xref: /dpdk/drivers/net/ena/ena_ethdev.c (revision 8809f78c7dd9f33a44a4f89c58fc91ded34296ed)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
3  * All rights reserved.
4  */
5 
6 #include <rte_string_fns.h>
7 #include <rte_ether.h>
8 #include <rte_ethdev_driver.h>
9 #include <rte_ethdev_pci.h>
10 #include <rte_tcp.h>
11 #include <rte_atomic.h>
12 #include <rte_dev.h>
13 #include <rte_errno.h>
14 #include <rte_version.h>
15 #include <rte_net.h>
16 #include <rte_kvargs.h>
17 
18 #include "ena_ethdev.h"
19 #include "ena_logs.h"
20 #include "ena_platform.h"
21 #include "ena_com.h"
22 #include "ena_eth_com.h"
23 
24 #include <ena_common_defs.h>
25 #include <ena_regs_defs.h>
26 #include <ena_admin_defs.h>
27 #include <ena_eth_io_defs.h>
28 
29 #define DRV_MODULE_VER_MAJOR	2
30 #define DRV_MODULE_VER_MINOR	1
31 #define DRV_MODULE_VER_SUBMINOR	0
32 
33 #define ENA_IO_TXQ_IDX(q)	(2 * (q))
34 #define ENA_IO_RXQ_IDX(q)	(2 * (q) + 1)
35 /*reverse version of ENA_IO_RXQ_IDX*/
36 #define ENA_IO_RXQ_IDX_REV(q)	((q - 1) / 2)
37 
38 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
39 #define TEST_BIT(val, bit_shift) (val & (1UL << bit_shift))
40 
41 #define GET_L4_HDR_LEN(mbuf)					\
42 	((rte_pktmbuf_mtod_offset(mbuf,	struct rte_tcp_hdr *,	\
43 		mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
44 
45 #define ENA_RX_RSS_TABLE_LOG_SIZE  7
46 #define ENA_RX_RSS_TABLE_SIZE	(1 << ENA_RX_RSS_TABLE_LOG_SIZE)
47 #define ENA_HASH_KEY_SIZE	40
48 #define ETH_GSTRING_LEN	32
49 
50 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
51 
52 #define ENA_MIN_RING_DESC	128
53 
54 enum ethtool_stringset {
55 	ETH_SS_TEST             = 0,
56 	ETH_SS_STATS,
57 };
58 
59 struct ena_stats {
60 	char name[ETH_GSTRING_LEN];
61 	int stat_offset;
62 };
63 
64 #define ENA_STAT_ENTRY(stat, stat_type) { \
65 	.name = #stat, \
66 	.stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
67 }
68 
69 #define ENA_STAT_RX_ENTRY(stat) \
70 	ENA_STAT_ENTRY(stat, rx)
71 
72 #define ENA_STAT_TX_ENTRY(stat) \
73 	ENA_STAT_ENTRY(stat, tx)
74 
75 #define ENA_STAT_ENI_ENTRY(stat) \
76 	ENA_STAT_ENTRY(stat, eni)
77 
78 #define ENA_STAT_GLOBAL_ENTRY(stat) \
79 	ENA_STAT_ENTRY(stat, dev)
80 
81 /* Device arguments */
82 #define ENA_DEVARG_LARGE_LLQ_HDR "large_llq_hdr"
83 
84 /*
85  * Each rte_memzone should have unique name.
86  * To satisfy it, count number of allocation and add it to name.
87  */
88 rte_atomic32_t ena_alloc_cnt;
89 
90 static const struct ena_stats ena_stats_global_strings[] = {
91 	ENA_STAT_GLOBAL_ENTRY(wd_expired),
92 	ENA_STAT_GLOBAL_ENTRY(dev_start),
93 	ENA_STAT_GLOBAL_ENTRY(dev_stop),
94 	ENA_STAT_GLOBAL_ENTRY(tx_drops),
95 };
96 
97 static const struct ena_stats ena_stats_eni_strings[] = {
98 	ENA_STAT_ENI_ENTRY(bw_in_allowance_exceeded),
99 	ENA_STAT_ENI_ENTRY(bw_out_allowance_exceeded),
100 	ENA_STAT_ENI_ENTRY(pps_allowance_exceeded),
101 	ENA_STAT_ENI_ENTRY(conntrack_allowance_exceeded),
102 	ENA_STAT_ENI_ENTRY(linklocal_allowance_exceeded),
103 };
104 
105 static const struct ena_stats ena_stats_tx_strings[] = {
106 	ENA_STAT_TX_ENTRY(cnt),
107 	ENA_STAT_TX_ENTRY(bytes),
108 	ENA_STAT_TX_ENTRY(prepare_ctx_err),
109 	ENA_STAT_TX_ENTRY(linearize),
110 	ENA_STAT_TX_ENTRY(linearize_failed),
111 	ENA_STAT_TX_ENTRY(tx_poll),
112 	ENA_STAT_TX_ENTRY(doorbells),
113 	ENA_STAT_TX_ENTRY(bad_req_id),
114 	ENA_STAT_TX_ENTRY(available_desc),
115 };
116 
117 static const struct ena_stats ena_stats_rx_strings[] = {
118 	ENA_STAT_RX_ENTRY(cnt),
119 	ENA_STAT_RX_ENTRY(bytes),
120 	ENA_STAT_RX_ENTRY(refill_partial),
121 	ENA_STAT_RX_ENTRY(bad_csum),
122 	ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
123 	ENA_STAT_RX_ENTRY(bad_desc_num),
124 	ENA_STAT_RX_ENTRY(bad_req_id),
125 };
126 
127 #define ENA_STATS_ARRAY_GLOBAL	ARRAY_SIZE(ena_stats_global_strings)
128 #define ENA_STATS_ARRAY_ENI	ARRAY_SIZE(ena_stats_eni_strings)
129 #define ENA_STATS_ARRAY_TX	ARRAY_SIZE(ena_stats_tx_strings)
130 #define ENA_STATS_ARRAY_RX	ARRAY_SIZE(ena_stats_rx_strings)
131 
132 #define QUEUE_OFFLOADS (DEV_TX_OFFLOAD_TCP_CKSUM |\
133 			DEV_TX_OFFLOAD_UDP_CKSUM |\
134 			DEV_TX_OFFLOAD_IPV4_CKSUM |\
135 			DEV_TX_OFFLOAD_TCP_TSO)
136 #define MBUF_OFFLOADS (PKT_TX_L4_MASK |\
137 		       PKT_TX_IP_CKSUM |\
138 		       PKT_TX_TCP_SEG)
139 
140 /** Vendor ID used by Amazon devices */
141 #define PCI_VENDOR_ID_AMAZON 0x1D0F
142 /** Amazon devices */
143 #define PCI_DEVICE_ID_ENA_VF	0xEC20
144 #define PCI_DEVICE_ID_ENA_LLQ_VF	0xEC21
145 
146 #define	ENA_TX_OFFLOAD_MASK	(\
147 	PKT_TX_L4_MASK |         \
148 	PKT_TX_IPV6 |            \
149 	PKT_TX_IPV4 |            \
150 	PKT_TX_IP_CKSUM |        \
151 	PKT_TX_TCP_SEG)
152 
153 #define	ENA_TX_OFFLOAD_NOTSUP_MASK	\
154 	(PKT_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
155 
156 static const struct rte_pci_id pci_id_ena_map[] = {
157 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
158 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_LLQ_VF) },
159 	{ .device_id = 0 },
160 };
161 
162 static struct ena_aenq_handlers aenq_handlers;
163 
164 static int ena_device_init(struct ena_com_dev *ena_dev,
165 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
166 			   bool *wd_state);
167 static int ena_dev_configure(struct rte_eth_dev *dev);
168 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
169 	struct ena_tx_buffer *tx_info,
170 	struct rte_mbuf *mbuf,
171 	void **push_header,
172 	uint16_t *header_len);
173 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf);
174 static void ena_tx_cleanup(struct ena_ring *tx_ring);
175 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
176 				  uint16_t nb_pkts);
177 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
178 		uint16_t nb_pkts);
179 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
180 			      uint16_t nb_desc, unsigned int socket_id,
181 			      const struct rte_eth_txconf *tx_conf);
182 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
183 			      uint16_t nb_desc, unsigned int socket_id,
184 			      const struct rte_eth_rxconf *rx_conf,
185 			      struct rte_mempool *mp);
186 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len);
187 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
188 				    struct ena_com_rx_buf_info *ena_bufs,
189 				    uint32_t descs,
190 				    uint16_t *next_to_clean,
191 				    uint8_t offset);
192 static uint16_t eth_ena_recv_pkts(void *rx_queue,
193 				  struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
194 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
195 				  struct rte_mbuf *mbuf, uint16_t id);
196 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
197 static void ena_init_rings(struct ena_adapter *adapter,
198 			   bool disable_meta_caching);
199 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
200 static int ena_start(struct rte_eth_dev *dev);
201 static int ena_stop(struct rte_eth_dev *dev);
202 static int ena_close(struct rte_eth_dev *dev);
203 static int ena_dev_reset(struct rte_eth_dev *dev);
204 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
205 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
206 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
207 static void ena_rx_queue_release(void *queue);
208 static void ena_tx_queue_release(void *queue);
209 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
210 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
211 static int ena_link_update(struct rte_eth_dev *dev,
212 			   int wait_to_complete);
213 static int ena_create_io_queue(struct ena_ring *ring);
214 static void ena_queue_stop(struct ena_ring *ring);
215 static void ena_queue_stop_all(struct rte_eth_dev *dev,
216 			      enum ena_ring_type ring_type);
217 static int ena_queue_start(struct ena_ring *ring);
218 static int ena_queue_start_all(struct rte_eth_dev *dev,
219 			       enum ena_ring_type ring_type);
220 static void ena_stats_restart(struct rte_eth_dev *dev);
221 static int ena_infos_get(struct rte_eth_dev *dev,
222 			 struct rte_eth_dev_info *dev_info);
223 static int ena_rss_reta_update(struct rte_eth_dev *dev,
224 			       struct rte_eth_rss_reta_entry64 *reta_conf,
225 			       uint16_t reta_size);
226 static int ena_rss_reta_query(struct rte_eth_dev *dev,
227 			      struct rte_eth_rss_reta_entry64 *reta_conf,
228 			      uint16_t reta_size);
229 static void ena_interrupt_handler_rte(void *cb_arg);
230 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
231 static void ena_destroy_device(struct rte_eth_dev *eth_dev);
232 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
233 static int ena_xstats_get_names(struct rte_eth_dev *dev,
234 				struct rte_eth_xstat_name *xstats_names,
235 				unsigned int n);
236 static int ena_xstats_get(struct rte_eth_dev *dev,
237 			  struct rte_eth_xstat *stats,
238 			  unsigned int n);
239 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
240 				const uint64_t *ids,
241 				uint64_t *values,
242 				unsigned int n);
243 static int ena_process_bool_devarg(const char *key,
244 				   const char *value,
245 				   void *opaque);
246 static int ena_parse_devargs(struct ena_adapter *adapter,
247 			     struct rte_devargs *devargs);
248 static int ena_copy_eni_stats(struct ena_adapter *adapter);
249 
250 static const struct eth_dev_ops ena_dev_ops = {
251 	.dev_configure        = ena_dev_configure,
252 	.dev_infos_get        = ena_infos_get,
253 	.rx_queue_setup       = ena_rx_queue_setup,
254 	.tx_queue_setup       = ena_tx_queue_setup,
255 	.dev_start            = ena_start,
256 	.dev_stop             = ena_stop,
257 	.link_update          = ena_link_update,
258 	.stats_get            = ena_stats_get,
259 	.xstats_get_names     = ena_xstats_get_names,
260 	.xstats_get	      = ena_xstats_get,
261 	.xstats_get_by_id     = ena_xstats_get_by_id,
262 	.mtu_set              = ena_mtu_set,
263 	.rx_queue_release     = ena_rx_queue_release,
264 	.tx_queue_release     = ena_tx_queue_release,
265 	.dev_close            = ena_close,
266 	.dev_reset            = ena_dev_reset,
267 	.reta_update          = ena_rss_reta_update,
268 	.reta_query           = ena_rss_reta_query,
269 };
270 
271 void ena_rss_key_fill(void *key, size_t size)
272 {
273 	static bool key_generated;
274 	static uint8_t default_key[ENA_HASH_KEY_SIZE];
275 	size_t i;
276 
277 	RTE_ASSERT(size <= ENA_HASH_KEY_SIZE);
278 
279 	if (!key_generated) {
280 		for (i = 0; i < ENA_HASH_KEY_SIZE; ++i)
281 			default_key[i] = rte_rand() & 0xff;
282 		key_generated = true;
283 	}
284 
285 	rte_memcpy(key, default_key, size);
286 }
287 
288 static inline void ena_rx_mbuf_prepare(struct rte_mbuf *mbuf,
289 				       struct ena_com_rx_ctx *ena_rx_ctx)
290 {
291 	uint64_t ol_flags = 0;
292 	uint32_t packet_type = 0;
293 
294 	if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
295 		packet_type |= RTE_PTYPE_L4_TCP;
296 	else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
297 		packet_type |= RTE_PTYPE_L4_UDP;
298 
299 	if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4)
300 		packet_type |= RTE_PTYPE_L3_IPV4;
301 	else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6)
302 		packet_type |= RTE_PTYPE_L3_IPV6;
303 
304 	if (!ena_rx_ctx->l4_csum_checked)
305 		ol_flags |= PKT_RX_L4_CKSUM_UNKNOWN;
306 	else
307 		if (unlikely(ena_rx_ctx->l4_csum_err) && !ena_rx_ctx->frag)
308 			ol_flags |= PKT_RX_L4_CKSUM_BAD;
309 		else
310 			ol_flags |= PKT_RX_L4_CKSUM_UNKNOWN;
311 
312 	if (unlikely(ena_rx_ctx->l3_csum_err))
313 		ol_flags |= PKT_RX_IP_CKSUM_BAD;
314 
315 	mbuf->ol_flags = ol_flags;
316 	mbuf->packet_type = packet_type;
317 }
318 
319 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
320 				       struct ena_com_tx_ctx *ena_tx_ctx,
321 				       uint64_t queue_offloads,
322 				       bool disable_meta_caching)
323 {
324 	struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
325 
326 	if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
327 	    (queue_offloads & QUEUE_OFFLOADS)) {
328 		/* check if TSO is required */
329 		if ((mbuf->ol_flags & PKT_TX_TCP_SEG) &&
330 		    (queue_offloads & DEV_TX_OFFLOAD_TCP_TSO)) {
331 			ena_tx_ctx->tso_enable = true;
332 
333 			ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
334 		}
335 
336 		/* check if L3 checksum is needed */
337 		if ((mbuf->ol_flags & PKT_TX_IP_CKSUM) &&
