xref: /dpdk/drivers/net/ena/ena_ethdev.c (revision 702928afeb1fecce27d59799a76a77a077d02f27)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2015-2019 Amazon.com, Inc. or its affiliates.
3  * All rights reserved.
4  */
5 
6 #include <rte_string_fns.h>
7 #include <rte_ether.h>
8 #include <rte_ethdev_driver.h>
9 #include <rte_ethdev_pci.h>
10 #include <rte_tcp.h>
11 #include <rte_atomic.h>
12 #include <rte_dev.h>
13 #include <rte_errno.h>
14 #include <rte_version.h>
15 #include <rte_net.h>
16 
17 #include "ena_ethdev.h"
18 #include "ena_logs.h"
19 #include "ena_platform.h"
20 #include "ena_com.h"
21 #include "ena_eth_com.h"
22 
23 #include <ena_common_defs.h>
24 #include <ena_regs_defs.h>
25 #include <ena_admin_defs.h>
26 #include <ena_eth_io_defs.h>
27 
28 #define DRV_MODULE_VER_MAJOR	2
29 #define DRV_MODULE_VER_MINOR	0
30 #define DRV_MODULE_VER_SUBMINOR	1
31 
32 #define ENA_IO_TXQ_IDX(q)	(2 * (q))
33 #define ENA_IO_RXQ_IDX(q)	(2 * (q) + 1)
34 /*reverse version of ENA_IO_RXQ_IDX*/
35 #define ENA_IO_RXQ_IDX_REV(q)	((q - 1) / 2)
36 
37 /* While processing submitted and completed descriptors (rx and tx path
38  * respectively) in a loop it is desired to:
39  *  - perform batch submissions while populating sumbissmion queue
40  *  - avoid blocking transmission of other packets during cleanup phase
41  * Hence the utilization ratio of 1/8 of a queue size.
42  */
43 #define ENA_RING_DESCS_RATIO(ring_size)	(ring_size / 8)
44 
45 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
46 #define TEST_BIT(val, bit_shift) (val & (1UL << bit_shift))
47 
48 #define GET_L4_HDR_LEN(mbuf)					\
49 	((rte_pktmbuf_mtod_offset(mbuf,	struct rte_tcp_hdr *,	\
50 		mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
51 
52 #define ENA_RX_RSS_TABLE_LOG_SIZE  7
53 #define ENA_RX_RSS_TABLE_SIZE	(1 << ENA_RX_RSS_TABLE_LOG_SIZE)
54 #define ENA_HASH_KEY_SIZE	40
55 #define ETH_GSTRING_LEN	32
56 
57 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
58 
59 #define ENA_MIN_RING_DESC	128
60 
61 enum ethtool_stringset {
62 	ETH_SS_TEST             = 0,
63 	ETH_SS_STATS,
64 };
65 
66 struct ena_stats {
67 	char name[ETH_GSTRING_LEN];
68 	int stat_offset;
69 };
70 
71 #define ENA_STAT_ENTRY(stat, stat_type) { \
72 	.name = #stat, \
73 	.stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
74 }
75 
76 #define ENA_STAT_RX_ENTRY(stat) \
77 	ENA_STAT_ENTRY(stat, rx)
78 
79 #define ENA_STAT_TX_ENTRY(stat) \
80 	ENA_STAT_ENTRY(stat, tx)
81 
82 #define ENA_STAT_GLOBAL_ENTRY(stat) \
83 	ENA_STAT_ENTRY(stat, dev)
84 
85 #define ENA_MAX_RING_SIZE_RX 8192
86 #define ENA_MAX_RING_SIZE_TX 1024
87 
88 /*
89  * Each rte_memzone should have unique name.
90  * To satisfy it, count number of allocation and add it to name.
