xref: /dpdk/drivers/net/ena/ena_ethdev.c (revision 7917b0d38e92e8b9ec5a870415b791420e10f11a)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
3  * All rights reserved.
4  */
5 
6 #include <rte_alarm.h>
7 #include <rte_string_fns.h>
8 #include <rte_errno.h>
9 #include <rte_version.h>
10 #include <rte_net.h>
11 #include <rte_kvargs.h>
12 
13 #include "ena_ethdev.h"
14 #include "ena_logs.h"
15 #include "ena_platform.h"
16 #include "ena_com.h"
17 #include "ena_eth_com.h"
18 
19 #include <ena_common_defs.h>
20 #include <ena_regs_defs.h>
21 #include <ena_admin_defs.h>
22 #include <ena_eth_io_defs.h>
23 
24 #define DRV_MODULE_VER_MAJOR	2
25 #define DRV_MODULE_VER_MINOR	10
26 #define DRV_MODULE_VER_SUBMINOR	0
27 
28 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
29 
30 #define GET_L4_HDR_LEN(mbuf)					\
31 	((rte_pktmbuf_mtod_offset(mbuf,	struct rte_tcp_hdr *,	\
32 		mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
33 
34 #define ETH_GSTRING_LEN	32
35 
36 #define ARRAY_SIZE(x) RTE_DIM(x)
37 
38 #define ENA_MIN_RING_DESC	128
39 
40 #define USEC_PER_MSEC		1000UL
41 
42 #define BITS_PER_BYTE 8
43 
44 #define BITS_PER_TYPE(type) (sizeof(type) * BITS_PER_BYTE)
45 
46 #define DECIMAL_BASE 10
47 
48 #define MAX_WIDE_LLQ_DEPTH_UNSUPPORTED 0
49 
50 /*
51  * We should try to keep ENA_CLEANUP_BUF_THRESH lower than
52  * RTE_MEMPOOL_CACHE_MAX_SIZE, so we can fit this in mempool local cache.
53  */
54 #define ENA_CLEANUP_BUF_THRESH	256
55 
56 struct ena_stats {
57 	char name[ETH_GSTRING_LEN];
58 	int stat_offset;
59 };
60 
61 #define ENA_STAT_ENTRY(stat, stat_type) { \
62 	.name = #stat, \
63 	.stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
64 }
65 
66 #define ENA_STAT_RX_ENTRY(stat) \
67 	ENA_STAT_ENTRY(stat, rx)
68 
69 #define ENA_STAT_TX_ENTRY(stat) \
70 	ENA_STAT_ENTRY(stat, tx)
71 
72 #define ENA_STAT_METRICS_ENTRY(stat) \
73 	ENA_STAT_ENTRY(stat, metrics)
74 
75 #define ENA_STAT_GLOBAL_ENTRY(stat) \
76 	ENA_STAT_ENTRY(stat, dev)
77 
78 #define ENA_STAT_ENA_SRD_ENTRY(stat) \
79 	ENA_STAT_ENTRY(stat, srd)
80 
81 /* Device arguments */
82 
83 /* llq_policy Controls whether to disable LLQ, use device recommended
84  * header policy or overriding the device recommendation.
85  * 0 - Disable LLQ. Use with extreme caution as it leads to a huge
86  *     performance degradation on AWS instances built with Nitro v4 onwards.
87  * 1 - Accept device recommended LLQ policy (Default).
88  *     Device can recommend normal or large LLQ policy.
89  * 2 - Enforce normal LLQ policy.
90  * 3 - Enforce large LLQ policy.
91  *     Required for packets with header that exceed 96 bytes on
92  *     AWS instances built with Nitro v2 and Nitro v1.
93  */
94 #define ENA_DEVARG_LLQ_POLICY "llq_policy"
95 
96 /* Timeout in seconds after which a single uncompleted Tx packet should be
97  * considered as a missing.
98  */
99 #define ENA_DEVARG_MISS_TXC_TO "miss_txc_to"
100 
101 /*
102  * Controls the period of time (in milliseconds) between two consecutive inspections of
103  * the control queues when the driver is in poll mode and not using interrupts.
104  * By default, this value is zero, indicating that the driver will not be in poll mode and will
105  * use interrupts. A non-zero value for this argument is mandatory when using uio_pci_generic
106  * driver.
107  */
108 #define ENA_DEVARG_CONTROL_PATH_POLL_INTERVAL "control_path_poll_interval"
109 
110 /*
111  * Each rte_memzone should have unique name.
112  * To satisfy it, count number of allocation and add it to name.
113  */
114 rte_atomic64_t ena_alloc_cnt;
115 
116 static const struct ena_stats ena_stats_global_strings[] = {
117 	ENA_STAT_GLOBAL_ENTRY(wd_expired),
118 	ENA_STAT_GLOBAL_ENTRY(dev_start),
119 	ENA_STAT_GLOBAL_ENTRY(dev_stop),
120 	ENA_STAT_GLOBAL_ENTRY(tx_drops),
121 };
122 
123 /*
124  * The legacy metrics (also known as eni stats) consisted of 5 stats, while the reworked
125  * metrics (also known as customer metrics) support an additional stat.
126  */
127 static struct ena_stats ena_stats_metrics_strings[] = {
128 	ENA_STAT_METRICS_ENTRY(bw_in_allowance_exceeded),
129 	ENA_STAT_METRICS_ENTRY(bw_out_allowance_exceeded),
130 	ENA_STAT_METRICS_ENTRY(pps_allowance_exceeded),
131 	ENA_STAT_METRICS_ENTRY(conntrack_allowance_exceeded),
132 	ENA_STAT_METRICS_ENTRY(linklocal_allowance_exceeded),
133 	ENA_STAT_METRICS_ENTRY(conntrack_allowance_available),
134 };
135 
136 static const struct ena_stats ena_stats_srd_strings[] = {
137 	ENA_STAT_ENA_SRD_ENTRY(ena_srd_mode),
138 	ENA_STAT_ENA_SRD_ENTRY(ena_srd_tx_pkts),
139 	ENA_STAT_ENA_SRD_ENTRY(ena_srd_eligible_tx_pkts),
140 	ENA_STAT_ENA_SRD_ENTRY(ena_srd_rx_pkts),
141 	ENA_STAT_ENA_SRD_ENTRY(ena_srd_resource_utilization),
142 };
143 
144 static const struct ena_stats ena_stats_tx_strings[] = {
145 	ENA_STAT_TX_ENTRY(cnt),
146 	ENA_STAT_TX_ENTRY(bytes),
147 	ENA_STAT_TX_ENTRY(prepare_ctx_err),
148 	ENA_STAT_TX_ENTRY(tx_poll),
149 	ENA_STAT_TX_ENTRY(doorbells),
150 	ENA_STAT_TX_ENTRY(bad_req_id),
151 	ENA_STAT_TX_ENTRY(available_desc),
152 	ENA_STAT_TX_ENTRY(missed_tx),
153 };
154 
155 static const struct ena_stats ena_stats_rx_strings[] = {
156 	ENA_STAT_RX_ENTRY(cnt),
157 	ENA_STAT_RX_ENTRY(bytes),
158 	ENA_STAT_RX_ENTRY(refill_partial),
159 	ENA_STAT_RX_ENTRY(l3_csum_bad),
160 	ENA_STAT_RX_ENTRY(l4_csum_bad),
161 	ENA_STAT_RX_ENTRY(l4_csum_good),
162 	ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
163 	ENA_STAT_RX_ENTRY(bad_desc_num),
164 	ENA_STAT_RX_ENTRY(bad_req_id),
165 };
166 
167 #define ENA_STATS_ARRAY_GLOBAL	ARRAY_SIZE(ena_stats_global_strings)
168 #define ENA_STATS_ARRAY_METRICS	ARRAY_SIZE(ena_stats_metrics_strings)
169 #define ENA_STATS_ARRAY_METRICS_LEGACY	(ENA_STATS_ARRAY_METRICS - 1)
170 #define ENA_STATS_ARRAY_ENA_SRD	ARRAY_SIZE(ena_stats_srd_strings)
171 #define ENA_STATS_ARRAY_TX	ARRAY_SIZE(ena_stats_tx_strings)
172 #define ENA_STATS_ARRAY_RX	ARRAY_SIZE(ena_stats_rx_strings)
173 
174 #define QUEUE_OFFLOADS (RTE_ETH_TX_OFFLOAD_TCP_CKSUM |\
175 			RTE_ETH_TX_OFFLOAD_UDP_CKSUM |\
176 			RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |\
177 			RTE_ETH_TX_OFFLOAD_TCP_TSO)
178 #define MBUF_OFFLOADS (RTE_MBUF_F_TX_L4_MASK |\
179 		       RTE_MBUF_F_TX_IP_CKSUM |\
180 		       RTE_MBUF_F_TX_TCP_SEG)
181 
182 /** Vendor ID used by Amazon devices */
183 #define PCI_VENDOR_ID_AMAZON 0x1D0F
184 /** Amazon devices */
185 #define PCI_DEVICE_ID_ENA_VF		0xEC20
186 #define PCI_DEVICE_ID_ENA_VF_RSERV0	0xEC21
187 
188 #define	ENA_TX_OFFLOAD_MASK	(RTE_MBUF_F_TX_L4_MASK |         \
189 	RTE_MBUF_F_TX_IPV6 |            \
190 	RTE_MBUF_F_TX_IPV4 |            \
191 	RTE_MBUF_F_TX_IP_CKSUM |        \
192 	RTE_MBUF_F_TX_TCP_SEG)
193 
194 #define	ENA_TX_OFFLOAD_NOTSUP_MASK	\
195 	(RTE_MBUF_F_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
196 
197 /** HW specific offloads capabilities. */
198 /* IPv4 checksum offload. */
199 #define ENA_L3_IPV4_CSUM		0x0001
200 /* TCP/UDP checksum offload for IPv4 packets. */
201 #define ENA_L4_IPV4_CSUM		0x0002
202 /* TCP/UDP checksum offload for IPv4 packets with pseudo header checksum. */
203 #define ENA_L4_IPV4_CSUM_PARTIAL	0x0004
204 /* TCP/UDP checksum offload for IPv6 packets. */
205 #define ENA_L4_IPV6_CSUM		0x0008
206 /* TCP/UDP checksum offload for IPv6 packets with pseudo header checksum. */
207 #define ENA_L4_IPV6_CSUM_PARTIAL	0x0010
208 /* TSO support for IPv4 packets. */
209 #define ENA_IPV4_TSO			0x0020
210 
211 /* Device supports setting RSS hash. */
212 #define ENA_RX_RSS_HASH			0x0040
213 
214 static const struct rte_pci_id pci_id_ena_map[] = {
215 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
216 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF_RSERV0) },
217 	{ .device_id = 0 },
218 };
219 
220 static struct ena_aenq_handlers aenq_handlers;
221 
222 static int ena_device_init(struct ena_adapter *adapter,
223 			   struct rte_pci_device *pdev,
224 			   struct ena_com_dev_get_features_ctx *get_feat_ctx);
225 static int ena_dev_configure(struct rte_eth_dev *dev);
226 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
227 	struct ena_tx_buffer *tx_info,
228 	struct rte_mbuf *mbuf,
229 	void **push_header,
230 	uint16_t *header_len);
231 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf);
232 static int ena_tx_cleanup(void *txp, uint32_t free_pkt_cnt);
233 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
234 				  uint16_t nb_pkts);
235 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
236 		uint16_t nb_pkts);
237 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
238 			      uint16_t nb_desc, unsigned int socket_id,
239 			      const struct rte_eth_txconf *tx_conf);
240 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
241 			      uint16_t nb_desc, unsigned int socket_id,
242 			      const struct rte_eth_rxconf *rx_conf,
243 			      struct rte_mempool *mp);
244 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len);
245 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
246 				    struct ena_com_rx_buf_info *ena_bufs,
247 				    uint32_t descs,
248 				    uint16_t *next_to_clean,
249 				    uint8_t offset);
250 static uint16_t eth_ena_recv_pkts(void *rx_queue,
251 				  struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
252 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
253 				  struct rte_mbuf *mbuf, uint16_t id);
254 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
255 static void ena_init_rings(struct ena_adapter *adapter,
256 			   bool disable_meta_caching);
257 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
258 static int ena_start(struct rte_eth_dev *dev);
259 static int ena_stop(struct rte_eth_dev *dev);
260 static int ena_close(struct rte_eth_dev *dev);
261 static int ena_dev_reset(struct rte_eth_dev *dev);
262 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
263 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
264 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
265 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
266 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
267 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
268 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
269 static int ena_link_update(struct rte_eth_dev *dev,
270 			   int wait_to_complete);
271 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring);
272 static void ena_queue_stop(struct ena_ring *ring);
273 static void ena_queue_stop_all(struct rte_eth_dev *dev,
274 			      enum ena_ring_type ring_type);
275 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring);
276 static int ena_queue_start_all(struct rte_eth_dev *dev,
277 			       enum ena_ring_type ring_type);
278 static void ena_stats_restart(struct rte_eth_dev *dev);
279 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter);
280 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter);
281 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter);
282 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter);
283 static int ena_infos_get(struct rte_eth_dev *dev,
284 			 struct rte_eth_dev_info *dev_info);
285 static void ena_control_path_handler(void *cb_arg);
286 static void ena_control_path_poll_handler(void *cb_arg);
287 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
288 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
289 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev);
290 static int ena_xstats_get_names(struct rte_eth_dev *dev,
291 				struct rte_eth_xstat_name *xstats_names,
292 				unsigned int n);
293 static int ena_xstats_get_names_by_id(struct rte_eth_dev *dev,
294 				      const uint64_t *ids,
295 				      struct rte_eth_xstat_name *xstats_names,
296 				      unsigned int size);
297 static int ena_xstats_get(struct rte_eth_dev *dev,
298 			  struct rte_eth_xstat *stats,
299 			  unsigned int n);
300 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
301 				const uint64_t *ids,
302 				uint64_t *values,
303 				unsigned int n);
304 static int ena_process_llq_policy_devarg(const char *key,
305 			const char *value,
306 			void *opaque);
307 static int ena_parse_devargs(struct ena_adapter *adapter,
308 			     struct rte_devargs *devargs);
309 static void ena_copy_customer_metrics(struct ena_adapter *adapter,
310 					uint64_t *buf,
311 					size_t buf_size);
312 static void ena_copy_ena_srd_info(struct ena_adapter *adapter,
313 				  struct ena_stats_srd *srd_info);
314 static int ena_setup_rx_intr(struct rte_eth_dev *dev);
315 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
316 				    uint16_t queue_id);
317 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
318 				     uint16_t queue_id);
319 static int ena_configure_aenq(struct ena_adapter *adapter);
320 static int ena_mp_primary_handle(const struct rte_mp_msg *mp_msg,
321 				 const void *peer);
322 static bool ena_use_large_llq_hdr(struct ena_adapter *adapter, uint8_t recommended_entry_size);
323 
324 static const struct eth_dev_ops ena_dev_ops = {
325 	.dev_configure          = ena_dev_configure,
326 	.dev_infos_get          = ena_infos_get,
327 	.rx_queue_setup         = ena_rx_queue_setup,
328 	.tx_queue_setup         = ena_tx_queue_setup,
329 	.dev_start              = ena_start,
330 	.dev_stop               = ena_stop,
331 	.link_update            = ena_link_update,
332 	.stats_get              = ena_stats_get,
333 	.xstats_get_names       = ena_xstats_get_names,
334 	.xstats_get_names_by_id = ena_xstats_get_names_by_id,
335 	.xstats_get             = ena_xstats_get,
336 	.xstats_get_by_id       = ena_xstats_get_by_id,
337 	.mtu_set                = ena_mtu_set,
338 	.rx_queue_release       = ena_rx_queue_release,
339 	.tx_queue_release       = ena_tx_queue_release,
340 	.dev_close              = ena_close,
341 	.dev_reset              = ena_dev_reset,
342 	.reta_update            = ena_rss_reta_update,
343 	.reta_query             = ena_rss_reta_query,
344 	.rx_queue_intr_enable   = ena_rx_queue_intr_enable,
345 	.rx_queue_intr_disable  = ena_rx_queue_intr_disable,
346 	.rss_hash_update        = ena_rss_hash_update,
347 	.rss_hash_conf_get      = ena_rss_hash_conf_get,
348 	.tx_done_cleanup        = ena_tx_cleanup,
349 };
350 
351 /*********************************************************************
352  *  Multi-Process communication bits
353  *********************************************************************/
354 /* rte_mp IPC message name */
355 #define ENA_MP_NAME	"net_ena_mp"
356 /* Request timeout in seconds */
357 #define ENA_MP_REQ_TMO	5
358 
359 /** Proxy request type */
360 enum ena_mp_req {
361 	ENA_MP_DEV_STATS_GET,
362 	ENA_MP_ENI_STATS_GET,
363 	ENA_MP_MTU_SET,
364 	ENA_MP_IND_TBL_GET,
365 	ENA_MP_IND_TBL_SET,
366 	ENA_MP_CUSTOMER_METRICS_GET,
367 	ENA_MP_SRD_STATS_GET,
368 };
369 
370 /** Proxy message body. Shared between requests and responses. */
371 struct ena_mp_body {
372 	/* Message type */
373 	enum ena_mp_req type;
374 	int port_id;
375 	/* Processing result. Set in replies. 0 if message succeeded, negative
376 	 * error code otherwise.
377 	 */
378 	int result;
379 	union {
380 		int mtu; /* For ENA_MP_MTU_SET */
381 	} args;
382 };
383 
384 /**
385  * Initialize IPC message.
386  *
387  * @param[out] msg
388  *   Pointer to the message to initialize.
389  * @param[in] type
390  *   Message type.
391  * @param[in] port_id
392  *   Port ID of target device.
393  *
394  */
395 static void
396 mp_msg_init(struct rte_mp_msg *msg, enum ena_mp_req type, int port_id)
397 {
398 	struct ena_mp_body *body = (struct ena_mp_body *)&msg->param;
399 
400 	memset(msg, 0, sizeof(*msg));
401 	strlcpy(msg->name, ENA_MP_NAME, sizeof(msg->name));
402 	msg->len_param = sizeof(*body);
403 	body->type = type;
404 	body->port_id = port_id;
405 }
406 
407 /*********************************************************************
408  *  Multi-Process communication PMD API
409  *********************************************************************/
410 /**
411  * Define proxy request descriptor
412  *
413  * Used to define all structures and functions required for proxying a given
414  * function to the primary process including the code to perform to prepare the
415  * request and process the response.
416  *
417  * @param[in] f
418  *   Name of the function to proxy
419  * @param[in] t
420  *   Message type to use
421  * @param[in] prep
422  *   Body of a function to prepare the request in form of a statement
423  *   expression. It is passed all the original function arguments along with two
424  *   extra ones:
425  *   - struct ena_adapter *adapter - PMD data of the device calling the proxy.
426  *   - struct ena_mp_body *req - body of a request to prepare.
427  * @param[in] proc
428  *   Body of a function to process the response in form of a statement
429  *   expression. It is passed all the original function arguments along with two
430  *   extra ones:
431  *   - struct ena_adapter *adapter - PMD data of the device calling the proxy.
432  *   - struct ena_mp_body *rsp - body of a response to process.
433  * @param ...
434  *   Proxied function's arguments
435  *
436  * @note Inside prep and proc any parameters which aren't used should be marked
437  *       as such (with ENA_TOUCH or __rte_unused).
438  */
439 #define ENA_PROXY_DESC(f, t, prep, proc, ...)			\
440 	static const enum ena_mp_req mp_type_ ## f =  t;	\
441 	static const char *mp_name_ ## f = #t;			\
442 	static void mp_prep_ ## f(struct ena_adapter *adapter,	\
443 				  struct ena_mp_body *req,	\
444 				  __VA_ARGS__)			\
445 	{							\
446 		prep;						\
447 	}							\
448 	static void mp_proc_ ## f(struct ena_adapter *adapter,	\
449 				  struct ena_mp_body *rsp,	\
450 				  __VA_ARGS__)			\
451 	{							\
452 		proc;						\
453 	}
454 
455 /**
456  * Proxy wrapper for calling primary functions in a secondary process.
457  *
458  * Depending on whether called in primary or secondary process, calls the
459  * @p func directly or proxies the call to the primary process via rte_mp IPC.
460  * This macro requires a proxy request descriptor to be defined for @p func
461  * using ENA_PROXY_DESC() macro.
462  *
463  * @param[in/out] a
464  *   Device PMD data. Used for sending the message and sharing message results
465  *   between primary and secondary.
466  * @param[in] f
467  *   Function to proxy.
468  * @param ...
469  *   Arguments of @p func.
470  *
471  * @return
472  *   - 0: Processing succeeded and response handler was called.
473  *   - -EPERM: IPC is unavailable on this platform. This means only primary
474  *             process may call the proxied function.
475  *   - -EIO:   IPC returned error on request send. Inspect rte_errno detailed
476  *             error code.
477  *   - Negative error code from the proxied function.