338 		    (queue_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM))
339 			ena_tx_ctx->l3_csum_enable = true;
340 
341 		if (mbuf->ol_flags & PKT_TX_IPV6) {
342 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
343 		} else {
344 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
345 
346 			/* set don't fragment (DF) flag */
347 			if (mbuf->packet_type &
348 				(RTE_PTYPE_L4_NONFRAG
349 				 | RTE_PTYPE_INNER_L4_NONFRAG))
350 				ena_tx_ctx->df = true;
351 		}
352 
353 		/* check if L4 checksum is needed */
354 		if (((mbuf->ol_flags & PKT_TX_L4_MASK) == PKT_TX_TCP_CKSUM) &&
355 		    (queue_offloads & DEV_TX_OFFLOAD_TCP_CKSUM)) {
356 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
357 			ena_tx_ctx->l4_csum_enable = true;
358 		} else if (((mbuf->ol_flags & PKT_TX_L4_MASK) ==
359 				PKT_TX_UDP_CKSUM) &&
360 				(queue_offloads & DEV_TX_OFFLOAD_UDP_CKSUM)) {
361 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
362 			ena_tx_ctx->l4_csum_enable = true;
363 		} else {
364 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
365 			ena_tx_ctx->l4_csum_enable = false;
366 		}
367 
368 		ena_meta->mss = mbuf->tso_segsz;
369 		ena_meta->l3_hdr_len = mbuf->l3_len;
370 		ena_meta->l3_hdr_offset = mbuf->l2_len;
371 
372 		ena_tx_ctx->meta_valid = true;
373 	} else if (disable_meta_caching) {
374 		memset(ena_meta, 0, sizeof(*ena_meta));
375 		ena_tx_ctx->meta_valid = true;
376 	} else {
377 		ena_tx_ctx->meta_valid = false;
378 	}
379 }
380 
381 static inline int validate_rx_req_id(struct ena_ring *rx_ring, uint16_t req_id)
382 {
383 	if (likely(req_id < rx_ring->ring_size))
384 		return 0;
385 
386 	PMD_DRV_LOG(ERR, "Invalid rx req_id: %hu\n", req_id);
387 
388 	rx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID;
389 	rx_ring->adapter->trigger_reset = true;
390 	++rx_ring->rx_stats.bad_req_id;
391 
392 	return -EFAULT;
393 }
394 
395 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
396 {
397 	struct ena_tx_buffer *tx_info = NULL;
398 
399 	if (likely(req_id < tx_ring->ring_size)) {
400 		tx_info = &tx_ring->tx_buffer_info[req_id];
401 		if (likely(tx_info->mbuf))
402 			return 0;
403 	}
404 
405 	if (tx_info)
406 		PMD_DRV_LOG(ERR, "tx_info doesn't have valid mbuf\n");
407 	else
408 		PMD_DRV_LOG(ERR, "Invalid req_id: %hu\n", req_id);
409 
410 	/* Trigger device reset */
411 	++tx_ring->tx_stats.bad_req_id;
412 	tx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID;
413 	tx_ring->adapter->trigger_reset	= true;
414 	return -EFAULT;
415 }
416 
417 static void ena_config_host_info(struct ena_com_dev *ena_dev)
418 {
419 	struct ena_admin_host_info *host_info;
420 	int rc;
421 
422 	/* Allocate only the host info */
423 	rc = ena_com_allocate_host_info(ena_dev);
424 	if (rc) {
425 		PMD_DRV_LOG(ERR, "Cannot allocate host info\n");
426 		return;
427 	}
428 
429 	host_info = ena_dev->host_attr.host_info;
430 
431 	host_info->os_type = ENA_ADMIN_OS_DPDK;
432 	host_info->kernel_ver = RTE_VERSION;
433 	strlcpy((char *)host_info->kernel_ver_str, rte_version(),
434 		sizeof(host_info->kernel_ver_str));
435 	host_info->os_dist = RTE_VERSION;
436 	strlcpy((char *)host_info->os_dist_str, rte_version(),
437 		sizeof(host_info->os_dist_str));
438 	host_info->driver_version =
439 		(DRV_MODULE_VER_MAJOR) |
440 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
441 		(DRV_MODULE_VER_SUBMINOR <<
442 			ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
443 	host_info->num_cpus = rte_lcore_count();
444 
445 	host_info->driver_supported_features =
446 		ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK;
447 
448 	rc = ena_com_set_host_attributes(ena_dev);
449 	if (rc) {
450 		if (rc == -ENA_COM_UNSUPPORTED)
451 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
452 		else
453 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
454 
455 		goto err;
456 	}
457 
458 	return;
459 
460 err:
461 	ena_com_delete_host_info(ena_dev);
462 }
463 
464 /* This function calculates the number of xstats based on the current config */
465 static unsigned int ena_xstats_calc_num(struct rte_eth_dev *dev)
466 {
467 	return ENA_STATS_ARRAY_GLOBAL + ENA_STATS_ARRAY_ENI +
468 		(dev->data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
469 		(dev->data->nb_rx_queues * ENA_STATS_ARRAY_RX);
470 }
471 
472 static void ena_config_debug_area(struct ena_adapter *adapter)
473 {
474 	u32 debug_area_size;
475 	int rc, ss_count;
476 
477 	ss_count = ena_xstats_calc_num(adapter->rte_dev);
478 
479 	/* allocate 32 bytes for each string and 64bit for the value */
480 	debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
481 
482 	rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
483 	if (rc) {
484 		PMD_DRV_LOG(ERR, "Cannot allocate debug area\n");
485 		return;
486 	}
487 
488 	rc = ena_com_set_host_attributes(&adapter->ena_dev);
489 	if (rc) {
490 		if (rc == -ENA_COM_UNSUPPORTED)
491 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
492 		else
493 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
494 
495 		goto err;
496 	}
497 
498 	return;
499 err:
500 	ena_com_delete_debug_area(&adapter->ena_dev);
501 }
502 
503 static int ena_close(struct rte_eth_dev *dev)
504 {
505 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
506 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
507 	struct ena_adapter *adapter = dev->data->dev_private;
508 	int ret = 0;
509 
510 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
511 		return 0;
512 
513 	if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
514 		ret = ena_stop(dev);
515 	adapter->state = ENA_ADAPTER_STATE_CLOSED;
516 
517 	ena_rx_queue_release_all(dev);
518 	ena_tx_queue_release_all(dev);
519 
520 	rte_free(adapter->drv_stats);
521 	adapter->drv_stats = NULL;
522 
523 	rte_intr_disable(intr_handle);
524 	rte_intr_callback_unregister(intr_handle,
525 				     ena_interrupt_handler_rte,
526 				     adapter);
527 
528 	/*
529 	 * MAC is not allocated dynamically. Setting NULL should prevent from
530 	 * release of the resource in the rte_eth_dev_release_port().
531 	 */
532 	dev->data->mac_addrs = NULL;
533 
534 	return ret;
535 }
536 
537 static int
538 ena_dev_reset(struct rte_eth_dev *dev)
539 {
540 	int rc = 0;
541 
542 	ena_destroy_device(dev);
543 	rc = eth_ena_dev_init(dev);
544 	if (rc)
545 		PMD_INIT_LOG(CRIT, "Cannot initialize device");
546 
547 	return rc;
548 }
549 
550 static int ena_rss_reta_update(struct rte_eth_dev *dev,
551 			       struct rte_eth_rss_reta_entry64 *reta_conf,
552 			       uint16_t reta_size)
553 {
554 	struct ena_adapter *adapter = dev->data->dev_private;
555 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
556 	int rc, i;
557 	u16 entry_value;
558 	int conf_idx;
559 	int idx;
560 
561 	if ((reta_size == 0) || (reta_conf == NULL))
562 		return -EINVAL;
563 
564 	if (reta_size > ENA_RX_RSS_TABLE_SIZE) {
565 		PMD_DRV_LOG(WARNING,
566 			"indirection table %d is bigger than supported (%d)\n",
567 			reta_size, ENA_RX_RSS_TABLE_SIZE);
568 		return -EINVAL;
569 	}
570 
571 	for (i = 0 ; i < reta_size ; i++) {
572 		/* each reta_conf is for 64 entries.
573 		 * to support 128 we use 2 conf of 64
574 		 */
575 		conf_idx = i / RTE_RETA_GROUP_SIZE;
576 		idx = i % RTE_RETA_GROUP_SIZE;
577 		if (TEST_BIT(reta_conf[conf_idx].mask, idx)) {
578 			entry_value =
579 				ENA_IO_RXQ_IDX(reta_conf[conf_idx].reta[idx]);
580 
581 			rc = ena_com_indirect_table_fill_entry(ena_dev,
582 							       i,
583 							       entry_value);
584 			if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
585 				PMD_DRV_LOG(ERR,
586 					"Cannot fill indirect table\n");
587 				return rc;
588 			}
589 		}
590 	}
591 
592 	rte_spinlock_lock(&adapter->admin_lock);
593 	rc = ena_com_indirect_table_set(ena_dev);
594 	rte_spinlock_unlock(&adapter->admin_lock);
595 	if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
596 		PMD_DRV_LOG(ERR, "Cannot flush the indirect table\n");
597 		return rc;
598 	}
599 
600 	PMD_DRV_LOG(DEBUG, "%s(): RSS configured %d entries  for port %d\n",
601 		__func__, reta_size, adapter->rte_dev->data->port_id);
602 
603 	return 0;
604 }
605 
606 /* Query redirection table. */
607 static int ena_rss_reta_query(struct rte_eth_dev *dev,
608 			      struct rte_eth_rss_reta_entry64 *reta_conf,
609 			      uint16_t reta_size)
610 {
611 	struct ena_adapter *adapter = dev->data->dev_private;
612 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
613 	int rc;
614 	int i;
615 	u32 indirect_table[ENA_RX_RSS_TABLE_SIZE] = {0};
616 	int reta_conf_idx;
617 	int reta_idx;
618 
619 	if (reta_size == 0 || reta_conf == NULL ||
620 	    (reta_size > RTE_RETA_GROUP_SIZE && ((reta_conf + 1) == NULL)))
621 		return -EINVAL;
622 
623 	rte_spinlock_lock(&adapter->admin_lock);
624 	rc = ena_com_indirect_table_get(ena_dev, indirect_table);
625 	rte_spinlock_unlock(&adapter->admin_lock);
626 	if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
627 		PMD_DRV_LOG(ERR, "cannot get indirect table\n");
628 		return -ENOTSUP;
629 	}
630 
631 	for (i = 0 ; i < reta_size ; i++) {
632 		reta_conf_idx = i / RTE_RETA_GROUP_SIZE;
633 		reta_idx = i % RTE_RETA_GROUP_SIZE;
634 		if (TEST_BIT(reta_conf[reta_conf_idx].mask, reta_idx))
635 			reta_conf[reta_conf_idx].reta[reta_idx] =
636 				ENA_IO_RXQ_IDX_REV(indirect_table[i]);
637 	}
638 
639 	return 0;
640 }
641 
642 static int ena_rss_init_default(struct ena_adapter *adapter)
643 {
644 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
645 	uint16_t nb_rx_queues = adapter->rte_dev->data->nb_rx_queues;
646 	int rc, i;
647 	u32 val;
648 
649 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
650 	if (unlikely(rc)) {
651 		PMD_DRV_LOG(ERR, "Cannot init indirect table\n");
652 		goto err_rss_init;
653 	}
654 
655 	for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
656 		val = i % nb_rx_queues;
657 		rc = ena_com_indirect_table_fill_entry(ena_dev, i,
658 						       ENA_IO_RXQ_IDX(val));
659 		if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
660 			PMD_DRV_LOG(ERR, "Cannot fill indirect table\n");
661 			goto err_fill_indir;
662 		}
663 	}
664 
665 	rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL,
666 					ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
667 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
668 		PMD_DRV_LOG(INFO, "Cannot fill hash function\n");
669 		goto err_fill_indir;
670 	}
671 
672 	rc = ena_com_set_default_hash_ctrl(ena_dev);
673 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
674 		PMD_DRV_LOG(INFO, "Cannot fill hash control\n");
675 		goto err_fill_indir;
676 	}
677 
678 	rc = ena_com_indirect_table_set(ena_dev);
679 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
680 		PMD_DRV_LOG(ERR, "Cannot flush the indirect table\n");
681 		goto err_fill_indir;
682 	}
683 	PMD_DRV_LOG(DEBUG, "RSS configured for port %d\n",
684 		adapter->rte_dev->data->port_id);
685 
686 	return 0;
687 
688 err_fill_indir:
689 	ena_com_rss_destroy(ena_dev);
690 err_rss_init:
691 
692 	return rc;
693 }
694 
695 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
696 {
697 	struct ena_ring **queues = (struct ena_ring **)dev->data->rx_queues;
698 	int nb_queues = dev->data->nb_rx_queues;
699 	int i;
700 
701 	for (i = 0; i < nb_queues; i++)
702 		ena_rx_queue_release(queues[i]);
703 }
704 
705 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
706 {
707 	struct ena_ring **queues = (struct ena_ring **)dev->data->tx_queues;
708 	int nb_queues = dev->data->nb_tx_queues;
709 	int i;
710 
711 	for (i = 0; i < nb_queues; i++)
712 		ena_tx_queue_release(queues[i]);
713 }
714 
715 static void ena_rx_queue_release(void *queue)
716 {
717 	struct ena_ring *ring = (struct ena_ring *)queue;
718 
719 	/* Free ring resources */
720 	if (ring->rx_buffer_info)
721 		rte_free(ring->rx_buffer_info);
722 	ring->rx_buffer_info = NULL;
723 
724 	if (ring->rx_refill_buffer)
725 		rte_free(ring->rx_refill_buffer);
726 	ring->rx_refill_buffer = NULL;
727 
728 	if (ring->empty_rx_reqs)
729 		rte_free(ring->empty_rx_reqs);
730 	ring->empty_rx_reqs = NULL;
731 
732 	ring->configured = 0;
733 
734 	PMD_DRV_LOG(NOTICE, "RX Queue %d:%d released\n",
735 		ring->port_id, ring->id);
736 }
737 
738 static void ena_tx_queue_release(void *queue)
739 {
740 	struct ena_ring *ring = (struct ena_ring *)queue;
