOUCH(rsp);
512 	ENA_TOUCH(ena_dev);
513 	ENA_TOUCH(mtu);
514 }),
515 	struct ena_com_dev *ena_dev, int mtu);
516 
517 ENA_PROXY_DESC(ena_com_indirect_table_set, ENA_MP_IND_TBL_SET,
518 ({
519 	ENA_TOUCH(adapter);
520 	ENA_TOUCH(req);
521 	ENA_TOUCH(ena_dev);
522 }),
523 ({
524 	ENA_TOUCH(adapter);
525 	ENA_TOUCH(rsp);
526 	ENA_TOUCH(ena_dev);
527 }),
528 	struct ena_com_dev *ena_dev);
529 
530 ENA_PROXY_DESC(ena_com_indirect_table_get, ENA_MP_IND_TBL_GET,
531 ({
532 	ENA_TOUCH(adapter);
533 	ENA_TOUCH(req);
534 	ENA_TOUCH(ena_dev);
535 	ENA_TOUCH(ind_tbl);
536 }),
537 ({
538 	ENA_TOUCH(rsp);
539 	ENA_TOUCH(ena_dev);
540 	if (ind_tbl != adapter->indirect_table)
541 		rte_memcpy(ind_tbl, adapter->indirect_table,
542 			   sizeof(adapter->indirect_table));
543 }),
544 	struct ena_com_dev *ena_dev, u32 *ind_tbl);
545 
546 static inline void ena_trigger_reset(struct ena_adapter *adapter,
547 				     enum ena_regs_reset_reason_types reason)
548 {
549 	if (likely(!adapter->trigger_reset)) {
550 		adapter->reset_reason = reason;
551 		adapter->trigger_reset = true;
552 	}
553 }
554 
555 static inline void ena_rx_mbuf_prepare(struct ena_ring *rx_ring,
556 				       struct rte_mbuf *mbuf,
557 				       struct ena_com_rx_ctx *ena_rx_ctx,
558 				       bool fill_hash)
559 {
560 	struct ena_stats_rx *rx_stats = &rx_ring->rx_stats;
561 	uint64_t ol_flags = 0;
562 	uint32_t packet_type = 0;
563 
564 	if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
565 		packet_type |= RTE_PTYPE_L4_TCP;
566 	else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
567 		packet_type |= RTE_PTYPE_L4_UDP;
568 
569 	if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
570 		packet_type |= RTE_PTYPE_L3_IPV4;
571 		if (unlikely(ena_rx_ctx->l3_csum_err)) {
572 			++rx_stats->l3_csum_bad;
573 			ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
574 		} else {
575 			ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
576 		}
577 	} else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
578 		packet_type |= RTE_PTYPE_L3_IPV6;
579 	}
580 
581 	if (!ena_rx_ctx->l4_csum_checked || ena_rx_ctx->frag) {
582 		ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN;
583 	} else {
584 		if (unlikely(ena_rx_ctx->l4_csum_err)) {
585 			++rx_stats->l4_csum_bad;
586 			/*
587 			 * For the L4 Rx checksum offload the HW may indicate
588 			 * bad checksum although it's valid. Because of that,
589 			 * we're setting the UNKNOWN flag to let the app
590 			 * re-verify the checksum.
591 			 */
592 			ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN;
593 		} else {
594 			++rx_stats->l4_csum_good;
595 			ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
596 		}
597 	}
598 
599 	if (fill_hash &&
600 	    likely((packet_type & ENA_PTYPE_HAS_HASH) && !ena_rx_ctx->frag)) {
601 		ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
602 		mbuf->hash.rss = ena_rx_ctx->hash;
603 	}
604 
605 	mbuf->ol_flags = ol_flags;
606 	mbuf->packet_type = packet_type;
607 }
608 
609 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
610 				       struct ena_com_tx_ctx *ena_tx_ctx,
611 				       uint64_t queue_offloads,
612 				       bool disable_meta_caching)
613 {
614 	struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
615 
616 	if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
617 	    (queue_offloads & QUEUE_OFFLOADS)) {
618 		/* check if TSO is required */
619 		if ((mbuf->ol_flags & RTE_MBUF_F_TX_TCP_SEG) &&
620 		    (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_TSO)) {
621 			ena_tx_ctx->tso_enable = true;
622 
623 			ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
624 		}
625 
626 		/* check if L3 checksum is needed */
627 		if ((mbuf->ol_flags & RTE_MBUF_F_TX_IP_CKSUM) &&
628 		    (queue_offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM))
629 			ena_tx_ctx->l3_csum_enable = true;
630 
631 		if (mbuf->ol_flags & RTE_MBUF_F_TX_IPV6) {
632 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
633 			/* For the IPv6 packets, DF always needs to be true. */
634 			ena_tx_ctx->df = 1;
635 		} else {
636 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
637 
638 			/* set don't fragment (DF) flag */
639 			if (mbuf->packet_type &
640 				(RTE_PTYPE_L4_NONFRAG
641 				 | RTE_PTYPE_INNER_L4_NONFRAG))
642 				ena_tx_ctx->df = 1;
643 		}
644 
645 		/* check if L4 checksum is needed */
646 		if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) == RTE_MBUF_F_TX_TCP_CKSUM) &&
647 		    (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) {
648 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
649 			ena_tx_ctx->l4_csum_enable = true;
650 		} else if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) ==
651 				RTE_MBUF_F_TX_UDP_CKSUM) &&
652 				(queue_offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM)) {
653 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
654 			ena_tx_ctx->l4_csum_enable = true;
655 		} else {
656 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
657 			ena_tx_ctx->l4_csum_enable = false;
658 		}
659 
660 		ena_meta->mss = mbuf->tso_segsz;
661 		ena_meta->l3_hdr_len = mbuf->l3_len;
662 		ena_meta->l3_hdr_offset = mbuf->l2_len;
663 
664 		ena_tx_ctx->meta_valid = true;
665 	} else if (disable_meta_caching) {
666 		memset(ena_meta, 0, sizeof(*ena_meta));
667 		ena_tx_ctx->meta_valid = true;
668 	} else {
669 		ena_tx_ctx->meta_valid = false;
670 	}
671 }
672 
673 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
674 {
675 	struct ena_tx_buffer *tx_info = NULL;
676 
677 	if (likely(req_id < tx_ring->ring_size)) {
678 		tx_info = &tx_ring->tx_buffer_info[req_id];
679 		if (likely(tx_info->mbuf))
680 			return 0;
681 	}
682 
683 	if (tx_info)
684 		PMD_TX_LOG(ERR, "tx_info doesn't have valid mbuf. queue %d:%d req_id %u\n",
685 			tx_ring->port_id, tx_ring->id, req_id);
686 	else
687 		PMD_TX_LOG(ERR, "Invalid req_id: %hu in queue %d:%d\n",
688 			req_id, tx_ring->port_id, tx_ring->id);
689 
690 	/* Trigger device reset */
691 	++tx_ring->tx_stats.bad_req_id;
692 	ena_trigger_reset(tx_ring->adapter, ENA_REGS_RESET_INV_TX_REQ_ID);
693 	return -EFAULT;
694 }
695 
696 static void ena_config_host_info(struct ena_com_dev *ena_dev)
697 {
698 	struct ena_admin_host_info *host_info;
699 	int rc;
700 
701 	/* Allocate only the host info */
702 	rc = ena_com_allocate_host_info(ena_dev);
703 	if (rc) {
704 		PMD_DRV_LOG(ERR, "Cannot allocate host info\n");
705 		return;
706 	}
707 
708 	host_info = ena_dev->host_attr.host_info;
709 
710 	host_info->os_type = ENA_ADMIN_OS_DPDK;
711 	host_info->kernel_ver = RTE_VERSION;
712 	strlcpy((char *)host_info->kernel_ver_str, rte_version(),
713 		sizeof(host_info->kernel_ver_str));
714 	host_info->os_dist = RTE_VERSION;
715 	strlcpy((char *)host_info->os_dist_str, rte_version(),
716 		sizeof(host_info->os_dist_str));
717 	host_info->driver_version =
718 		(DRV_MODULE_VER_MAJOR) |
719 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
720 		(DRV_MODULE_VER_SUBMINOR <<
721 			ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
722 	host_info->num_cpus = rte_lcore_count();
723 
724 	host_info->driver_supported_features =
725 		ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK |
726 		ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK;
727 
728 	rc = ena_com_set_host_attributes(ena_dev);
729 	if (rc) {
730 		if (rc == -ENA_COM_UNSUPPORTED)
731 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
732 		else
733 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
734 
735 		goto err;
736 	}
737 
738 	return;
739 
740 err:
741 	ena_com_delete_host_info(ena_dev);
742 }
743 
744 /* This function calculates the number of xstats based on the current config */
745 static unsigned int ena_xstats_calc_num(struct rte_eth_dev_data *data)
746 {
747 	return ENA_STATS_ARRAY_GLOBAL + ENA_STATS_ARRAY_ENI +
748 		(data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
749 		(data->nb_rx_queues * ENA_STATS_ARRAY_RX);
750 }
751 
752 static void ena_config_debug_area(struct ena_adapter *adapter)
753 {
754 	u32 debug_area_size;
755 	int rc, ss_count;
756 
757 	ss_count = ena_xstats_calc_num(adapter->edev_data);
758 
759 	/* allocate 32 bytes for each string and 64bit for the value */
760 	debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
761 
762 	rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
763 	if (rc) {
764 		PMD_DRV_LOG(ERR, "Cannot allocate debug area\n");
765 		return;
766 	}
767 
768 	rc = ena_com_set_host_attributes(&adapter->ena_dev);
769 	if (rc) {
770 		if (rc == -ENA_COM_UNSUPPORTED)
771 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
772 		else
773 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
774 
775 		goto err;
776 	}
777 
778 	return;
779 err:
780 	ena_com_delete_debug_area(&adapter->ena_dev);
781 }
782 
783 static int ena_close(struct rte_eth_dev *dev)
784 {
785 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
786 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
787 	struct ena_adapter *adapter = dev->data->dev_private;
788 	int ret = 0;
789 
790 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
791 		return 0;
792 
793 	if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
794 		ret = ena_stop(dev);
795 	adapter->state = ENA_ADAPTER_STATE_CLOSED;
796 
797 	ena_rx_queue_release_all(dev);
798 	ena_tx_queue_release_all(dev);
799 
800 	rte_free(adapter->drv_stats);
801 	adapter->drv_stats = NULL;
802 
803 	rte_intr_disable(intr_handle);
804 	rte_intr_callback_unregister(intr_handle,
805 				     ena_interrupt_handler_rte,
806 				     dev);
807 
808 	/*
809 	 * MAC is not allocated dynamically. Setting NULL should prevent from
810 	 * release of the resource in the rte_eth_dev_release_port().
811 	 */
812 	dev->data->mac_addrs = NULL;
813 
814 	return ret;
815 }
816 
817 static int
818 ena_dev_reset(struct rte_eth_dev *dev)
819 {
820 	int rc = 0;
821 
822 	/* Cannot release memory in secondary process */
823 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
824 		PMD_DRV_LOG(WARNING, "dev_reset not supported in secondary.\n");
825 		return -EPERM;
826 	}
827 
828 	ena_destroy_device(dev);
829 	rc = eth_ena_dev_init(dev);
830 	if (rc)
831 		PMD_INIT_LOG(CRIT, "Cannot initialize device\n");
832 
833 	return rc;
834 }
835 
836 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
837 {
838 	int nb_queues = dev->data->nb_rx_queues;
839 	int i;
840 
841 	for (i = 0; i < nb_queues; i++)
842 		ena_rx_queue_release(dev, i);
843 }
844 
845 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
846 {
847 	int nb_queues = dev->data->nb_tx_queues;
848 	int i;
849 
850 	for (i = 0; i < nb_queues; i++)
851 		ena_tx_queue_release(dev, i);
852 }
853 
854 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
855 {
856 	struct ena_ring *ring = dev->data->rx_queues[qid];
857 
858 	/* Free ring resources */
859 	rte_free(ring->rx_buffer_info);
860 	ring->rx_buffer_info = NULL;
861 
862 	rte_free(ring->rx_refill_buffer);
863 	ring->rx_refill_buffer = NULL;
864 
865 	rte_free(ring->empty_rx_reqs);
866 	ring->empty_rx_reqs = NULL;
867 
868 	ring->configured = 0;
869 
870 	PMD_DRV_LOG(NOTICE, "Rx queue %d:%d released\n",
871 		ring->port_id, ring->id);
872 }
873 
874 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
875 {
876 	struct ena_ring *ring = dev->data->tx_queues[qid];
877 
878 	/* Free ring resources */
879 	rte_free(ring->push_buf_intermediate_buf);
880 
881 	rte_free(ring->tx_buffer_info);
882 
883 	rte_free(ring->empty_tx_reqs);
884 
885 	ring->empty_tx_reqs = NULL;
886 	ring->tx_buffer_info = NULL;
887 	ring->push_buf_intermediate_buf = NULL;
888 
889 	ring->configured = 0;
890 
891 	PMD_DRV_LOG(NOTICE, "Tx queue %d:%d released\n",
892 		ring->port_id, ring->id);
893 }
894 
895 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
896 {
897 	unsigned int i;
898 
899 	for (i = 0; i < ring->ring_size; ++i) {
900 		struct ena_rx_buffer *rx_info = &ring->rx_buffer_info[i];
901 		if (rx_info->mbuf) {
902 			rte_mbuf_raw_free(rx_info->mbuf);
903 			rx_info->mbuf = NULL;
904 		}
905 	}
906 }
907 
908 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
909 {
910 	unsigned int i;
911 
912 	for (i = 0; i < ring->ring_size; ++i) {
913 		struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
914 
915 		if (tx_buf->mbuf) {
916 			rte_pktmbuf_free(tx_buf->mbuf);
917 			tx_buf->mbuf = NULL;
918 		}
919 	}
920 }
921 
922 static int ena_link_update(struct rte_eth_dev *dev,
923 			   __rte_unused int wait_to_complete)
924 {
925 	struct rte_eth_link *link = &dev->data->dev_link;
926 	struct ena_adapter *adapter = dev->data->dev_private;
927 
928 	link->link_status = adapter->link_status ? RTE_ETH_LINK_UP : RTE_ETH_LINK_DOWN;
929 	link->link_speed = RTE_ETH_SPEED_NUM_NONE;
930 	link->link_duplex = RTE_ETH_LINK_FULL_DUPLEX;
931 
932 	return 0;
933 }
934 
935 static int ena_queue_start_all(struct rte_eth_dev *dev,
936 			       enum ena_ring_type ring_type)
937 {
938 	struct ena_adapter *adapter = dev->data->dev_private;
939 	struct ena_ring *queues = NULL;
940 	int nb_queues;
941 	int i = 0;
942 	int rc = 0;
943 
944 	if (ring_type == ENA_RING_TYPE_RX) {
945 		queues = adapter->rx_ring;
946 		nb_queues = dev->data->nb_rx_queues;
947 	} else {
948 		queues = adapter->tx_ring;
949 		nb_queues = dev->data->nb_tx_queues;
950 	}
951 	for (i = 0; i < nb_queues; i++) {
952 		if (queues[i].configured) {
953 			if (ring_type == ENA_RING_TYPE_RX) {
954 				ena_assert_msg(
955 					dev->data->rx_queues[i] == &queues[i],
956 					"Inconsistent state of Rx queues\n");
957 			} else {
958 				ena_assert_msg(
959 					dev->data->tx_queues[i] == &queues[i],
960 					"Inconsistent state of Tx queues\n");
961 			}
962 
963 			rc = ena_queue_start(dev, &queues[i]);
964 
965 			if (rc) {
966 				PMD_INIT_LOG(ERR,
967 					"Failed to start queue[%d] of type(%d)\n",
968 					i, ring_type);
969 				goto err;
970 			}
971 		}
972 	}
973 
974 	return 0;
975 
976 err:
977 	while (i--)