478  *
479  * @note This mechanism is geared towards control-path tasks. Avoid calling it
480  *       in fast-path unless unbound delays are allowed. This is due to the IPC
481  *       mechanism itself (socket based).
482  * @note Due to IPC parameter size limitations the proxy logic shares call
483  *       results through the struct ena_adapter shared memory. This makes the
484  *       proxy mechanism strictly single-threaded. Therefore be sure to make all
485  *       calls to the same proxied function under the same lock.
486  */
487 #define ENA_PROXY(a, f, ...)						\
488 __extension__ ({							\
489 	struct ena_adapter *_a = (a);					\
490 	struct timespec ts = { .tv_sec = ENA_MP_REQ_TMO };		\
491 	struct ena_mp_body *req, *rsp;					\
492 	struct rte_mp_reply mp_rep;					\
493 	struct rte_mp_msg mp_req;					\
494 	int ret;							\
495 									\
496 	if (rte_eal_process_type() == RTE_PROC_PRIMARY) {		\
497 		ret = f(__VA_ARGS__);					\
498 	} else {							\
499 		/* Prepare and send request */				\
500 		req = (struct ena_mp_body *)&mp_req.param;		\
501 		mp_msg_init(&mp_req, mp_type_ ## f, _a->edev_data->port_id); \
502 		mp_prep_ ## f(_a, req, ## __VA_ARGS__);			\
503 									\
504 		ret = rte_mp_request_sync(&mp_req, &mp_rep, &ts);	\
505 		if (likely(!ret)) {					\
506 			RTE_ASSERT(mp_rep.nb_received == 1);		\
507 			rsp = (struct ena_mp_body *)&mp_rep.msgs[0].param; \
508 			ret = rsp->result;				\
509 			if (ret == 0) {					\
510 				mp_proc_##f(_a, rsp, ## __VA_ARGS__);	\
511 			} else {					\
512 				PMD_DRV_LOG_LINE(ERR,			\
513 					    "%s returned error: %d",	\
514 					    mp_name_ ## f, rsp->result);\
515 			}						\
516 			free(mp_rep.msgs);				\
517 		} else if (rte_errno == ENOTSUP) {			\
518 			PMD_DRV_LOG_LINE(ERR,				\
519 				    "No IPC, can't proxy to primary");\
520 			ret = -rte_errno;				\
521 		} else {						\
522 			PMD_DRV_LOG_LINE(ERR, "Request %s failed: %s",	\
523 				    mp_name_ ## f,			\
524 				    rte_strerror(rte_errno));		\
525 			ret = -EIO;					\
526 		}							\
527 	}								\
528 	ret;								\
529 })
530 
531 /*********************************************************************
532  *  Multi-Process communication request descriptors
533  *********************************************************************/
534 
535 ENA_PROXY_DESC(ena_com_get_dev_basic_stats, ENA_MP_DEV_STATS_GET,
536 __extension__ ({
537 	ENA_TOUCH(adapter);
538 	ENA_TOUCH(req);
539 	ENA_TOUCH(ena_dev);
540 	ENA_TOUCH(stats);
541 }),
542 __extension__ ({
543 	ENA_TOUCH(rsp);
544 	ENA_TOUCH(ena_dev);
545 	if (stats != &adapter->basic_stats)
546 		rte_memcpy(stats, &adapter->basic_stats, sizeof(*stats));
547 }),
548 	struct ena_com_dev *ena_dev, struct ena_admin_basic_stats *stats);
549 
550 ENA_PROXY_DESC(ena_com_get_eni_stats, ENA_MP_ENI_STATS_GET,
551 __extension__ ({
552 	ENA_TOUCH(adapter);
553 	ENA_TOUCH(req);
554 	ENA_TOUCH(ena_dev);
555 	ENA_TOUCH(stats);
556 }),
557 __extension__ ({
558 	ENA_TOUCH(rsp);
559 	ENA_TOUCH(ena_dev);
560 	if (stats != (struct ena_admin_eni_stats *)adapter->metrics_stats)
561 		rte_memcpy(stats, adapter->metrics_stats, sizeof(*stats));
562 }),
563 	struct ena_com_dev *ena_dev, struct ena_admin_eni_stats *stats);
564 
565 ENA_PROXY_DESC(ena_com_set_dev_mtu, ENA_MP_MTU_SET,
566 __extension__ ({
567 	ENA_TOUCH(adapter);
568 	ENA_TOUCH(ena_dev);
569 	req->args.mtu = mtu;
570 }),
571 __extension__ ({
572 	ENA_TOUCH(adapter);
573 	ENA_TOUCH(rsp);
574 	ENA_TOUCH(ena_dev);
575 	ENA_TOUCH(mtu);
576 }),
577 	struct ena_com_dev *ena_dev, int mtu);
578 
579 ENA_PROXY_DESC(ena_com_indirect_table_set, ENA_MP_IND_TBL_SET,
580 __extension__ ({
581 	ENA_TOUCH(adapter);
582 	ENA_TOUCH(req);
583 	ENA_TOUCH(ena_dev);
584 }),
585 __extension__ ({
586 	ENA_TOUCH(adapter);
587 	ENA_TOUCH(rsp);
588 	ENA_TOUCH(ena_dev);
589 }),
590 	struct ena_com_dev *ena_dev);
591 
592 ENA_PROXY_DESC(ena_com_indirect_table_get, ENA_MP_IND_TBL_GET,
593 __extension__ ({
594 	ENA_TOUCH(adapter);
595 	ENA_TOUCH(req);
596 	ENA_TOUCH(ena_dev);
597 	ENA_TOUCH(ind_tbl);
598 }),
599 __extension__ ({
600 	ENA_TOUCH(rsp);
601 	ENA_TOUCH(ena_dev);
602 	if (ind_tbl != adapter->indirect_table)
603 		rte_memcpy(ind_tbl, adapter->indirect_table,
604 			   sizeof(adapter->indirect_table));
605 }),
606 	struct ena_com_dev *ena_dev, u32 *ind_tbl);
607 
608 ENA_PROXY_DESC(ena_com_get_customer_metrics, ENA_MP_CUSTOMER_METRICS_GET,
609 __extension__ ({
610 	ENA_TOUCH(adapter);
611 	ENA_TOUCH(req);
612 	ENA_TOUCH(ena_dev);
613 	ENA_TOUCH(buf);
614 	ENA_TOUCH(buf_size);
615 }),
616 __extension__ ({
617 	ENA_TOUCH(rsp);
618 	ENA_TOUCH(ena_dev);
619 	if (buf != (char *)adapter->metrics_stats)
620 		rte_memcpy(buf, adapter->metrics_stats, buf_size);
621 }),
622 	struct ena_com_dev *ena_dev, char *buf, size_t buf_size);
623 
624 ENA_PROXY_DESC(ena_com_get_ena_srd_info, ENA_MP_SRD_STATS_GET,
625 __extension__ ({
626 	ENA_TOUCH(adapter);
627 	ENA_TOUCH(req);
628 	ENA_TOUCH(ena_dev);
629 	ENA_TOUCH(info);
630 }),
631 __extension__ ({
632 	ENA_TOUCH(rsp);
633 	ENA_TOUCH(ena_dev);
634 	if ((struct ena_stats_srd *)info != &adapter->srd_stats)
635 		rte_memcpy((struct ena_stats_srd *)info,
636 				&adapter->srd_stats,
637 				sizeof(struct ena_stats_srd));
638 }),
639 	struct ena_com_dev *ena_dev, struct ena_admin_ena_srd_info *info);
640 
641 static inline void ena_trigger_reset(struct ena_adapter *adapter,
642 				     enum ena_regs_reset_reason_types reason)
643 {
644 	if (likely(!adapter->trigger_reset)) {
645 		adapter->reset_reason = reason;
646 		adapter->trigger_reset = true;
647 	}
648 }
649 
650 static inline void ena_rx_mbuf_prepare(struct ena_ring *rx_ring,
651 				       struct rte_mbuf *mbuf,
652 				       struct ena_com_rx_ctx *ena_rx_ctx)
653 {
654 	struct ena_stats_rx *rx_stats = &rx_ring->rx_stats;
655 	uint64_t ol_flags = 0;
656 	uint32_t packet_type = 0;
657 
658 	switch (ena_rx_ctx->l3_proto) {
659 	case ENA_ETH_IO_L3_PROTO_IPV4:
660 		packet_type |= RTE_PTYPE_L3_IPV4;
661 		if (unlikely(ena_rx_ctx->l3_csum_err)) {
662 			++rx_stats->l3_csum_bad;
663 			ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
664 		} else {
665 			ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
666 		}
667 		break;
668 	case ENA_ETH_IO_L3_PROTO_IPV6:
669 		packet_type |= RTE_PTYPE_L3_IPV6;
670 		break;
671 	default:
672 		break;
673 	}
674 
675 	switch (ena_rx_ctx->l4_proto) {
676 	case ENA_ETH_IO_L4_PROTO_TCP:
677 		packet_type |= RTE_PTYPE_L4_TCP;
678 		break;
679 	case ENA_ETH_IO_L4_PROTO_UDP:
680 		packet_type |= RTE_PTYPE_L4_UDP;
681 		break;
682 	default:
683 		break;
684 	}
685 
686 	/* L4 csum is relevant only for TCP/UDP packets */
687 	if ((packet_type & (RTE_PTYPE_L4_TCP | RTE_PTYPE_L4_UDP)) && !ena_rx_ctx->frag) {
688 		if (ena_rx_ctx->l4_csum_checked) {
689 			if (likely(!ena_rx_ctx->l4_csum_err)) {
690 				++rx_stats->l4_csum_good;
691 				ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
692 			} else {
693 				++rx_stats->l4_csum_bad;
694 				ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
695 			}
696 		} else {
697 			ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN;
698 		}
699 
700 		if (rx_ring->offloads & RTE_ETH_RX_OFFLOAD_RSS_HASH) {
701 			ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
702 			mbuf->hash.rss = ena_rx_ctx->hash;
703 		}
704 	} else {
705 		ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN;
706 	}
707 
708 	mbuf->ol_flags = ol_flags;
709 	mbuf->packet_type = packet_type;
710 }
711 
712 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
713 				       struct ena_com_tx_ctx *ena_tx_ctx,
714 				       uint64_t queue_offloads,
715 				       bool disable_meta_caching)
716 {
717 	struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
718 
719 	if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
720 	    (queue_offloads & QUEUE_OFFLOADS)) {
721 		/* check if TSO is required */
722 		if ((mbuf->ol_flags & RTE_MBUF_F_TX_TCP_SEG) &&
723 		    (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_TSO)) {
724 			ena_tx_ctx->tso_enable = true;
725 
726 			ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
727 		}
728 
729 		/* check if L3 checksum is needed */
730 		if ((mbuf->ol_flags & RTE_MBUF_F_TX_IP_CKSUM) &&
731 		    (queue_offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM))
732 			ena_tx_ctx->l3_csum_enable = true;
733 
734 		if (mbuf->ol_flags & RTE_MBUF_F_TX_IPV6) {
735 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
736 			/* For the IPv6 packets, DF always needs to be true. */
737 			ena_tx_ctx->df = 1;
738 		} else {
739 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
740 
741 			/* set don't fragment (DF) flag */
742 			if (mbuf->packet_type &
743 				(RTE_PTYPE_L4_NONFRAG
744 				 | RTE_PTYPE_INNER_L4_NONFRAG))
745 				ena_tx_ctx->df = 1;
746 		}
747 
748 		/* check if L4 checksum is needed */
749 		if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) == RTE_MBUF_F_TX_TCP_CKSUM) &&
750 		    (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) {
751 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
752 			ena_tx_ctx->l4_csum_enable = true;
753 		} else if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) ==
754 				RTE_MBUF_F_TX_UDP_CKSUM) &&
755 				(queue_offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM)) {
756 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
757 			ena_tx_ctx->l4_csum_enable = true;
758 		} else {
759 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
760 			ena_tx_ctx->l4_csum_enable = false;
761 		}
762 
763 		ena_meta->mss = mbuf->tso_segsz;
764 		ena_meta->l3_hdr_len = mbuf->l3_len;
765 		ena_meta->l3_hdr_offset = mbuf->l2_len;
766 
767 		ena_tx_ctx->meta_valid = true;
768 	} else if (disable_meta_caching) {
769 		memset(ena_meta, 0, sizeof(*ena_meta));
770 		ena_tx_ctx->meta_valid = true;
771 	} else {
772 		ena_tx_ctx->meta_valid = false;
773 	}
774 }
775 
776 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
777 {
778 	struct ena_tx_buffer *tx_info = NULL;
779 
780 	if (likely(req_id < tx_ring->ring_size)) {
781 		tx_info = &tx_ring->tx_buffer_info[req_id];
782 		if (likely(tx_info->mbuf))
783 			return 0;
784 	}
785 
786 	if (tx_info)
787 		PMD_TX_LOG_LINE(ERR, "tx_info doesn't have valid mbuf. queue %d:%d req_id %u",
788 			tx_ring->port_id, tx_ring->id, req_id);
789 	else
790 		PMD_TX_LOG_LINE(ERR, "Invalid req_id: %hu in queue %d:%d",
791 			req_id, tx_ring->port_id, tx_ring->id);
792 
793 	/* Trigger device reset */
794 	++tx_ring->tx_stats.bad_req_id;
795 	ena_trigger_reset(tx_ring->adapter, ENA_REGS_RESET_INV_TX_REQ_ID);
796 	return -EFAULT;
797 }
798 
799 static void ena_config_host_info(struct ena_com_dev *ena_dev)
800 {
801 	struct ena_admin_host_info *host_info;
802 	int rc;
803 
804 	/* Allocate only the host info */
805 	rc = ena_com_allocate_host_info(ena_dev);
806 	if (rc) {
807 		PMD_DRV_LOG_LINE(ERR, "Cannot allocate host info");
808 		return;
809 	}
810 
811 	host_info = ena_dev->host_attr.host_info;
812 
813 	host_info->os_type = ENA_ADMIN_OS_DPDK;
814 	host_info->kernel_ver = RTE_VERSION;
815 	strlcpy((char *)host_info->kernel_ver_str, rte_version(),
816 		sizeof(host_info->kernel_ver_str));
817 	host_info->os_dist = RTE_VERSION;
818 	strlcpy((char *)host_info->os_dist_str, rte_version(),
819 		sizeof(host_info->os_dist_str));
820 	host_info->driver_version =
821 		(DRV_MODULE_VER_MAJOR) |
822 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
823 		(DRV_MODULE_VER_SUBMINOR <<
824 			ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
825 	host_info->num_cpus = rte_lcore_count();
826 
827 	host_info->driver_supported_features =
828 		ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK |
829 		ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK;
830 
831 	rc = ena_com_set_host_attributes(ena_dev);
832 	if (rc) {
833 		if (rc == ENA_COM_UNSUPPORTED)
834 			PMD_DRV_LOG_LINE(WARNING, "Cannot set host attributes");
835 		else
836 			PMD_DRV_LOG_LINE(ERR, "Cannot set host attributes");
837 
838 		goto err;
839 	}
840 
841 	return;
842 
843 err:
844 	ena_com_delete_host_info(ena_dev);
845 }
846 
847 /* This function calculates the number of xstats based on the current config */
848 static unsigned int ena_xstats_calc_num(struct rte_eth_dev_data *data)
849 {
850 	struct ena_adapter *adapter = data->dev_private;
851 
852 	return ENA_STATS_ARRAY_GLOBAL +
853 		adapter->metrics_num +
854 		ENA_STATS_ARRAY_ENA_SRD +
855 		(data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
856 		(data->nb_rx_queues * ENA_STATS_ARRAY_RX);
857 }
858 
859 static void ena_config_debug_area(struct ena_adapter *adapter)
860 {
861 	u32 debug_area_size;
862 	int rc, ss_count;
863 
864 	ss_count = ena_xstats_calc_num(adapter->edev_data);
865 
866 	/* allocate 32 bytes for each string and 64bit for the value */
867 	debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
868 
869 	rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
870 	if (rc) {
871 		PMD_DRV_LOG_LINE(ERR, "Cannot allocate debug area");
872 		return;
873 	}
874 
875 	rc = ena_com_set_host_attributes(&adapter->ena_dev);
876 	if (rc) {
877 		if (rc == ENA_COM_UNSUPPORTED)
878 			PMD_DRV_LOG_LINE(WARNING, "Cannot set host attributes");
879 		else
880 			PMD_DRV_LOG_LINE(ERR, "Cannot set host attributes");
881 
882 		goto err;
883 	}
884 
885 	return;
886 err:
887 	ena_com_delete_debug_area(&adapter->ena_dev);
888 }
889 
890 static int ena_close(struct rte_eth_dev *dev)
891 {
892 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
893 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
894 	struct ena_adapter *adapter = dev->data->dev_private;
895 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
896 	int ret = 0;
897 	int rc;
898 
899 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
900 		return 0;
901 
902 	if (adapter->state == ENA_ADAPTER_STATE_CLOSED)
903 		return 0;
904 
905 	if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
906 		ret = ena_stop(dev);
907 	adapter->state = ENA_ADAPTER_STATE_CLOSED;
908 
909 	if (!adapter->control_path_poll_interval) {
910 		rte_intr_disable(intr_handle);
911 		rc = rte_intr_callback_unregister_sync(intr_handle, ena_control_path_handler, dev);
912 		if (unlikely(rc != 0))
913 			PMD_INIT_LOG_LINE(ERR, "Failed to unregister interrupt handler");
914 	} else {
915 		rte_eal_alarm_cancel(ena_control_path_poll_handler, dev);
916 	}
917 
918 	ena_rx_queue_release_all(dev);
919 	ena_tx_queue_release_all(dev);
920 
921 	rte_free(adapter->drv_stats);
922 	adapter->drv_stats = NULL;
923 
924 	ena_com_set_admin_running_state(ena_dev, false);
925 
926 	ena_com_rss_destroy(ena_dev);
927 
928 	ena_com_delete_debug_area(ena_dev);
929 	ena_com_delete_host_info(ena_dev);
930 
931 	ena_com_abort_admin_commands(ena_dev);
932 	ena_com_wait_for_abort_completion(ena_dev);
933 	ena_com_admin_destroy(ena_dev);
934 	ena_com_mmio_reg_read_request_destroy(ena_dev);
935 	ena_com_delete_customer_metrics_buffer(ena_dev);
936 
937 	/*
938 	 * MAC is not allocated dynamically. Setting NULL should prevent from
939 	 * release of the resource in the rte_eth_dev_release_port().
