xref: /dpdk/drivers/net/ena/ena_ethdev.c (revision 77e764c7ecd36de92c574731d05d1fb34c28e680)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
3  * All rights reserved.
4  */
5 
6 #include <rte_string_fns.h>
7 #include <rte_errno.h>
8 #include <rte_version.h>
9 #include <rte_net.h>
10 #include <rte_kvargs.h>
11 
12 #include "ena_ethdev.h"
13 #include "ena_logs.h"
14 #include "ena_platform.h"
15 #include "ena_com.h"
16 #include "ena_eth_com.h"
17 
18 #include <ena_common_defs.h>
19 #include <ena_regs_defs.h>
20 #include <ena_admin_defs.h>
21 #include <ena_eth_io_defs.h>
22 
23 #define DRV_MODULE_VER_MAJOR	2
24 #define DRV_MODULE_VER_MINOR	5
25 #define DRV_MODULE_VER_SUBMINOR	0
26 
27 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
28 
29 #define GET_L4_HDR_LEN(mbuf)					\
30 	((rte_pktmbuf_mtod_offset(mbuf,	struct rte_tcp_hdr *,	\
31 		mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
32 
33 #define ETH_GSTRING_LEN	32
34 
35 #define ARRAY_SIZE(x) RTE_DIM(x)
36 
37 #define ENA_MIN_RING_DESC	128
38 
39 #define ENA_PTYPE_HAS_HASH	(RTE_PTYPE_L4_TCP | RTE_PTYPE_L4_UDP)
40 
41 struct ena_stats {
42 	char name[ETH_GSTRING_LEN];
43 	int stat_offset;
44 };
45 
46 #define ENA_STAT_ENTRY(stat, stat_type) { \
47 	.name = #stat, \
48 	.stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
49 }
50 
51 #define ENA_STAT_RX_ENTRY(stat) \
52 	ENA_STAT_ENTRY(stat, rx)
53 
54 #define ENA_STAT_TX_ENTRY(stat) \
55 	ENA_STAT_ENTRY(stat, tx)
56 
57 #define ENA_STAT_ENI_ENTRY(stat) \
58 	ENA_STAT_ENTRY(stat, eni)
59 
60 #define ENA_STAT_GLOBAL_ENTRY(stat) \
61 	ENA_STAT_ENTRY(stat, dev)
62 
63 /* Device arguments */
64 #define ENA_DEVARG_LARGE_LLQ_HDR "large_llq_hdr"
65 /* Timeout in seconds after which a single uncompleted Tx packet should be
66  * considered as a missing.
67  */
68 #define ENA_DEVARG_MISS_TXC_TO "miss_txc_to"
69 
70 /*
71  * Each rte_memzone should have unique name.
72  * To satisfy it, count number of allocation and add it to name.
73  */
74 rte_atomic64_t ena_alloc_cnt;
75 
76 static const struct ena_stats ena_stats_global_strings[] = {
77 	ENA_STAT_GLOBAL_ENTRY(wd_expired),
78 	ENA_STAT_GLOBAL_ENTRY(dev_start),
79 	ENA_STAT_GLOBAL_ENTRY(dev_stop),
80 	ENA_STAT_GLOBAL_ENTRY(tx_drops),
81 };
82 
83 static const struct ena_stats ena_stats_eni_strings[] = {
84 	ENA_STAT_ENI_ENTRY(bw_in_allowance_exceeded),
85 	ENA_STAT_ENI_ENTRY(bw_out_allowance_exceeded),
86 	ENA_STAT_ENI_ENTRY(pps_allowance_exceeded),
87 	ENA_STAT_ENI_ENTRY(conntrack_allowance_exceeded),
88 	ENA_STAT_ENI_ENTRY(linklocal_allowance_exceeded),
89 };
90 
91 static const struct ena_stats ena_stats_tx_strings[] = {
92 	ENA_STAT_TX_ENTRY(cnt),
93 	ENA_STAT_TX_ENTRY(bytes),
94 	ENA_STAT_TX_ENTRY(prepare_ctx_err),
95 	ENA_STAT_TX_ENTRY(tx_poll),
96 	ENA_STAT_TX_ENTRY(doorbells),
97 	ENA_STAT_TX_ENTRY(bad_req_id),
98 	ENA_STAT_TX_ENTRY(available_desc),
99 	ENA_STAT_TX_ENTRY(missed_tx),
100 };
101 
102 static const struct ena_stats ena_stats_rx_strings[] = {
103 	ENA_STAT_RX_ENTRY(cnt),
104 	ENA_STAT_RX_ENTRY(bytes),
105 	ENA_STAT_RX_ENTRY(refill_partial),
106 	ENA_STAT_RX_ENTRY(l3_csum_bad),
107 	ENA_STAT_RX_ENTRY(l4_csum_bad),
108 	ENA_STAT_RX_ENTRY(l4_csum_good),
109 	ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
110 	ENA_STAT_RX_ENTRY(bad_desc_num),
111 	ENA_STAT_RX_ENTRY(bad_req_id),
112 };
113 
114 #define ENA_STATS_ARRAY_GLOBAL	ARRAY_SIZE(ena_stats_global_strings)
115 #define ENA_STATS_ARRAY_ENI	ARRAY_SIZE(ena_stats_eni_strings)
116 #define ENA_STATS_ARRAY_TX	ARRAY_SIZE(ena_stats_tx_strings)
117 #define ENA_STATS_ARRAY_RX	ARRAY_SIZE(ena_stats_rx_strings)
118 
119 #define QUEUE_OFFLOADS (RTE_ETH_TX_OFFLOAD_TCP_CKSUM |\
120 			RTE_ETH_TX_OFFLOAD_UDP_CKSUM |\
121 			RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |\
122 			RTE_ETH_TX_OFFLOAD_TCP_TSO)
123 #define MBUF_OFFLOADS (RTE_MBUF_F_TX_L4_MASK |\
124 		       RTE_MBUF_F_TX_IP_CKSUM |\
125 		       RTE_MBUF_F_TX_TCP_SEG)
126 
127 /** Vendor ID used by Amazon devices */
128 #define PCI_VENDOR_ID_AMAZON 0x1D0F
129 /** Amazon devices */
130 #define PCI_DEVICE_ID_ENA_VF		0xEC20
131 #define PCI_DEVICE_ID_ENA_VF_RSERV0	0xEC21
132 
133 #define	ENA_TX_OFFLOAD_MASK	(RTE_MBUF_F_TX_L4_MASK |         \
134 	RTE_MBUF_F_TX_IPV6 |            \
135 	RTE_MBUF_F_TX_IPV4 |            \
136 	RTE_MBUF_F_TX_IP_CKSUM |        \
137 	RTE_MBUF_F_TX_TCP_SEG)
138 
139 #define	ENA_TX_OFFLOAD_NOTSUP_MASK	\
140 	(RTE_MBUF_F_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
141 
142 /** HW specific offloads capabilities. */
143 /* IPv4 checksum offload. */
144 #define ENA_L3_IPV4_CSUM		0x0001
145 /* TCP/UDP checksum offload for IPv4 packets. */
146 #define ENA_L4_IPV4_CSUM		0x0002
147 /* TCP/UDP checksum offload for IPv4 packets with pseudo header checksum. */
148 #define ENA_L4_IPV4_CSUM_PARTIAL	0x0004
149 /* TCP/UDP checksum offload for IPv6 packets. */
150 #define ENA_L4_IPV6_CSUM		0x0008
151 /* TCP/UDP checksum offload for IPv6 packets with pseudo header checksum. */
152 #define ENA_L4_IPV6_CSUM_PARTIAL	0x0010
153 /* TSO support for IPv4 packets. */
154 #define ENA_IPV4_TSO			0x0020
155 
156 /* Device supports setting RSS hash. */
157 #define ENA_RX_RSS_HASH			0x0040
158 
159 static const struct rte_pci_id pci_id_ena_map[] = {
160 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
161 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF_RSERV0) },
162 	{ .device_id = 0 },
163 };
164 
165 static struct ena_aenq_handlers aenq_handlers;
166 
167 static int ena_device_init(struct ena_adapter *adapter,
168 			   struct rte_pci_device *pdev,
169 			   struct ena_com_dev_get_features_ctx *get_feat_ctx);
170 static int ena_dev_configure(struct rte_eth_dev *dev);
171 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
172 	struct ena_tx_buffer *tx_info,
173 	struct rte_mbuf *mbuf,
174 	void **push_header,
175 	uint16_t *header_len);
176 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf);
177 static int ena_tx_cleanup(void *txp, uint32_t free_pkt_cnt);
178 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
179 				  uint16_t nb_pkts);
180 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
181 		uint16_t nb_pkts);
182 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
183 			      uint16_t nb_desc, unsigned int socket_id,
184 			      const struct rte_eth_txconf *tx_conf);
185 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
186 			      uint16_t nb_desc, unsigned int socket_id,
187 			      const struct rte_eth_rxconf *rx_conf,
188 			      struct rte_mempool *mp);
189 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len);
190 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
191 				    struct ena_com_rx_buf_info *ena_bufs,
192 				    uint32_t descs,
193 				    uint16_t *next_to_clean,
194 				    uint8_t offset);
195 static uint16_t eth_ena_recv_pkts(void *rx_queue,
196 				  struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
197 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
198 				  struct rte_mbuf *mbuf, uint16_t id);
199 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
200 static void ena_init_rings(struct ena_adapter *adapter,
201 			   bool disable_meta_caching);
202 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
203 static int ena_start(struct rte_eth_dev *dev);
204 static int ena_stop(struct rte_eth_dev *dev);
205 static int ena_close(struct rte_eth_dev *dev);
206 static int ena_dev_reset(struct rte_eth_dev *dev);
207 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
208 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
209 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
210 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
211 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
212 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
213 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
214 static int ena_link_update(struct rte_eth_dev *dev,
215 			   int wait_to_complete);
216 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring);
217 static void ena_queue_stop(struct ena_ring *ring);
218 static void ena_queue_stop_all(struct rte_eth_dev *dev,
219 			      enum ena_ring_type ring_type);
220 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring);
221 static int ena_queue_start_all(struct rte_eth_dev *dev,
222 			       enum ena_ring_type ring_type);
223 static void ena_stats_restart(struct rte_eth_dev *dev);
224 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter);
225 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter);
226 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter);
227 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter);
228 static int ena_infos_get(struct rte_eth_dev *dev,
229 			 struct rte_eth_dev_info *dev_info);
230 static void ena_interrupt_handler_rte(void *cb_arg);
231 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
232 static void ena_destroy_device(struct rte_eth_dev *eth_dev);
233 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
234 static int ena_xstats_get_names(struct rte_eth_dev *dev,
235 				struct rte_eth_xstat_name *xstats_names,
236 				unsigned int n);
237 static int ena_xstats_get_names_by_id(struct rte_eth_dev *dev,
238 				      const uint64_t *ids,
239 				      struct rte_eth_xstat_name *xstats_names,
240 				      unsigned int size);
241 static int ena_xstats_get(struct rte_eth_dev *dev,
242 			  struct rte_eth_xstat *stats,
243 			  unsigned int n);
244 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
245 				const uint64_t *ids,
246 				uint64_t *values,
247 				unsigned int n);
248 static int ena_process_bool_devarg(const char *key,
249 				   const char *value,
250 				   void *opaque);
251 static int ena_parse_devargs(struct ena_adapter *adapter,
252 			     struct rte_devargs *devargs);
253 static int ena_copy_eni_stats(struct ena_adapter *adapter,
254 			      struct ena_stats_eni *stats);
255 static int ena_setup_rx_intr(struct rte_eth_dev *dev);
256 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
257 				    uint16_t queue_id);
258 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
259 				     uint16_t queue_id);
260 static int ena_configure_aenq(struct ena_adapter *adapter);
261 static int ena_mp_primary_handle(const struct rte_mp_msg *mp_msg,
262 				 const void *peer);
263 
264 static const struct eth_dev_ops ena_dev_ops = {
265 	.dev_configure          = ena_dev_configure,
266 	.dev_infos_get          = ena_infos_get,
267 	.rx_queue_setup         = ena_rx_queue_setup,
268 	.tx_queue_setup         = ena_tx_queue_setup,
269 	.dev_start              = ena_start,
270 	.dev_stop               = ena_stop,
271 	.link_update            = ena_link_update,
272 	.stats_get              = ena_stats_get,
273 	.xstats_get_names       = ena_xstats_get_names,
274 	.xstats_get_names_by_id = ena_xstats_get_names_by_id,
275 	.xstats_get             = ena_xstats_get,
276 	.xstats_get_by_id       = ena_xstats_get_by_id,
277 	.mtu_set                = ena_mtu_set,
278 	.rx_queue_release       = ena_rx_queue_release,
279 	.tx_queue_release       = ena_tx_queue_release,
280 	.dev_close              = ena_close,
281 	.dev_reset              = ena_dev_reset,
282 	.reta_update            = ena_rss_reta_update,
283 	.reta_query             = ena_rss_reta_query,
284 	.rx_queue_intr_enable   = ena_rx_queue_intr_enable,
285 	.rx_queue_intr_disable  = ena_rx_queue_intr_disable,
286 	.rss_hash_update        = ena_rss_hash_update,
287 	.rss_hash_conf_get      = ena_rss_hash_conf_get,
288 	.tx_done_cleanup        = ena_tx_cleanup,
289 };
290 
291 /*********************************************************************
292  *  Multi-Process communication bits
293  *********************************************************************/
294 /* rte_mp IPC message name */
295 #define ENA_MP_NAME	"net_ena_mp"
296 /* Request timeout in seconds */
297 #define ENA_MP_REQ_TMO	5
298 
299 /** Proxy request type */
300 enum ena_mp_req {
301 	ENA_MP_DEV_STATS_GET,
302 	ENA_MP_ENI_STATS_GET,
303 	ENA_MP_MTU_SET,
304 	ENA_MP_IND_TBL_GET,
305 	ENA_MP_IND_TBL_SET
306 };
307 
308 /** Proxy message body. Shared between requests and responses. */
309 struct ena_mp_body {
310 	/* Message type */
311 	enum ena_mp_req type;
312 	int port_id;
313 	/* Processing result. Set in replies. 0 if message succeeded, negative
314 	 * error code otherwise.
315 	 */
316 	int result;
317 	union {
318 		int mtu; /* For ENA_MP_MTU_SET */
319 	} args;
320 };
321 
322 /**
323  * Initialize IPC message.
324  *
325  * @param[out] msg
326  *   Pointer to the message to initialize.
327  * @param[in] type
328  *   Message type.
329  * @param[in] port_id
330  *   Port ID of target device.
331  *
332  */
333 static void
334 mp_msg_init(struct rte_mp_msg *msg, enum ena_mp_req type, int port_id)
335 {
336 	struct ena_mp_body *body = (struct ena_mp_body *)&msg->param;
337 
338 	memset(msg, 0, sizeof(*msg));
339 	strlcpy(msg->name, ENA_MP_NAME, sizeof(msg->name));
340 	msg->len_param = sizeof(*body);
341 	body->type = type;
342 	body->port_id = port_id;
343 }
344 
345 /*********************************************************************
346  *  Multi-Process communication PMD API
347  *********************************************************************/
348 /**
349  * Define proxy request descriptor
350  *
351  * Used to define all structures and functions required for proxying a given
352  * function to the primary process including the code to perform to prepare the
353  * request and process the response.
354  *
355  * @param[in] f
356  *   Name of the function to proxy
357  * @param[in] t
358  *   Message type to use
359  * @param[in] prep
360  *   Body of a function to prepare the request in form of a statement
361  *   expression. It is passed all the original function arguments along with two
362  *   extra ones:
363  *   - struct ena_adapter *adapter - PMD data of the device calling the proxy.
364  *   - struct ena_mp_body *req - body of a request to prepare.
365  * @param[in] proc
366  *   Body of a function to process the response in form of a statement
367  *   expression. It is passed all the original function arguments along with two
368  *   extra ones:
369  *   - struct ena_adapter *adapter - PMD data of the device calling the proxy.
370  *   - struct ena_mp_body *rsp - body of a response to process.
371  * @param ...
372  *   Proxied function's arguments
373  *
374  * @note Inside prep and proc any parameters which aren't used should be marked
375  *       as such (with ENA_TOUCH or __rte_unused).
376  */
377 #define ENA_PROXY_DESC(f, t, prep, proc, ...)			\
378 	static const enum ena_mp_req mp_type_ ## f =  t;	\
379 	static const char *mp_name_ ## f = #t;			\
380 	static void mp_prep_ ## f(struct ena_adapter *adapter,	\
381 				  struct ena_mp_body *req,	\
382 				  __VA_ARGS__)			\
383 	{							\
384 		prep;						\
385 	}							\
386 	static void mp_proc_ ## f(struct ena_adapter *adapter,	\
387 				  struct ena_mp_body *rsp,	\
388 				  __VA_ARGS__)			\
389 	{							\
390 		proc;						\
391 	}
392 
393 /**
394  * Proxy wrapper for calling primary functions in a secondary process.
395  *
396  * Depending on whether called in primary or secondary process, calls the
397  * @p func directly or proxies the call to the primary process via rte_mp IPC.
398  * This macro requires a proxy request descriptor to be defined for @p func
399  * using ENA_PROXY_DESC() macro.
400  *
401  * @param[in/out] a
402  *   Device PMD data. Used for sending the message and sharing message results
403  *   between primary and secondary.
404  * @param[in] f
405  *   Function to proxy.
406  * @param ...
407  *   Arguments of @p func.
408  *
409  * @return
410  *   - 0: Processing succeeded and response handler was called.
411  *   - -EPERM: IPC is unavailable on this platform. This means only primary
412  *             process may call the proxied function.
413  *   - -EIO:   IPC returned error on request send. Inspect rte_errno detailed
414  *             error code.
415  *   - Negative error code from the proxied function.
416  *
417  * @note This mechanism is geared towards control-path tasks. Avoid calling it
418  *       in fast-path unless unbound delays are allowed. This is due to the IPC
419  *       mechanism itself (socket based).
420  * @note Due to IPC parameter size limitations the proxy logic shares call
421  *       results through the struct ena_adapter shared memory. This makes the
422  *       proxy mechanism strictly single-threaded. Therefore be sure to make all
423  *       calls to the same proxied function under the same lock.