91  */
92 uint32_t ena_alloc_cnt;
93 
94 static const struct ena_stats ena_stats_global_strings[] = {
95 	ENA_STAT_GLOBAL_ENTRY(wd_expired),
96 	ENA_STAT_GLOBAL_ENTRY(dev_start),
97 	ENA_STAT_GLOBAL_ENTRY(dev_stop),
98 };
99 
100 static const struct ena_stats ena_stats_tx_strings[] = {
101 	ENA_STAT_TX_ENTRY(cnt),
102 	ENA_STAT_TX_ENTRY(bytes),
103 	ENA_STAT_TX_ENTRY(prepare_ctx_err),
104 	ENA_STAT_TX_ENTRY(linearize),
105 	ENA_STAT_TX_ENTRY(linearize_failed),
106 	ENA_STAT_TX_ENTRY(tx_poll),
107 	ENA_STAT_TX_ENTRY(doorbells),
108 	ENA_STAT_TX_ENTRY(bad_req_id),
109 	ENA_STAT_TX_ENTRY(available_desc),
110 };
111 
112 static const struct ena_stats ena_stats_rx_strings[] = {
113 	ENA_STAT_RX_ENTRY(cnt),
114 	ENA_STAT_RX_ENTRY(bytes),
115 	ENA_STAT_RX_ENTRY(refill_partial),
116 	ENA_STAT_RX_ENTRY(bad_csum),
117 	ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
118 	ENA_STAT_RX_ENTRY(bad_desc_num),
119 	ENA_STAT_RX_ENTRY(bad_req_id),
120 };
121 
122 #define ENA_STATS_ARRAY_GLOBAL	ARRAY_SIZE(ena_stats_global_strings)
123 #define ENA_STATS_ARRAY_TX	ARRAY_SIZE(ena_stats_tx_strings)
124 #define ENA_STATS_ARRAY_RX	ARRAY_SIZE(ena_stats_rx_strings)
125 
126 #define QUEUE_OFFLOADS (DEV_TX_OFFLOAD_TCP_CKSUM |\
127 			DEV_TX_OFFLOAD_UDP_CKSUM |\
128 			DEV_TX_OFFLOAD_IPV4_CKSUM |\
129 			DEV_TX_OFFLOAD_TCP_TSO)
130 #define MBUF_OFFLOADS (PKT_TX_L4_MASK |\
131 		       PKT_TX_IP_CKSUM |\
132 		       PKT_TX_TCP_SEG)
133 
134 /** Vendor ID used by Amazon devices */
135 #define PCI_VENDOR_ID_AMAZON 0x1D0F
136 /** Amazon devices */
137 #define PCI_DEVICE_ID_ENA_VF	0xEC20
138 #define PCI_DEVICE_ID_ENA_LLQ_VF	0xEC21
139 
140 #define	ENA_TX_OFFLOAD_MASK	(\
141 	PKT_TX_L4_MASK |         \
142 	PKT_TX_IPV6 |            \
143 	PKT_TX_IPV4 |            \
144 	PKT_TX_IP_CKSUM |        \
145 	PKT_TX_TCP_SEG)
146 
147 #define	ENA_TX_OFFLOAD_NOTSUP_MASK	\
148 	(PKT_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
149 
150 int ena_logtype_init;
151 int ena_logtype_driver;
152 
153 #ifdef RTE_LIBRTE_ENA_DEBUG_RX
154 int ena_logtype_rx;
155 #endif
156 #ifdef RTE_LIBRTE_ENA_DEBUG_TX
157 int ena_logtype_tx;
158 #endif
159 #ifdef RTE_LIBRTE_ENA_DEBUG_TX_FREE
160 int ena_logtype_tx_free;
161 #endif
162 #ifdef RTE_LIBRTE_ENA_COM_DEBUG
163 int ena_logtype_com;
164 #endif
165 
166 static const struct rte_pci_id pci_id_ena_map[] = {
167 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
168 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_LLQ_VF) },
169 	{ .device_id = 0 },
170 };
171 
172 static struct ena_aenq_handlers aenq_handlers;
173 
174 static int ena_device_init(struct ena_com_dev *ena_dev,
175 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
176 			   bool *wd_state);
177 static int ena_dev_configure(struct rte_eth_dev *dev);
178 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
179 				  uint16_t nb_pkts);
180 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
181 		uint16_t nb_pkts);
182 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
183 			      uint16_t nb_desc, unsigned int socket_id,
184 			      const struct rte_eth_txconf *tx_conf);
185 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
186 			      uint16_t nb_desc, unsigned int socket_id,
187 			      const struct rte_eth_rxconf *rx_conf,
188 			      struct rte_mempool *mp);
189 static uint16_t eth_ena_recv_pkts(void *rx_queue,
190 				  struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
191 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
192 static void ena_init_rings(struct ena_adapter *adapter);
193 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
194 static int ena_start(struct rte_eth_dev *dev);
195 static void ena_stop(struct rte_eth_dev *dev);
196 static void ena_close(struct rte_eth_dev *dev);
197 static int ena_dev_reset(struct rte_eth_dev *dev);
198 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