940 	 */
941 	dev->data->mac_addrs = NULL;
942 
943 	return ret;
944 }
945 
946 static int
947 ena_dev_reset(struct rte_eth_dev *dev)
948 {
949 	int rc = 0;
950 
951 	/* Cannot release memory in secondary process */
952 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
953 		PMD_DRV_LOG_LINE(WARNING, "dev_reset not supported in secondary.");
954 		return -EPERM;
955 	}
956 
957 	rc = eth_ena_dev_uninit(dev);
958 	if (rc) {
959 		PMD_INIT_LOG_LINE(CRIT, "Failed to un-initialize device");
960 		return rc;
961 	}
962 
963 	rc = eth_ena_dev_init(dev);
964 	if (rc)
965 		PMD_INIT_LOG_LINE(CRIT, "Cannot initialize device");
966 
967 	return rc;
968 }
969 
970 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
971 {
972 	int nb_queues = dev->data->nb_rx_queues;
973 	int i;
974 
975 	for (i = 0; i < nb_queues; i++)
976 		ena_rx_queue_release(dev, i);
977 }
978 
979 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
980 {
981 	int nb_queues = dev->data->nb_tx_queues;
982 	int i;
983 
984 	for (i = 0; i < nb_queues; i++)
985 		ena_tx_queue_release(dev, i);
986 }
987 
988 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
989 {
990 	struct ena_ring *ring = dev->data->rx_queues[qid];
991 
992 	/* Free ring resources */
993 	rte_free(ring->rx_buffer_info);
994 	ring->rx_buffer_info = NULL;
995 
996 	rte_free(ring->rx_refill_buffer);
997 	ring->rx_refill_buffer = NULL;
998 
999 	rte_free(ring->empty_rx_reqs);
1000 	ring->empty_rx_reqs = NULL;
1001 
1002 	ring->configured = 0;
1003 
1004 	PMD_DRV_LOG_LINE(NOTICE, "Rx queue %d:%d released",
1005 		ring->port_id, ring->id);
1006 }
1007 
1008 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
1009 {
1010 	struct ena_ring *ring = dev->data->tx_queues[qid];
1011 
1012 	/* Free ring resources */
1013 	rte_free(ring->push_buf_intermediate_buf);
1014 
1015 	rte_free(ring->tx_buffer_info);
1016 
1017 	rte_free(ring->empty_tx_reqs);
1018 
1019 	ring->empty_tx_reqs = NULL;
1020 	ring->tx_buffer_info = NULL;
1021 	ring->push_buf_intermediate_buf = NULL;
1022 
1023 	ring->configured = 0;
1024 
1025 	PMD_DRV_LOG_LINE(NOTICE, "Tx queue %d:%d released",
1026 		ring->port_id, ring->id);
1027 }
1028 
1029 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
1030 {
1031 	unsigned int i;
1032 
1033 	for (i = 0; i < ring->ring_size; ++i) {
1034 		struct ena_rx_buffer *rx_info = &ring->rx_buffer_info[i];
1035 		if (rx_info->mbuf) {
1036 			rte_mbuf_raw_free(rx_info->mbuf);
1037 			rx_info->mbuf = NULL;
1038 		}
1039 	}
1040 }
1041 
1042 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
1043 {
1044 	unsigned int i;
1045 
1046 	for (i = 0; i < ring->ring_size; ++i) {
1047 		struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
1048 
1049 		if (tx_buf->mbuf) {
1050 			rte_pktmbuf_free(tx_buf->mbuf);
1051 			tx_buf->mbuf = NULL;
1052 		}
1053 	}
1054 }
1055 
1056 static int ena_link_update(struct rte_eth_dev *dev,
1057 			   __rte_unused int wait_to_complete)
1058 {
1059 	struct rte_eth_link *link = &dev->data->dev_link;
1060 	struct ena_adapter *adapter = dev->data->dev_private;
1061 
1062 	link->link_status = adapter->link_status ? RTE_ETH_LINK_UP : RTE_ETH_LINK_DOWN;
1063 	link->link_speed = RTE_ETH_SPEED_NUM_NONE;
1064 	link->link_duplex = RTE_ETH_LINK_FULL_DUPLEX;
1065 
1066 	return 0;
1067 }
1068 
1069 static int ena_queue_start_all(struct rte_eth_dev *dev,
1070 			       enum ena_ring_type ring_type)
1071 {
1072 	struct ena_adapter *adapter = dev->data->dev_private;
1073 	struct ena_ring *queues = NULL;
1074 	int nb_queues;
1075 	int i = 0;
1076 	int rc = 0;
1077 
1078 	if (ring_type == ENA_RING_TYPE_RX) {
1079 		queues = adapter->rx_ring;
1080 		nb_queues = dev->data->nb_rx_queues;
1081 	} else {
1082 		queues = adapter->tx_ring;
1083 		nb_queues = dev->data->nb_tx_queues;
1084 	}
1085 	for (i = 0; i < nb_queues; i++) {
1086 		if (queues[i].configured) {
1087 			if (ring_type == ENA_RING_TYPE_RX) {
1088 				ena_assert_msg(
1089 					dev->data->rx_queues[i] == &queues[i],
1090 					"Inconsistent state of Rx queues\n");
1091 			} else {
1092 				ena_assert_msg(
1093 					dev->data->tx_queues[i] == &queues[i],
1094 					"Inconsistent state of Tx queues\n");
1095 			}
1096 
1097 			rc = ena_queue_start(dev, &queues[i]);
1098 
1099 			if (rc) {
1100 				PMD_INIT_LOG_LINE(ERR,
1101 					"Failed to start queue[%d] of type(%d)",
1102 					i, ring_type);
1103 				goto err;
1104 			}
1105 		}
1106 	}
1107 
1108 	return 0;
1109 
1110 err:
1111 	while (i--)
1112 		if (queues[i].configured)
1113 			ena_queue_stop(&queues[i]);
1114 
1115 	return rc;
1116 }
1117 
1118 static int
1119 ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx,
1120 		       bool use_large_llq_hdr)
1121 {
1122 	struct ena_admin_feature_llq_desc *dev = &ctx->get_feat_ctx->llq;
1123 	struct ena_com_dev *ena_dev = ctx->ena_dev;
1124 	uint32_t max_tx_queue_size;
1125 	uint32_t max_rx_queue_size;
1126 
1127 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1128 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1129 			&ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
1130 		max_rx_queue_size = RTE_MIN(max_queue_ext->max_rx_cq_depth,
1131 			max_queue_ext->max_rx_sq_depth);
1132 		max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
1133 
1134 		if (ena_dev->tx_mem_queue_type ==
1135 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1136 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1137 				dev->max_llq_depth);
1138 		} else {
1139 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1140 				max_queue_ext->max_tx_sq_depth);
1141 		}
1142 
1143 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1144 			max_queue_ext->max_per_packet_rx_descs);
1145 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1146 			max_queue_ext->max_per_packet_tx_descs);
1147 	} else {
1148 		struct ena_admin_queue_feature_desc *max_queues =
1149 			&ctx->get_feat_ctx->max_queues;
1150 		max_rx_queue_size = RTE_MIN(max_queues->max_cq_depth,
1151 			max_queues->max_sq_depth);
1152 		max_tx_queue_size = max_queues->max_cq_depth;
1153 
1154 		if (ena_dev->tx_mem_queue_type ==
1155 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1156 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1157 				dev->max_llq_depth);
1158 		} else {
1159 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1160 				max_queues->max_sq_depth);
1161 		}
1162 
1163 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1164 			max_queues->max_packet_rx_descs);
1165 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1166 			max_queues->max_packet_tx_descs);
1167 	}
1168 
1169 	/* Round down to the nearest power of 2 */
1170 	max_rx_queue_size = rte_align32prevpow2(max_rx_queue_size);
1171 	max_tx_queue_size = rte_align32prevpow2(max_tx_queue_size);
1172 
1173 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV && use_large_llq_hdr) {
1174 		/* intersection between driver configuration and device capabilities */
1175 		if (dev->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B) {
1176 			if (dev->max_wide_llq_depth == MAX_WIDE_LLQ_DEPTH_UNSUPPORTED) {
1177 				/* Devices that do not support the double-sized ENA memory BAR will
1178 				 * report max_wide_llq_depth as 0. In such case, driver halves the
1179 				 * queue depth when working in large llq policy.
1180 				 */
1181 				max_tx_queue_size >>= 1;
1182 				PMD_INIT_LOG_LINE(INFO,
1183 					"large LLQ policy requires limiting Tx queue size to %u entries",
1184 				max_tx_queue_size);
1185 			} else if (dev->max_wide_llq_depth < max_tx_queue_size) {
1186 				/* In case the queue depth that the driver calculated exceeds
1187 				 * the maximal value that the device allows, it will be limited
1188 				 * to that maximal value
1189 				 */
1190 				max_tx_queue_size = dev->max_wide_llq_depth;
1191 			}
1192 		} else {
1193 			PMD_INIT_LOG_LINE(INFO,
1194 				"Forcing large LLQ headers failed since device lacks this support");
1195 		}
1196 	}
1197 
1198 	if (unlikely(max_rx_queue_size == 0 || max_tx_queue_size == 0)) {
1199 		PMD_INIT_LOG_LINE(ERR, "Invalid queue size");
1200 		return -EFAULT;
1201 	}
1202 
1203 	ctx->max_tx_queue_size = max_tx_queue_size;
1204 	ctx->max_rx_queue_size = max_rx_queue_size;
1205 
1206 	PMD_DRV_LOG_LINE(INFO, "tx queue size %u", max_tx_queue_size);
1207 	return 0;
1208 }
1209 
1210 static void ena_stats_restart(struct rte_eth_dev *dev)
1211 {
1212 	struct ena_adapter *adapter = dev->data->dev_private;
1213 
1214 	rte_atomic64_init(&adapter->drv_stats->ierrors);
1215 	rte_atomic64_init(&adapter->drv_stats->oerrors);
1216 	rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
1217 	adapter->drv_stats->rx_drops = 0;
1218 }
1219 
1220 static int ena_stats_get(struct rte_eth_dev *dev,
1221 			  struct rte_eth_stats *stats)
1222 {
1223 	struct ena_admin_basic_stats ena_stats;
1224 	struct ena_adapter *adapter = dev->data->dev_private;
1225 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1226 	int rc;
1227 	int i;
1228 	int max_rings_stats;
1229 
1230 	memset(&ena_stats, 0, sizeof(ena_stats));
1231 
1232 	rte_spinlock_lock(&adapter->admin_lock);
1233 	rc = ENA_PROXY(adapter, ena_com_get_dev_basic_stats, ena_dev,
1234 		       &ena_stats);
1235 	rte_spinlock_unlock(&adapter->admin_lock);
1236 	if (unlikely(rc)) {
1237 		PMD_DRV_LOG_LINE(ERR, "Could not retrieve statistics from ENA");
1238 		return rc;
1239 	}
1240 
1241 	/* Set of basic statistics from ENA */
1242 	stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
1243 					  ena_stats.rx_pkts_low);
1244 	stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
1245 					  ena_stats.tx_pkts_low);
1246 	stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
1247 					ena_stats.rx_bytes_low);
1248 	stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
1249 					ena_stats.tx_bytes_low);
1250 
1251 	/* Driver related stats */
1252 	stats->imissed = adapter->drv_stats->rx_drops;
1253 	stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
1254 	stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
1255 	stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
1256 
1257 	max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
1258 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
1259 	for (i = 0; i < max_rings_stats; ++i) {
1260 		struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
1261 
1262 		stats->q_ibytes[i] = rx_stats->bytes;
1263 		stats->q_ipackets[i] = rx_stats->cnt;
1264 		stats->q_errors[i] = rx_stats->bad_desc_num +
1265 			rx_stats->bad_req_id;
1266 	}
1267 
1268 	max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
1269 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
1270 	for (i = 0; i < max_rings_stats; ++i) {
1271 		struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
1272 
1273 		stats->q_obytes[i] = tx_stats->bytes;
1274 		stats->q_opackets[i] = tx_stats->cnt;
1275 	}
1276 
1277 	return 0;
1278 }
1279 
1280 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1281 {
1282 	struct ena_adapter *adapter;
1283 	struct ena_com_dev *ena_dev;
1284 	int rc = 0;
1285 
1286 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
1287 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
1288 	adapter = dev->data->dev_private;
1289 
1290 	ena_dev = &adapter->ena_dev;
1291 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
1292 
1293 	rc = ENA_PROXY(adapter, ena_com_set_dev_mtu, ena_dev, mtu);
1294 	if (rc)
1295 		PMD_DRV_LOG_LINE(ERR, "Could not set MTU: %d", mtu);
1296 	else
1297 		PMD_DRV_LOG_LINE(NOTICE, "MTU set to: %d", mtu);
1298 
1299 	return rc;
1300 }
1301 
1302 static int ena_start(struct rte_eth_dev *dev)
1303 {
1304 	struct ena_adapter *adapter = dev->data->dev_private;
1305 	uint64_t ticks;
1306 	int rc = 0;
1307 	uint16_t i;
1308 
1309 	/* Cannot allocate memory in secondary process */
1310 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1311 		PMD_DRV_LOG_LINE(WARNING, "dev_start not supported in secondary.");
1312 		return -EPERM;
1313 	}
1314 
1315 	rc = ena_setup_rx_intr(dev);
1316 	if (rc)
1317 		return rc;
1318 
1319 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
1320 	if (rc)
1321 		return rc;
1322 
1323 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
1324 	if (rc)
1325 		goto err_start_tx;
1326 
1327 	if (adapter->edev_data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG) {
1328 		rc = ena_rss_configure(adapter);
1329 		if (rc)
1330 			goto err_rss_init;
1331 	}
1332 
1333 	ena_stats_restart(dev);
1334 
1335 	adapter->timestamp_wd = rte_get_timer_cycles();
1336 	adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
1337 
1338 	ticks = rte_get_timer_hz();
1339 	rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
1340 			ena_timer_wd_callback, dev);
1341 
1342 	++adapter->dev_stats.dev_start;
1343 	adapter->state = ENA_ADAPTER_STATE_RUNNING;
1344 
1345 	for (i = 0; i < dev->data->nb_rx_queues; i++)
1346 		dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
1347 	for (i = 0; i < dev->data->nb_tx_queues; i++)
1348 		dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
1349 
1350 	return 0;
1351 
1352 err_rss_init:
1353 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1354 err_start_tx:
1355 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1356 	return rc;
1357 }
1358 
1359 static int ena_stop(struct rte_eth_dev *dev)
1360 {
1361 	struct ena_adapter *adapter = dev->data->dev_private;
1362 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1363 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1364 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
1365 	uint16_t i;
1366 	int rc;
1367 
1368 	/* Cannot free memory in secondary process */
1369 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1370 		PMD_DRV_LOG_LINE(WARNING, "dev_stop not supported in secondary.");
1371 		return -EPERM;
1372 	}
1373 
1374 	rte_timer_stop_sync(&adapter->timer_wd);
1375 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1376 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1377 
1378 	if (adapter->trigger_reset) {
1379 		rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
1380 		if (rc)
1381 			PMD_DRV_LOG_LINE(ERR, "Device reset failed, rc: %d", rc);
1382 	}
1383 
1384 	rte_intr_disable(intr_handle);
1385 
1386 	rte_intr_efd_disable(intr_handle);
1387 
1388 	/* Cleanup vector list */
1389 	rte_intr_vec_list_free(intr_handle);
1390 
1391 	rte_intr_enable(intr_handle);
1392 
1393 	++adapter->dev_stats.dev_stop;
1394 	adapter->state = ENA_ADAPTER_STATE_STOPPED;
1395 	dev->data->dev_started = 0;
1396 
1397 	for (i = 0; i < dev->data->nb_rx_queues; i++)
1398 		dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
1399 	for (i = 0; i < dev->data->nb_tx_queues; i++)
1400 		dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
1401 
1402 	return 0;
1403 }
1404 
1405 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring)
1406 {
1407 	struct ena_adapter *adapter = ring->adapter;
1408 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1409 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1410 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
1411 	struct ena_com_create_io_ctx ctx =
1412 		/* policy set to _HOST just to satisfy icc compiler */
1413 		{ ENA_ADMIN_PLACEMENT_POLICY_HOST,
1414 		  0, 0, 0, 0, 0 };
1415 	uint16_t ena_qid;
1416 	unsigned int i;
1417 	int rc;
1418 
1419 	ctx.msix_vector = -1;
1420 	if (ring->type == ENA_RING_TYPE_TX) {
1421 		ena_qid = ENA_IO_TXQ_IDX(ring->id);
1422 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1423 		ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1424 		for (i = 0; i < ring->ring_size; i++)
1425 			ring->empty_tx_reqs[i] = i;
1426 	} else {
1427 		ena_qid = ENA_IO_RXQ_IDX(ring->id);
1428 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1429 		if (rte_intr_dp_is_en(intr_handle))
1430 			ctx.msix_vector =
1431 				rte_intr_vec_list_index_get(intr_handle,
1432 								   ring->id);
1433 
1434 		for (i = 0; i < ring->ring_size; i++)
1435 			ring->empty_rx_reqs[i] = i;
1436 	}
1437 	ctx.queue_size = ring->ring_size;
1438 	ctx.qid = ena_qid;
1439 	ctx.numa_node = ring->numa_socket_id;
1440 
1441 	rc = ena_com_create_io_queue(ena_dev, &ctx);
1442 	if (rc) {
1443 		PMD_DRV_LOG_LINE(ERR,
1444 			"Failed to create IO queue[%d] (qid:%d), rc: %d",
1445 			ring->id, ena_qid, rc);
1446 		return rc;
1447 	}
1448 
1449 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1450 				     &ring->ena_com_io_sq,
1451 				     &ring->ena_com_io_cq);
1452 	if (rc) {
1453 		PMD_DRV_LOG_LINE(ERR,
1454 			"Failed to get IO queue[%d] handlers, rc: %d",
1455 			ring->id, rc);
1456 		ena_com_destroy_io_queue(ena_dev, ena_qid);
1457 		return rc;
1458 	}
1459 
1460 	if (ring->type == ENA_RING_TYPE_TX)
1461 		ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1462 
1463 	/* Start with Rx interrupts being masked. */
1464 	if (ring->type == ENA_RING_TYPE_RX && rte_intr_dp_is_en(intr_handle))
1465 		ena_rx_queue_intr_disable(dev, ring->id);
1466 
1467 	return 0;
1468 }
1469 
1470 static void ena_queue_stop(struct ena_ring *ring)
1471 {
1472 	struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
1473 
1474 	if (ring->type == ENA_RING_TYPE_RX) {
1475 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
1476 		ena_rx_queue_release_bufs(ring);
1477 	} else {
1478 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
1479 		ena_tx_queue_release_bufs(ring);
1480 	}
1481 }
1482 
1483 static void ena_queue_stop_all(struct rte_eth_dev *dev,
1484 			      enum ena_ring_type ring_type)
1485 {
1486 	struct ena_adapter *adapter = dev->data->dev_private;
1487 	struct ena_ring *queues = NULL;
1488 	uint16_t nb_queues, i;
1489 
1490 	if (ring_type == ENA_RING_TYPE_RX) {
1491 		queues = adapter->rx_ring;
1492 		nb_queues = dev->data->nb_rx_queues;
1493 	} else {
1494 		queues = adapter->tx_ring;
1495 		nb_queues = dev->data->nb_tx_queues;
1496 	}
1497 
1498 	for (i = 0; i < nb_queues; ++i)
1499 		if (queues[i].configured)
1500 			ena_queue_stop(&queues[i]);
1501 }
1502 
1503 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring)
1504 {
1505 	int rc, bufs_num;
1506 
1507 	ena_assert_msg(ring->configured == 1,
1508 		       "Trying to start unconfigured queue\n");
1509 
1510 	rc = ena_create_io_queue(dev, ring);
1511 	if (rc) {
1512 		PMD_INIT_LOG_LINE(ERR, "Failed to create IO queue");
1513 		return rc;
1514 	}
1515 
1516 	ring->next_to_clean = 0;
1517 	ring->next_to_use = 0;
1518 
1519 	if (ring->type == ENA_RING_TYPE_TX) {
1520 		ring->tx_stats.available_desc =
1521 			ena_com_free_q_entries(ring->ena_com_io_sq);
1522 		return 0;
1523 	}
1524 
1525 	bufs_num = ring->ring_size - 1;
1526 	rc = ena_populate_rx_queue(ring, bufs_num);
1527 	if (rc != bufs_num) {
1528 		ena_com_destroy_io_queue(&ring->adapter->ena_dev,
1529 					 ENA_IO_RXQ_IDX(ring->id));
1530 		PMD_INIT_LOG_LINE(ERR, "Failed to populate Rx ring");
1531 		return ENA_COM_FAULT;
1532 	}
1533 	/* Flush per-core RX buffers pools cache as they can be used on other
1534 	 * cores as well.
