xref: /dpdk/drivers/net/ena/ena_ethdev.c (revision 8a90f3d8d09b5fa2e7a6a7b83b8e4868acebbe01)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
3  * All rights reserved.
4  */
5 
6 #include <rte_string_fns.h>
7 #include <rte_ether.h>
8 #include <ethdev_driver.h>
9 #include <ethdev_pci.h>
10 #include <rte_tcp.h>
11 #include <rte_atomic.h>
12 #include <rte_dev.h>
13 #include <rte_errno.h>
14 #include <rte_version.h>
15 #include <rte_net.h>
16 #include <rte_kvargs.h>
17 
18 #include "ena_ethdev.h"
19 #include "ena_logs.h"
20 #include "ena_platform.h"
21 #include "ena_com.h"
22 #include "ena_eth_com.h"
23 
24 #include <ena_common_defs.h>
25 #include <ena_regs_defs.h>
26 #include <ena_admin_defs.h>
27 #include <ena_eth_io_defs.h>
28 
29 #define DRV_MODULE_VER_MAJOR	2
30 #define DRV_MODULE_VER_MINOR	2
31 #define DRV_MODULE_VER_SUBMINOR	1
32 
33 #define ENA_IO_TXQ_IDX(q)	(2 * (q))
34 #define ENA_IO_RXQ_IDX(q)	(2 * (q) + 1)
35 /*reverse version of ENA_IO_RXQ_IDX*/
36 #define ENA_IO_RXQ_IDX_REV(q)	((q - 1) / 2)
37 
38 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
39 #define TEST_BIT(val, bit_shift) (val & (1UL << bit_shift))
40 
41 #define GET_L4_HDR_LEN(mbuf)					\
42 	((rte_pktmbuf_mtod_offset(mbuf,	struct rte_tcp_hdr *,	\
43 		mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
44 
45 #define ENA_RX_RSS_TABLE_LOG_SIZE  7
46 #define ENA_RX_RSS_TABLE_SIZE	(1 << ENA_RX_RSS_TABLE_LOG_SIZE)
47 #define ENA_HASH_KEY_SIZE	40
48 #define ETH_GSTRING_LEN	32
49 
50 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
51 
52 #define ENA_MIN_RING_DESC	128
53 
54 enum ethtool_stringset {
55 	ETH_SS_TEST             = 0,
56 	ETH_SS_STATS,
57 };
58 
59 struct ena_stats {
60 	char name[ETH_GSTRING_LEN];
61 	int stat_offset;
62 };
63 
64 #define ENA_STAT_ENTRY(stat, stat_type) { \
65 	.name = #stat, \
66 	.stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
67 }
68 
69 #define ENA_STAT_RX_ENTRY(stat) \
70 	ENA_STAT_ENTRY(stat, rx)
71 
72 #define ENA_STAT_TX_ENTRY(stat) \
73 	ENA_STAT_ENTRY(stat, tx)
74 
75 #define ENA_STAT_ENI_ENTRY(stat) \
76 	ENA_STAT_ENTRY(stat, eni)
77 
78 #define ENA_STAT_GLOBAL_ENTRY(stat) \
79 	ENA_STAT_ENTRY(stat, dev)
80 
81 /* Device arguments */
82 #define ENA_DEVARG_LARGE_LLQ_HDR "large_llq_hdr"
83 
84 /*
85  * Each rte_memzone should have unique name.
86  * To satisfy it, count number of allocation and add it to name.
87  */
88 rte_atomic32_t ena_alloc_cnt;
89 
90 static const struct ena_stats ena_stats_global_strings[] = {
91 	ENA_STAT_GLOBAL_ENTRY(wd_expired),
92 	ENA_STAT_GLOBAL_ENTRY(dev_start),
93 	ENA_STAT_GLOBAL_ENTRY(dev_stop),
94 	ENA_STAT_GLOBAL_ENTRY(tx_drops),
95 };
96 
97 static const struct ena_stats ena_stats_eni_strings[] = {
98 	ENA_STAT_ENI_ENTRY(bw_in_allowance_exceeded),
99 	ENA_STAT_ENI_ENTRY(bw_out_allowance_exceeded),
100 	ENA_STAT_ENI_ENTRY(pps_allowance_exceeded),
101 	ENA_STAT_ENI_ENTRY(conntrack_allowance_exceeded),
102 	ENA_STAT_ENI_ENTRY(linklocal_allowance_exceeded),
103 };
104 
105 static const struct ena_stats ena_stats_tx_strings[] = {
106 	ENA_STAT_TX_ENTRY(cnt),
107 	ENA_STAT_TX_ENTRY(bytes),
108 	ENA_STAT_TX_ENTRY(prepare_ctx_err),
109 	ENA_STAT_TX_ENTRY(linearize),
110 	ENA_STAT_TX_ENTRY(linearize_failed),
111 	ENA_STAT_TX_ENTRY(tx_poll),
112 	ENA_STAT_TX_ENTRY(doorbells),
113 	ENA_STAT_TX_ENTRY(bad_req_id),
114 	ENA_STAT_TX_ENTRY(available_desc),
115 };
116 
117 static const struct ena_stats ena_stats_rx_strings[] = {
118 	ENA_STAT_RX_ENTRY(cnt),
119 	ENA_STAT_RX_ENTRY(bytes),
120 	ENA_STAT_RX_ENTRY(refill_partial),
121 	ENA_STAT_RX_ENTRY(bad_csum),
122 	ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
123 	ENA_STAT_RX_ENTRY(bad_desc_num),
124 	ENA_STAT_RX_ENTRY(bad_req_id),
125 };
126 
127 #define ENA_STATS_ARRAY_GLOBAL	ARRAY_SIZE(ena_stats_global_strings)
128 #define ENA_STATS_ARRAY_ENI	ARRAY_SIZE(ena_stats_eni_strings)
129 #define ENA_STATS_ARRAY_TX	ARRAY_SIZE(ena_stats_tx_strings)
130 #define ENA_STATS_ARRAY_RX	ARRAY_SIZE(ena_stats_rx_strings)
131 
132 #define QUEUE_OFFLOADS (DEV_TX_OFFLOAD_TCP_CKSUM |\
133 			DEV_TX_OFFLOAD_UDP_CKSUM |\
134 			DEV_TX_OFFLOAD_IPV4_CKSUM |\
135 			DEV_TX_OFFLOAD_TCP_TSO)
136 #define MBUF_OFFLOADS (PKT_TX_L4_MASK |\
137 		       PKT_TX_IP_CKSUM |\
138 		       PKT_TX_TCP_SEG)
139 
140 /** Vendor ID used by Amazon devices */
141 #define PCI_VENDOR_ID_AMAZON 0x1D0F
142 /** Amazon devices */
143 #define PCI_DEVICE_ID_ENA_VF		0xEC20
144 #define PCI_DEVICE_ID_ENA_VF_RSERV0	0xEC21
145 
146 #define	ENA_TX_OFFLOAD_MASK	(\
147 	PKT_TX_L4_MASK |         \
148 	PKT_TX_IPV6 |            \
149 	PKT_TX_IPV4 |            \
150 	PKT_TX_IP_CKSUM |        \
151 	PKT_TX_TCP_SEG)
152 
153 #define	ENA_TX_OFFLOAD_NOTSUP_MASK	\
154 	(PKT_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
155 
156 static const struct rte_pci_id pci_id_ena_map[] = {
157 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
158 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF_RSERV0) },
159 	{ .device_id = 0 },
160 };
161 
162 static struct ena_aenq_handlers aenq_handlers;
163 
164 static int ena_device_init(struct ena_com_dev *ena_dev,
165 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
166 			   bool *wd_state);
167 static int ena_dev_configure(struct rte_eth_dev *dev);
168 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
169 	struct ena_tx_buffer *tx_info,
170 	struct rte_mbuf *mbuf,
171 	void **push_header,
172 	uint16_t *header_len);
173 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf);
174 static void ena_tx_cleanup(struct ena_ring *tx_ring);
175 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
176 				  uint16_t nb_pkts);
177 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
178 		uint16_t nb_pkts);
179 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
180 			      uint16_t nb_desc, unsigned int socket_id,
181 			      const struct rte_eth_txconf *tx_conf);
182 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
183 			      uint16_t nb_desc, unsigned int socket_id,
184 			      const struct rte_eth_rxconf *rx_conf,
185 			      struct rte_mempool *mp);
186 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len);
187 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
188 				    struct ena_com_rx_buf_info *ena_bufs,
189 				    uint32_t descs,
190 				    uint16_t *next_to_clean,
191 				    uint8_t offset);
192 static uint16_t eth_ena_recv_pkts(void *rx_queue,
193 				  struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
194 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
195 				  struct rte_mbuf *mbuf, uint16_t id);
196 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
197 static void ena_init_rings(struct ena_adapter *adapter,
198 			   bool disable_meta_caching);
199 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
200 static int ena_start(struct rte_eth_dev *dev);
201 static int ena_stop(struct rte_eth_dev *dev);
202 static int ena_close(struct rte_eth_dev *dev);
203 static int ena_dev_reset(struct rte_eth_dev *dev);
204 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
205 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
206 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
207 static void ena_rx_queue_release(void *queue);
208 static void ena_tx_queue_release(void *queue);
209 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
210 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
211 static int ena_link_update(struct rte_eth_dev *dev,
212 			   int wait_to_complete);
213 static int ena_create_io_queue(struct ena_ring *ring);
214 static void ena_queue_stop(struct ena_ring *ring);
215 static void ena_queue_stop_all(struct rte_eth_dev *dev,
216 			      enum ena_ring_type ring_type);
217 static int ena_queue_start(struct ena_ring *ring);
218 static int ena_queue_start_all(struct rte_eth_dev *dev,
219 			       enum ena_ring_type ring_type);
220 static void ena_stats_restart(struct rte_eth_dev *dev);
221 static int ena_infos_get(struct rte_eth_dev *dev,
222 			 struct rte_eth_dev_info *dev_info);
223 static int ena_rss_reta_update(struct rte_eth_dev *dev,
224 			       struct rte_eth_rss_reta_entry64 *reta_conf,
225 			       uint16_t reta_size);
226 static int ena_rss_reta_query(struct rte_eth_dev *dev,
227 			      struct rte_eth_rss_reta_entry64 *reta_conf,
228 			      uint16_t reta_size);
229 static void ena_interrupt_handler_rte(void *cb_arg);
230 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
231 static void ena_destroy_device(struct rte_eth_dev *eth_dev);
232 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
233 static int ena_xstats_get_names(struct rte_eth_dev *dev,
234 				struct rte_eth_xstat_name *xstats_names,
235 				unsigned int n);
236 static int ena_xstats_get(struct rte_eth_dev *dev,
237 			  struct rte_eth_xstat *stats,
238 			  unsigned int n);
239 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
240 				const uint64_t *ids,
241 				uint64_t *values,
242 				unsigned int n);
243 static int ena_process_bool_devarg(const char *key,
244 				   const char *value,
245 				   void *opaque);
246 static int ena_parse_devargs(struct ena_adapter *adapter,
247 			     struct rte_devargs *devargs);
248 static int ena_copy_eni_stats(struct ena_adapter *adapter);
249 
250 static const struct eth_dev_ops ena_dev_ops = {
251 	.dev_configure        = ena_dev_configure,
252 	.dev_infos_get        = ena_infos_get,
253 	.rx_queue_setup       = ena_rx_queue_setup,
254 	.tx_queue_setup       = ena_tx_queue_setup,
255 	.dev_start            = ena_start,
256 	.dev_stop             = ena_stop,
257 	.link_update          = ena_link_update,
258 	.stats_get            = ena_stats_get,
259 	.xstats_get_names     = ena_xstats_get_names,
260 	.xstats_get	      = ena_xstats_get,
261 	.xstats_get_by_id     = ena_xstats_get_by_id,
262 	.mtu_set              = ena_mtu_set,
263 	.rx_queue_release     = ena_rx_queue_release,
264 	.tx_queue_release     = ena_tx_queue_release,
265 	.dev_close            = ena_close,
266 	.dev_reset            = ena_dev_reset,
267 	.reta_update          = ena_rss_reta_update,
268 	.reta_query           = ena_rss_reta_query,
269 };
270 
271 void ena_rss_key_fill(void *key, size_t size)
272 {
273 	static bool key_generated;
274 	static uint8_t default_key[ENA_HASH_KEY_SIZE];
275 	size_t i;
276 
277 	RTE_ASSERT(size <= ENA_HASH_KEY_SIZE);
278 
279 	if (!key_generated) {
280 		for (i = 0; i < ENA_HASH_KEY_SIZE; ++i)
281 			default_key[i] = rte_rand() & 0xff;
282 		key_generated = true;
283 	}
284 
285 	rte_memcpy(key, default_key, size);
286 }
287 
288 static inline void ena_rx_mbuf_prepare(struct rte_mbuf *mbuf,
289 				       struct ena_com_rx_ctx *ena_rx_ctx)
290 {
291 	uint64_t ol_flags = 0;
292 	uint32_t packet_type = 0;
293 
294 	if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
295 		packet_type |= RTE_PTYPE_L4_TCP;
296 	else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
297 		packet_type |= RTE_PTYPE_L4_UDP;
298 
299 	if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
300 		packet_type |= RTE_PTYPE_L3_IPV4;
301 		if (unlikely(ena_rx_ctx->l3_csum_err))
302 			ol_flags |= PKT_RX_IP_CKSUM_BAD;
303 		else
304 			ol_flags |= PKT_RX_IP_CKSUM_GOOD;
305 	} else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
306 		packet_type |= RTE_PTYPE_L3_IPV6;
307 	}
308 
309 	if (!ena_rx_ctx->l4_csum_checked || ena_rx_ctx->frag)
310 		ol_flags |= PKT_RX_L4_CKSUM_UNKNOWN;
311 	else
312 		if (unlikely(ena_rx_ctx->l4_csum_err))
313 			ol_flags |= PKT_RX_L4_CKSUM_BAD;
314 		else
315 			ol_flags |= PKT_RX_L4_CKSUM_GOOD;
316 
317 	mbuf->ol_flags = ol_flags;
318 	mbuf->packet_type = packet_type;
319 }
320 
321 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
322 				       struct ena_com_tx_ctx *ena_tx_ctx,
323 				       uint64_t queue_offloads,
324 				       bool disable_meta_caching)
325 {
326 	struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
327 
328 	if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
329 	    (queue_offloads & QUEUE_OFFLOADS)) {
330 		/* check if TSO is required */
331 		if ((mbuf->ol_flags & PKT_TX_TCP_SEG) &&
332 		    (queue_offloads & DEV_TX_OFFLOAD_TCP_TSO)) {
333 			ena_tx_ctx->tso_enable = true;
334 
335 			ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
336 		}
337 
338 		/* check if L3 checksum is needed */
339 		if ((mbuf->ol_flags & PKT_TX_IP_CKSUM) &&
340 		    (queue_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM))
341 			ena_tx_ctx->l3_csum_enable = true;
342 
343 		if (mbuf->ol_flags & PKT_TX_IPV6) {
344 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
345 		} else {
346 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
347 
348 			/* set don't fragment (DF) flag */
349 			if (mbuf->packet_type &
350 				(RTE_PTYPE_L4_NONFRAG
351 				 | RTE_PTYPE_INNER_L4_NONFRAG))
352 				ena_tx_ctx->df = true;
353 		}
354 
355 		/* check if L4 checksum is needed */
356 		if (((mbuf->ol_flags & PKT_TX_L4_MASK) == PKT_TX_TCP_CKSUM) &&
357 		    (queue_offloads & DEV_TX_OFFLOAD_TCP_CKSUM)) {
358 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
359 			ena_tx_ctx->l4_csum_enable = true;
360 		} else if (((mbuf->ol_flags & PKT_TX_L4_MASK) ==
361 				PKT_TX_UDP_CKSUM) &&
362 				(queue_offloads & DEV_TX_OFFLOAD_UDP_CKSUM)) {
363 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
364 			ena_tx_ctx->l4_csum_enable = true;