199 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
200 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
201 static void ena_rx_queue_release(void *queue);
202 static void ena_tx_queue_release(void *queue);
203 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
204 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
205 static int ena_link_update(struct rte_eth_dev *dev,
206 			   int wait_to_complete);
207 static int ena_create_io_queue(struct ena_ring *ring);
208 static void ena_queue_stop(struct ena_ring *ring);
209 static void ena_queue_stop_all(struct rte_eth_dev *dev,
210 			      enum ena_ring_type ring_type);
211 static int ena_queue_start(struct ena_ring *ring);
212 static int ena_queue_start_all(struct rte_eth_dev *dev,
213 			       enum ena_ring_type ring_type);
214 static void ena_stats_restart(struct rte_eth_dev *dev);
215 static int ena_infos_get(struct rte_eth_dev *dev,
216 			 struct rte_eth_dev_info *dev_info);
217 static int ena_rss_reta_update(struct rte_eth_dev *dev,
218 			       struct rte_eth_rss_reta_entry64 *reta_conf,
219 			       uint16_t reta_size);
220 static int ena_rss_reta_query(struct rte_eth_dev *dev,
221 			      struct rte_eth_rss_reta_entry64 *reta_conf,
222 			      uint16_t reta_size);
223 static void ena_interrupt_handler_rte(void *cb_arg);
224 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
225 static void ena_destroy_device(struct rte_eth_dev *eth_dev);
226 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
227 static int ena_xstats_get_names(struct rte_eth_dev *dev,
228 				struct rte_eth_xstat_name *xstats_names,
229 				unsigned int n);
230 static int ena_xstats_get(struct rte_eth_dev *dev,
231 			  struct rte_eth_xstat *stats,
232 			  unsigned int n);
233 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
234 				const uint64_t *ids,
235 				uint64_t *values,
236 				unsigned int n);
237 
238 static const struct eth_dev_ops ena_dev_ops = {
239 	.dev_configure        = ena_dev_configure,
240 	.dev_infos_get        = ena_infos_get,
241 	.rx_queue_setup       = ena_rx_queue_setup,
242 	.tx_queue_setup       = ena_tx_queue_setup,
243 	.dev_start            = ena_start,
244 	.dev_stop             = ena_stop,
245 	.link_update          = ena_link_update,
246 	.stats_get            = ena_stats_get,
247 	.xstats_get_names     = ena_xstats_get_names,
248 	.xstats_get	      = ena_xstats_get,
249 	.xstats_get_by_id     = ena_xstats_get_by_id,
250 	.mtu_set              = ena_mtu_set,
251 	.rx_queue_release     = ena_rx_queue_release,
252 	.tx_queue_release     = ena_tx_queue_release,
253 	.dev_close            = ena_close,
254 	.dev_reset            = ena_dev_reset,
255 	.reta_update          = ena_rss_reta_update,
256 	.reta_query           = ena_rss_reta_query,
257 };
258 
259 static inline void ena_rx_mbuf_prepare(struct rte_mbuf *mbuf,
260 				       struct ena_com_rx_ctx *ena_rx_ctx)
261 {
262 	uint64_t ol_flags = 0;
263 	uint32_t packet_type = 0;
264 
265 	if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
266 		packet_type |= RTE_PTYPE_L4_TCP;
267 	else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
268 		packet_type |= RTE_PTYPE_L4_UDP;
269 
270 	if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4)
271 		packet_type |= RTE_PTYPE_L3_IPV4;
272 	else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6)
273 		packet_type |= RTE_PTYPE_L3_IPV6;
274 
275 	if (unlikely(ena_rx_ctx->l4_csum_err))
276 		ol_flags |= PKT_RX_L4_CKSUM_BAD;
277 	if (unlikely(ena_rx_ctx->l3_csum_err))
278 		ol_flags |= PKT_RX_IP_CKSUM_BAD;
279 
280 	mbuf->ol_flags = ol_flags;
281 	mbuf->packet_type = packet_type;
282 }
283 
284 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
285 				       struct ena_com_tx_ctx *ena_tx_ctx,
286 				       uint64_t queue_offloads)
287 {
288 	struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
289 