424  */
425 #define ENA_PROXY(a, f, ...)						\
426 ({									\
427 	struct ena_adapter *_a = (a);					\
428 	struct timespec ts = { .tv_sec = ENA_MP_REQ_TMO };		\
429 	struct ena_mp_body *req, *rsp;					\
430 	struct rte_mp_reply mp_rep;					\
431 	struct rte_mp_msg mp_req;					\
432 	int ret;							\
433 									\
434 	if (rte_eal_process_type() == RTE_PROC_PRIMARY) {		\
435 		ret = f(__VA_ARGS__);					\
436 	} else {							\
437 		/* Prepare and send request */				\
438 		req = (struct ena_mp_body *)&mp_req.param;		\
439 		mp_msg_init(&mp_req, mp_type_ ## f, _a->edev_data->port_id); \
440 		mp_prep_ ## f(_a, req, ## __VA_ARGS__);			\
441 									\
442 		ret = rte_mp_request_sync(&mp_req, &mp_rep, &ts);	\
443 		if (likely(!ret)) {					\
444 			RTE_ASSERT(mp_rep.nb_received == 1);		\
445 			rsp = (struct ena_mp_body *)&mp_rep.msgs[0].param; \
446 			ret = rsp->result;				\
447 			if (ret == 0) {					\
448 				mp_proc_##f(_a, rsp, ## __VA_ARGS__);	\
449 			} else {					\
450 				PMD_DRV_LOG(ERR,			\
451 					    "%s returned error: %d\n",	\
452 					    mp_name_ ## f, rsp->result);\
453 			}						\
454 			free(mp_rep.msgs);				\
455 		} else if (rte_errno == ENOTSUP) {			\
456 			PMD_DRV_LOG(ERR,				\
457 				    "No IPC, can't proxy to primary\n");\
458 			ret = -rte_errno;				\
459 		} else {						\
460 			PMD_DRV_LOG(ERR, "Request %s failed: %s\n",	\
461 				    mp_name_ ## f,			\
462 				    rte_strerror(rte_errno));		\
463 			ret = -EIO;					\
464 		}							\
465 	}								\
466 	ret;								\
467 })
468 
469 /*********************************************************************
470  *  Multi-Process communication request descriptors
471  *********************************************************************/
472 
473 ENA_PROXY_DESC(ena_com_get_dev_basic_stats, ENA_MP_DEV_STATS_GET,
474 ({
475 	ENA_TOUCH(adapter);
476 	ENA_TOUCH(req);
477 	ENA_TOUCH(ena_dev);
478 	ENA_TOUCH(stats);
479 }),
480 ({
481 	ENA_TOUCH(rsp);
482 	ENA_TOUCH(ena_dev);
483 	if (stats != &adapter->basic_stats)
484 		rte_memcpy(stats, &adapter->basic_stats, sizeof(*stats));
485 }),
486 	struct ena_com_dev *ena_dev, struct ena_admin_basic_stats *stats);
487 
488 ENA_PROXY_DESC(ena_com_get_eni_stats, ENA_MP_ENI_STATS_GET,
489 ({
490 	ENA_TOUCH(adapter);
491 	ENA_TOUCH(req);
492 	ENA_TOUCH(ena_dev);
493 	ENA_TOUCH(stats);
494 }),
495 ({
496 	ENA_TOUCH(rsp);
497 	ENA_TOUCH(ena_dev);
498 	if (stats != (struct ena_admin_eni_stats *)&adapter->eni_stats)
499 		rte_memcpy(stats, &adapter->eni_stats, sizeof(*stats));
500 }),
501 	struct ena_com_dev *ena_dev, struct ena_admin_eni_stats *stats);
502 
503 ENA_PROXY_DESC(ena_com_set_dev_mtu, ENA_MP_MTU_SET,
504 ({
505 	ENA_TOUCH(adapter);
506 	ENA_TOUCH(ena_dev);
507 	req->args.mtu = mtu;
508 }),
509 ({
510 	ENA_TOUCH(adapter);
511 	ENA_TOUCH(rsp);
512 	ENA_TOUCH(ena_dev);
513 	ENA_TOUCH(mtu);
514 }),
515 	struct ena_com_dev *ena_dev, int mtu);
516 
517 ENA_PROXY_DESC(ena_com_indirect_table_set, ENA_MP_IND_TBL_SET,
518 ({
519 	ENA_TOUCH(adapter);
520 	ENA_TOUCH(req);
521 	ENA_TOUCH(ena_dev);
522 }),
523 ({
524 	ENA_TOUCH(adapter);
525 	ENA_TOUCH(rsp);
526 	ENA_TOUCH(ena_dev);
527 }),
528 	struct ena_com_dev *ena_dev);
529 
530 ENA_PROXY_DESC(ena_com_indirect_table_get, ENA_MP_IND_TBL_GET,
531 ({
532 	ENA_TOUCH(adapter);
533 	ENA_TOUCH(req);
534 	ENA_TOUCH(ena_dev);
535 	ENA_TOUCH(ind_tbl);
536 }),
537 ({
538 	ENA_TOUCH(rsp);
539 	ENA_TOUCH(ena_dev);
540 	if (ind_tbl != adapter->indirect_table)
541 		rte_memcpy(ind_tbl, adapter->indirect_table,
542 			   sizeof(adapter->indirect_table));
543 }),
544 	struct ena_com_dev *ena_dev, u32 *ind_tbl);
545 
546 static inline void ena_trigger_reset(struct ena_adapter *adapter,
547 				     enum ena_regs_reset_reason_types reason)
548 {
549 	if (likely(!adapter->trigger_reset)) {
550 		adapter->reset_reason = reason;
551 		adapter->trigger_reset = true;
552 	}
553 }
554 
555 static inline void ena_rx_mbuf_prepare(struct ena_ring *rx_ring,
556 				       struct rte_mbuf *mbuf,
557 				       struct ena_com_rx_ctx *ena_rx_ctx,
558 				       bool fill_hash)
559 {
560 	struct ena_stats_rx *rx_stats = &rx_ring->rx_stats;
561 	uint64_t ol_flags = 0;
562 	uint32_t packet_type = 0;
563 
564 	if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
565 		packet_type |= RTE_PTYPE_L4_TCP;
566 	else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
567 		packet_type |= RTE_PTYPE_L4_UDP;
568 
569 	if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
570 		packet_type |= RTE_PTYPE_L3_IPV4;
571 		if (unlikely(ena_rx_ctx->l3_csum_err)) {
572 			++rx_stats->l3_csum_bad;
573 			ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
574 		} else {
575 			ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
576 		}
577 	} else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
578 		packet_type |= RTE_PTYPE_L3_IPV6;
579 	}
580 
581 	if (!ena_rx_ctx->l4_csum_checked || ena_rx_ctx->frag) {
582 		ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN;
583 	} else {
584 		if (unlikely(ena_rx_ctx->l4_csum_err)) {
585 			++rx_stats->l4_csum_bad;
586 			ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
587 		} else {
588 			++rx_stats->l4_csum_good;
589 			ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
590 		}
591 	}
592 
593 	if (fill_hash &&
594 	    likely((packet_type & ENA_PTYPE_HAS_HASH) && !ena_rx_ctx->frag)) {
595 		ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
596 		mbuf->hash.rss = ena_rx_ctx->hash;
597 	}
598 
599 	mbuf->ol_flags = ol_flags;
600 	mbuf->packet_type = packet_type;
601 }
602 
603 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
604 				       struct ena_com_tx_ctx *ena_tx_ctx,
605 				       uint64_t queue_offloads,
606 				       bool disable_meta_caching)
607 {
608 	struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
609 
610 	if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
611 	    (queue_offloads & QUEUE_OFFLOADS)) {
612 		/* check if TSO is required */
613 		if ((mbuf->ol_flags & RTE_MBUF_F_TX_TCP_SEG) &&
614 		    (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_TSO)) {
615 			ena_tx_ctx->tso_enable = true;
616 
617 			ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
618 		}
619 
620 		/* check if L3 checksum is needed */
621 		if ((mbuf->ol_flags & RTE_MBUF_F_TX_IP_CKSUM) &&
622 		    (queue_offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM))
623 			ena_tx_ctx->l3_csum_enable = true;
624 
625 		if (mbuf->ol_flags & RTE_MBUF_F_TX_IPV6) {
626 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
627 			/* For the IPv6 packets, DF always needs to be true. */
628 			ena_tx_ctx->df = 1;
629 		} else {
630 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
631 
632 			/* set don't fragment (DF) flag */
633 			if (mbuf->packet_type &
634 				(RTE_PTYPE_L4_NONFRAG
635 				 | RTE_PTYPE_INNER_L4_NONFRAG))
636 				ena_tx_ctx->df = 1;
637 		}
638 
639 		/* check if L4 checksum is needed */
640 		if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) == RTE_MBUF_F_TX_TCP_CKSUM) &&
641 		    (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) {
642 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
643 			ena_tx_ctx->l4_csum_enable = true;
644 		} else if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) ==
645 				RTE_MBUF_F_TX_UDP_CKSUM) &&
646 				(queue_offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM)) {
647 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
648 			ena_tx_ctx->l4_csum_enable = true;
649 		} else {
650 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
651 			ena_tx_ctx->l4_csum_enable = false;
652 		}
653 
654 		ena_meta->mss = mbuf->tso_segsz;
655 		ena_meta->l3_hdr_len = mbuf->l3_len;
656 		ena_meta->l3_hdr_offset = mbuf->l2_len;
657 
658 		ena_tx_ctx->meta_valid = true;
659 	} else if (disable_meta_caching) {
660 		memset(ena_meta, 0, sizeof(*ena_meta));
661 		ena_tx_ctx->meta_valid = true;
662 	} else {
663 		ena_tx_ctx->meta_valid = false;
664 	}
665 }
666 
667 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
668 {
669 	struct ena_tx_buffer *tx_info = NULL;
670 
671 	if (likely(req_id < tx_ring->ring_size)) {
672 		tx_info = &tx_ring->tx_buffer_info[req_id];
673 		if (likely(tx_info->mbuf))
674 			return 0;
675 	}
676 
677 	if (tx_info)
678 		PMD_TX_LOG(ERR, "tx_info doesn't have valid mbuf. queue %d:%d req_id %u\n",
679 			tx_ring->port_id, tx_ring->id, req_id);
680 	else
681 		PMD_TX_LOG(ERR, "Invalid req_id: %hu in queue %d:%d\n",
682 			req_id, tx_ring->port_id, tx_ring->id);
683 
684 	/* Trigger device reset */
685 	++tx_ring->tx_stats.bad_req_id;
686 	ena_trigger_reset(tx_ring->adapter, ENA_REGS_RESET_INV_TX_REQ_ID);
687 	return -EFAULT;
688 }
689 
690 static void ena_config_host_info(struct ena_com_dev *ena_dev)
691 {
692 	struct ena_admin_host_info *host_info;
693 	int rc;
694 
695 	/* Allocate only the host info */
696 	rc = ena_com_allocate_host_info(ena_dev);
697 	if (rc) {
698 		PMD_DRV_LOG(ERR, "Cannot allocate host info\n");
699 		return;
700 	}
701 
702 	host_info = ena_dev->host_attr.host_info;
703 
704 	host_info->os_type = ENA_ADMIN_OS_DPDK;
705 	host_info->kernel_ver = RTE_VERSION;
706 	strlcpy((char *)host_info->kernel_ver_str, rte_version(),
707 		sizeof(host_info->kernel_ver_str));
708 	host_info->os_dist = RTE_VERSION;
709 	strlcpy((char *)host_info->os_dist_str, rte_version(),
710 		sizeof(host_info->os_dist_str));
711 	host_info->driver_version =
712 		(DRV_MODULE_VER_MAJOR) |
713 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
714 		(DRV_MODULE_VER_SUBMINOR <<
715 			ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
716 	host_info->num_cpus = rte_lcore_count();
717 
718 	host_info->driver_supported_features =
719 		ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK |
720 		ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK;
721 
722 	rc = ena_com_set_host_attributes(ena_dev);
723 	if (rc) {
724 		if (rc == -ENA_COM_UNSUPPORTED)
725 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
726 		else
727 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
728 
729 		goto err;
730 	}
731 
732 	return;
733 
734 err:
735 	ena_com_delete_host_info(ena_dev);
736 }
737 
738 /* This function calculates the number of xstats based on the current config */
739 static unsigned int ena_xstats_calc_num(struct rte_eth_dev_data *data)
740 {
741 	return ENA_STATS_ARRAY_GLOBAL + ENA_STATS_ARRAY_ENI +
742 		(data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
743 		(data->nb_rx_queues * ENA_STATS_ARRAY_RX);
744 }
745 
746 static void ena_config_debug_area(struct ena_adapter *adapter)
747 {
748 	u32 debug_area_size;
749 	int rc, ss_count;
750 
751 	ss_count = ena_xstats_calc_num(adapter->edev_data);
752 
753 	/* allocate 32 bytes for each string and 64bit for the value */
754 	debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
755 
756 	rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
757 	if (rc) {
758 		PMD_DRV_LOG(ERR, "Cannot allocate debug area\n");
759 		return;
760 	}
761 
762 	rc = ena_com_set_host_attributes(&adapter->ena_dev);
763 	if (rc) {
764 		if (rc == -ENA_COM_UNSUPPORTED)
765 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
766 		else
767 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
768 
769 		goto err;
770 	}
771 
772 	return;
773 err:
774 	ena_com_delete_debug_area(&adapter->ena_dev);
775 }
776 
777 static int ena_close(struct rte_eth_dev *dev)
778 {
779 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
780 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
781 	struct ena_adapter *adapter = dev->data->dev_private;
782 	int ret = 0;
783 
784 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
785 		return 0;
786 
787 	if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
788 		ret = ena_stop(dev);
789 	adapter->state = ENA_ADAPTER_STATE_CLOSED;
790 
791 	ena_rx_queue_release_all(dev);
792 	ena_tx_queue_release_all(dev);
793 
794 	rte_free(adapter->drv_stats);
795 	adapter->drv_stats = NULL;
796 
797 	rte_intr_disable(intr_handle);
798 	rte_intr_callback_unregister(intr_handle,
799 				     ena_interrupt_handler_rte,
800 				     dev);
801 
802 	/*
803 	 * MAC is not allocated dynamically. Setting NULL should prevent from
804 	 * release of the resource in the rte_eth_dev_release_port().