978 		if (queues[i].configured)
979 			ena_queue_stop(&queues[i]);
980 
981 	return rc;
982 }
983 
984 static int ena_check_valid_conf(struct ena_adapter *adapter)
985 {
986 	uint32_t mtu = adapter->edev_data->mtu;
987 
988 	if (mtu > adapter->max_mtu || mtu < ENA_MIN_MTU) {
989 		PMD_INIT_LOG(ERR,
990 			"Unsupported MTU of %d. Max MTU: %d, min MTU: %d\n",
991 			mtu, adapter->max_mtu, ENA_MIN_MTU);
992 		return ENA_COM_UNSUPPORTED;
993 	}
994 
995 	return 0;
996 }
997 
998 static int
999 ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx,
1000 		       bool use_large_llq_hdr)
1001 {
1002 	struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
1003 	struct ena_com_dev *ena_dev = ctx->ena_dev;
1004 	uint32_t max_tx_queue_size;
1005 	uint32_t max_rx_queue_size;
1006 
1007 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1008 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1009 			&ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
1010 		max_rx_queue_size = RTE_MIN(max_queue_ext->max_rx_cq_depth,
1011 			max_queue_ext->max_rx_sq_depth);
1012 		max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
1013 
1014 		if (ena_dev->tx_mem_queue_type ==
1015 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1016 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1017 				llq->max_llq_depth);
1018 		} else {
1019 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1020 				max_queue_ext->max_tx_sq_depth);
1021 		}
1022 
1023 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1024 			max_queue_ext->max_per_packet_rx_descs);
1025 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1026 			max_queue_ext->max_per_packet_tx_descs);
1027 	} else {
1028 		struct ena_admin_queue_feature_desc *max_queues =
1029 			&ctx->get_feat_ctx->max_queues;
1030 		max_rx_queue_size = RTE_MIN(max_queues->max_cq_depth,
1031 			max_queues->max_sq_depth);
1032 		max_tx_queue_size = max_queues->max_cq_depth;
1033 
1034 		if (ena_dev->tx_mem_queue_type ==
1035 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1036 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1037 				llq->max_llq_depth);
1038 		} else {
1039 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1040 				max_queues->max_sq_depth);
1041 		}
1042 
1043 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1044 			max_queues->max_packet_rx_descs);
1045 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1046 			max_queues->max_packet_tx_descs);
1047 	}
1048 
1049 	/* Round down to the nearest power of 2 */
1050 	max_rx_queue_size = rte_align32prevpow2(max_rx_queue_size);
1051 	max_tx_queue_size = rte_align32prevpow2(max_tx_queue_size);
1052 
1053 	if (use_large_llq_hdr) {
1054 		if ((llq->entry_size_ctrl_supported &
1055 		     ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
1056 		    (ena_dev->tx_mem_queue_type ==
1057 		     ENA_ADMIN_PLACEMENT_POLICY_DEV)) {
1058 			max_tx_queue_size /= 2;
1059 			PMD_INIT_LOG(INFO,
1060 				"Forcing large headers and decreasing maximum Tx queue size to %d\n",
1061 				max_tx_queue_size);
1062 		} else {
1063 			PMD_INIT_LOG(ERR,
1064 				"Forcing large headers failed: LLQ is disabled or device does not support large headers\n");
1065 		}
1066 	}
1067 
1068 	if (unlikely(max_rx_queue_size == 0 || max_tx_queue_size == 0)) {
1069 		PMD_INIT_LOG(ERR, "Invalid queue size\n");
1070 		return -EFAULT;
1071 	}
1072 
1073 	ctx->max_tx_queue_size = max_tx_queue_size;
1074 	ctx->max_rx_queue_size = max_rx_queue_size;
1075 
1076 	return 0;
1077 }
1078 
1079 static void ena_stats_restart(struct rte_eth_dev *dev)
1080 {
1081 	struct ena_adapter *adapter = dev->data->dev_private;
1082 
1083 	rte_atomic64_init(&adapter->drv_stats->ierrors);
1084 	rte_atomic64_init(&adapter->drv_stats->oerrors);
1085 	rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
1086 	adapter->drv_stats->rx_drops = 0;
1087 }
1088 
1089 static int ena_stats_get(struct rte_eth_dev *dev,
1090 			  struct rte_eth_stats *stats)
1091 {
1092 	struct ena_admin_basic_stats ena_stats;
1093 	struct ena_adapter *adapter = dev->data->dev_private;
1094 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1095 	int rc;
1096 	int i;
1097 	int max_rings_stats;
1098 
1099 	memset(&ena_stats, 0, sizeof(ena_stats));
1100 
1101 	rte_spinlock_lock(&adapter->admin_lock);
1102 	rc = ENA_PROXY(adapter, ena_com_get_dev_basic_stats, ena_dev,
1103 		       &ena_stats);
1104 	rte_spinlock_unlock(&adapter->admin_lock);
1105 	if (unlikely(rc)) {
1106 		PMD_DRV_LOG(ERR, "Could not retrieve statistics from ENA\n");
1107 		return rc;
1108 	}
1109 
1110 	/* Set of basic statistics from ENA */
1111 	stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
1112 					  ena_stats.rx_pkts_low);
1113 	stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
1114 					  ena_stats.tx_pkts_low);
1115 	stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
1116 					ena_stats.rx_bytes_low);
1117 	stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
1118 					ena_stats.tx_bytes_low);
1119 
1120 	/* Driver related stats */
1121 	stats->imissed = adapter->drv_stats->rx_drops;
1122 	stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
1123 	stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
1124 	stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
1125 
1126 	max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
1127 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
1128 	for (i = 0; i < max_rings_stats; ++i) {
1129 		struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
1130 
1131 		stats->q_ibytes[i] = rx_stats->bytes;
1132 		stats->q_ipackets[i] = rx_stats->cnt;
1133 		stats->q_errors[i] = rx_stats->bad_desc_num +
1134 			rx_stats->bad_req_id;
1135 	}
1136 
1137 	max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
1138 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
1139 	for (i = 0; i < max_rings_stats; ++i) {
1140 		struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
1141 
1142 		stats->q_obytes[i] = tx_stats->bytes;
1143 		stats->q_opackets[i] = tx_stats->cnt;
1144 	}
1145 
1146 	return 0;
1147 }
1148 
1149 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1150 {
1151 	struct ena_adapter *adapter;
1152 	struct ena_com_dev *ena_dev;
1153 	int rc = 0;
1154 
1155 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
1156 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
1157 	adapter = dev->data->dev_private;
1158 
1159 	ena_dev = &adapter->ena_dev;
1160 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
1161 
1162 	if (mtu > adapter->max_mtu || mtu < ENA_MIN_MTU) {
1163 		PMD_DRV_LOG(ERR,
1164 			"Invalid MTU setting. New MTU: %d, max MTU: %d, min MTU: %d\n",
1165 			mtu, adapter->max_mtu, ENA_MIN_MTU);
1166 		return -EINVAL;
1167 	}
1168 
1169 	rc = ENA_PROXY(adapter, ena_com_set_dev_mtu, ena_dev, mtu);
1170 	if (rc)
1171 		PMD_DRV_LOG(ERR, "Could not set MTU: %d\n", mtu);
1172 	else
1173 		PMD_DRV_LOG(NOTICE, "MTU set to: %d\n", mtu);
1174 
1175 	return rc;
1176 }
1177 
1178 static int ena_start(struct rte_eth_dev *dev)
1179 {
1180 	struct ena_adapter *adapter = dev->data->dev_private;
1181 	uint64_t ticks;
1182 	int rc = 0;
1183 
1184 	/* Cannot allocate memory in secondary process */
1185 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1186 		PMD_DRV_LOG(WARNING, "dev_start not supported in secondary.\n");
1187 		return -EPERM;
1188 	}
1189 
1190 	rc = ena_check_valid_conf(adapter);
1191 	if (rc)
1192 		return rc;
1193 
1194 	rc = ena_setup_rx_intr(dev);
1195 	if (rc)
1196 		return rc;
1197 
1198 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
1199 	if (rc)
1200 		return rc;
1201 
1202 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
1203 	if (rc)
1204 		goto err_start_tx;
1205 
1206 	if (adapter->edev_data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG) {
1207 		rc = ena_rss_configure(adapter);
1208 		if (rc)
1209 			goto err_rss_init;
1210 	}
1211 
1212 	ena_stats_restart(dev);
1213 
1214 	adapter->timestamp_wd = rte_get_timer_cycles();
1215 	adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
1216 
1217 	ticks = rte_get_timer_hz();
1218 	rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
1219 			ena_timer_wd_callback, dev);
1220 
1221 	++adapter->dev_stats.dev_start;
1222 	adapter->state = ENA_ADAPTER_STATE_RUNNING;
1223 
1224 	return 0;
1225 
1226 err_rss_init:
1227 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1228 err_start_tx:
1229 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1230 	return rc;
1231 }
1232 
1233 static int ena_stop(struct rte_eth_dev *dev)
1234 {
1235 	struct ena_adapter *adapter = dev->data->dev_private;
1236 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1237 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1238 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
1239 	int rc;
1240 
1241 	/* Cannot free memory in secondary process */
1242 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1243 		PMD_DRV_LOG(WARNING, "dev_stop not supported in secondary.\n");
1244 		return -EPERM;
1245 	}
1246 
1247 	rte_timer_stop_sync(&adapter->timer_wd);
1248 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1249 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1250 
1251 	if (adapter->trigger_reset) {
1252 		rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
1253 		if (rc)
1254 			PMD_DRV_LOG(ERR, "Device reset failed, rc: %d\n", rc);
1255 	}
1256 
1257 	rte_intr_disable(intr_handle);
1258 
1259 	rte_intr_efd_disable(intr_handle);
1260 
1261 	/* Cleanup vector list */
1262 	rte_intr_vec_list_free(intr_handle);
1263 
1264 	rte_intr_enable(intr_handle);
1265 
1266 	++adapter->dev_stats.dev_stop;
1267 	adapter->state = ENA_ADAPTER_STATE_STOPPED;
1268 	dev->data->dev_started = 0;
1269 
1270 	return 0;
1271 }
1272 
1273 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring)
1274 {
1275 	struct ena_adapter *adapter = ring->adapter;
1276 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1277 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1278 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
1279 	struct ena_com_create_io_ctx ctx =
1280 		/* policy set to _HOST just to satisfy icc compiler */
1281 		{ ENA_ADMIN_PLACEMENT_POLICY_HOST,
1282 		  0, 0, 0, 0, 0 };
1283 	uint16_t ena_qid;
1284 	unsigned int i;
1285 	int rc;
1286 
1287 	ctx.msix_vector = -1;
1288 	if (ring->type == ENA_RING_TYPE_TX) {
1289 		ena_qid = ENA_IO_TXQ_IDX(ring->id);
1290 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1291 		ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1292 		for (i = 0; i < ring->ring_size; i++)
1293 			ring->empty_tx_reqs[i] = i;
1294 	} else {
1295 		ena_qid = ENA_IO_RXQ_IDX(ring->id);
1296 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1297 		if (rte_intr_dp_is_en(intr_handle))
1298 			ctx.msix_vector =
1299 				rte_intr_vec_list_index_get(intr_handle,
1300 								   ring->id);
1301 
1302 		for (i = 0; i < ring->ring_size; i++)
1303 			ring->empty_rx_reqs[i] = i;
1304 	}
1305 	ctx.queue_size = ring->ring_size;
1306 	ctx.qid = ena_qid;
1307 	ctx.numa_node = ring->numa_socket_id;
1308 
1309 	rc = ena_com_create_io_queue(ena_dev, &ctx);
1310 	if (rc) {
1311 		PMD_DRV_LOG(ERR,
1312 			"Failed to create IO queue[%d] (qid:%d), rc: %d\n",
1313 			ring->id, ena_qid, rc);
1314 		return rc;
1315 	}
1316 
1317 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1318 				     &ring->ena_com_io_sq,
1319 				     &ring->ena_com_io_cq);
1320 	if (rc) {
1321 		PMD_DRV_LOG(ERR,
1322 			"Failed to get IO queue[%d] handlers, rc: %d\n",
1323 			ring->id, rc);
1324 		ena_com_destroy_io_queue(ena_dev, ena_qid);
1325 		return rc;
1326 	}
1327 
1328 	if (ring->type == ENA_RING_TYPE_TX)
1329 		ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1330 
1331 	/* Start with Rx interrupts being masked. */
1332 	if (ring->type == ENA_RING_TYPE_RX && rte_intr_dp_is_en(intr_handle))
1333 		ena_rx_queue_intr_disable(dev, ring->id);
1334 
1335 	return 0;
1336 }
1337 
1338 static void ena_queue_stop(struct ena_ring *ring)
1339 {
1340 	struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
1341 
1342 	if (ring->type == ENA_RING_TYPE_RX) {
1343 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
1344 		ena_rx_queue_release_bufs(ring);
1345 	} else {
1346 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
1347 		ena_tx_queue_release_bufs(ring);
1348 	}
1349 }
1350 
1351 static void ena_queue_stop_all(struct rte_eth_dev *dev,
1352 			      enum ena_ring_type ring_type)
1353 {
1354 	struct ena_adapter *adapter = dev->data->dev_private;
1355 	struct ena_ring *queues = NULL;
1356 	uint16_t nb_queues, i;
1357 
1358 	if (ring_type == ENA_RING_TYPE_RX) {
1359 		queues = adapter->rx_ring;
1360 		nb_queues = dev->data->nb_rx_queues;
1361 	} else {
1362 		queues = adapter->tx_ring;
1363 		nb_queues = dev->data->nb_tx_queues;
1364 	}
1365 
1366 	for (i = 0; i < nb_queues; ++i)
1367 		if (queues[i].configured)
1368 			ena_queue_stop(&queues[i]);
1369 }
1370 
1371 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring)
1372 {
1373 	int rc, bufs_num;
1374 
1375 	ena_assert_msg(ring->configured == 1,
1376 		       "Trying to start unconfigured queue\n");
1377 
1378 	rc = ena_create_io_queue(dev, ring);
1379 	if (rc) {
1380 		PMD_INIT_LOG(ERR, "Failed to create IO queue\n");
1381 		return rc;
1382 	}
1383 
1384 	ring->next_to_clean = 0;
1385 	ring->next_to_use = 0;
1386 
1387 	if (ring->type == ENA_RING_TYPE_TX) {
1388 		ring->tx_stats.available_desc =
1389 			ena_com_free_q_entries(ring->ena_com_io_sq);
1390 		return 0;
1391 	}
1392 
1393 	bufs_num = ring->ring_size - 1;
1394 	rc = ena_populate_rx_queue(ring, bufs_num);
1395 	if (rc != bufs_num) {
1396 		ena_com_destroy_io_queue(&ring->adapter->ena_dev,
1397 					 ENA_IO_RXQ_IDX(ring->id));
1398 		PMD_INIT_LOG(ERR, "Failed to populate Rx ring\n");
1399 		return ENA_COM_FAULT;
1400 	}
1401 	/* Flush per-core RX buffers pools cache as they can be used on other
1402 	 * cores as well.