1535 	 */
1536 	rte_mempool_cache_flush(NULL, ring->mb_pool);
1537 
1538 	return 0;
1539 }
1540 
1541 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1542 			      uint16_t queue_idx,
1543 			      uint16_t nb_desc,
1544 			      unsigned int socket_id,
1545 			      const struct rte_eth_txconf *tx_conf)
1546 {
1547 	struct ena_ring *txq = NULL;
1548 	struct ena_adapter *adapter = dev->data->dev_private;
1549 	unsigned int i;
1550 	uint16_t dyn_thresh;
1551 
1552 	txq = &adapter->tx_ring[queue_idx];
1553 
1554 	if (txq->configured) {
1555 		PMD_DRV_LOG_LINE(CRIT,
1556 			"API violation. Queue[%d] is already configured",
1557 			queue_idx);
1558 		return ENA_COM_FAULT;
1559 	}
1560 
1561 	if (!rte_is_power_of_2(nb_desc)) {
1562 		PMD_DRV_LOG_LINE(ERR,
1563 			"Unsupported size of Tx queue: %d is not a power of 2.",
1564 			nb_desc);
1565 		return -EINVAL;
1566 	}
1567 
1568 	if (nb_desc > adapter->max_tx_ring_size) {
1569 		PMD_DRV_LOG_LINE(ERR,
1570 			"Unsupported size of Tx queue (max size: %d)",
1571 			adapter->max_tx_ring_size);
1572 		return -EINVAL;
1573 	}
1574 
1575 	txq->port_id = dev->data->port_id;
1576 	txq->next_to_clean = 0;
1577 	txq->next_to_use = 0;
1578 	txq->ring_size = nb_desc;
1579 	txq->size_mask = nb_desc - 1;
1580 	txq->numa_socket_id = socket_id;
1581 	txq->pkts_without_db = false;
1582 	txq->last_cleanup_ticks = 0;
1583 
1584 	txq->tx_buffer_info = rte_zmalloc_socket("txq->tx_buffer_info",
1585 		sizeof(struct ena_tx_buffer) * txq->ring_size,
1586 		RTE_CACHE_LINE_SIZE,
1587 		socket_id);
1588 	if (!txq->tx_buffer_info) {
1589 		PMD_DRV_LOG_LINE(ERR,
1590 			"Failed to allocate memory for Tx buffer info");
1591 		return -ENOMEM;
1592 	}
1593 
1594 	txq->empty_tx_reqs = rte_zmalloc_socket("txq->empty_tx_reqs",
1595 		sizeof(uint16_t) * txq->ring_size,
1596 		RTE_CACHE_LINE_SIZE,
1597 		socket_id);
1598 	if (!txq->empty_tx_reqs) {
1599 		PMD_DRV_LOG_LINE(ERR,
1600 			"Failed to allocate memory for empty Tx requests");
1601 		rte_free(txq->tx_buffer_info);
1602 		return -ENOMEM;
1603 	}
1604 
1605 	txq->push_buf_intermediate_buf =
1606 		rte_zmalloc_socket("txq->push_buf_intermediate_buf",
1607 			txq->tx_max_header_size,
1608 			RTE_CACHE_LINE_SIZE,
1609 			socket_id);
1610 	if (!txq->push_buf_intermediate_buf) {
1611 		PMD_DRV_LOG_LINE(ERR, "Failed to alloc push buffer for LLQ");
1612 		rte_free(txq->tx_buffer_info);
1613 		rte_free(txq->empty_tx_reqs);
1614 		return -ENOMEM;
1615 	}
1616 
1617 	for (i = 0; i < txq->ring_size; i++)
1618 		txq->empty_tx_reqs[i] = i;
1619 
1620 	txq->offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1621 
1622 	/* Check if caller provided the Tx cleanup threshold value. */
1623 	if (tx_conf->tx_free_thresh != 0) {
1624 		txq->tx_free_thresh = tx_conf->tx_free_thresh;
1625 	} else {
1626 		dyn_thresh = txq->ring_size -
1627 			txq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1628 		txq->tx_free_thresh = RTE_MAX(dyn_thresh,
1629 			txq->ring_size - ENA_REFILL_THRESH_PACKET);
1630 	}
1631 
1632 	txq->missing_tx_completion_threshold =
1633 		RTE_MIN(txq->ring_size / 2, ENA_DEFAULT_MISSING_COMP);
1634 
1635 	/* Store pointer to this queue in upper layer */
1636 	txq->configured = 1;
1637 	dev->data->tx_queues[queue_idx] = txq;
1638 
1639 	return 0;
1640 }
1641 
1642 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1643 			      uint16_t queue_idx,
1644 			      uint16_t nb_desc,
1645 			      unsigned int socket_id,
1646 			      const struct rte_eth_rxconf *rx_conf,
1647 			      struct rte_mempool *mp)
1648 {
1649 	struct ena_adapter *adapter = dev->data->dev_private;
1650 	struct ena_ring *rxq = NULL;
1651 	size_t buffer_size;
1652 	int i;
1653 	uint16_t dyn_thresh;
1654 
1655 	rxq = &adapter->rx_ring[queue_idx];
1656 	if (rxq->configured) {
1657 		PMD_DRV_LOG_LINE(CRIT,
1658 			"API violation. Queue[%d] is already configured",
1659 			queue_idx);
1660 		return ENA_COM_FAULT;
1661 	}
1662 
1663 	if (!rte_is_power_of_2(nb_desc)) {
1664 		PMD_DRV_LOG_LINE(ERR,
1665 			"Unsupported size of Rx queue: %d is not a power of 2.",
1666 			nb_desc);
1667 		return -EINVAL;
1668 	}
1669 
1670 	if (nb_desc > adapter->max_rx_ring_size) {
1671 		PMD_DRV_LOG_LINE(ERR,
1672 			"Unsupported size of Rx queue (max size: %d)",
1673 			adapter->max_rx_ring_size);
1674 		return -EINVAL;
1675 	}
1676 
1677 	/* ENA isn't supporting buffers smaller than 1400 bytes */
1678 	buffer_size = rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
1679 	if (buffer_size < ENA_RX_BUF_MIN_SIZE) {
1680 		PMD_DRV_LOG_LINE(ERR,
1681 			"Unsupported size of Rx buffer: %zu (min size: %d)",
1682 			buffer_size, ENA_RX_BUF_MIN_SIZE);
1683 		return -EINVAL;
1684 	}
1685 
1686 	rxq->port_id = dev->data->port_id;
1687 	rxq->next_to_clean = 0;
1688 	rxq->next_to_use = 0;
1689 	rxq->ring_size = nb_desc;
1690 	rxq->size_mask = nb_desc - 1;
1691 	rxq->numa_socket_id = socket_id;
1692 	rxq->mb_pool = mp;
1693 
1694 	rxq->rx_buffer_info = rte_zmalloc_socket("rxq->buffer_info",
1695 		sizeof(struct ena_rx_buffer) * nb_desc,
1696 		RTE_CACHE_LINE_SIZE,
1697 		socket_id);
1698 	if (!rxq->rx_buffer_info) {
1699 		PMD_DRV_LOG_LINE(ERR,
1700 			"Failed to allocate memory for Rx buffer info");
1701 		return -ENOMEM;
1702 	}
1703 
1704 	rxq->rx_refill_buffer = rte_zmalloc_socket("rxq->rx_refill_buffer",
1705 		sizeof(struct rte_mbuf *) * nb_desc,
1706 		RTE_CACHE_LINE_SIZE,
1707 		socket_id);
1708 	if (!rxq->rx_refill_buffer) {
1709 		PMD_DRV_LOG_LINE(ERR,
1710 			"Failed to allocate memory for Rx refill buffer");
1711 		rte_free(rxq->rx_buffer_info);
1712 		rxq->rx_buffer_info = NULL;
1713 		return -ENOMEM;
1714 	}
1715 
1716 	rxq->empty_rx_reqs = rte_zmalloc_socket("rxq->empty_rx_reqs",
1717 		sizeof(uint16_t) * nb_desc,
1718 		RTE_CACHE_LINE_SIZE,
1719 		socket_id);
1720 	if (!rxq->empty_rx_reqs) {
1721 		PMD_DRV_LOG_LINE(ERR,
1722 			"Failed to allocate memory for empty Rx requests");
1723 		rte_free(rxq->rx_buffer_info);
1724 		rxq->rx_buffer_info = NULL;
1725 		rte_free(rxq->rx_refill_buffer);
1726 		rxq->rx_refill_buffer = NULL;
1727 		return -ENOMEM;
1728 	}
1729 
1730 	for (i = 0; i < nb_desc; i++)
1731 		rxq->empty_rx_reqs[i] = i;
1732 
1733 	rxq->offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1734 
1735 	if (rx_conf->rx_free_thresh != 0) {
1736 		rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1737 	} else {
1738 		dyn_thresh = rxq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1739 		rxq->rx_free_thresh = RTE_MIN(dyn_thresh,
1740 			(uint16_t)(ENA_REFILL_THRESH_PACKET));
1741 	}
1742 
1743 	/* Store pointer to this queue in upper layer */
1744 	rxq->configured = 1;
1745 	dev->data->rx_queues[queue_idx] = rxq;
1746 
1747 	return 0;
1748 }
1749 
1750 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
1751 				  struct rte_mbuf *mbuf, uint16_t id)
1752 {
1753 	struct ena_com_buf ebuf;
1754 	int rc;
1755 
1756 	/* prepare physical address for DMA transaction */
1757 	ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1758 	ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1759 
1760 	/* pass resource to device */
1761 	rc = ena_com_add_single_rx_desc(io_sq, &ebuf, id);
1762 	if (unlikely(rc != 0))
1763 		PMD_RX_LOG_LINE(WARNING, "Failed adding Rx desc");
1764 
1765 	return rc;
1766 }
1767 
1768 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1769 {
1770 	unsigned int i;
1771 	int rc;
1772 	uint16_t next_to_use = rxq->next_to_use;
1773 	uint16_t req_id;
1774 #ifdef RTE_ETHDEV_DEBUG_RX
1775 	uint16_t in_use;
1776 #endif
1777 	struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1778 
1779 	if (unlikely(!count))
1780 		return 0;
1781 
1782 #ifdef RTE_ETHDEV_DEBUG_RX
1783 	in_use = rxq->ring_size - 1 -
1784 		ena_com_free_q_entries(rxq->ena_com_io_sq);
1785 	if (unlikely((in_use + count) >= rxq->ring_size))
1786 		PMD_RX_LOG_LINE(ERR, "Bad Rx ring state");
1787 #endif
1788 
1789 	/* get resources for incoming packets */
1790 	rc = rte_pktmbuf_alloc_bulk(rxq->mb_pool, mbufs, count);
1791 	if (unlikely(rc < 0)) {
1792 		rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1793 		++rxq->rx_stats.mbuf_alloc_fail;
1794 		PMD_RX_LOG_LINE(DEBUG, "There are not enough free buffers");
1795 		return 0;
1796 	}
1797 
1798 	for (i = 0; i < count; i++) {
1799 		struct rte_mbuf *mbuf = mbufs[i];
1800 		struct ena_rx_buffer *rx_info;
1801 
1802 		if (likely((i + 4) < count))
1803 			rte_prefetch0(mbufs[i + 4]);
1804 
1805 		req_id = rxq->empty_rx_reqs[next_to_use];
1806 		rx_info = &rxq->rx_buffer_info[req_id];
1807 
1808 		rc = ena_add_single_rx_desc(rxq->ena_com_io_sq, mbuf, req_id);
1809 		if (unlikely(rc != 0))
1810 			break;
1811 
1812 		rx_info->mbuf = mbuf;
1813 		next_to_use = ENA_IDX_NEXT_MASKED(next_to_use, rxq->size_mask);
1814 	}
1815 
1816 	if (unlikely(i < count)) {
1817 		PMD_RX_LOG_LINE(WARNING,
1818 			"Refilled Rx queue[%d] with only %d/%d buffers",
1819 			rxq->id, i, count);
1820 		rte_pktmbuf_free_bulk(&mbufs[i], count - i);
1821 		++rxq->rx_stats.refill_partial;
1822 	}
1823 
1824 	/* When we submitted free resources to device... */
1825 	if (likely(i > 0)) {
1826 		/* ...let HW know that it can fill buffers with data. */
1827 		ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1828 
1829 		rxq->next_to_use = next_to_use;
1830 	}
1831 
1832 	return i;
1833 }
1834 
1835 static size_t ena_get_metrics_entries(struct ena_adapter *adapter)
1836 {
1837 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1838 	size_t metrics_num = 0;
1839 
1840 	if (ena_com_get_cap(ena_dev, ENA_ADMIN_CUSTOMER_METRICS))
1841 		metrics_num = ENA_STATS_ARRAY_METRICS;
1842 	else if (ena_com_get_cap(ena_dev, ENA_ADMIN_ENI_STATS))
1843 		metrics_num = ENA_STATS_ARRAY_METRICS_LEGACY;
1844 	PMD_DRV_LOG_LINE(NOTICE, "0x%x customer metrics are supported", (unsigned int)metrics_num);
1845 	if (metrics_num > ENA_MAX_CUSTOMER_METRICS) {
1846 		PMD_DRV_LOG_LINE(NOTICE, "Not enough space for the requested customer metrics");
1847 		metrics_num = ENA_MAX_CUSTOMER_METRICS;
1848 	}
1849 	return metrics_num;
1850 }
1851 
1852 static int ena_device_init(struct ena_adapter *adapter,
1853 			   struct rte_pci_device *pdev,
1854 			   struct ena_com_dev_get_features_ctx *get_feat_ctx)
1855 {
1856 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1857 	uint32_t aenq_groups;
1858 	int rc;
1859 	bool readless_supported;
1860 
1861 	/* Initialize mmio registers */
1862 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
1863 	if (rc) {
1864 		PMD_DRV_LOG_LINE(ERR, "Failed to init MMIO read less");
1865 		return rc;
1866 	}
1867 
1868 	/* The PCIe configuration space revision id indicate if mmio reg
1869 	 * read is disabled.
1870 	 */
1871 	readless_supported = !(pdev->id.class_id & ENA_MMIO_DISABLE_REG_READ);
1872 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1873 
1874 	/* reset device */
1875 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1876 	if (rc) {
1877 		PMD_DRV_LOG_LINE(ERR, "Cannot reset device");
1878 		goto err_mmio_read_less;
1879 	}
1880 
1881 	/* check FW version */
1882 	rc = ena_com_validate_version(ena_dev);
1883 	if (rc) {
1884 		PMD_DRV_LOG_LINE(ERR, "Device version is too low");
1885 		goto err_mmio_read_less;
1886 	}
1887 
1888 	ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1889 
1890 	/* ENA device administration layer init */
1891 	rc = ena_com_admin_init(ena_dev, &aenq_handlers);
1892 	if (rc) {
1893 		PMD_DRV_LOG_LINE(ERR,
1894 			"Cannot initialize ENA admin queue");
1895 		goto err_mmio_read_less;
1896 	}
1897 
1898 	/* To enable the msix interrupts the driver needs to know the number
1899 	 * of queues. So the driver uses polling mode to retrieve this
1900 	 * information.
1901 	 */
1902 	ena_com_set_admin_polling_mode(ena_dev, true);
1903 
1904 	ena_config_host_info(ena_dev);
1905 
1906 	/* Get Device Attributes and features */
1907 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1908 	if (rc) {
1909 		PMD_DRV_LOG_LINE(ERR,
1910 			"Cannot get attribute for ENA device, rc: %d", rc);
1911 		goto err_admin_init;
1912 	}
1913 
1914 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1915 		      BIT(ENA_ADMIN_NOTIFICATION) |
1916 		      BIT(ENA_ADMIN_KEEP_ALIVE) |
1917 		      BIT(ENA_ADMIN_FATAL_ERROR) |
1918 		      BIT(ENA_ADMIN_WARNING) |
1919 		      BIT(ENA_ADMIN_CONF_NOTIFICATIONS);
1920 
1921 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
1922 
1923 	adapter->all_aenq_groups = aenq_groups;
1924 	/* The actual supported number of metrics is negotiated with the device at runtime */
1925 	adapter->metrics_num = ena_get_metrics_entries(adapter);
1926 
1927 	return 0;
1928 
1929 err_admin_init:
1930 	ena_com_admin_destroy(ena_dev);
1931 
1932 err_mmio_read_less:
1933 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1934 
1935 	return rc;
1936 }
1937 
1938 static void ena_control_path_handler(void *cb_arg)
1939 {
1940 	struct rte_eth_dev *dev = cb_arg;
1941 	struct ena_adapter *adapter = dev->data->dev_private;
1942 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1943 
1944 	if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED)) {
1945 		ena_com_admin_q_comp_intr_handler(ena_dev);
1946 		ena_com_aenq_intr_handler(ena_dev, dev);
1947 	}
1948 }
1949 
1950 static void ena_control_path_poll_handler(void *cb_arg)
1951 {
1952 	struct rte_eth_dev *dev = cb_arg;
1953 	struct ena_adapter *adapter = dev->data->dev_private;
1954 	int rc;
1955 
1956 	if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED)) {
1957 		ena_control_path_handler(cb_arg);
1958 		rc = rte_eal_alarm_set(adapter->control_path_poll_interval,
1959 				       ena_control_path_poll_handler, cb_arg);
1960 		if (unlikely(rc != 0)) {
1961 			PMD_DRV_LOG_LINE(ERR, "Failed to retrigger control path alarm");
1962 			ena_trigger_reset(adapter, ENA_REGS_RESET_GENERIC);
1963 		}
1964 	}
1965 }
1966 
1967 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1968 {
1969 	if (!(adapter->active_aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE)))
1970 		return;
1971 
1972 	if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1973 		return;
1974 
1975 	if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1976 	    adapter->keep_alive_timeout)) {
1977 		PMD_DRV_LOG_LINE(ERR, "Keep alive timeout");
1978 		ena_trigger_reset(adapter, ENA_REGS_RESET_KEEP_ALIVE_TO);
1979 		++adapter->dev_stats.wd_expired;
1980 	}
1981 }
1982 
1983 /* Check if admin queue is enabled */
1984 static void check_for_admin_com_state(struct ena_adapter *adapter)
1985 {
1986 	if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1987 		PMD_DRV_LOG_LINE(ERR, "ENA admin queue is not in running state");
1988 		ena_trigger_reset(adapter, ENA_REGS_RESET_ADMIN_TO);
1989 	}
1990 }
1991 
1992 static int check_for_tx_completion_in_queue(struct ena_adapter *adapter,
1993 					    struct ena_ring *tx_ring)
1994 {
1995 	struct ena_tx_buffer *tx_buf;
1996 	uint64_t timestamp;
1997 	uint64_t completion_delay;
1998 	uint32_t missed_tx = 0;
1999 	unsigned int i;
2000 	int rc = 0;
2001 
2002 	for (i = 0; i < tx_ring->ring_size; ++i) {
2003 		tx_buf = &tx_ring->tx_buffer_info[i];
2004 		timestamp = tx_buf->timestamp;
2005 
2006 		if (timestamp == 0)
2007 			continue;
2008 
2009 		completion_delay = rte_get_timer_cycles() - timestamp;
2010 		if (completion_delay > adapter->missing_tx_completion_to) {
2011 			if (unlikely(!tx_buf->print_once)) {
2012 				PMD_TX_LOG_LINE(WARNING,
2013 					"Found a Tx that wasn't completed on time, qid %d, index %d. "
2014 					"Missing Tx outstanding for %" PRIu64 " msecs.",
2015 					tx_ring->id, i,	completion_delay /
2016 					rte_get_timer_hz() * 1000);
2017 				tx_buf->print_once = true;
2018 			}
2019 			++missed_tx;
2020 		}
2021 	}
2022 
2023 	if (unlikely(missed_tx > tx_ring->missing_tx_completion_threshold)) {
2024 		PMD_DRV_LOG_LINE(ERR,
2025 			"The number of lost Tx completions is above the threshold (%d > %d). "
2026 			"Trigger the device reset.",
2027 			missed_tx,
2028 			tx_ring->missing_tx_completion_threshold);
2029 		adapter->reset_reason = ENA_REGS_RESET_MISS_TX_CMPL;
2030 		adapter->trigger_reset = true;
2031 		rc = -EIO;
2032 	}
2033 
2034 	tx_ring->tx_stats.missed_tx += missed_tx;
2035 
2036 	return rc;
2037 }
2038 
2039 static void check_for_tx_completions(struct ena_adapter *adapter)
2040 {
2041 	struct ena_ring *tx_ring;
2042 	uint64_t tx_cleanup_delay;
2043 	size_t qid;
2044 	int budget;
2045 	uint16_t nb_tx_queues = adapter->edev_data->nb_tx_queues;
2046 
2047 	if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT)
2048 		return;
2049 
2050 	nb_tx_queues = adapter->edev_data->nb_tx_queues;
2051 	budget = adapter->missing_tx_completion_budget;
2052 
2053 	qid = adapter->last_tx_comp_qid;
2054 	while (budget-- > 0) {
2055 		tx_ring = &adapter->tx_ring[qid];
2056 
2057 		/* Tx cleanup is called only by the burst function and can be
2058 		 * called dynamically by the application. Also cleanup is
2059 		 * limited by the threshold. To avoid false detection of the
2060 		 * missing HW Tx completion, get the delay since last cleanup
2061 		 * function was called.