805 	 */
806 	dev->data->mac_addrs = NULL;
807 
808 	return ret;
809 }
810 
811 static int
812 ena_dev_reset(struct rte_eth_dev *dev)
813 {
814 	int rc = 0;
815 
816 	/* Cannot release memory in secondary process */
817 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
818 		PMD_DRV_LOG(WARNING, "dev_reset not supported in secondary.\n");
819 		return -EPERM;
820 	}
821 
822 	ena_destroy_device(dev);
823 	rc = eth_ena_dev_init(dev);
824 	if (rc)
825 		PMD_INIT_LOG(CRIT, "Cannot initialize device\n");
826 
827 	return rc;
828 }
829 
830 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
831 {
832 	int nb_queues = dev->data->nb_rx_queues;
833 	int i;
834 
835 	for (i = 0; i < nb_queues; i++)
836 		ena_rx_queue_release(dev, i);
837 }
838 
839 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
840 {
841 	int nb_queues = dev->data->nb_tx_queues;
842 	int i;
843 
844 	for (i = 0; i < nb_queues; i++)
845 		ena_tx_queue_release(dev, i);
846 }
847 
848 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
849 {
850 	struct ena_ring *ring = dev->data->rx_queues[qid];
851 
852 	/* Free ring resources */
853 	rte_free(ring->rx_buffer_info);
854 	ring->rx_buffer_info = NULL;
855 
856 	rte_free(ring->rx_refill_buffer);
857 	ring->rx_refill_buffer = NULL;
858 
859 	rte_free(ring->empty_rx_reqs);
860 	ring->empty_rx_reqs = NULL;
861 
862 	ring->configured = 0;
863 
864 	PMD_DRV_LOG(NOTICE, "Rx queue %d:%d released\n",
865 		ring->port_id, ring->id);
866 }
867 
868 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
869 {
870 	struct ena_ring *ring = dev->data->tx_queues[qid];
871 
872 	/* Free ring resources */
873 	rte_free(ring->push_buf_intermediate_buf);
874 
875 	rte_free(ring->tx_buffer_info);
876 
877 	rte_free(ring->empty_tx_reqs);
878 
879 	ring->empty_tx_reqs = NULL;
880 	ring->tx_buffer_info = NULL;
881 	ring->push_buf_intermediate_buf = NULL;
882 
883 	ring->configured = 0;
884 
885 	PMD_DRV_LOG(NOTICE, "Tx queue %d:%d released\n",
886 		ring->port_id, ring->id);
887 }
888 
889 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
890 {
891 	unsigned int i;
892 
893 	for (i = 0; i < ring->ring_size; ++i) {
894 		struct ena_rx_buffer *rx_info = &ring->rx_buffer_info[i];
895 		if (rx_info->mbuf) {
896 			rte_mbuf_raw_free(rx_info->mbuf);
897 			rx_info->mbuf = NULL;
898 		}
899 	}
900 }
901 
902 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
903 {
904 	unsigned int i;
905 
906 	for (i = 0; i < ring->ring_size; ++i) {
907 		struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
908 
909 		if (tx_buf->mbuf) {
910 			rte_pktmbuf_free(tx_buf->mbuf);
911 			tx_buf->mbuf = NULL;
912 		}
913 	}
914 }
915 
916 static int ena_link_update(struct rte_eth_dev *dev,
917 			   __rte_unused int wait_to_complete)
918 {
919 	struct rte_eth_link *link = &dev->data->dev_link;
920 	struct ena_adapter *adapter = dev->data->dev_private;
921 
922 	link->link_status = adapter->link_status ? RTE_ETH_LINK_UP : RTE_ETH_LINK_DOWN;
923 	link->link_speed = RTE_ETH_SPEED_NUM_NONE;
924 	link->link_duplex = RTE_ETH_LINK_FULL_DUPLEX;
925 
926 	return 0;
927 }
928 
929 static int ena_queue_start_all(struct rte_eth_dev *dev,
930 			       enum ena_ring_type ring_type)
931 {
932 	struct ena_adapter *adapter = dev->data->dev_private;
933 	struct ena_ring *queues = NULL;
934 	int nb_queues;
935 	int i = 0;
936 	int rc = 0;
937 
938 	if (ring_type == ENA_RING_TYPE_RX) {
939 		queues = adapter->rx_ring;
940 		nb_queues = dev->data->nb_rx_queues;
941 	} else {
942 		queues = adapter->tx_ring;
943 		nb_queues = dev->data->nb_tx_queues;
944 	}
945 	for (i = 0; i < nb_queues; i++) {
946 		if (queues[i].configured) {
947 			if (ring_type == ENA_RING_TYPE_RX) {
948 				ena_assert_msg(
949 					dev->data->rx_queues[i] == &queues[i],
950 					"Inconsistent state of Rx queues\n");
951 			} else {
952 				ena_assert_msg(
953 					dev->data->tx_queues[i] == &queues[i],
954 					"Inconsistent state of Tx queues\n");
955 			}
956 
957 			rc = ena_queue_start(dev, &queues[i]);
958 
959 			if (rc) {
960 				PMD_INIT_LOG(ERR,
961 					"Failed to start queue[%d] of type(%d)\n",
962 					i, ring_type);
963 				goto err;
964 			}
965 		}
966 	}
967 
968 	return 0;
969 
970 err:
971 	while (i--)
972 		if (queues[i].configured)
973 			ena_queue_stop(&queues[i]);
974 
975 	return rc;
976 }
977 
978 static int ena_check_valid_conf(struct ena_adapter *adapter)
979 {
980 	uint32_t mtu = adapter->edev_data->mtu;
981 
982 	if (mtu > adapter->max_mtu || mtu < ENA_MIN_MTU) {
983 		PMD_INIT_LOG(ERR,
984 			"Unsupported MTU of %d. Max MTU: %d, min MTU: %d\n",
985 			mtu, adapter->max_mtu, ENA_MIN_MTU);
986 		return ENA_COM_UNSUPPORTED;
987 	}
988 
989 	return 0;
990 }
991 
992 static int
993 ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx,
994 		       bool use_large_llq_hdr)
995 {
996 	struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
997 	struct ena_com_dev *ena_dev = ctx->ena_dev;
998 	uint32_t max_tx_queue_size;
999 	uint32_t max_rx_queue_size;
1000 
1001 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1002 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1003 			&ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
1004 		max_rx_queue_size = RTE_MIN(max_queue_ext->max_rx_cq_depth,
1005 			max_queue_ext->max_rx_sq_depth);
1006 		max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
1007 
1008 		if (ena_dev->tx_mem_queue_type ==
1009 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1010 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1011 				llq->max_llq_depth);
1012 		} else {
1013 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1014 				max_queue_ext->max_tx_sq_depth);
1015 		}
1016 
1017 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1018 			max_queue_ext->max_per_packet_rx_descs);
1019 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1020 			max_queue_ext->max_per_packet_tx_descs);
1021 	} else {
1022 		struct ena_admin_queue_feature_desc *max_queues =
1023 			&ctx->get_feat_ctx->max_queues;
1024 		max_rx_queue_size = RTE_MIN(max_queues->max_cq_depth,
1025 			max_queues->max_sq_depth);
1026 		max_tx_queue_size = max_queues->max_cq_depth;
1027 
1028 		if (ena_dev->tx_mem_queue_type ==
1029 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1030 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1031 				llq->max_llq_depth);
1032 		} else {
1033 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1034 				max_queues->max_sq_depth);
1035 		}
1036 
1037 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1038 			max_queues->max_packet_rx_descs);
1039 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1040 			max_queues->max_packet_tx_descs);
1041 	}
1042 
1043 	/* Round down to the nearest power of 2 */
1044 	max_rx_queue_size = rte_align32prevpow2(max_rx_queue_size);
1045 	max_tx_queue_size = rte_align32prevpow2(max_tx_queue_size);
1046 
1047 	if (use_large_llq_hdr) {
1048 		if ((llq->entry_size_ctrl_supported &
1049 		     ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
1050 		    (ena_dev->tx_mem_queue_type ==
1051 		     ENA_ADMIN_PLACEMENT_POLICY_DEV)) {
1052 			max_tx_queue_size /= 2;
1053 			PMD_INIT_LOG(INFO,
1054 				"Forcing large headers and decreasing maximum Tx queue size to %d\n",
1055 				max_tx_queue_size);
1056 		} else {
1057 			PMD_INIT_LOG(ERR,
1058 				"Forcing large headers failed: LLQ is disabled or device does not support large headers\n");
1059 		}
1060 	}
1061 
1062 	if (unlikely(max_rx_queue_size == 0 || max_tx_queue_size == 0)) {
1063 		PMD_INIT_LOG(ERR, "Invalid queue size\n");
1064 		return -EFAULT;
1065 	}
1066 
1067 	ctx->max_tx_queue_size = max_tx_queue_size;
1068 	ctx->max_rx_queue_size = max_rx_queue_size;
1069 
1070 	return 0;
1071 }
1072 
1073 static void ena_stats_restart(struct rte_eth_dev *dev)
1074 {
1075 	struct ena_adapter *adapter = dev->data->dev_private;
1076 
1077 	rte_atomic64_init(&adapter->drv_stats->ierrors);
1078 	rte_atomic64_init(&adapter->drv_stats->oerrors);
1079 	rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
1080 	adapter->drv_stats->rx_drops = 0;
1081 }
1082 
1083 static int ena_stats_get(struct rte_eth_dev *dev,
1084 			  struct rte_eth_stats *stats)
1085 {
1086 	struct ena_admin_basic_stats ena_stats;
1087 	struct ena_adapter *adapter = dev->data->dev_private;
1088 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1089 	int rc;
1090 	int i;
1091 	int max_rings_stats;
1092 
1093 	memset(&ena_stats, 0, sizeof(ena_stats));
1094 
1095 	rte_spinlock_lock(&adapter->admin_lock);
1096 	rc = ENA_PROXY(adapter, ena_com_get_dev_basic_stats, ena_dev,
1097 		       &ena_stats);
1098 	rte_spinlock_unlock(&adapter->admin_lock);
1099 	if (unlikely(rc)) {
1100 		PMD_DRV_LOG(ERR, "Could not retrieve statistics from ENA\n");
1101 		return rc;
1102 	}
1103 
1104 	/* Set of basic statistics from ENA */
1105 	stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
1106 					  ena_stats.rx_pkts_low);
1107 	stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
1108 					  ena_stats.tx_pkts_low);
1109 	stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
1110 					ena_stats.rx_bytes_low);
1111 	stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
1112 					ena_stats.tx_bytes_low);
1113 
1114 	/* Driver related stats */
1115 	stats->imissed = adapter->drv_stats->rx_drops;
1116 	stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
1117 	stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
1118 	stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
1119 
1120 	max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
1121 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
1122 	for (i = 0; i < max_rings_stats; ++i) {
1123 		struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
1124 
1125 		stats->q_ibytes[i] = rx_stats->bytes;
1126 		stats->q_ipackets[i] = rx_stats->cnt;
1127 		stats->q_errors[i] = rx_stats->bad_desc_num +
1128 			rx_stats->bad_req_id;
1129 	}
1130 
1131 	max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
1132 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
1133 	for (i = 0; i < max_rings_stats; ++i) {
1134 		struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
1135 
1136 		stats->q_obytes[i] = tx_stats->bytes;
1137 		stats->q_opackets[i] = tx_stats->cnt;
1138 	}
1139 
1140 	return 0;
1141 }
1142 
1143 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1144 {
1145 	struct ena_adapter *adapter;
1146 	struct ena_com_dev *ena_dev;
1147 	int rc = 0;
1148 
1149 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
1150 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
1151 	adapter = dev->data->dev_private;
1152 
1153 	ena_dev = &adapter->ena_dev;
1154 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
1155 
1156 	if (mtu > adapter->max_mtu || mtu < ENA_MIN_MTU) {
1157 		PMD_DRV_LOG(ERR,
1158 			"Invalid MTU setting. New MTU: %d, max MTU: %d, min MTU: %d\n",
1159 			mtu, adapter->max_mtu, ENA_MIN_MTU);
1160 		return -EINVAL;
1161 	}
1162 
1163 	rc = ENA_PROXY(adapter, ena_com_set_dev_mtu, ena_dev, mtu);
1164 	if (rc)
1165 		PMD_DRV_LOG(ERR, "Could not set MTU: %d\n", mtu);
1166 	else
1167 		PMD_DRV_LOG(NOTICE, "MTU set to: %d\n", mtu);
1168 
1169 	return rc;
1170 }
1171 
1172 static int ena_start(struct rte_eth_dev *dev)
1173 {
1174 	struct ena_adapter *adapter = dev->data->dev_private;
1175 	uint64_t ticks;
1176 	int rc = 0;
1177 
1178 	/* Cannot allocate memory in secondary process */
1179 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1180 		PMD_DRV_LOG(WARNING, "dev_start not supported in secondary.\n");
1181 		return -EPERM;
1182 	}
1183 
1184 	rc = ena_check_valid_conf(adapter);
1185 	if (rc)
1186 		return rc;
1187 
1188 	rc = ena_setup_rx_intr(dev);
1189 	if (rc)
1190 		return rc;
1191 
1192 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
1193 	if (rc)
1194 		return rc;
1195 
1196 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
1197 	if (rc)
1198 		goto err_start_tx;
1199 
1200 	if (adapter->edev_data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG) {
1201 		rc = ena_rss_configure(adapter);
1202 		if (rc)
1203 			goto err_rss_init;
1204 	}
1205 
1206 	ena_stats_restart(dev);
1207 
1208 	adapter->timestamp_wd = rte_get_timer_cycles();
1209 	adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
1210 
1211 	ticks = rte_get_timer_hz();
1212 	rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
1213 			ena_timer_wd_callback, dev);
1214 
1215 	++adapter->dev_stats.dev_start;
1216 	adapter->state = ENA_ADAPTER_STATE_RUNNING;
1217 
1218 	return 0;
1219 
1220 err_rss_init:
1221 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1222 err_start_tx:
1223 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1224 	return rc;
1225 }
1226 
1227 static int ena_stop(struct rte_eth_dev *dev)
1228 {
1229 	struct ena_adapter *adapter = dev->data->dev_private;
1230 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1231 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1232 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
1233 	int rc;
1234 
1235 	/* Cannot free memory in secondary process */
1236 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1237 		PMD_DRV_LOG(WARNING, "dev_stop not supported in secondary.\n");
1238 		return -EPERM;
1239 	}
1240 
1241 	rte_timer_stop_sync(&adapter->timer_wd);
1242 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1243 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1244 
1245 	if (adapter->trigger_reset) {
1246 		rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
1247 		if (rc)
1248 			PMD_DRV_LOG(ERR, "Device reset failed, rc: %d\n", rc);
1249 	}
1250 
1251 	rte_intr_disable(intr_handle);
1252 
1253 	rte_intr_efd_disable(intr_handle);
1254 
1255 	/* Cleanup vector list */
1256 	rte_intr_vec_list_free(intr_handle);
1257 
1258 	rte_intr_enable(intr_handle);
1259 
1260 	++adapter->dev_stats.dev_stop;
1261 	adapter->state = ENA_ADAPTER_STATE_STOPPED;
1262 	dev->data->dev_started = 0;
1263 
1264 	return 0;
1265 }
1266 
1267 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring)
1268 {
1269 	struct ena_adapter *adapter = ring->adapter;
1270 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1271 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1272 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
1273 	struct ena_com_create_io_ctx ctx =
1274 		/* policy set to _HOST just to satisfy icc compiler */
1275 		{ ENA_ADMIN_PLACEMENT_POLICY_HOST,
1276 		  0, 0, 0, 0, 0 };
1277 	uint16_t ena_qid;
1278 	unsigned int i;
1279 	int rc;
1280 
1281 	ctx.msix_vector = -1;
1282 	if (ring->type == ENA_RING_TYPE_TX) {
1283 		ena_qid = ENA_IO_TXQ_IDX(ring->id);
1284 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1285 		ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1286 		for (i = 0; i < ring->ring_size; i++)
1287 			ring->empty_tx_reqs[i] = i;
1288 	} else {
1289 		ena_qid = ENA_IO_RXQ_IDX(ring->id);
1290 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1291 		if (rte_intr_dp_is_en(intr_handle))
1292 			ctx.msix_vector =
1293 				rte_intr_vec_list_index_get(intr_handle,
1294 								   ring->id);
1295 
1296 		for (i = 0; i < ring->ring_size; i++)
1297 			ring->empty_rx_reqs[i] = i;
1298 	}
1299 	ctx.queue_size = ring->ring_size;
1300 	ctx.qid = ena_qid;
1301 	ctx.numa_node = ring->numa_socket_id;
1302 
1303 	rc = ena_com_create_io_queue(ena_dev, &ctx);
1304 	if (rc) {
1305 		PMD_DRV_LOG(ERR,
1306 			"Failed to create IO queue[%d] (qid:%d), rc: %d\n",
1307 			ring->id, ena_qid, rc);
1308 		return rc;
1309 	}
1310 
1311 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1312 				     &ring->ena_com_io_sq,
1313 				     &ring->ena_com_io_cq);
1314 	if (rc) {
1315 		PMD_DRV_LOG(ERR,
1316 			"Failed to get IO queue[%d] handlers, rc: %d\n",
1317 			ring->id, rc);
1318 		ena_com_destroy_io_queue(ena_dev, ena_qid);
1319 		return rc;
1320 	}
1321 
1322 	if (ring->type == ENA_RING_TYPE_TX)
1323 		ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1324 
1325 	/* Start with Rx interrupts being masked. */
1326 	if (ring->type == ENA_RING_TYPE_RX && rte_intr_dp_is_en(intr_handle))
1327 		ena_rx_queue_intr_disable(dev, ring->id);
1328 
1329 	return 0;
1330 }
1331 
1332 static void ena_queue_stop(struct ena_ring *ring)
1333 {
1334 	struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
1335 
1336 	if (ring->type == ENA_RING_TYPE_RX) {
1337 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
1338 		ena_rx_queue_release_bufs(ring);
1339 	} else {
1340 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
1341 		ena_tx_queue_release_bufs(ring);
1342 	}
1343 }
1344 
1345 static void ena_queue_stop_all(struct rte_eth_dev *dev,
1346 			      enum ena_ring_type ring_type)
1347 {
1348 	struct ena_adapter *adapter = dev->data->dev_private;
1349 	struct ena_ring *queues = NULL;
1350 	uint16_t nb_queues, i;
1351 
1352 	if (ring_type == ENA_RING_TYPE_RX) {
1353 		queues = adapter->rx_ring;
1354 		nb_queues = dev->data->nb_rx_queues;
1355 	} else {
1356 		queues = adapter->tx_ring;
1357 		nb_queues = dev->data->nb_tx_queues;
1358 	}
1359 
1360 	for (i = 0; i < nb_queues; ++i)
1361 		if (queues[i].configured)
1362 			ena_queue_stop(&queues[i]);
1363 }
1364 
1365 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring)
1366 {
1367 	int rc, bufs_num;
1368 
1369 	ena_assert_msg(ring->configured == 1,
1370 		       "Trying to start unconfigured queue\n");
1371 
1372 	rc = ena_create_io_queue(dev, ring);
1373 	if (rc) {
1374 		PMD_INIT_LOG(ERR, "Failed to create IO queue\n");
1375 		return rc;
1376 	}
1377 
1378 	ring->next_to_clean = 0;
1379 	ring->next_to_use = 0;
1380 
1381 	if (ring->type == ENA_RING_TYPE_TX) {
1382 		ring->tx_stats.available_desc =
1383 			ena_com_free_q_entries(ring->ena_com_io_sq);
1384 		return 0;
1385 	}
1386 
1387 	bufs_num = ring->ring_size - 1;
1388 	rc = ena_populate_rx_queue(ring, bufs_num);
1389 	if (rc != bufs_num) {
1390 		ena_com_destroy_io_queue(&ring->adapter->ena_dev,
1391 					 ENA_IO_RXQ_IDX(ring->id));
1392 		PMD_INIT_LOG(ERR, "Failed to populate Rx ring\n");
1393 		return ENA_COM_FAULT;
1394 	}
1395 	/* Flush per-core RX buffers pools cache as they can be used on other
1396 	 * cores as well.