1403 	 */
1404 	rte_mempool_cache_flush(NULL, ring->mb_pool);
1405 
1406 	return 0;
1407 }
1408 
1409 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1410 			      uint16_t queue_idx,
1411 			      uint16_t nb_desc,
1412 			      unsigned int socket_id,
1413 			      const struct rte_eth_txconf *tx_conf)
1414 {
1415 	struct ena_ring *txq = NULL;
1416 	struct ena_adapter *adapter = dev->data->dev_private;
1417 	unsigned int i;
1418 	uint16_t dyn_thresh;
1419 
1420 	txq = &adapter->tx_ring[queue_idx];
1421 
1422 	if (txq->configured) {
1423 		PMD_DRV_LOG(CRIT,
1424 			"API violation. Queue[%d] is already configured\n",
1425 			queue_idx);
1426 		return ENA_COM_FAULT;
1427 	}
1428 
1429 	if (!rte_is_power_of_2(nb_desc)) {
1430 		PMD_DRV_LOG(ERR,
1431 			"Unsupported size of Tx queue: %d is not a power of 2.\n",
1432 			nb_desc);
1433 		return -EINVAL;
1434 	}
1435 
1436 	if (nb_desc > adapter->max_tx_ring_size) {
1437 		PMD_DRV_LOG(ERR,
1438 			"Unsupported size of Tx queue (max size: %d)\n",
1439 			adapter->max_tx_ring_size);
1440 		return -EINVAL;
1441 	}
1442 
1443 	txq->port_id = dev->data->port_id;
1444 	txq->next_to_clean = 0;
1445 	txq->next_to_use = 0;
1446 	txq->ring_size = nb_desc;
1447 	txq->size_mask = nb_desc - 1;
1448 	txq->numa_socket_id = socket_id;
1449 	txq->pkts_without_db = false;
1450 	txq->last_cleanup_ticks = 0;
1451 
1452 	txq->tx_buffer_info = rte_zmalloc_socket("txq->tx_buffer_info",
1453 		sizeof(struct ena_tx_buffer) * txq->ring_size,
1454 		RTE_CACHE_LINE_SIZE,
1455 		socket_id);
1456 	if (!txq->tx_buffer_info) {
1457 		PMD_DRV_LOG(ERR,
1458 			"Failed to allocate memory for Tx buffer info\n");
1459 		return -ENOMEM;
1460 	}
1461 
1462 	txq->empty_tx_reqs = rte_zmalloc_socket("txq->empty_tx_reqs",
1463 		sizeof(uint16_t) * txq->ring_size,
1464 		RTE_CACHE_LINE_SIZE,
1465 		socket_id);
1466 	if (!txq->empty_tx_reqs) {
1467 		PMD_DRV_LOG(ERR,
1468 			"Failed to allocate memory for empty Tx requests\n");
1469 		rte_free(txq->tx_buffer_info);
1470 		return -ENOMEM;
1471 	}
1472 
1473 	txq->push_buf_intermediate_buf =
1474 		rte_zmalloc_socket("txq->push_buf_intermediate_buf",
1475 			txq->tx_max_header_size,
1476 			RTE_CACHE_LINE_SIZE,
1477 			socket_id);
1478 	if (!txq->push_buf_intermediate_buf) {
1479 		PMD_DRV_LOG(ERR, "Failed to alloc push buffer for LLQ\n");
1480 		rte_free(txq->tx_buffer_info);
1481 		rte_free(txq->empty_tx_reqs);
1482 		return -ENOMEM;
1483 	}
1484 
1485 	for (i = 0; i < txq->ring_size; i++)
1486 		txq->empty_tx_reqs[i] = i;
1487 
1488 	txq->offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1489 
1490 	/* Check if caller provided the Tx cleanup threshold value. */
1491 	if (tx_conf->tx_free_thresh != 0) {
1492 		txq->tx_free_thresh = tx_conf->tx_free_thresh;
1493 	} else {
1494 		dyn_thresh = txq->ring_size -
1495 			txq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1496 		txq->tx_free_thresh = RTE_MAX(dyn_thresh,
1497 			txq->ring_size - ENA_REFILL_THRESH_PACKET);
1498 	}
1499 
1500 	txq->missing_tx_completion_threshold =
1501 		RTE_MIN(txq->ring_size / 2, ENA_DEFAULT_MISSING_COMP);
1502 
1503 	/* Store pointer to this queue in upper layer */
1504 	txq->configured = 1;
1505 	dev->data->tx_queues[queue_idx] = txq;
1506 
1507 	return 0;
1508 }
1509 
1510 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1511 			      uint16_t queue_idx,
1512 			      uint16_t nb_desc,
1513 			      unsigned int socket_id,
1514 			      const struct rte_eth_rxconf *rx_conf,
1515 			      struct rte_mempool *mp)
1516 {
1517 	struct ena_adapter *adapter = dev->data->dev_private;
1518 	struct ena_ring *rxq = NULL;
1519 	size_t buffer_size;
1520 	int i;
1521 	uint16_t dyn_thresh;
1522 
1523 	rxq = &adapter->rx_ring[queue_idx];
1524 	if (rxq->configured) {
1525 		PMD_DRV_LOG(CRIT,
1526 			"API violation. Queue[%d] is already configured\n",
1527 			queue_idx);
1528 		return ENA_COM_FAULT;
1529 	}
1530 
1531 	if (!rte_is_power_of_2(nb_desc)) {
1532 		PMD_DRV_LOG(ERR,
1533 			"Unsupported size of Rx queue: %d is not a power of 2.\n",
1534 			nb_desc);
1535 		return -EINVAL;
1536 	}
1537 
1538 	if (nb_desc > adapter->max_rx_ring_size) {
1539 		PMD_DRV_LOG(ERR,
1540 			"Unsupported size of Rx queue (max size: %d)\n",
1541 			adapter->max_rx_ring_size);
1542 		return -EINVAL;
1543 	}
1544 
1545 	/* ENA isn't supporting buffers smaller than 1400 bytes */
1546 	buffer_size = rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
1547 	if (buffer_size < ENA_RX_BUF_MIN_SIZE) {
1548 		PMD_DRV_LOG(ERR,
1549 			"Unsupported size of Rx buffer: %zu (min size: %d)\n",
1550 			buffer_size, ENA_RX_BUF_MIN_SIZE);
1551 		return -EINVAL;
1552 	}
1553 
1554 	rxq->port_id = dev->data->port_id;
1555 	rxq->next_to_clean = 0;
1556 	rxq->next_to_use = 0;
1557 	rxq->ring_size = nb_desc;
1558 	rxq->size_mask = nb_desc - 1;
1559 	rxq->numa_socket_id = socket_id;
1560 	rxq->mb_pool = mp;
1561 
1562 	rxq->rx_buffer_info = rte_zmalloc_socket("rxq->buffer_info",
1563 		sizeof(struct ena_rx_buffer) * nb_desc,
1564 		RTE_CACHE_LINE_SIZE,
1565 		socket_id);
1566 	if (!rxq->rx_buffer_info) {
1567 		PMD_DRV_LOG(ERR,
1568 			"Failed to allocate memory for Rx buffer info\n");
1569 		return -ENOMEM;
1570 	}
1571 
1572 	rxq->rx_refill_buffer = rte_zmalloc_socket("rxq->rx_refill_buffer",
1573 		sizeof(struct rte_mbuf *) * nb_desc,
1574 		RTE_CACHE_LINE_SIZE,
1575 		socket_id);
1576 	if (!rxq->rx_refill_buffer) {
1577 		PMD_DRV_LOG(ERR,
1578 			"Failed to allocate memory for Rx refill buffer\n");
1579 		rte_free(rxq->rx_buffer_info);
1580 		rxq->rx_buffer_info = NULL;
1581 		return -ENOMEM;
1582 	}
1583 
1584 	rxq->empty_rx_reqs = rte_zmalloc_socket("rxq->empty_rx_reqs",
1585 		sizeof(uint16_t) * nb_desc,
1586 		RTE_CACHE_LINE_SIZE,
1587 		socket_id);
1588 	if (!rxq->empty_rx_reqs) {
1589 		PMD_DRV_LOG(ERR,
1590 			"Failed to allocate memory for empty Rx requests\n");
1591 		rte_free(rxq->rx_buffer_info);
1592 		rxq->rx_buffer_info = NULL;
1593 		rte_free(rxq->rx_refill_buffer);
1594 		rxq->rx_refill_buffer = NULL;
1595 		return -ENOMEM;
1596 	}
1597 
1598 	for (i = 0; i < nb_desc; i++)
1599 		rxq->empty_rx_reqs[i] = i;
1600 
1601 	rxq->offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1602 
1603 	if (rx_conf->rx_free_thresh != 0) {
1604 		rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1605 	} else {
1606 		dyn_thresh = rxq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1607 		rxq->rx_free_thresh = RTE_MIN(dyn_thresh,
1608 			(uint16_t)(ENA_REFILL_THRESH_PACKET));
1609 	}
1610 
1611 	/* Store pointer to this queue in upper layer */
1612 	rxq->configured = 1;
1613 	dev->data->rx_queues[queue_idx] = rxq;
1614 
1615 	return 0;
1616 }
1617 
1618 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
1619 				  struct rte_mbuf *mbuf, uint16_t id)
1620 {
1621 	struct ena_com_buf ebuf;
1622 	int rc;
1623 
1624 	/* prepare physical address for DMA transaction */
1625 	ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1626 	ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1627 
1628 	/* pass resource to device */
1629 	rc = ena_com_add_single_rx_desc(io_sq, &ebuf, id);
1630 	if (unlikely(rc != 0))
1631 		PMD_RX_LOG(WARNING, "Failed adding Rx desc\n");
1632 
1633 	return rc;
1634 }
1635 
1636 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1637 {
1638 	unsigned int i;
1639 	int rc;
1640 	uint16_t next_to_use = rxq->next_to_use;
1641 	uint16_t req_id;
1642 #ifdef RTE_ETHDEV_DEBUG_RX
1643 	uint16_t in_use;
1644 #endif
1645 	struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1646 
1647 	if (unlikely(!count))
1648 		return 0;
1649 
1650 #ifdef RTE_ETHDEV_DEBUG_RX
1651 	in_use = rxq->ring_size - 1 -
1652 		ena_com_free_q_entries(rxq->ena_com_io_sq);
1653 	if (unlikely((in_use + count) >= rxq->ring_size))
1654 		PMD_RX_LOG(ERR, "Bad Rx ring state\n");
1655 #endif
1656 
1657 	/* get resources for incoming packets */
1658 	rc = rte_pktmbuf_alloc_bulk(rxq->mb_pool, mbufs, count);
1659 	if (unlikely(rc < 0)) {
1660 		rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1661 		++rxq->rx_stats.mbuf_alloc_fail;
1662 		PMD_RX_LOG(DEBUG, "There are not enough free buffers\n");
1663 		return 0;
1664 	}
1665 
1666 	for (i = 0; i < count; i++) {
1667 		struct rte_mbuf *mbuf = mbufs[i];
1668 		struct ena_rx_buffer *rx_info;
1669 
1670 		if (likely((i + 4) < count))
1671 			rte_prefetch0(mbufs[i + 4]);
1672 
1673 		req_id = rxq->empty_rx_reqs[next_to_use];
1674 		rx_info = &rxq->rx_buffer_info[req_id];
1675 
1676 		rc = ena_add_single_rx_desc(rxq->ena_com_io_sq, mbuf, req_id);
1677 		if (unlikely(rc != 0))
1678 			break;
1679 
1680 		rx_info->mbuf = mbuf;
1681 		next_to_use = ENA_IDX_NEXT_MASKED(next_to_use, rxq->size_mask);
1682 	}
1683 
1684 	if (unlikely(i < count)) {
1685 		PMD_RX_LOG(WARNING,
1686 			"Refilled Rx queue[%d] with only %d/%d buffers\n",
1687 			rxq->id, i, count);
1688 		rte_pktmbuf_free_bulk(&mbufs[i], count - i);
1689 		++rxq->rx_stats.refill_partial;
1690 	}
1691 
1692 	/* When we submitted free resources to device... */
1693 	if (likely(i > 0)) {
1694 		/* ...let HW know that it can fill buffers with data. */
1695 		ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1696 
1697 		rxq->next_to_use = next_to_use;
1698 	}
1699 
1700 	return i;
1701 }
1702 
1703 static int ena_device_init(struct ena_adapter *adapter,
1704 			   struct rte_pci_device *pdev,
1705 			   struct ena_com_dev_get_features_ctx *get_feat_ctx)
1706 {
1707 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1708 	uint32_t aenq_groups;
1709 	int rc;
1710 	bool readless_supported;
1711 
1712 	/* Initialize mmio registers */
1713 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
1714 	if (rc) {
1715 		PMD_DRV_LOG(ERR, "Failed to init MMIO read less\n");
1716 		return rc;
1717 	}
1718 
1719 	/* The PCIe configuration space revision id indicate if mmio reg
1720 	 * read is disabled.
1721 	 */
1722 	readless_supported = !(pdev->id.class_id & ENA_MMIO_DISABLE_REG_READ);
1723 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1724 
1725 	/* reset device */
1726 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1727 	if (rc) {
1728 		PMD_DRV_LOG(ERR, "Cannot reset device\n");
1729 		goto err_mmio_read_less;
1730 	}
1731 
1732 	/* check FW version */
1733 	rc = ena_com_validate_version(ena_dev);
1734 	if (rc) {
1735 		PMD_DRV_LOG(ERR, "Device version is too low\n");
1736 		goto err_mmio_read_less;
1737 	}
1738 
1739 	ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1740 
1741 	/* ENA device administration layer init */
1742 	rc = ena_com_admin_init(ena_dev, &aenq_handlers);
1743 	if (rc) {
1744 		PMD_DRV_LOG(ERR,
1745 			"Cannot initialize ENA admin queue\n");
1746 		goto err_mmio_read_less;
1747 	}
1748 
1749 	/* To enable the msix interrupts the driver needs to know the number
1750 	 * of queues. So the driver uses polling mode to retrieve this
1751 	 * information.
1752 	 */
1753 	ena_com_set_admin_polling_mode(ena_dev, true);
1754 
1755 	ena_config_host_info(ena_dev);
1756 
1757 	/* Get Device Attributes and features */
1758 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1759 	if (rc) {
1760 		PMD_DRV_LOG(ERR,
1761 			"Cannot get attribute for ENA device, rc: %d\n", rc);
1762 		goto err_admin_init;
1763 	}
1764 
1765 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1766 		      BIT(ENA_ADMIN_NOTIFICATION) |
1767 		      BIT(ENA_ADMIN_KEEP_ALIVE) |
1768 		      BIT(ENA_ADMIN_FATAL_ERROR) |
1769 		      BIT(ENA_ADMIN_WARNING);
1770 
1771 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
1772 
1773 	adapter->all_aenq_groups = aenq_groups;
1774 
1775 	return 0;
1776 
1777 err_admin_init:
1778 	ena_com_admin_destroy(ena_dev);
1779 
1780 err_mmio_read_less:
1781 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1782 
1783 	return rc;
1784 }
1785 
1786 static void ena_interrupt_handler_rte(void *cb_arg)
1787 {
1788 	struct rte_eth_dev *dev = cb_arg;
1789 	struct ena_adapter *adapter = dev->data->dev_private;
1790 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1791 
1792 	ena_com_admin_q_comp_intr_handler(ena_dev);
1793 	if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED))
1794 		ena_com_aenq_intr_handler(ena_dev, dev);
1795 }
1796 
1797 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1798 {
1799 	if (!(adapter->active_aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE)))
1800 		return;
1801 
1802 	if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1803 		return;
1804 
1805 	if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1806 	    adapter->keep_alive_timeout)) {
1807 		PMD_DRV_LOG(ERR, "Keep alive timeout\n");
1808 		ena_trigger_reset(adapter, ENA_REGS_RESET_KEEP_ALIVE_TO);
1809 		++adapter->dev_stats.wd_expired;
1810 	}
1811 }
1812 
1813 /* Check if admin queue is enabled */
1814 static void check_for_admin_com_state(struct ena_adapter *adapter)
1815 {
1816 	if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1817 		PMD_DRV_LOG(ERR, "ENA admin queue is not in running state\n");
1818 		ena_trigger_reset(adapter, ENA_REGS_RESET_ADMIN_TO);
1819 	}
1820 }
1821 
1822 static int check_for_tx_completion_in_queue(struct ena_adapter *adapter,
1823 					    struct ena_ring *tx_ring)
1824 {
1825 	struct ena_tx_buffer *tx_buf;
1826 	uint64_t timestamp;
1827 	uint64_t completion_delay;
1828 	uint32_t missed_tx = 0;
1829 	unsigned int i;
1830 	int rc = 0;
1831 
1832 	for (i = 0; i < tx_ring->ring_size; ++i) {
1833 		tx_buf = &tx_ring->tx_buffer_info[i];
1834 		timestamp = tx_buf->timestamp;
1835 
1836 		if (timestamp == 0)
1837 			continue;
1838 
1839 		completion_delay = rte_get_timer_cycles() - timestamp;
1840 		if (completion_delay > adapter->missing_tx_completion_to) {
1841 			if (unlikely(!tx_buf->print_once)) {
1842 				PMD_TX_LOG(WARNING,
1843 					"Found a Tx that wasn't completed on time, qid %d, index %d. "
1844 					"Missing Tx outstanding for %" PRIu64 " msecs.\n",
1845 					tx_ring->id, i,	completion_delay /
1846 					rte_get_timer_hz() * 1000);
1847 				tx_buf->print_once = true;
1848 			}
1849 			++missed_tx;
1850 		}
1851 	}
1852 
1853 	if (unlikely(missed_tx > tx_ring->missing_tx_completion_threshold)) {
1854 		PMD_DRV_LOG(ERR,
1855 			"The number of lost Tx completions is above the threshold (%d > %d). "
1856 			"Trigger the device reset.\n",
1857 			missed_tx,
1858 			tx_ring->missing_tx_completion_threshold);
1859 		adapter->reset_reason = ENA_REGS_RESET_MISS_TX_CMPL;
1860 		adapter->trigger_reset = true;
1861 		rc = -EIO;
1862 	}
1863 
1864 	tx_ring->tx_stats.missed_tx += missed_tx;
1865 
1866 	return rc;
1867 }
1868 
1869 static void check_for_tx_completions(struct ena_adapter *adapter)
1870 {
1871 	struct ena_ring *tx_ring;
1872 	uint64_t tx_cleanup_delay;
1873 	size_t qid;
1874 	int budget;
1875 	uint16_t nb_tx_queues = adapter->edev_data->nb_tx_queues;
1876 
1877 	if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT)
1878 		return;
1879 
1880 	nb_tx_queues = adapter->edev_data->nb_tx_queues;
1881 	budget = adapter->missing_tx_completion_budget;
1882 
1883 	qid = adapter->last_tx_comp_qid;
1884 	while (budget-- > 0) {
1885 		tx_ring = &adapter->tx_ring[qid];
1886 
1887 		/* Tx cleanup is called only by the burst function and can be
1888 		 * called dynamically by the application. Also cleanup is
1889 		 * limited by the threshold. To avoid false detection of the
1890 		 * missing HW Tx completion, get the delay since last cleanup
1891 		 * function was called.