365 		} else {
366 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
367 			ena_tx_ctx->l4_csum_enable = false;
368 		}
369 
370 		ena_meta->mss = mbuf->tso_segsz;
371 		ena_meta->l3_hdr_len = mbuf->l3_len;
372 		ena_meta->l3_hdr_offset = mbuf->l2_len;
373 
374 		ena_tx_ctx->meta_valid = true;
375 	} else if (disable_meta_caching) {
376 		memset(ena_meta, 0, sizeof(*ena_meta));
377 		ena_tx_ctx->meta_valid = true;
378 	} else {
379 		ena_tx_ctx->meta_valid = false;
380 	}
381 }
382 
383 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
384 {
385 	struct ena_tx_buffer *tx_info = NULL;
386 
387 	if (likely(req_id < tx_ring->ring_size)) {
388 		tx_info = &tx_ring->tx_buffer_info[req_id];
389 		if (likely(tx_info->mbuf))
390 			return 0;
391 	}
392 
393 	if (tx_info)
394 		PMD_DRV_LOG(ERR, "tx_info doesn't have valid mbuf\n");
395 	else
396 		PMD_DRV_LOG(ERR, "Invalid req_id: %hu\n", req_id);
397 
398 	/* Trigger device reset */
399 	++tx_ring->tx_stats.bad_req_id;
400 	tx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID;
401 	tx_ring->adapter->trigger_reset	= true;
402 	return -EFAULT;
403 }
404 
405 static void ena_config_host_info(struct ena_com_dev *ena_dev)
406 {
407 	struct ena_admin_host_info *host_info;
408 	int rc;
409 
410 	/* Allocate only the host info */
411 	rc = ena_com_allocate_host_info(ena_dev);
412 	if (rc) {
413 		PMD_DRV_LOG(ERR, "Cannot allocate host info\n");
414 		return;
415 	}
416 
417 	host_info = ena_dev->host_attr.host_info;
418 
419 	host_info->os_type = ENA_ADMIN_OS_DPDK;
420 	host_info->kernel_ver = RTE_VERSION;
421 	strlcpy((char *)host_info->kernel_ver_str, rte_version(),
422 		sizeof(host_info->kernel_ver_str));
423 	host_info->os_dist = RTE_VERSION;
424 	strlcpy((char *)host_info->os_dist_str, rte_version(),
425 		sizeof(host_info->os_dist_str));
426 	host_info->driver_version =
427 		(DRV_MODULE_VER_MAJOR) |
428 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
429 		(DRV_MODULE_VER_SUBMINOR <<
430 			ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
431 	host_info->num_cpus = rte_lcore_count();
432 
433 	host_info->driver_supported_features =
434 		ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK;
435 
436 	rc = ena_com_set_host_attributes(ena_dev);
437 	if (rc) {
438 		if (rc == -ENA_COM_UNSUPPORTED)
439 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
440 		else
441 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
442 
443 		goto err;
444 	}
445 
446 	return;
447 
448 err:
449 	ena_com_delete_host_info(ena_dev);
450 }
451 
452 /* This function calculates the number of xstats based on the current config */
453 static unsigned int ena_xstats_calc_num(struct rte_eth_dev *dev)
454 {
455 	return ENA_STATS_ARRAY_GLOBAL + ENA_STATS_ARRAY_ENI +
456 		(dev->data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
457 		(dev->data->nb_rx_queues * ENA_STATS_ARRAY_RX);
458 }
459 
460 static void ena_config_debug_area(struct ena_adapter *adapter)
461 {
462 	u32 debug_area_size;
463 	int rc, ss_count;
464 
465 	ss_count = ena_xstats_calc_num(adapter->rte_dev);
466 
467 	/* allocate 32 bytes for each string and 64bit for the value */
468 	debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
469 
470 	rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
471 	if (rc) {
472 		PMD_DRV_LOG(ERR, "Cannot allocate debug area\n");
473 		return;
474 	}
475 
476 	rc = ena_com_set_host_attributes(&adapter->ena_dev);
477 	if (rc) {
478 		if (rc == -ENA_COM_UNSUPPORTED)
479 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
480 		else
481 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
482 
483 		goto err;
484 	}
485 
486 	return;
487 err:
488 	ena_com_delete_debug_area(&adapter->ena_dev);
489 }
490 
491 static int ena_close(struct rte_eth_dev *dev)
492 {
493 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
494 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
495 	struct ena_adapter *adapter = dev->data->dev_private;
496 	int ret = 0;
497 
498 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
499 		return 0;
500 
501 	if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
502 		ret = ena_stop(dev);
503 	adapter->state = ENA_ADAPTER_STATE_CLOSED;
504 
505 	ena_rx_queue_release_all(dev);
506 	ena_tx_queue_release_all(dev);
507 
508 	rte_free(adapter->drv_stats);
509 	adapter->drv_stats = NULL;
510 
511 	rte_intr_disable(intr_handle);
512 	rte_intr_callback_unregister(intr_handle,
513 				     ena_interrupt_handler_rte,
514 				     adapter);
515 
516 	/*
517 	 * MAC is not allocated dynamically. Setting NULL should prevent from
518 	 * release of the resource in the rte_eth_dev_release_port().
519 	 */
520 	dev->data->mac_addrs = NULL;
521 
522 	return ret;
523 }
524 
525 static int
526 ena_dev_reset(struct rte_eth_dev *dev)
527 {
528 	int rc = 0;
529 
530 	ena_destroy_device(dev);
531 	rc = eth_ena_dev_init(dev);
532 	if (rc)
533 		PMD_INIT_LOG(CRIT, "Cannot initialize device");
534 
535 	return rc;
536 }
537 
538 static int ena_rss_reta_update(struct rte_eth_dev *dev,
539 			       struct rte_eth_rss_reta_entry64 *reta_conf,
540 			       uint16_t reta_size)
541 {
542 	struct ena_adapter *adapter = dev->data->dev_private;
543 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
544 	int rc, i;
545 	u16 entry_value;
546 	int conf_idx;
547 	int idx;
548 
549 	if ((reta_size == 0) || (reta_conf == NULL))
550 		return -EINVAL;
551 
552 	if (reta_size > ENA_RX_RSS_TABLE_SIZE) {
553 		PMD_DRV_LOG(WARNING,
554 			"indirection table %d is bigger than supported (%d)\n",
555 			reta_size, ENA_RX_RSS_TABLE_SIZE);
556 		return -EINVAL;
557 	}
558 
559 	for (i = 0 ; i < reta_size ; i++) {
560 		/* each reta_conf is for 64 entries.
561 		 * to support 128 we use 2 conf of 64
562 		 */
563 		conf_idx = i / RTE_RETA_GROUP_SIZE;
564 		idx = i % RTE_RETA_GROUP_SIZE;
565 		if (TEST_BIT(reta_conf[conf_idx].mask, idx)) {
566 			entry_value =
567 				ENA_IO_RXQ_IDX(reta_conf[conf_idx].reta[idx]);
568 
569 			rc = ena_com_indirect_table_fill_entry(ena_dev,
570 							       i,
571 							       entry_value);
572 			if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
573 				PMD_DRV_LOG(ERR,
574 					"Cannot fill indirect table\n");
575 				return rc;
576 			}
577 		}
578 	}
579 
580 	rte_spinlock_lock(&adapter->admin_lock);
581 	rc = ena_com_indirect_table_set(ena_dev);
582 	rte_spinlock_unlock(&adapter->admin_lock);
583 	if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
584 		PMD_DRV_LOG(ERR, "Cannot flush the indirect table\n");
585 		return rc;
586 	}
587 
588 	PMD_DRV_LOG(DEBUG, "%s(): RSS configured %d entries  for port %d\n",
589 		__func__, reta_size, adapter->rte_dev->data->port_id);
590 
591 	return 0;
592 }
593 
594 /* Query redirection table. */
595 static int ena_rss_reta_query(struct rte_eth_dev *dev,
596 			      struct rte_eth_rss_reta_entry64 *reta_conf,
597 			      uint16_t reta_size)
598 {
599 	struct ena_adapter *adapter = dev->data->dev_private;
600 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
601 	int rc;
602 	int i;
603 	u32 indirect_table[ENA_RX_RSS_TABLE_SIZE] = {0};
604 	int reta_conf_idx;
605 	int reta_idx;
606 
607 	if (reta_size == 0 || reta_conf == NULL ||
608 	    (reta_size > RTE_RETA_GROUP_SIZE && ((reta_conf + 1) == NULL)))
609 		return -EINVAL;
610 
611 	rte_spinlock_lock(&adapter->admin_lock);
612 	rc = ena_com_indirect_table_get(ena_dev, indirect_table);
613 	rte_spinlock_unlock(&adapter->admin_lock);
614 	if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
615 		PMD_DRV_LOG(ERR, "cannot get indirect table\n");
616 		return -ENOTSUP;
617 	}
618 
619 	for (i = 0 ; i < reta_size ; i++) {
620 		reta_conf_idx = i / RTE_RETA_GROUP_SIZE;
621 		reta_idx = i % RTE_RETA_GROUP_SIZE;
622 		if (TEST_BIT(reta_conf[reta_conf_idx].mask, reta_idx))
623 			reta_conf[reta_conf_idx].reta[reta_idx] =
624 				ENA_IO_RXQ_IDX_REV(indirect_table[i]);
625 	}
626 
627 	return 0;
628 }
629 
630 static int ena_rss_init_default(struct ena_adapter *adapter)
631 {
632 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
633 	uint16_t nb_rx_queues = adapter->rte_dev->data->nb_rx_queues;
634 	int rc, i;
635 	u32 val;
636 
637 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
638 	if (unlikely(rc)) {
639 		PMD_DRV_LOG(ERR, "Cannot init indirect table\n");
640 		goto err_rss_init;
641 	}
642 
643 	for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
644 		val = i % nb_rx_queues;
645 		rc = ena_com_indirect_table_fill_entry(ena_dev, i,
646 						       ENA_IO_RXQ_IDX(val));
647 		if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
648 			PMD_DRV_LOG(ERR, "Cannot fill indirect table\n");
649 			goto err_fill_indir;
650 		}
651 	}
652 
653 	rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL,
654 					ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
655 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
656 		PMD_DRV_LOG(INFO, "Cannot fill hash function\n");
657 		goto err_fill_indir;
658 	}
659 
660 	rc = ena_com_set_default_hash_ctrl(ena_dev);
661 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
662 		PMD_DRV_LOG(INFO, "Cannot fill hash control\n");
663 		goto err_fill_indir;
664 	}
665 
666 	rc = ena_com_indirect_table_set(ena_dev);
667 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
668 		PMD_DRV_LOG(ERR, "Cannot flush the indirect table\n");
669 		goto err_fill_indir;
670 	}
671 	PMD_DRV_LOG(DEBUG, "RSS configured for port %d\n",
672 		adapter->rte_dev->data->port_id);
673 
674 	return 0;
675 
676 err_fill_indir:
677 	ena_com_rss_destroy(ena_dev);
678 err_rss_init:
679 
680 	return rc;
681 }
682 
683 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
684 {
685 	struct ena_ring **queues = (struct ena_ring **)dev->data->rx_queues;
686 	int nb_queues = dev->data->nb_rx_queues;
687 	int i;
688 
689 	for (i = 0; i < nb_queues; i++)
690 		ena_rx_queue_release(queues[i]);
691 }
692 
693 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
694 {
695 	struct ena_ring **queues = (struct ena_ring **)dev->data->tx_queues;
696 	int nb_queues = dev->data->nb_tx_queues;
697 	int i;
698 
699 	for (i = 0; i < nb_queues; i++)
700 		ena_tx_queue_release(queues[i]);
701 }
702 
703 static void ena_rx_queue_release(void *queue)
704 {
705 	struct ena_ring *ring = (struct ena_ring *)queue;
706 
707 	/* Free ring resources */
708 	if (ring->rx_buffer_info)
709 		rte_free(ring->rx_buffer_info);
710 	ring->rx_buffer_info = NULL;
711 
712 	if (ring->rx_refill_buffer)
713 		rte_free(ring->rx_refill_buffer);
714 	ring->rx_refill_buffer = NULL;
715 
716 	if (ring->empty_rx_reqs)
717 		rte_free(ring->empty_rx_reqs);
718 	ring->empty_rx_reqs = NULL;
719 
720 	ring->configured = 0;
721 
722 	PMD_DRV_LOG(NOTICE, "RX Queue %d:%d released\n",
723 		ring->port_id, ring->id);
724 }
725 
726 static void ena_tx_queue_release(void *queue)
727 {
728 	struct ena_ring *ring = (struct ena_ring *)queue;
729 
730 	/* Free ring resources */
731 	if (ring->push_buf_intermediate_buf)
732 		rte_free(ring->push_buf_intermediate_buf);
733 
734 	if (ring->tx_buffer_info)
735 		rte_free(ring->tx_buffer_info);
736 
737 	if (ring->empty_tx_reqs)
738 		rte_free(ring->empty_tx_reqs);
739 
740 	ring->empty_tx_reqs = NULL;
741 	ring->tx_buffer_info = NULL;
742 	ring->push_buf_intermediate_buf = NULL;
743 
744 	ring->configured = 0;
745 
746 	PMD_DRV_LOG(NOTICE, "TX Queue %d:%d released\n",
747 		ring->port_id, ring->id);
748 }
749 
750 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
751 {
752 	unsigned int i;
753 
754 	for (i = 0; i < ring->ring_size; ++i) {
755 		struct ena_rx_buffer *rx_info = &ring->rx_buffer_info[i];
756 		if (rx_info->mbuf) {
757 			rte_mbuf_raw_free(rx_info->mbuf);
758 			rx_info->mbuf = NULL;
759 		}
760 	}
761 }
762 
763 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
764 {
765 	unsigned int i;
766 
767 	for (i = 0; i < ring->ring_size; ++i) {
768 		struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
769 
770 		if (tx_buf->mbuf)
771 			rte_pktmbuf_free(tx_buf->mbuf);
772 	}
773 }
774 
775 static int ena_link_update(struct rte_eth_dev *dev,
776 			   __rte_unused int wait_to_complete)
777 {
778 	struct rte_eth_link *link = &dev->data->dev_link;
779 	struct ena_adapter *adapter = dev->data->dev_private;
780 
781 	link->link_status = adapter->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
782 	link->link_speed = ETH_SPEED_NUM_NONE;
783 	link->link_duplex = ETH_LINK_FULL_DUPLEX;
784 
785 	return 0;
786 }
787 
788 static int ena_queue_start_all(struct rte_eth_dev *dev,
789 			       enum ena_ring_type ring_type)
790 {
791 	struct ena_adapter *adapter = dev->data->dev_private;
792 	struct ena_ring *queues = NULL;
793 	int nb_queues;
794 	int i = 0;
795 	int rc = 0;
796 
797 	if (ring_type == ENA_RING_TYPE_RX) {
798 		queues = adapter->rx_ring;
799 		nb_queues = dev->data->nb_rx_queues;
800 	} else {
801 		queues = adapter->tx_ring;
802 		nb_queues = dev->data->nb_tx_queues;
803 	}
804 	for (i = 0; i < nb_queues; i++) {
805 		if (queues[i].configured) {
806 			if (ring_type == ENA_RING_TYPE_RX) {
807 				ena_assert_msg(
808 					dev->data->rx_queues[i] == &queues[i],
809 					"Inconsistent state of rx queues\n");
810 			} else {
811 				ena_assert_msg(
812 					dev->data->tx_queues[i] == &queues[i],
813 					"Inconsistent state of tx queues\n");
814 			}
815 