741 
742 	/* Free ring resources */
743 	if (ring->push_buf_intermediate_buf)
744 		rte_free(ring->push_buf_intermediate_buf);
745 
746 	if (ring->tx_buffer_info)
747 		rte_free(ring->tx_buffer_info);
748 
749 	if (ring->empty_tx_reqs)
750 		rte_free(ring->empty_tx_reqs);
751 
752 	ring->empty_tx_reqs = NULL;
753 	ring->tx_buffer_info = NULL;
754 	ring->push_buf_intermediate_buf = NULL;
755 
756 	ring->configured = 0;
757 
758 	PMD_DRV_LOG(NOTICE, "TX Queue %d:%d released\n",
759 		ring->port_id, ring->id);
760 }
761 
762 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
763 {
764 	unsigned int i;
765 
766 	for (i = 0; i < ring->ring_size; ++i) {
767 		struct ena_rx_buffer *rx_info = &ring->rx_buffer_info[i];
768 		if (rx_info->mbuf) {
769 			rte_mbuf_raw_free(rx_info->mbuf);
770 			rx_info->mbuf = NULL;
771 		}
772 	}
773 }
774 
775 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
776 {
777 	unsigned int i;
778 
779 	for (i = 0; i < ring->ring_size; ++i) {
780 		struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
781 
782 		if (tx_buf->mbuf)
783 			rte_pktmbuf_free(tx_buf->mbuf);
784 	}
785 }
786 
787 static int ena_link_update(struct rte_eth_dev *dev,
788 			   __rte_unused int wait_to_complete)
789 {
790 	struct rte_eth_link *link = &dev->data->dev_link;
791 	struct ena_adapter *adapter = dev->data->dev_private;
792 
793 	link->link_status = adapter->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
794 	link->link_speed = ETH_SPEED_NUM_NONE;
795 	link->link_duplex = ETH_LINK_FULL_DUPLEX;
796 
797 	return 0;
798 }
799 
800 static int ena_queue_start_all(struct rte_eth_dev *dev,
801 			       enum ena_ring_type ring_type)
802 {
803 	struct ena_adapter *adapter = dev->data->dev_private;
804 	struct ena_ring *queues = NULL;
805 	int nb_queues;
806 	int i = 0;
807 	int rc = 0;
808 
809 	if (ring_type == ENA_RING_TYPE_RX) {
810 		queues = adapter->rx_ring;
811 		nb_queues = dev->data->nb_rx_queues;
812 	} else {
813 		queues = adapter->tx_ring;
814 		nb_queues = dev->data->nb_tx_queues;
815 	}
816 	for (i = 0; i < nb_queues; i++) {
817 		if (queues[i].configured) {
818 			if (ring_type == ENA_RING_TYPE_RX) {
819 				ena_assert_msg(
820 					dev->data->rx_queues[i] == &queues[i],
821 					"Inconsistent state of rx queues\n");
822 			} else {
823 				ena_assert_msg(
824 					dev->data->tx_queues[i] == &queues[i],
825 					"Inconsistent state of tx queues\n");
826 			}
827 
828 			rc = ena_queue_start(&queues[i]);
829 
830 			if (rc) {
831 				PMD_INIT_LOG(ERR,
832 					     "failed to start queue %d type(%d)",
833 					     i, ring_type);
834 				goto err;
835 			}
836 		}
837 	}
838 
839 	return 0;
840 
841 err:
842 	while (i--)
843 		if (queues[i].configured)
844 			ena_queue_stop(&queues[i]);
845 
846 	return rc;
847 }
848 
849 static uint32_t ena_get_mtu_conf(struct ena_adapter *adapter)
850 {
851 	uint32_t max_frame_len = adapter->max_mtu;
852 
853 	if (adapter->rte_eth_dev_data->dev_conf.rxmode.offloads &
854 	    DEV_RX_OFFLOAD_JUMBO_FRAME)
855 		max_frame_len =
856 			adapter->rte_eth_dev_data->dev_conf.rxmode.max_rx_pkt_len;
857 
858 	return max_frame_len;
859 }
860 
861 static int ena_check_valid_conf(struct ena_adapter *adapter)
862 {
863 	uint32_t max_frame_len = ena_get_mtu_conf(adapter);
864 
865 	if (max_frame_len > adapter->max_mtu || max_frame_len < ENA_MIN_MTU) {
866 		PMD_INIT_LOG(ERR, "Unsupported MTU of %d. "
867 				  "max mtu: %d, min mtu: %d",
868 			     max_frame_len, adapter->max_mtu, ENA_MIN_MTU);
869 		return ENA_COM_UNSUPPORTED;
870 	}
871 
872 	return 0;
873 }
874 
875 static int
876 ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx,
877 		       bool use_large_llq_hdr)
878 {
879 	struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
880 	struct ena_com_dev *ena_dev = ctx->ena_dev;
881 	uint32_t max_tx_queue_size;
882 	uint32_t max_rx_queue_size;
883 
884 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
885 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
886 			&ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
887 		max_rx_queue_size = RTE_MIN(max_queue_ext->max_rx_cq_depth,
888 			max_queue_ext->max_rx_sq_depth);
889 		max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
890 
891 		if (ena_dev->tx_mem_queue_type ==
892 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
893 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
894 				llq->max_llq_depth);
895 		} else {
896 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
897 				max_queue_ext->max_tx_sq_depth);
898 		}
899 
900 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
901 			max_queue_ext->max_per_packet_rx_descs);
902 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
903 			max_queue_ext->max_per_packet_tx_descs);
904 	} else {
905 		struct ena_admin_queue_feature_desc *max_queues =
906 			&ctx->get_feat_ctx->max_queues;
907 		max_rx_queue_size = RTE_MIN(max_queues->max_cq_depth,
908 			max_queues->max_sq_depth);
909 		max_tx_queue_size = max_queues->max_cq_depth;
910 
911 		if (ena_dev->tx_mem_queue_type ==
912 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
913 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
914 				llq->max_llq_depth);
915 		} else {
916 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
917 				max_queues->max_sq_depth);
918 		}
919 
920 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
921 			max_queues->max_packet_rx_descs);
922 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
923 			max_queues->max_packet_tx_descs);
924 	}
925 
926 	/* Round down to the nearest power of 2 */
927 	max_rx_queue_size = rte_align32prevpow2(max_rx_queue_size);
928 	max_tx_queue_size = rte_align32prevpow2(max_tx_queue_size);
929 
930 	if (use_large_llq_hdr) {
931 		if ((llq->entry_size_ctrl_supported &
932 		     ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
933 		    (ena_dev->tx_mem_queue_type ==
934 		     ENA_ADMIN_PLACEMENT_POLICY_DEV)) {
935 			max_tx_queue_size /= 2;
936 			PMD_INIT_LOG(INFO,
937 				"Forcing large headers and decreasing maximum TX queue size to %d\n",
938 				max_tx_queue_size);
939 		} else {
940 			PMD_INIT_LOG(ERR,
941 				"Forcing large headers failed: LLQ is disabled or device does not support large headers\n");
942 		}
943 	}
944 
945 	if (unlikely(max_rx_queue_size == 0 || max_tx_queue_size == 0)) {
946 		PMD_INIT_LOG(ERR, "Invalid queue size");
947 		return -EFAULT;
948 	}
949 
950 	ctx->max_tx_queue_size = max_tx_queue_size;
951 	ctx->max_rx_queue_size = max_rx_queue_size;
952 
953 	return 0;
954 }
955 
956 static void ena_stats_restart(struct rte_eth_dev *dev)
957 {
958 	struct ena_adapter *adapter = dev->data->dev_private;
959 
960 	rte_atomic64_init(&adapter->drv_stats->ierrors);
961 	rte_atomic64_init(&adapter->drv_stats->oerrors);
962 	rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
963 	adapter->drv_stats->rx_drops = 0;
964 }
965 
966 static int ena_stats_get(struct rte_eth_dev *dev,
967 			  struct rte_eth_stats *stats)
968 {
969 	struct ena_admin_basic_stats ena_stats;
970 	struct ena_adapter *adapter = dev->data->dev_private;
971 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
972 	int rc;
973 	int i;
974 	int max_rings_stats;
975 
976 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
977 		return -ENOTSUP;
978 
979 	memset(&ena_stats, 0, sizeof(ena_stats));
980 
981 	rte_spinlock_lock(&adapter->admin_lock);
982 	rc = ena_com_get_dev_basic_stats(ena_dev, &ena_stats);
983 	rte_spinlock_unlock(&adapter->admin_lock);
984 	if (unlikely(rc)) {
985 		PMD_DRV_LOG(ERR, "Could not retrieve statistics from ENA\n");
986 		return rc;
987 	}
988 
989 	/* Set of basic statistics from ENA */
990 	stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
991 					  ena_stats.rx_pkts_low);
992 	stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
993 					  ena_stats.tx_pkts_low);
994 	stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
995 					ena_stats.rx_bytes_low);
996 	stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
997 					ena_stats.tx_bytes_low);
998 
999 	/* Driver related stats */
1000 	stats->imissed = adapter->drv_stats->rx_drops;
1001 	stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
1002 	stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
1003 	stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
1004 
1005 	max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
1006 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
1007 	for (i = 0; i < max_rings_stats; ++i) {
1008 		struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
1009 
1010 		stats->q_ibytes[i] = rx_stats->bytes;
1011 		stats->q_ipackets[i] = rx_stats->cnt;
1012 		stats->q_errors[i] = rx_stats->bad_desc_num +
1013 			rx_stats->bad_req_id;
1014 	}
1015 
1016 	max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
1017 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
1018 	for (i = 0; i < max_rings_stats; ++i) {
1019 		struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
1020 
1021 		stats->q_obytes[i] = tx_stats->bytes;
1022 		stats->q_opackets[i] = tx_stats->cnt;
1023 	}
1024 
1025 	return 0;
1026 }
1027 
1028 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1029 {
1030 	struct ena_adapter *adapter;
1031 	struct ena_com_dev *ena_dev;
1032 	int rc = 0;
1033 
1034 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
1035 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
1036 	adapter = dev->data->dev_private;
1037 
1038 	ena_dev = &adapter->ena_dev;
1039 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
1040 
1041 	if (mtu > ena_get_mtu_conf(adapter) || mtu < ENA_MIN_MTU) {
1042 		PMD_DRV_LOG(ERR,
1043 			"Invalid MTU setting. new_mtu: %d "
1044 			"max mtu: %d min mtu: %d\n",
1045 			mtu, ena_get_mtu_conf(adapter), ENA_MIN_MTU);
1046 		return -EINVAL;
1047 	}
1048 
1049 	rc = ena_com_set_dev_mtu(ena_dev, mtu);
1050 	if (rc)
1051 		PMD_DRV_LOG(ERR, "Could not set MTU: %d\n", mtu);
1052 	else
1053 		PMD_DRV_LOG(NOTICE, "Set MTU: %d\n", mtu);
1054 
1055 	return rc;
1056 }
1057 
1058 static int ena_start(struct rte_eth_dev *dev)
1059 {
1060 	struct ena_adapter *adapter = dev->data->dev_private;
1061 	uint64_t ticks;
1062 	int rc = 0;
1063 
1064 	rc = ena_check_valid_conf(adapter);
1065 	if (rc)
1066 		return rc;
1067 
1068 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
1069 	if (rc)
1070 		return rc;
1071 
1072 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
1073 	if (rc)
1074 		goto err_start_tx;
1075 
1076 	if (adapter->rte_dev->data->dev_conf.rxmode.mq_mode &
1077 	    ETH_MQ_RX_RSS_FLAG && adapter->rte_dev->data->nb_rx_queues > 0) {
1078 		rc = ena_rss_init_default(adapter);
1079 		if (rc)
1080 			goto err_rss_init;
1081 	}
1082 
1083 	ena_stats_restart(dev);
1084 
1085 	adapter->timestamp_wd = rte_get_timer_cycles();
1086 	adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
1087 
1088 	ticks = rte_get_timer_hz();
1089 	rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
1090 			ena_timer_wd_callback, adapter);
1091 
1092 	++adapter->dev_stats.dev_start;
1093 	adapter->state = ENA_ADAPTER_STATE_RUNNING;
1094 
1095 	return 0;
1096 
1097 err_rss_init:
1098 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1099 err_start_tx:
1100 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1101 	return rc;
1102 }
1103 
1104 static int ena_stop(struct rte_eth_dev *dev)
1105 {
1106 	struct ena_adapter *adapter = dev->data->dev_private;
1107 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1108 	int rc;
1109 
1110 	rte_timer_stop_sync(&adapter->timer_wd);
1111 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1112 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1113 
1114 	if (adapter->trigger_reset) {
1115 		rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
1116 		if (rc)
1117 			PMD_DRV_LOG(ERR, "Device reset failed rc=%d\n", rc);
1118 	}
1119 
1120 	++adapter->dev_stats.dev_stop;
1121 	adapter->state = ENA_ADAPTER_STATE_STOPPED;
1122 	dev->data->dev_started = 0;
1123 
1124 	return 0;
1125 }
1126 
1127 static int ena_create_io_queue(struct ena_ring *ring)
1128 {
1129 	struct ena_adapter *adapter;
1130 	struct ena_com_dev *ena_dev;
1131 	struct ena_com_create_io_ctx ctx =
1132 		/* policy set to _HOST just to satisfy icc compiler */