1892 		 */
1893 		tx_cleanup_delay = rte_get_timer_cycles() -
1894 			tx_ring->last_cleanup_ticks;
1895 		if (tx_cleanup_delay < adapter->tx_cleanup_stall_delay)
1896 			check_for_tx_completion_in_queue(adapter, tx_ring);
1897 		qid = (qid + 1) % nb_tx_queues;
1898 	}
1899 
1900 	adapter->last_tx_comp_qid = qid;
1901 }
1902 
1903 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
1904 				  void *arg)
1905 {
1906 	struct rte_eth_dev *dev = arg;
1907 	struct ena_adapter *adapter = dev->data->dev_private;
1908 
1909 	if (unlikely(adapter->trigger_reset))
1910 		return;
1911 
1912 	check_for_missing_keep_alive(adapter);
1913 	check_for_admin_com_state(adapter);
1914 	check_for_tx_completions(adapter);
1915 
1916 	if (unlikely(adapter->trigger_reset)) {
1917 		PMD_DRV_LOG(ERR, "Trigger reset is on\n");
1918 		rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
1919 			NULL);
1920 	}
1921 }
1922 
1923 static inline void
1924 set_default_llq_configurations(struct ena_llq_configurations *llq_config,
1925 			       struct ena_admin_feature_llq_desc *llq,
1926 			       bool use_large_llq_hdr)
1927 {
1928 	llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
1929 	llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
1930 	llq_config->llq_num_decs_before_header =
1931 		ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
1932 
1933 	if (use_large_llq_hdr &&
1934 	    (llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B)) {
1935 		llq_config->llq_ring_entry_size =
1936 			ENA_ADMIN_LIST_ENTRY_SIZE_256B;
1937 		llq_config->llq_ring_entry_size_value = 256;
1938 	} else {
1939 		llq_config->llq_ring_entry_size =
1940 			ENA_ADMIN_LIST_ENTRY_SIZE_128B;
1941 		llq_config->llq_ring_entry_size_value = 128;
1942 	}
1943 }
1944 
1945 static int
1946 ena_set_queues_placement_policy(struct ena_adapter *adapter,
1947 				struct ena_com_dev *ena_dev,
1948 				struct ena_admin_feature_llq_desc *llq,
1949 				struct ena_llq_configurations *llq_default_configurations)
1950 {
1951 	int rc;
1952 	u32 llq_feature_mask;
1953 
1954 	llq_feature_mask = 1 << ENA_ADMIN_LLQ;
1955 	if (!(ena_dev->supported_features & llq_feature_mask)) {
1956 		PMD_DRV_LOG(INFO,
1957 			"LLQ is not supported. Fallback to host mode policy.\n");
1958 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1959 		return 0;
1960 	}
1961 
1962 	if (adapter->dev_mem_base == NULL) {
1963 		PMD_DRV_LOG(ERR,
1964 			"LLQ is advertised as supported, but device doesn't expose mem bar\n");
1965 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1966 		return 0;
1967 	}
1968 
1969 	rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
1970 	if (unlikely(rc)) {
1971 		PMD_INIT_LOG(WARNING,
1972 			"Failed to config dev mode. Fallback to host mode policy.\n");
1973 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1974 		return 0;
1975 	}
1976 
1977 	/* Nothing to config, exit */
1978 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1979 		return 0;
1980 
1981 	ena_dev->mem_bar = adapter->dev_mem_base;
1982 
1983 	return 0;
1984 }
1985 
1986 static uint32_t ena_calc_max_io_queue_num(struct ena_com_dev *ena_dev,
1987 	struct ena_com_dev_get_features_ctx *get_feat_ctx)
1988 {
1989 	uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
1990 
1991 	/* Regular queues capabilities */
1992 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1993 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1994 			&get_feat_ctx->max_queue_ext.max_queue_ext;
1995 		io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
1996 				    max_queue_ext->max_rx_cq_num);
1997 		io_tx_sq_num = max_queue_ext->max_tx_sq_num;
1998 		io_tx_cq_num = max_queue_ext->max_tx_cq_num;
1999 	} else {
2000 		struct ena_admin_queue_feature_desc *max_queues =
2001 			&get_feat_ctx->max_queues;
2002 		io_tx_sq_num = max_queues->max_sq_num;
2003 		io_tx_cq_num = max_queues->max_cq_num;
2004 		io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
2005 	}
2006 
2007 	/* In case of LLQ use the llq number in the get feature cmd */
2008 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
2009 		io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
2010 
2011 	max_num_io_queues = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
2012 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_sq_num);
2013 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_cq_num);
2014 
2015 	if (unlikely(max_num_io_queues == 0)) {
2016 		PMD_DRV_LOG(ERR, "Number of IO queues cannot not be 0\n");
2017 		return -EFAULT;
2018 	}
2019 
2020 	return max_num_io_queues;
2021 }
2022 
2023 static void
2024 ena_set_offloads(struct ena_offloads *offloads,
2025 		 struct ena_admin_feature_offload_desc *offload_desc)
2026 {
2027 	if (offload_desc->tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK)
2028 		offloads->tx_offloads |= ENA_IPV4_TSO;
2029 
2030 	/* Tx IPv4 checksum offloads */
2031 	if (offload_desc->tx &
2032 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)
2033 		offloads->tx_offloads |= ENA_L3_IPV4_CSUM;
2034 	if (offload_desc->tx &
2035 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK)
2036 		offloads->tx_offloads |= ENA_L4_IPV4_CSUM;
2037 	if (offload_desc->tx &
2038 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)
2039 		offloads->tx_offloads |= ENA_L4_IPV4_CSUM_PARTIAL;
2040 
2041 	/* Tx IPv6 checksum offloads */
2042 	if (offload_desc->tx &
2043 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK)
2044 		offloads->tx_offloads |= ENA_L4_IPV6_CSUM;
2045 	if (offload_desc->tx &
2046 	     ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)
2047 		offloads->tx_offloads |= ENA_L4_IPV6_CSUM_PARTIAL;
2048 
2049 	/* Rx IPv4 checksum offloads */
2050 	if (offload_desc->rx_supported &
2051 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)
2052 		offloads->rx_offloads |= ENA_L3_IPV4_CSUM;
2053 	if (offload_desc->rx_supported &
2054 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK)
2055 		offloads->rx_offloads |= ENA_L4_IPV4_CSUM;
2056 
2057 	/* Rx IPv6 checksum offloads */
2058 	if (offload_desc->rx_supported &
2059 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK)
2060 		offloads->rx_offloads |= ENA_L4_IPV6_CSUM;
2061 
2062 	if (offload_desc->rx_supported &
2063 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_HASH_MASK)
2064 		offloads->rx_offloads |= ENA_RX_RSS_HASH;
2065 }
2066 
2067 static int ena_init_once(void)
2068 {
2069 	static bool init_done;
2070 
2071 	if (init_done)
2072 		return 0;
2073 
2074 	if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
2075 		/* Init timer subsystem for the ENA timer service. */
2076 		rte_timer_subsystem_init();
2077 		/* Register handler for requests from secondary processes. */
2078 		rte_mp_action_register(ENA_MP_NAME, ena_mp_primary_handle);
2079 	}
2080 
2081 	init_done = true;
2082 	return 0;
2083 }
2084 
2085 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
2086 {
2087 	struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
2088 	struct rte_pci_device *pci_dev;
2089 	struct rte_intr_handle *intr_handle;
2090 	struct ena_adapter *adapter = eth_dev->data->dev_private;
2091 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
2092 	struct ena_com_dev_get_features_ctx get_feat_ctx;
2093 	struct ena_llq_configurations llq_config;
2094 	const char *queue_type_str;
2095 	uint32_t max_num_io_queues;
2096 	int rc;
2097 	static int adapters_found;
2098 	bool disable_meta_caching;
2099 
2100 	eth_dev->dev_ops = &ena_dev_ops;
2101 	eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
2102 	eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
2103 	eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
2104 
2105 	rc = ena_init_once();
2106 	if (rc != 0)
2107 		return rc;
2108 
2109 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2110 		return 0;
2111 
2112 	eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
2113 
2114 	memset(adapter, 0, sizeof(struct ena_adapter));
2115 	ena_dev = &adapter->ena_dev;
2116 
2117 	adapter->edev_data = eth_dev->data;
2118 
2119 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2120 
2121 	PMD_INIT_LOG(INFO, "Initializing %x:%x:%x.%d\n",
2122 		     pci_dev->addr.domain,
2123 		     pci_dev->addr.bus,
2124 		     pci_dev->addr.devid,
2125 		     pci_dev->addr.function);
2126 
2127 	intr_handle = pci_dev->intr_handle;
2128 
2129 	adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
2130 	adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
2131 
2132 	if (!adapter->regs) {
2133 		PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)\n",
2134 			     ENA_REGS_BAR);
2135 		return -ENXIO;
2136 	}
2137 
2138 	ena_dev->reg_bar = adapter->regs;
2139 	/* Pass device data as a pointer which can be passed to the IO functions
2140 	 * by the ena_com (for example - the memory allocation).
2141 	 */
2142 	ena_dev->dmadev = eth_dev->data;
2143 
2144 	adapter->id_number = adapters_found;
2145 
2146 	snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
2147 		 adapter->id_number);
2148 
2149 	adapter->missing_tx_completion_to = ENA_TX_TIMEOUT;
2150 
2151 	rc = ena_parse_devargs(adapter, pci_dev->device.devargs);
2152 	if (rc != 0) {
2153 		PMD_INIT_LOG(CRIT, "Failed to parse devargs\n");
2154 		goto err;
2155 	}
2156 
2157 	/* device specific initialization routine */
2158 	rc = ena_device_init(adapter, pci_dev, &get_feat_ctx);
2159 	if (rc) {
2160 		PMD_INIT_LOG(CRIT, "Failed to init ENA device\n");
2161 		goto err;
2162 	}
2163 
2164 	/* Check if device supports LSC */
2165 	if (!(adapter->all_aenq_groups & BIT(ENA_ADMIN_LINK_CHANGE)))
2166 		adapter->edev_data->dev_flags &= ~RTE_ETH_DEV_INTR_LSC;
2167 
2168 	set_default_llq_configurations(&llq_config, &get_feat_ctx.llq,
2169 		adapter->use_large_llq_hdr);
2170 	rc = ena_set_queues_placement_policy(adapter, ena_dev,
2171 					     &get_feat_ctx.llq, &llq_config);
2172 	if (unlikely(rc)) {
2173 		PMD_INIT_LOG(CRIT, "Failed to set placement policy\n");
2174 		return rc;
2175 	}
2176 
2177 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
2178 		queue_type_str = "Regular";
2179 	else
2180 		queue_type_str = "Low latency";
2181 	PMD_DRV_LOG(INFO, "Placement policy: %s\n", queue_type_str);
2182 
2183 	calc_queue_ctx.ena_dev = ena_dev;
2184 	calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
2185 
2186 	max_num_io_queues = ena_calc_max_io_queue_num(ena_dev, &get_feat_ctx);
2187 	rc = ena_calc_io_queue_size(&calc_queue_ctx,
2188 		adapter->use_large_llq_hdr);
2189 	if (unlikely((rc != 0) || (max_num_io_queues == 0))) {
2190 		rc = -EFAULT;
2191 		goto err_device_destroy;
2192 	}
2193 
2194 	adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
2195 	adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
2196 	adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
2197 	adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
2198 	adapter->max_num_io_queues = max_num_io_queues;
2199 
2200 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2201 		disable_meta_caching =
2202 			!!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
2203 			BIT(ENA_ADMIN_DISABLE_META_CACHING));
2204 	} else {
2205 		disable_meta_caching = false;
2206 	}
2207 
2208 	/* prepare ring structures */
2209 	ena_init_rings(adapter, disable_meta_caching);
2210 
2211 	ena_config_debug_area(adapter);
2212 
2213 	/* Set max MTU for this device */
2214 	adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
2215 
2216 	ena_set_offloads(&adapter->offloads, &get_feat_ctx.offload);
2217 
2218 	/* Copy MAC address and point DPDK to it */
2219 	eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr;
2220 	rte_ether_addr_copy((struct rte_ether_addr *)
2221 			get_feat_ctx.dev_attr.mac_addr,
2222 			(struct rte_ether_addr *)adapter->mac_addr);
2223 
2224 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
2225 	if (unlikely(rc != 0)) {
2226 		PMD_DRV_LOG(ERR, "Failed to initialize RSS in ENA device\n");
2227 		goto err_delete_debug_area;
2228 	}
2229 
2230 	adapter->drv_stats = rte_zmalloc("adapter stats",
2231 					 sizeof(*adapter->drv_stats),
2232 					 RTE_CACHE_LINE_SIZE);
2233 	if (!adapter->drv_stats) {
2234 		PMD_DRV_LOG(ERR,
2235 			"Failed to allocate memory for adapter statistics\n");
2236 		rc = -ENOMEM;
2237 		goto err_rss_destroy;
2238 	}
2239 
2240 	rte_spinlock_init(&adapter->admin_lock);
2241 
2242 	rte_intr_callback_register(intr_handle,
2243 				   ena_interrupt_handler_rte,
2244 				   eth_dev);
2245 	rte_intr_enable(intr_handle);
2246 	ena_com_set_admin_polling_mode(ena_dev, false);
2247 	ena_com_admin_aenq_enable(ena_dev);
2248 
2249 	rte_timer_init(&adapter->timer_wd);
2250 
2251 	adapters_found++;
2252 	adapter->state = ENA_ADAPTER_STATE_INIT;
2253 
2254 	return 0;
2255 
2256 err_rss_destroy:
2257 	ena_com_rss_destroy(ena_dev);
2258 err_delete_debug_area:
2259 	ena_com_delete_debug_area(ena_dev);
2260 
2261 err_device_destroy:
2262 	ena_com_delete_host_info(ena_dev);
2263 	ena_com_admin_destroy(ena_dev);
2264 
2265 err:
2266 	return rc;
2267 }
2268 
2269 static void ena_destroy_device(struct rte_eth_dev *eth_dev)
2270 {
2271 	struct ena_adapter *adapter = eth_dev->data->dev_private;
2272 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
2273 
2274 	if (adapter->state == ENA_ADAPTER_STATE_FREE)
2275 		return;
2276 
2277 	ena_com_set_admin_running_state(ena_dev, false);
2278 
2279 	if (adapter->state != ENA_ADAPTER_STATE_CLOSED)
2280 		ena_close(eth_dev);
2281 
2282 	ena_com_rss_destroy(ena_dev);
2283 
2284 	ena_com_delete_debug_area(ena_dev);
2285 	ena_com_delete_host_info(ena_dev);
2286 
2287 	ena_com_abort_admin_commands(ena_dev);
2288 	ena_com_wait_for_abort_completion(ena_dev);
2289 	ena_com_admin_destroy(ena_dev);
2290 	ena_com_mmio_reg_read_request_destroy(ena_dev);
2291 
2292 	adapter->state = ENA_ADAPTER_STATE_FREE;
2293 }
2294 
2295 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
2296 {
2297 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2298 		return 0;
2299 
2300 	ena_destroy_device(eth_dev);
2301 
2302 	return 0;
2303 }
2304 
2305 static int ena_dev_configure(struct rte_eth_dev *dev)
2306 {
2307 	struct ena_adapter *adapter = dev->data->dev_private;
2308 	int rc;
2309 
2310 	adapter->state = ENA_ADAPTER_STATE_CONFIG;
2311 
2312 	if (dev->data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG)
2313 		dev->data->dev_conf.rxmode.offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2314 	dev->data->dev_conf.txmode.offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2315 
2316 	/* Scattered Rx cannot be turned off in the HW, so this capability must
2317 	 * be forced.