816 			rc = ena_queue_start(&queues[i]);
817 
818 			if (rc) {
819 				PMD_INIT_LOG(ERR,
820 					     "failed to start queue %d type(%d)",
821 					     i, ring_type);
822 				goto err;
823 			}
824 		}
825 	}
826 
827 	return 0;
828 
829 err:
830 	while (i--)
831 		if (queues[i].configured)
832 			ena_queue_stop(&queues[i]);
833 
834 	return rc;
835 }
836 
837 static uint32_t ena_get_mtu_conf(struct ena_adapter *adapter)
838 {
839 	uint32_t max_frame_len = adapter->max_mtu;
840 
841 	if (adapter->rte_eth_dev_data->dev_conf.rxmode.offloads &
842 	    DEV_RX_OFFLOAD_JUMBO_FRAME)
843 		max_frame_len =
844 			adapter->rte_eth_dev_data->dev_conf.rxmode.max_rx_pkt_len;
845 
846 	return max_frame_len;
847 }
848 
849 static int ena_check_valid_conf(struct ena_adapter *adapter)
850 {
851 	uint32_t max_frame_len = ena_get_mtu_conf(adapter);
852 
853 	if (max_frame_len > adapter->max_mtu || max_frame_len < ENA_MIN_MTU) {
854 		PMD_INIT_LOG(ERR, "Unsupported MTU of %d. "
855 				  "max mtu: %d, min mtu: %d",
856 			     max_frame_len, adapter->max_mtu, ENA_MIN_MTU);
857 		return ENA_COM_UNSUPPORTED;
858 	}
859 
860 	return 0;
861 }
862 
863 static int
864 ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx,
865 		       bool use_large_llq_hdr)
866 {
867 	struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
868 	struct ena_com_dev *ena_dev = ctx->ena_dev;
869 	uint32_t max_tx_queue_size;
870 	uint32_t max_rx_queue_size;
871 
872 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
873 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
874 			&ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
875 		max_rx_queue_size = RTE_MIN(max_queue_ext->max_rx_cq_depth,
876 			max_queue_ext->max_rx_sq_depth);
877 		max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
878 
879 		if (ena_dev->tx_mem_queue_type ==
880 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
881 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
882 				llq->max_llq_depth);
883 		} else {
884 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
885 				max_queue_ext->max_tx_sq_depth);
886 		}
887 
888 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
889 			max_queue_ext->max_per_packet_rx_descs);
890 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
891 			max_queue_ext->max_per_packet_tx_descs);
892 	} else {
893 		struct ena_admin_queue_feature_desc *max_queues =
894 			&ctx->get_feat_ctx->max_queues;
895 		max_rx_queue_size = RTE_MIN(max_queues->max_cq_depth,
896 			max_queues->max_sq_depth);
897 		max_tx_queue_size = max_queues->max_cq_depth;
898 
899 		if (ena_dev->tx_mem_queue_type ==
900 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
901 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
902 				llq->max_llq_depth);
903 		} else {
904 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
905 				max_queues->max_sq_depth);
906 		}
907 
908 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
909 			max_queues->max_packet_rx_descs);
910 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
911 			max_queues->max_packet_tx_descs);
912 	}
913 
914 	/* Round down to the nearest power of 2 */
915 	max_rx_queue_size = rte_align32prevpow2(max_rx_queue_size);
916 	max_tx_queue_size = rte_align32prevpow2(max_tx_queue_size);
917 
918 	if (use_large_llq_hdr) {
919 		if ((llq->entry_size_ctrl_supported &
920 		     ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
921 		    (ena_dev->tx_mem_queue_type ==
922 		     ENA_ADMIN_PLACEMENT_POLICY_DEV)) {
923 			max_tx_queue_size /= 2;
924 			PMD_INIT_LOG(INFO,
925 				"Forcing large headers and decreasing maximum TX queue size to %d\n",
926 				max_tx_queue_size);
927 		} else {
928 			PMD_INIT_LOG(ERR,
929 				"Forcing large headers failed: LLQ is disabled or device does not support large headers\n");
930 		}
931 	}
932 
933 	if (unlikely(max_rx_queue_size == 0 || max_tx_queue_size == 0)) {
934 		PMD_INIT_LOG(ERR, "Invalid queue size");
935 		return -EFAULT;
936 	}
937 
938 	ctx->max_tx_queue_size = max_tx_queue_size;
939 	ctx->max_rx_queue_size = max_rx_queue_size;
940 
941 	return 0;
942 }
943 
944 static void ena_stats_restart(struct rte_eth_dev *dev)
945 {
946 	struct ena_adapter *adapter = dev->data->dev_private;
947 
948 	rte_atomic64_init(&adapter->drv_stats->ierrors);
949 	rte_atomic64_init(&adapter->drv_stats->oerrors);
950 	rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
951 	adapter->drv_stats->rx_drops = 0;
952 }
953 
954 static int ena_stats_get(struct rte_eth_dev *dev,
955 			  struct rte_eth_stats *stats)
956 {
957 	struct ena_admin_basic_stats ena_stats;
958 	struct ena_adapter *adapter = dev->data->dev_private;
959 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
960 	int rc;
961 	int i;
962 	int max_rings_stats;
963 
964 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
965 		return -ENOTSUP;
966 
967 	memset(&ena_stats, 0, sizeof(ena_stats));
968 
969 	rte_spinlock_lock(&adapter->admin_lock);
970 	rc = ena_com_get_dev_basic_stats(ena_dev, &ena_stats);
971 	rte_spinlock_unlock(&adapter->admin_lock);
972 	if (unlikely(rc)) {
973 		PMD_DRV_LOG(ERR, "Could not retrieve statistics from ENA\n");
974 		return rc;
975 	}
976 
977 	/* Set of basic statistics from ENA */
978 	stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
979 					  ena_stats.rx_pkts_low);
980 	stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
981 					  ena_stats.tx_pkts_low);
982 	stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
983 					ena_stats.rx_bytes_low);
984 	stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
985 					ena_stats.tx_bytes_low);
986 
987 	/* Driver related stats */
988 	stats->imissed = adapter->drv_stats->rx_drops;
989 	stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
990 	stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
991 	stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
992 
993 	max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
994 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
995 	for (i = 0; i < max_rings_stats; ++i) {
996 		struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
997 
998 		stats->q_ibytes[i] = rx_stats->bytes;
999 		stats->q_ipackets[i] = rx_stats->cnt;
1000 		stats->q_errors[i] = rx_stats->bad_desc_num +
1001 			rx_stats->bad_req_id;
1002 	}
1003 
1004 	max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
1005 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
1006 	for (i = 0; i < max_rings_stats; ++i) {
1007 		struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
1008 
1009 		stats->q_obytes[i] = tx_stats->bytes;
1010 		stats->q_opackets[i] = tx_stats->cnt;
1011 	}
1012 
1013 	return 0;
1014 }
1015 
1016 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1017 {
1018 	struct ena_adapter *adapter;
1019 	struct ena_com_dev *ena_dev;
1020 	int rc = 0;
1021 
1022 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
1023 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
1024 	adapter = dev->data->dev_private;
1025 
1026 	ena_dev = &adapter->ena_dev;
1027 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
1028 
1029 	if (mtu > ena_get_mtu_conf(adapter) || mtu < ENA_MIN_MTU) {
1030 		PMD_DRV_LOG(ERR,
1031 			"Invalid MTU setting. new_mtu: %d "
1032 			"max mtu: %d min mtu: %d\n",
1033 			mtu, ena_get_mtu_conf(adapter), ENA_MIN_MTU);
1034 		return -EINVAL;
1035 	}
1036 
1037 	rc = ena_com_set_dev_mtu(ena_dev, mtu);
1038 	if (rc)
1039 		PMD_DRV_LOG(ERR, "Could not set MTU: %d\n", mtu);
1040 	else
1041 		PMD_DRV_LOG(NOTICE, "Set MTU: %d\n", mtu);
1042 
1043 	return rc;
1044 }
1045 
1046 static int ena_start(struct rte_eth_dev *dev)
1047 {
1048 	struct ena_adapter *adapter = dev->data->dev_private;
1049 	uint64_t ticks;
1050 	int rc = 0;
1051 
1052 	rc = ena_check_valid_conf(adapter);
1053 	if (rc)
1054 		return rc;
1055 
1056 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
1057 	if (rc)
1058 		return rc;
1059 
1060 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
1061 	if (rc)
1062 		goto err_start_tx;
1063 
1064 	if (adapter->rte_dev->data->dev_conf.rxmode.mq_mode &
1065 	    ETH_MQ_RX_RSS_FLAG && adapter->rte_dev->data->nb_rx_queues > 0) {
1066 		rc = ena_rss_init_default(adapter);
1067 		if (rc)
1068 			goto err_rss_init;
1069 	}
1070 
1071 	ena_stats_restart(dev);
1072 
1073 	adapter->timestamp_wd = rte_get_timer_cycles();
1074 	adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
1075 
1076 	ticks = rte_get_timer_hz();
1077 	rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
1078 			ena_timer_wd_callback, adapter);
1079 
1080 	++adapter->dev_stats.dev_start;
1081 	adapter->state = ENA_ADAPTER_STATE_RUNNING;
1082 
1083 	return 0;
1084 
1085 err_rss_init:
1086 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1087 err_start_tx:
1088 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1089 	return rc;
1090 }
1091 
1092 static int ena_stop(struct rte_eth_dev *dev)
1093 {
1094 	struct ena_adapter *adapter = dev->data->dev_private;
1095 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1096 	int rc;
1097 
1098 	rte_timer_stop_sync(&adapter->timer_wd);
1099 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1100 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1101 
1102 	if (adapter->trigger_reset) {
1103 		rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
1104 		if (rc)
1105 			PMD_DRV_LOG(ERR, "Device reset failed rc=%d\n", rc);
1106 	}
1107 
1108 	++adapter->dev_stats.dev_stop;
1109 	adapter->state = ENA_ADAPTER_STATE_STOPPED;
1110 	dev->data->dev_started = 0;
1111 
1112 	return 0;
1113 }
1114 
1115 static int ena_create_io_queue(struct ena_ring *ring)
1116 {
1117 	struct ena_adapter *adapter;
1118 	struct ena_com_dev *ena_dev;
1119 	struct ena_com_create_io_ctx ctx =
1120 		/* policy set to _HOST just to satisfy icc compiler */
1121 		{ ENA_ADMIN_PLACEMENT_POLICY_HOST,
1122 		  0, 0, 0, 0, 0 };
1123 	uint16_t ena_qid;
1124 	unsigned int i;
1125 	int rc;
1126 
1127 	adapter = ring->adapter;
1128 	ena_dev = &adapter->ena_dev;
1129 
1130 	if (ring->type == ENA_RING_TYPE_TX) {
1131 		ena_qid = ENA_IO_TXQ_IDX(ring->id);
1132 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1133 		ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1134 		for (i = 0; i < ring->ring_size; i++)
1135 			ring->empty_tx_reqs[i] = i;
1136 	} else {
1137 		ena_qid = ENA_IO_RXQ_IDX(ring->id);
1138 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1139 		for (i = 0; i < ring->ring_size; i++)
1140 			ring->empty_rx_reqs[i] = i;
1141 	}
1142 	ctx.queue_size = ring->ring_size;
1143 	ctx.qid = ena_qid;
1144 	ctx.msix_vector = -1; /* interrupts not used */
1145 	ctx.numa_node = ring->numa_socket_id;
1146 
1147 	rc = ena_com_create_io_queue(ena_dev, &ctx);
1148 	if (rc) {
1149 		PMD_DRV_LOG(ERR,
1150 			"failed to create io queue #%d (qid:%d) rc: %d\n",
1151 			ring->id, ena_qid, rc);
1152 		return rc;
1153 	}
1154 
1155 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1156 				     &ring->ena_com_io_sq,
1157 				     &ring->ena_com_io_cq);
1158 	if (rc) {
1159 		PMD_DRV_LOG(ERR,
1160 			"Failed to get io queue handlers. queue num %d rc: %d\n",
1161 			ring->id, rc);
1162 		ena_com_destroy_io_queue(ena_dev, ena_qid);
1163 		return rc;
1164 	}
1165 
1166 	if (ring->type == ENA_RING_TYPE_TX)
1167 		ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1168 
1169 	return 0;
1170 }
1171 
1172 static void ena_queue_stop(struct ena_ring *ring)
1173 {
1174 	struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
1175 
1176 	if (ring->type == ENA_RING_TYPE_RX) {
1177 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
1178 		ena_rx_queue_release_bufs(ring);
1179 	} else {
1180 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
1181 		ena_tx_queue_release_bufs(ring);
1182 	}
1183 }
1184 
1185 static void ena_queue_stop_all(struct rte_eth_dev *dev,
1186 			      enum ena_ring_type ring_type)
1187 {
1188 	struct ena_adapter *adapter = dev->data->dev_private;
1189 	struct ena_ring *queues = NULL;
1190 	uint16_t nb_queues, i;
1191 
1192 	if (ring_type == ENA_RING_TYPE_RX) {
1193 		queues = adapter->rx_ring;
1194 		nb_queues = dev->data->nb_rx_queues;
1195 	} else {
1196 		queues = adapter->tx_ring;
1197 		nb_queues = dev->data->nb_tx_queues;
1198 	}
1199 
1200 	for (i = 0; i < nb_queues; ++i)
1201 		if (queues[i].configured)
1202 			ena_queue_stop(&queues[i]);
1203 }
1204 
1205 static int ena_queue_start(struct ena_ring *ring)
1206 {
1207 	int rc, bufs_num;
1208 
1209 	ena_assert_msg(ring->configured == 1,
1210 		       "Trying to start unconfigured queue\n");
1211 
1212 	rc = ena_create_io_queue(ring);
1213 	if (rc) {
1214 		PMD_INIT_LOG(ERR, "Failed to create IO queue!");
1215 		return rc;
1216 	}
1217 
1218 	ring->next_to_clean = 0;
1219 	ring->next_to_use = 0;
1220 
1221 	if (ring->type == ENA_RING_TYPE_TX) {
1222 		ring->tx_stats.available_desc =
1223 			ena_com_free_q_entries(ring->ena_com_io_sq);
1224 		return 0;
1225 	}
1226 
1227 	bufs_num = ring->ring_size - 1;
1228 	rc = ena_populate_rx_queue(ring, bufs_num);
1229 	if (rc != bufs_num) {
1230 		ena_com_destroy_io_queue(&ring->adapter->ena_dev,
1231 					 ENA_IO_RXQ_IDX(ring->id));
1232 		PMD_INIT_LOG(ERR, "Failed to populate rx ring !");
1233 		return ENA_COM_FAULT;
1234 	}
1235 	/* Flush per-core RX buffers pools cache as they can be used on other
1236 	 * cores as well.