1133 		{ ENA_ADMIN_PLACEMENT_POLICY_HOST,
1134 		  0, 0, 0, 0, 0 };
1135 	uint16_t ena_qid;
1136 	unsigned int i;
1137 	int rc;
1138 
1139 	adapter = ring->adapter;
1140 	ena_dev = &adapter->ena_dev;
1141 
1142 	if (ring->type == ENA_RING_TYPE_TX) {
1143 		ena_qid = ENA_IO_TXQ_IDX(ring->id);
1144 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1145 		ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1146 		for (i = 0; i < ring->ring_size; i++)
1147 			ring->empty_tx_reqs[i] = i;
1148 	} else {
1149 		ena_qid = ENA_IO_RXQ_IDX(ring->id);
1150 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1151 		for (i = 0; i < ring->ring_size; i++)
1152 			ring->empty_rx_reqs[i] = i;
1153 	}
1154 	ctx.queue_size = ring->ring_size;
1155 	ctx.qid = ena_qid;
1156 	ctx.msix_vector = -1; /* interrupts not used */
1157 	ctx.numa_node = ring->numa_socket_id;
1158 
1159 	rc = ena_com_create_io_queue(ena_dev, &ctx);
1160 	if (rc) {
1161 		PMD_DRV_LOG(ERR,
1162 			"failed to create io queue #%d (qid:%d) rc: %d\n",
1163 			ring->id, ena_qid, rc);
1164 		return rc;
1165 	}
1166 
1167 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1168 				     &ring->ena_com_io_sq,
1169 				     &ring->ena_com_io_cq);
1170 	if (rc) {
1171 		PMD_DRV_LOG(ERR,
1172 			"Failed to get io queue handlers. queue num %d rc: %d\n",
1173 			ring->id, rc);
1174 		ena_com_destroy_io_queue(ena_dev, ena_qid);
1175 		return rc;
1176 	}
1177 
1178 	if (ring->type == ENA_RING_TYPE_TX)
1179 		ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1180 
1181 	return 0;
1182 }
1183 
1184 static void ena_queue_stop(struct ena_ring *ring)
1185 {
1186 	struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
1187 
1188 	if (ring->type == ENA_RING_TYPE_RX) {
1189 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
1190 		ena_rx_queue_release_bufs(ring);
1191 	} else {
1192 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
1193 		ena_tx_queue_release_bufs(ring);
1194 	}
1195 }
1196 
1197 static void ena_queue_stop_all(struct rte_eth_dev *dev,
1198 			      enum ena_ring_type ring_type)
1199 {
1200 	struct ena_adapter *adapter = dev->data->dev_private;
1201 	struct ena_ring *queues = NULL;
1202 	uint16_t nb_queues, i;
1203 
1204 	if (ring_type == ENA_RING_TYPE_RX) {
1205 		queues = adapter->rx_ring;
1206 		nb_queues = dev->data->nb_rx_queues;
1207 	} else {
1208 		queues = adapter->tx_ring;
1209 		nb_queues = dev->data->nb_tx_queues;
1210 	}
1211 
1212 	for (i = 0; i < nb_queues; ++i)
1213 		if (queues[i].configured)
1214 			ena_queue_stop(&queues[i]);
1215 }
1216 
1217 static int ena_queue_start(struct ena_ring *ring)
1218 {
1219 	int rc, bufs_num;
1220 
1221 	ena_assert_msg(ring->configured == 1,
1222 		       "Trying to start unconfigured queue\n");
1223 
1224 	rc = ena_create_io_queue(ring);
1225 	if (rc) {
1226 		PMD_INIT_LOG(ERR, "Failed to create IO queue!");
1227 		return rc;
1228 	}
1229 
1230 	ring->next_to_clean = 0;
1231 	ring->next_to_use = 0;
1232 
1233 	if (ring->type == ENA_RING_TYPE_TX) {
1234 		ring->tx_stats.available_desc =
1235 			ena_com_free_q_entries(ring->ena_com_io_sq);
1236 		return 0;
1237 	}
1238 
1239 	bufs_num = ring->ring_size - 1;
1240 	rc = ena_populate_rx_queue(ring, bufs_num);
1241 	if (rc != bufs_num) {
1242 		ena_com_destroy_io_queue(&ring->adapter->ena_dev,
1243 					 ENA_IO_RXQ_IDX(ring->id));
1244 		PMD_INIT_LOG(ERR, "Failed to populate rx ring !");
1245 		return ENA_COM_FAULT;
1246 	}
1247 
1248 	return 0;
1249 }
1250 
1251 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1252 			      uint16_t queue_idx,
1253 			      uint16_t nb_desc,
1254 			      unsigned int socket_id,
1255 			      const struct rte_eth_txconf *tx_conf)
1256 {
1257 	struct ena_ring *txq = NULL;
1258 	struct ena_adapter *adapter = dev->data->dev_private;
1259 	unsigned int i;
1260 
1261 	txq = &adapter->tx_ring[queue_idx];
1262 
1263 	if (txq->configured) {
1264 		PMD_DRV_LOG(CRIT,
1265 			"API violation. Queue %d is already configured\n",
1266 			queue_idx);
1267 		return ENA_COM_FAULT;
1268 	}
1269 
1270 	if (!rte_is_power_of_2(nb_desc)) {
1271 		PMD_DRV_LOG(ERR,
1272 			"Unsupported size of TX queue: %d is not a power of 2.\n",
1273 			nb_desc);
1274 		return -EINVAL;
1275 	}
1276 
1277 	if (nb_desc > adapter->max_tx_ring_size) {
1278 		PMD_DRV_LOG(ERR,
1279 			"Unsupported size of TX queue (max size: %d)\n",
1280 			adapter->max_tx_ring_size);
1281 		return -EINVAL;
1282 	}
1283 
1284 	if (nb_desc == RTE_ETH_DEV_FALLBACK_TX_RINGSIZE)
1285 		nb_desc = adapter->max_tx_ring_size;
1286 
1287 	txq->port_id = dev->data->port_id;
1288 	txq->next_to_clean = 0;
1289 	txq->next_to_use = 0;
1290 	txq->ring_size = nb_desc;
1291 	txq->size_mask = nb_desc - 1;
1292 	txq->numa_socket_id = socket_id;
1293 
1294 	txq->tx_buffer_info = rte_zmalloc("txq->tx_buffer_info",
1295 					  sizeof(struct ena_tx_buffer) *
1296 					  txq->ring_size,
1297 					  RTE_CACHE_LINE_SIZE);
1298 	if (!txq->tx_buffer_info) {
1299 		PMD_DRV_LOG(ERR, "failed to alloc mem for tx buffer info\n");
1300 		return -ENOMEM;
1301 	}
1302 
1303 	txq->empty_tx_reqs = rte_zmalloc("txq->empty_tx_reqs",
1304 					 sizeof(u16) * txq->ring_size,
1305 					 RTE_CACHE_LINE_SIZE);
1306 	if (!txq->empty_tx_reqs) {
1307 		PMD_DRV_LOG(ERR, "failed to alloc mem for tx reqs\n");
1308 		rte_free(txq->tx_buffer_info);
1309 		return -ENOMEM;
1310 	}
1311 
1312 	txq->push_buf_intermediate_buf =
1313 		rte_zmalloc("txq->push_buf_intermediate_buf",
1314 			    txq->tx_max_header_size,
1315 			    RTE_CACHE_LINE_SIZE);
1316 	if (!txq->push_buf_intermediate_buf) {
1317 		PMD_DRV_LOG(ERR, "failed to alloc push buff for LLQ\n");
1318 		rte_free(txq->tx_buffer_info);
1319 		rte_free(txq->empty_tx_reqs);
1320 		return -ENOMEM;
1321 	}
1322 
1323 	for (i = 0; i < txq->ring_size; i++)
1324 		txq->empty_tx_reqs[i] = i;
1325 
1326 	if (tx_conf != NULL) {
1327 		txq->offloads =
1328 			tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1329 	}
1330 	/* Store pointer to this queue in upper layer */
1331 	txq->configured = 1;
1332 	dev->data->tx_queues[queue_idx] = txq;
1333 
1334 	return 0;
1335 }
1336 
1337 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1338 			      uint16_t queue_idx,
1339 			      uint16_t nb_desc,
1340 			      unsigned int socket_id,
1341 			      __rte_unused const struct rte_eth_rxconf *rx_conf,
1342 			      struct rte_mempool *mp)
1343 {
1344 	struct ena_adapter *adapter = dev->data->dev_private;
1345 	struct ena_ring *rxq = NULL;
1346 	size_t buffer_size;
1347 	int i;
1348 
1349 	rxq = &adapter->rx_ring[queue_idx];
1350 	if (rxq->configured) {
1351 		PMD_DRV_LOG(CRIT,
1352 			"API violation. Queue %d is already configured\n",
1353 			queue_idx);
1354 		return ENA_COM_FAULT;
1355 	}
1356 
1357 	if (nb_desc == RTE_ETH_DEV_FALLBACK_RX_RINGSIZE)
1358 		nb_desc = adapter->max_rx_ring_size;
1359 
1360 	if (!rte_is_power_of_2(nb_desc)) {
1361 		PMD_DRV_LOG(ERR,
1362 			"Unsupported size of RX queue: %d is not a power of 2.\n",
1363 			nb_desc);
1364 		return -EINVAL;
1365 	}
1366 
1367 	if (nb_desc > adapter->max_rx_ring_size) {
1368 		PMD_DRV_LOG(ERR,
1369 			"Unsupported size of RX queue (max size: %d)\n",
1370 			adapter->max_rx_ring_size);
1371 		return -EINVAL;
1372 	}
1373 
1374 	/* ENA isn't supporting buffers smaller than 1400 bytes */
1375 	buffer_size = rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
1376 	if (buffer_size < ENA_RX_BUF_MIN_SIZE) {
1377 		PMD_DRV_LOG(ERR,
1378 			"Unsupported size of RX buffer: %zu (min size: %d)\n",
1379 			buffer_size, ENA_RX_BUF_MIN_SIZE);
1380 		return -EINVAL;
1381 	}
1382 
1383 	rxq->port_id = dev->data->port_id;
1384 	rxq->next_to_clean = 0;
1385 	rxq->next_to_use = 0;
1386 	rxq->ring_size = nb_desc;
1387 	rxq->size_mask = nb_desc - 1;
1388 	rxq->numa_socket_id = socket_id;
1389 	rxq->mb_pool = mp;
1390 
1391 	rxq->rx_buffer_info = rte_zmalloc("rxq->buffer_info",
1392 		sizeof(struct ena_rx_buffer) * nb_desc,
1393 		RTE_CACHE_LINE_SIZE);
1394 	if (!rxq->rx_buffer_info) {
1395 		PMD_DRV_LOG(ERR, "failed to alloc mem for rx buffer info\n");
1396 		return -ENOMEM;
1397 	}
1398 
1399 	rxq->rx_refill_buffer = rte_zmalloc("rxq->rx_refill_buffer",
1400 					    sizeof(struct rte_mbuf *) * nb_desc,
1401 					    RTE_CACHE_LINE_SIZE);
1402 
1403 	if (!rxq->rx_refill_buffer) {
1404 		PMD_DRV_LOG(ERR, "failed to alloc mem for rx refill buffer\n");
1405 		rte_free(rxq->rx_buffer_info);
1406 		rxq->rx_buffer_info = NULL;
1407 		return -ENOMEM;
1408 	}
1409 
1410 	rxq->empty_rx_reqs = rte_zmalloc("rxq->empty_rx_reqs",
1411 					 sizeof(uint16_t) * nb_desc,
1412 					 RTE_CACHE_LINE_SIZE);
1413 	if (!rxq->empty_rx_reqs) {
1414 		PMD_DRV_LOG(ERR, "failed to alloc mem for empty rx reqs\n");
1415 		rte_free(rxq->rx_buffer_info);
1416 		rxq->rx_buffer_info = NULL;
1417 		rte_free(rxq->rx_refill_buffer);
1418 		rxq->rx_refill_buffer = NULL;
1419 		return -ENOMEM;
1420 	}
1421 
1422 	for (i = 0; i < nb_desc; i++)
1423 		rxq->empty_rx_reqs[i] = i;
1424 
1425 	/* Store pointer to this queue in upper layer */
1426 	rxq->configured = 1;
1427 	dev->data->rx_queues[queue_idx] = rxq;
1428 
1429 	return 0;
1430 }
1431 
1432 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
1433 				  struct rte_mbuf *mbuf, uint16_t id)
1434 {
1435 	struct ena_com_buf ebuf;
1436 	int rc;
1437 
1438 	/* prepare physical address for DMA transaction */
1439 	ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1440 	ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1441 
1442 	/* pass resource to device */
1443 	rc = ena_com_add_single_rx_desc(io_sq, &ebuf, id);
1444 	if (unlikely(rc != 0))
1445 		PMD_DRV_LOG(WARNING, "failed adding rx desc\n");
1446 
1447 	return rc;
1448 }
1449 
1450 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1451 {
1452 	unsigned int i;
1453 	int rc;
1454 	uint16_t next_to_use = rxq->next_to_use;
1455 	uint16_t in_use, req_id;
1456 	struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1457 
1458 	if (unlikely(!count))
1459 		return 0;
1460 
1461 	in_use = rxq->ring_size - 1 -
1462 		ena_com_free_q_entries(rxq->ena_com_io_sq);
1463 	ena_assert_msg(((in_use + count) < rxq->ring_size),
1464 		"bad ring state\n");
1465 
1466 	/* get resources for incoming packets */
1467 	rc = rte_mempool_get_bulk(rxq->mb_pool, (void **)mbufs, count);
1468 	if (unlikely(rc < 0)) {
1469 		rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1470 		++rxq->rx_stats.mbuf_alloc_fail;
1471 		PMD_RX_LOG(DEBUG, "there are no enough free buffers");
1472 		return 0;
1473 	}
1474 
1475 	for (i = 0; i < count; i++) {
1476 		struct rte_mbuf *mbuf = mbufs[i];
1477 		struct ena_rx_buffer *rx_info;
1478 
1479 		if (likely((i + 4) < count))
1480 			rte_prefetch0(mbufs[i + 4]);
1481 
1482 		req_id = rxq->empty_rx_reqs[next_to_use];
1483 		rc = validate_rx_req_id(rxq, req_id);
1484 		if (unlikely(rc))
1485 			break;
1486 
1487 		rx_info = &rxq->rx_buffer_info[req_id];
1488 
1489 		rc = ena_add_single_rx_desc(rxq->ena_com_io_sq, mbuf, req_id);
1490 		if (unlikely(rc != 0))
1491 			break;
1492 
1493 		rx_info->mbuf = mbuf;
1494 		next_to_use = ENA_IDX_NEXT_MASKED(next_to_use, rxq->size_mask);
1495 	}
1496 
1497 	if (unlikely(i < count)) {
1498 		PMD_DRV_LOG(WARNING, "refilled rx qid %d with only %d "
1499 			"buffers (from %d)\n", rxq->id, i, count);
1500 		rte_mempool_put_bulk(rxq->mb_pool, (void **)(&mbufs[i]),
1501 				     count - i);
1502 		++rxq->rx_stats.refill_partial;
1503 	}
1504 
1505 	/* When we submitted free recources to device... */
1506 	if (likely(i > 0)) {
1507 		/* ...let HW know that it can fill buffers with data. */
1508 		ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1509 
1510 		rxq->next_to_use = next_to_use;
1511 	}
1512 
1513 	return i;
1514 }
1515 
1516 static int ena_device_init(struct ena_com_dev *ena_dev,
1517 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
1518 			   bool *wd_state)
1519 {
1520 	uint32_t aenq_groups;
1521 	int rc;
1522 	bool readless_supported;
1523 
1524 	/* Initialize mmio registers */
1525 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
1526 	if (rc) {
1527 		PMD_DRV_LOG(ERR, "failed to init mmio read less\n");
1528 		return rc;
1529 	}
1530 
1531 	/* The PCIe configuration space revision id indicate if mmio reg
1532 	 * read is disabled.