1397 	 */
1398 	rte_mempool_cache_flush(NULL, ring->mb_pool);
1399 
1400 	return 0;
1401 }
1402 
1403 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1404 			      uint16_t queue_idx,
1405 			      uint16_t nb_desc,
1406 			      unsigned int socket_id,
1407 			      const struct rte_eth_txconf *tx_conf)
1408 {
1409 	struct ena_ring *txq = NULL;
1410 	struct ena_adapter *adapter = dev->data->dev_private;
1411 	unsigned int i;
1412 	uint16_t dyn_thresh;
1413 
1414 	txq = &adapter->tx_ring[queue_idx];
1415 
1416 	if (txq->configured) {
1417 		PMD_DRV_LOG(CRIT,
1418 			"API violation. Queue[%d] is already configured\n",
1419 			queue_idx);
1420 		return ENA_COM_FAULT;
1421 	}
1422 
1423 	if (!rte_is_power_of_2(nb_desc)) {
1424 		PMD_DRV_LOG(ERR,
1425 			"Unsupported size of Tx queue: %d is not a power of 2.\n",
1426 			nb_desc);
1427 		return -EINVAL;
1428 	}
1429 
1430 	if (nb_desc > adapter->max_tx_ring_size) {
1431 		PMD_DRV_LOG(ERR,
1432 			"Unsupported size of Tx queue (max size: %d)\n",
1433 			adapter->max_tx_ring_size);
1434 		return -EINVAL;
1435 	}
1436 
1437 	txq->port_id = dev->data->port_id;
1438 	txq->next_to_clean = 0;
1439 	txq->next_to_use = 0;
1440 	txq->ring_size = nb_desc;
1441 	txq->size_mask = nb_desc - 1;
1442 	txq->numa_socket_id = socket_id;
1443 	txq->pkts_without_db = false;
1444 	txq->last_cleanup_ticks = 0;
1445 
1446 	txq->tx_buffer_info = rte_zmalloc_socket("txq->tx_buffer_info",
1447 		sizeof(struct ena_tx_buffer) * txq->ring_size,
1448 		RTE_CACHE_LINE_SIZE,
1449 		socket_id);
1450 	if (!txq->tx_buffer_info) {
1451 		PMD_DRV_LOG(ERR,
1452 			"Failed to allocate memory for Tx buffer info\n");
1453 		return -ENOMEM;
1454 	}
1455 
1456 	txq->empty_tx_reqs = rte_zmalloc_socket("txq->empty_tx_reqs",
1457 		sizeof(uint16_t) * txq->ring_size,
1458 		RTE_CACHE_LINE_SIZE,
1459 		socket_id);
1460 	if (!txq->empty_tx_reqs) {
1461 		PMD_DRV_LOG(ERR,
1462 			"Failed to allocate memory for empty Tx requests\n");
1463 		rte_free(txq->tx_buffer_info);
1464 		return -ENOMEM;
1465 	}
1466 
1467 	txq->push_buf_intermediate_buf =
1468 		rte_zmalloc_socket("txq->push_buf_intermediate_buf",
1469 			txq->tx_max_header_size,
1470 			RTE_CACHE_LINE_SIZE,
1471 			socket_id);
1472 	if (!txq->push_buf_intermediate_buf) {
1473 		PMD_DRV_LOG(ERR, "Failed to alloc push buffer for LLQ\n");
1474 		rte_free(txq->tx_buffer_info);
1475 		rte_free(txq->empty_tx_reqs);
1476 		return -ENOMEM;
1477 	}
1478 
1479 	for (i = 0; i < txq->ring_size; i++)
1480 		txq->empty_tx_reqs[i] = i;
1481 
1482 	txq->offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1483 
1484 	/* Check if caller provided the Tx cleanup threshold value. */
1485 	if (tx_conf->tx_free_thresh != 0) {
1486 		txq->tx_free_thresh = tx_conf->tx_free_thresh;
1487 	} else {
1488 		dyn_thresh = txq->ring_size -
1489 			txq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1490 		txq->tx_free_thresh = RTE_MAX(dyn_thresh,
1491 			txq->ring_size - ENA_REFILL_THRESH_PACKET);
1492 	}
1493 
1494 	txq->missing_tx_completion_threshold =
1495 		RTE_MIN(txq->ring_size / 2, ENA_DEFAULT_MISSING_COMP);
1496 
1497 	/* Store pointer to this queue in upper layer */
1498 	txq->configured = 1;
1499 	dev->data->tx_queues[queue_idx] = txq;
1500 
1501 	return 0;
1502 }
1503 
1504 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1505 			      uint16_t queue_idx,
1506 			      uint16_t nb_desc,
1507 			      unsigned int socket_id,
1508 			      const struct rte_eth_rxconf *rx_conf,
1509 			      struct rte_mempool *mp)
1510 {
1511 	struct ena_adapter *adapter = dev->data->dev_private;
1512 	struct ena_ring *rxq = NULL;
1513 	size_t buffer_size;
1514 	int i;
1515 	uint16_t dyn_thresh;
1516 
1517 	rxq = &adapter->rx_ring[queue_idx];
1518 	if (rxq->configured) {
1519 		PMD_DRV_LOG(CRIT,
1520 			"API violation. Queue[%d] is already configured\n",
1521 			queue_idx);
1522 		return ENA_COM_FAULT;
1523 	}
1524 
1525 	if (!rte_is_power_of_2(nb_desc)) {
1526 		PMD_DRV_LOG(ERR,
1527 			"Unsupported size of Rx queue: %d is not a power of 2.\n",
1528 			nb_desc);
1529 		return -EINVAL;
1530 	}
1531 
1532 	if (nb_desc > adapter->max_rx_ring_size) {
1533 		PMD_DRV_LOG(ERR,
1534 			"Unsupported size of Rx queue (max size: %d)\n",
1535 			adapter->max_rx_ring_size);
1536 		return -EINVAL;
1537 	}
1538 
1539 	/* ENA isn't supporting buffers smaller than 1400 bytes */
1540 	buffer_size = rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
1541 	if (buffer_size < ENA_RX_BUF_MIN_SIZE) {
1542 		PMD_DRV_LOG(ERR,
1543 			"Unsupported size of Rx buffer: %zu (min size: %d)\n",
1544 			buffer_size, ENA_RX_BUF_MIN_SIZE);
1545 		return -EINVAL;
1546 	}
1547 
1548 	rxq->port_id = dev->data->port_id;
1549 	rxq->next_to_clean = 0;
1550 	rxq->next_to_use = 0;
1551 	rxq->ring_size = nb_desc;
1552 	rxq->size_mask = nb_desc - 1;
1553 	rxq->numa_socket_id = socket_id;
1554 	rxq->mb_pool = mp;
1555 
1556 	rxq->rx_buffer_info = rte_zmalloc_socket("rxq->buffer_info",
1557 		sizeof(struct ena_rx_buffer) * nb_desc,
1558 		RTE_CACHE_LINE_SIZE,
1559 		socket_id);
1560 	if (!rxq->rx_buffer_info) {
1561 		PMD_DRV_LOG(ERR,
1562 			"Failed to allocate memory for Rx buffer info\n");
1563 		return -ENOMEM;
1564 	}
1565 
1566 	rxq->rx_refill_buffer = rte_zmalloc_socket("rxq->rx_refill_buffer",
1567 		sizeof(struct rte_mbuf *) * nb_desc,
1568 		RTE_CACHE_LINE_SIZE,
1569 		socket_id);
1570 	if (!rxq->rx_refill_buffer) {
1571 		PMD_DRV_LOG(ERR,
1572 			"Failed to allocate memory for Rx refill buffer\n");
1573 		rte_free(rxq->rx_buffer_info);
1574 		rxq->rx_buffer_info = NULL;
1575 		return -ENOMEM;
1576 	}
1577 
1578 	rxq->empty_rx_reqs = rte_zmalloc_socket("rxq->empty_rx_reqs",
1579 		sizeof(uint16_t) * nb_desc,
1580 		RTE_CACHE_LINE_SIZE,
1581 		socket_id);
1582 	if (!rxq->empty_rx_reqs) {
1583 		PMD_DRV_LOG(ERR,
1584 			"Failed to allocate memory for empty Rx requests\n");
1585 		rte_free(rxq->rx_buffer_info);
1586 		rxq->rx_buffer_info = NULL;
1587 		rte_free(rxq->rx_refill_buffer);
1588 		rxq->rx_refill_buffer = NULL;
1589 		return -ENOMEM;
1590 	}
1591 
1592 	for (i = 0; i < nb_desc; i++)
1593 		rxq->empty_rx_reqs[i] = i;
1594 
1595 	rxq->offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1596 
1597 	if (rx_conf->rx_free_thresh != 0) {
1598 		rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1599 	} else {
1600 		dyn_thresh = rxq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1601 		rxq->rx_free_thresh = RTE_MIN(dyn_thresh,
1602 			(uint16_t)(ENA_REFILL_THRESH_PACKET));
1603 	}
1604 
1605 	/* Store pointer to this queue in upper layer */
1606 	rxq->configured = 1;
1607 	dev->data->rx_queues[queue_idx] = rxq;
1608 
1609 	return 0;
1610 }
1611 
1612 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
1613 				  struct rte_mbuf *mbuf, uint16_t id)
1614 {
1615 	struct ena_com_buf ebuf;
1616 	int rc;
1617 
1618 	/* prepare physical address for DMA transaction */
1619 	ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1620 	ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1621 
1622 	/* pass resource to device */
1623 	rc = ena_com_add_single_rx_desc(io_sq, &ebuf, id);
1624 	if (unlikely(rc != 0))
1625 		PMD_RX_LOG(WARNING, "Failed adding Rx desc\n");
1626 
1627 	return rc;
1628 }
1629 
1630 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1631 {
1632 	unsigned int i;
1633 	int rc;
1634 	uint16_t next_to_use = rxq->next_to_use;
1635 	uint16_t req_id;
1636 #ifdef RTE_ETHDEV_DEBUG_RX
1637 	uint16_t in_use;
1638 #endif
1639 	struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1640 
1641 	if (unlikely(!count))
1642 		return 0;
1643 
1644 #ifdef RTE_ETHDEV_DEBUG_RX
1645 	in_use = rxq->ring_size - 1 -
1646 		ena_com_free_q_entries(rxq->ena_com_io_sq);
1647 	if (unlikely((in_use + count) >= rxq->ring_size))
1648 		PMD_RX_LOG(ERR, "Bad Rx ring state\n");
1649 #endif
1650 
1651 	/* get resources for incoming packets */
1652 	rc = rte_pktmbuf_alloc_bulk(rxq->mb_pool, mbufs, count);
1653 	if (unlikely(rc < 0)) {
1654 		rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1655 		++rxq->rx_stats.mbuf_alloc_fail;
1656 		PMD_RX_LOG(DEBUG, "There are not enough free buffers\n");
1657 		return 0;
1658 	}
1659 
1660 	for (i = 0; i < count; i++) {
1661 		struct rte_mbuf *mbuf = mbufs[i];
1662 		struct ena_rx_buffer *rx_info;
1663 
1664 		if (likely((i + 4) < count))
1665 			rte_prefetch0(mbufs[i + 4]);
1666 
1667 		req_id = rxq->empty_rx_reqs[next_to_use];
1668 		rx_info = &rxq->rx_buffer_info[req_id];
1669 
1670 		rc = ena_add_single_rx_desc(rxq->ena_com_io_sq, mbuf, req_id);
1671 		if (unlikely(rc != 0))
1672 			break;
1673 
1674 		rx_info->mbuf = mbuf;
1675 		next_to_use = ENA_IDX_NEXT_MASKED(next_to_use, rxq->size_mask);
1676 	}
1677 
1678 	if (unlikely(i < count)) {
1679 		PMD_RX_LOG(WARNING,
1680 			"Refilled Rx queue[%d] with only %d/%d buffers\n",
1681 			rxq->id, i, count);
1682 		rte_pktmbuf_free_bulk(&mbufs[i], count - i);
1683 		++rxq->rx_stats.refill_partial;
1684 	}
1685 
1686 	/* When we submitted free resources to device... */
1687 	if (likely(i > 0)) {
1688 		/* ...let HW know that it can fill buffers with data. */
1689 		ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1690 
1691 		rxq->next_to_use = next_to_use;
1692 	}
1693 
1694 	return i;
1695 }
1696 
1697 static int ena_device_init(struct ena_adapter *adapter,
1698 			   struct rte_pci_device *pdev,
1699 			   struct ena_com_dev_get_features_ctx *get_feat_ctx)
1700 {
1701 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1702 	uint32_t aenq_groups;
1703 	int rc;
1704 	bool readless_supported;
1705 
1706 	/* Initialize mmio registers */
1707 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
1708 	if (rc) {
1709 		PMD_DRV_LOG(ERR, "Failed to init MMIO read less\n");
1710 		return rc;
1711 	}
1712 
1713 	/* The PCIe configuration space revision id indicate if mmio reg
1714 	 * read is disabled.
1715 	 */
1716 	readless_supported = !(pdev->id.class_id & ENA_MMIO_DISABLE_REG_READ);
1717 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1718 
1719 	/* reset device */
1720 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1721 	if (rc) {
1722 		PMD_DRV_LOG(ERR, "Cannot reset device\n");
1723 		goto err_mmio_read_less;
1724 	}
1725 
1726 	/* check FW version */
1727 	rc = ena_com_validate_version(ena_dev);
1728 	if (rc) {
1729 		PMD_DRV_LOG(ERR, "Device version is too low\n");
1730 		goto err_mmio_read_less;
1731 	}
1732 
1733 	ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1734 
1735 	/* ENA device administration layer init */
1736 	rc = ena_com_admin_init(ena_dev, &aenq_handlers);
1737 	if (rc) {
1738 		PMD_DRV_LOG(ERR,
1739 			"Cannot initialize ENA admin queue\n");
1740 		goto err_mmio_read_less;
1741 	}
1742 
1743 	/* To enable the msix interrupts the driver needs to know the number
1744 	 * of queues. So the driver uses polling mode to retrieve this
1745 	 * information.
1746 	 */
1747 	ena_com_set_admin_polling_mode(ena_dev, true);
1748 
1749 	ena_config_host_info(ena_dev);
1750 
1751 	/* Get Device Attributes and features */
1752 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1753 	if (rc) {
1754 		PMD_DRV_LOG(ERR,
1755 			"Cannot get attribute for ENA device, rc: %d\n", rc);
1756 		goto err_admin_init;
1757 	}
1758 
1759 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1760 		      BIT(ENA_ADMIN_NOTIFICATION) |
1761 		      BIT(ENA_ADMIN_KEEP_ALIVE) |
1762 		      BIT(ENA_ADMIN_FATAL_ERROR) |
1763 		      BIT(ENA_ADMIN_WARNING);
1764 
1765 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
1766 
1767 	adapter->all_aenq_groups = aenq_groups;
1768 
1769 	return 0;
1770 
1771 err_admin_init:
1772 	ena_com_admin_destroy(ena_dev);
1773 
1774 err_mmio_read_less:
1775 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1776 
1777 	return rc;
1778 }
1779 
1780 static void ena_interrupt_handler_rte(void *cb_arg)
1781 {
1782 	struct rte_eth_dev *dev = cb_arg;
1783 	struct ena_adapter *adapter = dev->data->dev_private;
1784 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1785 
1786 	ena_com_admin_q_comp_intr_handler(ena_dev);
1787 	if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED))
1788 		ena_com_aenq_intr_handler(ena_dev, dev);
1789 }
1790 
1791 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1792 {
1793 	if (!(adapter->active_aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE)))
1794 		return;
1795 
1796 	if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1797 		return;
1798 
1799 	if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1800 	    adapter->keep_alive_timeout)) {
1801 		PMD_DRV_LOG(ERR, "Keep alive timeout\n");
1802 		ena_trigger_reset(adapter, ENA_REGS_RESET_KEEP_ALIVE_TO);
1803 		++adapter->dev_stats.wd_expired;
1804 	}
1805 }
1806 
1807 /* Check if admin queue is enabled */
1808 static void check_for_admin_com_state(struct ena_adapter *adapter)
1809 {
1810 	if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1811 		PMD_DRV_LOG(ERR, "ENA admin queue is not in running state\n");
1812 		ena_trigger_reset(adapter, ENA_REGS_RESET_ADMIN_TO);
1813 	}
1814 }
1815 
1816 static int check_for_tx_completion_in_queue(struct ena_adapter *adapter,
1817 					    struct ena_ring *tx_ring)
1818 {
1819 	struct ena_tx_buffer *tx_buf;
1820 	uint64_t timestamp;
1821 	uint64_t completion_delay;
1822 	uint32_t missed_tx = 0;
1823 	unsigned int i;
1824 	int rc = 0;
1825 
1826 	for (i = 0; i < tx_ring->ring_size; ++i) {
1827 		tx_buf = &tx_ring->tx_buffer_info[i];
1828 		timestamp = tx_buf->timestamp;
1829 
1830 		if (timestamp == 0)
1831 			continue;
1832 
1833 		completion_delay = rte_get_timer_cycles() - timestamp;
1834 		if (completion_delay > adapter->missing_tx_completion_to) {
1835 			if (unlikely(!tx_buf->print_once)) {
1836 				PMD_TX_LOG(WARNING,
1837 					"Found a Tx that wasn't completed on time, qid %d, index %d. "
1838 					"Missing Tx outstanding for %" PRIu64 " msecs.\n",
1839 					tx_ring->id, i,	completion_delay /
1840 					rte_get_timer_hz() * 1000);
1841 				tx_buf->print_once = true;
1842 			}
1843 			++missed_tx;
1844 		}
1845 	}
1846 
1847 	if (unlikely(missed_tx > tx_ring->missing_tx_completion_threshold)) {
1848 		PMD_DRV_LOG(ERR,
1849 			"The number of lost Tx completions is above the threshold (%d > %d). "
1850 			"Trigger the device reset.\n",
1851 			missed_tx,
1852 			tx_ring->missing_tx_completion_threshold);
1853 		adapter->reset_reason = ENA_REGS_RESET_MISS_TX_CMPL;
1854 		adapter->trigger_reset = true;
1855 		rc = -EIO;
1856 	}
1857 
1858 	tx_ring->tx_stats.missed_tx += missed_tx;
1859 
1860 	return rc;
1861 }
1862 
1863 static void check_for_tx_completions(struct ena_adapter *adapter)
1864 {
1865 	struct ena_ring *tx_ring;
1866 	uint64_t tx_cleanup_delay;
1867 	size_t qid;
1868 	int budget;
1869 	uint16_t nb_tx_queues = adapter->edev_data->nb_tx_queues;
1870 
1871 	if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT)
1872 		return;
1873 
1874 	nb_tx_queues = adapter->edev_data->nb_tx_queues;
1875 	budget = adapter->missing_tx_completion_budget;
1876 
1877 	qid = adapter->last_tx_comp_qid;
1878 	while (budget-- > 0) {
1879 		tx_ring = &adapter->tx_ring[qid];
1880 
1881 		/* Tx cleanup is called only by the burst function and can be
1882 		 * called dynamically by the application. Also cleanup is
1883 		 * limited by the threshold. To avoid false detection of the
1884 		 * missing HW Tx completion, get the delay since last cleanup
1885 		 * function was called.