1237 	 */
1238 	rte_mempool_cache_flush(NULL, ring->mb_pool);
1239 
1240 	return 0;
1241 }
1242 
1243 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1244 			      uint16_t queue_idx,
1245 			      uint16_t nb_desc,
1246 			      unsigned int socket_id,
1247 			      const struct rte_eth_txconf *tx_conf)
1248 {
1249 	struct ena_ring *txq = NULL;
1250 	struct ena_adapter *adapter = dev->data->dev_private;
1251 	unsigned int i;
1252 
1253 	txq = &adapter->tx_ring[queue_idx];
1254 
1255 	if (txq->configured) {
1256 		PMD_DRV_LOG(CRIT,
1257 			"API violation. Queue %d is already configured\n",
1258 			queue_idx);
1259 		return ENA_COM_FAULT;
1260 	}
1261 
1262 	if (!rte_is_power_of_2(nb_desc)) {
1263 		PMD_DRV_LOG(ERR,
1264 			"Unsupported size of TX queue: %d is not a power of 2.\n",
1265 			nb_desc);
1266 		return -EINVAL;
1267 	}
1268 
1269 	if (nb_desc > adapter->max_tx_ring_size) {
1270 		PMD_DRV_LOG(ERR,
1271 			"Unsupported size of TX queue (max size: %d)\n",
1272 			adapter->max_tx_ring_size);
1273 		return -EINVAL;
1274 	}
1275 
1276 	if (nb_desc == RTE_ETH_DEV_FALLBACK_TX_RINGSIZE)
1277 		nb_desc = adapter->max_tx_ring_size;
1278 
1279 	txq->port_id = dev->data->port_id;
1280 	txq->next_to_clean = 0;
1281 	txq->next_to_use = 0;
1282 	txq->ring_size = nb_desc;
1283 	txq->size_mask = nb_desc - 1;
1284 	txq->numa_socket_id = socket_id;
1285 
1286 	txq->tx_buffer_info = rte_zmalloc("txq->tx_buffer_info",
1287 					  sizeof(struct ena_tx_buffer) *
1288 					  txq->ring_size,
1289 					  RTE_CACHE_LINE_SIZE);
1290 	if (!txq->tx_buffer_info) {
1291 		PMD_DRV_LOG(ERR, "failed to alloc mem for tx buffer info\n");
1292 		return -ENOMEM;
1293 	}
1294 
1295 	txq->empty_tx_reqs = rte_zmalloc("txq->empty_tx_reqs",
1296 					 sizeof(u16) * txq->ring_size,
1297 					 RTE_CACHE_LINE_SIZE);
1298 	if (!txq->empty_tx_reqs) {
1299 		PMD_DRV_LOG(ERR, "failed to alloc mem for tx reqs\n");
1300 		rte_free(txq->tx_buffer_info);
1301 		return -ENOMEM;
1302 	}
1303 
1304 	txq->push_buf_intermediate_buf =
1305 		rte_zmalloc("txq->push_buf_intermediate_buf",
1306 			    txq->tx_max_header_size,
1307 			    RTE_CACHE_LINE_SIZE);
1308 	if (!txq->push_buf_intermediate_buf) {
1309 		PMD_DRV_LOG(ERR, "failed to alloc push buff for LLQ\n");
1310 		rte_free(txq->tx_buffer_info);
1311 		rte_free(txq->empty_tx_reqs);
1312 		return -ENOMEM;
1313 	}
1314 
1315 	for (i = 0; i < txq->ring_size; i++)
1316 		txq->empty_tx_reqs[i] = i;
1317 
1318 	if (tx_conf != NULL) {
1319 		txq->offloads =
1320 			tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1321 	}
1322 	/* Store pointer to this queue in upper layer */
1323 	txq->configured = 1;
1324 	dev->data->tx_queues[queue_idx] = txq;
1325 
1326 	return 0;
1327 }
1328 
1329 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1330 			      uint16_t queue_idx,
1331 			      uint16_t nb_desc,
1332 			      unsigned int socket_id,
1333 			      __rte_unused const struct rte_eth_rxconf *rx_conf,
1334 			      struct rte_mempool *mp)
1335 {
1336 	struct ena_adapter *adapter = dev->data->dev_private;
1337 	struct ena_ring *rxq = NULL;
1338 	size_t buffer_size;
1339 	int i;
1340 
1341 	rxq = &adapter->rx_ring[queue_idx];
1342 	if (rxq->configured) {
1343 		PMD_DRV_LOG(CRIT,
1344 			"API violation. Queue %d is already configured\n",
1345 			queue_idx);
1346 		return ENA_COM_FAULT;
1347 	}
1348 
1349 	if (nb_desc == RTE_ETH_DEV_FALLBACK_RX_RINGSIZE)
1350 		nb_desc = adapter->max_rx_ring_size;
1351 
1352 	if (!rte_is_power_of_2(nb_desc)) {
1353 		PMD_DRV_LOG(ERR,
1354 			"Unsupported size of RX queue: %d is not a power of 2.\n",
1355 			nb_desc);
1356 		return -EINVAL;
1357 	}
1358 
1359 	if (nb_desc > adapter->max_rx_ring_size) {
1360 		PMD_DRV_LOG(ERR,
1361 			"Unsupported size of RX queue (max size: %d)\n",
1362 			adapter->max_rx_ring_size);
1363 		return -EINVAL;
1364 	}
1365 
1366 	/* ENA isn't supporting buffers smaller than 1400 bytes */
1367 	buffer_size = rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
1368 	if (buffer_size < ENA_RX_BUF_MIN_SIZE) {
1369 		PMD_DRV_LOG(ERR,
1370 			"Unsupported size of RX buffer: %zu (min size: %d)\n",
1371 			buffer_size, ENA_RX_BUF_MIN_SIZE);
1372 		return -EINVAL;
1373 	}
1374 
1375 	rxq->port_id = dev->data->port_id;
1376 	rxq->next_to_clean = 0;
1377 	rxq->next_to_use = 0;
1378 	rxq->ring_size = nb_desc;
1379 	rxq->size_mask = nb_desc - 1;
1380 	rxq->numa_socket_id = socket_id;
1381 	rxq->mb_pool = mp;
1382 
1383 	rxq->rx_buffer_info = rte_zmalloc("rxq->buffer_info",
1384 		sizeof(struct ena_rx_buffer) * nb_desc,
1385 		RTE_CACHE_LINE_SIZE);
1386 	if (!rxq->rx_buffer_info) {
1387 		PMD_DRV_LOG(ERR, "failed to alloc mem for rx buffer info\n");
1388 		return -ENOMEM;
1389 	}
1390 
1391 	rxq->rx_refill_buffer = rte_zmalloc("rxq->rx_refill_buffer",
1392 					    sizeof(struct rte_mbuf *) * nb_desc,
1393 					    RTE_CACHE_LINE_SIZE);
1394 
1395 	if (!rxq->rx_refill_buffer) {
1396 		PMD_DRV_LOG(ERR, "failed to alloc mem for rx refill buffer\n");
1397 		rte_free(rxq->rx_buffer_info);
1398 		rxq->rx_buffer_info = NULL;
1399 		return -ENOMEM;
1400 	}
1401 
1402 	rxq->empty_rx_reqs = rte_zmalloc("rxq->empty_rx_reqs",
1403 					 sizeof(uint16_t) * nb_desc,
1404 					 RTE_CACHE_LINE_SIZE);
1405 	if (!rxq->empty_rx_reqs) {
1406 		PMD_DRV_LOG(ERR, "failed to alloc mem for empty rx reqs\n");
1407 		rte_free(rxq->rx_buffer_info);
1408 		rxq->rx_buffer_info = NULL;
1409 		rte_free(rxq->rx_refill_buffer);
1410 		rxq->rx_refill_buffer = NULL;
1411 		return -ENOMEM;
1412 	}
1413 
1414 	for (i = 0; i < nb_desc; i++)
1415 		rxq->empty_rx_reqs[i] = i;
1416 
1417 	/* Store pointer to this queue in upper layer */
1418 	rxq->configured = 1;
1419 	dev->data->rx_queues[queue_idx] = rxq;
1420 
1421 	return 0;
1422 }
1423 
1424 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
1425 				  struct rte_mbuf *mbuf, uint16_t id)
1426 {
1427 	struct ena_com_buf ebuf;
1428 	int rc;
1429 
1430 	/* prepare physical address for DMA transaction */
1431 	ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1432 	ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1433 
1434 	/* pass resource to device */
1435 	rc = ena_com_add_single_rx_desc(io_sq, &ebuf, id);
1436 	if (unlikely(rc != 0))
1437 		PMD_DRV_LOG(WARNING, "failed adding rx desc\n");
1438 
1439 	return rc;
1440 }
1441 
1442 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1443 {
1444 	unsigned int i;
1445 	int rc;
1446 	uint16_t next_to_use = rxq->next_to_use;
1447 	uint16_t in_use, req_id;
1448 	struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1449 
1450 	if (unlikely(!count))
1451 		return 0;
1452 
1453 	in_use = rxq->ring_size - 1 -
1454 		ena_com_free_q_entries(rxq->ena_com_io_sq);
1455 	ena_assert_msg(((in_use + count) < rxq->ring_size),
1456 		"bad ring state\n");
1457 
1458 	/* get resources for incoming packets */
1459 	rc = rte_mempool_get_bulk(rxq->mb_pool, (void **)mbufs, count);
1460 	if (unlikely(rc < 0)) {
1461 		rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1462 		++rxq->rx_stats.mbuf_alloc_fail;
1463 		PMD_RX_LOG(DEBUG, "there are no enough free buffers");
1464 		return 0;
1465 	}
1466 
1467 	for (i = 0; i < count; i++) {
1468 		struct rte_mbuf *mbuf = mbufs[i];
1469 		struct ena_rx_buffer *rx_info;
1470 
1471 		if (likely((i + 4) < count))
1472 			rte_prefetch0(mbufs[i + 4]);
1473 
1474 		req_id = rxq->empty_rx_reqs[next_to_use];
1475 		rx_info = &rxq->rx_buffer_info[req_id];
1476 
1477 		rc = ena_add_single_rx_desc(rxq->ena_com_io_sq, mbuf, req_id);
1478 		if (unlikely(rc != 0))
1479 			break;
1480 
1481 		rx_info->mbuf = mbuf;
1482 		next_to_use = ENA_IDX_NEXT_MASKED(next_to_use, rxq->size_mask);
1483 	}
1484 
1485 	if (unlikely(i < count)) {
1486 		PMD_DRV_LOG(WARNING, "refilled rx qid %d with only %d "
1487 			"buffers (from %d)\n", rxq->id, i, count);
1488 		rte_mempool_put_bulk(rxq->mb_pool, (void **)(&mbufs[i]),
1489 				     count - i);
1490 		++rxq->rx_stats.refill_partial;
1491 	}
1492 
1493 	/* When we submitted free recources to device... */
1494 	if (likely(i > 0)) {
1495 		/* ...let HW know that it can fill buffers with data. */
1496 		ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1497 
1498 		rxq->next_to_use = next_to_use;
1499 	}
1500 
1501 	return i;
1502 }
1503 
1504 static int ena_device_init(struct ena_com_dev *ena_dev,
1505 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
1506 			   bool *wd_state)
1507 {
1508 	uint32_t aenq_groups;
1509 	int rc;
1510 	bool readless_supported;
1511 
1512 	/* Initialize mmio registers */
1513 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
1514 	if (rc) {
1515 		PMD_DRV_LOG(ERR, "failed to init mmio read less\n");
1516 		return rc;
1517 	}
1518 
1519 	/* The PCIe configuration space revision id indicate if mmio reg
1520 	 * read is disabled.