1533 	 */
1534 	readless_supported =
1535 		!(((struct rte_pci_device *)ena_dev->dmadev)->id.class_id
1536 			       & ENA_MMIO_DISABLE_REG_READ);
1537 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1538 
1539 	/* reset device */
1540 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1541 	if (rc) {
1542 		PMD_DRV_LOG(ERR, "cannot reset device\n");
1543 		goto err_mmio_read_less;
1544 	}
1545 
1546 	/* check FW version */
1547 	rc = ena_com_validate_version(ena_dev);
1548 	if (rc) {
1549 		PMD_DRV_LOG(ERR, "device version is too low\n");
1550 		goto err_mmio_read_less;
1551 	}
1552 
1553 	ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1554 
1555 	/* ENA device administration layer init */
1556 	rc = ena_com_admin_init(ena_dev, &aenq_handlers);
1557 	if (rc) {
1558 		PMD_DRV_LOG(ERR,
1559 			"cannot initialize ena admin queue with device\n");
1560 		goto err_mmio_read_less;
1561 	}
1562 
1563 	/* To enable the msix interrupts the driver needs to know the number
1564 	 * of queues. So the driver uses polling mode to retrieve this
1565 	 * information.
1566 	 */
1567 	ena_com_set_admin_polling_mode(ena_dev, true);
1568 
1569 	ena_config_host_info(ena_dev);
1570 
1571 	/* Get Device Attributes and features */
1572 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1573 	if (rc) {
1574 		PMD_DRV_LOG(ERR,
1575 			"cannot get attribute for ena device rc= %d\n", rc);
1576 		goto err_admin_init;
1577 	}
1578 
1579 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1580 		      BIT(ENA_ADMIN_NOTIFICATION) |
1581 		      BIT(ENA_ADMIN_KEEP_ALIVE) |
1582 		      BIT(ENA_ADMIN_FATAL_ERROR) |
1583 		      BIT(ENA_ADMIN_WARNING);
1584 
1585 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
1586 	rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
1587 	if (rc) {
1588 		PMD_DRV_LOG(ERR, "Cannot configure aenq groups rc: %d\n", rc);
1589 		goto err_admin_init;
1590 	}
1591 
1592 	*wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
1593 
1594 	return 0;
1595 
1596 err_admin_init:
1597 	ena_com_admin_destroy(ena_dev);
1598 
1599 err_mmio_read_less:
1600 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1601 
1602 	return rc;
1603 }
1604 
1605 static void ena_interrupt_handler_rte(void *cb_arg)
1606 {
1607 	struct ena_adapter *adapter = cb_arg;
1608 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1609 
1610 	ena_com_admin_q_comp_intr_handler(ena_dev);
1611 	if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED))
1612 		ena_com_aenq_intr_handler(ena_dev, adapter);
1613 }
1614 
1615 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1616 {
1617 	if (!adapter->wd_state)
1618 		return;
1619 
1620 	if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1621 		return;
1622 
1623 	if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1624 	    adapter->keep_alive_timeout)) {
1625 		PMD_DRV_LOG(ERR, "Keep alive timeout\n");
1626 		adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
1627 		adapter->trigger_reset = true;
1628 		++adapter->dev_stats.wd_expired;
1629 	}
1630 }
1631 
1632 /* Check if admin queue is enabled */
1633 static void check_for_admin_com_state(struct ena_adapter *adapter)
1634 {
1635 	if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1636 		PMD_DRV_LOG(ERR, "ENA admin queue is not in running state!\n");
1637 		adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
1638 		adapter->trigger_reset = true;
1639 	}
1640 }
1641 
1642 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
1643 				  void *arg)
1644 {
1645 	struct ena_adapter *adapter = arg;
1646 	struct rte_eth_dev *dev = adapter->rte_dev;
1647 
1648 	check_for_missing_keep_alive(adapter);
1649 	check_for_admin_com_state(adapter);
1650 
1651 	if (unlikely(adapter->trigger_reset)) {
1652 		PMD_DRV_LOG(ERR, "Trigger reset is on\n");
1653 		rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
1654 			NULL);
1655 	}
1656 }
1657 
1658 static inline void
1659 set_default_llq_configurations(struct ena_llq_configurations *llq_config,
1660 			       struct ena_admin_feature_llq_desc *llq,
1661 			       bool use_large_llq_hdr)
1662 {
1663 	llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
1664 	llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
1665 	llq_config->llq_num_decs_before_header =
1666 		ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
1667 
1668 	if (use_large_llq_hdr &&
1669 	    (llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B)) {
1670 		llq_config->llq_ring_entry_size =
1671 			ENA_ADMIN_LIST_ENTRY_SIZE_256B;
1672 		llq_config->llq_ring_entry_size_value = 256;
1673 	} else {
1674 		llq_config->llq_ring_entry_size =
1675 			ENA_ADMIN_LIST_ENTRY_SIZE_128B;
1676 		llq_config->llq_ring_entry_size_value = 128;
1677 	}
1678 }
1679 
1680 static int
1681 ena_set_queues_placement_policy(struct ena_adapter *adapter,
1682 				struct ena_com_dev *ena_dev,
1683 				struct ena_admin_feature_llq_desc *llq,
1684 				struct ena_llq_configurations *llq_default_configurations)
1685 {
1686 	int rc;
1687 	u32 llq_feature_mask;
1688 
1689 	llq_feature_mask = 1 << ENA_ADMIN_LLQ;
1690 	if (!(ena_dev->supported_features & llq_feature_mask)) {
1691 		PMD_DRV_LOG(INFO,
1692 			"LLQ is not supported. Fallback to host mode policy.\n");
1693 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1694 		return 0;
1695 	}
1696 
1697 	rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
1698 	if (unlikely(rc)) {
1699 		PMD_INIT_LOG(WARNING, "Failed to config dev mode. "
1700 			"Fallback to host mode policy.");
1701 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1702 		return 0;
1703 	}
1704 
1705 	/* Nothing to config, exit */
1706 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1707 		return 0;
1708 
1709 	if (!adapter->dev_mem_base) {
1710 		PMD_DRV_LOG(ERR, "Unable to access LLQ bar resource. "
1711 			"Fallback to host mode policy.\n.");
1712 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1713 		return 0;
1714 	}
1715 
1716 	ena_dev->mem_bar = adapter->dev_mem_base;
1717 
1718 	return 0;
1719 }
1720 
1721 static uint32_t ena_calc_max_io_queue_num(struct ena_com_dev *ena_dev,
1722 	struct ena_com_dev_get_features_ctx *get_feat_ctx)
1723 {
1724 	uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
1725 
1726 	/* Regular queues capabilities */
1727 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1728 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1729 			&get_feat_ctx->max_queue_ext.max_queue_ext;
1730 		io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
1731 				    max_queue_ext->max_rx_cq_num);
1732 		io_tx_sq_num = max_queue_ext->max_tx_sq_num;
1733 		io_tx_cq_num = max_queue_ext->max_tx_cq_num;
1734 	} else {
1735 		struct ena_admin_queue_feature_desc *max_queues =
1736 			&get_feat_ctx->max_queues;
1737 		io_tx_sq_num = max_queues->max_sq_num;
1738 		io_tx_cq_num = max_queues->max_cq_num;
1739 		io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
1740 	}
1741 
1742 	/* In case of LLQ use the llq number in the get feature cmd */
1743 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
1744 		io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
1745 
1746 	max_num_io_queues = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
1747 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_sq_num);
1748 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_cq_num);
1749 
1750 	if (unlikely(max_num_io_queues == 0)) {
1751 		PMD_DRV_LOG(ERR, "Number of IO queues should not be 0\n");
1752 		return -EFAULT;
1753 	}
1754 
1755 	return max_num_io_queues;
1756 }
1757 
1758 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
1759 {
1760 	struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
1761 	struct rte_pci_device *pci_dev;
1762 	struct rte_intr_handle *intr_handle;
1763 	struct ena_adapter *adapter = eth_dev->data->dev_private;
1764 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1765 	struct ena_com_dev_get_features_ctx get_feat_ctx;
1766 	struct ena_llq_configurations llq_config;
1767 	const char *queue_type_str;
1768 	uint32_t max_num_io_queues;
1769 	int rc;
1770 	static int adapters_found;
1771 	bool disable_meta_caching;
1772 	bool wd_state = false;
1773 
1774 	eth_dev->dev_ops = &ena_dev_ops;
1775 	eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
1776 	eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
1777 	eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
1778 
1779 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1780 		return 0;
1781 
1782 	eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
1783 
1784 	memset(adapter, 0, sizeof(struct ena_adapter));
1785 	ena_dev = &adapter->ena_dev;
1786 
1787 	adapter->rte_eth_dev_data = eth_dev->data;
1788 	adapter->rte_dev = eth_dev;
1789 
1790 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1791 	adapter->pdev = pci_dev;
1792 
1793 	PMD_INIT_LOG(INFO, "Initializing %x:%x:%x.%d",
1794 		     pci_dev->addr.domain,
1795 		     pci_dev->addr.bus,
1796 		     pci_dev->addr.devid,
1797 		     pci_dev->addr.function);
1798 
1799 	intr_handle = &pci_dev->intr_handle;
1800 
1801 	adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
1802 	adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
1803 
1804 	if (!adapter->regs) {
1805 		PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)",
1806 			     ENA_REGS_BAR);
1807 		return -ENXIO;
1808 	}
1809 
1810 	ena_dev->reg_bar = adapter->regs;
1811 	ena_dev->dmadev = adapter->pdev;
1812 
1813 	adapter->id_number = adapters_found;
1814 
1815 	snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
1816 		 adapter->id_number);
1817 
1818 	rc = ena_parse_devargs(adapter, pci_dev->device.devargs);
1819 	if (rc != 0) {
1820 		PMD_INIT_LOG(CRIT, "Failed to parse devargs\n");
1821 		goto err;
1822 	}
1823 
1824 	/* device specific initialization routine */
1825 	rc = ena_device_init(ena_dev, &get_feat_ctx, &wd_state);
1826 	if (rc) {
1827 		PMD_INIT_LOG(CRIT, "Failed to init ENA device");
1828 		goto err;
1829 	}
1830 	adapter->wd_state = wd_state;
1831 
1832 	set_default_llq_configurations(&llq_config, &get_feat_ctx.llq,
1833 		adapter->use_large_llq_hdr);
1834 	rc = ena_set_queues_placement_policy(adapter, ena_dev,
1835 					     &get_feat_ctx.llq, &llq_config);
1836 	if (unlikely(rc)) {
1837 		PMD_INIT_LOG(CRIT, "Failed to set placement policy");
1838 		return rc;
1839 	}
1840 
1841 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1842 		queue_type_str = "Regular";
1843 	else
1844 		queue_type_str = "Low latency";
1845 	PMD_DRV_LOG(INFO, "Placement policy: %s\n", queue_type_str);
1846 
1847 	calc_queue_ctx.ena_dev = ena_dev;
1848 	calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
1849 
1850 	max_num_io_queues = ena_calc_max_io_queue_num(ena_dev, &get_feat_ctx);
1851 	rc = ena_calc_io_queue_size(&calc_queue_ctx,
1852 		adapter->use_large_llq_hdr);
1853 	if (unlikely((rc != 0) || (max_num_io_queues == 0))) {
1854 		rc = -EFAULT;
1855 		goto err_device_destroy;
1856 	}
1857 
1858 	adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
1859 	adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
1860 	adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
1861 	adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
1862 	adapter->max_num_io_queues = max_num_io_queues;
1863 
1864 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1865 		disable_meta_caching =
1866 			!!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
1867 			BIT(ENA_ADMIN_DISABLE_META_CACHING));
1868 	} else {
1869 		disable_meta_caching = false;
1870 	}
1871 
1872 	/* prepare ring structures */
1873 	ena_init_rings(adapter, disable_meta_caching);
1874 
1875 	ena_config_debug_area(adapter);
1876 
1877 	/* Set max MTU for this device */
1878 	adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
1879 
1880 	/* set device support for offloads */
1881 	adapter->offloads.tso4_supported = (get_feat_ctx.offload.tx &
1882 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) != 0;
1883 	adapter->offloads.tx_csum_supported = (get_feat_ctx.offload.tx &
1884 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK) != 0;
1885 	adapter->offloads.rx_csum_supported =
1886 		(get_feat_ctx.offload.rx_supported &
1887 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK) != 0;
1888 
1889 	/* Copy MAC address and point DPDK to it */
1890 	eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr;
1891 	rte_ether_addr_copy((struct rte_ether_addr *)
1892 			get_feat_ctx.dev_attr.mac_addr,
1893 			(struct rte_ether_addr *)adapter->mac_addr);
1894 
1895 	adapter->drv_stats = rte_zmalloc("adapter stats",
1896 					 sizeof(*adapter->drv_stats),
1897 					 RTE_CACHE_LINE_SIZE);
1898 	if (!adapter->drv_stats) {
1899 		PMD_DRV_LOG(ERR, "failed to alloc mem for adapter stats\n");