1886 		 */
1887 		tx_cleanup_delay = rte_get_timer_cycles() -
1888 			tx_ring->last_cleanup_ticks;
1889 		if (tx_cleanup_delay < adapter->tx_cleanup_stall_delay)
1890 			check_for_tx_completion_in_queue(adapter, tx_ring);
1891 		qid = (qid + 1) % nb_tx_queues;
1892 	}
1893 
1894 	adapter->last_tx_comp_qid = qid;
1895 }
1896 
1897 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
1898 				  void *arg)
1899 {
1900 	struct rte_eth_dev *dev = arg;
1901 	struct ena_adapter *adapter = dev->data->dev_private;
1902 
1903 	if (unlikely(adapter->trigger_reset))
1904 		return;
1905 
1906 	check_for_missing_keep_alive(adapter);
1907 	check_for_admin_com_state(adapter);
1908 	check_for_tx_completions(adapter);
1909 
1910 	if (unlikely(adapter->trigger_reset)) {
1911 		PMD_DRV_LOG(ERR, "Trigger reset is on\n");
1912 		rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
1913 			NULL);
1914 	}
1915 }
1916 
1917 static inline void
1918 set_default_llq_configurations(struct ena_llq_configurations *llq_config,
1919 			       struct ena_admin_feature_llq_desc *llq,
1920 			       bool use_large_llq_hdr)
1921 {
1922 	llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
1923 	llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
1924 	llq_config->llq_num_decs_before_header =
1925 		ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
1926 
1927 	if (use_large_llq_hdr &&
1928 	    (llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B)) {
1929 		llq_config->llq_ring_entry_size =
1930 			ENA_ADMIN_LIST_ENTRY_SIZE_256B;
1931 		llq_config->llq_ring_entry_size_value = 256;
1932 	} else {
1933 		llq_config->llq_ring_entry_size =
1934 			ENA_ADMIN_LIST_ENTRY_SIZE_128B;
1935 		llq_config->llq_ring_entry_size_value = 128;
1936 	}
1937 }
1938 
1939 static int
1940 ena_set_queues_placement_policy(struct ena_adapter *adapter,
1941 				struct ena_com_dev *ena_dev,
1942 				struct ena_admin_feature_llq_desc *llq,
1943 				struct ena_llq_configurations *llq_default_configurations)
1944 {
1945 	int rc;
1946 	u32 llq_feature_mask;
1947 
1948 	llq_feature_mask = 1 << ENA_ADMIN_LLQ;
1949 	if (!(ena_dev->supported_features & llq_feature_mask)) {
1950 		PMD_DRV_LOG(INFO,
1951 			"LLQ is not supported. Fallback to host mode policy.\n");
1952 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1953 		return 0;
1954 	}
1955 
1956 	rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
1957 	if (unlikely(rc)) {
1958 		PMD_INIT_LOG(WARNING,
1959 			"Failed to config dev mode. Fallback to host mode policy.\n");
1960 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1961 		return 0;
1962 	}
1963 
1964 	/* Nothing to config, exit */
1965 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1966 		return 0;
1967 
1968 	if (!adapter->dev_mem_base) {
1969 		PMD_DRV_LOG(ERR,
1970 			"Unable to access LLQ BAR resource. Fallback to host mode policy.\n");
1971 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1972 		return 0;
1973 	}
1974 
1975 	ena_dev->mem_bar = adapter->dev_mem_base;
1976 
1977 	return 0;
1978 }
1979 
1980 static uint32_t ena_calc_max_io_queue_num(struct ena_com_dev *ena_dev,
1981 	struct ena_com_dev_get_features_ctx *get_feat_ctx)
1982 {
1983 	uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
1984 
1985 	/* Regular queues capabilities */
1986 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1987 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1988 			&get_feat_ctx->max_queue_ext.max_queue_ext;
1989 		io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
1990 				    max_queue_ext->max_rx_cq_num);
1991 		io_tx_sq_num = max_queue_ext->max_tx_sq_num;
1992 		io_tx_cq_num = max_queue_ext->max_tx_cq_num;
1993 	} else {
1994 		struct ena_admin_queue_feature_desc *max_queues =
1995 			&get_feat_ctx->max_queues;
1996 		io_tx_sq_num = max_queues->max_sq_num;
1997 		io_tx_cq_num = max_queues->max_cq_num;
1998 		io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
1999 	}
2000 
2001 	/* In case of LLQ use the llq number in the get feature cmd */
2002 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
2003 		io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
2004 
2005 	max_num_io_queues = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
2006 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_sq_num);
2007 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_cq_num);
2008 
2009 	if (unlikely(max_num_io_queues == 0)) {
2010 		PMD_DRV_LOG(ERR, "Number of IO queues cannot not be 0\n");
2011 		return -EFAULT;
2012 	}
2013 
2014 	return max_num_io_queues;
2015 }
2016 
2017 static void
2018 ena_set_offloads(struct ena_offloads *offloads,
2019 		 struct ena_admin_feature_offload_desc *offload_desc)
2020 {
2021 	if (offload_desc->tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK)
2022 		offloads->tx_offloads |= ENA_IPV4_TSO;
2023 
2024 	/* Tx IPv4 checksum offloads */
2025 	if (offload_desc->tx &
2026 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)
2027 		offloads->tx_offloads |= ENA_L3_IPV4_CSUM;
2028 	if (offload_desc->tx &
2029 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK)
2030 		offloads->tx_offloads |= ENA_L4_IPV4_CSUM;
2031 	if (offload_desc->tx &
2032 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)
2033 		offloads->tx_offloads |= ENA_L4_IPV4_CSUM_PARTIAL;
2034 
2035 	/* Tx IPv6 checksum offloads */
2036 	if (offload_desc->tx &
2037 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK)
2038 		offloads->tx_offloads |= ENA_L4_IPV6_CSUM;
2039 	if (offload_desc->tx &
2040 	     ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)
2041 		offloads->tx_offloads |= ENA_L4_IPV6_CSUM_PARTIAL;
2042 
2043 	/* Rx IPv4 checksum offloads */
2044 	if (offload_desc->rx_supported &
2045 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)
2046 		offloads->rx_offloads |= ENA_L3_IPV4_CSUM;
2047 	if (offload_desc->rx_supported &
2048 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK)
2049 		offloads->rx_offloads |= ENA_L4_IPV4_CSUM;
2050 
2051 	/* Rx IPv6 checksum offloads */
2052 	if (offload_desc->rx_supported &
2053 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK)
2054 		offloads->rx_offloads |= ENA_L4_IPV6_CSUM;
2055 
2056 	if (offload_desc->rx_supported &
2057 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_HASH_MASK)
2058 		offloads->rx_offloads |= ENA_RX_RSS_HASH;
2059 }
2060 
2061 static int ena_init_once(void)
2062 {
2063 	static bool init_done;
2064 
2065 	if (init_done)
2066 		return 0;
2067 
2068 	if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
2069 		/* Init timer subsystem for the ENA timer service. */
2070 		rte_timer_subsystem_init();
2071 		/* Register handler for requests from secondary processes. */
2072 		rte_mp_action_register(ENA_MP_NAME, ena_mp_primary_handle);
2073 	}
2074 
2075 	init_done = true;
2076 	return 0;
2077 }
2078 
2079 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
2080 {
2081 	struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
2082 	struct rte_pci_device *pci_dev;
2083 	struct rte_intr_handle *intr_handle;
2084 	struct ena_adapter *adapter = eth_dev->data->dev_private;
2085 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
2086 	struct ena_com_dev_get_features_ctx get_feat_ctx;
2087 	struct ena_llq_configurations llq_config;
2088 	const char *queue_type_str;
2089 	uint32_t max_num_io_queues;
2090 	int rc;
2091 	static int adapters_found;
2092 	bool disable_meta_caching;
2093 
2094 	eth_dev->dev_ops = &ena_dev_ops;
2095 	eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
2096 	eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
2097 	eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
2098 
2099 	rc = ena_init_once();
2100 	if (rc != 0)
2101 		return rc;
2102 
2103 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2104 		return 0;
2105 
2106 	eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
2107 
2108 	memset(adapter, 0, sizeof(struct ena_adapter));
2109 	ena_dev = &adapter->ena_dev;
2110 
2111 	adapter->edev_data = eth_dev->data;
2112 
2113 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2114 
2115 	PMD_INIT_LOG(INFO, "Initializing %x:%x:%x.%d\n",
2116 		     pci_dev->addr.domain,
2117 		     pci_dev->addr.bus,
2118 		     pci_dev->addr.devid,
2119 		     pci_dev->addr.function);
2120 
2121 	intr_handle = pci_dev->intr_handle;
2122 
2123 	adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
2124 	adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
2125 
2126 	if (!adapter->regs) {
2127 		PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)\n",
2128 			     ENA_REGS_BAR);
2129 		return -ENXIO;
2130 	}
2131 
2132 	ena_dev->reg_bar = adapter->regs;
2133 	/* Pass device data as a pointer which can be passed to the IO functions
2134 	 * by the ena_com (for example - the memory allocation).
2135 	 */
2136 	ena_dev->dmadev = eth_dev->data;
2137 
2138 	adapter->id_number = adapters_found;
2139 
2140 	snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
2141 		 adapter->id_number);
2142 
2143 	adapter->missing_tx_completion_to = ENA_TX_TIMEOUT;
2144 
2145 	rc = ena_parse_devargs(adapter, pci_dev->device.devargs);
2146 	if (rc != 0) {
2147 		PMD_INIT_LOG(CRIT, "Failed to parse devargs\n");
2148 		goto err;
2149 	}
2150 
2151 	/* device specific initialization routine */
2152 	rc = ena_device_init(adapter, pci_dev, &get_feat_ctx);
2153 	if (rc) {
2154 		PMD_INIT_LOG(CRIT, "Failed to init ENA device\n");
2155 		goto err;
2156 	}
2157 
2158 	/* Check if device supports LSC */
2159 	if (!(adapter->all_aenq_groups & BIT(ENA_ADMIN_LINK_CHANGE)))
2160 		adapter->edev_data->dev_flags &= ~RTE_ETH_DEV_INTR_LSC;
2161 
2162 	set_default_llq_configurations(&llq_config, &get_feat_ctx.llq,
2163 		adapter->use_large_llq_hdr);
2164 	rc = ena_set_queues_placement_policy(adapter, ena_dev,
2165 					     &get_feat_ctx.llq, &llq_config);
2166 	if (unlikely(rc)) {
2167 		PMD_INIT_LOG(CRIT, "Failed to set placement policy\n");
2168 		return rc;
2169 	}
2170 
2171 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
2172 		queue_type_str = "Regular";
2173 	else
2174 		queue_type_str = "Low latency";
2175 	PMD_DRV_LOG(INFO, "Placement policy: %s\n", queue_type_str);
2176 
2177 	calc_queue_ctx.ena_dev = ena_dev;
2178 	calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
2179 
2180 	max_num_io_queues = ena_calc_max_io_queue_num(ena_dev, &get_feat_ctx);
2181 	rc = ena_calc_io_queue_size(&calc_queue_ctx,
2182 		adapter->use_large_llq_hdr);
2183 	if (unlikely((rc != 0) || (max_num_io_queues == 0))) {
2184 		rc = -EFAULT;
2185 		goto err_device_destroy;
2186 	}
2187 
2188 	adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
2189 	adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
2190 	adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
2191 	adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
2192 	adapter->max_num_io_queues = max_num_io_queues;
2193 
2194 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2195 		disable_meta_caching =
2196 			!!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
2197 			BIT(ENA_ADMIN_DISABLE_META_CACHING));
2198 	} else {
2199 		disable_meta_caching = false;
2200 	}
2201 
2202 	/* prepare ring structures */
2203 	ena_init_rings(adapter, disable_meta_caching);
2204 
2205 	ena_config_debug_area(adapter);
2206 
2207 	/* Set max MTU for this device */
2208 	adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
2209 
2210 	ena_set_offloads(&adapter->offloads, &get_feat_ctx.offload);
2211 
2212 	/* Copy MAC address and point DPDK to it */
2213 	eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr;
2214 	rte_ether_addr_copy((struct rte_ether_addr *)
2215 			get_feat_ctx.dev_attr.mac_addr,
2216 			(struct rte_ether_addr *)adapter->mac_addr);
2217 
2218 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
2219 	if (unlikely(rc != 0)) {
2220 		PMD_DRV_LOG(ERR, "Failed to initialize RSS in ENA device\n");
2221 		goto err_delete_debug_area;
2222 	}
2223 
2224 	adapter->drv_stats = rte_zmalloc("adapter stats",
2225 					 sizeof(*adapter->drv_stats),
2226 					 RTE_CACHE_LINE_SIZE);
2227 	if (!adapter->drv_stats) {
2228 		PMD_DRV_LOG(ERR,
2229 			"Failed to allocate memory for adapter statistics\n");
2230 		rc = -ENOMEM;
2231 		goto err_rss_destroy;
2232 	}
2233 
2234 	rte_spinlock_init(&adapter->admin_lock);
2235 
2236 	rte_intr_callback_register(intr_handle,
2237 				   ena_interrupt_handler_rte,
2238 				   eth_dev);
2239 	rte_intr_enable(intr_handle);
2240 	ena_com_set_admin_polling_mode(ena_dev, false);
2241 	ena_com_admin_aenq_enable(ena_dev);
2242 
2243 	rte_timer_init(&adapter->timer_wd);
2244 
2245 	adapters_found++;
2246 	adapter->state = ENA_ADAPTER_STATE_INIT;
2247 
2248 	return 0;
2249 
2250 err_rss_destroy:
2251 	ena_com_rss_destroy(ena_dev);
2252 err_delete_debug_area:
2253 	ena_com_delete_debug_area(ena_dev);
2254 
2255 err_device_destroy:
2256 	ena_com_delete_host_info(ena_dev);
2257 	ena_com_admin_destroy(ena_dev);
2258 
2259 err:
2260 	return rc;
2261 }
2262 
2263 static void ena_destroy_device(struct rte_eth_dev *eth_dev)
2264 {
2265 	struct ena_adapter *adapter = eth_dev->data->dev_private;
2266 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
2267 
2268 	if (adapter->state == ENA_ADAPTER_STATE_FREE)
2269 		return;
2270 
2271 	ena_com_set_admin_running_state(ena_dev, false);
2272 
2273 	if (adapter->state != ENA_ADAPTER_STATE_CLOSED)
2274 		ena_close(eth_dev);
2275 
2276 	ena_com_rss_destroy(ena_dev);
2277 
2278 	ena_com_delete_debug_area(ena_dev);
2279 	ena_com_delete_host_info(ena_dev);
2280 
2281 	ena_com_abort_admin_commands(ena_dev);
2282 	ena_com_wait_for_abort_completion(ena_dev);
2283 	ena_com_admin_destroy(ena_dev);
2284 	ena_com_mmio_reg_read_request_destroy(ena_dev);
2285 
2286 	adapter->state = ENA_ADAPTER_STATE_FREE;
2287 }
2288 
2289 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
2290 {
2291 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2292 		return 0;
2293 
2294 	ena_destroy_device(eth_dev);
2295 
2296 	return 0;
2297 }
2298 
2299 static int ena_dev_configure(struct rte_eth_dev *dev)
2300 {
2301 	struct ena_adapter *adapter = dev->data->dev_private;
2302 	int rc;
2303 
2304 	adapter->state = ENA_ADAPTER_STATE_CONFIG;
2305 
2306 	if (dev->data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG)
2307 		dev->data->dev_conf.rxmode.offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2308 	dev->data->dev_conf.txmode.offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2309 
2310 	/* Scattered Rx cannot be turned off in the HW, so this capability must
2311 	 * be forced.
2312 	 */
2313 	dev->data->scattered_rx = 1;
2314 
2315 	adapter->last_tx_comp_qid = 0;
2316 
2317 	adapter->missing_tx_completion_budget =
2318 		RTE_MIN(ENA_MONITORED_TX_QUEUES, dev->data->nb_tx_queues);
2319 
2320 	/* To avoid detection of the spurious Tx completion timeout due to
2321 	 * application not calling the Tx cleanup function, set timeout for the
2322 	 * Tx queue which should be half of the missing completion timeout for a
2323 	 * safety. If there will be a lot of missing Tx completions in the
2324 	 * queue, they will be detected sooner or later.
2325 	 */
2326 	adapter->tx_cleanup_stall_delay = adapter->missing_tx_completion_to / 2;
2327 
2328 	rc = ena_configure_aenq(adapter);
2329 
2330 	return rc;
2331 }
2332 
2333 static void ena_init_rings(struct ena_adapter *adapter,
2334 			   bool disable_meta_caching)
2335 {
2336 	size_t i;
2337 
2338 	for (i = 0; i < adapter->max_num_io_queues; i++) {
2339 		struct ena_ring *ring = &adapter->tx_ring[i];
2340 
2341 		ring->configured = 0;
2342 		ring->type = ENA_RING_TYPE_TX;
2343 		ring->adapter = adapter;
2344 		ring->id = i;
2345 		ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
2346 		ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
2347 		ring->sgl_size = adapter->max_tx_sgl_size;
2348 		ring->disable_meta_caching = disable_meta_caching;
2349 	}
2350 
2351 	for (i = 0; i < adapter->max_num_io_queues; i++) {
2352 		struct ena_ring *ring = &adapter->rx_ring[i];
2353 
2354 		ring->configured = 0;
2355 		ring->type = ENA_RING_TYPE_RX;
2356 		ring->adapter = adapter;
2357 		ring->id = i;
2358 		ring->sgl_size = adapter->max_rx_sgl_size;
2359 	}
2360 }
2361 
2362 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter)
2363 {
2364 	uint64_t port_offloads = 0;
2365 
2366 	if (adapter->offloads.rx_offloads & ENA_L3_IPV4_CSUM)
2367 		port_offloads |= RTE_ETH_RX_OFFLOAD_IPV4_CKSUM;
2368 
2369 	if (adapter->offloads.rx_offloads &
2370 	    (ENA_L4_IPV4_CSUM | ENA_L4_IPV6_CSUM))
2371 		port_offloads |=
2372 			RTE_ETH_RX_OFFLOAD_UDP_CKSUM | RTE_ETH_RX_OFFLOAD_TCP_CKSUM;
2373 
2374 	if (adapter->offloads.rx_offloads & ENA_RX_RSS_HASH)
2375 		port_offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2376 
2377 	port_offloads |= RTE_ETH_RX_OFFLOAD_SCATTER;
2378 
2379 	return port_offloads;
2380 }
2381 
2382 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter)
2383 {
2384 	uint64_t port_offloads = 0;
2385 
2386 	if (adapter->offloads.tx_offloads & ENA_IPV4_TSO)
2387 		port_offloads |= RTE_ETH_TX_OFFLOAD_TCP_TSO;
2388 
2389 	if (adapter->offloads.tx_offloads & ENA_L3_IPV4_CSUM)
2390 		port_offloads |= RTE_ETH_TX_OFFLOAD_IPV4_CKSUM;
2391 	if (adapter->offloads.tx_offloads &
2392 	    (ENA_L4_IPV4_CSUM_PARTIAL | ENA_L4_IPV4_CSUM |
2393 	     ENA_L4_IPV6_CSUM | ENA_L4_IPV6_CSUM_PARTIAL))
2394 		port_offloads |=
2395 			RTE_ETH_TX_OFFLOAD_UDP_CKSUM | RTE_ETH_TX_OFFLOAD_TCP_CKSUM;
2396 
2397 	port_offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2398 
2399 	return port_offloads;
2400 }
2401 
2402 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter)
2403 {
2404 	RTE_SET_USED(adapter);
2405 
2406 	return 0;
2407 }
2408 
2409 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter)
2410 {
2411 	RTE_SET_USED(adapter);
2412 
2413 	return 0;
2414 }
2415 
2416 static int ena_infos_get(struct rte_eth_dev *dev,
2417 			  struct rte_eth_dev_info *dev_info)
2418 {
2419 	struct ena_adapter *adapter;
2420 	struct ena_com_dev *ena_dev;
2421 
2422 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
2423 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
2424 	adapter = dev->data->dev_private;
2425 
2426 	ena_dev = &adapter->ena_dev;
2427 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
2428 
2429 	dev_info->speed_capa =
2430 			RTE_ETH_LINK_SPEED_1G   |
2431 			RTE_ETH_LINK_SPEED_2_5G |
2432 			RTE_ETH_LINK_SPEED_5G   |
2433 			RTE_ETH_LINK_SPEED_10G  |
2434 			RTE_ETH_LINK_SPEED_25G  |
2435 			RTE_ETH_LINK_SPEED_40G  |
2436 			RTE_ETH_LINK_SPEED_50G  |
2437 			RTE_ETH_LINK_SPEED_100G;
2438 
2439 	/* Inform framework about available features */
2440 	dev_info->rx_offload_capa = ena_get_rx_port_offloads(adapter);
2441 	dev_info->tx_offload_capa = ena_get_tx_port_offloads(adapter);
2442 	dev_info->rx_queue_offload_capa = ena_get_rx_queue_offloads(adapter);
2443 	dev_info->tx_queue_offload_capa = ena_get_tx_queue_offloads(adapter);
2444 
2445 	dev_info->flow_type_rss_offloads = ENA_ALL_RSS_HF;
2446 	dev_info->hash_key_size = ENA_HASH_KEY_SIZE;
2447 
2448 	dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
2449 	dev_info->max_rx_pktlen  = adapter->max_mtu + RTE_ETHER_HDR_LEN +
2450 		RTE_ETHER_CRC_LEN;
2451 	dev_info->min_mtu = ENA_MIN_MTU;
2452 	dev_info->max_mtu = adapter->max_mtu;
2453 	dev_info->max_mac_addrs = 1;
2454 
2455 	dev_info->max_rx_queues = adapter->max_num_io_queues;
2456 	dev_info->max_tx_queues = adapter->max_num_io_queues;
2457 	dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
2458 
2459 	dev_info->rx_desc_lim.nb_max = adapter->max_rx_ring_size;
2460 	dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2461 	dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2462 					adapter->max_rx_sgl_size);
2463 	dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2464 					adapter->max_rx_sgl_size);
2465 
2466 	dev_info->tx_desc_lim.nb_max = adapter->max_tx_ring_size;
2467 	dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2468 	dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2469 					adapter->max_tx_sgl_size);
2470 	dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2471 					adapter->max_tx_sgl_size);
2472 
2473 	dev_info->default_rxportconf.ring_size = ENA_DEFAULT_RING_SIZE;
2474 	dev_info->default_txportconf.ring_size = ENA_DEFAULT_RING_SIZE;
2475 
2476 	return 0;
2477 }
2478 
2479 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len)
2480 {
2481 	mbuf->data_len = len;
2482 	mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2483 	mbuf->refcnt = 1;
2484 	mbuf->next = NULL;
2485 }
2486 
2487 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
2488 				    struct ena_com_rx_buf_info *ena_bufs,
2489 				    uint32_t descs,
2490 				    uint16_t *next_to_clean,
2491 				    uint8_t offset)
2492 {
2493 	struct rte_mbuf *mbuf;
2494 	struct rte_mbuf *mbuf_head;
2495 	struct ena_rx_buffer *rx_info;
2496 	int rc;
2497 	uint16_t ntc, len, req_id, buf = 0;
2498 
2499 	if (unlikely(descs == 0))
2500 		return NULL;
2501 
2502 	ntc = *next_to_clean;
2503 
2504 	len = ena_bufs[buf].len;
2505 	req_id = ena_bufs[buf].req_id;
2506 
2507 	rx_info = &rx_ring->rx_buffer_info[req_id];
2508 
2509 	mbuf = rx_info->mbuf;
2510 	RTE_ASSERT(mbuf != NULL);
2511 
2512 	ena_init_rx_mbuf(mbuf, len);
2513 
2514 	/* Fill the mbuf head with the data specific for 1st segment. */
2515 	mbuf_head = mbuf;
2516 	mbuf_head->nb_segs = descs;
2517 	mbuf_head->port = rx_ring->port_id;
2518 	mbuf_head->pkt_len = len;
2519 	mbuf_head->data_off += offset;
2520 
2521 	rx_info->mbuf = NULL;
2522 	rx_ring->empty_rx_reqs[ntc] = req_id;
2523 	ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2524 
2525 	while (--descs) {
2526 		++buf;
2527 		len = ena_bufs[buf].len;
2528 		req_id = ena_bufs[buf].req_id;
2529 
2530 		rx_info = &rx_ring->rx_buffer_info[req_id];
2531 		RTE_ASSERT(rx_info->mbuf != NULL);
2532 
2533 		if (unlikely(len == 0)) {
2534 			/*
2535 			 * Some devices can pass descriptor with the length 0.