2318 	 */
2319 	dev->data->scattered_rx = 1;
2320 
2321 	adapter->last_tx_comp_qid = 0;
2322 
2323 	adapter->missing_tx_completion_budget =
2324 		RTE_MIN(ENA_MONITORED_TX_QUEUES, dev->data->nb_tx_queues);
2325 
2326 	/* To avoid detection of the spurious Tx completion timeout due to
2327 	 * application not calling the Tx cleanup function, set timeout for the
2328 	 * Tx queue which should be half of the missing completion timeout for a
2329 	 * safety. If there will be a lot of missing Tx completions in the
2330 	 * queue, they will be detected sooner or later.
2331 	 */
2332 	adapter->tx_cleanup_stall_delay = adapter->missing_tx_completion_to / 2;
2333 
2334 	rc = ena_configure_aenq(adapter);
2335 
2336 	return rc;
2337 }
2338 
2339 static void ena_init_rings(struct ena_adapter *adapter,
2340 			   bool disable_meta_caching)
2341 {
2342 	size_t i;
2343 
2344 	for (i = 0; i < adapter->max_num_io_queues; i++) {
2345 		struct ena_ring *ring = &adapter->tx_ring[i];
2346 
2347 		ring->configured = 0;
2348 		ring->type = ENA_RING_TYPE_TX;
2349 		ring->adapter = adapter;
2350 		ring->id = i;
2351 		ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
2352 		ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
2353 		ring->sgl_size = adapter->max_tx_sgl_size;
2354 		ring->disable_meta_caching = disable_meta_caching;
2355 	}
2356 
2357 	for (i = 0; i < adapter->max_num_io_queues; i++) {
2358 		struct ena_ring *ring = &adapter->rx_ring[i];
2359 
2360 		ring->configured = 0;
2361 		ring->type = ENA_RING_TYPE_RX;
2362 		ring->adapter = adapter;
2363 		ring->id = i;
2364 		ring->sgl_size = adapter->max_rx_sgl_size;
2365 	}
2366 }
2367 
2368 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter)
2369 {
2370 	uint64_t port_offloads = 0;
2371 
2372 	if (adapter->offloads.rx_offloads & ENA_L3_IPV4_CSUM)
2373 		port_offloads |= RTE_ETH_RX_OFFLOAD_IPV4_CKSUM;
2374 
2375 	if (adapter->offloads.rx_offloads &
2376 	    (ENA_L4_IPV4_CSUM | ENA_L4_IPV6_CSUM))
2377 		port_offloads |=
2378 			RTE_ETH_RX_OFFLOAD_UDP_CKSUM | RTE_ETH_RX_OFFLOAD_TCP_CKSUM;
2379 
2380 	if (adapter->offloads.rx_offloads & ENA_RX_RSS_HASH)
2381 		port_offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2382 
2383 	port_offloads |= RTE_ETH_RX_OFFLOAD_SCATTER;
2384 
2385 	return port_offloads;
2386 }
2387 
2388 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter)
2389 {
2390 	uint64_t port_offloads = 0;
2391 
2392 	if (adapter->offloads.tx_offloads & ENA_IPV4_TSO)
2393 		port_offloads |= RTE_ETH_TX_OFFLOAD_TCP_TSO;
2394 
2395 	if (adapter->offloads.tx_offloads & ENA_L3_IPV4_CSUM)
2396 		port_offloads |= RTE_ETH_TX_OFFLOAD_IPV4_CKSUM;
2397 	if (adapter->offloads.tx_offloads &
2398 	    (ENA_L4_IPV4_CSUM_PARTIAL | ENA_L4_IPV4_CSUM |
2399 	     ENA_L4_IPV6_CSUM | ENA_L4_IPV6_CSUM_PARTIAL))
2400 		port_offloads |=
2401 			RTE_ETH_TX_OFFLOAD_UDP_CKSUM | RTE_ETH_TX_OFFLOAD_TCP_CKSUM;
2402 
2403 	port_offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2404 
2405 	return port_offloads;
2406 }
2407 
2408 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter)
2409 {
2410 	RTE_SET_USED(adapter);
2411 
2412 	return 0;
2413 }
2414 
2415 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter)
2416 {
2417 	RTE_SET_USED(adapter);
2418 
2419 	return 0;
2420 }
2421 
2422 static int ena_infos_get(struct rte_eth_dev *dev,
2423 			  struct rte_eth_dev_info *dev_info)
2424 {
2425 	struct ena_adapter *adapter;
2426 	struct ena_com_dev *ena_dev;
2427 
2428 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
2429 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
2430 	adapter = dev->data->dev_private;
2431 
2432 	ena_dev = &adapter->ena_dev;
2433 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
2434 
2435 	dev_info->speed_capa =
2436 			RTE_ETH_LINK_SPEED_1G   |
2437 			RTE_ETH_LINK_SPEED_2_5G |
2438 			RTE_ETH_LINK_SPEED_5G   |
2439 			RTE_ETH_LINK_SPEED_10G  |
2440 			RTE_ETH_LINK_SPEED_25G  |
2441 			RTE_ETH_LINK_SPEED_40G  |
2442 			RTE_ETH_LINK_SPEED_50G  |
2443 			RTE_ETH_LINK_SPEED_100G;
2444 
2445 	/* Inform framework about available features */
2446 	dev_info->rx_offload_capa = ena_get_rx_port_offloads(adapter);
2447 	dev_info->tx_offload_capa = ena_get_tx_port_offloads(adapter);
2448 	dev_info->rx_queue_offload_capa = ena_get_rx_queue_offloads(adapter);
2449 	dev_info->tx_queue_offload_capa = ena_get_tx_queue_offloads(adapter);
2450 
2451 	dev_info->flow_type_rss_offloads = ENA_ALL_RSS_HF;
2452 	dev_info->hash_key_size = ENA_HASH_KEY_SIZE;
2453 
2454 	dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
2455 	dev_info->max_rx_pktlen  = adapter->max_mtu + RTE_ETHER_HDR_LEN +
2456 		RTE_ETHER_CRC_LEN;
2457 	dev_info->min_mtu = ENA_MIN_MTU;
2458 	dev_info->max_mtu = adapter->max_mtu;
2459 	dev_info->max_mac_addrs = 1;
2460 
2461 	dev_info->max_rx_queues = adapter->max_num_io_queues;
2462 	dev_info->max_tx_queues = adapter->max_num_io_queues;
2463 	dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
2464 
2465 	dev_info->rx_desc_lim.nb_max = adapter->max_rx_ring_size;
2466 	dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2467 	dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2468 					adapter->max_rx_sgl_size);
2469 	dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2470 					adapter->max_rx_sgl_size);
2471 
2472 	dev_info->tx_desc_lim.nb_max = adapter->max_tx_ring_size;
2473 	dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2474 	dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2475 					adapter->max_tx_sgl_size);
2476 	dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2477 					adapter->max_tx_sgl_size);
2478 
2479 	dev_info->default_rxportconf.ring_size = ENA_DEFAULT_RING_SIZE;
2480 	dev_info->default_txportconf.ring_size = ENA_DEFAULT_RING_SIZE;
2481 
2482 	return 0;
2483 }
2484 
2485 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len)
2486 {
2487 	mbuf->data_len = len;
2488 	mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2489 	mbuf->refcnt = 1;
2490 	mbuf->next = NULL;
2491 }
2492 
2493 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
2494 				    struct ena_com_rx_buf_info *ena_bufs,
2495 				    uint32_t descs,
2496 				    uint16_t *next_to_clean,
2497 				    uint8_t offset)
2498 {
2499 	struct rte_mbuf *mbuf;
2500 	struct rte_mbuf *mbuf_head;
2501 	struct ena_rx_buffer *rx_info;
2502 	int rc;
2503 	uint16_t ntc, len, req_id, buf = 0;
2504 
2505 	if (unlikely(descs == 0))
2506 		return NULL;
2507 
2508 	ntc = *next_to_clean;
2509 
2510 	len = ena_bufs[buf].len;
2511 	req_id = ena_bufs[buf].req_id;
2512 
2513 	rx_info = &rx_ring->rx_buffer_info[req_id];
2514 
2515 	mbuf = rx_info->mbuf;
2516 	RTE_ASSERT(mbuf != NULL);
2517 
2518 	ena_init_rx_mbuf(mbuf, len);
2519 
2520 	/* Fill the mbuf head with the data specific for 1st segment. */
2521 	mbuf_head = mbuf;
2522 	mbuf_head->nb_segs = descs;
2523 	mbuf_head->port = rx_ring->port_id;
2524 	mbuf_head->pkt_len = len;
2525 	mbuf_head->data_off += offset;
2526 
2527 	rx_info->mbuf = NULL;
2528 	rx_ring->empty_rx_reqs[ntc] = req_id;
2529 	ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2530 
2531 	while (--descs) {
2532 		++buf;
2533 		len = ena_bufs[buf].len;
2534 		req_id = ena_bufs[buf].req_id;
2535 
2536 		rx_info = &rx_ring->rx_buffer_info[req_id];
2537 		RTE_ASSERT(rx_info->mbuf != NULL);
2538 
2539 		if (unlikely(len == 0)) {
2540 			/*
2541 			 * Some devices can pass descriptor with the length 0.
2542 			 * To avoid confusion, the PMD is simply putting the
2543 			 * descriptor back, as it was never used. We'll avoid
2544 			 * mbuf allocation that way.
2545 			 */
2546 			rc = ena_add_single_rx_desc(rx_ring->ena_com_io_sq,
2547 				rx_info->mbuf, req_id);
2548 			if (unlikely(rc != 0)) {
2549 				/* Free the mbuf in case of an error. */
2550 				rte_mbuf_raw_free(rx_info->mbuf);
2551 			} else {
2552 				/*
2553 				 * If there was no error, just exit the loop as
2554 				 * 0 length descriptor is always the last one.
2555 				 */
2556 				break;
2557 			}
2558 		} else {
2559 			/* Create an mbuf chain. */
2560 			mbuf->next = rx_info->mbuf;
2561 			mbuf = mbuf->next;
2562 
2563 			ena_init_rx_mbuf(mbuf, len);
2564 			mbuf_head->pkt_len += len;
2565 		}
2566 
2567 		/*
2568 		 * Mark the descriptor as depleted and perform necessary
2569 		 * cleanup.
2570 		 * This code will execute in two cases:
2571 		 *  1. Descriptor len was greater than 0 - normal situation.
2572 		 *  2. Descriptor len was 0 and we failed to add the descriptor
2573 		 *     to the device. In that situation, we should try to add
2574 		 *     the mbuf again in the populate routine and mark the
2575 		 *     descriptor as used up by the device.