1900 		rc = -ENOMEM;
1901 		goto err_delete_debug_area;
1902 	}
1903 
1904 	rte_spinlock_init(&adapter->admin_lock);
1905 
1906 	rte_intr_callback_register(intr_handle,
1907 				   ena_interrupt_handler_rte,
1908 				   adapter);
1909 	rte_intr_enable(intr_handle);
1910 	ena_com_set_admin_polling_mode(ena_dev, false);
1911 	ena_com_admin_aenq_enable(ena_dev);
1912 
1913 	if (adapters_found == 0)
1914 		rte_timer_subsystem_init();
1915 	rte_timer_init(&adapter->timer_wd);
1916 
1917 	adapters_found++;
1918 	adapter->state = ENA_ADAPTER_STATE_INIT;
1919 
1920 	return 0;
1921 
1922 err_delete_debug_area:
1923 	ena_com_delete_debug_area(ena_dev);
1924 
1925 err_device_destroy:
1926 	ena_com_delete_host_info(ena_dev);
1927 	ena_com_admin_destroy(ena_dev);
1928 
1929 err:
1930 	return rc;
1931 }
1932 
1933 static void ena_destroy_device(struct rte_eth_dev *eth_dev)
1934 {
1935 	struct ena_adapter *adapter = eth_dev->data->dev_private;
1936 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1937 
1938 	if (adapter->state == ENA_ADAPTER_STATE_FREE)
1939 		return;
1940 
1941 	ena_com_set_admin_running_state(ena_dev, false);
1942 
1943 	if (adapter->state != ENA_ADAPTER_STATE_CLOSED)
1944 		ena_close(eth_dev);
1945 
1946 	ena_com_delete_debug_area(ena_dev);
1947 	ena_com_delete_host_info(ena_dev);
1948 
1949 	ena_com_abort_admin_commands(ena_dev);
1950 	ena_com_wait_for_abort_completion(ena_dev);
1951 	ena_com_admin_destroy(ena_dev);
1952 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1953 
1954 	adapter->state = ENA_ADAPTER_STATE_FREE;
1955 }
1956 
1957 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
1958 {
1959 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1960 		return 0;
1961 
1962 	ena_destroy_device(eth_dev);
1963 
1964 	return 0;
1965 }
1966 
1967 static int ena_dev_configure(struct rte_eth_dev *dev)
1968 {
1969 	struct ena_adapter *adapter = dev->data->dev_private;
1970 
1971 	adapter->state = ENA_ADAPTER_STATE_CONFIG;
1972 
1973 	adapter->tx_selected_offloads = dev->data->dev_conf.txmode.offloads;
1974 	adapter->rx_selected_offloads = dev->data->dev_conf.rxmode.offloads;
1975 	return 0;
1976 }
1977 
1978 static void ena_init_rings(struct ena_adapter *adapter,
1979 			   bool disable_meta_caching)
1980 {
1981 	size_t i;
1982 
1983 	for (i = 0; i < adapter->max_num_io_queues; i++) {
1984 		struct ena_ring *ring = &adapter->tx_ring[i];
1985 
1986 		ring->configured = 0;
1987 		ring->type = ENA_RING_TYPE_TX;
1988 		ring->adapter = adapter;
1989 		ring->id = i;
1990 		ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
1991 		ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
1992 		ring->sgl_size = adapter->max_tx_sgl_size;
1993 		ring->disable_meta_caching = disable_meta_caching;
1994 	}
1995 
1996 	for (i = 0; i < adapter->max_num_io_queues; i++) {
1997 		struct ena_ring *ring = &adapter->rx_ring[i];
1998 
1999 		ring->configured = 0;
2000 		ring->type = ENA_RING_TYPE_RX;
2001 		ring->adapter = adapter;
2002 		ring->id = i;
2003 		ring->sgl_size = adapter->max_rx_sgl_size;
2004 	}
2005 }
2006 
2007 static int ena_infos_get(struct rte_eth_dev *dev,
2008 			  struct rte_eth_dev_info *dev_info)
2009 {
2010 	struct ena_adapter *adapter;
2011 	struct ena_com_dev *ena_dev;
2012 	uint64_t rx_feat = 0, tx_feat = 0;
2013 
2014 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
2015 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
2016 	adapter = dev->data->dev_private;
2017 
2018 	ena_dev = &adapter->ena_dev;
2019 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
2020 
2021 	dev_info->speed_capa =
2022 			ETH_LINK_SPEED_1G   |
2023 			ETH_LINK_SPEED_2_5G |
2024 			ETH_LINK_SPEED_5G   |
2025 			ETH_LINK_SPEED_10G  |
2026 			ETH_LINK_SPEED_25G  |
2027 			ETH_LINK_SPEED_40G  |
2028 			ETH_LINK_SPEED_50G  |
2029 			ETH_LINK_SPEED_100G;
2030 
2031 	/* Set Tx & Rx features available for device */
2032 	if (adapter->offloads.tso4_supported)
2033 		tx_feat	|= DEV_TX_OFFLOAD_TCP_TSO;
2034 
2035 	if (adapter->offloads.tx_csum_supported)
2036 		tx_feat |= DEV_TX_OFFLOAD_IPV4_CKSUM |
2037 			DEV_TX_OFFLOAD_UDP_CKSUM |
2038 			DEV_TX_OFFLOAD_TCP_CKSUM;
2039 
2040 	if (adapter->offloads.rx_csum_supported)
2041 		rx_feat |= DEV_RX_OFFLOAD_IPV4_CKSUM |
2042 			DEV_RX_OFFLOAD_UDP_CKSUM  |
2043 			DEV_RX_OFFLOAD_TCP_CKSUM;
2044 
2045 	rx_feat |= DEV_RX_OFFLOAD_JUMBO_FRAME;
2046 
2047 	/* Inform framework about available features */
2048 	dev_info->rx_offload_capa = rx_feat;
2049 	dev_info->rx_queue_offload_capa = rx_feat;
2050 	dev_info->tx_offload_capa = tx_feat;
2051 	dev_info->tx_queue_offload_capa = tx_feat;
2052 
2053 	dev_info->flow_type_rss_offloads = ETH_RSS_IP | ETH_RSS_TCP |
2054 					   ETH_RSS_UDP;
2055 
2056 	dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
2057 	dev_info->max_rx_pktlen  = adapter->max_mtu;
2058 	dev_info->max_mac_addrs = 1;
2059 
2060 	dev_info->max_rx_queues = adapter->max_num_io_queues;
2061 	dev_info->max_tx_queues = adapter->max_num_io_queues;
2062 	dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
2063 
2064 	adapter->tx_supported_offloads = tx_feat;
2065 	adapter->rx_supported_offloads = rx_feat;
2066 
2067 	dev_info->rx_desc_lim.nb_max = adapter->max_rx_ring_size;
2068 	dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2069 	dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2070 					adapter->max_rx_sgl_size);
2071 	dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2072 					adapter->max_rx_sgl_size);
2073 
2074 	dev_info->tx_desc_lim.nb_max = adapter->max_tx_ring_size;
2075 	dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2076 	dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2077 					adapter->max_tx_sgl_size);
2078 	dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2079 					adapter->max_tx_sgl_size);
2080 
2081 	return 0;
2082 }
2083 
2084 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len)
2085 {
2086 	mbuf->data_len = len;
2087 	mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2088 	mbuf->refcnt = 1;
2089 	mbuf->next = NULL;
2090 }
2091 
2092 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
2093 				    struct ena_com_rx_buf_info *ena_bufs,
2094 				    uint32_t descs,
2095 				    uint16_t *next_to_clean,
2096 				    uint8_t offset)
2097 {
2098 	struct rte_mbuf *mbuf;
2099 	struct rte_mbuf *mbuf_head;
2100 	struct ena_rx_buffer *rx_info;
2101 	int rc;
2102 	uint16_t ntc, len, req_id, buf = 0;
2103 
2104 	if (unlikely(descs == 0))
2105 		return NULL;
2106 
2107 	ntc = *next_to_clean;
2108 
2109 	len = ena_bufs[buf].len;
2110 	req_id = ena_bufs[buf].req_id;
2111 	if (unlikely(validate_rx_req_id(rx_ring, req_id)))
2112 		return NULL;
2113 
2114 	rx_info = &rx_ring->rx_buffer_info[req_id];
2115 
2116 	mbuf = rx_info->mbuf;
2117 	RTE_ASSERT(mbuf != NULL);
2118 
2119 	ena_init_rx_mbuf(mbuf, len);
2120 
2121 	/* Fill the mbuf head with the data specific for 1st segment. */
2122 	mbuf_head = mbuf;
2123 	mbuf_head->nb_segs = descs;
2124 	mbuf_head->port = rx_ring->port_id;
2125 	mbuf_head->pkt_len = len;
2126 	mbuf_head->data_off += offset;
2127 
2128 	rx_info->mbuf = NULL;
2129 	rx_ring->empty_rx_reqs[ntc] = req_id;
2130 	ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2131 
2132 	while (--descs) {
2133 		++buf;
2134 		len = ena_bufs[buf].len;
2135 		req_id = ena_bufs[buf].req_id;
2136 		if (unlikely(validate_rx_req_id(rx_ring, req_id))) {
2137 			rte_mbuf_raw_free(mbuf_head);
2138 			return NULL;
2139 		}
2140 
2141 		rx_info = &rx_ring->rx_buffer_info[req_id];
2142 		RTE_ASSERT(rx_info->mbuf != NULL);
2143 
2144 		if (unlikely(len == 0)) {
2145 			/*
2146 			 * Some devices can pass descriptor with the length 0.
2147 			 * To avoid confusion, the PMD is simply putting the
2148 			 * descriptor back, as it was never used. We'll avoid
2149 			 * mbuf allocation that way.
2150 			 */
2151 			rc = ena_add_single_rx_desc(rx_ring->ena_com_io_sq,
2152 				rx_info->mbuf, req_id);
2153 			if (unlikely(rc != 0)) {
2154 				/* Free the mbuf in case of an error. */
2155 				rte_mbuf_raw_free(rx_info->mbuf);
2156 			} else {
2157 				/*
2158 				 * If there was no error, just exit the loop as
2159 				 * 0 length descriptor is always the last one.
2160 				 */
2161 				break;
2162 			}
2163 		} else {
2164 			/* Create an mbuf chain. */
2165 			mbuf->next = rx_info->mbuf;
2166 			mbuf = mbuf->next;
2167 
2168 			ena_init_rx_mbuf(mbuf, len);
2169 			mbuf_head->pkt_len += len;
2170 		}
2171 
2172 		/*
2173 		 * Mark the descriptor as depleted and perform necessary
2174 		 * cleanup.
2175 		 * This code will execute in two cases:
2176 		 *  1. Descriptor len was greater than 0 - normal situation.
2177 		 *  2. Descriptor len was 0 and we failed to add the descriptor
2178 		 *     to the device. In that situation, we should try to add
2179 		 *     the mbuf again in the populate routine and mark the
2180 		 *     descriptor as used up by the device.
2181 		 */
2182 		rx_info->mbuf = NULL;
2183 		rx_ring->empty_rx_reqs[ntc] = req_id;
2184 		ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2185 	}
2186 
2187 	*next_to_clean = ntc;
2188 
2189 	return mbuf_head;
2190 }
2191 
2192 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
2193 				  uint16_t nb_pkts)
2194 {
2195 	struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
2196 	unsigned int free_queue_entries;
2197 	unsigned int refill_threshold;
2198 	uint16_t next_to_clean = rx_ring->next_to_clean;
2199 	uint16_t descs_in_use;
2200 	struct rte_mbuf *mbuf;
2201 	uint16_t completed;
2202 	struct ena_com_rx_ctx ena_rx_ctx;
2203 	int i, rc = 0;
2204 
2205 	/* Check adapter state */
2206 	if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2207 		PMD_DRV_LOG(ALERT,
2208 			"Trying to receive pkts while device is NOT running\n");
2209 		return 0;
2210 	}
2211 
2212 	descs_in_use = rx_ring->ring_size -
2213 		ena_com_free_q_entries(rx_ring->ena_com_io_sq) - 1;
2214 	nb_pkts = RTE_MIN(descs_in_use, nb_pkts);
2215 
2216 	for (completed = 0; completed < nb_pkts; completed++) {
2217 		ena_rx_ctx.max_bufs = rx_ring->sgl_size;
2218 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
2219 		ena_rx_ctx.descs = 0;
2220 		ena_rx_ctx.pkt_offset = 0;
2221 		/* receive packet context */
2222 		rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
2223 				    rx_ring->ena_com_io_sq,
2224 				    &ena_rx_ctx);
2225 		if (unlikely(rc)) {
2226 			PMD_DRV_LOG(ERR, "ena_com_rx_pkt error %d\n", rc);
2227 			rx_ring->adapter->reset_reason =
2228 				ENA_REGS_RESET_TOO_MANY_RX_DESCS;
2229 			rx_ring->adapter->trigger_reset = true;
2230 			++rx_ring->rx_stats.bad_desc_num;
2231 			return 0;
2232 		}
2233 
2234 		mbuf = ena_rx_mbuf(rx_ring,
2235 			ena_rx_ctx.ena_bufs,
2236 			ena_rx_ctx.descs,
2237 			&next_to_clean,
2238 			ena_rx_ctx.pkt_offset);
2239 		if (unlikely(mbuf == NULL)) {
2240 			for (i = 0; i < ena_rx_ctx.descs; ++i) {
2241 				rx_ring->empty_rx_reqs[next_to_clean] =
2242 					rx_ring->ena_bufs[i].req_id;
2243 				next_to_clean = ENA_IDX_NEXT_MASKED(
2244 					next_to_clean, rx_ring->size_mask);
2245 			}
2246 			break;
2247 		}
2248 
2249 		/* fill mbuf attributes if any */
2250 		ena_rx_mbuf_prepare(mbuf, &ena_rx_ctx);
2251 
2252 		if (unlikely(mbuf->ol_flags &
2253 				(PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD))) {
2254 			rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors);
2255 			++rx_ring->rx_stats.bad_csum;
2256 		}
2257 
2258 		mbuf->hash.rss = ena_rx_ctx.hash;
2259 
2260 		rx_pkts[completed] = mbuf;
2261 		rx_ring->rx_stats.bytes += mbuf->pkt_len;
2262 	}
2263 
2264 	rx_ring->rx_stats.cnt += completed;
2265 	rx_ring->next_to_clean = next_to_clean;
2266 
2267 	free_queue_entries = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
2268 	refill_threshold =
2269 		RTE_MIN(rx_ring->ring_size / ENA_REFILL_THRESH_DIVIDER,
2270 		(unsigned int)ENA_REFILL_THRESH_PACKET);
2271 
2272 	/* Burst refill to save doorbells, memory barriers, const interval */
2273 	if (free_queue_entries > refill_threshold) {
2274 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
2275 		ena_populate_rx_queue(rx_ring, free_queue_entries);
2276 	}
2277 
2278 	return completed;
2279 }
2280 
2281 static uint16_t
2282 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2283 		uint16_t nb_pkts)
2284 {
2285 	int32_t ret;
2286 	uint32_t i;
2287 	struct rte_mbuf *m;
2288 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2289 	struct rte_ipv4_hdr *ip_hdr;
2290 	uint64_t ol_flags;
2291 	uint16_t frag_field;
2292 
2293 	for (i = 0; i != nb_pkts; i++) {
2294 		m = tx_pkts[i];
2295 		ol_flags = m->ol_flags;
2296 
2297 		if (!(ol_flags & PKT_TX_IPV4))
2298 			continue;
2299 
2300 		/* If there was not L2 header length specified, assume it is
2301 		 * length of the ethernet header.