2536 			 * To avoid confusion, the PMD is simply putting the
2537 			 * descriptor back, as it was never used. We'll avoid
2538 			 * mbuf allocation that way.
2539 			 */
2540 			rc = ena_add_single_rx_desc(rx_ring->ena_com_io_sq,
2541 				rx_info->mbuf, req_id);
2542 			if (unlikely(rc != 0)) {
2543 				/* Free the mbuf in case of an error. */
2544 				rte_mbuf_raw_free(rx_info->mbuf);
2545 			} else {
2546 				/*
2547 				 * If there was no error, just exit the loop as
2548 				 * 0 length descriptor is always the last one.
2549 				 */
2550 				break;
2551 			}
2552 		} else {
2553 			/* Create an mbuf chain. */
2554 			mbuf->next = rx_info->mbuf;
2555 			mbuf = mbuf->next;
2556 
2557 			ena_init_rx_mbuf(mbuf, len);
2558 			mbuf_head->pkt_len += len;
2559 		}
2560 
2561 		/*
2562 		 * Mark the descriptor as depleted and perform necessary
2563 		 * cleanup.
2564 		 * This code will execute in two cases:
2565 		 *  1. Descriptor len was greater than 0 - normal situation.
2566 		 *  2. Descriptor len was 0 and we failed to add the descriptor
2567 		 *     to the device. In that situation, we should try to add
2568 		 *     the mbuf again in the populate routine and mark the
2569 		 *     descriptor as used up by the device.
2570 		 */
2571 		rx_info->mbuf = NULL;
2572 		rx_ring->empty_rx_reqs[ntc] = req_id;
2573 		ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2574 	}
2575 
2576 	*next_to_clean = ntc;
2577 
2578 	return mbuf_head;
2579 }
2580 
2581 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
2582 				  uint16_t nb_pkts)
2583 {
2584 	struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
2585 	unsigned int free_queue_entries;
2586 	uint16_t next_to_clean = rx_ring->next_to_clean;
2587 	uint16_t descs_in_use;
2588 	struct rte_mbuf *mbuf;
2589 	uint16_t completed;
2590 	struct ena_com_rx_ctx ena_rx_ctx;
2591 	int i, rc = 0;
2592 	bool fill_hash;
2593 
2594 #ifdef RTE_ETHDEV_DEBUG_RX
2595 	/* Check adapter state */
2596 	if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2597 		PMD_RX_LOG(ALERT,
2598 			"Trying to receive pkts while device is NOT running\n");
2599 		return 0;
2600 	}
2601 #endif
2602 
2603 	fill_hash = rx_ring->offloads & RTE_ETH_RX_OFFLOAD_RSS_HASH;
2604 
2605 	descs_in_use = rx_ring->ring_size -
2606 		ena_com_free_q_entries(rx_ring->ena_com_io_sq) - 1;
2607 	nb_pkts = RTE_MIN(descs_in_use, nb_pkts);
2608 
2609 	for (completed = 0; completed < nb_pkts; completed++) {
2610 		ena_rx_ctx.max_bufs = rx_ring->sgl_size;
2611 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
2612 		ena_rx_ctx.descs = 0;
2613 		ena_rx_ctx.pkt_offset = 0;
2614 		/* receive packet context */
2615 		rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
2616 				    rx_ring->ena_com_io_sq,
2617 				    &ena_rx_ctx);
2618 		if (unlikely(rc)) {
2619 			PMD_RX_LOG(ERR,
2620 				"Failed to get the packet from the device, rc: %d\n",
2621 				rc);
2622 			if (rc == ENA_COM_NO_SPACE) {
2623 				++rx_ring->rx_stats.bad_desc_num;
2624 				ena_trigger_reset(rx_ring->adapter,
2625 					ENA_REGS_RESET_TOO_MANY_RX_DESCS);
2626 			} else {
2627 				++rx_ring->rx_stats.bad_req_id;
2628 				ena_trigger_reset(rx_ring->adapter,
2629 					ENA_REGS_RESET_INV_RX_REQ_ID);
2630 			}
2631 			return 0;
2632 		}
2633 
2634 		mbuf = ena_rx_mbuf(rx_ring,
2635 			ena_rx_ctx.ena_bufs,
2636 			ena_rx_ctx.descs,
2637 			&next_to_clean,
2638 			ena_rx_ctx.pkt_offset);
2639 		if (unlikely(mbuf == NULL)) {
2640 			for (i = 0; i < ena_rx_ctx.descs; ++i) {
2641 				rx_ring->empty_rx_reqs[next_to_clean] =
2642 					rx_ring->ena_bufs[i].req_id;
2643 				next_to_clean = ENA_IDX_NEXT_MASKED(
2644 					next_to_clean, rx_ring->size_mask);
2645 			}
2646 			break;
2647 		}
2648 
2649 		/* fill mbuf attributes if any */
2650 		ena_rx_mbuf_prepare(rx_ring, mbuf, &ena_rx_ctx, fill_hash);
2651 
2652 		if (unlikely(mbuf->ol_flags &
2653 				(RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD)))
2654 			rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors);
2655 
2656 		rx_pkts[completed] = mbuf;
2657 		rx_ring->rx_stats.bytes += mbuf->pkt_len;
2658 	}
2659 
2660 	rx_ring->rx_stats.cnt += completed;
2661 	rx_ring->next_to_clean = next_to_clean;
2662 
2663 	free_queue_entries = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
2664 
2665 	/* Burst refill to save doorbells, memory barriers, const interval */
2666 	if (free_queue_entries >= rx_ring->rx_free_thresh) {
2667 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
2668 		ena_populate_rx_queue(rx_ring, free_queue_entries);
2669 	}
2670 
2671 	return completed;
2672 }
2673 
2674 static uint16_t
2675 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2676 		uint16_t nb_pkts)
2677 {
2678 	int32_t ret;
2679 	uint32_t i;
2680 	struct rte_mbuf *m;
2681 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2682 	struct ena_adapter *adapter = tx_ring->adapter;
2683 	struct rte_ipv4_hdr *ip_hdr;
2684 	uint64_t ol_flags;
2685 	uint64_t l4_csum_flag;
2686 	uint64_t dev_offload_capa;
2687 	uint16_t frag_field;
2688 	bool need_pseudo_csum;
2689 
2690 	dev_offload_capa = adapter->offloads.tx_offloads;
2691 	for (i = 0; i != nb_pkts; i++) {
2692 		m = tx_pkts[i];
2693 		ol_flags = m->ol_flags;
2694 
2695 		/* Check if any offload flag was set */
2696 		if (ol_flags == 0)
2697 			continue;
2698 
2699 		l4_csum_flag = ol_flags & RTE_MBUF_F_TX_L4_MASK;
2700 		/* SCTP checksum offload is not supported by the ENA. */
2701 		if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) ||
2702 		    l4_csum_flag == RTE_MBUF_F_TX_SCTP_CKSUM) {
2703 			PMD_TX_LOG(DEBUG,
2704 				"mbuf[%" PRIu32 "] has unsupported offloads flags set: 0x%" PRIu64 "\n",
2705 				i, ol_flags);
2706 			rte_errno = ENOTSUP;
2707 			return i;
2708 		}
2709 
2710 		if (unlikely(m->nb_segs >= tx_ring->sgl_size &&
2711 		    !(tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
2712 		      m->nb_segs == tx_ring->sgl_size &&
2713 		      m->data_len < tx_ring->tx_max_header_size))) {
2714 			PMD_TX_LOG(DEBUG,
2715 				"mbuf[%" PRIu32 "] has too many segments: %" PRIu16 "\n",
2716 				i, m->nb_segs);
2717 			rte_errno = EINVAL;
2718 			return i;
2719 		}
2720 
2721 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2722 		/* Check if requested offload is also enabled for the queue */
2723 		if ((ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
2724 		     !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM)) ||
2725 		    (l4_csum_flag == RTE_MBUF_F_TX_TCP_CKSUM &&
2726 		     !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) ||
2727 		    (l4_csum_flag == RTE_MBUF_F_TX_UDP_CKSUM &&
2728 		     !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM))) {
2729 			PMD_TX_LOG(DEBUG,
2730 				"mbuf[%" PRIu32 "]: requested offloads: %" PRIu16 " are not enabled for the queue[%u]\n",
2731 				i, m->nb_segs, tx_ring->id);
2732 			rte_errno = EINVAL;
2733 			return i;
2734 		}
2735 
2736 		/* The caller is obligated to set l2 and l3 len if any cksum
2737 		 * offload is enabled.
2738 		 */
2739 		if (unlikely(ol_flags & (RTE_MBUF_F_TX_IP_CKSUM | RTE_MBUF_F_TX_L4_MASK) &&
2740 		    (m->l2_len == 0 || m->l3_len == 0))) {
2741 			PMD_TX_LOG(DEBUG,
2742 				"mbuf[%" PRIu32 "]: l2_len or l3_len values are 0 while the offload was requested\n",
2743 				i);
2744 			rte_errno = EINVAL;
2745 			return i;
2746 		}
2747 		ret = rte_validate_tx_offload(m);
2748 		if (ret != 0) {
2749 			rte_errno = -ret;
2750 			return i;
2751 		}
2752 #endif
2753 
2754 		/* Verify HW support for requested offloads and determine if
2755 		 * pseudo header checksum is needed.
2756 		 */
2757 		need_pseudo_csum = false;
2758 		if (ol_flags & RTE_MBUF_F_TX_IPV4) {
2759 			if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
2760 			    !(dev_offload_capa & ENA_L3_IPV4_CSUM)) {
2761 				rte_errno = ENOTSUP;
2762 				return i;
2763 			}
2764 
2765 			if (ol_flags & RTE_MBUF_F_TX_TCP_SEG &&
2766 			    !(dev_offload_capa & ENA_IPV4_TSO)) {
2767 				rte_errno = ENOTSUP;
2768 				return i;
2769 			}
2770 
2771 			/* Check HW capabilities and if pseudo csum is needed
2772 			 * for L4 offloads.
2773 			 */
2774 			if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
2775 			    !(dev_offload_capa & ENA_L4_IPV4_CSUM)) {
2776 				if (dev_offload_capa &
2777 				    ENA_L4_IPV4_CSUM_PARTIAL) {
2778 					need_pseudo_csum = true;
2779 				} else {
2780 					rte_errno = ENOTSUP;
2781 					return i;
2782 				}
2783 			}
2784 
2785 			/* Parse the DF flag */
2786 			ip_hdr = rte_pktmbuf_mtod_offset(m,
2787 				struct rte_ipv4_hdr *, m->l2_len);
2788 			frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
2789 			if (frag_field & RTE_IPV4_HDR_DF_FLAG) {
2790 				m->packet_type |= RTE_PTYPE_L4_NONFRAG;
2791 			} else if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2792 				/* In case we are supposed to TSO and have DF
2793 				 * not set (DF=0) hardware must be provided with
2794 				 * partial checksum.
2795 				 */
2796 				need_pseudo_csum = true;
2797 			}
2798 		} else if (ol_flags & RTE_MBUF_F_TX_IPV6) {
2799 			/* There is no support for IPv6 TSO as for now. */
2800 			if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2801 				rte_errno = ENOTSUP;
2802 				return i;
2803 			}
2804 
2805 			/* Check HW capabilities and if pseudo csum is needed */
2806 			if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
2807 			    !(dev_offload_capa & ENA_L4_IPV6_CSUM)) {
2808 				if (dev_offload_capa &
2809 				    ENA_L4_IPV6_CSUM_PARTIAL) {
2810 					need_pseudo_csum = true;
2811 				} else {
2812 					rte_errno = ENOTSUP;
2813 					return i;
2814 				}
2815 			}
2816 		}
2817 
2818 		if (need_pseudo_csum) {
2819 			ret = rte_net_intel_cksum_flags_prepare(m, ol_flags);
2820 			if (ret != 0) {
2821 				rte_errno = -ret;
2822 				return i;
2823 			}
2824 		}
2825 	}
2826 
2827 	return i;
2828 }
2829 
2830 static void ena_update_hints(struct ena_adapter *adapter,
2831 			     struct ena_admin_ena_hw_hints *hints)
2832 {
2833 	if (hints->admin_completion_tx_timeout)
2834 		adapter->ena_dev.admin_queue.completion_timeout =
2835 			hints->admin_completion_tx_timeout * 1000;
2836 
2837 	if (hints->mmio_read_timeout)
2838 		/* convert to usec */
2839 		adapter->ena_dev.mmio_read.reg_read_to =
2840 			hints->mmio_read_timeout * 1000;
2841 
2842 	if (hints->driver_watchdog_timeout) {
2843 		if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
2844 			adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
2845 		else
2846 			// Convert msecs to ticks
2847 			adapter->keep_alive_timeout =
2848 				(hints->driver_watchdog_timeout *
2849 				rte_get_timer_hz()) / 1000;
2850 	}
2851 }
2852 
2853 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
2854 	struct ena_tx_buffer *tx_info,
2855 	struct rte_mbuf *mbuf,
2856 	void **push_header,
2857 	uint16_t *header_len)
2858 {
2859 	struct ena_com_buf *ena_buf;
2860 	uint16_t delta, seg_len, push_len;
2861 
2862 	delta = 0;
2863 	seg_len = mbuf->data_len;
2864 
2865 	tx_info->mbuf = mbuf;
2866 	ena_buf = tx_info->bufs;
2867 
2868 	if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2869 		/*
2870 		 * Tx header might be (and will be in most cases) smaller than
2871 		 * tx_max_header_size. But it's not an issue to send more data
2872 		 * to the device, than actually needed if the mbuf size is
2873 		 * greater than tx_max_header_size.
2874 		 */
2875 		push_len = RTE_MIN(mbuf->pkt_len, tx_ring->tx_max_header_size);
2876 		*header_len = push_len;
2877 
2878 		if (likely(push_len <= seg_len)) {
2879 			/* If the push header is in the single segment, then
2880 			 * just point it to the 1st mbuf data.
2881 			 */
2882 			*push_header = rte_pktmbuf_mtod(mbuf, uint8_t *);
2883 		} else {
2884 			/* If the push header lays in the several segments, copy
2885 			 * it to the intermediate buffer.