2062 		 */
2063 		tx_cleanup_delay = rte_get_timer_cycles() -
2064 			tx_ring->last_cleanup_ticks;
2065 		if (tx_cleanup_delay < adapter->tx_cleanup_stall_delay)
2066 			check_for_tx_completion_in_queue(adapter, tx_ring);
2067 		qid = (qid + 1) % nb_tx_queues;
2068 	}
2069 
2070 	adapter->last_tx_comp_qid = qid;
2071 }
2072 
2073 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
2074 				  void *arg)
2075 {
2076 	struct rte_eth_dev *dev = arg;
2077 	struct ena_adapter *adapter = dev->data->dev_private;
2078 
2079 	if (unlikely(adapter->trigger_reset))
2080 		return;
2081 
2082 	check_for_missing_keep_alive(adapter);
2083 	check_for_admin_com_state(adapter);
2084 	check_for_tx_completions(adapter);
2085 
2086 	if (unlikely(adapter->trigger_reset)) {
2087 		PMD_DRV_LOG_LINE(ERR, "Trigger reset is on");
2088 		rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
2089 			NULL);
2090 	}
2091 }
2092 
2093 static inline void
2094 set_default_llq_configurations(struct ena_llq_configurations *llq_config,
2095 			       struct ena_admin_feature_llq_desc *llq,
2096 			       bool use_large_llq_hdr)
2097 {
2098 	llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
2099 	llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
2100 	llq_config->llq_num_decs_before_header =
2101 		ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
2102 
2103 	if (use_large_llq_hdr &&
2104 	    (llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B)) {
2105 		llq_config->llq_ring_entry_size =
2106 			ENA_ADMIN_LIST_ENTRY_SIZE_256B;
2107 		llq_config->llq_ring_entry_size_value = 256;
2108 	} else {
2109 		llq_config->llq_ring_entry_size =
2110 			ENA_ADMIN_LIST_ENTRY_SIZE_128B;
2111 		llq_config->llq_ring_entry_size_value = 128;
2112 	}
2113 }
2114 
2115 static int
2116 ena_set_queues_placement_policy(struct ena_adapter *adapter,
2117 				struct ena_com_dev *ena_dev,
2118 				struct ena_admin_feature_llq_desc *llq,
2119 				struct ena_llq_configurations *llq_default_configurations)
2120 {
2121 	int rc;
2122 	u32 llq_feature_mask;
2123 
2124 	if (adapter->llq_header_policy == ENA_LLQ_POLICY_DISABLED) {
2125 		PMD_DRV_LOG_LINE(WARNING,
2126 			"NOTE: LLQ has been disabled as per user's request. "
2127 			"This may lead to a huge performance degradation!");
2128 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
2129 		return 0;
2130 	}
2131 
2132 	llq_feature_mask = 1 << ENA_ADMIN_LLQ;
2133 	if (!(ena_dev->supported_features & llq_feature_mask)) {
2134 		PMD_DRV_LOG_LINE(INFO,
2135 			"LLQ is not supported. Fallback to host mode policy.");
2136 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
2137 		return 0;
2138 	}
2139 
2140 	if (adapter->dev_mem_base == NULL) {
2141 		PMD_DRV_LOG_LINE(ERR,
2142 			"LLQ is advertised as supported, but device doesn't expose mem bar");
2143 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
2144 		return 0;
2145 	}
2146 
2147 	rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
2148 	if (unlikely(rc)) {
2149 		PMD_INIT_LOG_LINE(WARNING,
2150 			"Failed to config dev mode. Fallback to host mode policy.");
2151 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
2152 		return 0;
2153 	}
2154 
2155 	/* Nothing to config, exit */
2156 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
2157 		return 0;
2158 
2159 	ena_dev->mem_bar = adapter->dev_mem_base;
2160 
2161 	return 0;
2162 }
2163 
2164 static uint32_t ena_calc_max_io_queue_num(struct ena_com_dev *ena_dev,
2165 	struct ena_com_dev_get_features_ctx *get_feat_ctx)
2166 {
2167 	uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
2168 
2169 	/* Regular queues capabilities */
2170 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
2171 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
2172 			&get_feat_ctx->max_queue_ext.max_queue_ext;
2173 		io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
2174 				    max_queue_ext->max_rx_cq_num);
2175 		io_tx_sq_num = max_queue_ext->max_tx_sq_num;
2176 		io_tx_cq_num = max_queue_ext->max_tx_cq_num;
2177 	} else {
2178 		struct ena_admin_queue_feature_desc *max_queues =
2179 			&get_feat_ctx->max_queues;
2180 		io_tx_sq_num = max_queues->max_sq_num;
2181 		io_tx_cq_num = max_queues->max_cq_num;
2182 		io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
2183 	}
2184 
2185 	/* In case of LLQ use the llq number in the get feature cmd */
2186 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
2187 		io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
2188 
2189 	max_num_io_queues = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
2190 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_sq_num);
2191 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_cq_num);
2192 
2193 	if (unlikely(max_num_io_queues == 0)) {
2194 		PMD_DRV_LOG_LINE(ERR, "Number of IO queues cannot not be 0");
2195 		return -EFAULT;
2196 	}
2197 
2198 	return max_num_io_queues;
2199 }
2200 
2201 static void
2202 ena_set_offloads(struct ena_offloads *offloads,
2203 		 struct ena_admin_feature_offload_desc *offload_desc)
2204 {
2205 	if (offload_desc->tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK)
2206 		offloads->tx_offloads |= ENA_IPV4_TSO;
2207 
2208 	/* Tx IPv4 checksum offloads */
2209 	if (offload_desc->tx &
2210 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)
2211 		offloads->tx_offloads |= ENA_L3_IPV4_CSUM;
2212 	if (offload_desc->tx &
2213 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK)
2214 		offloads->tx_offloads |= ENA_L4_IPV4_CSUM;
2215 	if (offload_desc->tx &
2216 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)
2217 		offloads->tx_offloads |= ENA_L4_IPV4_CSUM_PARTIAL;
2218 
2219 	/* Tx IPv6 checksum offloads */
2220 	if (offload_desc->tx &
2221 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK)
2222 		offloads->tx_offloads |= ENA_L4_IPV6_CSUM;
2223 	if (offload_desc->tx &
2224 	     ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)
2225 		offloads->tx_offloads |= ENA_L4_IPV6_CSUM_PARTIAL;
2226 
2227 	/* Rx IPv4 checksum offloads */
2228 	if (offload_desc->rx_supported &
2229 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)
2230 		offloads->rx_offloads |= ENA_L3_IPV4_CSUM;
2231 	if (offload_desc->rx_supported &
2232 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK)
2233 		offloads->rx_offloads |= ENA_L4_IPV4_CSUM;
2234 
2235 	/* Rx IPv6 checksum offloads */
2236 	if (offload_desc->rx_supported &
2237 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK)
2238 		offloads->rx_offloads |= ENA_L4_IPV6_CSUM;
2239 
2240 	if (offload_desc->rx_supported &
2241 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_HASH_MASK)
2242 		offloads->rx_offloads |= ENA_RX_RSS_HASH;
2243 }
2244 
2245 static int ena_init_once(void)
2246 {
2247 	static bool init_done;
2248 
2249 	if (init_done)
2250 		return 0;
2251 
2252 	if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
2253 		/* Init timer subsystem for the ENA timer service. */
2254 		rte_timer_subsystem_init();
2255 		/* Register handler for requests from secondary processes. */
2256 		rte_mp_action_register(ENA_MP_NAME, ena_mp_primary_handle);
2257 	}
2258 
2259 	init_done = true;
2260 	return 0;
2261 }
2262 
2263 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
2264 {
2265 	struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
2266 	struct rte_pci_device *pci_dev;
2267 	struct rte_intr_handle *intr_handle;
2268 	struct ena_adapter *adapter = eth_dev->data->dev_private;
2269 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
2270 	struct ena_com_dev_get_features_ctx get_feat_ctx;
2271 	struct ena_llq_configurations llq_config;
2272 	const char *queue_type_str;
2273 	uint32_t max_num_io_queues;
2274 	int rc;
2275 	static int adapters_found;
2276 	bool disable_meta_caching;
2277 
2278 	eth_dev->dev_ops = &ena_dev_ops;
2279 	eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
2280 	eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
2281 	eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
2282 
2283 	rc = ena_init_once();
2284 	if (rc != 0)
2285 		return rc;
2286 
2287 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2288 		return 0;
2289 
2290 	eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
2291 
2292 	memset(adapter, 0, sizeof(struct ena_adapter));
2293 	ena_dev = &adapter->ena_dev;
2294 
2295 	adapter->edev_data = eth_dev->data;
2296 
2297 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2298 
2299 	PMD_INIT_LOG_LINE(INFO, "Initializing " PCI_PRI_FMT,
2300 		     pci_dev->addr.domain,
2301 		     pci_dev->addr.bus,
2302 		     pci_dev->addr.devid,
2303 		     pci_dev->addr.function);
2304 
2305 	intr_handle = pci_dev->intr_handle;
2306 
2307 	adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
2308 	adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
2309 
2310 	if (!adapter->regs) {
2311 		PMD_INIT_LOG_LINE(CRIT, "Failed to access registers BAR(%d)",
2312 			     ENA_REGS_BAR);
2313 		return -ENXIO;
2314 	}
2315 
2316 	ena_dev->reg_bar = adapter->regs;
2317 	/* Pass device data as a pointer which can be passed to the IO functions
2318 	 * by the ena_com (for example - the memory allocation).
2319 	 */
2320 	ena_dev->dmadev = eth_dev->data;
2321 
2322 	adapter->id_number = adapters_found;
2323 
2324 	snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
2325 		 adapter->id_number);
2326 
2327 	/* Assign default devargs values */
2328 	adapter->missing_tx_completion_to = ENA_TX_TIMEOUT;
2329 
2330 	/* Get user bypass */
2331 	rc = ena_parse_devargs(adapter, pci_dev->device.devargs);
2332 	if (rc != 0) {
2333 		PMD_INIT_LOG_LINE(CRIT, "Failed to parse devargs");
2334 		goto err;
2335 	}
2336 	rc = ena_com_allocate_customer_metrics_buffer(ena_dev);
2337 	if (rc != 0) {
2338 		PMD_INIT_LOG_LINE(CRIT, "Failed to allocate customer metrics buffer");
2339 		goto err;
2340 	}
2341 
2342 	/* device specific initialization routine */
2343 	rc = ena_device_init(adapter, pci_dev, &get_feat_ctx);
2344 	if (rc) {
2345 		PMD_INIT_LOG_LINE(CRIT, "Failed to init ENA device");
2346 		goto err_metrics_delete;
2347 	}
2348 
2349 	/* Check if device supports LSC */
2350 	if (!(adapter->all_aenq_groups & BIT(ENA_ADMIN_LINK_CHANGE)))
2351 		adapter->edev_data->dev_flags &= ~RTE_ETH_DEV_INTR_LSC;
2352 
2353 	bool use_large_llq_hdr = ena_use_large_llq_hdr(adapter,
2354 						       get_feat_ctx.llq.entry_size_recommended);
2355 	set_default_llq_configurations(&llq_config, &get_feat_ctx.llq, use_large_llq_hdr);
2356 	rc = ena_set_queues_placement_policy(adapter, ena_dev,
2357 					     &get_feat_ctx.llq, &llq_config);
2358 	if (unlikely(rc)) {
2359 		PMD_INIT_LOG_LINE(CRIT, "Failed to set placement policy");
2360 		return rc;
2361 	}
2362 
2363 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST) {
2364 		queue_type_str = "Regular";
2365 	} else {
2366 		queue_type_str = "Low latency";
2367 		PMD_DRV_LOG_LINE(INFO, "LLQ entry size %uB", llq_config.llq_ring_entry_size_value);
2368 	}
2369 	PMD_DRV_LOG_LINE(INFO, "Placement policy: %s", queue_type_str);
2370 
2371 	calc_queue_ctx.ena_dev = ena_dev;
2372 	calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
2373 
2374 	max_num_io_queues = ena_calc_max_io_queue_num(ena_dev, &get_feat_ctx);
2375 	rc = ena_calc_io_queue_size(&calc_queue_ctx, use_large_llq_hdr);
2376 	if (unlikely((rc != 0) || (max_num_io_queues == 0))) {
2377 		rc = -EFAULT;
2378 		goto err_device_destroy;
2379 	}
2380 
2381 	adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
2382 	adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
2383 	adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
2384 	adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
2385 	adapter->max_num_io_queues = max_num_io_queues;
2386 
2387 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2388 		disable_meta_caching =
2389 			!!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
2390 			BIT(ENA_ADMIN_DISABLE_META_CACHING));
2391 	} else {
2392 		disable_meta_caching = false;
2393 	}
2394 
2395 	/* prepare ring structures */
2396 	ena_init_rings(adapter, disable_meta_caching);
2397 
2398 	ena_config_debug_area(adapter);
2399 
2400 	/* Set max MTU for this device */
2401 	adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
2402 
2403 	ena_set_offloads(&adapter->offloads, &get_feat_ctx.offload);
2404 
2405 	/* Copy MAC address and point DPDK to it */
2406 	eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr;
2407 	rte_ether_addr_copy((struct rte_ether_addr *)
2408 			get_feat_ctx.dev_attr.mac_addr,
2409 			(struct rte_ether_addr *)adapter->mac_addr);
2410 
2411 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
2412 	if (unlikely(rc != 0)) {
2413 		PMD_DRV_LOG_LINE(ERR, "Failed to initialize RSS in ENA device");
2414 		goto err_delete_debug_area;
2415 	}
2416 
2417 	adapter->drv_stats = rte_zmalloc("adapter stats",
2418 					 sizeof(*adapter->drv_stats),
2419 					 RTE_CACHE_LINE_SIZE);
2420 	if (!adapter->drv_stats) {
2421 		PMD_DRV_LOG_LINE(ERR,
2422 			"Failed to allocate memory for adapter statistics");
2423 		rc = -ENOMEM;
2424 		goto err_rss_destroy;
2425 	}
2426 
2427 	rte_spinlock_init(&adapter->admin_lock);
2428 
2429 	if (!adapter->control_path_poll_interval) {
2430 		/* Control path interrupt mode */
2431 		rte_intr_callback_register(intr_handle, ena_control_path_handler, eth_dev);
2432 		rte_intr_enable(intr_handle);
2433 		ena_com_set_admin_polling_mode(ena_dev, false);
2434 	} else {
2435 		/* Control path polling mode */
2436 		rc = rte_eal_alarm_set(adapter->control_path_poll_interval,
2437 				       ena_control_path_poll_handler, eth_dev);
2438 		if (unlikely(rc != 0)) {
2439 			PMD_DRV_LOG_LINE(ERR, "Failed to set control path alarm");
2440 			goto err_control_path_destroy;
2441 		}
2442 	}
2443 	ena_com_admin_aenq_enable(ena_dev);
2444 	rte_timer_init(&adapter->timer_wd);
2445 
2446 	adapters_found++;
2447 	adapter->state = ENA_ADAPTER_STATE_INIT;
2448 
2449 	return 0;
2450 err_control_path_destroy:
2451 	rte_free(adapter->drv_stats);
2452 err_rss_destroy:
2453 	ena_com_rss_destroy(ena_dev);
2454 err_delete_debug_area:
2455 	ena_com_delete_debug_area(ena_dev);
2456 
2457 err_device_destroy:
2458 	ena_com_delete_host_info(ena_dev);
2459 	ena_com_admin_destroy(ena_dev);
2460 err_metrics_delete:
2461 	ena_com_delete_customer_metrics_buffer(ena_dev);
2462 err:
2463 	return rc;
2464 }
2465 
2466 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
2467 {
2468 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2469 		return 0;
2470 
2471 	ena_close(eth_dev);
2472 
2473 	return 0;
2474 }
2475 
2476 static int ena_dev_configure(struct rte_eth_dev *dev)
2477 {
2478 	struct ena_adapter *adapter = dev->data->dev_private;
2479 	int rc;
2480 
2481 	adapter->state = ENA_ADAPTER_STATE_CONFIG;
2482 
2483 	if (dev->data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG)
2484 		dev->data->dev_conf.rxmode.offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2485 	dev->data->dev_conf.txmode.offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2486 
2487 	/* Scattered Rx cannot be turned off in the HW, so this capability must
2488 	 * be forced.
2489 	 */
2490 	dev->data->scattered_rx = 1;
2491 
2492 	adapter->last_tx_comp_qid = 0;
2493 
2494 	adapter->missing_tx_completion_budget =
2495 		RTE_MIN(ENA_MONITORED_TX_QUEUES, dev->data->nb_tx_queues);
2496 
2497 	/* To avoid detection of the spurious Tx completion timeout due to
2498 	 * application not calling the Tx cleanup function, set timeout for the
2499 	 * Tx queue which should be half of the missing completion timeout for a
2500 	 * safety. If there will be a lot of missing Tx completions in the
2501 	 * queue, they will be detected sooner or later.
2502 	 */
2503 	adapter->tx_cleanup_stall_delay = adapter->missing_tx_completion_to / 2;
2504 
2505 	rc = ena_configure_aenq(adapter);
2506 
2507 	return rc;
2508 }
2509 
2510 static void ena_init_rings(struct ena_adapter *adapter,
2511 			   bool disable_meta_caching)
2512 {
2513 	size_t i;
2514 
2515 	for (i = 0; i < adapter->max_num_io_queues; i++) {
2516 		struct ena_ring *ring = &adapter->tx_ring[i];
2517 
2518 		ring->configured = 0;
2519 		ring->type = ENA_RING_TYPE_TX;
2520 		ring->adapter = adapter;
2521 		ring->id = i;
2522 		ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
2523 		ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
2524 		ring->sgl_size = adapter->max_tx_sgl_size;
2525 		ring->disable_meta_caching = disable_meta_caching;
2526 	}
2527 
2528 	for (i = 0; i < adapter->max_num_io_queues; i++) {
2529 		struct ena_ring *ring = &adapter->rx_ring[i];
2530 
2531 		ring->configured = 0;
2532 		ring->type = ENA_RING_TYPE_RX;
2533 		ring->adapter = adapter;
2534 		ring->id = i;
2535 		ring->sgl_size = adapter->max_rx_sgl_size;
2536 	}
2537 }
2538 
2539 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter)
2540 {
2541 	uint64_t port_offloads = 0;
2542 
2543 	if (adapter->offloads.rx_offloads & ENA_L3_IPV4_CSUM)
2544 		port_offloads |= RTE_ETH_RX_OFFLOAD_IPV4_CKSUM;
2545 
2546 	if (adapter->offloads.rx_offloads &
2547 	    (ENA_L4_IPV4_CSUM | ENA_L4_IPV6_CSUM))
2548 		port_offloads |=
2549 			RTE_ETH_RX_OFFLOAD_UDP_CKSUM | RTE_ETH_RX_OFFLOAD_TCP_CKSUM;
2550 
2551 	if (adapter->offloads.rx_offloads & ENA_RX_RSS_HASH)
2552 		port_offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2553 
2554 	port_offloads |= RTE_ETH_RX_OFFLOAD_SCATTER;
2555 
2556 	return port_offloads;
2557 }
2558 
2559 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter)
2560 {
2561 	uint64_t port_offloads = 0;
2562 
2563 	if (adapter->offloads.tx_offloads & ENA_IPV4_TSO)
2564 		port_offloads |= RTE_ETH_TX_OFFLOAD_TCP_TSO;
2565 
2566 	if (adapter->offloads.tx_offloads & ENA_L3_IPV4_CSUM)
2567 		port_offloads |= RTE_ETH_TX_OFFLOAD_IPV4_CKSUM;
2568 	if (adapter->offloads.tx_offloads &
2569 	    (ENA_L4_IPV4_CSUM_PARTIAL | ENA_L4_IPV4_CSUM |
2570 	     ENA_L4_IPV6_CSUM | ENA_L4_IPV6_CSUM_PARTIAL))
2571 		port_offloads |=
2572 			RTE_ETH_TX_OFFLOAD_UDP_CKSUM | RTE_ETH_TX_OFFLOAD_TCP_CKSUM;
2573 
2574 	port_offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2575 
2576 	port_offloads |= RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
2577 
2578 	return port_offloads;
2579 }
2580 
2581 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter)
2582 {
2583 	RTE_SET_USED(adapter);
2584 
2585 	return 0;
2586 }
2587 
2588 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter)
2589 {
2590 	uint64_t queue_offloads = 0;
2591 	RTE_SET_USED(adapter);
2592 
2593 	queue_offloads |= RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
2594 
2595 	return queue_offloads;
2596 }
2597 
2598 static int ena_infos_get(struct rte_eth_dev *dev,
2599 			  struct rte_eth_dev_info *dev_info)
2600 {
2601 	struct ena_adapter *adapter;
2602 	struct ena_com_dev *ena_dev;
2603 
2604 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
2605 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
2606 	adapter = dev->data->dev_private;
2607 
2608 	ena_dev = &adapter->ena_dev;
2609 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
2610 
2611 	dev_info->speed_capa =
2612 			RTE_ETH_LINK_SPEED_1G   |
2613 			RTE_ETH_LINK_SPEED_2_5G |
2614 			RTE_ETH_LINK_SPEED_5G   |
2615 			RTE_ETH_LINK_SPEED_10G  |
2616 			RTE_ETH_LINK_SPEED_25G  |
2617 			RTE_ETH_LINK_SPEED_40G  |
2618 			RTE_ETH_LINK_SPEED_50G  |
2619 			RTE_ETH_LINK_SPEED_100G |
2620 			RTE_ETH_LINK_SPEED_200G |
2621 			RTE_ETH_LINK_SPEED_400G;
2622 
2623 	/* Inform framework about available features */
2624 	dev_info->rx_offload_capa = ena_get_rx_port_offloads(adapter);
2625 	dev_info->tx_offload_capa = ena_get_tx_port_offloads(adapter);
2626 	dev_info->rx_queue_offload_capa = ena_get_rx_queue_offloads(adapter);
2627 	dev_info->tx_queue_offload_capa = ena_get_tx_queue_offloads(adapter);
2628 
2629 	dev_info->flow_type_rss_offloads = ENA_ALL_RSS_HF;
2630 	dev_info->hash_key_size = ENA_HASH_KEY_SIZE;
2631 
2632 	dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
2633 	dev_info->max_rx_pktlen  = adapter->max_mtu + RTE_ETHER_HDR_LEN +
2634 		RTE_ETHER_CRC_LEN;
2635 	dev_info->min_mtu = ENA_MIN_MTU;
2636 	dev_info->max_mtu = adapter->max_mtu;
2637 	dev_info->max_mac_addrs = 1;
2638 
2639 	dev_info->max_rx_queues = adapter->max_num_io_queues;
2640 	dev_info->max_tx_queues = adapter->max_num_io_queues;
2641 	dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
2642 
2643 	dev_info->rx_desc_lim.nb_max = adapter->max_rx_ring_size;
2644 	dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2645 	dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2646 					adapter->max_rx_sgl_size);
2647 	dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2648 					adapter->max_rx_sgl_size);
2649 
2650 	dev_info->tx_desc_lim.nb_max = adapter->max_tx_ring_size;
2651 	dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2652 	dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2653 					adapter->max_tx_sgl_size);
2654 	dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2655 					adapter->max_tx_sgl_size);
2656 
2657 	dev_info->default_rxportconf.ring_size = RTE_MIN(ENA_DEFAULT_RING_SIZE,
2658 							 dev_info->rx_desc_lim.nb_max);
2659 	dev_info->default_txportconf.ring_size = RTE_MIN(ENA_DEFAULT_RING_SIZE,
2660 							 dev_info->tx_desc_lim.nb_max);
2661 
2662 	dev_info->err_handle_mode = RTE_ETH_ERROR_HANDLE_MODE_PASSIVE;
2663 
2664 	return 0;
2665 }
2666 
2667 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len)
2668 {
2669 	mbuf->data_len = len;
2670 	mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2671 	mbuf->refcnt = 1;
2672 	mbuf->next = NULL;
2673 }
2674 
2675 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
2676 				    struct ena_com_rx_buf_info *ena_bufs,
2677 				    uint32_t descs,
2678 				    uint16_t *next_to_clean,
2679 				    uint8_t offset)
2680 {
2681 	struct rte_mbuf *mbuf;
2682 	struct rte_mbuf *mbuf_head;
2683 	struct ena_rx_buffer *rx_info;
2684 	int rc;
2685 	uint16_t ntc, len, req_id, buf = 0;
2686 
2687 	if (unlikely(descs == 0))
2688 		return NULL;
2689 
2690 	ntc = *next_to_clean;
2691 
2692 	len = ena_bufs[buf].len;
2693 	req_id = ena_bufs[buf].req_id;
2694 
2695 	rx_info = &rx_ring->rx_buffer_info[req_id];
2696 
2697 	mbuf = rx_info->mbuf;
2698 	RTE_ASSERT(mbuf != NULL);
2699 
2700 	ena_init_rx_mbuf(mbuf, len);
2701 
2702 	/* Fill the mbuf head with the data specific for 1st segment. */
2703 	mbuf_head = mbuf;
2704 	mbuf_head->nb_segs = descs;
2705 	mbuf_head->port = rx_ring->port_id;
2706 	mbuf_head->pkt_len = len;
2707 	mbuf_head->data_off += offset;
2708 
2709 	rx_info->mbuf = NULL;
2710 	rx_ring->empty_rx_reqs[ntc] = req_id;
2711 	ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2712 
2713 	while (--descs) {
2714 		++buf;
2715 		len = ena_bufs[buf].len;
2716 		req_id = ena_bufs[buf].req_id;
2717 
2718 		rx_info = &rx_ring->rx_buffer_info[req_id];
2719 		RTE_ASSERT(rx_info->mbuf != NULL);
2720 
2721 		if (unlikely(len == 0)) {
2722 			/*
2723 			 * Some devices can pass descriptor with the length 0.