1521 	 */
1522 	readless_supported =
1523 		!(((struct rte_pci_device *)ena_dev->dmadev)->id.class_id
1524 			       & ENA_MMIO_DISABLE_REG_READ);
1525 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1526 
1527 	/* reset device */
1528 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1529 	if (rc) {
1530 		PMD_DRV_LOG(ERR, "cannot reset device\n");
1531 		goto err_mmio_read_less;
1532 	}
1533 
1534 	/* check FW version */
1535 	rc = ena_com_validate_version(ena_dev);
1536 	if (rc) {
1537 		PMD_DRV_LOG(ERR, "device version is too low\n");
1538 		goto err_mmio_read_less;
1539 	}
1540 
1541 	ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1542 
1543 	/* ENA device administration layer init */
1544 	rc = ena_com_admin_init(ena_dev, &aenq_handlers);
1545 	if (rc) {
1546 		PMD_DRV_LOG(ERR,
1547 			"cannot initialize ena admin queue with device\n");
1548 		goto err_mmio_read_less;
1549 	}
1550 
1551 	/* To enable the msix interrupts the driver needs to know the number
1552 	 * of queues. So the driver uses polling mode to retrieve this
1553 	 * information.
1554 	 */
1555 	ena_com_set_admin_polling_mode(ena_dev, true);
1556 
1557 	ena_config_host_info(ena_dev);
1558 
1559 	/* Get Device Attributes and features */
1560 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1561 	if (rc) {
1562 		PMD_DRV_LOG(ERR,
1563 			"cannot get attribute for ena device rc= %d\n", rc);
1564 		goto err_admin_init;
1565 	}
1566 
1567 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1568 		      BIT(ENA_ADMIN_NOTIFICATION) |
1569 		      BIT(ENA_ADMIN_KEEP_ALIVE) |
1570 		      BIT(ENA_ADMIN_FATAL_ERROR) |
1571 		      BIT(ENA_ADMIN_WARNING);
1572 
1573 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
1574 	rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
1575 	if (rc) {
1576 		PMD_DRV_LOG(ERR, "Cannot configure aenq groups rc: %d\n", rc);
1577 		goto err_admin_init;
1578 	}
1579 
1580 	*wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
1581 
1582 	return 0;
1583 
1584 err_admin_init:
1585 	ena_com_admin_destroy(ena_dev);
1586 
1587 err_mmio_read_less:
1588 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1589 
1590 	return rc;
1591 }
1592 
1593 static void ena_interrupt_handler_rte(void *cb_arg)
1594 {
1595 	struct ena_adapter *adapter = cb_arg;
1596 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1597 
1598 	ena_com_admin_q_comp_intr_handler(ena_dev);
1599 	if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED))
1600 		ena_com_aenq_intr_handler(ena_dev, adapter);
1601 }
1602 
1603 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1604 {
1605 	if (!adapter->wd_state)
1606 		return;
1607 
1608 	if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1609 		return;
1610 
1611 	if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1612 	    adapter->keep_alive_timeout)) {
1613 		PMD_DRV_LOG(ERR, "Keep alive timeout\n");
1614 		adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
1615 		adapter->trigger_reset = true;
1616 		++adapter->dev_stats.wd_expired;
1617 	}
1618 }
1619 
1620 /* Check if admin queue is enabled */
1621 static void check_for_admin_com_state(struct ena_adapter *adapter)
1622 {
1623 	if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1624 		PMD_DRV_LOG(ERR, "ENA admin queue is not in running state!\n");
1625 		adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
1626 		adapter->trigger_reset = true;
1627 	}
1628 }
1629 
1630 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
1631 				  void *arg)
1632 {
1633 	struct ena_adapter *adapter = arg;
1634 	struct rte_eth_dev *dev = adapter->rte_dev;
1635 
1636 	check_for_missing_keep_alive(adapter);
1637 	check_for_admin_com_state(adapter);
1638 
1639 	if (unlikely(adapter->trigger_reset)) {
1640 		PMD_DRV_LOG(ERR, "Trigger reset is on\n");
1641 		rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
1642 			NULL);
1643 	}
1644 }
1645 
1646 static inline void
1647 set_default_llq_configurations(struct ena_llq_configurations *llq_config,
1648 			       struct ena_admin_feature_llq_desc *llq,
1649 			       bool use_large_llq_hdr)
1650 {
1651 	llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
1652 	llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
1653 	llq_config->llq_num_decs_before_header =
1654 		ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
1655 
1656 	if (use_large_llq_hdr &&
1657 	    (llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B)) {
1658 		llq_config->llq_ring_entry_size =
1659 			ENA_ADMIN_LIST_ENTRY_SIZE_256B;
1660 		llq_config->llq_ring_entry_size_value = 256;
1661 	} else {
1662 		llq_config->llq_ring_entry_size =
1663 			ENA_ADMIN_LIST_ENTRY_SIZE_128B;
1664 		llq_config->llq_ring_entry_size_value = 128;
1665 	}
1666 }
1667 
1668 static int
1669 ena_set_queues_placement_policy(struct ena_adapter *adapter,
1670 				struct ena_com_dev *ena_dev,
1671 				struct ena_admin_feature_llq_desc *llq,
1672 				struct ena_llq_configurations *llq_default_configurations)
1673 {
1674 	int rc;
1675 	u32 llq_feature_mask;
1676 
1677 	llq_feature_mask = 1 << ENA_ADMIN_LLQ;
1678 	if (!(ena_dev->supported_features & llq_feature_mask)) {
1679 		PMD_DRV_LOG(INFO,
1680 			"LLQ is not supported. Fallback to host mode policy.\n");
1681 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1682 		return 0;
1683 	}
1684 
1685 	rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
1686 	if (unlikely(rc)) {
1687 		PMD_INIT_LOG(WARNING, "Failed to config dev mode. "
1688 			"Fallback to host mode policy.");
1689 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1690 		return 0;
1691 	}
1692 
1693 	/* Nothing to config, exit */
1694 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1695 		return 0;
1696 
1697 	if (!adapter->dev_mem_base) {
1698 		PMD_DRV_LOG(ERR, "Unable to access LLQ bar resource. "
1699 			"Fallback to host mode policy.\n.");
1700 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1701 		return 0;
1702 	}
1703 
1704 	ena_dev->mem_bar = adapter->dev_mem_base;
1705 
1706 	return 0;
1707 }
1708 
1709 static uint32_t ena_calc_max_io_queue_num(struct ena_com_dev *ena_dev,
1710 	struct ena_com_dev_get_features_ctx *get_feat_ctx)
1711 {
1712 	uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
1713 
1714 	/* Regular queues capabilities */
1715 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1716 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1717 			&get_feat_ctx->max_queue_ext.max_queue_ext;
1718 		io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
1719 				    max_queue_ext->max_rx_cq_num);
1720 		io_tx_sq_num = max_queue_ext->max_tx_sq_num;
1721 		io_tx_cq_num = max_queue_ext->max_tx_cq_num;
1722 	} else {
1723 		struct ena_admin_queue_feature_desc *max_queues =
1724 			&get_feat_ctx->max_queues;
1725 		io_tx_sq_num = max_queues->max_sq_num;
1726 		io_tx_cq_num = max_queues->max_cq_num;
1727 		io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
1728 	}
1729 
1730 	/* In case of LLQ use the llq number in the get feature cmd */
1731 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
1732 		io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
1733 
1734 	max_num_io_queues = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
1735 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_sq_num);
1736 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_cq_num);
1737 
1738 	if (unlikely(max_num_io_queues == 0)) {
1739 		PMD_DRV_LOG(ERR, "Number of IO queues should not be 0\n");
1740 		return -EFAULT;
1741 	}
1742 
1743 	return max_num_io_queues;
1744 }
1745 
1746 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
1747 {
1748 	struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
1749 	struct rte_pci_device *pci_dev;
1750 	struct rte_intr_handle *intr_handle;
1751 	struct ena_adapter *adapter = eth_dev->data->dev_private;
1752 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1753 	struct ena_com_dev_get_features_ctx get_feat_ctx;
1754 	struct ena_llq_configurations llq_config;
1755 	const char *queue_type_str;
1756 	uint32_t max_num_io_queues;
1757 	int rc;
1758 	static int adapters_found;
1759 	bool disable_meta_caching;
1760 	bool wd_state = false;
1761 
1762 	eth_dev->dev_ops = &ena_dev_ops;
1763 	eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
1764 	eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
1765 	eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
1766 
1767 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1768 		return 0;
1769 
1770 	eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
1771 
1772 	memset(adapter, 0, sizeof(struct ena_adapter));
1773 	ena_dev = &adapter->ena_dev;
1774 
1775 	adapter->rte_eth_dev_data = eth_dev->data;
1776 	adapter->rte_dev = eth_dev;
1777 
1778 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1779 	adapter->pdev = pci_dev;
1780 
1781 	PMD_INIT_LOG(INFO, "Initializing %x:%x:%x.%d",
1782 		     pci_dev->addr.domain,
1783 		     pci_dev->addr.bus,
1784 		     pci_dev->addr.devid,
1785 		     pci_dev->addr.function);
1786 
1787 	intr_handle = &pci_dev->intr_handle;
1788 
1789 	adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
1790 	adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
1791 
1792 	if (!adapter->regs) {
1793 		PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)",
1794 			     ENA_REGS_BAR);
1795 		return -ENXIO;
1796 	}
1797 
1798 	ena_dev->reg_bar = adapter->regs;
1799 	ena_dev->dmadev = adapter->pdev;
1800 
1801 	adapter->id_number = adapters_found;
1802 
1803 	snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
1804 		 adapter->id_number);
1805 
1806 	rc = ena_parse_devargs(adapter, pci_dev->device.devargs);
1807 	if (rc != 0) {
1808 		PMD_INIT_LOG(CRIT, "Failed to parse devargs\n");
1809 		goto err;
1810 	}
1811 
1812 	/* device specific initialization routine */
1813 	rc = ena_device_init(ena_dev, &get_feat_ctx, &wd_state);
1814 	if (rc) {
1815 		PMD_INIT_LOG(CRIT, "Failed to init ENA device");
1816 		goto err;
1817 	}
1818 	adapter->wd_state = wd_state;
1819 
1820 	set_default_llq_configurations(&llq_config, &get_feat_ctx.llq,
1821 		adapter->use_large_llq_hdr);
1822 	rc = ena_set_queues_placement_policy(adapter, ena_dev,
1823 					     &get_feat_ctx.llq, &llq_config);
1824 	if (unlikely(rc)) {
1825 		PMD_INIT_LOG(CRIT, "Failed to set placement policy");
1826 		return rc;
1827 	}
1828 
1829 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1830 		queue_type_str = "Regular";
1831 	else
1832 		queue_type_str = "Low latency";
1833 	PMD_DRV_LOG(INFO, "Placement policy: %s\n", queue_type_str);
1834 
1835 	calc_queue_ctx.ena_dev = ena_dev;
1836 	calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
1837 
1838 	max_num_io_queues = ena_calc_max_io_queue_num(ena_dev, &get_feat_ctx);
1839 	rc = ena_calc_io_queue_size(&calc_queue_ctx,
1840 		adapter->use_large_llq_hdr);
1841 	if (unlikely((rc != 0) || (max_num_io_queues == 0))) {
1842 		rc = -EFAULT;
1843 		goto err_device_destroy;
1844 	}
1845 
1846 	adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
1847 	adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
1848 	adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
1849 	adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
1850 	adapter->max_num_io_queues = max_num_io_queues;
1851 
1852 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1853 		disable_meta_caching =
1854 			!!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
1855 			BIT(ENA_ADMIN_DISABLE_META_CACHING));
1856 	} else {
1857 		disable_meta_caching = false;
1858 	}
1859 
1860 	/* prepare ring structures */
1861 	ena_init_rings(adapter, disable_meta_caching);
1862 
1863 	ena_config_debug_area(adapter);
1864 
1865 	/* Set max MTU for this device */
1866 	adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
1867 
1868 	/* set device support for offloads */
1869 	adapter->offloads.tso4_supported = (get_feat_ctx.offload.tx &
1870 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) != 0;
1871 	adapter->offloads.tx_csum_supported = (get_feat_ctx.offload.tx &
1872 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK) != 0;
1873 	adapter->offloads.rx_csum_supported =
1874 		(get_feat_ctx.offload.rx_supported &
1875 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK) != 0;
1876 
1877 	/* Copy MAC address and point DPDK to it */
1878 	eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr;
1879 	rte_ether_addr_copy((struct rte_ether_addr *)
1880 			get_feat_ctx.dev_attr.mac_addr,
1881 			(struct rte_ether_addr *)adapter->mac_addr);
1882 
1883 	adapter->drv_stats = rte_zmalloc("adapter stats",
1884 					 sizeof(*adapter->drv_stats),
1885 					 RTE_CACHE_LINE_SIZE);
1886 	if (!adapter->drv_stats) {
1887 		PMD_DRV_LOG(ERR, "failed to alloc mem for adapter stats\n");