2576 		 */
2577 		rx_info->mbuf = NULL;
2578 		rx_ring->empty_rx_reqs[ntc] = req_id;
2579 		ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2580 	}
2581 
2582 	*next_to_clean = ntc;
2583 
2584 	return mbuf_head;
2585 }
2586 
2587 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
2588 				  uint16_t nb_pkts)
2589 {
2590 	struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
2591 	unsigned int free_queue_entries;
2592 	uint16_t next_to_clean = rx_ring->next_to_clean;
2593 	uint16_t descs_in_use;
2594 	struct rte_mbuf *mbuf;
2595 	uint16_t completed;
2596 	struct ena_com_rx_ctx ena_rx_ctx;
2597 	int i, rc = 0;
2598 	bool fill_hash;
2599 
2600 #ifdef RTE_ETHDEV_DEBUG_RX
2601 	/* Check adapter state */
2602 	if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2603 		PMD_RX_LOG(ALERT,
2604 			"Trying to receive pkts while device is NOT running\n");
2605 		return 0;
2606 	}
2607 #endif
2608 
2609 	fill_hash = rx_ring->offloads & RTE_ETH_RX_OFFLOAD_RSS_HASH;
2610 
2611 	descs_in_use = rx_ring->ring_size -
2612 		ena_com_free_q_entries(rx_ring->ena_com_io_sq) - 1;
2613 	nb_pkts = RTE_MIN(descs_in_use, nb_pkts);
2614 
2615 	for (completed = 0; completed < nb_pkts; completed++) {
2616 		ena_rx_ctx.max_bufs = rx_ring->sgl_size;
2617 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
2618 		ena_rx_ctx.descs = 0;
2619 		ena_rx_ctx.pkt_offset = 0;
2620 		/* receive packet context */
2621 		rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
2622 				    rx_ring->ena_com_io_sq,
2623 				    &ena_rx_ctx);
2624 		if (unlikely(rc)) {
2625 			PMD_RX_LOG(ERR,
2626 				"Failed to get the packet from the device, rc: %d\n",
2627 				rc);
2628 			if (rc == ENA_COM_NO_SPACE) {
2629 				++rx_ring->rx_stats.bad_desc_num;
2630 				ena_trigger_reset(rx_ring->adapter,
2631 					ENA_REGS_RESET_TOO_MANY_RX_DESCS);
2632 			} else {
2633 				++rx_ring->rx_stats.bad_req_id;
2634 				ena_trigger_reset(rx_ring->adapter,
2635 					ENA_REGS_RESET_INV_RX_REQ_ID);
2636 			}
2637 			return 0;
2638 		}
2639 
2640 		mbuf = ena_rx_mbuf(rx_ring,
2641 			ena_rx_ctx.ena_bufs,
2642 			ena_rx_ctx.descs,
2643 			&next_to_clean,
2644 			ena_rx_ctx.pkt_offset);
2645 		if (unlikely(mbuf == NULL)) {
2646 			for (i = 0; i < ena_rx_ctx.descs; ++i) {
2647 				rx_ring->empty_rx_reqs[next_to_clean] =
2648 					rx_ring->ena_bufs[i].req_id;
2649 				next_to_clean = ENA_IDX_NEXT_MASKED(
2650 					next_to_clean, rx_ring->size_mask);
2651 			}
2652 			break;
2653 		}
2654 
2655 		/* fill mbuf attributes if any */
2656 		ena_rx_mbuf_prepare(rx_ring, mbuf, &ena_rx_ctx, fill_hash);
2657 
2658 		if (unlikely(mbuf->ol_flags &
2659 				(RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD)))
2660 			rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors);
2661 
2662 		rx_pkts[completed] = mbuf;
2663 		rx_ring->rx_stats.bytes += mbuf->pkt_len;
2664 	}
2665 
2666 	rx_ring->rx_stats.cnt += completed;
2667 	rx_ring->next_to_clean = next_to_clean;
2668 
2669 	free_queue_entries = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
2670 
2671 	/* Burst refill to save doorbells, memory barriers, const interval */
2672 	if (free_queue_entries >= rx_ring->rx_free_thresh) {
2673 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
2674 		ena_populate_rx_queue(rx_ring, free_queue_entries);
2675 	}
2676 
2677 	return completed;
2678 }
2679 
2680 static uint16_t
2681 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2682 		uint16_t nb_pkts)
2683 {
2684 	int32_t ret;
2685 	uint32_t i;
2686 	struct rte_mbuf *m;
2687 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2688 	struct ena_adapter *adapter = tx_ring->adapter;
2689 	struct rte_ipv4_hdr *ip_hdr;
2690 	uint64_t ol_flags;
2691 	uint64_t l4_csum_flag;
2692 	uint64_t dev_offload_capa;
2693 	uint16_t frag_field;
2694 	bool need_pseudo_csum;
2695 
2696 	dev_offload_capa = adapter->offloads.tx_offloads;
2697 	for (i = 0; i != nb_pkts; i++) {
2698 		m = tx_pkts[i];
2699 		ol_flags = m->ol_flags;
2700 
2701 		/* Check if any offload flag was set */
2702 		if (ol_flags == 0)
2703 			continue;
2704 
2705 		l4_csum_flag = ol_flags & RTE_MBUF_F_TX_L4_MASK;
2706 		/* SCTP checksum offload is not supported by the ENA. */
2707 		if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) ||
2708 		    l4_csum_flag == RTE_MBUF_F_TX_SCTP_CKSUM) {
2709 			PMD_TX_LOG(DEBUG,
2710 				"mbuf[%" PRIu32 "] has unsupported offloads flags set: 0x%" PRIu64 "\n",
2711 				i, ol_flags);
2712 			rte_errno = ENOTSUP;
2713 			return i;
2714 		}
2715 
2716 		if (unlikely(m->nb_segs >= tx_ring->sgl_size &&
2717 		    !(tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
2718 		      m->nb_segs == tx_ring->sgl_size &&
2719 		      m->data_len < tx_ring->tx_max_header_size))) {
2720 			PMD_TX_LOG(DEBUG,
2721 				"mbuf[%" PRIu32 "] has too many segments: %" PRIu16 "\n",
2722 				i, m->nb_segs);
2723 			rte_errno = EINVAL;
2724 			return i;
2725 		}
2726 
2727 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2728 		/* Check if requested offload is also enabled for the queue */
2729 		if ((ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
2730 		     !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM)) ||
2731 		    (l4_csum_flag == RTE_MBUF_F_TX_TCP_CKSUM &&
2732 		     !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) ||
2733 		    (l4_csum_flag == RTE_MBUF_F_TX_UDP_CKSUM &&
2734 		     !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM))) {
2735 			PMD_TX_LOG(DEBUG,
2736 				"mbuf[%" PRIu32 "]: requested offloads: %" PRIu16 " are not enabled for the queue[%u]\n",
2737 				i, m->nb_segs, tx_ring->id);
2738 			rte_errno = EINVAL;
2739 			return i;
2740 		}
2741 
2742 		/* The caller is obligated to set l2 and l3 len if any cksum
2743 		 * offload is enabled.
2744 		 */
2745 		if (unlikely(ol_flags & (RTE_MBUF_F_TX_IP_CKSUM | RTE_MBUF_F_TX_L4_MASK) &&
2746 		    (m->l2_len == 0 || m->l3_len == 0))) {
2747 			PMD_TX_LOG(DEBUG,
2748 				"mbuf[%" PRIu32 "]: l2_len or l3_len values are 0 while the offload was requested\n",
2749 				i);
2750 			rte_errno = EINVAL;
2751 			return i;
2752 		}
2753 		ret = rte_validate_tx_offload(m);
2754 		if (ret != 0) {
2755 			rte_errno = -ret;
2756 			return i;
2757 		}
2758 #endif
2759 
2760 		/* Verify HW support for requested offloads and determine if
2761 		 * pseudo header checksum is needed.
2762 		 */
2763 		need_pseudo_csum = false;
2764 		if (ol_flags & RTE_MBUF_F_TX_IPV4) {
2765 			if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
2766 			    !(dev_offload_capa & ENA_L3_IPV4_CSUM)) {
2767 				rte_errno = ENOTSUP;
2768 				return i;
2769 			}
2770 
2771 			if (ol_flags & RTE_MBUF_F_TX_TCP_SEG &&
2772 			    !(dev_offload_capa & ENA_IPV4_TSO)) {
2773 				rte_errno = ENOTSUP;
2774 				return i;
2775 			}
2776 
2777 			/* Check HW capabilities and if pseudo csum is needed
2778 			 * for L4 offloads.
2779 			 */
2780 			if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
2781 			    !(dev_offload_capa & ENA_L4_IPV4_CSUM)) {
2782 				if (dev_offload_capa &
2783 				    ENA_L4_IPV4_CSUM_PARTIAL) {
2784 					need_pseudo_csum = true;
2785 				} else {
2786 					rte_errno = ENOTSUP;
2787 					return i;
2788 				}
2789 			}
2790 
2791 			/* Parse the DF flag */
2792 			ip_hdr = rte_pktmbuf_mtod_offset(m,
2793 				struct rte_ipv4_hdr *, m->l2_len);
2794 			frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
2795 			if (frag_field & RTE_IPV4_HDR_DF_FLAG) {
2796 				m->packet_type |= RTE_PTYPE_L4_NONFRAG;
2797 			} else if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2798 				/* In case we are supposed to TSO and have DF
2799 				 * not set (DF=0) hardware must be provided with
2800 				 * partial checksum.
2801 				 */
2802 				need_pseudo_csum = true;
2803 			}
2804 		} else if (ol_flags & RTE_MBUF_F_TX_IPV6) {
2805 			/* There is no support for IPv6 TSO as for now. */
2806 			if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2807 				rte_errno = ENOTSUP;
2808 				return i;
2809 			}
2810 
2811 			/* Check HW capabilities and if pseudo csum is needed */
2812 			if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
2813 			    !(dev_offload_capa & ENA_L4_IPV6_CSUM)) {
2814 				if (dev_offload_capa &
2815 				    ENA_L4_IPV6_CSUM_PARTIAL) {
2816 					need_pseudo_csum = true;
2817 				} else {
2818 					rte_errno = ENOTSUP;
2819 					return i;
2820 				}
2821 			}
2822 		}
2823 
2824 		if (need_pseudo_csum) {
2825 			ret = rte_net_intel_cksum_flags_prepare(m, ol_flags);
2826 			if (ret != 0) {
2827 				rte_errno = -ret;
2828 				return i;
2829 			}
2830 		}
2831 	}
2832 
2833 	return i;
2834 }
2835 
2836 static void ena_update_hints(struct ena_adapter *adapter,
2837 			     struct ena_admin_ena_hw_hints *hints)
2838 {
2839 	if (hints->admin_completion_tx_timeout)
2840 		adapter->ena_dev.admin_queue.completion_timeout =
2841 			hints->admin_completion_tx_timeout * 1000;
2842 
2843 	if (hints->mmio_read_timeout)
2844 		/* convert to usec */
2845 		adapter->ena_dev.mmio_read.reg_read_to =
2846 			hints->mmio_read_timeout * 1000;
2847 
2848 	if (hints->driver_watchdog_timeout) {
2849 		if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
2850 			adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
2851 		else
2852 			// Convert msecs to ticks
2853 			adapter->keep_alive_timeout =
2854 				(hints->driver_watchdog_timeout *
2855 				rte_get_timer_hz()) / 1000;
2856 	}
2857 }
2858 
2859 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
2860 	struct ena_tx_buffer *tx_info,
2861 	struct rte_mbuf *mbuf,
2862 	void **push_header,
2863 	uint16_t *header_len)
2864 {
2865 	struct ena_com_buf *ena_buf;
2866 	uint16_t delta, seg_len, push_len;
2867 
2868 	delta = 0;
2869 	seg_len = mbuf->data_len;
2870 
2871 	tx_info->mbuf = mbuf;
2872 	ena_buf = tx_info->bufs;
2873 
2874 	if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2875 		/*
2876 		 * Tx header might be (and will be in most cases) smaller than
2877 		 * tx_max_header_size. But it's not an issue to send more data
2878 		 * to the device, than actually needed if the mbuf size is
2879 		 * greater than tx_max_header_size.
2880 		 */
2881 		push_len = RTE_MIN(mbuf->pkt_len, tx_ring->tx_max_header_size);
2882 		*header_len = push_len;
2883 
2884 		if (likely(push_len <= seg_len)) {
2885 			/* If the push header is in the single segment, then
2886 			 * just point it to the 1st mbuf data.
2887 			 */
2888 			*push_header = rte_pktmbuf_mtod(mbuf, uint8_t *);
2889 		} else {
2890 			/* If the push header lays in the several segments, copy
2891 			 * it to the intermediate buffer.
2892 			 */
2893 			rte_pktmbuf_read(mbuf, 0, push_len,
2894 				tx_ring->push_buf_intermediate_buf);
2895 			*push_header = tx_ring->push_buf_intermediate_buf;
2896 			delta = push_len - seg_len;
2897 		}
2898 	} else {
2899 		*push_header = NULL;
2900 		*header_len = 0;
2901 		push_len = 0;
2902 	}
2903 
2904 	/* Process first segment taking into consideration pushed header */
2905 	if (seg_len > push_len) {
2906 		ena_buf->paddr = mbuf->buf_iova +
2907 				mbuf->data_off +
2908 				push_len;
2909 		ena_buf->len = seg_len - push_len;
2910 		ena_buf++;
2911 		tx_info->num_of_bufs++;
2912 	}
2913 
2914 	while ((mbuf = mbuf->next) != NULL) {
2915 		seg_len = mbuf->data_len;
2916 
2917 		/* Skip mbufs if whole data is pushed as a header */
2918 		if (unlikely(delta > seg_len)) {
2919 			delta -= seg_len;
2920 			continue;
2921 		}
2922 
2923 		ena_buf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
2924 		ena_buf->len = seg_len - delta;
2925 		ena_buf++;
2926 		tx_info->num_of_bufs++;
2927 
2928 		delta = 0;
2929 	}
2930 }
2931 
2932 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf)
2933 {
2934 	struct ena_tx_buffer *tx_info;
2935 	struct ena_com_tx_ctx ena_tx_ctx = { { 0 } };
2936 	uint16_t next_to_use;
2937 	uint16_t header_len;
2938 	uint16_t req_id;
2939 	void *push_header;
2940 	int nb_hw_desc;
2941 	int rc;
2942 
2943 	/* Checking for space for 2 additional metadata descriptors due to
2944 	 * possible header split and metadata descriptor
2945 	 */
2946 	if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
2947 					  mbuf->nb_segs + 2)) {
2948 		PMD_DRV_LOG(DEBUG, "Not enough space in the tx queue\n");
2949 		return ENA_COM_NO_MEM;
2950 	}
2951 
2952 	next_to_use = tx_ring->next_to_use;
2953 
2954 	req_id = tx_ring->empty_tx_reqs[next_to_use];
2955 	tx_info = &tx_ring->tx_buffer_info[req_id];
2956 	tx_info->num_of_bufs = 0;
2957 	RTE_ASSERT(tx_info->mbuf == NULL);
2958 
2959 	ena_tx_map_mbuf(tx_ring, tx_info, mbuf, &push_header, &header_len);
2960 
2961 	ena_tx_ctx.ena_bufs = tx_info->bufs;
2962 	ena_tx_ctx.push_header = push_header;
2963 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2964 	ena_tx_ctx.req_id = req_id;
2965 	ena_tx_ctx.header_len = header_len;
2966 
2967 	/* Set Tx offloads flags, if applicable */
2968 	ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads,
2969 		tx_ring->disable_meta_caching);
2970 
2971 	if (unlikely(ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
2972 			&ena_tx_ctx))) {
2973 		PMD_TX_LOG(DEBUG,
2974 			"LLQ Tx max burst size of queue %d achieved, writing doorbell to send burst\n",
2975 			tx_ring->id);
2976 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2977 		tx_ring->tx_stats.doorbells++;
2978 		tx_ring->pkts_without_db = false;
2979 	}
2980 
2981 	/* prepare the packet's descriptors to dma engine */
2982 	rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq,	&ena_tx_ctx,
2983 		&nb_hw_desc);
2984 	if (unlikely(rc)) {
2985 		PMD_DRV_LOG(ERR, "Failed to prepare Tx buffers, rc: %d\n", rc);
2986 		++tx_ring->tx_stats.prepare_ctx_err;
2987 		ena_trigger_reset(tx_ring->adapter,
2988 			ENA_REGS_RESET_DRIVER_INVALID_STATE);
2989 		return rc;
2990 	}
2991 
2992 	tx_info->tx_descs = nb_hw_desc;
2993 	tx_info->timestamp = rte_get_timer_cycles();
2994 
2995 	tx_ring->tx_stats.cnt++;
2996 	tx_ring->tx_stats.bytes += mbuf->pkt_len;
2997 
2998 	tx_ring->next_to_use = ENA_IDX_NEXT_MASKED(next_to_use,
2999 		tx_ring->size_mask);
3000 
3001 	return 0;
3002 }
3003 
3004 static int ena_tx_cleanup(void *txp, uint32_t free_pkt_cnt)
3005 {
3006 	struct ena_ring *tx_ring = (struct ena_ring *)txp;
3007 	unsigned int total_tx_descs = 0;
3008 	unsigned int total_tx_pkts = 0;
3009 	uint16_t cleanup_budget;
3010 	uint16_t next_to_clean = tx_ring->next_to_clean;
3011 
3012 	/*
3013 	 * If free_pkt_cnt is equal to 0, it means that the user requested
3014 	 * full cleanup, so attempt to release all Tx descriptors
3015 	 * (ring_size - 1 -> size_mask)
3016 	 */
3017 	cleanup_budget = (free_pkt_cnt == 0) ? tx_ring->size_mask : free_pkt_cnt;
3018 
3019 	while (likely(total_tx_pkts < cleanup_budget)) {
3020 		struct rte_mbuf *mbuf;
3021 		struct ena_tx_buffer *tx_info;
3022 		uint16_t req_id;
3023 
3024 		if (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) != 0)
3025 			break;
3026 
3027 		if (unlikely(validate_tx_req_id(tx_ring, req_id) != 0))
3028 			break;
3029 
3030 		/* Get Tx info & store how many descs were processed  */
3031 		tx_info = &tx_ring->tx_buffer_info[req_id];
3032 		tx_info->timestamp = 0;
3033 
3034 		mbuf = tx_info->mbuf;
3035 		rte_pktmbuf_free(mbuf);
3036 
3037 		tx_info->mbuf = NULL;
3038 		tx_ring->empty_tx_reqs[next_to_clean] = req_id;
3039 
3040 		total_tx_descs += tx_info->tx_descs;
3041 		total_tx_pkts++;
3042 
3043 		/* Put back descriptor to the ring for reuse */
3044 		next_to_clean = ENA_IDX_NEXT_MASKED(next_to_clean,
3045 			tx_ring->size_mask);
3046 	}
3047 
3048 	if (likely(total_tx_descs > 0)) {
3049 		/* acknowledge completion of sent packets */
3050 		tx_ring->next_to_clean = next_to_clean;
3051 		ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
3052 		ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
3053 	}
3054 
3055 	/* Notify completion handler that full cleanup was performed */
3056 	if (free_pkt_cnt == 0 || total_tx_pkts < cleanup_budget)
3057 		tx_ring->last_cleanup_ticks = rte_get_timer_cycles();
3058 
3059 	return total_tx_pkts;
3060 }
3061 
3062 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
3063 				  uint16_t nb_pkts)
3064 {
3065 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
3066 	int available_desc;
3067 	uint16_t sent_idx = 0;
3068 
3069 #ifdef RTE_ETHDEV_DEBUG_TX
3070 	/* Check adapter state */
3071 	if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
3072 		PMD_TX_LOG(ALERT,
3073 			"Trying to xmit pkts while device is NOT running\n");
3074 		return 0;
3075 	}
3076 #endif
3077 
3078 	available_desc = ena_com_free_q_entries(tx_ring->ena_com_io_sq);
3079 	if (available_desc < tx_ring->tx_free_thresh)
3080 		ena_tx_cleanup((void *)tx_ring, 0);
3081 
3082 	for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
3083 		if (ena_xmit_mbuf(tx_ring, tx_pkts[sent_idx]))
3084 			break;
3085 		tx_ring->pkts_without_db = true;
3086 		rte_prefetch0(tx_pkts[ENA_IDX_ADD_MASKED(sent_idx, 4,
3087 			tx_ring->size_mask)]);
3088 	}
3089 
3090 	/* If there are ready packets to be xmitted... */
3091 	if (likely(tx_ring->pkts_without_db)) {
3092 		/* ...let HW do its best :-) */
3093 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
3094 		tx_ring->tx_stats.doorbells++;
3095 		tx_ring->pkts_without_db = false;
3096 	}
3097 
3098 	tx_ring->tx_stats.available_desc =
3099 		ena_com_free_q_entries(tx_ring->ena_com_io_sq);
3100 	tx_ring->tx_stats.tx_poll++;
3101 
3102 	return sent_idx;
3103 }
3104 
3105 int ena_copy_eni_stats(struct ena_adapter *adapter, struct ena_stats_eni *stats)
3106 {
3107 	int rc;
3108 
3109 	rte_spinlock_lock(&adapter->admin_lock);
3110 	/* Retrieve and store the latest statistics from the AQ. This ensures
3111 	 * that previous value is returned in case of a com error.