2724 			 * To avoid confusion, the PMD is simply putting the
2725 			 * descriptor back, as it was never used. We'll avoid
2726 			 * mbuf allocation that way.
2727 			 */
2728 			rc = ena_add_single_rx_desc(rx_ring->ena_com_io_sq,
2729 				rx_info->mbuf, req_id);
2730 			if (unlikely(rc != 0)) {
2731 				/* Free the mbuf in case of an error. */
2732 				rte_mbuf_raw_free(rx_info->mbuf);
2733 			} else {
2734 				/*
2735 				 * If there was no error, just exit the loop as
2736 				 * 0 length descriptor is always the last one.
2737 				 */
2738 				break;
2739 			}
2740 		} else {
2741 			/* Create an mbuf chain. */
2742 			mbuf->next = rx_info->mbuf;
2743 			mbuf = mbuf->next;
2744 
2745 			ena_init_rx_mbuf(mbuf, len);
2746 			mbuf_head->pkt_len += len;
2747 		}
2748 
2749 		/*
2750 		 * Mark the descriptor as depleted and perform necessary
2751 		 * cleanup.
2752 		 * This code will execute in two cases:
2753 		 *  1. Descriptor len was greater than 0 - normal situation.
2754 		 *  2. Descriptor len was 0 and we failed to add the descriptor
2755 		 *     to the device. In that situation, we should try to add
2756 		 *     the mbuf again in the populate routine and mark the
2757 		 *     descriptor as used up by the device.
2758 		 */
2759 		rx_info->mbuf = NULL;
2760 		rx_ring->empty_rx_reqs[ntc] = req_id;
2761 		ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2762 	}
2763 
2764 	*next_to_clean = ntc;
2765 
2766 	return mbuf_head;
2767 }
2768 
2769 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
2770 				  uint16_t nb_pkts)
2771 {
2772 	struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
2773 	unsigned int free_queue_entries;
2774 	uint16_t next_to_clean = rx_ring->next_to_clean;
2775 	uint16_t descs_in_use;
2776 	struct rte_mbuf *mbuf;
2777 	uint16_t completed;
2778 	struct ena_com_rx_ctx ena_rx_ctx;
2779 	int i, rc = 0;
2780 
2781 #ifdef RTE_ETHDEV_DEBUG_RX
2782 	/* Check adapter state */
2783 	if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2784 		PMD_RX_LOG_LINE(ALERT,
2785 			"Trying to receive pkts while device is NOT running");
2786 		return 0;
2787 	}
2788 #endif
2789 
2790 	descs_in_use = rx_ring->ring_size -
2791 		ena_com_free_q_entries(rx_ring->ena_com_io_sq) - 1;
2792 	nb_pkts = RTE_MIN(descs_in_use, nb_pkts);
2793 
2794 	for (completed = 0; completed < nb_pkts; completed++) {
2795 		ena_rx_ctx.max_bufs = rx_ring->sgl_size;
2796 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
2797 		ena_rx_ctx.descs = 0;
2798 		ena_rx_ctx.pkt_offset = 0;
2799 		/* receive packet context */
2800 		rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
2801 				    rx_ring->ena_com_io_sq,
2802 				    &ena_rx_ctx);
2803 		if (unlikely(rc)) {
2804 			PMD_RX_LOG_LINE(ERR,
2805 				"Failed to get the packet from the device, rc: %d",
2806 				rc);
2807 			if (rc == ENA_COM_NO_SPACE) {
2808 				++rx_ring->rx_stats.bad_desc_num;
2809 				ena_trigger_reset(rx_ring->adapter,
2810 					ENA_REGS_RESET_TOO_MANY_RX_DESCS);
2811 			} else {
2812 				++rx_ring->rx_stats.bad_req_id;
2813 				ena_trigger_reset(rx_ring->adapter,
2814 					ENA_REGS_RESET_INV_RX_REQ_ID);
2815 			}
2816 			return 0;
2817 		}
2818 
2819 		mbuf = ena_rx_mbuf(rx_ring,
2820 			ena_rx_ctx.ena_bufs,
2821 			ena_rx_ctx.descs,
2822 			&next_to_clean,
2823 			ena_rx_ctx.pkt_offset);
2824 		if (unlikely(mbuf == NULL)) {
2825 			for (i = 0; i < ena_rx_ctx.descs; ++i) {
2826 				rx_ring->empty_rx_reqs[next_to_clean] =
2827 					rx_ring->ena_bufs[i].req_id;
2828 				next_to_clean = ENA_IDX_NEXT_MASKED(
2829 					next_to_clean, rx_ring->size_mask);
2830 			}
2831 			break;
2832 		}
2833 
2834 		/* fill mbuf attributes if any */
2835 		ena_rx_mbuf_prepare(rx_ring, mbuf, &ena_rx_ctx);
2836 
2837 		if (unlikely(mbuf->ol_flags &
2838 				(RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD)))
2839 			rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors);
2840 
2841 		rx_pkts[completed] = mbuf;
2842 		rx_ring->rx_stats.bytes += mbuf->pkt_len;
2843 	}
2844 
2845 	rx_ring->rx_stats.cnt += completed;
2846 	rx_ring->next_to_clean = next_to_clean;
2847 
2848 	free_queue_entries = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
2849 
2850 	/* Burst refill to save doorbells, memory barriers, const interval */
2851 	if (free_queue_entries >= rx_ring->rx_free_thresh) {
2852 		ena_populate_rx_queue(rx_ring, free_queue_entries);
2853 	}
2854 
2855 	return completed;
2856 }
2857 
2858 static uint16_t
2859 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2860 		uint16_t nb_pkts)
2861 {
2862 	int32_t ret;
2863 	uint32_t i;
2864 	struct rte_mbuf *m;
2865 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2866 	struct ena_adapter *adapter = tx_ring->adapter;
2867 	struct rte_ipv4_hdr *ip_hdr;
2868 	uint64_t ol_flags;
2869 	uint64_t l4_csum_flag;
2870 	uint64_t dev_offload_capa;
2871 	uint16_t frag_field;
2872 	bool need_pseudo_csum;
2873 
2874 	dev_offload_capa = adapter->offloads.tx_offloads;
2875 	for (i = 0; i != nb_pkts; i++) {
2876 		m = tx_pkts[i];
2877 		ol_flags = m->ol_flags;
2878 
2879 		/* Check if any offload flag was set */
2880 		if (ol_flags == 0)
2881 			continue;
2882 
2883 		l4_csum_flag = ol_flags & RTE_MBUF_F_TX_L4_MASK;
2884 		/* SCTP checksum offload is not supported by the ENA. */
2885 		if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) ||
2886 		    l4_csum_flag == RTE_MBUF_F_TX_SCTP_CKSUM) {
2887 			PMD_TX_LOG_LINE(DEBUG,
2888 				"mbuf[%" PRIu32 "] has unsupported offloads flags set: 0x%" PRIu64,
2889 				i, ol_flags);
2890 			rte_errno = ENOTSUP;
2891 			return i;
2892 		}
2893 
2894 		if (unlikely(m->nb_segs >= tx_ring->sgl_size &&
2895 		    !(tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
2896 		      m->nb_segs == tx_ring->sgl_size &&
2897 		      m->data_len < tx_ring->tx_max_header_size))) {
2898 			PMD_TX_LOG_LINE(DEBUG,
2899 				"mbuf[%" PRIu32 "] has too many segments: %" PRIu16,
2900 				i, m->nb_segs);
2901 			rte_errno = EINVAL;
2902 			return i;
2903 		}
2904 
2905 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2906 		/* Check if requested offload is also enabled for the queue */
2907 		if ((ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
2908 		     !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM)) ||
2909 		    (l4_csum_flag == RTE_MBUF_F_TX_TCP_CKSUM &&
2910 		     !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) ||
2911 		    (l4_csum_flag == RTE_MBUF_F_TX_UDP_CKSUM &&
2912 		     !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM))) {
2913 			PMD_TX_LOG_LINE(DEBUG,
2914 				"mbuf[%" PRIu32 "]: requested offloads: %" PRIu16 " are not enabled for the queue[%u]",
2915 				i, m->nb_segs, tx_ring->id);
2916 			rte_errno = EINVAL;
2917 			return i;
2918 		}
2919 
2920 		/* The caller is obligated to set l2 and l3 len if any cksum
2921 		 * offload is enabled.
2922 		 */
2923 		if (unlikely(ol_flags & (RTE_MBUF_F_TX_IP_CKSUM | RTE_MBUF_F_TX_L4_MASK) &&
2924 		    (m->l2_len == 0 || m->l3_len == 0))) {
2925 			PMD_TX_LOG_LINE(DEBUG,
2926 				"mbuf[%" PRIu32 "]: l2_len or l3_len values are 0 while the offload was requested",
2927 				i);
2928 			rte_errno = EINVAL;
2929 			return i;
2930 		}
2931 		ret = rte_validate_tx_offload(m);
2932 		if (ret != 0) {
2933 			rte_errno = -ret;
2934 			return i;
2935 		}
2936 #endif
2937 
2938 		/* Verify HW support for requested offloads and determine if
2939 		 * pseudo header checksum is needed.
2940 		 */
2941 		need_pseudo_csum = false;
2942 		if (ol_flags & RTE_MBUF_F_TX_IPV4) {
2943 			if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
2944 			    !(dev_offload_capa & ENA_L3_IPV4_CSUM)) {
2945 				rte_errno = ENOTSUP;
2946 				return i;
2947 			}
2948 
2949 			if (ol_flags & RTE_MBUF_F_TX_TCP_SEG &&
2950 			    !(dev_offload_capa & ENA_IPV4_TSO)) {
2951 				rte_errno = ENOTSUP;
2952 				return i;
2953 			}
2954 
2955 			/* Check HW capabilities and if pseudo csum is needed
2956 			 * for L4 offloads.
2957 			 */
2958 			if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
2959 			    !(dev_offload_capa & ENA_L4_IPV4_CSUM)) {
2960 				if (dev_offload_capa &
2961 				    ENA_L4_IPV4_CSUM_PARTIAL) {
2962 					need_pseudo_csum = true;
2963 				} else {
2964 					rte_errno = ENOTSUP;
2965 					return i;
2966 				}
2967 			}
2968 
2969 			/* Parse the DF flag */
2970 			ip_hdr = rte_pktmbuf_mtod_offset(m,
2971 				struct rte_ipv4_hdr *, m->l2_len);
2972 			frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
2973 			if (frag_field & RTE_IPV4_HDR_DF_FLAG) {
2974 				m->packet_type |= RTE_PTYPE_L4_NONFRAG;
2975 			} else if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2976 				/* In case we are supposed to TSO and have DF
2977 				 * not set (DF=0) hardware must be provided with
2978 				 * partial checksum.
2979 				 */
2980 				need_pseudo_csum = true;
2981 			}
2982 		} else if (ol_flags & RTE_MBUF_F_TX_IPV6) {
2983 			/* There is no support for IPv6 TSO as for now. */
2984 			if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2985 				rte_errno = ENOTSUP;
2986 				return i;
2987 			}
2988 
2989 			/* Check HW capabilities and if pseudo csum is needed */
2990 			if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
2991 			    !(dev_offload_capa & ENA_L4_IPV6_CSUM)) {
2992 				if (dev_offload_capa &
2993 				    ENA_L4_IPV6_CSUM_PARTIAL) {
2994 					need_pseudo_csum = true;
2995 				} else {
2996 					rte_errno = ENOTSUP;
2997 					return i;
2998 				}
2999 			}
3000 		}
3001 
3002 		if (need_pseudo_csum) {
3003 			ret = rte_net_intel_cksum_flags_prepare(m, ol_flags);
3004 			if (ret != 0) {
3005 				rte_errno = -ret;
3006 				return i;
3007 			}
3008 		}
3009 	}
3010 
3011 	return i;
3012 }
3013 
3014 static void ena_update_hints(struct ena_adapter *adapter,
3015 			     struct ena_admin_ena_hw_hints *hints)
3016 {
3017 	if (hints->admin_completion_tx_timeout)
3018 		adapter->ena_dev.admin_queue.completion_timeout =
3019 			hints->admin_completion_tx_timeout * 1000;
3020 
3021 	if (hints->mmio_read_timeout)
3022 		/* convert to usec */
3023 		adapter->ena_dev.mmio_read.reg_read_to =
3024 			hints->mmio_read_timeout * 1000;
3025 
3026 	if (hints->driver_watchdog_timeout) {
3027 		if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
3028 			adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
3029 		else
3030 			// Convert msecs to ticks
3031 			adapter->keep_alive_timeout =
3032 				(hints->driver_watchdog_timeout *
3033 				rte_get_timer_hz()) / 1000;
3034 	}
3035 }
3036 
3037 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
3038 	struct ena_tx_buffer *tx_info,
3039 	struct rte_mbuf *mbuf,
3040 	void **push_header,
3041 	uint16_t *header_len)
3042 {
3043 	struct ena_com_buf *ena_buf;
3044 	uint16_t delta, seg_len, push_len;
3045 
3046 	delta = 0;
3047 	seg_len = mbuf->data_len;
3048 
3049 	tx_info->mbuf = mbuf;
3050 	ena_buf = tx_info->bufs;
3051 
3052 	if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
3053 		/*
3054 		 * Tx header might be (and will be in most cases) smaller than
3055 		 * tx_max_header_size. But it's not an issue to send more data
3056 		 * to the device, than actually needed if the mbuf size is
3057 		 * greater than tx_max_header_size.
3058 		 */
3059 		push_len = RTE_MIN(mbuf->pkt_len, tx_ring->tx_max_header_size);
3060 		*header_len = push_len;
3061 
3062 		if (likely(push_len <= seg_len)) {
3063 			/* If the push header is in the single segment, then
3064 			 * just point it to the 1st mbuf data.
3065 			 */
3066 			*push_header = rte_pktmbuf_mtod(mbuf, uint8_t *);
3067 		} else {
3068 			/* If the push header lays in the several segments, copy
3069 			 * it to the intermediate buffer.