2302 		 */
2303 		if (unlikely(m->l2_len == 0))
2304 			m->l2_len = sizeof(struct rte_ether_hdr);
2305 
2306 		ip_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *,
2307 						 m->l2_len);
2308 		frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
2309 
2310 		if ((frag_field & RTE_IPV4_HDR_DF_FLAG) != 0) {
2311 			m->packet_type |= RTE_PTYPE_L4_NONFRAG;
2312 
2313 			/* If IPv4 header has DF flag enabled and TSO support is
2314 			 * disabled, partial chcecksum should not be calculated.
2315 			 */
2316 			if (!tx_ring->adapter->offloads.tso4_supported)
2317 				continue;
2318 		}
2319 
2320 		if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) != 0 ||
2321 				(ol_flags & PKT_TX_L4_MASK) ==
2322 				PKT_TX_SCTP_CKSUM) {
2323 			rte_errno = ENOTSUP;
2324 			return i;
2325 		}
2326 
2327 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2328 		ret = rte_validate_tx_offload(m);
2329 		if (ret != 0) {
2330 			rte_errno = -ret;
2331 			return i;
2332 		}
2333 #endif
2334 
2335 		/* In case we are supposed to TSO and have DF not set (DF=0)
2336 		 * hardware must be provided with partial checksum, otherwise
2337 		 * it will take care of necessary calculations.
2338 		 */
2339 
2340 		ret = rte_net_intel_cksum_flags_prepare(m,
2341 			ol_flags & ~PKT_TX_TCP_SEG);
2342 		if (ret != 0) {
2343 			rte_errno = -ret;
2344 			return i;
2345 		}
2346 	}
2347 
2348 	return i;
2349 }
2350 
2351 static void ena_update_hints(struct ena_adapter *adapter,
2352 			     struct ena_admin_ena_hw_hints *hints)
2353 {
2354 	if (hints->admin_completion_tx_timeout)
2355 		adapter->ena_dev.admin_queue.completion_timeout =
2356 			hints->admin_completion_tx_timeout * 1000;
2357 
2358 	if (hints->mmio_read_timeout)
2359 		/* convert to usec */
2360 		adapter->ena_dev.mmio_read.reg_read_to =
2361 			hints->mmio_read_timeout * 1000;
2362 
2363 	if (hints->driver_watchdog_timeout) {
2364 		if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
2365 			adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
2366 		else
2367 			// Convert msecs to ticks
2368 			adapter->keep_alive_timeout =
2369 				(hints->driver_watchdog_timeout *
2370 				rte_get_timer_hz()) / 1000;
2371 	}
2372 }
2373 
2374 static int ena_check_and_linearize_mbuf(struct ena_ring *tx_ring,
2375 					struct rte_mbuf *mbuf)
2376 {
2377 	struct ena_com_dev *ena_dev;
2378 	int num_segments, header_len, rc;
2379 
2380 	ena_dev = &tx_ring->adapter->ena_dev;
2381 	num_segments = mbuf->nb_segs;
2382 	header_len = mbuf->data_len;
2383 
2384 	if (likely(num_segments < tx_ring->sgl_size))
2385 		return 0;
2386 
2387 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
2388 	    (num_segments == tx_ring->sgl_size) &&
2389 	    (header_len < tx_ring->tx_max_header_size))
2390 		return 0;
2391 
2392 	++tx_ring->tx_stats.linearize;
2393 	rc = rte_pktmbuf_linearize(mbuf);
2394 	if (unlikely(rc)) {
2395 		PMD_DRV_LOG(WARNING, "Mbuf linearize failed\n");
2396 		rte_atomic64_inc(&tx_ring->adapter->drv_stats->ierrors);
2397 		++tx_ring->tx_stats.linearize_failed;
2398 		return rc;
2399 	}
2400 
2401 	return rc;
2402 }
2403 
2404 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
2405 	struct ena_tx_buffer *tx_info,
2406 	struct rte_mbuf *mbuf,
2407 	void **push_header,
2408 	uint16_t *header_len)
2409 {
2410 	struct ena_com_buf *ena_buf;
2411 	uint16_t delta, seg_len, push_len;
2412 
2413 	delta = 0;
2414 	seg_len = mbuf->data_len;
2415 
2416 	tx_info->mbuf = mbuf;
2417 	ena_buf = tx_info->bufs;
2418 
2419 	if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2420 		/*
2421 		 * Tx header might be (and will be in most cases) smaller than
2422 		 * tx_max_header_size. But it's not an issue to send more data
2423 		 * to the device, than actually needed if the mbuf size is
2424 		 * greater than tx_max_header_size.
2425 		 */
2426 		push_len = RTE_MIN(mbuf->pkt_len, tx_ring->tx_max_header_size);
2427 		*header_len = push_len;
2428 
2429 		if (likely(push_len <= seg_len)) {
2430 			/* If the push header is in the single segment, then
2431 			 * just point it to the 1st mbuf data.
2432 			 */
2433 			*push_header = rte_pktmbuf_mtod(mbuf, uint8_t *);
2434 		} else {
2435 			/* If the push header lays in the several segments, copy
2436 			 * it to the intermediate buffer.
2437 			 */
2438 			rte_pktmbuf_read(mbuf, 0, push_len,
2439 				tx_ring->push_buf_intermediate_buf);
2440 			*push_header = tx_ring->push_buf_intermediate_buf;
2441 			delta = push_len - seg_len;
2442 		}
2443 	} else {
2444 		*push_header = NULL;
2445 		*header_len = 0;
2446 		push_len = 0;
2447 	}
2448 
2449 	/* Process first segment taking into consideration pushed header */
2450 	if (seg_len > push_len) {
2451 		ena_buf->paddr = mbuf->buf_iova +
2452 				mbuf->data_off +
2453 				push_len;
2454 		ena_buf->len = seg_len - push_len;
2455 		ena_buf++;
2456 		tx_info->num_of_bufs++;
2457 	}
2458 
2459 	while ((mbuf = mbuf->next) != NULL) {
2460 		seg_len = mbuf->data_len;
2461 
2462 		/* Skip mbufs if whole data is pushed as a header */
2463 		if (unlikely(delta > seg_len)) {
2464 			delta -= seg_len;
2465 			continue;
2466 		}
2467 
2468 		ena_buf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
2469 		ena_buf->len = seg_len - delta;
2470 		ena_buf++;
2471 		tx_info->num_of_bufs++;
2472 
2473 		delta = 0;
2474 	}
2475 }
2476 
2477 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf)
2478 {
2479 	struct ena_tx_buffer *tx_info;
2480 	struct ena_com_tx_ctx ena_tx_ctx = { { 0 } };
2481 	uint16_t next_to_use;
2482 	uint16_t header_len;
2483 	uint16_t req_id;
2484 	void *push_header;
2485 	int nb_hw_desc;
2486 	int rc;
2487 
2488 	rc = ena_check_and_linearize_mbuf(tx_ring, mbuf);
2489 	if (unlikely(rc))
2490 		return rc;
2491 
2492 	next_to_use = tx_ring->next_to_use;
2493 
2494 	req_id = tx_ring->empty_tx_reqs[next_to_use];
2495 	tx_info = &tx_ring->tx_buffer_info[req_id];
2496 	tx_info->num_of_bufs = 0;
2497 
2498 	ena_tx_map_mbuf(tx_ring, tx_info, mbuf, &push_header, &header_len);
2499 
2500 	ena_tx_ctx.ena_bufs = tx_info->bufs;
2501 	ena_tx_ctx.push_header = push_header;
2502 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2503 	ena_tx_ctx.req_id = req_id;
2504 	ena_tx_ctx.header_len = header_len;
2505 
2506 	/* Set Tx offloads flags, if applicable */
2507 	ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads,
2508 		tx_ring->disable_meta_caching);
2509 
2510 	if (unlikely(ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
2511 			&ena_tx_ctx))) {
2512 		PMD_DRV_LOG(DEBUG,
2513 			"llq tx max burst size of queue %d achieved, writing doorbell to send burst\n",
2514 			tx_ring->id);
2515 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2516 	}
2517 
2518 	/* prepare the packet's descriptors to dma engine */
2519 	rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq,	&ena_tx_ctx,
2520 		&nb_hw_desc);
2521 	if (unlikely(rc)) {
2522 		++tx_ring->tx_stats.prepare_ctx_err;
2523 		return rc;
2524 	}
2525 
2526 	tx_info->tx_descs = nb_hw_desc;
2527 
2528 	tx_ring->tx_stats.cnt++;
2529 	tx_ring->tx_stats.bytes += mbuf->pkt_len;
2530 
2531 	tx_ring->next_to_use = ENA_IDX_NEXT_MASKED(next_to_use,
2532 		tx_ring->size_mask);
2533 
2534 	return 0;
2535 }
2536 
2537 static void ena_tx_cleanup(struct ena_ring *tx_ring)
2538 {
2539 	unsigned int cleanup_budget;
2540 	unsigned int total_tx_descs = 0;
2541 	uint16_t next_to_clean = tx_ring->next_to_clean;
2542 
2543 	cleanup_budget = RTE_MIN(tx_ring->ring_size / ENA_REFILL_THRESH_DIVIDER,
2544 		(unsigned int)ENA_REFILL_THRESH_PACKET);
2545 
2546 	while (likely(total_tx_descs < cleanup_budget)) {
2547 		struct rte_mbuf *mbuf;
2548 		struct ena_tx_buffer *tx_info;
2549 		uint16_t req_id;
2550 
2551 		if (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) != 0)
2552 			break;
2553 
2554 		if (unlikely(validate_tx_req_id(tx_ring, req_id) != 0))
2555 			break;
2556 
2557 		/* Get Tx info & store how many descs were processed  */
2558 		tx_info = &tx_ring->tx_buffer_info[req_id];
2559 
2560 		mbuf = tx_info->mbuf;
2561 		rte_pktmbuf_free(mbuf);
2562 
2563 		tx_info->mbuf = NULL;
2564 		tx_ring->empty_tx_reqs[next_to_clean] = req_id;
2565 
2566 		total_tx_descs += tx_info->tx_descs;
2567 
2568 		/* Put back descriptor to the ring for reuse */
2569 		next_to_clean = ENA_IDX_NEXT_MASKED(next_to_clean,
2570 			tx_ring->size_mask);
2571 	}
2572 
2573 	if (likely(total_tx_descs > 0)) {
2574 		/* acknowledge completion of sent packets */
2575 		tx_ring->next_to_clean = next_to_clean;
2576 		ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
2577 		ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
2578 	}
2579 }
2580 
2581 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2582 				  uint16_t nb_pkts)
2583 {
2584 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2585 	uint16_t sent_idx = 0;
2586 
2587 	/* Check adapter state */
2588 	if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2589 		PMD_DRV_LOG(ALERT,
2590 			"Trying to xmit pkts while device is NOT running\n");
2591 		return 0;
2592 	}
2593 
2594 	nb_pkts = RTE_MIN(ena_com_free_q_entries(tx_ring->ena_com_io_sq),
2595 		nb_pkts);
2596 
2597 	for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
2598 		if (ena_xmit_mbuf(tx_ring, tx_pkts[sent_idx]))
2599 			break;
2600 
2601 		rte_prefetch0(tx_pkts[ENA_IDX_ADD_MASKED(sent_idx, 4,
2602 			tx_ring->size_mask)]);
2603 	}
2604 
2605 	tx_ring->tx_stats.available_desc =
2606 		ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2607 
2608 	/* If there are ready packets to be xmitted... */
2609 	if (sent_idx > 0) {
2610 		/* ...let HW do its best :-) */
2611 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2612 		tx_ring->tx_stats.doorbells++;
2613 	}
2614 
2615 	ena_tx_cleanup(tx_ring);
2616 
2617 	tx_ring->tx_stats.available_desc =
2618 		ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2619 	tx_ring->tx_stats.tx_poll++;
2620 
2621 	return sent_idx;
2622 }
2623 
2624 int ena_copy_eni_stats(struct ena_adapter *adapter)
2625 {
2626 	struct ena_admin_eni_stats admin_eni_stats;
2627 	int rc;
2628 
2629 	rte_spinlock_lock(&adapter->admin_lock);
2630 	rc = ena_com_get_eni_stats(&adapter->ena_dev, &admin_eni_stats);
2631 	rte_spinlock_unlock(&adapter->admin_lock);
2632 	if (rc != 0) {
2633 		if (rc == ENA_COM_UNSUPPORTED) {
2634 			PMD_DRV_LOG(DEBUG,
2635 				"Retrieving ENI metrics is not supported.\n");
2636 		} else {
2637 			PMD_DRV_LOG(WARNING,
2638 				"Failed to get ENI metrics: %d\n", rc);
2639 		}
2640 		return rc;
2641 	}
2642 
2643 	rte_memcpy(&adapter->eni_stats, &admin_eni_stats,
2644 		sizeof(struct ena_stats_eni));
2645 
2646 	return 0;
2647 }
2648 
2649 /**
2650  * DPDK callback to retrieve names of extended device statistics
2651  *
2652  * @param dev
2653  *   Pointer to Ethernet device structure.