1888 		rc = -ENOMEM;
1889 		goto err_delete_debug_area;
1890 	}
1891 
1892 	rte_spinlock_init(&adapter->admin_lock);
1893 
1894 	rte_intr_callback_register(intr_handle,
1895 				   ena_interrupt_handler_rte,
1896 				   adapter);
1897 	rte_intr_enable(intr_handle);
1898 	ena_com_set_admin_polling_mode(ena_dev, false);
1899 	ena_com_admin_aenq_enable(ena_dev);
1900 
1901 	if (adapters_found == 0)
1902 		rte_timer_subsystem_init();
1903 	rte_timer_init(&adapter->timer_wd);
1904 
1905 	adapters_found++;
1906 	adapter->state = ENA_ADAPTER_STATE_INIT;
1907 
1908 	return 0;
1909 
1910 err_delete_debug_area:
1911 	ena_com_delete_debug_area(ena_dev);
1912 
1913 err_device_destroy:
1914 	ena_com_delete_host_info(ena_dev);
1915 	ena_com_admin_destroy(ena_dev);
1916 
1917 err:
1918 	return rc;
1919 }
1920 
1921 static void ena_destroy_device(struct rte_eth_dev *eth_dev)
1922 {
1923 	struct ena_adapter *adapter = eth_dev->data->dev_private;
1924 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1925 
1926 	if (adapter->state == ENA_ADAPTER_STATE_FREE)
1927 		return;
1928 
1929 	ena_com_set_admin_running_state(ena_dev, false);
1930 
1931 	if (adapter->state != ENA_ADAPTER_STATE_CLOSED)
1932 		ena_close(eth_dev);
1933 
1934 	ena_com_delete_debug_area(ena_dev);
1935 	ena_com_delete_host_info(ena_dev);
1936 
1937 	ena_com_abort_admin_commands(ena_dev);
1938 	ena_com_wait_for_abort_completion(ena_dev);
1939 	ena_com_admin_destroy(ena_dev);
1940 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1941 
1942 	adapter->state = ENA_ADAPTER_STATE_FREE;
1943 }
1944 
1945 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
1946 {
1947 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1948 		return 0;
1949 
1950 	ena_destroy_device(eth_dev);
1951 
1952 	return 0;
1953 }
1954 
1955 static int ena_dev_configure(struct rte_eth_dev *dev)
1956 {
1957 	struct ena_adapter *adapter = dev->data->dev_private;
1958 
1959 	adapter->state = ENA_ADAPTER_STATE_CONFIG;
1960 
1961 	adapter->tx_selected_offloads = dev->data->dev_conf.txmode.offloads;
1962 	adapter->rx_selected_offloads = dev->data->dev_conf.rxmode.offloads;
1963 	return 0;
1964 }
1965 
1966 static void ena_init_rings(struct ena_adapter *adapter,
1967 			   bool disable_meta_caching)
1968 {
1969 	size_t i;
1970 
1971 	for (i = 0; i < adapter->max_num_io_queues; i++) {
1972 		struct ena_ring *ring = &adapter->tx_ring[i];
1973 
1974 		ring->configured = 0;
1975 		ring->type = ENA_RING_TYPE_TX;
1976 		ring->adapter = adapter;
1977 		ring->id = i;
1978 		ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
1979 		ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
1980 		ring->sgl_size = adapter->max_tx_sgl_size;
1981 		ring->disable_meta_caching = disable_meta_caching;
1982 	}
1983 
1984 	for (i = 0; i < adapter->max_num_io_queues; i++) {
1985 		struct ena_ring *ring = &adapter->rx_ring[i];
1986 
1987 		ring->configured = 0;
1988 		ring->type = ENA_RING_TYPE_RX;
1989 		ring->adapter = adapter;
1990 		ring->id = i;
1991 		ring->sgl_size = adapter->max_rx_sgl_size;
1992 	}
1993 }
1994 
1995 static int ena_infos_get(struct rte_eth_dev *dev,
1996 			  struct rte_eth_dev_info *dev_info)
1997 {
1998 	struct ena_adapter *adapter;
1999 	struct ena_com_dev *ena_dev;
2000 	uint64_t rx_feat = 0, tx_feat = 0;
2001 
2002 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
2003 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
2004 	adapter = dev->data->dev_private;
2005 
2006 	ena_dev = &adapter->ena_dev;
2007 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
2008 
2009 	dev_info->speed_capa =
2010 			ETH_LINK_SPEED_1G   |
2011 			ETH_LINK_SPEED_2_5G |
2012 			ETH_LINK_SPEED_5G   |
2013 			ETH_LINK_SPEED_10G  |
2014 			ETH_LINK_SPEED_25G  |
2015 			ETH_LINK_SPEED_40G  |
2016 			ETH_LINK_SPEED_50G  |
2017 			ETH_LINK_SPEED_100G;
2018 
2019 	/* Set Tx & Rx features available for device */
2020 	if (adapter->offloads.tso4_supported)
2021 		tx_feat	|= DEV_TX_OFFLOAD_TCP_TSO;
2022 
2023 	if (adapter->offloads.tx_csum_supported)
2024 		tx_feat |= DEV_TX_OFFLOAD_IPV4_CKSUM |
2025 			DEV_TX_OFFLOAD_UDP_CKSUM |
2026 			DEV_TX_OFFLOAD_TCP_CKSUM;
2027 
2028 	if (adapter->offloads.rx_csum_supported)
2029 		rx_feat |= DEV_RX_OFFLOAD_IPV4_CKSUM |
2030 			DEV_RX_OFFLOAD_UDP_CKSUM  |
2031 			DEV_RX_OFFLOAD_TCP_CKSUM;
2032 
2033 	rx_feat |= DEV_RX_OFFLOAD_JUMBO_FRAME;
2034 
2035 	/* Inform framework about available features */
2036 	dev_info->rx_offload_capa = rx_feat;
2037 	dev_info->rx_queue_offload_capa = rx_feat;
2038 	dev_info->tx_offload_capa = tx_feat;
2039 	dev_info->tx_queue_offload_capa = tx_feat;
2040 
2041 	dev_info->flow_type_rss_offloads = ETH_RSS_IP | ETH_RSS_TCP |
2042 					   ETH_RSS_UDP;
2043 
2044 	dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
2045 	dev_info->max_rx_pktlen  = adapter->max_mtu;
2046 	dev_info->max_mac_addrs = 1;
2047 
2048 	dev_info->max_rx_queues = adapter->max_num_io_queues;
2049 	dev_info->max_tx_queues = adapter->max_num_io_queues;
2050 	dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
2051 
2052 	adapter->tx_supported_offloads = tx_feat;
2053 	adapter->rx_supported_offloads = rx_feat;
2054 
2055 	dev_info->rx_desc_lim.nb_max = adapter->max_rx_ring_size;
2056 	dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2057 	dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2058 					adapter->max_rx_sgl_size);
2059 	dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2060 					adapter->max_rx_sgl_size);
2061 
2062 	dev_info->tx_desc_lim.nb_max = adapter->max_tx_ring_size;
2063 	dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2064 	dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2065 					adapter->max_tx_sgl_size);
2066 	dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2067 					adapter->max_tx_sgl_size);
2068 
2069 	return 0;
2070 }
2071 
2072 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len)
2073 {
2074 	mbuf->data_len = len;
2075 	mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2076 	mbuf->refcnt = 1;
2077 	mbuf->next = NULL;
2078 }
2079 
2080 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
2081 				    struct ena_com_rx_buf_info *ena_bufs,
2082 				    uint32_t descs,
2083 				    uint16_t *next_to_clean,
2084 				    uint8_t offset)
2085 {
2086 	struct rte_mbuf *mbuf;
2087 	struct rte_mbuf *mbuf_head;
2088 	struct ena_rx_buffer *rx_info;
2089 	int rc;
2090 	uint16_t ntc, len, req_id, buf = 0;
2091 
2092 	if (unlikely(descs == 0))
2093 		return NULL;
2094 
2095 	ntc = *next_to_clean;
2096 
2097 	len = ena_bufs[buf].len;
2098 	req_id = ena_bufs[buf].req_id;
2099 
2100 	rx_info = &rx_ring->rx_buffer_info[req_id];
2101 
2102 	mbuf = rx_info->mbuf;
2103 	RTE_ASSERT(mbuf != NULL);
2104 
2105 	ena_init_rx_mbuf(mbuf, len);
2106 
2107 	/* Fill the mbuf head with the data specific for 1st segment. */
2108 	mbuf_head = mbuf;
2109 	mbuf_head->nb_segs = descs;
2110 	mbuf_head->port = rx_ring->port_id;
2111 	mbuf_head->pkt_len = len;
2112 	mbuf_head->data_off += offset;
2113 
2114 	rx_info->mbuf = NULL;
2115 	rx_ring->empty_rx_reqs[ntc] = req_id;
2116 	ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2117 
2118 	while (--descs) {
2119 		++buf;
2120 		len = ena_bufs[buf].len;
2121 		req_id = ena_bufs[buf].req_id;
2122 
2123 		rx_info = &rx_ring->rx_buffer_info[req_id];
2124 		RTE_ASSERT(rx_info->mbuf != NULL);
2125 
2126 		if (unlikely(len == 0)) {
2127 			/*
2128 			 * Some devices can pass descriptor with the length 0.
2129 			 * To avoid confusion, the PMD is simply putting the
2130 			 * descriptor back, as it was never used. We'll avoid
2131 			 * mbuf allocation that way.
2132 			 */
2133 			rc = ena_add_single_rx_desc(rx_ring->ena_com_io_sq,
2134 				rx_info->mbuf, req_id);
2135 			if (unlikely(rc != 0)) {
2136 				/* Free the mbuf in case of an error. */
2137 				rte_mbuf_raw_free(rx_info->mbuf);
2138 			} else {
2139 				/*
2140 				 * If there was no error, just exit the loop as
2141 				 * 0 length descriptor is always the last one.
2142 				 */
2143 				break;
2144 			}
2145 		} else {
2146 			/* Create an mbuf chain. */
2147 			mbuf->next = rx_info->mbuf;
2148 			mbuf = mbuf->next;
2149 
2150 			ena_init_rx_mbuf(mbuf, len);
2151 			mbuf_head->pkt_len += len;
2152 		}
2153 
2154 		/*
2155 		 * Mark the descriptor as depleted and perform necessary
2156 		 * cleanup.
2157 		 * This code will execute in two cases:
2158 		 *  1. Descriptor len was greater than 0 - normal situation.
2159 		 *  2. Descriptor len was 0 and we failed to add the descriptor
2160 		 *     to the device. In that situation, we should try to add
2161 		 *     the mbuf again in the populate routine and mark the
2162 		 *     descriptor as used up by the device.
2163 		 */
2164 		rx_info->mbuf = NULL;
2165 		rx_ring->empty_rx_reqs[ntc] = req_id;
2166 		ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2167 	}
2168 
2169 	*next_to_clean = ntc;
2170 
2171 	return mbuf_head;
2172 }
2173 
2174 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
2175 				  uint16_t nb_pkts)
2176 {
2177 	struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
2178 	unsigned int free_queue_entries;
2179 	unsigned int refill_threshold;
2180 	uint16_t next_to_clean = rx_ring->next_to_clean;
2181 	uint16_t descs_in_use;
2182 	struct rte_mbuf *mbuf;
2183 	uint16_t completed;
2184 	struct ena_com_rx_ctx ena_rx_ctx;
2185 	int i, rc = 0;
2186 
2187 	/* Check adapter state */
2188 	if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2189 		PMD_DRV_LOG(ALERT,
2190 			"Trying to receive pkts while device is NOT running\n");
2191 		return 0;
2192 	}
2193 
2194 	descs_in_use = rx_ring->ring_size -
2195 		ena_com_free_q_entries(rx_ring->ena_com_io_sq) - 1;
2196 	nb_pkts = RTE_MIN(descs_in_use, nb_pkts);
2197 
2198 	for (completed = 0; completed < nb_pkts; completed++) {
2199 		ena_rx_ctx.max_bufs = rx_ring->sgl_size;
2200 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
2201 		ena_rx_ctx.descs = 0;
2202 		ena_rx_ctx.pkt_offset = 0;
2203 		/* receive packet context */
2204 		rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
2205 				    rx_ring->ena_com_io_sq,
2206 				    &ena_rx_ctx);
2207 		if (unlikely(rc)) {
2208 			PMD_DRV_LOG(ERR, "ena_com_rx_pkt error %d\n", rc);
2209 			if (rc == ENA_COM_NO_SPACE) {
2210 				++rx_ring->rx_stats.bad_desc_num;
2211 				rx_ring->adapter->reset_reason =
2212 					ENA_REGS_RESET_TOO_MANY_RX_DESCS;
2213 			} else {
2214 				++rx_ring->rx_stats.bad_req_id;
2215 				rx_ring->adapter->reset_reason =
2216 					ENA_REGS_RESET_INV_RX_REQ_ID;
2217 			}
2218 			rx_ring->adapter->trigger_reset = true;
2219 			return 0;
2220 		}
2221 
2222 		mbuf = ena_rx_mbuf(rx_ring,
2223 			ena_rx_ctx.ena_bufs,
2224 			ena_rx_ctx.descs,
2225 			&next_to_clean,
2226 			ena_rx_ctx.pkt_offset);
2227 		if (unlikely(mbuf == NULL)) {
2228 			for (i = 0; i < ena_rx_ctx.descs; ++i) {
2229 				rx_ring->empty_rx_reqs[next_to_clean] =
2230 					rx_ring->ena_bufs[i].req_id;
2231 				next_to_clean = ENA_IDX_NEXT_MASKED(
2232 					next_to_clean, rx_ring->size_mask);
2233 			}
2234 			break;
2235 		}
2236 
2237 		/* fill mbuf attributes if any */
2238 		ena_rx_mbuf_prepare(mbuf, &ena_rx_ctx);
2239 
2240 		if (unlikely(mbuf->ol_flags &
2241 				(PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD))) {
2242 			rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors);
2243 			++rx_ring->rx_stats.bad_csum;
2244 		}
2245 
2246 		mbuf->hash.rss = ena_rx_ctx.hash;
2247 
2248 		rx_pkts[completed] = mbuf;
2249 		rx_ring->rx_stats.bytes += mbuf->pkt_len;
2250 	}
2251 
2252 	rx_ring->rx_stats.cnt += completed;
2253 	rx_ring->next_to_clean = next_to_clean;
2254 
2255 	free_queue_entries = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
2256 	refill_threshold =
2257 		RTE_MIN(rx_ring->ring_size / ENA_REFILL_THRESH_DIVIDER,
2258 		(unsigned int)ENA_REFILL_THRESH_PACKET);
2259 
2260 	/* Burst refill to save doorbells, memory barriers, const interval */
2261 	if (free_queue_entries > refill_threshold) {
2262 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
2263 		ena_populate_rx_queue(rx_ring, free_queue_entries);
2264 	}
2265 
2266 	return completed;
2267 }
2268 
2269 static uint16_t
2270 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2271 		uint16_t nb_pkts)
2272 {
2273 	int32_t ret;
2274 	uint32_t i;
2275 	struct rte_mbuf *m;
2276 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2277 	struct rte_ipv4_hdr *ip_hdr;
2278 	uint64_t ol_flags;
2279 	uint16_t frag_field;
2280 
2281 	for (i = 0; i != nb_pkts; i++) {
2282 		m = tx_pkts[i];
2283 		ol_flags = m->ol_flags;
2284 
2285 		if (!(ol_flags & PKT_TX_IPV4))
2286 			continue;
2287 
2288 		/* If there was not L2 header length specified, assume it is
2289 		 * length of the ethernet header.