3070 			 */
3071 			rte_pktmbuf_read(mbuf, 0, push_len,
3072 				tx_ring->push_buf_intermediate_buf);
3073 			*push_header = tx_ring->push_buf_intermediate_buf;
3074 			delta = push_len - seg_len;
3075 		}
3076 	} else {
3077 		*push_header = NULL;
3078 		*header_len = 0;
3079 		push_len = 0;
3080 	}
3081 
3082 	/* Process first segment taking into consideration pushed header */
3083 	if (seg_len > push_len) {
3084 		ena_buf->paddr = mbuf->buf_iova +
3085 				mbuf->data_off +
3086 				push_len;
3087 		ena_buf->len = seg_len - push_len;
3088 		ena_buf++;
3089 		tx_info->num_of_bufs++;
3090 	}
3091 
3092 	while ((mbuf = mbuf->next) != NULL) {
3093 		seg_len = mbuf->data_len;
3094 
3095 		/* Skip mbufs if whole data is pushed as a header */
3096 		if (unlikely(delta > seg_len)) {
3097 			delta -= seg_len;
3098 			continue;
3099 		}
3100 
3101 		ena_buf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
3102 		ena_buf->len = seg_len - delta;
3103 		ena_buf++;
3104 		tx_info->num_of_bufs++;
3105 
3106 		delta = 0;
3107 	}
3108 }
3109 
3110 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf)
3111 {
3112 	struct ena_tx_buffer *tx_info;
3113 	struct ena_com_tx_ctx ena_tx_ctx = { { 0 } };
3114 	uint16_t next_to_use;
3115 	uint16_t header_len;
3116 	uint16_t req_id;
3117 	void *push_header;
3118 	int nb_hw_desc;
3119 	int rc;
3120 
3121 	/* Checking for space for 2 additional metadata descriptors due to
3122 	 * possible header split and metadata descriptor
3123 	 */
3124 	if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
3125 					  mbuf->nb_segs + 2)) {
3126 		PMD_TX_LOG_LINE(DEBUG, "Not enough space in the tx queue");
3127 		return ENA_COM_NO_MEM;
3128 	}
3129 
3130 	next_to_use = tx_ring->next_to_use;
3131 
3132 	req_id = tx_ring->empty_tx_reqs[next_to_use];
3133 	tx_info = &tx_ring->tx_buffer_info[req_id];
3134 	tx_info->num_of_bufs = 0;
3135 	RTE_ASSERT(tx_info->mbuf == NULL);
3136 
3137 	ena_tx_map_mbuf(tx_ring, tx_info, mbuf, &push_header, &header_len);
3138 
3139 	ena_tx_ctx.ena_bufs = tx_info->bufs;
3140 	ena_tx_ctx.push_header = push_header;
3141 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
3142 	ena_tx_ctx.req_id = req_id;
3143 	ena_tx_ctx.header_len = header_len;
3144 
3145 	/* Set Tx offloads flags, if applicable */
3146 	ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads,
3147 		tx_ring->disable_meta_caching);
3148 
3149 	if (unlikely(ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
3150 			&ena_tx_ctx))) {
3151 		PMD_TX_LOG_LINE(DEBUG,
3152 			"LLQ Tx max burst size of queue %d achieved, writing doorbell to send burst",
3153 			tx_ring->id);
3154 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
3155 		tx_ring->tx_stats.doorbells++;
3156 		tx_ring->pkts_without_db = false;
3157 	}
3158 
3159 	/* prepare the packet's descriptors to dma engine */
3160 	rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq,	&ena_tx_ctx,
3161 		&nb_hw_desc);
3162 	if (unlikely(rc)) {
3163 		PMD_DRV_LOG_LINE(ERR, "Failed to prepare Tx buffers, rc: %d", rc);
3164 		++tx_ring->tx_stats.prepare_ctx_err;
3165 		ena_trigger_reset(tx_ring->adapter,
3166 			ENA_REGS_RESET_DRIVER_INVALID_STATE);
3167 		return rc;
3168 	}
3169 
3170 	tx_info->tx_descs = nb_hw_desc;
3171 	tx_info->timestamp = rte_get_timer_cycles();
3172 
3173 	tx_ring->tx_stats.cnt++;
3174 	tx_ring->tx_stats.bytes += mbuf->pkt_len;
3175 
3176 	tx_ring->next_to_use = ENA_IDX_NEXT_MASKED(next_to_use,
3177 		tx_ring->size_mask);
3178 
3179 	return 0;
3180 }
3181 
3182 static int ena_tx_cleanup(void *txp, uint32_t free_pkt_cnt)
3183 {
3184 	struct rte_mbuf *pkts_to_clean[ENA_CLEANUP_BUF_THRESH];
3185 	struct ena_ring *tx_ring = (struct ena_ring *)txp;
3186 	size_t mbuf_cnt = 0;
3187 	size_t pkt_cnt = 0;
3188 	unsigned int total_tx_descs = 0;
3189 	unsigned int total_tx_pkts = 0;
3190 	uint16_t cleanup_budget;
3191 	uint16_t next_to_clean = tx_ring->next_to_clean;
3192 	bool fast_free = tx_ring->offloads & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
3193 
3194 	/*
3195 	 * If free_pkt_cnt is equal to 0, it means that the user requested
3196 	 * full cleanup, so attempt to release all Tx descriptors
3197 	 * (ring_size - 1 -> size_mask)
3198 	 */
3199 	cleanup_budget = (free_pkt_cnt == 0) ? tx_ring->size_mask : free_pkt_cnt;
3200 
3201 	while (likely(total_tx_pkts < cleanup_budget)) {
3202 		struct rte_mbuf *mbuf;
3203 		struct ena_tx_buffer *tx_info;
3204 		uint16_t req_id;
3205 
3206 		if (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) != 0)
3207 			break;
3208 
3209 		if (unlikely(validate_tx_req_id(tx_ring, req_id) != 0))
3210 			break;
3211 
3212 		/* Get Tx info & store how many descs were processed  */
3213 		tx_info = &tx_ring->tx_buffer_info[req_id];
3214 		tx_info->timestamp = 0;
3215 
3216 		mbuf = tx_info->mbuf;
3217 		if (fast_free) {
3218 			pkts_to_clean[pkt_cnt++] = mbuf;
3219 			mbuf_cnt += mbuf->nb_segs;
3220 			if (mbuf_cnt >= ENA_CLEANUP_BUF_THRESH) {
3221 				rte_pktmbuf_free_bulk(pkts_to_clean, pkt_cnt);
3222 				mbuf_cnt = 0;
3223 				pkt_cnt = 0;
3224 			}
3225 		} else {
3226 			rte_pktmbuf_free(mbuf);
3227 		}
3228 
3229 		tx_info->mbuf = NULL;
3230 		tx_ring->empty_tx_reqs[next_to_clean] = req_id;
3231 
3232 		total_tx_descs += tx_info->tx_descs;
3233 		total_tx_pkts++;
3234 
3235 		/* Put back descriptor to the ring for reuse */
3236 		next_to_clean = ENA_IDX_NEXT_MASKED(next_to_clean,
3237 			tx_ring->size_mask);
3238 	}
3239 
3240 	if (likely(total_tx_descs > 0)) {
3241 		/* acknowledge completion of sent packets */
3242 		tx_ring->next_to_clean = next_to_clean;
3243 		ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
3244 	}
3245 
3246 	if (mbuf_cnt != 0)
3247 		rte_pktmbuf_free_bulk(pkts_to_clean, pkt_cnt);
3248 
3249 	/* Notify completion handler that full cleanup was performed */
3250 	if (free_pkt_cnt == 0 || total_tx_pkts < cleanup_budget)
3251 		tx_ring->last_cleanup_ticks = rte_get_timer_cycles();
3252 
3253 	return total_tx_pkts;
3254 }
3255 
3256 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
3257 				  uint16_t nb_pkts)
3258 {
3259 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
3260 	int available_desc;
3261 	uint16_t sent_idx = 0;
3262 
3263 #ifdef RTE_ETHDEV_DEBUG_TX
3264 	/* Check adapter state */
3265 	if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
3266 		PMD_TX_LOG_LINE(ALERT,
3267 			"Trying to xmit pkts while device is NOT running");
3268 		return 0;
3269 	}
3270 #endif
3271 
3272 	available_desc = ena_com_free_q_entries(tx_ring->ena_com_io_sq);
3273 	if (available_desc < tx_ring->tx_free_thresh)
3274 		ena_tx_cleanup((void *)tx_ring, 0);
3275 
3276 	for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
3277 		if (ena_xmit_mbuf(tx_ring, tx_pkts[sent_idx]))
3278 			break;
3279 		tx_ring->pkts_without_db = true;
3280 		rte_prefetch0(tx_pkts[ENA_IDX_ADD_MASKED(sent_idx, 4,
3281 			tx_ring->size_mask)]);
3282 	}
3283 
3284 	/* If there are ready packets to be xmitted... */
3285 	if (likely(tx_ring->pkts_without_db)) {
3286 		/* ...let HW do its best :-) */
3287 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
3288 		tx_ring->tx_stats.doorbells++;
3289 		tx_ring->pkts_without_db = false;
3290 	}
3291 
3292 	tx_ring->tx_stats.available_desc =
3293 		ena_com_free_q_entries(tx_ring->ena_com_io_sq);
3294 	tx_ring->tx_stats.tx_poll++;
3295 
3296 	return sent_idx;
3297 }
3298 
3299 static void ena_copy_customer_metrics(struct ena_adapter *adapter, uint64_t *buf,
3300 					     size_t num_metrics)
3301 {
3302 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
3303 	int rc;
3304 
3305 	if (ena_com_get_cap(ena_dev, ENA_ADMIN_CUSTOMER_METRICS)) {
3306 		if (num_metrics != ENA_STATS_ARRAY_METRICS) {
3307 			PMD_DRV_LOG_LINE(ERR, "Detected discrepancy in the number of customer metrics");
3308 			return;
3309 		}
3310 		rte_spinlock_lock(&adapter->admin_lock);
3311 		rc = ENA_PROXY(adapter,
3312 					ena_com_get_customer_metrics,
3313 					&adapter->ena_dev,
3314 					(char *)buf,
3315 					num_metrics * sizeof(uint64_t));
3316 		rte_spinlock_unlock(&adapter->admin_lock);
3317 		if (rc != 0) {
3318 			PMD_DRV_LOG_LINE(WARNING, "Failed to get customer metrics, rc: %d", rc);
3319 			return;
3320 		}
3321 
3322 	} else if (ena_com_get_cap(ena_dev, ENA_ADMIN_ENI_STATS)) {
3323 		if (num_metrics != ENA_STATS_ARRAY_METRICS_LEGACY) {
3324 			PMD_DRV_LOG_LINE(ERR, "Detected discrepancy in the number of legacy metrics");
3325 			return;
3326 		}
3327 
3328 		rte_spinlock_lock(&adapter->admin_lock);
3329 		rc = ENA_PROXY(adapter,
3330 			       ena_com_get_eni_stats,
3331 			       &adapter->ena_dev,
3332 			       (struct ena_admin_eni_stats *)buf);
3333 		rte_spinlock_unlock(&adapter->admin_lock);
3334 		if (rc != 0) {
3335 			PMD_DRV_LOG_LINE(WARNING,
3336 				"Failed to get ENI metrics, rc: %d", rc);
3337 			return;
3338 		}
3339 	}
3340 }
3341 
3342 static void ena_copy_ena_srd_info(struct ena_adapter *adapter,
3343 		struct ena_stats_srd *srd_info)
3344 {
3345 	int rc;
3346 
3347 	if (!ena_com_get_cap(&adapter->ena_dev, ENA_ADMIN_ENA_SRD_INFO))
3348 		return;
3349 
3350 	rte_spinlock_lock(&adapter->admin_lock);
3351 	rc = ENA_PROXY(adapter,
3352 		       ena_com_get_ena_srd_info,
3353 		       &adapter->ena_dev,
3354 		       (struct ena_admin_ena_srd_info *)srd_info);
3355 	rte_spinlock_unlock(&adapter->admin_lock);
3356 	if (rc != ENA_COM_OK && rc != ENA_COM_UNSUPPORTED) {
3357 		PMD_DRV_LOG_LINE(WARNING,
3358 				"Failed to get ENA express srd info, rc: %d", rc);
3359 		return;
3360 	}
3361 }
3362 
3363 /**
3364  * DPDK callback to retrieve names of extended device statistics
3365  *
3366  * @param dev
3367  *   Pointer to Ethernet device structure.
3368  * @param[out] xstats_names
3369  *   Buffer to insert names into.
3370  * @param n
3371  *   Number of names.
3372  *
3373  * @return
3374  *   Number of xstats names.
3375  */
3376 static int ena_xstats_get_names(struct rte_eth_dev *dev,
3377 				struct rte_eth_xstat_name *xstats_names,
3378 				unsigned int n)
3379 {
3380 	struct ena_adapter *adapter = dev->data->dev_private;
3381 	unsigned int xstats_count = ena_xstats_calc_num(dev->data);
3382 	unsigned int stat, i, count = 0;
3383 
3384 	if (n < xstats_count || !xstats_names)
3385 		return xstats_count;
3386 
3387 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
3388 		strcpy(xstats_names[count].name,
3389 			ena_stats_global_strings[stat].name);
3390 
3391 	for (stat = 0; stat < adapter->metrics_num; stat++, count++)
3392 		rte_strscpy(xstats_names[count].name,
3393 			    ena_stats_metrics_strings[stat].name,
3394 			    RTE_ETH_XSTATS_NAME_SIZE);
3395 	for (stat = 0; stat < ENA_STATS_ARRAY_ENA_SRD; stat++, count++)
3396 		rte_strscpy(xstats_names[count].name,
3397 			    ena_stats_srd_strings[stat].name,
3398 			    RTE_ETH_XSTATS_NAME_SIZE);
3399 
3400 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
3401 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
3402 			snprintf(xstats_names[count].name,
3403 				sizeof(xstats_names[count].name),
3404 				"rx_q%d_%s", i,
3405 				ena_stats_rx_strings[stat].name);
3406 
3407 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
3408 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
3409 			snprintf(xstats_names[count].name,
3410 				sizeof(xstats_names[count].name),
3411 				"tx_q%d_%s", i,
3412 				ena_stats_tx_strings[stat].name);
3413 
3414 	return xstats_count;
3415 }
3416 
3417 /**
3418  * DPDK callback to retrieve names of extended device statistics for the given
3419  * ids.
3420  *
3421  * @param dev
3422  *   Pointer to Ethernet device structure.
3423  * @param[out] xstats_names
3424  *   Buffer to insert names into.
3425  * @param ids
3426  *   IDs array for which the names should be retrieved.
3427  * @param size
3428  *   Number of ids.
3429  *
3430  * @return
3431  *   Positive value: number of xstats names. Negative value: error code.
3432  */
3433 static int ena_xstats_get_names_by_id(struct rte_eth_dev *dev,
3434 				      const uint64_t *ids,
3435 				      struct rte_eth_xstat_name *xstats_names,
3436 				      unsigned int size)
3437 {
3438 	struct ena_adapter *adapter = dev->data->dev_private;
3439 	uint64_t xstats_count = ena_xstats_calc_num(dev->data);
3440 	uint64_t id, qid;
3441 	unsigned int i;
3442 
3443 	if (xstats_names == NULL)
3444 		return xstats_count;
3445 
3446 	for (i = 0; i < size; ++i) {
3447 		id = ids[i];
3448 		if (id > xstats_count) {
3449 			PMD_DRV_LOG_LINE(ERR,
3450 				"ID value out of range: id=%" PRIu64 ", xstats_num=%" PRIu64,
3451 				 id, xstats_count);
3452 			return -EINVAL;
3453 		}
3454 
3455 		if (id < ENA_STATS_ARRAY_GLOBAL) {
3456 			strcpy(xstats_names[i].name,
3457 			       ena_stats_global_strings[id].name);
3458 			continue;
3459 		}
3460 
3461 		id -= ENA_STATS_ARRAY_GLOBAL;
3462 		if (id < adapter->metrics_num) {
3463 			rte_strscpy(xstats_names[i].name,
3464 				    ena_stats_metrics_strings[id].name,
3465 				    RTE_ETH_XSTATS_NAME_SIZE);
3466 			continue;
3467 		}
3468 
3469 		id -= adapter->metrics_num;
3470 
3471 		if (id < ENA_STATS_ARRAY_ENA_SRD) {
3472 			rte_strscpy(xstats_names[i].name,
3473 				    ena_stats_srd_strings[id].name,
3474 				    RTE_ETH_XSTATS_NAME_SIZE);
3475 			continue;
3476 		}
3477 		id -= ENA_STATS_ARRAY_ENA_SRD;
3478 
3479 		if (id < ENA_STATS_ARRAY_RX) {
3480 			qid = id / dev->data->nb_rx_queues;
3481 			id %= dev->data->nb_rx_queues;
3482 			snprintf(xstats_names[i].name,
3483 				 sizeof(xstats_names[i].name),
3484 				 "rx_q%" PRIu64 "d_%s",
3485 				 qid, ena_stats_rx_strings[id].name);
3486 			continue;
3487 		}
3488 
3489 		id -= ENA_STATS_ARRAY_RX;
3490 		/* Although this condition is not needed, it was added for
3491 		 * compatibility if new xstat structure would be ever added.
3492 		 */
3493 		if (id < ENA_STATS_ARRAY_TX) {
3494 			qid = id / dev->data->nb_tx_queues;
3495 			id %= dev->data->nb_tx_queues;
3496 			snprintf(xstats_names[i].name,
3497 				 sizeof(xstats_names[i].name),
3498 				 "tx_q%" PRIu64 "_%s",
3499 				 qid, ena_stats_tx_strings[id].name);
3500 			continue;
3501 		}
3502 	}
3503 
3504 	return i;
3505 }
3506 
3507 /**
3508  * DPDK callback to get extended device statistics.
3509  *
3510  * @param dev
3511  *   Pointer to Ethernet device structure.
3512  * @param[out] stats
3513  *   Stats table output buffer.
3514  * @param n
3515  *   The size of the stats table.
3516  *
3517  * @return
3518  *   Number of xstats on success, negative on failure.
3519  */
3520 static int ena_xstats_get(struct rte_eth_dev *dev,
3521 			  struct rte_eth_xstat *xstats,
3522 			  unsigned int n)
3523 {
3524 	struct ena_adapter *adapter = dev->data->dev_private;
3525 	unsigned int xstats_count = ena_xstats_calc_num(dev->data);
3526 	unsigned int stat, i, count = 0;
3527 	int stat_offset;
3528 	void *stats_begin;
3529 	uint64_t metrics_stats[ENA_MAX_CUSTOMER_METRICS];
3530 	struct ena_stats_srd srd_info = {0};
3531 
3532 	if (n < xstats_count)
3533 		return xstats_count;
3534 
3535 	if (!xstats)
3536 		return 0;
3537 
3538 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
3539 		stat_offset = ena_stats_global_strings[stat].stat_offset;
3540 		stats_begin = &adapter->dev_stats;
3541 
3542 		xstats[count].id = count;
3543 		xstats[count].value = *((uint64_t *)
3544 			((char *)stats_begin + stat_offset));
3545 	}
3546 
3547 	ena_copy_customer_metrics(adapter, metrics_stats, adapter->metrics_num);
3548 	stats_begin = metrics_stats;
3549 	for (stat = 0; stat < adapter->metrics_num; stat++, count++) {
3550 		stat_offset = ena_stats_metrics_strings[stat].stat_offset;
3551 
3552 		xstats[count].id = count;
3553 		xstats[count].value = *((uint64_t *)
3554 		    ((char *)stats_begin + stat_offset));
3555 	}
3556 
3557 	ena_copy_ena_srd_info(adapter, &srd_info);
3558 	stats_begin = &srd_info;
3559 	for (stat = 0; stat < ENA_STATS_ARRAY_ENA_SRD; stat++, count++) {
3560 		stat_offset = ena_stats_srd_strings[stat].stat_offset;
3561 		xstats[count].id = count;
3562 		xstats[count].value = *((uint64_t *)
3563 		    ((char *)stats_begin + stat_offset));
3564 	}
3565 
3566 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
3567 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
3568 			stat_offset = ena_stats_rx_strings[stat].stat_offset;
3569 			stats_begin = &adapter->rx_ring[i].rx_stats;
3570 
3571 			xstats[count].id = count;
3572 			xstats[count].value = *((uint64_t *)
3573 				((char *)stats_begin + stat_offset));
3574 		}
3575 	}
3576 
3577 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
3578 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
3579 			stat_offset = ena_stats_tx_strings[stat].stat_offset;
3580 			stats_begin = &adapter->tx_ring[i].rx_stats;
3581 
3582 			xstats[count].id = count;
3583 			xstats[count].value = *((uint64_t *)
3584 				((char *)stats_begin + stat_offset));
3585 		}
3586 	}
3587 
3588 	return count;
3589 }
3590 
3591 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
3592 				const uint64_t *ids,
3593 				uint64_t *values,
3594 				unsigned int n)
3595 {
3596 	struct ena_adapter *adapter = dev->data->dev_private;
3597 	uint64_t id;
3598 	uint64_t rx_entries, tx_entries;
3599 	unsigned int i;
3600 	int qid;
3601 	int valid = 0;
3602 	bool were_metrics_copied = false;
3603 	bool was_srd_info_copied = false;
3604 	uint64_t metrics_stats[ENA_MAX_CUSTOMER_METRICS];
3605 	struct ena_stats_srd srd_info = {0};
3606 
3607 	for (i = 0; i < n; ++i) {
3608 		id = ids[i];
3609 		/* Check if id belongs to global statistics */
3610 		if (id < ENA_STATS_ARRAY_GLOBAL) {
3611 			values[i] = *((uint64_t *)&adapter->dev_stats + id);
3612 			++valid;
3613 			continue;
3614 		}
3615 
3616 		/* Check if id belongs to ENI statistics */
3617 		id -= ENA_STATS_ARRAY_GLOBAL;
3618 		if (id < adapter->metrics_num) {
3619 			/* Avoid reading metrics multiple times in a single
3620 			 * function call, as it requires communication with the
3621 			 * admin queue.
3622 			 */
3623 			if (!were_metrics_copied) {
3624 				were_metrics_copied = true;
3625 				ena_copy_customer_metrics(adapter,
3626 						metrics_stats,
3627 						adapter->metrics_num);
3628 			}
3629 
3630 			values[i] = *((uint64_t *)&metrics_stats + id);
3631 			++valid;
3632 			continue;
3633 		}
3634 
3635 		/* Check if id belongs to SRD info statistics */
3636 		id -= adapter->metrics_num;
3637 
3638 		if (id < ENA_STATS_ARRAY_ENA_SRD) {
3639 			/*
3640 			 * Avoid reading srd info multiple times in a single
3641 			 * function call, as it requires communication with the
3642 			 * admin queue.