2654  * @param[out] xstats_names
2655  *   Buffer to insert names into.
2656  * @param n
2657  *   Number of names.
2658  *
2659  * @return
2660  *   Number of xstats names.
2661  */
2662 static int ena_xstats_get_names(struct rte_eth_dev *dev,
2663 				struct rte_eth_xstat_name *xstats_names,
2664 				unsigned int n)
2665 {
2666 	unsigned int xstats_count = ena_xstats_calc_num(dev);
2667 	unsigned int stat, i, count = 0;
2668 
2669 	if (n < xstats_count || !xstats_names)
2670 		return xstats_count;
2671 
2672 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
2673 		strcpy(xstats_names[count].name,
2674 			ena_stats_global_strings[stat].name);
2675 
2676 	for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++)
2677 		strcpy(xstats_names[count].name,
2678 			ena_stats_eni_strings[stat].name);
2679 
2680 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
2681 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
2682 			snprintf(xstats_names[count].name,
2683 				sizeof(xstats_names[count].name),
2684 				"rx_q%d_%s", i,
2685 				ena_stats_rx_strings[stat].name);
2686 
2687 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
2688 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
2689 			snprintf(xstats_names[count].name,
2690 				sizeof(xstats_names[count].name),
2691 				"tx_q%d_%s", i,
2692 				ena_stats_tx_strings[stat].name);
2693 
2694 	return xstats_count;
2695 }
2696 
2697 /**
2698  * DPDK callback to get extended device statistics.
2699  *
2700  * @param dev
2701  *   Pointer to Ethernet device structure.
2702  * @param[out] stats
2703  *   Stats table output buffer.
2704  * @param n
2705  *   The size of the stats table.
2706  *
2707  * @return
2708  *   Number of xstats on success, negative on failure.
2709  */
2710 static int ena_xstats_get(struct rte_eth_dev *dev,
2711 			  struct rte_eth_xstat *xstats,
2712 			  unsigned int n)
2713 {
2714 	struct ena_adapter *adapter = dev->data->dev_private;
2715 	unsigned int xstats_count = ena_xstats_calc_num(dev);
2716 	unsigned int stat, i, count = 0;
2717 	int stat_offset;
2718 	void *stats_begin;
2719 
2720 	if (n < xstats_count)
2721 		return xstats_count;
2722 
2723 	if (!xstats)
2724 		return 0;
2725 
2726 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
2727 		stat_offset = ena_stats_rx_strings[stat].stat_offset;
2728 		stats_begin = &adapter->dev_stats;
2729 
2730 		xstats[count].id = count;
2731 		xstats[count].value = *((uint64_t *)
2732 			((char *)stats_begin + stat_offset));
2733 	}
2734 
2735 	/* Even if the function below fails, we should copy previous (or initial
2736 	 * values) to keep structure of rte_eth_xstat consistent.
2737 	 */
2738 	ena_copy_eni_stats(adapter);
2739 	for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++) {
2740 		stat_offset = ena_stats_eni_strings[stat].stat_offset;
2741 		stats_begin = &adapter->eni_stats;
2742 
2743 		xstats[count].id = count;
2744 		xstats[count].value = *((uint64_t *)
2745 		    ((char *)stats_begin + stat_offset));
2746 	}
2747 
2748 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
2749 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
2750 			stat_offset = ena_stats_rx_strings[stat].stat_offset;
2751 			stats_begin = &adapter->rx_ring[i].rx_stats;
2752 
2753 			xstats[count].id = count;
2754 			xstats[count].value = *((uint64_t *)
2755 				((char *)stats_begin + stat_offset));
2756 		}
2757 	}
2758 
2759 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
2760 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
2761 			stat_offset = ena_stats_tx_strings[stat].stat_offset;
2762 			stats_begin = &adapter->tx_ring[i].rx_stats;
2763 
2764 			xstats[count].id = count;
2765 			xstats[count].value = *((uint64_t *)
2766 				((char *)stats_begin + stat_offset));
2767 		}
2768 	}
2769 
2770 	return count;
2771 }
2772 
2773 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
2774 				const uint64_t *ids,
2775 				uint64_t *values,
2776 				unsigned int n)
2777 {
2778 	struct ena_adapter *adapter = dev->data->dev_private;
2779 	uint64_t id;
2780 	uint64_t rx_entries, tx_entries;
2781 	unsigned int i;
2782 	int qid;
2783 	int valid = 0;
2784 	bool was_eni_copied = false;
2785 
2786 	for (i = 0; i < n; ++i) {
2787 		id = ids[i];
2788 		/* Check if id belongs to global statistics */
2789 		if (id < ENA_STATS_ARRAY_GLOBAL) {
2790 			values[i] = *((uint64_t *)&adapter->dev_stats + id);
2791 			++valid;
2792 			continue;
2793 		}
2794 
2795 		/* Check if id belongs to ENI statistics */
2796 		id -= ENA_STATS_ARRAY_GLOBAL;
2797 		if (id < ENA_STATS_ARRAY_ENI) {
2798 			/* Avoid reading ENI stats multiple times in a single
2799 			 * function call, as it requires communication with the
2800 			 * admin queue.
2801 			 */
2802 			if (!was_eni_copied) {
2803 				was_eni_copied = true;
2804 				ena_copy_eni_stats(adapter);
2805 			}
2806 			values[i] = *((uint64_t *)&adapter->eni_stats + id);
2807 			++valid;
2808 			continue;
2809 		}
2810 
2811 		/* Check if id belongs to rx queue statistics */
2812 		id -= ENA_STATS_ARRAY_ENI;
2813 		rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
2814 		if (id < rx_entries) {
2815 			qid = id % dev->data->nb_rx_queues;
2816 			id /= dev->data->nb_rx_queues;
2817 			values[i] = *((uint64_t *)
2818 				&adapter->rx_ring[qid].rx_stats + id);
2819 			++valid;
2820 			continue;
2821 		}
2822 				/* Check if id belongs to rx queue statistics */
2823 		id -= rx_entries;
2824 		tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
2825 		if (id < tx_entries) {
2826 			qid = id % dev->data->nb_tx_queues;
2827 			id /= dev->data->nb_tx_queues;
2828 			values[i] = *((uint64_t *)
2829 				&adapter->tx_ring[qid].tx_stats + id);
2830 			++valid;
2831 			continue;
2832 		}
2833 	}
2834 
2835 	return valid;
2836 }
2837 
2838 static int ena_process_bool_devarg(const char *key,
2839 				   const char *value,
2840 				   void *opaque)
2841 {
2842 	struct ena_adapter *adapter = opaque;
2843 	bool bool_value;
2844 
2845 	/* Parse the value. */
2846 	if (strcmp(value, "1") == 0) {
2847 		bool_value = true;
2848 	} else if (strcmp(value, "0") == 0) {
2849 		bool_value = false;
2850 	} else {
2851 		PMD_INIT_LOG(ERR,
2852 			"Invalid value: '%s' for key '%s'. Accepted: '0' or '1'\n",
2853 			value, key);
2854 		return -EINVAL;
2855 	}
2856 
2857 	/* Now, assign it to the proper adapter field. */
2858 	if (strcmp(key, ENA_DEVARG_LARGE_LLQ_HDR))
2859 		adapter->use_large_llq_hdr = bool_value;
2860 
2861 	return 0;
2862 }
2863 
2864 static int ena_parse_devargs(struct ena_adapter *adapter,
2865 			     struct rte_devargs *devargs)
2866 {
2867 	static const char * const allowed_args[] = {
2868 		ENA_DEVARG_LARGE_LLQ_HDR,
2869 	};
2870 	struct rte_kvargs *kvlist;
2871 	int rc;
2872 
2873 	if (devargs == NULL)
2874 		return 0;
2875 
2876 	kvlist = rte_kvargs_parse(devargs->args, allowed_args);
2877 	if (kvlist == NULL) {
2878 		PMD_INIT_LOG(ERR, "Invalid device arguments: %s\n",
2879 			devargs->args);
2880 		return -EINVAL;
2881 	}
2882 
2883 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_LARGE_LLQ_HDR,
2884 		ena_process_bool_devarg, adapter);
2885 
2886 	rte_kvargs_free(kvlist);
2887 
2888 	return rc;
2889 }
2890 
2891 /*********************************************************************
2892  *  PMD configuration
2893  *********************************************************************/
2894 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2895 	struct rte_pci_device *pci_dev)
2896 {
2897 	return rte_eth_dev_pci_generic_probe(pci_dev,
2898 		sizeof(struct ena_adapter), eth_ena_dev_init);
2899 }
2900 
2901 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
2902 {
2903 	return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
2904 }
2905 
2906 static struct rte_pci_driver rte_ena_pmd = {
2907 	.id_table = pci_id_ena_map,
2908 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
2909 		     RTE_PCI_DRV_WC_ACTIVATE,
2910 	.probe = eth_ena_pci_probe,
2911 	.remove = eth_ena_pci_remove,
2912 };
2913 
2914 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
2915 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
2916 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
2917 RTE_PMD_REGISTER_PARAM_STRING(net_ena, ENA_DEVARG_LARGE_LLQ_HDR "=<0|1>");
2918 RTE_LOG_REGISTER(ena_logtype_init, pmd.net.ena.init, NOTICE);
2919 RTE_LOG_REGISTER(ena_logtype_driver, pmd.net.ena.driver, NOTICE);
2920 #ifdef RTE_LIBRTE_ENA_DEBUG_RX
2921 RTE_LOG_REGISTER(ena_logtype_rx, pmd.net.ena.rx, NOTICE);
2922 #endif
2923 #ifdef RTE_LIBRTE_ENA_DEBUG_TX
2924 RTE_LOG_REGISTER(ena_logtype_tx, pmd.net.ena.tx, NOTICE);
2925 #endif
2926 #ifdef RTE_LIBRTE_ENA_DEBUG_TX_FREE
2927 RTE_LOG_REGISTER(ena_logtype_tx_free, pmd.net.ena.tx_free, NOTICE);
2928 #endif
2929 #ifdef RTE_LIBRTE_ENA_COM_DEBUG
2930 RTE_LOG_REGISTER(ena_logtype_com, pmd.net.ena.com, NOTICE);
2931 #endif
2932 
2933 /******************************************************************************
2934  ******************************** AENQ Handlers *******************************
2935  *****************************************************************************/
2936 static void ena_update_on_link_change(void *adapter_data,
2937 				      struct ena_admin_aenq_entry *aenq_e)
2938 {
2939 	struct rte_eth_dev *eth_dev;
2940 	struct ena_adapter *adapter;
2941 	struct ena_admin_aenq_link_change_desc *aenq_link_desc;
2942 	uint32_t status;
2943 
2944 	adapter = adapter_data;
2945 	aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
2946 	eth_dev = adapter->rte_dev;
2947 
2948 	status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
2949 	adapter->link_status = status;
2950 
2951 	ena_link_update(eth_dev, 0);
2952 	rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
2953 }
2954 
2955 static void ena_notification(void *data,
2956 			     struct ena_admin_aenq_entry *aenq_e)
2957 {
2958 	struct ena_adapter *adapter = data;
2959 	struct ena_admin_ena_hw_hints *hints;
2960 
2961 	if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
2962 		PMD_DRV_LOG(WARNING, "Invalid group(%x) expected %x\n",
2963 			aenq_e->aenq_common_desc.group,
2964 			ENA_ADMIN_NOTIFICATION);
2965 
2966 	switch (aenq_e->aenq_common_desc.syndrom) {
2967 	case ENA_ADMIN_UPDATE_HINTS:
2968 		hints = (struct ena_admin_ena_hw_hints *)
2969 			(&aenq_e->inline_data_w4);
2970 		ena_update_hints(adapter, hints);
2971 		break;
2972 	default:
2973 		PMD_DRV_LOG(ERR, "Invalid aenq notification link state %d\n",
2974 			aenq_e->aenq_common_desc.syndrom);
2975 	}
2976 }
2977 
2978 static void ena_keep_alive(void *adapter_data,
2979 			   __rte_unused struct ena_admin_aenq_entry *aenq_e)
2980 {
2981 	struct ena_adapter *adapter = adapter_data;
2982 	struct ena_admin_aenq_keep_alive_desc *desc;
2983 	uint64_t rx_drops;
2984 	uint64_t tx_drops;
2985 
2986 	adapter->timestamp_wd = rte_get_timer_cycles();
2987 
2988 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
2989 	rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
2990 	tx_drops = ((uint64_t)desc->tx_drops_high << 32) | desc->tx_drops_low;
2991 
2992 	adapter->drv_stats->rx_drops = rx_drops;
2993 	adapter->dev_stats.tx_drops = tx_drops;
2994 }
2995 
2996 /**
2997  * This handler will called for unknown event group or unimplemented handlers
2998  **/
2999 static void unimplemented_aenq_handler(__rte_unused void *data,
3000 				       __rte_unused struct ena_admin_aenq_entry *aenq_e)
3001 {
3002 	PMD_DRV_LOG(ERR, "Unknown event was received or event with "
3003 			  "unimplemented handler\n");
3004 }
3005 
3006 static struct ena_aenq_handlers aenq_handlers = {
3007 	.handlers = {
3008 		[ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
3009 		[ENA_ADMIN_NOTIFICATION] = ena_notification,
3010 		[ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive
3011 	},
3012 	.unimplemented_handler = unimplemented_aenq_handler
3013 };
3014