3112 	 */
3113 	rc = ENA_PROXY(adapter, ena_com_get_eni_stats, &adapter->ena_dev,
3114 		(struct ena_admin_eni_stats *)stats);
3115 	rte_spinlock_unlock(&adapter->admin_lock);
3116 	if (rc != 0) {
3117 		if (rc == ENA_COM_UNSUPPORTED) {
3118 			PMD_DRV_LOG(DEBUG,
3119 				"Retrieving ENI metrics is not supported\n");
3120 		} else {
3121 			PMD_DRV_LOG(WARNING,
3122 				"Failed to get ENI metrics, rc: %d\n", rc);
3123 		}
3124 		return rc;
3125 	}
3126 
3127 	return 0;
3128 }
3129 
3130 /**
3131  * DPDK callback to retrieve names of extended device statistics
3132  *
3133  * @param dev
3134  *   Pointer to Ethernet device structure.
3135  * @param[out] xstats_names
3136  *   Buffer to insert names into.
3137  * @param n
3138  *   Number of names.
3139  *
3140  * @return
3141  *   Number of xstats names.
3142  */
3143 static int ena_xstats_get_names(struct rte_eth_dev *dev,
3144 				struct rte_eth_xstat_name *xstats_names,
3145 				unsigned int n)
3146 {
3147 	unsigned int xstats_count = ena_xstats_calc_num(dev->data);
3148 	unsigned int stat, i, count = 0;
3149 
3150 	if (n < xstats_count || !xstats_names)
3151 		return xstats_count;
3152 
3153 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
3154 		strcpy(xstats_names[count].name,
3155 			ena_stats_global_strings[stat].name);
3156 
3157 	for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++)
3158 		strcpy(xstats_names[count].name,
3159 			ena_stats_eni_strings[stat].name);
3160 
3161 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
3162 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
3163 			snprintf(xstats_names[count].name,
3164 				sizeof(xstats_names[count].name),
3165 				"rx_q%d_%s", i,
3166 				ena_stats_rx_strings[stat].name);
3167 
3168 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
3169 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
3170 			snprintf(xstats_names[count].name,
3171 				sizeof(xstats_names[count].name),
3172 				"tx_q%d_%s", i,
3173 				ena_stats_tx_strings[stat].name);
3174 
3175 	return xstats_count;
3176 }
3177 
3178 /**
3179  * DPDK callback to retrieve names of extended device statistics for the given
3180  * ids.
3181  *
3182  * @param dev
3183  *   Pointer to Ethernet device structure.
3184  * @param[out] xstats_names
3185  *   Buffer to insert names into.
3186  * @param ids
3187  *   IDs array for which the names should be retrieved.
3188  * @param size
3189  *   Number of ids.
3190  *
3191  * @return
3192  *   Positive value: number of xstats names. Negative value: error code.
3193  */
3194 static int ena_xstats_get_names_by_id(struct rte_eth_dev *dev,
3195 				      const uint64_t *ids,
3196 				      struct rte_eth_xstat_name *xstats_names,
3197 				      unsigned int size)
3198 {
3199 	uint64_t xstats_count = ena_xstats_calc_num(dev->data);
3200 	uint64_t id, qid;
3201 	unsigned int i;
3202 
3203 	if (xstats_names == NULL)
3204 		return xstats_count;
3205 
3206 	for (i = 0; i < size; ++i) {
3207 		id = ids[i];
3208 		if (id > xstats_count) {
3209 			PMD_DRV_LOG(ERR,
3210 				"ID value out of range: id=%" PRIu64 ", xstats_num=%" PRIu64 "\n",
3211 				 id, xstats_count);
3212 			return -EINVAL;
3213 		}
3214 
3215 		if (id < ENA_STATS_ARRAY_GLOBAL) {
3216 			strcpy(xstats_names[i].name,
3217 			       ena_stats_global_strings[id].name);
3218 			continue;
3219 		}
3220 
3221 		id -= ENA_STATS_ARRAY_GLOBAL;
3222 		if (id < ENA_STATS_ARRAY_ENI) {
3223 			strcpy(xstats_names[i].name,
3224 			       ena_stats_eni_strings[id].name);
3225 			continue;
3226 		}
3227 
3228 		id -= ENA_STATS_ARRAY_ENI;
3229 		if (id < ENA_STATS_ARRAY_RX) {
3230 			qid = id / dev->data->nb_rx_queues;
3231 			id %= dev->data->nb_rx_queues;
3232 			snprintf(xstats_names[i].name,
3233 				 sizeof(xstats_names[i].name),
3234 				 "rx_q%" PRIu64 "d_%s",
3235 				 qid, ena_stats_rx_strings[id].name);
3236 			continue;
3237 		}
3238 
3239 		id -= ENA_STATS_ARRAY_RX;
3240 		/* Although this condition is not needed, it was added for
3241 		 * compatibility if new xstat structure would be ever added.
3242 		 */
3243 		if (id < ENA_STATS_ARRAY_TX) {
3244 			qid = id / dev->data->nb_tx_queues;
3245 			id %= dev->data->nb_tx_queues;
3246 			snprintf(xstats_names[i].name,
3247 				 sizeof(xstats_names[i].name),
3248 				 "tx_q%" PRIu64 "_%s",
3249 				 qid, ena_stats_tx_strings[id].name);
3250 			continue;
3251 		}
3252 	}
3253 
3254 	return i;
3255 }
3256 
3257 /**
3258  * DPDK callback to get extended device statistics.
3259  *
3260  * @param dev
3261  *   Pointer to Ethernet device structure.
3262  * @param[out] stats
3263  *   Stats table output buffer.
3264  * @param n
3265  *   The size of the stats table.
3266  *
3267  * @return
3268  *   Number of xstats on success, negative on failure.
3269  */
3270 static int ena_xstats_get(struct rte_eth_dev *dev,
3271 			  struct rte_eth_xstat *xstats,
3272 			  unsigned int n)
3273 {
3274 	struct ena_adapter *adapter = dev->data->dev_private;
3275 	unsigned int xstats_count = ena_xstats_calc_num(dev->data);
3276 	struct ena_stats_eni eni_stats;
3277 	unsigned int stat, i, count = 0;
3278 	int stat_offset;
3279 	void *stats_begin;
3280 
3281 	if (n < xstats_count)
3282 		return xstats_count;
3283 
3284 	if (!xstats)
3285 		return 0;
3286 
3287 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
3288 		stat_offset = ena_stats_global_strings[stat].stat_offset;
3289 		stats_begin = &adapter->dev_stats;
3290 
3291 		xstats[count].id = count;
3292 		xstats[count].value = *((uint64_t *)
3293 			((char *)stats_begin + stat_offset));
3294 	}
3295 
3296 	/* Even if the function below fails, we should copy previous (or initial
3297 	 * values) to keep structure of rte_eth_xstat consistent.
3298 	 */
3299 	ena_copy_eni_stats(adapter, &eni_stats);
3300 	for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++) {
3301 		stat_offset = ena_stats_eni_strings[stat].stat_offset;
3302 		stats_begin = &eni_stats;
3303 
3304 		xstats[count].id = count;
3305 		xstats[count].value = *((uint64_t *)
3306 		    ((char *)stats_begin + stat_offset));
3307 	}
3308 
3309 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
3310 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
3311 			stat_offset = ena_stats_rx_strings[stat].stat_offset;
3312 			stats_begin = &adapter->rx_ring[i].rx_stats;
3313 
3314 			xstats[count].id = count;
3315 			xstats[count].value = *((uint64_t *)
3316 				((char *)stats_begin + stat_offset));
3317 		}
3318 	}
3319 
3320 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
3321 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
3322 			stat_offset = ena_stats_tx_strings[stat].stat_offset;
3323 			stats_begin = &adapter->tx_ring[i].rx_stats;
3324 
3325 			xstats[count].id = count;
3326 			xstats[count].value = *((uint64_t *)
3327 				((char *)stats_begin + stat_offset));
3328 		}
3329 	}
3330 
3331 	return count;
3332 }
3333 
3334 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
3335 				const uint64_t *ids,
3336 				uint64_t *values,
3337 				unsigned int n)
3338 {
3339 	struct ena_adapter *adapter = dev->data->dev_private;
3340 	struct ena_stats_eni eni_stats;
3341 	uint64_t id;
3342 	uint64_t rx_entries, tx_entries;
3343 	unsigned int i;
3344 	int qid;
3345 	int valid = 0;
3346 	bool was_eni_copied = false;
3347 
3348 	for (i = 0; i < n; ++i) {
3349 		id = ids[i];
3350 		/* Check if id belongs to global statistics */
3351 		if (id < ENA_STATS_ARRAY_GLOBAL) {
3352 			values[i] = *((uint64_t *)&adapter->dev_stats + id);
3353 			++valid;
3354 			continue;
3355 		}
3356 
3357 		/* Check if id belongs to ENI statistics */
3358 		id -= ENA_STATS_ARRAY_GLOBAL;
3359 		if (id < ENA_STATS_ARRAY_ENI) {
3360 			/* Avoid reading ENI stats multiple times in a single
3361 			 * function call, as it requires communication with the
3362 			 * admin queue.