2290 		 */
2291 		if (unlikely(m->l2_len == 0))
2292 			m->l2_len = sizeof(struct rte_ether_hdr);
2293 
2294 		ip_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *,
2295 						 m->l2_len);
2296 		frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
2297 
2298 		if ((frag_field & RTE_IPV4_HDR_DF_FLAG) != 0) {
2299 			m->packet_type |= RTE_PTYPE_L4_NONFRAG;
2300 
2301 			/* If IPv4 header has DF flag enabled and TSO support is
2302 			 * disabled, partial chcecksum should not be calculated.
2303 			 */
2304 			if (!tx_ring->adapter->offloads.tso4_supported)
2305 				continue;
2306 		}
2307 
2308 		if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) != 0 ||
2309 				(ol_flags & PKT_TX_L4_MASK) ==
2310 				PKT_TX_SCTP_CKSUM) {
2311 			rte_errno = ENOTSUP;
2312 			return i;
2313 		}
2314 
2315 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2316 		ret = rte_validate_tx_offload(m);
2317 		if (ret != 0) {
2318 			rte_errno = -ret;
2319 			return i;
2320 		}
2321 #endif
2322 
2323 		/* In case we are supposed to TSO and have DF not set (DF=0)
2324 		 * hardware must be provided with partial checksum, otherwise
2325 		 * it will take care of necessary calculations.
2326 		 */
2327 
2328 		ret = rte_net_intel_cksum_flags_prepare(m,
2329 			ol_flags & ~PKT_TX_TCP_SEG);
2330 		if (ret != 0) {
2331 			rte_errno = -ret;
2332 			return i;
2333 		}
2334 	}
2335 
2336 	return i;
2337 }
2338 
2339 static void ena_update_hints(struct ena_adapter *adapter,
2340 			     struct ena_admin_ena_hw_hints *hints)
2341 {
2342 	if (hints->admin_completion_tx_timeout)
2343 		adapter->ena_dev.admin_queue.completion_timeout =
2344 			hints->admin_completion_tx_timeout * 1000;
2345 
2346 	if (hints->mmio_read_timeout)
2347 		/* convert to usec */
2348 		adapter->ena_dev.mmio_read.reg_read_to =
2349 			hints->mmio_read_timeout * 1000;
2350 
2351 	if (hints->driver_watchdog_timeout) {
2352 		if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
2353 			adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
2354 		else
2355 			// Convert msecs to ticks
2356 			adapter->keep_alive_timeout =
2357 				(hints->driver_watchdog_timeout *
2358 				rte_get_timer_hz()) / 1000;
2359 	}
2360 }
2361 
2362 static int ena_check_space_and_linearize_mbuf(struct ena_ring *tx_ring,
2363 					      struct rte_mbuf *mbuf)
2364 {
2365 	struct ena_com_dev *ena_dev;
2366 	int num_segments, header_len, rc;
2367 
2368 	ena_dev = &tx_ring->adapter->ena_dev;
2369 	num_segments = mbuf->nb_segs;
2370 	header_len = mbuf->data_len;
2371 
2372 	if (likely(num_segments < tx_ring->sgl_size))
2373 		goto checkspace;
2374 
2375 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
2376 	    (num_segments == tx_ring->sgl_size) &&
2377 	    (header_len < tx_ring->tx_max_header_size))
2378 		goto checkspace;
2379 
2380 	/* Checking for space for 2 additional metadata descriptors due to
2381 	 * possible header split and metadata descriptor. Linearization will
2382 	 * be needed so we reduce the segments number from num_segments to 1
2383 	 */
2384 	if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 3)) {
2385 		PMD_DRV_LOG(DEBUG, "Not enough space in the tx queue\n");
2386 		return ENA_COM_NO_MEM;
2387 	}
2388 	++tx_ring->tx_stats.linearize;
2389 	rc = rte_pktmbuf_linearize(mbuf);
2390 	if (unlikely(rc)) {
2391 		PMD_DRV_LOG(WARNING, "Mbuf linearize failed\n");
2392 		rte_atomic64_inc(&tx_ring->adapter->drv_stats->ierrors);
2393 		++tx_ring->tx_stats.linearize_failed;
2394 		return rc;
2395 	}
2396 
2397 	return 0;
2398 
2399 checkspace:
2400 	/* Checking for space for 2 additional metadata descriptors due to
2401 	 * possible header split and metadata descriptor
2402 	 */
2403 	if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
2404 					  num_segments + 2)) {
2405 		PMD_DRV_LOG(DEBUG, "Not enough space in the tx queue\n");
2406 		return ENA_COM_NO_MEM;
2407 	}
2408 
2409 	return 0;
2410 }
2411 
2412 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
2413 	struct ena_tx_buffer *tx_info,
2414 	struct rte_mbuf *mbuf,
2415 	void **push_header,
2416 	uint16_t *header_len)
2417 {
2418 	struct ena_com_buf *ena_buf;
2419 	uint16_t delta, seg_len, push_len;
2420 
2421 	delta = 0;
2422 	seg_len = mbuf->data_len;
2423 
2424 	tx_info->mbuf = mbuf;
2425 	ena_buf = tx_info->bufs;
2426 
2427 	if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2428 		/*
2429 		 * Tx header might be (and will be in most cases) smaller than
2430 		 * tx_max_header_size. But it's not an issue to send more data
2431 		 * to the device, than actually needed if the mbuf size is
2432 		 * greater than tx_max_header_size.
2433 		 */
2434 		push_len = RTE_MIN(mbuf->pkt_len, tx_ring->tx_max_header_size);
2435 		*header_len = push_len;
2436 
2437 		if (likely(push_len <= seg_len)) {
2438 			/* If the push header is in the single segment, then
2439 			 * just point it to the 1st mbuf data.
2440 			 */
2441 			*push_header = rte_pktmbuf_mtod(mbuf, uint8_t *);
2442 		} else {
2443 			/* If the push header lays in the several segments, copy
2444 			 * it to the intermediate buffer.
2445 			 */
2446 			rte_pktmbuf_read(mbuf, 0, push_len,
2447 				tx_ring->push_buf_intermediate_buf);
2448 			*push_header = tx_ring->push_buf_intermediate_buf;
2449 			delta = push_len - seg_len;
2450 		}
2451 	} else {
2452 		*push_header = NULL;
2453 		*header_len = 0;
2454 		push_len = 0;
2455 	}
2456 
2457 	/* Process first segment taking into consideration pushed header */
2458 	if (seg_len > push_len) {
2459 		ena_buf->paddr = mbuf->buf_iova +
2460 				mbuf->data_off +
2461 				push_len;
2462 		ena_buf->len = seg_len - push_len;
2463 		ena_buf++;
2464 		tx_info->num_of_bufs++;
2465 	}
2466 
2467 	while ((mbuf = mbuf->next) != NULL) {
2468 		seg_len = mbuf->data_len;
2469 
2470 		/* Skip mbufs if whole data is pushed as a header */
2471 		if (unlikely(delta > seg_len)) {
2472 			delta -= seg_len;
2473 			continue;
2474 		}
2475 
2476 		ena_buf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
2477 		ena_buf->len = seg_len - delta;
2478 		ena_buf++;
2479 		tx_info->num_of_bufs++;
2480 
2481 		delta = 0;
2482 	}
2483 }
2484 
2485 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf)
2486 {
2487 	struct ena_tx_buffer *tx_info;
2488 	struct ena_com_tx_ctx ena_tx_ctx = { { 0 } };
2489 	uint16_t next_to_use;
2490 	uint16_t header_len;
2491 	uint16_t req_id;
2492 	void *push_header;
2493 	int nb_hw_desc;
2494 	int rc;
2495 
2496 	rc = ena_check_space_and_linearize_mbuf(tx_ring, mbuf);
2497 	if (unlikely(rc))
2498 		return rc;
2499 
2500 	next_to_use = tx_ring->next_to_use;
2501 
2502 	req_id = tx_ring->empty_tx_reqs[next_to_use];
2503 	tx_info = &tx_ring->tx_buffer_info[req_id];
2504 	tx_info->num_of_bufs = 0;
2505 
2506 	ena_tx_map_mbuf(tx_ring, tx_info, mbuf, &push_header, &header_len);
2507 
2508 	ena_tx_ctx.ena_bufs = tx_info->bufs;
2509 	ena_tx_ctx.push_header = push_header;
2510 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2511 	ena_tx_ctx.req_id = req_id;
2512 	ena_tx_ctx.header_len = header_len;
2513 
2514 	/* Set Tx offloads flags, if applicable */
2515 	ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads,
2516 		tx_ring->disable_meta_caching);
2517 
2518 	if (unlikely(ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
2519 			&ena_tx_ctx))) {
2520 		PMD_DRV_LOG(DEBUG,
2521 			"llq tx max burst size of queue %d achieved, writing doorbell to send burst\n",
2522 			tx_ring->id);
2523 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2524 		tx_ring->tx_stats.doorbells++;
2525 	}
2526 
2527 	/* prepare the packet's descriptors to dma engine */
2528 	rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq,	&ena_tx_ctx,
2529 		&nb_hw_desc);
2530 	if (unlikely(rc)) {
2531 		++tx_ring->tx_stats.prepare_ctx_err;
2532 		return rc;
2533 	}
2534 
2535 	tx_info->tx_descs = nb_hw_desc;
2536 
2537 	tx_ring->tx_stats.cnt++;
2538 	tx_ring->tx_stats.bytes += mbuf->pkt_len;
2539 
2540 	tx_ring->next_to_use = ENA_IDX_NEXT_MASKED(next_to_use,
2541 		tx_ring->size_mask);
2542 
2543 	return 0;
2544 }
2545 
2546 static void ena_tx_cleanup(struct ena_ring *tx_ring)
2547 {
2548 	unsigned int cleanup_budget;
2549 	unsigned int total_tx_descs = 0;
2550 	uint16_t next_to_clean = tx_ring->next_to_clean;
2551 
2552 	cleanup_budget = RTE_MIN(tx_ring->ring_size / ENA_REFILL_THRESH_DIVIDER,
2553 		(unsigned int)ENA_REFILL_THRESH_PACKET);
2554 
2555 	while (likely(total_tx_descs < cleanup_budget)) {
2556 		struct rte_mbuf *mbuf;
2557 		struct ena_tx_buffer *tx_info;
2558 		uint16_t req_id;
2559 
2560 		if (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) != 0)
2561 			break;
2562 
2563 		if (unlikely(validate_tx_req_id(tx_ring, req_id) != 0))
2564 			break;
2565 
2566 		/* Get Tx info & store how many descs were processed  */
2567 		tx_info = &tx_ring->tx_buffer_info[req_id];
2568 
2569 		mbuf = tx_info->mbuf;
2570 		rte_pktmbuf_free(mbuf);
2571 
2572 		tx_info->mbuf = NULL;
2573 		tx_ring->empty_tx_reqs[next_to_clean] = req_id;
2574 
2575 		total_tx_descs += tx_info->tx_descs;
2576 
2577 		/* Put back descriptor to the ring for reuse */
2578 		next_to_clean = ENA_IDX_NEXT_MASKED(next_to_clean,
2579 			tx_ring->size_mask);
2580 	}
2581 
2582 	if (likely(total_tx_descs > 0)) {
2583 		/* acknowledge completion of sent packets */
2584 		tx_ring->next_to_clean = next_to_clean;
2585 		ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
2586 		ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
2587 	}
2588 }
2589 
2590 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2591 				  uint16_t nb_pkts)
2592 {
2593 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2594 	uint16_t sent_idx = 0;
2595 
2596 	/* Check adapter state */
2597 	if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2598 		PMD_DRV_LOG(ALERT,
2599 			"Trying to xmit pkts while device is NOT running\n");
2600 		return 0;
2601 	}
2602 
2603 	for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
2604 		if (ena_xmit_mbuf(tx_ring, tx_pkts[sent_idx]))
2605 			break;
2606 
2607 		rte_prefetch0(tx_pkts[ENA_IDX_ADD_MASKED(sent_idx, 4,
2608 			tx_ring->size_mask)]);
2609 	}
2610 
2611 	tx_ring->tx_stats.available_desc =
2612 		ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2613 
2614 	/* If there are ready packets to be xmitted... */
2615 	if (sent_idx > 0) {
2616 		/* ...let HW do its best :-) */
2617 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2618 		tx_ring->tx_stats.doorbells++;
2619 	}
2620 
2621 	ena_tx_cleanup(tx_ring);
2622 
2623 	tx_ring->tx_stats.available_desc =
2624 		ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2625 	tx_ring->tx_stats.tx_poll++;
2626 
2627 	return sent_idx;
2628 }
2629 
2630 int ena_copy_eni_stats(struct ena_adapter *adapter)
2631 {
2632 	struct ena_admin_eni_stats admin_eni_stats;
2633 	int rc;
2634 
2635 	rte_spinlock_lock(&adapter->admin_lock);
2636 	rc = ena_com_get_eni_stats(&adapter->ena_dev, &admin_eni_stats);
2637 	rte_spinlock_unlock(&adapter->admin_lock);
2638 	if (rc != 0) {
2639 		if (rc == ENA_COM_UNSUPPORTED) {
2640 			PMD_DRV_LOG(DEBUG,
2641 				"Retrieving ENI metrics is not supported.\n");
2642 		} else {
2643 			PMD_DRV_LOG(WARNING,
2644 				"Failed to get ENI metrics: %d\n", rc);
2645 		}
2646 		return rc;
2647 	}
2648 
2649 	rte_memcpy(&adapter->eni_stats, &admin_eni_stats,
2650 		sizeof(struct ena_stats_eni));
2651 
2652 	return 0;
2653 }
2654 
2655 /**
2656  * DPDK callback to retrieve names of extended device statistics
2657  *
2658  * @param dev
2659  *   Pointer to Ethernet device structure.