2886 			 */
2887 			rte_pktmbuf_read(mbuf, 0, push_len,
2888 				tx_ring->push_buf_intermediate_buf);
2889 			*push_header = tx_ring->push_buf_intermediate_buf;
2890 			delta = push_len - seg_len;
2891 		}
2892 	} else {
2893 		*push_header = NULL;
2894 		*header_len = 0;
2895 		push_len = 0;
2896 	}
2897 
2898 	/* Process first segment taking into consideration pushed header */
2899 	if (seg_len > push_len) {
2900 		ena_buf->paddr = mbuf->buf_iova +
2901 				mbuf->data_off +
2902 				push_len;
2903 		ena_buf->len = seg_len - push_len;
2904 		ena_buf++;
2905 		tx_info->num_of_bufs++;
2906 	}
2907 
2908 	while ((mbuf = mbuf->next) != NULL) {
2909 		seg_len = mbuf->data_len;
2910 
2911 		/* Skip mbufs if whole data is pushed as a header */
2912 		if (unlikely(delta > seg_len)) {
2913 			delta -= seg_len;
2914 			continue;
2915 		}
2916 
2917 		ena_buf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
2918 		ena_buf->len = seg_len - delta;
2919 		ena_buf++;
2920 		tx_info->num_of_bufs++;
2921 
2922 		delta = 0;
2923 	}
2924 }
2925 
2926 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf)
2927 {
2928 	struct ena_tx_buffer *tx_info;
2929 	struct ena_com_tx_ctx ena_tx_ctx = { { 0 } };
2930 	uint16_t next_to_use;
2931 	uint16_t header_len;
2932 	uint16_t req_id;
2933 	void *push_header;
2934 	int nb_hw_desc;
2935 	int rc;
2936 
2937 	/* Checking for space for 2 additional metadata descriptors due to
2938 	 * possible header split and metadata descriptor
2939 	 */
2940 	if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
2941 					  mbuf->nb_segs + 2)) {
2942 		PMD_DRV_LOG(DEBUG, "Not enough space in the tx queue\n");
2943 		return ENA_COM_NO_MEM;
2944 	}
2945 
2946 	next_to_use = tx_ring->next_to_use;
2947 
2948 	req_id = tx_ring->empty_tx_reqs[next_to_use];
2949 	tx_info = &tx_ring->tx_buffer_info[req_id];
2950 	tx_info->num_of_bufs = 0;
2951 	RTE_ASSERT(tx_info->mbuf == NULL);
2952 
2953 	ena_tx_map_mbuf(tx_ring, tx_info, mbuf, &push_header, &header_len);
2954 
2955 	ena_tx_ctx.ena_bufs = tx_info->bufs;
2956 	ena_tx_ctx.push_header = push_header;
2957 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2958 	ena_tx_ctx.req_id = req_id;
2959 	ena_tx_ctx.header_len = header_len;
2960 
2961 	/* Set Tx offloads flags, if applicable */
2962 	ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads,
2963 		tx_ring->disable_meta_caching);
2964 
2965 	if (unlikely(ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
2966 			&ena_tx_ctx))) {
2967 		PMD_TX_LOG(DEBUG,
2968 			"LLQ Tx max burst size of queue %d achieved, writing doorbell to send burst\n",
2969 			tx_ring->id);
2970 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2971 		tx_ring->tx_stats.doorbells++;
2972 		tx_ring->pkts_without_db = false;
2973 	}
2974 
2975 	/* prepare the packet's descriptors to dma engine */
2976 	rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq,	&ena_tx_ctx,
2977 		&nb_hw_desc);
2978 	if (unlikely(rc)) {
2979 		PMD_DRV_LOG(ERR, "Failed to prepare Tx buffers, rc: %d\n", rc);
2980 		++tx_ring->tx_stats.prepare_ctx_err;
2981 		ena_trigger_reset(tx_ring->adapter,
2982 			ENA_REGS_RESET_DRIVER_INVALID_STATE);
2983 		return rc;
2984 	}
2985 
2986 	tx_info->tx_descs = nb_hw_desc;
2987 	tx_info->timestamp = rte_get_timer_cycles();
2988 
2989 	tx_ring->tx_stats.cnt++;
2990 	tx_ring->tx_stats.bytes += mbuf->pkt_len;
2991 
2992 	tx_ring->next_to_use = ENA_IDX_NEXT_MASKED(next_to_use,
2993 		tx_ring->size_mask);
2994 
2995 	return 0;
2996 }
2997 
2998 static int ena_tx_cleanup(void *txp, uint32_t free_pkt_cnt)
2999 {
3000 	struct ena_ring *tx_ring = (struct ena_ring *)txp;
3001 	unsigned int total_tx_descs = 0;
3002 	unsigned int total_tx_pkts = 0;
3003 	uint16_t cleanup_budget;
3004 	uint16_t next_to_clean = tx_ring->next_to_clean;
3005 
3006 	/*
3007 	 * If free_pkt_cnt is equal to 0, it means that the user requested
3008 	 * full cleanup, so attempt to release all Tx descriptors
3009 	 * (ring_size - 1 -> size_mask)
3010 	 */
3011 	cleanup_budget = (free_pkt_cnt == 0) ? tx_ring->size_mask : free_pkt_cnt;
3012 
3013 	while (likely(total_tx_pkts < cleanup_budget)) {
3014 		struct rte_mbuf *mbuf;
3015 		struct ena_tx_buffer *tx_info;
3016 		uint16_t req_id;
3017 
3018 		if (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) != 0)
3019 			break;
3020 
3021 		if (unlikely(validate_tx_req_id(tx_ring, req_id) != 0))
3022 			break;
3023 
3024 		/* Get Tx info & store how many descs were processed  */
3025 		tx_info = &tx_ring->tx_buffer_info[req_id];
3026 		tx_info->timestamp = 0;
3027 
3028 		mbuf = tx_info->mbuf;
3029 		rte_pktmbuf_free(mbuf);
3030 
3031 		tx_info->mbuf = NULL;
3032 		tx_ring->empty_tx_reqs[next_to_clean] = req_id;
3033 
3034 		total_tx_descs += tx_info->tx_descs;
3035 		total_tx_pkts++;
3036 
3037 		/* Put back descriptor to the ring for reuse */
3038 		next_to_clean = ENA_IDX_NEXT_MASKED(next_to_clean,
3039 			tx_ring->size_mask);
3040 	}
3041 
3042 	if (likely(total_tx_descs > 0)) {
3043 		/* acknowledge completion of sent packets */
3044 		tx_ring->next_to_clean = next_to_clean;
3045 		ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
3046 		ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
3047 	}
3048 
3049 	/* Notify completion handler that full cleanup was performed */
3050 	if (free_pkt_cnt == 0 || total_tx_pkts < cleanup_budget)
3051 		tx_ring->last_cleanup_ticks = rte_get_timer_cycles();
3052 
3053 	return total_tx_pkts;
3054 }
3055 
3056 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
3057 				  uint16_t nb_pkts)
3058 {
3059 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
3060 	int available_desc;
3061 	uint16_t sent_idx = 0;
3062 
3063 #ifdef RTE_ETHDEV_DEBUG_TX
3064 	/* Check adapter state */
3065 	if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
3066 		PMD_TX_LOG(ALERT,
3067 			"Trying to xmit pkts while device is NOT running\n");
3068 		return 0;
3069 	}
3070 #endif
3071 
3072 	available_desc = ena_com_free_q_entries(tx_ring->ena_com_io_sq);
3073 	if (available_desc < tx_ring->tx_free_thresh)
3074 		ena_tx_cleanup((void *)tx_ring, 0);
3075 
3076 	for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
3077 		if (ena_xmit_mbuf(tx_ring, tx_pkts[sent_idx]))
3078 			break;
3079 		tx_ring->pkts_without_db = true;
3080 		rte_prefetch0(tx_pkts[ENA_IDX_ADD_MASKED(sent_idx, 4,
3081 			tx_ring->size_mask)]);
3082 	}
3083 
3084 	/* If there are ready packets to be xmitted... */
3085 	if (likely(tx_ring->pkts_without_db)) {
3086 		/* ...let HW do its best :-) */
3087 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
3088 		tx_ring->tx_stats.doorbells++;
3089 		tx_ring->pkts_without_db = false;
3090 	}
3091 
3092 	tx_ring->tx_stats.available_desc =
3093 		ena_com_free_q_entries(tx_ring->ena_com_io_sq);
3094 	tx_ring->tx_stats.tx_poll++;
3095 
3096 	return sent_idx;
3097 }
3098 
3099 int ena_copy_eni_stats(struct ena_adapter *adapter, struct ena_stats_eni *stats)
3100 {
3101 	int rc;
3102 
3103 	rte_spinlock_lock(&adapter->admin_lock);
3104 	/* Retrieve and store the latest statistics from the AQ. This ensures
3105 	 * that previous value is returned in case of a com error.
3106 	 */
3107 	rc = ENA_PROXY(adapter, ena_com_get_eni_stats, &adapter->ena_dev,
3108 		(struct ena_admin_eni_stats *)stats);
3109 	rte_spinlock_unlock(&adapter->admin_lock);
3110 	if (rc != 0) {
3111 		if (rc == ENA_COM_UNSUPPORTED) {
3112 			PMD_DRV_LOG(DEBUG,
3113 				"Retrieving ENI metrics is not supported\n");
3114 		} else {
3115 			PMD_DRV_LOG(WARNING,
3116 				"Failed to get ENI metrics, rc: %d\n", rc);
3117 		}
3118 		return rc;
3119 	}
3120 
3121 	return 0;
3122 }
3123 
3124 /**
3125  * DPDK callback to retrieve names of extended device statistics
3126  *
3127  * @param dev
3128  *   Pointer to Ethernet device structure.
3129  * @param[out] xstats_names
3130  *   Buffer to insert names into.
3131  * @param n
3132  *   Number of names.
3133  *
3134  * @return
3135  *   Number of xstats names.
3136  */
3137 static int ena_xstats_get_names(struct rte_eth_dev *dev,
3138 				struct rte_eth_xstat_name *xstats_names,
3139 				unsigned int n)
3140 {
3141 	unsigned int xstats_count = ena_xstats_calc_num(dev->data);
3142 	unsigned int stat, i, count = 0;
3143 
3144 	if (n < xstats_count || !xstats_names)
3145 		return xstats_count;
3146 
3147 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
3148 		strcpy(xstats_names[count].name,
3149 			ena_stats_global_strings[stat].name);
3150 
3151 	for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++)
3152 		strcpy(xstats_names[count].name,
3153 			ena_stats_eni_strings[stat].name);
3154 
3155 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
3156 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
3157 			snprintf(xstats_names[count].name,
3158 				sizeof(xstats_names[count].name),
3159 				"rx_q%d_%s", i,
3160 				ena_stats_rx_strings[stat].name);
3161 
3162 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
3163 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
3164 			snprintf(xstats_names[count].name,
3165 				sizeof(xstats_names[count].name),
3166 				"tx_q%d_%s", i,
3167 				ena_stats_tx_strings[stat].name);
3168 
3169 	return xstats_count;
3170 }
3171 
3172 /**
3173  * DPDK callback to retrieve names of extended device statistics for the given
3174  * ids.
3175  *
3176  * @param dev
3177  *   Pointer to Ethernet device structure.
3178  * @param[out] xstats_names
3179  *   Buffer to insert names into.
3180  * @param ids
3181  *   IDs array for which the names should be retrieved.
3182  * @param size
3183  *   Number of ids.
3184  *
3185  * @return
3186  *   Positive value: number of xstats names. Negative value: error code.
3187  */
3188 static int ena_xstats_get_names_by_id(struct rte_eth_dev *dev,
3189 				      const uint64_t *ids,
3190 				      struct rte_eth_xstat_name *xstats_names,
3191 				      unsigned int size)
3192 {
3193 	uint64_t xstats_count = ena_xstats_calc_num(dev->data);
3194 	uint64_t id, qid;
3195 	unsigned int i;
3196 
3197 	if (xstats_names == NULL)
3198 		return xstats_count;
3199 
3200 	for (i = 0; i < size; ++i) {
3201 		id = ids[i];
3202 		if (id > xstats_count) {
3203 			PMD_DRV_LOG(ERR,
3204 				"ID value out of range: id=%" PRIu64 ", xstats_num=%" PRIu64 "\n",
3205 				 id, xstats_count);
3206 			return -EINVAL;
3207 		}
3208 
3209 		if (id < ENA_STATS_ARRAY_GLOBAL) {
3210 			strcpy(xstats_names[i].name,
3211 			       ena_stats_global_strings[id].name);
3212 			continue;
3213 		}
3214 
3215 		id -= ENA_STATS_ARRAY_GLOBAL;
3216 		if (id < ENA_STATS_ARRAY_ENI) {
3217 			strcpy(xstats_names[i].name,
3218 			       ena_stats_eni_strings[id].name);
3219 			continue;
3220 		}
3221 
3222 		id -= ENA_STATS_ARRAY_ENI;
3223 		if (id < ENA_STATS_ARRAY_RX) {
3224 			qid = id / dev->data->nb_rx_queues;
3225 			id %= dev->data->nb_rx_queues;
3226 			snprintf(xstats_names[i].name,
3227 				 sizeof(xstats_names[i].name),
3228 				 "rx_q%" PRIu64 "d_%s",
3229 				 qid, ena_stats_rx_strings[id].name);
3230 			continue;
3231 		}
3232 
3233 		id -= ENA_STATS_ARRAY_RX;
3234 		/* Although this condition is not needed, it was added for
3235 		 * compatibility if new xstat structure would be ever added.
3236 		 */
3237 		if (id < ENA_STATS_ARRAY_TX) {
3238 			qid = id / dev->data->nb_tx_queues;
3239 			id %= dev->data->nb_tx_queues;
3240 			snprintf(xstats_names[i].name,
3241 				 sizeof(xstats_names[i].name),
3242 				 "tx_q%" PRIu64 "_%s",
3243 				 qid, ena_stats_tx_strings[id].name);
3244 			continue;
3245 		}
3246 	}
3247 
3248 	return i;
3249 }
3250 
3251 /**
3252  * DPDK callback to get extended device statistics.
3253  *
3254  * @param dev
3255  *   Pointer to Ethernet device structure.
3256  * @param[out] stats
3257  *   Stats table output buffer.
3258  * @param n
3259  *   The size of the stats table.
3260  *
3261  * @return
3262  *   Number of xstats on success, negative on failure.
3263  */
3264 static int ena_xstats_get(struct rte_eth_dev *dev,
3265 			  struct rte_eth_xstat *xstats,
3266 			  unsigned int n)
3267 {
3268 	struct ena_adapter *adapter = dev->data->dev_private;
3269 	unsigned int xstats_count = ena_xstats_calc_num(dev->data);
3270 	struct ena_stats_eni eni_stats;
3271 	unsigned int stat, i, count = 0;
3272 	int stat_offset;
3273 	void *stats_begin;
3274 
3275 	if (n < xstats_count)
3276 		return xstats_count;
3277 
3278 	if (!xstats)
3279 		return 0;
3280 
3281 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
3282 		stat_offset = ena_stats_global_strings[stat].stat_offset;
3283 		stats_begin = &adapter->dev_stats;
3284 
3285 		xstats[count].id = count;
3286 		xstats[count].value = *((uint64_t *)
3287 			((char *)stats_begin + stat_offset));
3288 	}
3289 
3290 	/* Even if the function below fails, we should copy previous (or initial
3291 	 * values) to keep structure of rte_eth_xstat consistent.
3292 	 */
3293 	ena_copy_eni_stats(adapter, &eni_stats);
3294 	for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++) {
3295 		stat_offset = ena_stats_eni_strings[stat].stat_offset;
3296 		stats_begin = &eni_stats;
3297 
3298 		xstats[count].id = count;
3299 		xstats[count].value = *((uint64_t *)
3300 		    ((char *)stats_begin + stat_offset));
3301 	}
3302 
3303 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
3304 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
3305 			stat_offset = ena_stats_rx_strings[stat].stat_offset;
3306 			stats_begin = &adapter->rx_ring[i].rx_stats;
3307 
3308 			xstats[count].id = count;
3309 			xstats[count].value = *((uint64_t *)
3310 				((char *)stats_begin + stat_offset));
3311 		}
3312 	}
3313 
3314 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
3315 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
3316 			stat_offset = ena_stats_tx_strings[stat].stat_offset;
3317 			stats_begin = &adapter->tx_ring[i].rx_stats;
3318 
3319 			xstats[count].id = count;
3320 			xstats[count].value = *((uint64_t *)
3321 				((char *)stats_begin + stat_offset));
3322 		}
3323 	}
3324 
3325 	return count;
3326 }
3327 
3328 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
3329 				const uint64_t *ids,
3330 				uint64_t *values,
3331 				unsigned int n)
3332 {
3333 	struct ena_adapter *adapter = dev->data->dev_private;
3334 	struct ena_stats_eni eni_stats;
3335 	uint64_t id;
3336 	uint64_t rx_entries, tx_entries;
3337 	unsigned int i;
3338 	int qid;
3339 	int valid = 0;
3340 	bool was_eni_copied = false;
3341 
3342 	for (i = 0; i < n; ++i) {
3343 		id = ids[i];
3344 		/* Check if id belongs to global statistics */
3345 		if (id < ENA_STATS_ARRAY_GLOBAL) {
3346 			values[i] = *((uint64_t *)&adapter->dev_stats + id);
3347 			++valid;
3348 			continue;
3349 		}
3350 
3351 		/* Check if id belongs to ENI statistics */
3352 		id -= ENA_STATS_ARRAY_GLOBAL;
3353 		if (id < ENA_STATS_ARRAY_ENI) {
3354 			/* Avoid reading ENI stats multiple times in a single
3355 			 * function call, as it requires communication with the
3356 			 * admin queue.