3643 			 */
3644 			if (!was_srd_info_copied) {
3645 				was_srd_info_copied = true;
3646 				ena_copy_ena_srd_info(adapter, &srd_info);
3647 			}
3648 			values[i] = *((uint64_t *)&adapter->srd_stats + id);
3649 			++valid;
3650 			continue;
3651 		}
3652 
3653 		/* Check if id belongs to rx queue statistics */
3654 		id -= ENA_STATS_ARRAY_ENA_SRD;
3655 
3656 		rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
3657 		if (id < rx_entries) {
3658 			qid = id % dev->data->nb_rx_queues;
3659 			id /= dev->data->nb_rx_queues;
3660 			values[i] = *((uint64_t *)
3661 				&adapter->rx_ring[qid].rx_stats + id);
3662 			++valid;
3663 			continue;
3664 		}
3665 				/* Check if id belongs to rx queue statistics */
3666 		id -= rx_entries;
3667 		tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
3668 		if (id < tx_entries) {
3669 			qid = id % dev->data->nb_tx_queues;
3670 			id /= dev->data->nb_tx_queues;
3671 			values[i] = *((uint64_t *)
3672 				&adapter->tx_ring[qid].tx_stats + id);
3673 			++valid;
3674 			continue;
3675 		}
3676 	}
3677 
3678 	return valid;
3679 }
3680 
3681 static int ena_process_uint_devarg(const char *key,
3682 				  const char *value,
3683 				  void *opaque)
3684 {
3685 	struct ena_adapter *adapter = opaque;
3686 	char *str_end;
3687 	uint64_t uint64_value;
3688 
3689 	uint64_value = strtoull(value, &str_end, DECIMAL_BASE);
3690 	if (value == str_end) {
3691 		PMD_INIT_LOG_LINE(ERR,
3692 			"Invalid value for key '%s'. Only uint values are accepted.",
3693 			key);
3694 		return -EINVAL;
3695 	}
3696 
3697 	if (strcmp(key, ENA_DEVARG_MISS_TXC_TO) == 0) {
3698 		if (uint64_value > ENA_MAX_TX_TIMEOUT_SECONDS) {
3699 			PMD_INIT_LOG_LINE(ERR,
3700 				"Tx timeout too high: %" PRIu64 " sec. Maximum allowed: %d sec.",
3701 				uint64_value, ENA_MAX_TX_TIMEOUT_SECONDS);
3702 			return -EINVAL;
3703 		} else if (uint64_value == 0) {
3704 			PMD_INIT_LOG_LINE(INFO,
3705 				"Check for missing Tx completions has been disabled.");
3706 			adapter->missing_tx_completion_to =
3707 				ENA_HW_HINTS_NO_TIMEOUT;
3708 		} else {
3709 			PMD_INIT_LOG_LINE(INFO,
3710 				"Tx packet completion timeout set to %" PRIu64 " seconds.",
3711 				uint64_value);
3712 			adapter->missing_tx_completion_to =
3713 				uint64_value * rte_get_timer_hz();
3714 		}
3715 	} else if (strcmp(key, ENA_DEVARG_CONTROL_PATH_POLL_INTERVAL) == 0) {
3716 		if (uint64_value > ENA_MAX_CONTROL_PATH_POLL_INTERVAL_MSEC) {
3717 			PMD_INIT_LOG_LINE(ERR,
3718 				"Control path polling interval is too long: %" PRIu64 " msecs. "
3719 				"Maximum allowed: %d msecs.",
3720 				uint64_value, ENA_MAX_CONTROL_PATH_POLL_INTERVAL_MSEC);
3721 			return -EINVAL;
3722 		} else if (uint64_value == 0) {
3723 			PMD_INIT_LOG_LINE(INFO,
3724 				"Control path polling interval is set to zero. Operating in "
3725 				"interrupt mode.");
3726 				adapter->control_path_poll_interval = 0;
3727 		} else {
3728 			PMD_INIT_LOG_LINE(INFO,
3729 				"Control path polling interval is set to %" PRIu64 " msecs.",
3730 				uint64_value);
3731 				adapter->control_path_poll_interval = uint64_value * USEC_PER_MSEC;
3732 		}
3733 	}
3734 
3735 	return 0;
3736 }
3737 
3738 static int ena_process_llq_policy_devarg(const char *key, const char *value, void *opaque)
3739 {
3740 	struct ena_adapter *adapter = opaque;
3741 	uint32_t policy;
3742 
3743 	policy = strtoul(value, NULL, DECIMAL_BASE);
3744 	if (policy < ENA_LLQ_POLICY_LAST) {
3745 		adapter->llq_header_policy = policy;
3746 	} else {
3747 		PMD_INIT_LOG_LINE(ERR,
3748 			"Invalid value: '%s' for key '%s'. valid [0-3]",
3749 			value, key);
3750 		return -EINVAL;
3751 	}
3752 	PMD_INIT_LOG_LINE(INFO,
3753 		"LLQ policy is %u [0 - disabled, 1 - device recommended, 2 - normal, 3 - large]",
3754 		adapter->llq_header_policy);
3755 	return 0;
3756 }
3757 
3758 static int ena_parse_devargs(struct ena_adapter *adapter, struct rte_devargs *devargs)
3759 {
3760 	static const char * const allowed_args[] = {
3761 		ENA_DEVARG_LLQ_POLICY,
3762 		ENA_DEVARG_MISS_TXC_TO,
3763 		ENA_DEVARG_CONTROL_PATH_POLL_INTERVAL,
3764 		NULL,
3765 	};
3766 	struct rte_kvargs *kvlist;
3767 	int rc;
3768 
3769 	if (devargs == NULL)
3770 		return 0;
3771 
3772 	kvlist = rte_kvargs_parse(devargs->args, allowed_args);
3773 	if (kvlist == NULL) {
3774 		PMD_INIT_LOG_LINE(ERR, "Invalid device arguments: %s",
3775 			devargs->args);
3776 		return -EINVAL;
3777 	}
3778 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_LLQ_POLICY,
3779 			ena_process_llq_policy_devarg, adapter);
3780 	if (rc != 0)
3781 		goto exit;
3782 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_MISS_TXC_TO,
3783 		ena_process_uint_devarg, adapter);
3784 	if (rc != 0)
3785 		goto exit;
3786 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_CONTROL_PATH_POLL_INTERVAL,
3787 		ena_process_uint_devarg, adapter);
3788 	if (rc != 0)
3789 		goto exit;
3790 
3791 exit:
3792 	rte_kvargs_free(kvlist);
3793 
3794 	return rc;
3795 }
3796 
3797 static int ena_setup_rx_intr(struct rte_eth_dev *dev)
3798 {
3799 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3800 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
3801 	int rc;
3802 	uint16_t vectors_nb, i;
3803 	bool rx_intr_requested = dev->data->dev_conf.intr_conf.rxq;
3804 
3805 	if (!rx_intr_requested)
3806 		return 0;
3807 
3808 	if (!rte_intr_cap_multiple(intr_handle)) {
3809 		PMD_DRV_LOG_LINE(ERR,
3810 			"Rx interrupt requested, but it isn't supported by the PCI driver");
3811 		return -ENOTSUP;
3812 	}
3813 
3814 	/* Disable interrupt mapping before the configuration starts. */
3815 	rte_intr_disable(intr_handle);
3816 
3817 	/* Verify if there are enough vectors available. */
3818 	vectors_nb = dev->data->nb_rx_queues;
3819 	if (vectors_nb > RTE_MAX_RXTX_INTR_VEC_ID) {
3820 		PMD_DRV_LOG_LINE(ERR,
3821 			"Too many Rx interrupts requested, maximum number: %d",
3822 			RTE_MAX_RXTX_INTR_VEC_ID);
3823 		rc = -ENOTSUP;
3824 		goto enable_intr;
3825 	}
3826 
3827 	/* Allocate the vector list */
3828 	if (rte_intr_vec_list_alloc(intr_handle, "intr_vec",
3829 					   dev->data->nb_rx_queues)) {
3830 		PMD_DRV_LOG_LINE(ERR,
3831 			"Failed to allocate interrupt vector for %d queues",
3832 			dev->data->nb_rx_queues);
3833 		rc = -ENOMEM;
3834 		goto enable_intr;
3835 	}
3836 
3837 	rc = rte_intr_efd_enable(intr_handle, vectors_nb);
3838 	if (rc != 0)
3839 		goto free_intr_vec;
3840 
3841 	if (!rte_intr_allow_others(intr_handle)) {
3842 		PMD_DRV_LOG_LINE(ERR,
3843 			"Not enough interrupts available to use both ENA Admin and Rx interrupts");
3844 		goto disable_intr_efd;
3845 	}
3846 
3847 	for (i = 0; i < vectors_nb; ++i)
3848 		if (rte_intr_vec_list_index_set(intr_handle, i,
3849 					   RTE_INTR_VEC_RXTX_OFFSET + i))
3850 			goto disable_intr_efd;
3851 
3852 	rte_intr_enable(intr_handle);
3853 	return 0;
3854 
3855 disable_intr_efd:
3856 	rte_intr_efd_disable(intr_handle);
3857 free_intr_vec:
3858 	rte_intr_vec_list_free(intr_handle);
3859 enable_intr:
3860 	rte_intr_enable(intr_handle);
3861 	return rc;
3862 }
3863 
3864 static void ena_rx_queue_intr_set(struct rte_eth_dev *dev,
3865 				 uint16_t queue_id,
3866 				 bool unmask)
3867 {
3868 	struct ena_adapter *adapter = dev->data->dev_private;
3869 	struct ena_ring *rxq = &adapter->rx_ring[queue_id];
3870 	struct ena_eth_io_intr_reg intr_reg;
3871 
3872 	ena_com_update_intr_reg(&intr_reg, 0, 0, unmask, 1);
3873 	ena_com_unmask_intr(rxq->ena_com_io_cq, &intr_reg);
3874 }
3875 
3876 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
3877 				    uint16_t queue_id)
3878 {
3879 	ena_rx_queue_intr_set(dev, queue_id, true);
3880 
3881 	return 0;
3882 }
3883 
3884 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
3885 				     uint16_t queue_id)
3886 {
3887 	ena_rx_queue_intr_set(dev, queue_id, false);
3888 
3889 	return 0;
3890 }
3891 
3892 static int ena_configure_aenq(struct ena_adapter *adapter)
3893 {
3894 	uint32_t aenq_groups = adapter->all_aenq_groups;
3895 	int rc;
3896 
3897 	/* All_aenq_groups holds all AENQ functions supported by the device and
3898 	 * the HW, so at first we need to be sure the LSC request is valid.
3899 	 */
3900 	if (adapter->edev_data->dev_conf.intr_conf.lsc != 0) {
3901 		if (!(aenq_groups & BIT(ENA_ADMIN_LINK_CHANGE))) {
3902 			PMD_DRV_LOG_LINE(ERR,
3903 				"LSC requested, but it's not supported by the AENQ");
3904 			return -EINVAL;
3905 		}
3906 	} else {
3907 		/* If LSC wasn't enabled by the app, let's enable all supported
3908 		 * AENQ procedures except the LSC.
3909 		 */
3910 		aenq_groups &= ~BIT(ENA_ADMIN_LINK_CHANGE);
3911 	}
3912 
3913 	rc = ena_com_set_aenq_config(&adapter->ena_dev, aenq_groups);
3914 	if (rc != 0) {
3915 		PMD_DRV_LOG_LINE(ERR, "Cannot configure AENQ groups, rc=%d", rc);
3916 		return rc;
3917 	}
3918 
3919 	adapter->active_aenq_groups = aenq_groups;
3920 
3921 	return 0;
3922 }
3923 
3924 int ena_mp_indirect_table_set(struct ena_adapter *adapter)
3925 {
3926 	return ENA_PROXY(adapter, ena_com_indirect_table_set, &adapter->ena_dev);
3927 }
3928 
3929 int ena_mp_indirect_table_get(struct ena_adapter *adapter,
3930 			      uint32_t *indirect_table)
3931 {
3932 	return ENA_PROXY(adapter, ena_com_indirect_table_get, &adapter->ena_dev,
3933 		indirect_table);
3934 }
3935 
3936 /*********************************************************************
3937  *  ena_plat_dpdk.h functions implementations
3938  *********************************************************************/
3939 
3940 const struct rte_memzone *
3941 ena_mem_alloc_coherent(struct rte_eth_dev_data *data, size_t size,
3942 		       int socket_id, unsigned int alignment, void **virt_addr,
3943 		       dma_addr_t *phys_addr)
3944 {
3945 	char z_name[RTE_MEMZONE_NAMESIZE];
3946 	struct ena_adapter *adapter = data->dev_private;
3947 	const struct rte_memzone *memzone;
3948 	int rc;
3949 
3950 	rc = snprintf(z_name, RTE_MEMZONE_NAMESIZE, "ena_p%d_mz%" PRIu64 "",
3951 		data->port_id, adapter->memzone_cnt);
3952 	if (rc >= RTE_MEMZONE_NAMESIZE) {
3953 		PMD_DRV_LOG_LINE(ERR,
3954 			"Name for the ena_com memzone is too long. Port: %d, mz_num: %" PRIu64,
3955 			data->port_id, adapter->memzone_cnt);
3956 		goto error;
3957 	}
3958 	adapter->memzone_cnt++;
3959 
3960 	memzone = rte_memzone_reserve_aligned(z_name, size, socket_id,
3961 		RTE_MEMZONE_IOVA_CONTIG, alignment);
3962 	if (memzone == NULL) {
3963 		PMD_DRV_LOG_LINE(ERR, "Failed to allocate ena_com memzone: %s",
3964 			z_name);
3965 		goto error;
3966 	}
3967 
3968 	memset(memzone->addr, 0, size);
3969 	*virt_addr = memzone->addr;
3970 	*phys_addr = memzone->iova;
3971 
3972 	return memzone;
3973 
3974 error:
3975 	*virt_addr = NULL;
3976 	*phys_addr = 0;
3977 
3978 	return NULL;
3979 }
3980 
3981 
3982 /*********************************************************************
3983  *  PMD configuration
3984  *********************************************************************/
3985 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
3986 	struct rte_pci_device *pci_dev)
3987 {
3988 	return rte_eth_dev_pci_generic_probe(pci_dev,
3989 		sizeof(struct ena_adapter), eth_ena_dev_init);
3990 }
3991 
3992 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
3993 {
3994 	return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
3995 }
3996 
3997 static struct rte_pci_driver rte_ena_pmd = {
3998 	.id_table = pci_id_ena_map,
3999 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
4000 		     RTE_PCI_DRV_WC_ACTIVATE,
4001 	.probe = eth_ena_pci_probe,
4002 	.remove = eth_ena_pci_remove,
4003 };
4004 
4005 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
4006 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
4007 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
4008 RTE_PMD_REGISTER_PARAM_STRING(net_ena,
4009 	ENA_DEVARG_LLQ_POLICY "=<0|1|2|3> "
4010 	ENA_DEVARG_MISS_TXC_TO "=<uint>"
4011 	ENA_DEVARG_CONTROL_PATH_POLL_INTERVAL "=<0-1000>");
4012 RTE_LOG_REGISTER_SUFFIX(ena_logtype_init, init, NOTICE);
4013 RTE_LOG_REGISTER_SUFFIX(ena_logtype_driver, driver, NOTICE);
4014 #ifdef RTE_ETHDEV_DEBUG_RX
4015 RTE_LOG_REGISTER_SUFFIX(ena_logtype_rx, rx, DEBUG);
4016 #endif
4017 #ifdef RTE_ETHDEV_DEBUG_TX
4018 RTE_LOG_REGISTER_SUFFIX(ena_logtype_tx, tx, DEBUG);
4019 #endif
4020 RTE_LOG_REGISTER_SUFFIX(ena_logtype_com, com, WARNING);
4021 
4022 /******************************************************************************
4023  ******************************** AENQ Handlers *******************************
4024  *****************************************************************************/
4025 static void ena_update_on_link_change(void *adapter_data,
4026 				      struct ena_admin_aenq_entry *aenq_e)
4027 {
4028 	struct rte_eth_dev *eth_dev = adapter_data;
4029 	struct ena_adapter *adapter = eth_dev->data->dev_private;
4030 	struct ena_admin_aenq_link_change_desc *aenq_link_desc;
4031 	uint32_t status;
4032 
4033 	aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
4034 
4035 	status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
4036 	adapter->link_status = status;
4037 
4038 	ena_link_update(eth_dev, 0);
4039 	rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
4040 }
4041 
4042 static void ena_notification(void *adapter_data,
4043 			     struct ena_admin_aenq_entry *aenq_e)
4044 {
4045 	struct rte_eth_dev *eth_dev = adapter_data;
4046 	struct ena_adapter *adapter = eth_dev->data->dev_private;
4047 	struct ena_admin_ena_hw_hints *hints;
4048 
4049 	if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
4050 		PMD_DRV_LOG_LINE(WARNING, "Invalid AENQ group: %x. Expected: %x",
4051 			aenq_e->aenq_common_desc.group,
4052 			ENA_ADMIN_NOTIFICATION);
4053 
4054 	switch (aenq_e->aenq_common_desc.syndrome) {
4055 	case ENA_ADMIN_UPDATE_HINTS:
4056 		hints = (struct ena_admin_ena_hw_hints *)
4057 			(&aenq_e->inline_data_w4);
4058 		ena_update_hints(adapter, hints);
4059 		break;
4060 	default:
4061 		PMD_DRV_LOG_LINE(ERR, "Invalid AENQ notification link state: %d",
4062 			aenq_e->aenq_common_desc.syndrome);
4063 	}
4064 }
4065 
4066 static void ena_keep_alive(void *adapter_data,
4067 			   __rte_unused struct ena_admin_aenq_entry *aenq_e)
4068 {
4069 	struct rte_eth_dev *eth_dev = adapter_data;
4070 	struct ena_adapter *adapter = eth_dev->data->dev_private;
4071 	struct ena_admin_aenq_keep_alive_desc *desc;
4072 	uint64_t rx_drops;
4073 	uint64_t tx_drops;
4074 	uint64_t rx_overruns;
4075 
4076 	adapter->timestamp_wd = rte_get_timer_cycles();
4077 
4078 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
4079 	rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
4080 	tx_drops = ((uint64_t)desc->tx_drops_high << 32) | desc->tx_drops_low;
4081 	rx_overruns = ((uint64_t)desc->rx_overruns_high << 32) | desc->rx_overruns_low;
4082 
4083 	/*
4084 	 * Depending on its acceleration support, the device updates a different statistic when
4085 	 * Rx packet is dropped because there are no available buffers to accommodate it.
4086 	 */
4087 	adapter->drv_stats->rx_drops = rx_drops + rx_overruns;
4088 	adapter->dev_stats.tx_drops = tx_drops;
4089 }
4090 
4091 static void ena_suboptimal_configuration(__rte_unused void *adapter_data,
4092 					 struct ena_admin_aenq_entry *aenq_e)
4093 {
4094 	struct ena_admin_aenq_conf_notifications_desc *desc;
4095 	int bit, num_bits;
4096 
4097 	desc = (struct ena_admin_aenq_conf_notifications_desc *)aenq_e;
4098 	num_bits = BITS_PER_TYPE(desc->notifications_bitmap);
4099 	for (bit = 0; bit < num_bits; bit++) {
4100 		if (desc->notifications_bitmap & RTE_BIT64(bit)) {
4101 			PMD_DRV_LOG_LINE(WARNING,
4102 				"Sub-optimal configuration notification code: %d", bit + 1);
4103 		}
4104 	}
4105 }
4106 
4107 /**
4108  * This handler will called for unknown event group or unimplemented handlers
4109  **/
4110 static void unimplemented_aenq_handler(__rte_unused void *data,
4111 				       __rte_unused struct ena_admin_aenq_entry *aenq_e)
4112 {
4113 	PMD_DRV_LOG_LINE(ERR,
4114 		"Unknown event was received or event with unimplemented handler");
4115 }
4116 
4117 static struct ena_aenq_handlers aenq_handlers = {
4118 	.handlers = {
4119 		[ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
4120 		[ENA_ADMIN_NOTIFICATION] = ena_notification,
4121 		[ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive,
4122 		[ENA_ADMIN_CONF_NOTIFICATIONS] = ena_suboptimal_configuration
4123 	},
4124 	.unimplemented_handler = unimplemented_aenq_handler
4125 };
4126 
4127 /*********************************************************************
4128  *  Multi-Process communication request handling (in primary)
4129  *********************************************************************/
4130 static int
4131 ena_mp_primary_handle(const struct rte_mp_msg *mp_msg, const void *peer)
4132 {
4133 	const struct ena_mp_body *req =
4134 		(const struct ena_mp_body *)mp_msg->param;
4135 	struct ena_adapter *adapter;
4136 	struct ena_com_dev *ena_dev;
4137 	struct ena_mp_body *rsp;
4138 	struct rte_mp_msg mp_rsp;
4139 	struct rte_eth_dev *dev;
4140 	int res = 0;
4141 
4142 	rsp = (struct ena_mp_body *)&mp_rsp.param;
4143 	mp_msg_init(&mp_rsp, req->type, req->port_id);
4144 
4145 	if (!rte_eth_dev_is_valid_port(req->port_id)) {
4146 		rte_errno = ENODEV;
4147 		res = -rte_errno;
4148 		PMD_DRV_LOG_LINE(ERR, "Unknown port %d in request %d",
4149 			    req->port_id, req->type);
4150 		goto end;
4151 	}
4152 	dev = &rte_eth_devices[req->port_id];
4153 	adapter = dev->data->dev_private;
4154 	ena_dev = &adapter->ena_dev;
4155 
4156 	switch (req->type) {
4157 	case ENA_MP_DEV_STATS_GET:
4158 		res = ena_com_get_dev_basic_stats(ena_dev,
4159 						  &adapter->basic_stats);
4160 		break;
4161 	case ENA_MP_ENI_STATS_GET:
4162 		res = ena_com_get_eni_stats(ena_dev,
4163 			(struct ena_admin_eni_stats *)&adapter->metrics_stats);
4164 		break;
4165 	case ENA_MP_MTU_SET:
4166 		res = ena_com_set_dev_mtu(ena_dev, req->args.mtu);
4167 		break;
4168 	case ENA_MP_IND_TBL_GET:
4169 		res = ena_com_indirect_table_get(ena_dev,
4170 						 adapter->indirect_table);
4171 		break;
4172 	case ENA_MP_IND_TBL_SET:
4173 		res = ena_com_indirect_table_set(ena_dev);
4174 		break;
4175 	case ENA_MP_CUSTOMER_METRICS_GET:
4176 		res = ena_com_get_customer_metrics(ena_dev,
4177 				(char *)adapter->metrics_stats,
4178 				adapter->metrics_num * sizeof(uint64_t));
4179 		break;
4180 	case ENA_MP_SRD_STATS_GET:
4181 		res = ena_com_get_ena_srd_info(ena_dev,
4182 				(struct ena_admin_ena_srd_info *)&adapter->srd_stats);
4183 		break;
4184 	default:
4185 		PMD_DRV_LOG_LINE(ERR, "Unknown request type %d", req->type);
4186 		res = -EINVAL;
4187 		break;
4188 	}
4189 
4190 end:
4191 	/* Save processing result in the reply */
4192 	rsp->result = res;
4193 	/* Return just IPC processing status */
4194 	return rte_mp_reply(&mp_rsp, peer);
4195 }
4196 
4197 static bool ena_use_large_llq_hdr(struct ena_adapter *adapter, uint8_t recommended_entry_size)
4198 {
4199 	if (adapter->llq_header_policy == ENA_LLQ_POLICY_LARGE) {
4200 		return true;
4201 	} else if (adapter->llq_header_policy == ENA_LLQ_POLICY_RECOMMENDED) {
4202 		PMD_DRV_LOG_LINE(INFO, "Recommended device entry size policy %u",
4203 			recommended_entry_size);
4204 		if (recommended_entry_size == ENA_ADMIN_LIST_ENTRY_SIZE_256B)
4205 			return true;
4206 	}
4207 	return false;
4208 }
4209