3363 			 */
3364 			if (!was_eni_copied) {
3365 				was_eni_copied = true;
3366 				ena_copy_eni_stats(adapter, &eni_stats);
3367 			}
3368 			values[i] = *((uint64_t *)&eni_stats + id);
3369 			++valid;
3370 			continue;
3371 		}
3372 
3373 		/* Check if id belongs to rx queue statistics */
3374 		id -= ENA_STATS_ARRAY_ENI;
3375 		rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
3376 		if (id < rx_entries) {
3377 			qid = id % dev->data->nb_rx_queues;
3378 			id /= dev->data->nb_rx_queues;
3379 			values[i] = *((uint64_t *)
3380 				&adapter->rx_ring[qid].rx_stats + id);
3381 			++valid;
3382 			continue;
3383 		}
3384 				/* Check if id belongs to rx queue statistics */
3385 		id -= rx_entries;
3386 		tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
3387 		if (id < tx_entries) {
3388 			qid = id % dev->data->nb_tx_queues;
3389 			id /= dev->data->nb_tx_queues;
3390 			values[i] = *((uint64_t *)
3391 				&adapter->tx_ring[qid].tx_stats + id);
3392 			++valid;
3393 			continue;
3394 		}
3395 	}
3396 
3397 	return valid;
3398 }
3399 
3400 static int ena_process_uint_devarg(const char *key,
3401 				  const char *value,
3402 				  void *opaque)
3403 {
3404 	struct ena_adapter *adapter = opaque;
3405 	char *str_end;
3406 	uint64_t uint_value;
3407 
3408 	uint_value = strtoull(value, &str_end, 10);
3409 	if (value == str_end) {
3410 		PMD_INIT_LOG(ERR,
3411 			"Invalid value for key '%s'. Only uint values are accepted.\n",
3412 			key);
3413 		return -EINVAL;
3414 	}
3415 
3416 	if (strcmp(key, ENA_DEVARG_MISS_TXC_TO) == 0) {
3417 		if (uint_value > ENA_MAX_TX_TIMEOUT_SECONDS) {
3418 			PMD_INIT_LOG(ERR,
3419 				"Tx timeout too high: %" PRIu64 " sec. Maximum allowed: %d sec.\n",
3420 				uint_value, ENA_MAX_TX_TIMEOUT_SECONDS);
3421 			return -EINVAL;
3422 		} else if (uint_value == 0) {
3423 			PMD_INIT_LOG(INFO,
3424 				"Check for missing Tx completions has been disabled.\n");
3425 			adapter->missing_tx_completion_to =
3426 				ENA_HW_HINTS_NO_TIMEOUT;
3427 		} else {
3428 			PMD_INIT_LOG(INFO,
3429 				"Tx packet completion timeout set to %" PRIu64 " seconds.\n",
3430 				uint_value);
3431 			adapter->missing_tx_completion_to =
3432 				uint_value * rte_get_timer_hz();
3433 		}
3434 	}
3435 
3436 	return 0;
3437 }
3438 
3439 static int ena_process_bool_devarg(const char *key,
3440 				   const char *value,
3441 				   void *opaque)
3442 {
3443 	struct ena_adapter *adapter = opaque;
3444 	bool bool_value;
3445 
3446 	/* Parse the value. */
3447 	if (strcmp(value, "1") == 0) {
3448 		bool_value = true;
3449 	} else if (strcmp(value, "0") == 0) {
3450 		bool_value = false;
3451 	} else {
3452 		PMD_INIT_LOG(ERR,
3453 			"Invalid value: '%s' for key '%s'. Accepted: '0' or '1'\n",
3454 			value, key);
3455 		return -EINVAL;
3456 	}
3457 
3458 	/* Now, assign it to the proper adapter field. */
3459 	if (strcmp(key, ENA_DEVARG_LARGE_LLQ_HDR) == 0)
3460 		adapter->use_large_llq_hdr = bool_value;
3461 
3462 	return 0;
3463 }
3464 
3465 static int ena_parse_devargs(struct ena_adapter *adapter,
3466 			     struct rte_devargs *devargs)
3467 {
3468 	static const char * const allowed_args[] = {
3469 		ENA_DEVARG_LARGE_LLQ_HDR,
3470 		ENA_DEVARG_MISS_TXC_TO,
3471 		NULL,
3472 	};
3473 	struct rte_kvargs *kvlist;
3474 	int rc;
3475 
3476 	if (devargs == NULL)
3477 		return 0;
3478 
3479 	kvlist = rte_kvargs_parse(devargs->args, allowed_args);
3480 	if (kvlist == NULL) {
3481 		PMD_INIT_LOG(ERR, "Invalid device arguments: %s\n",
3482 			devargs->args);
3483 		return -EINVAL;
3484 	}
3485 
3486 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_LARGE_LLQ_HDR,
3487 		ena_process_bool_devarg, adapter);
3488 	if (rc != 0)
3489 		goto exit;
3490 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_MISS_TXC_TO,
3491 		ena_process_uint_devarg, adapter);
3492 
3493 exit:
3494 	rte_kvargs_free(kvlist);
3495 
3496 	return rc;
3497 }
3498 
3499 static int ena_setup_rx_intr(struct rte_eth_dev *dev)
3500 {
3501 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3502 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
3503 	int rc;
3504 	uint16_t vectors_nb, i;
3505 	bool rx_intr_requested = dev->data->dev_conf.intr_conf.rxq;
3506 
3507 	if (!rx_intr_requested)
3508 		return 0;
3509 
3510 	if (!rte_intr_cap_multiple(intr_handle)) {
3511 		PMD_DRV_LOG(ERR,
3512 			"Rx interrupt requested, but it isn't supported by the PCI driver\n");
3513 		return -ENOTSUP;
3514 	}
3515 
3516 	/* Disable interrupt mapping before the configuration starts. */
3517 	rte_intr_disable(intr_handle);
3518 
3519 	/* Verify if there are enough vectors available. */
3520 	vectors_nb = dev->data->nb_rx_queues;
3521 	if (vectors_nb > RTE_MAX_RXTX_INTR_VEC_ID) {
3522 		PMD_DRV_LOG(ERR,
3523 			"Too many Rx interrupts requested, maximum number: %d\n",
3524 			RTE_MAX_RXTX_INTR_VEC_ID);
3525 		rc = -ENOTSUP;
3526 		goto enable_intr;
3527 	}
3528 
3529 	/* Allocate the vector list */
3530 	if (rte_intr_vec_list_alloc(intr_handle, "intr_vec",
3531 					   dev->data->nb_rx_queues)) {
3532 		PMD_DRV_LOG(ERR,
3533 			"Failed to allocate interrupt vector for %d queues\n",
3534 			dev->data->nb_rx_queues);
3535 		rc = -ENOMEM;
3536 		goto enable_intr;
3537 	}
3538 
3539 	rc = rte_intr_efd_enable(intr_handle, vectors_nb);
3540 	if (rc != 0)
3541 		goto free_intr_vec;
3542 
3543 	if (!rte_intr_allow_others(intr_handle)) {
3544 		PMD_DRV_LOG(ERR,
3545 			"Not enough interrupts available to use both ENA Admin and Rx interrupts\n");
3546 		goto disable_intr_efd;
3547 	}
3548 
3549 	for (i = 0; i < vectors_nb; ++i)
3550 		if (rte_intr_vec_list_index_set(intr_handle, i,
3551 					   RTE_INTR_VEC_RXTX_OFFSET + i))
3552 			goto disable_intr_efd;
3553 
3554 	rte_intr_enable(intr_handle);
3555 	return 0;
3556 
3557 disable_intr_efd:
3558 	rte_intr_efd_disable(intr_handle);
3559 free_intr_vec:
3560 	rte_intr_vec_list_free(intr_handle);
3561 enable_intr:
3562 	rte_intr_enable(intr_handle);
3563 	return rc;
3564 }
3565 
3566 static void ena_rx_queue_intr_set(struct rte_eth_dev *dev,
3567 				 uint16_t queue_id,
3568 				 bool unmask)
3569 {
3570 	struct ena_adapter *adapter = dev->data->dev_private;
3571 	struct ena_ring *rxq = &adapter->rx_ring[queue_id];
3572 	struct ena_eth_io_intr_reg intr_reg;
3573 
3574 	ena_com_update_intr_reg(&intr_reg, 0, 0, unmask);
3575 	ena_com_unmask_intr(rxq->ena_com_io_cq, &intr_reg);
3576 }
3577 
3578 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
3579 				    uint16_t queue_id)
3580 {
3581 	ena_rx_queue_intr_set(dev, queue_id, true);
3582 
3583 	return 0;
3584 }
3585 
3586 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
3587 				     uint16_t queue_id)
3588 {
3589 	ena_rx_queue_intr_set(dev, queue_id, false);
3590 
3591 	return 0;
3592 }
3593 
3594 static int ena_configure_aenq(struct ena_adapter *adapter)
3595 {
3596 	uint32_t aenq_groups = adapter->all_aenq_groups;
3597 	int rc;
3598 
3599 	/* All_aenq_groups holds all AENQ functions supported by the device and
3600 	 * the HW, so at first we need to be sure the LSC request is valid.
3601 	 */
3602 	if (adapter->edev_data->dev_conf.intr_conf.lsc != 0) {
3603 		if (!(aenq_groups & BIT(ENA_ADMIN_LINK_CHANGE))) {
3604 			PMD_DRV_LOG(ERR,
3605 				"LSC requested, but it's not supported by the AENQ\n");
3606 			return -EINVAL;
3607 		}
3608 	} else {
3609 		/* If LSC wasn't enabled by the app, let's enable all supported
3610 		 * AENQ procedures except the LSC.
3611 		 */
3612 		aenq_groups &= ~BIT(ENA_ADMIN_LINK_CHANGE);
3613 	}
3614 
3615 	rc = ena_com_set_aenq_config(&adapter->ena_dev, aenq_groups);
3616 	if (rc != 0) {
3617 		PMD_DRV_LOG(ERR, "Cannot configure AENQ groups, rc=%d\n", rc);
3618 		return rc;
3619 	}
3620 
3621 	adapter->active_aenq_groups = aenq_groups;
3622 
3623 	return 0;
3624 }
3625 
3626 int ena_mp_indirect_table_set(struct ena_adapter *adapter)
3627 {
3628 	return ENA_PROXY(adapter, ena_com_indirect_table_set, &adapter->ena_dev);
3629 }
3630 
3631 int ena_mp_indirect_table_get(struct ena_adapter *adapter,
3632 			      uint32_t *indirect_table)
3633 {
3634 	return ENA_PROXY(adapter, ena_com_indirect_table_get, &adapter->ena_dev,
3635 		indirect_table);
3636 }
3637 
3638 /*********************************************************************
3639  *  ena_plat_dpdk.h functions implementations
3640  *********************************************************************/
3641 
3642 const struct rte_memzone *
3643 ena_mem_alloc_coherent(struct rte_eth_dev_data *data, size_t size,
3644 		       int socket_id, unsigned int alignment, void **virt_addr,
3645 		       dma_addr_t *phys_addr)
3646 {
3647 	char z_name[RTE_MEMZONE_NAMESIZE];
3648 	struct ena_adapter *adapter = data->dev_private;
3649 	const struct rte_memzone *memzone;
3650 	int rc;
3651 
3652 	rc = snprintf(z_name, RTE_MEMZONE_NAMESIZE, "ena_p%d_mz%" PRIu64 "",
3653 		data->port_id, adapter->memzone_cnt);
3654 	if (rc >= RTE_MEMZONE_NAMESIZE) {
3655 		PMD_DRV_LOG(ERR,
3656 			"Name for the ena_com memzone is too long. Port: %d, mz_num: %" PRIu64 "\n",
3657 			data->port_id, adapter->memzone_cnt);
3658 		goto error;
3659 	}
3660 	adapter->memzone_cnt++;
3661 
3662 	memzone = rte_memzone_reserve_aligned(z_name, size, socket_id,
3663 		RTE_MEMZONE_IOVA_CONTIG, alignment);
3664 	if (memzone == NULL) {
3665 		PMD_DRV_LOG(ERR, "Failed to allocate ena_com memzone: %s\n",
3666 			z_name);
3667 		goto error;
3668 	}
3669 
3670 	memset(memzone->addr, 0, size);
3671 	*virt_addr = memzone->addr;
3672 	*phys_addr = memzone->iova;
3673 
3674 	return memzone;
3675 
3676 error:
3677 	*virt_addr = NULL;
3678 	*phys_addr = 0;
3679 
3680 	return NULL;
3681 }
3682 
3683 
3684 /*********************************************************************
3685  *  PMD configuration
3686  *********************************************************************/
3687 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
3688 	struct rte_pci_device *pci_dev)
3689 {
3690 	return rte_eth_dev_pci_generic_probe(pci_dev,
3691 		sizeof(struct ena_adapter), eth_ena_dev_init);
3692 }
3693 
3694 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
3695 {
3696 	return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
3697 }
3698 
3699 static struct rte_pci_driver rte_ena_pmd = {
3700 	.id_table = pci_id_ena_map,
3701 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
3702 		     RTE_PCI_DRV_WC_ACTIVATE,
3703 	.probe = eth_ena_pci_probe,
3704 	.remove = eth_ena_pci_remove,
3705 };
3706 
3707 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
3708 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
3709 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
3710 RTE_PMD_REGISTER_PARAM_STRING(net_ena, ENA_DEVARG_LARGE_LLQ_HDR "=<0|1>");
3711 RTE_LOG_REGISTER_SUFFIX(ena_logtype_init, init, NOTICE);
3712 RTE_LOG_REGISTER_SUFFIX(ena_logtype_driver, driver, NOTICE);
3713 #ifdef RTE_ETHDEV_DEBUG_RX
3714 RTE_LOG_REGISTER_SUFFIX(ena_logtype_rx, rx, DEBUG);
3715 #endif
3716 #ifdef RTE_ETHDEV_DEBUG_TX
3717 RTE_LOG_REGISTER_SUFFIX(ena_logtype_tx, tx, DEBUG);
3718 #endif
3719 RTE_LOG_REGISTER_SUFFIX(ena_logtype_com, com, WARNING);
3720 
3721 /******************************************************************************
3722  ******************************** AENQ Handlers *******************************
3723  *****************************************************************************/
3724 static void ena_update_on_link_change(void *adapter_data,
3725 				      struct ena_admin_aenq_entry *aenq_e)
3726 {
3727 	struct rte_eth_dev *eth_dev = adapter_data;
3728 	struct ena_adapter *adapter = eth_dev->data->dev_private;
3729 	struct ena_admin_aenq_link_change_desc *aenq_link_desc;
3730 	uint32_t status;
3731 
3732 	aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
3733 
3734 	status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
3735 	adapter->link_status = status;
3736 
3737 	ena_link_update(eth_dev, 0);
3738 	rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
3739 }
3740 
3741 static void ena_notification(void *adapter_data,
3742 			     struct ena_admin_aenq_entry *aenq_e)
3743 {
3744 	struct rte_eth_dev *eth_dev = adapter_data;
3745 	struct ena_adapter *adapter = eth_dev->data->dev_private;
3746 	struct ena_admin_ena_hw_hints *hints;
3747 
3748 	if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
3749 		PMD_DRV_LOG(WARNING, "Invalid AENQ group: %x. Expected: %x\n",
3750 			aenq_e->aenq_common_desc.group,
3751 			ENA_ADMIN_NOTIFICATION);
3752 
3753 	switch (aenq_e->aenq_common_desc.syndrome) {
3754 	case ENA_ADMIN_UPDATE_HINTS:
3755 		hints = (struct ena_admin_ena_hw_hints *)
3756 			(&aenq_e->inline_data_w4);
3757 		ena_update_hints(adapter, hints);
3758 		break;
3759 	default:
3760 		PMD_DRV_LOG(ERR, "Invalid AENQ notification link state: %d\n",
3761 			aenq_e->aenq_common_desc.syndrome);
3762 	}
3763 }
3764 
3765 static void ena_keep_alive(void *adapter_data,
3766 			   __rte_unused struct ena_admin_aenq_entry *aenq_e)
3767 {
3768 	struct rte_eth_dev *eth_dev = adapter_data;
3769 	struct ena_adapter *adapter = eth_dev->data->dev_private;
3770 	struct ena_admin_aenq_keep_alive_desc *desc;
3771 	uint64_t rx_drops;
3772 	uint64_t tx_drops;
3773 
3774 	adapter->timestamp_wd = rte_get_timer_cycles();
3775 
3776 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
3777 	rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
3778 	tx_drops = ((uint64_t)desc->tx_drops_high << 32) | desc->tx_drops_low;
3779 
3780 	adapter->drv_stats->rx_drops = rx_drops;
3781 	adapter->dev_stats.tx_drops = tx_drops;
3782 }
3783 
3784 /**
3785  * This handler will called for unknown event group or unimplemented handlers
3786  **/
3787 static void unimplemented_aenq_handler(__rte_unused void *data,
3788 				       __rte_unused struct ena_admin_aenq_entry *aenq_e)
3789 {
3790 	PMD_DRV_LOG(ERR,
3791 		"Unknown event was received or event with unimplemented handler\n");
3792 }
3793 
3794 static struct ena_aenq_handlers aenq_handlers = {
3795 	.handlers = {
3796 		[ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
3797 		[ENA_ADMIN_NOTIFICATION] = ena_notification,
3798 		[ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive
3799 	},
3800 	.unimplemented_handler = unimplemented_aenq_handler
3801 };
3802 
3803 /*********************************************************************
3804  *  Multi-Process communication request handling (in primary)
3805  *********************************************************************/
3806 static int
3807 ena_mp_primary_handle(const struct rte_mp_msg *mp_msg, const void *peer)
3808 {
3809 	const struct ena_mp_body *req =
3810 		(const struct ena_mp_body *)mp_msg->param;
3811 	struct ena_adapter *adapter;
3812 	struct ena_com_dev *ena_dev;
3813 	struct ena_mp_body *rsp;
3814 	struct rte_mp_msg mp_rsp;
3815 	struct rte_eth_dev *dev;
3816 	int res = 0;
3817 
3818 	rsp = (struct ena_mp_body *)&mp_rsp.param;
3819 	mp_msg_init(&mp_rsp, req->type, req->port_id);
3820 
3821 	if (!rte_eth_dev_is_valid_port(req->port_id)) {
3822 		rte_errno = ENODEV;
3823 		res = -rte_errno;
3824 		PMD_DRV_LOG(ERR, "Unknown port %d in request %d\n",
3825 			    req->port_id, req->type);
3826 		goto end;
3827 	}
3828 	dev = &rte_eth_devices[req->port_id];
3829 	adapter = dev->data->dev_private;
3830 	ena_dev = &adapter->ena_dev;
3831 
3832 	switch (req->type) {
3833 	case ENA_MP_DEV_STATS_GET:
3834 		res = ena_com_get_dev_basic_stats(ena_dev,
3835 						  &adapter->basic_stats);
3836 		break;
3837 	case ENA_MP_ENI_STATS_GET:
3838 		res = ena_com_get_eni_stats(ena_dev,
3839 			(struct ena_admin_eni_stats *)&adapter->eni_stats);
3840 		break;
3841 	case ENA_MP_MTU_SET:
3842 		res = ena_com_set_dev_mtu(ena_dev, req->args.mtu);
3843 		break;
3844 	case ENA_MP_IND_TBL_GET:
3845 		res = ena_com_indirect_table_get(ena_dev,
3846 						 adapter->indirect_table);
3847 		break;
3848 	case ENA_MP_IND_TBL_SET:
3849 		res = ena_com_indirect_table_set(ena_dev);
3850 		break;
3851 	default:
3852 		PMD_DRV_LOG(ERR, "Unknown request type %d\n", req->type);
3853 		res = -EINVAL;
3854 		break;
3855 	}
3856 
3857 end:
3858 	/* Save processing result in the reply */
3859 	rsp->result = res;
3860 	/* Return just IPC processing status */
3861 	return rte_mp_reply(&mp_rsp, peer);
3862 }
3863