3357 			 */
3358 			if (!was_eni_copied) {
3359 				was_eni_copied = true;
3360 				ena_copy_eni_stats(adapter, &eni_stats);
3361 			}
3362 			values[i] = *((uint64_t *)&eni_stats + id);
3363 			++valid;
3364 			continue;
3365 		}
3366 
3367 		/* Check if id belongs to rx queue statistics */
3368 		id -= ENA_STATS_ARRAY_ENI;
3369 		rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
3370 		if (id < rx_entries) {
3371 			qid = id % dev->data->nb_rx_queues;
3372 			id /= dev->data->nb_rx_queues;
3373 			values[i] = *((uint64_t *)
3374 				&adapter->rx_ring[qid].rx_stats + id);
3375 			++valid;
3376 			continue;
3377 		}
3378 				/* Check if id belongs to rx queue statistics */
3379 		id -= rx_entries;
3380 		tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
3381 		if (id < tx_entries) {
3382 			qid = id % dev->data->nb_tx_queues;
3383 			id /= dev->data->nb_tx_queues;
3384 			values[i] = *((uint64_t *)
3385 				&adapter->tx_ring[qid].tx_stats + id);
3386 			++valid;
3387 			continue;
3388 		}
3389 	}
3390 
3391 	return valid;
3392 }
3393 
3394 static int ena_process_uint_devarg(const char *key,
3395 				  const char *value,
3396 				  void *opaque)
3397 {
3398 	struct ena_adapter *adapter = opaque;
3399 	char *str_end;
3400 	uint64_t uint_value;
3401 
3402 	uint_value = strtoull(value, &str_end, 10);
3403 	if (value == str_end) {
3404 		PMD_INIT_LOG(ERR,
3405 			"Invalid value for key '%s'. Only uint values are accepted.\n",
3406 			key);
3407 		return -EINVAL;
3408 	}
3409 
3410 	if (strcmp(key, ENA_DEVARG_MISS_TXC_TO) == 0) {
3411 		if (uint_value > ENA_MAX_TX_TIMEOUT_SECONDS) {
3412 			PMD_INIT_LOG(ERR,
3413 				"Tx timeout too high: %" PRIu64 " sec. Maximum allowed: %d sec.\n",
3414 				uint_value, ENA_MAX_TX_TIMEOUT_SECONDS);
3415 			return -EINVAL;
3416 		} else if (uint_value == 0) {
3417 			PMD_INIT_LOG(INFO,
3418 				"Check for missing Tx completions has been disabled.\n");
3419 			adapter->missing_tx_completion_to =
3420 				ENA_HW_HINTS_NO_TIMEOUT;
3421 		} else {
3422 			PMD_INIT_LOG(INFO,
3423 				"Tx packet completion timeout set to %" PRIu64 " seconds.\n",
3424 				uint_value);
3425 			adapter->missing_tx_completion_to =
3426 				uint_value * rte_get_timer_hz();
3427 		}
3428 	}
3429 
3430 	return 0;
3431 }
3432 
3433 static int ena_process_bool_devarg(const char *key,
3434 				   const char *value,
3435 				   void *opaque)
3436 {
3437 	struct ena_adapter *adapter = opaque;
3438 	bool bool_value;
3439 
3440 	/* Parse the value. */
3441 	if (strcmp(value, "1") == 0) {
3442 		bool_value = true;
3443 	} else if (strcmp(value, "0") == 0) {
3444 		bool_value = false;
3445 	} else {
3446 		PMD_INIT_LOG(ERR,
3447 			"Invalid value: '%s' for key '%s'. Accepted: '0' or '1'\n",
3448 			value, key);
3449 		return -EINVAL;
3450 	}
3451 
3452 	/* Now, assign it to the proper adapter field. */
3453 	if (strcmp(key, ENA_DEVARG_LARGE_LLQ_HDR) == 0)
3454 		adapter->use_large_llq_hdr = bool_value;
3455 
3456 	return 0;
3457 }
3458 
3459 static int ena_parse_devargs(struct ena_adapter *adapter,
3460 			     struct rte_devargs *devargs)
3461 {
3462 	static const char * const allowed_args[] = {
3463 		ENA_DEVARG_LARGE_LLQ_HDR,
3464 		ENA_DEVARG_MISS_TXC_TO,
3465 		NULL,
3466 	};
3467 	struct rte_kvargs *kvlist;
3468 	int rc;
3469 
3470 	if (devargs == NULL)
3471 		return 0;
3472 
3473 	kvlist = rte_kvargs_parse(devargs->args, allowed_args);
3474 	if (kvlist == NULL) {
3475 		PMD_INIT_LOG(ERR, "Invalid device arguments: %s\n",
3476 			devargs->args);
3477 		return -EINVAL;
3478 	}
3479 
3480 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_LARGE_LLQ_HDR,
3481 		ena_process_bool_devarg, adapter);
3482 	if (rc != 0)
3483 		goto exit;
3484 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_MISS_TXC_TO,
3485 		ena_process_uint_devarg, adapter);
3486 
3487 exit:
3488 	rte_kvargs_free(kvlist);
3489 
3490 	return rc;
3491 }
3492 
3493 static int ena_setup_rx_intr(struct rte_eth_dev *dev)
3494 {
3495 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3496 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
3497 	int rc;
3498 	uint16_t vectors_nb, i;
3499 	bool rx_intr_requested = dev->data->dev_conf.intr_conf.rxq;
3500 
3501 	if (!rx_intr_requested)
3502 		return 0;
3503 
3504 	if (!rte_intr_cap_multiple(intr_handle)) {
3505 		PMD_DRV_LOG(ERR,
3506 			"Rx interrupt requested, but it isn't supported by the PCI driver\n");
3507 		return -ENOTSUP;
3508 	}
3509 
3510 	/* Disable interrupt mapping before the configuration starts. */
3511 	rte_intr_disable(intr_handle);
3512 
3513 	/* Verify if there are enough vectors available. */
3514 	vectors_nb = dev->data->nb_rx_queues;
3515 	if (vectors_nb > RTE_MAX_RXTX_INTR_VEC_ID) {
3516 		PMD_DRV_LOG(ERR,
3517 			"Too many Rx interrupts requested, maximum number: %d\n",
3518 			RTE_MAX_RXTX_INTR_VEC_ID);
3519 		rc = -ENOTSUP;
3520 		goto enable_intr;
3521 	}
3522 
3523 	/* Allocate the vector list */
3524 	if (rte_intr_vec_list_alloc(intr_handle, "intr_vec",
3525 					   dev->data->nb_rx_queues)) {
3526 		PMD_DRV_LOG(ERR,
3527 			"Failed to allocate interrupt vector for %d queues\n",
3528 			dev->data->nb_rx_queues);
3529 		rc = -ENOMEM;
3530 		goto enable_intr;
3531 	}
3532 
3533 	rc = rte_intr_efd_enable(intr_handle, vectors_nb);
3534 	if (rc != 0)
3535 		goto free_intr_vec;
3536 
3537 	if (!rte_intr_allow_others(intr_handle)) {
3538 		PMD_DRV_LOG(ERR,
3539 			"Not enough interrupts available to use both ENA Admin and Rx interrupts\n");
3540 		goto disable_intr_efd;
3541 	}
3542 
3543 	for (i = 0; i < vectors_nb; ++i)
3544 		if (rte_intr_vec_list_index_set(intr_handle, i,
3545 					   RTE_INTR_VEC_RXTX_OFFSET + i))
3546 			goto disable_intr_efd;
3547 
3548 	rte_intr_enable(intr_handle);
3549 	return 0;
3550 
3551 disable_intr_efd:
3552 	rte_intr_efd_disable(intr_handle);
3553 free_intr_vec:
3554 	rte_intr_vec_list_free(intr_handle);
3555 enable_intr:
3556 	rte_intr_enable(intr_handle);
3557 	return rc;
3558 }
3559 
3560 static void ena_rx_queue_intr_set(struct rte_eth_dev *dev,
3561 				 uint16_t queue_id,
3562 				 bool unmask)
3563 {
3564 	struct ena_adapter *adapter = dev->data->dev_private;
3565 	struct ena_ring *rxq = &adapter->rx_ring[queue_id];
3566 	struct ena_eth_io_intr_reg intr_reg;
3567 
3568 	ena_com_update_intr_reg(&intr_reg, 0, 0, unmask);
3569 	ena_com_unmask_intr(rxq->ena_com_io_cq, &intr_reg);
3570 }
3571 
3572 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
3573 				    uint16_t queue_id)
3574 {
3575 	ena_rx_queue_intr_set(dev, queue_id, true);
3576 
3577 	return 0;
3578 }
3579 
3580 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
3581 				     uint16_t queue_id)
3582 {
3583 	ena_rx_queue_intr_set(dev, queue_id, false);
3584 
3585 	return 0;
3586 }
3587 
3588 static int ena_configure_aenq(struct ena_adapter *adapter)
3589 {
3590 	uint32_t aenq_groups = adapter->all_aenq_groups;
3591 	int rc;
3592 
3593 	/* All_aenq_groups holds all AENQ functions supported by the device and
3594 	 * the HW, so at first we need to be sure the LSC request is valid.
3595 	 */
3596 	if (adapter->edev_data->dev_conf.intr_conf.lsc != 0) {
3597 		if (!(aenq_groups & BIT(ENA_ADMIN_LINK_CHANGE))) {
3598 			PMD_DRV_LOG(ERR,
3599 				"LSC requested, but it's not supported by the AENQ\n");
3600 			return -EINVAL;
3601 		}
3602 	} else {
3603 		/* If LSC wasn't enabled by the app, let's enable all supported
3604 		 * AENQ procedures except the LSC.
3605 		 */
3606 		aenq_groups &= ~BIT(ENA_ADMIN_LINK_CHANGE);
3607 	}
3608 
3609 	rc = ena_com_set_aenq_config(&adapter->ena_dev, aenq_groups);
3610 	if (rc != 0) {
3611 		PMD_DRV_LOG(ERR, "Cannot configure AENQ groups, rc=%d\n", rc);
3612 		return rc;
3613 	}
3614 
3615 	adapter->active_aenq_groups = aenq_groups;
3616 
3617 	return 0;
3618 }
3619 
3620 int ena_mp_indirect_table_set(struct ena_adapter *adapter)
3621 {
3622 	return ENA_PROXY(adapter, ena_com_indirect_table_set, &adapter->ena_dev);
3623 }
3624 
3625 int ena_mp_indirect_table_get(struct ena_adapter *adapter,
3626 			      uint32_t *indirect_table)
3627 {
3628 	return ENA_PROXY(adapter, ena_com_indirect_table_get, &adapter->ena_dev,
3629 		indirect_table);
3630 }
3631 
3632 /*********************************************************************
3633  *  ena_plat_dpdk.h functions implementations
3634  *********************************************************************/
3635 
3636 const struct rte_memzone *
3637 ena_mem_alloc_coherent(struct rte_eth_dev_data *data, size_t size,
3638 		       int socket_id, unsigned int alignment, void **virt_addr,
3639 		       dma_addr_t *phys_addr)
3640 {
3641 	char z_name[RTE_MEMZONE_NAMESIZE];
3642 	struct ena_adapter *adapter = data->dev_private;
3643 	const struct rte_memzone *memzone;
3644 	int rc;
3645 
3646 	rc = snprintf(z_name, RTE_MEMZONE_NAMESIZE, "ena_p%d_mz%" PRIu64 "",
3647 		data->port_id, adapter->memzone_cnt);
3648 	if (rc >= RTE_MEMZONE_NAMESIZE) {
3649 		PMD_DRV_LOG(ERR,
3650 			"Name for the ena_com memzone is too long. Port: %d, mz_num: %" PRIu64 "\n",
3651 			data->port_id, adapter->memzone_cnt);
3652 		goto error;
3653 	}
3654 	adapter->memzone_cnt++;
3655 
3656 	memzone = rte_memzone_reserve_aligned(z_name, size, socket_id,
3657 		RTE_MEMZONE_IOVA_CONTIG, alignment);
3658 	if (memzone == NULL) {
3659 		PMD_DRV_LOG(ERR, "Failed to allocate ena_com memzone: %s\n",
3660 			z_name);
3661 		goto error;
3662 	}
3663 
3664 	memset(memzone->addr, 0, size);
3665 	*virt_addr = memzone->addr;
3666 	*phys_addr = memzone->iova;
3667 
3668 	return memzone;
3669 
3670 error:
3671 	*virt_addr = NULL;
3672 	*phys_addr = 0;
3673 
3674 	return NULL;
3675 }
3676 
3677 
3678 /*********************************************************************
3679  *  PMD configuration
3680  *********************************************************************/
3681 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
3682 	struct rte_pci_device *pci_dev)
3683 {
3684 	return rte_eth_dev_pci_generic_probe(pci_dev,
3685 		sizeof(struct ena_adapter), eth_ena_dev_init);
3686 }
3687 
3688 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
3689 {
3690 	return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
3691 }
3692 
3693 static struct rte_pci_driver rte_ena_pmd = {
3694 	.id_table = pci_id_ena_map,
3695 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
3696 		     RTE_PCI_DRV_WC_ACTIVATE,
3697 	.probe = eth_ena_pci_probe,
3698 	.remove = eth_ena_pci_remove,
3699 };
3700 
3701 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
3702 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
3703 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
3704 RTE_PMD_REGISTER_PARAM_STRING(net_ena, ENA_DEVARG_LARGE_LLQ_HDR "=<0|1>");
3705 RTE_LOG_REGISTER_SUFFIX(ena_logtype_init, init, NOTICE);
3706 RTE_LOG_REGISTER_SUFFIX(ena_logtype_driver, driver, NOTICE);
3707 #ifdef RTE_ETHDEV_DEBUG_RX
3708 RTE_LOG_REGISTER_SUFFIX(ena_logtype_rx, rx, DEBUG);
3709 #endif
3710 #ifdef RTE_ETHDEV_DEBUG_TX
3711 RTE_LOG_REGISTER_SUFFIX(ena_logtype_tx, tx, DEBUG);
3712 #endif
3713 RTE_LOG_REGISTER_SUFFIX(ena_logtype_com, com, WARNING);
3714 
3715 /******************************************************************************
3716  ******************************** AENQ Handlers *******************************
3717  *****************************************************************************/
3718 static void ena_update_on_link_change(void *adapter_data,
3719 				      struct ena_admin_aenq_entry *aenq_e)
3720 {
3721 	struct rte_eth_dev *eth_dev = adapter_data;
3722 	struct ena_adapter *adapter = eth_dev->data->dev_private;
3723 	struct ena_admin_aenq_link_change_desc *aenq_link_desc;
3724 	uint32_t status;
3725 
3726 	aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
3727 
3728 	status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
3729 	adapter->link_status = status;
3730 
3731 	ena_link_update(eth_dev, 0);
3732 	rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
3733 }
3734 
3735 static void ena_notification(void *adapter_data,
3736 			     struct ena_admin_aenq_entry *aenq_e)
3737 {
3738 	struct rte_eth_dev *eth_dev = adapter_data;
3739 	struct ena_adapter *adapter = eth_dev->data->dev_private;
3740 	struct ena_admin_ena_hw_hints *hints;
3741 
3742 	if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
3743 		PMD_DRV_LOG(WARNING, "Invalid AENQ group: %x. Expected: %x\n",
3744 			aenq_e->aenq_common_desc.group,
3745 			ENA_ADMIN_NOTIFICATION);
3746 
3747 	switch (aenq_e->aenq_common_desc.syndrome) {
3748 	case ENA_ADMIN_UPDATE_HINTS:
3749 		hints = (struct ena_admin_ena_hw_hints *)
3750 			(&aenq_e->inline_data_w4);
3751 		ena_update_hints(adapter, hints);
3752 		break;
3753 	default:
3754 		PMD_DRV_LOG(ERR, "Invalid AENQ notification link state: %d\n",
3755 			aenq_e->aenq_common_desc.syndrome);
3756 	}
3757 }
3758 
3759 static void ena_keep_alive(void *adapter_data,
3760 			   __rte_unused struct ena_admin_aenq_entry *aenq_e)
3761 {
3762 	struct rte_eth_dev *eth_dev = adapter_data;
3763 	struct ena_adapter *adapter = eth_dev->data->dev_private;
3764 	struct ena_admin_aenq_keep_alive_desc *desc;
3765 	uint64_t rx_drops;
3766 	uint64_t tx_drops;
3767 
3768 	adapter->timestamp_wd = rte_get_timer_cycles();
3769 
3770 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
3771 	rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
3772 	tx_drops = ((uint64_t)desc->tx_drops_high << 32) | desc->tx_drops_low;
3773 
3774 	adapter->drv_stats->rx_drops = rx_drops;
3775 	adapter->dev_stats.tx_drops = tx_drops;
3776 }
3777 
3778 /**
3779  * This handler will called for unknown event group or unimplemented handlers
3780  **/
3781 static void unimplemented_aenq_handler(__rte_unused void *data,
3782 				       __rte_unused struct ena_admin_aenq_entry *aenq_e)
3783 {
3784 	PMD_DRV_LOG(ERR,
3785 		"Unknown event was received or event with unimplemented handler\n");
3786 }
3787 
3788 static struct ena_aenq_handlers aenq_handlers = {
3789 	.handlers = {
3790 		[ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
3791 		[ENA_ADMIN_NOTIFICATION] = ena_notification,
3792 		[ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive
3793 	},
3794 	.unimplemented_handler = unimplemented_aenq_handler
3795 };
3796 
3797 /*********************************************************************
3798  *  Multi-Process communication request handling (in primary)
3799  *********************************************************************/
3800 static int
3801 ena_mp_primary_handle(const struct rte_mp_msg *mp_msg, const void *peer)
3802 {
3803 	const struct ena_mp_body *req =
3804 		(const struct ena_mp_body *)mp_msg->param;
3805 	struct ena_adapter *adapter;
3806 	struct ena_com_dev *ena_dev;
3807 	struct ena_mp_body *rsp;
3808 	struct rte_mp_msg mp_rsp;
3809 	struct rte_eth_dev *dev;
3810 	int res = 0;
3811 
3812 	rsp = (struct ena_mp_body *)&mp_rsp.param;
3813 	mp_msg_init(&mp_rsp, req->type, req->port_id);
3814 
3815 	if (!rte_eth_dev_is_valid_port(req->port_id)) {
3816 		rte_errno = ENODEV;
3817 		res = -rte_errno;
3818 		PMD_DRV_LOG(ERR, "Unknown port %d in request %d\n",
3819 			    req->port_id, req->type);
3820 		goto end;
3821 	}
3822 	dev = &rte_eth_devices[req->port_id];
3823 	adapter = dev->data->dev_private;
3824 	ena_dev = &adapter->ena_dev;
3825 
3826 	switch (req->type) {
3827 	case ENA_MP_DEV_STATS_GET:
3828 		res = ena_com_get_dev_basic_stats(ena_dev,
3829 						  &adapter->basic_stats);
3830 		break;
3831 	case ENA_MP_ENI_STATS_GET:
3832 		res = ena_com_get_eni_stats(ena_dev,
3833 			(struct ena_admin_eni_stats *)&adapter->eni_stats);
3834 		break;
3835 	case ENA_MP_MTU_SET:
3836 		res = ena_com_set_dev_mtu(ena_dev, req->args.mtu);
3837 		break;
3838 	case ENA_MP_IND_TBL_GET:
3839 		res = ena_com_indirect_table_get(ena_dev,
3840 						 adapter->indirect_table);
3841 		break;
3842 	case ENA_MP_IND_TBL_SET:
3843 		res = ena_com_indirect_table_set(ena_dev);
3844 		break;
3845 	default:
3846 		PMD_DRV_LOG(ERR, "Unknown request type %d\n", req->type);
3847 		res = -EINVAL;
3848 		break;
3849 	}
3850 
3851 end:
3852 	/* Save processing result in the reply */
3853 	rsp->result = res;
3854 	/* Return just IPC processing status */
3855 	return rte_mp_reply(&mp_rsp, peer);
3856 }
3857