2660  * @param[out] xstats_names
2661  *   Buffer to insert names into.
2662  * @param n
2663  *   Number of names.
2664  *
2665  * @return
2666  *   Number of xstats names.
2667  */
2668 static int ena_xstats_get_names(struct rte_eth_dev *dev,
2669 				struct rte_eth_xstat_name *xstats_names,
2670 				unsigned int n)
2671 {
2672 	unsigned int xstats_count = ena_xstats_calc_num(dev);
2673 	unsigned int stat, i, count = 0;
2674 
2675 	if (n < xstats_count || !xstats_names)
2676 		return xstats_count;
2677 
2678 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
2679 		strcpy(xstats_names[count].name,
2680 			ena_stats_global_strings[stat].name);
2681 
2682 	for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++)
2683 		strcpy(xstats_names[count].name,
2684 			ena_stats_eni_strings[stat].name);
2685 
2686 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
2687 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
2688 			snprintf(xstats_names[count].name,
2689 				sizeof(xstats_names[count].name),
2690 				"rx_q%d_%s", i,
2691 				ena_stats_rx_strings[stat].name);
2692 
2693 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
2694 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
2695 			snprintf(xstats_names[count].name,
2696 				sizeof(xstats_names[count].name),
2697 				"tx_q%d_%s", i,
2698 				ena_stats_tx_strings[stat].name);
2699 
2700 	return xstats_count;
2701 }
2702 
2703 /**
2704  * DPDK callback to get extended device statistics.
2705  *
2706  * @param dev
2707  *   Pointer to Ethernet device structure.
2708  * @param[out] stats
2709  *   Stats table output buffer.
2710  * @param n
2711  *   The size of the stats table.
2712  *
2713  * @return
2714  *   Number of xstats on success, negative on failure.
2715  */
2716 static int ena_xstats_get(struct rte_eth_dev *dev,
2717 			  struct rte_eth_xstat *xstats,
2718 			  unsigned int n)
2719 {
2720 	struct ena_adapter *adapter = dev->data->dev_private;
2721 	unsigned int xstats_count = ena_xstats_calc_num(dev);
2722 	unsigned int stat, i, count = 0;
2723 	int stat_offset;
2724 	void *stats_begin;
2725 
2726 	if (n < xstats_count)
2727 		return xstats_count;
2728 
2729 	if (!xstats)
2730 		return 0;
2731 
2732 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
2733 		stat_offset = ena_stats_global_strings[stat].stat_offset;
2734 		stats_begin = &adapter->dev_stats;
2735 
2736 		xstats[count].id = count;
2737 		xstats[count].value = *((uint64_t *)
2738 			((char *)stats_begin + stat_offset));
2739 	}
2740 
2741 	/* Even if the function below fails, we should copy previous (or initial
2742 	 * values) to keep structure of rte_eth_xstat consistent.
2743 	 */
2744 	ena_copy_eni_stats(adapter);
2745 	for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++) {
2746 		stat_offset = ena_stats_eni_strings[stat].stat_offset;
2747 		stats_begin = &adapter->eni_stats;
2748 
2749 		xstats[count].id = count;
2750 		xstats[count].value = *((uint64_t *)
2751 		    ((char *)stats_begin + stat_offset));
2752 	}
2753 
2754 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
2755 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
2756 			stat_offset = ena_stats_rx_strings[stat].stat_offset;
2757 			stats_begin = &adapter->rx_ring[i].rx_stats;
2758 
2759 			xstats[count].id = count;
2760 			xstats[count].value = *((uint64_t *)
2761 				((char *)stats_begin + stat_offset));
2762 		}
2763 	}
2764 
2765 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
2766 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
2767 			stat_offset = ena_stats_tx_strings[stat].stat_offset;
2768 			stats_begin = &adapter->tx_ring[i].rx_stats;
2769 
2770 			xstats[count].id = count;
2771 			xstats[count].value = *((uint64_t *)
2772 				((char *)stats_begin + stat_offset));
2773 		}
2774 	}
2775 
2776 	return count;
2777 }
2778 
2779 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
2780 				const uint64_t *ids,
2781 				uint64_t *values,
2782 				unsigned int n)
2783 {
2784 	struct ena_adapter *adapter = dev->data->dev_private;
2785 	uint64_t id;
2786 	uint64_t rx_entries, tx_entries;
2787 	unsigned int i;
2788 	int qid;
2789 	int valid = 0;
2790 	bool was_eni_copied = false;
2791 
2792 	for (i = 0; i < n; ++i) {
2793 		id = ids[i];
2794 		/* Check if id belongs to global statistics */
2795 		if (id < ENA_STATS_ARRAY_GLOBAL) {
2796 			values[i] = *((uint64_t *)&adapter->dev_stats + id);
2797 			++valid;
2798 			continue;
2799 		}
2800 
2801 		/* Check if id belongs to ENI statistics */
2802 		id -= ENA_STATS_ARRAY_GLOBAL;
2803 		if (id < ENA_STATS_ARRAY_ENI) {
2804 			/* Avoid reading ENI stats multiple times in a single
2805 			 * function call, as it requires communication with the
2806 			 * admin queue.
2807 			 */
2808 			if (!was_eni_copied) {
2809 				was_eni_copied = true;
2810 				ena_copy_eni_stats(adapter);
2811 			}
2812 			values[i] = *((uint64_t *)&adapter->eni_stats + id);
2813 			++valid;
2814 			continue;
2815 		}
2816 
2817 		/* Check if id belongs to rx queue statistics */
2818 		id -= ENA_STATS_ARRAY_ENI;
2819 		rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
2820 		if (id < rx_entries) {
2821 			qid = id % dev->data->nb_rx_queues;
2822 			id /= dev->data->nb_rx_queues;
2823 			values[i] = *((uint64_t *)
2824 				&adapter->rx_ring[qid].rx_stats + id);
2825 			++valid;
2826 			continue;
2827 		}
2828 				/* Check if id belongs to rx queue statistics */
2829 		id -= rx_entries;
2830 		tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
2831 		if (id < tx_entries) {
2832 			qid = id % dev->data->nb_tx_queues;
2833 			id /= dev->data->nb_tx_queues;
2834 			values[i] = *((uint64_t *)
2835 				&adapter->tx_ring[qid].tx_stats + id);
2836 			++valid;
2837 			continue;
2838 		}
2839 	}
2840 
2841 	return valid;
2842 }
2843 
2844 static int ena_process_bool_devarg(const char *key,
2845 				   const char *value,
2846 				   void *opaque)
2847 {
2848 	struct ena_adapter *adapter = opaque;
2849 	bool bool_value;
2850 
2851 	/* Parse the value. */
2852 	if (strcmp(value, "1") == 0) {
2853 		bool_value = true;
2854 	} else if (strcmp(value, "0") == 0) {
2855 		bool_value = false;
2856 	} else {
2857 		PMD_INIT_LOG(ERR,
2858 			"Invalid value: '%s' for key '%s'. Accepted: '0' or '1'\n",
2859 			value, key);
2860 		return -EINVAL;
2861 	}
2862 
2863 	/* Now, assign it to the proper adapter field. */
2864 	if (strcmp(key, ENA_DEVARG_LARGE_LLQ_HDR))
2865 		adapter->use_large_llq_hdr = bool_value;
2866 
2867 	return 0;
2868 }
2869 
2870 static int ena_parse_devargs(struct ena_adapter *adapter,
2871 			     struct rte_devargs *devargs)
2872 {
2873 	static const char * const allowed_args[] = {
2874 		ENA_DEVARG_LARGE_LLQ_HDR,
2875 	};
2876 	struct rte_kvargs *kvlist;
2877 	int rc;
2878 
2879 	if (devargs == NULL)
2880 		return 0;
2881 
2882 	kvlist = rte_kvargs_parse(devargs->args, allowed_args);
2883 	if (kvlist == NULL) {
2884 		PMD_INIT_LOG(ERR, "Invalid device arguments: %s\n",
2885 			devargs->args);
2886 		return -EINVAL;
2887 	}
2888 
2889 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_LARGE_LLQ_HDR,
2890 		ena_process_bool_devarg, adapter);
2891 
2892 	rte_kvargs_free(kvlist);
2893 
2894 	return rc;
2895 }
2896 
2897 /*********************************************************************
2898  *  PMD configuration
2899  *********************************************************************/
2900 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2901 	struct rte_pci_device *pci_dev)
2902 {
2903 	return rte_eth_dev_pci_generic_probe(pci_dev,
2904 		sizeof(struct ena_adapter), eth_ena_dev_init);
2905 }
2906 
2907 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
2908 {
2909 	return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
2910 }
2911 
2912 static struct rte_pci_driver rte_ena_pmd = {
2913 	.id_table = pci_id_ena_map,
2914 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
2915 		     RTE_PCI_DRV_WC_ACTIVATE,
2916 	.probe = eth_ena_pci_probe,
2917 	.remove = eth_ena_pci_remove,
2918 };
2919 
2920 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
2921 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
2922 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
2923 RTE_PMD_REGISTER_PARAM_STRING(net_ena, ENA_DEVARG_LARGE_LLQ_HDR "=<0|1>");
2924 RTE_LOG_REGISTER(ena_logtype_init, pmd.net.ena.init, NOTICE);
2925 RTE_LOG_REGISTER(ena_logtype_driver, pmd.net.ena.driver, NOTICE);
2926 #ifdef RTE_LIBRTE_ENA_DEBUG_RX
2927 RTE_LOG_REGISTER(ena_logtype_rx, pmd.net.ena.rx, NOTICE);
2928 #endif
2929 #ifdef RTE_LIBRTE_ENA_DEBUG_TX
2930 RTE_LOG_REGISTER(ena_logtype_tx, pmd.net.ena.tx, NOTICE);
2931 #endif
2932 #ifdef RTE_LIBRTE_ENA_DEBUG_TX_FREE
2933 RTE_LOG_REGISTER(ena_logtype_tx_free, pmd.net.ena.tx_free, NOTICE);
2934 #endif
2935 #ifdef RTE_LIBRTE_ENA_COM_DEBUG
2936 RTE_LOG_REGISTER(ena_logtype_com, pmd.net.ena.com, NOTICE);
2937 #endif
2938 
2939 /******************************************************************************
2940  ******************************** AENQ Handlers *******************************
2941  *****************************************************************************/
2942 static void ena_update_on_link_change(void *adapter_data,
2943 				      struct ena_admin_aenq_entry *aenq_e)
2944 {
2945 	struct rte_eth_dev *eth_dev;
2946 	struct ena_adapter *adapter;
2947 	struct ena_admin_aenq_link_change_desc *aenq_link_desc;
2948 	uint32_t status;
2949 
2950 	adapter = adapter_data;
2951 	aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
2952 	eth_dev = adapter->rte_dev;
2953 
2954 	status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
2955 	adapter->link_status = status;
2956 
2957 	ena_link_update(eth_dev, 0);
2958 	rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
2959 }
2960 
2961 static void ena_notification(void *data,
2962 			     struct ena_admin_aenq_entry *aenq_e)
2963 {
2964 	struct ena_adapter *adapter = data;
2965 	struct ena_admin_ena_hw_hints *hints;
2966 
2967 	if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
2968 		PMD_DRV_LOG(WARNING, "Invalid group(%x) expected %x\n",
2969 			aenq_e->aenq_common_desc.group,
2970 			ENA_ADMIN_NOTIFICATION);
2971 
2972 	switch (aenq_e->aenq_common_desc.syndrom) {
2973 	case ENA_ADMIN_UPDATE_HINTS:
2974 		hints = (struct ena_admin_ena_hw_hints *)
2975 			(&aenq_e->inline_data_w4);
2976 		ena_update_hints(adapter, hints);
2977 		break;
2978 	default:
2979 		PMD_DRV_LOG(ERR, "Invalid aenq notification link state %d\n",
2980 			aenq_e->aenq_common_desc.syndrom);
2981 	}
2982 }
2983 
2984 static void ena_keep_alive(void *adapter_data,
2985 			   __rte_unused struct ena_admin_aenq_entry *aenq_e)
2986 {
2987 	struct ena_adapter *adapter = adapter_data;
2988 	struct ena_admin_aenq_keep_alive_desc *desc;
2989 	uint64_t rx_drops;
2990 	uint64_t tx_drops;
2991 
2992 	adapter->timestamp_wd = rte_get_timer_cycles();
2993 
2994 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
2995 	rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
2996 	tx_drops = ((uint64_t)desc->tx_drops_high << 32) | desc->tx_drops_low;
2997 
2998 	adapter->drv_stats->rx_drops = rx_drops;
2999 	adapter->dev_stats.tx_drops = tx_drops;
3000 }
3001 
3002 /**
3003  * This handler will called for unknown event group or unimplemented handlers
3004  **/
3005 static void unimplemented_aenq_handler(__rte_unused void *data,
3006 				       __rte_unused struct ena_admin_aenq_entry *aenq_e)
3007 {
3008 	PMD_DRV_LOG(ERR, "Unknown event was received or event with "
3009 			  "unimplemented handler\n");
3010 }
3011 
3012 static struct ena_aenq_handlers aenq_handlers = {
3013 	.handlers = {
3014 		[ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
3015 		[ENA_ADMIN_NOTIFICATION] = ena_notification,
3016 		[ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive
3017 	},
3018 	.unimplemented_handler = unimplemented_aenq_handler
3019 };
3020