290 	if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
291 	    (queue_offloads & QUEUE_OFFLOADS)) {
292 		/* check if TSO is required */
293 		if ((mbuf->ol_flags & PKT_TX_TCP_SEG) &&
294 		    (queue_offloads & DEV_TX_OFFLOAD_TCP_TSO)) {
295 			ena_tx_ctx->tso_enable = true;
296 
297 			ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
298 		}
299 
300 		/* check if L3 checksum is needed */
301 		if ((mbuf->ol_flags & PKT_TX_IP_CKSUM) &&
302 		    (queue_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM))
303 			ena_tx_ctx->l3_csum_enable = true;
304 
305 		if (mbuf->ol_flags & PKT_TX_IPV6) {
306 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
307 		} else {
308 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
309 
310 			/* set don't fragment (DF) flag */
311 			if (mbuf->packet_type &
312 				(RTE_PTYPE_L4_NONFRAG
313 				 | RTE_PTYPE_INNER_L4_NONFRAG))
314 				ena_tx_ctx->df = true;
315 		}
316 
317 		/* check if L4 checksum is needed */
318 		if (((mbuf->ol_flags & PKT_TX_L4_MASK) == PKT_TX_TCP_CKSUM) &&
319 		    (queue_offloads & DEV_TX_OFFLOAD_TCP_CKSUM)) {
320 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
321 			ena_tx_ctx->l4_csum_enable = true;
322 		} else if (((mbuf->ol_flags & PKT_TX_L4_MASK) ==
323 				PKT_TX_UDP_CKSUM) &&
324 				(queue_offloads & DEV_TX_OFFLOAD_UDP_CKSUM)) {
325 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
326 			ena_tx_ctx->l4_csum_enable = true;
327 		} else {
328 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
329 			ena_tx_ctx->l4_csum_enable = false;
330 		}
331 
332 		ena_meta->mss = mbuf->tso_segsz;
333 		ena_meta->l3_hdr_len = mbuf->l3_len;
334 		ena_meta->l3_hdr_offset = mbuf->l2_len;
335 
336 		ena_tx_ctx->meta_valid = true;
337 	} else {
338 		ena_tx_ctx->meta_valid = false;
339 	}
340 }
341 
342 static inline int validate_rx_req_id(struct ena_ring *rx_ring, uint16_t req_id)
343 {
344 	if (likely(req_id < rx_ring->ring_size))
345 		return 0;
346 
347 	PMD_DRV_LOG(ERR, "Invalid rx req_id: %hu\n", req_id);
348 
349 	rx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID;
350 	rx_ring->adapter->trigger_reset = true;
351 	++rx_ring->rx_stats.bad_req_id;
352 
353 	return -EFAULT;
354 }
355 
356 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
357 {
358 	struct ena_tx_buffer *tx_info = NULL;
359 
360 	if (likely(req_id < tx_ring->ring_size)) {
361 		tx_info = &tx_ring->tx_buffer_info[req_id];
362 		if (likely(tx_info->mbuf))
363 			return 0;
364 	}
365 
366 	if (tx_info)
367 		PMD_DRV_LOG(ERR, "tx_info doesn't have valid mbuf\n");
368 	else
369 		PMD_DRV_LOG(ERR, "Invalid req_id: %hu\n", req_id);
370 
371 	/* Trigger device reset */
372 	++tx_ring->tx_stats.bad_req_id;
373 	tx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID;
374 	tx_ring->adapter->trigger_reset	= true;
375 	return -EFAULT;
376 }
377 
378 static void ena_config_host_info(struct ena_com_dev *ena_dev)
379 {
380 	struct ena_admin_host_info *host_info;
381 	int rc;
382 
383 	/* Allocate only the host info */
384 	rc = ena_com_allocate_host_info(ena_dev);
385 	if (rc) {
386 		PMD_DRV_LOG(ERR, "Cannot allocate host info\n");
387 		return;
388 	}
389 
390 	host_info = ena_dev->host_attr.host_info;
391 
392 	host_info->os_type = ENA_ADMIN_OS_DPDK;
393 	host_info->kernel_ver = RTE_VERSION;
394 	strlcpy((char *)host_info->kernel_ver_str, rte_version(),
395 		sizeof(host_info->kernel_ver_str));
396 	host_info->os_dist = RTE_VERSION;
397 	strlcpy((char *)host_info->os_dist_str, rte_version(),
398 		sizeof(host_info->os_dist_str));
399 	host_info->driver_version =
400 		(DRV_MODULE_VER_MAJOR) |
401 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
402 		(DRV_MODULE_VER_SUBMINOR <<
403 			ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
404 	host_info->num_cpus = rte_lcore_count();
405 
406 	rc = ena_com_set_host_attributes(ena_dev);
407 	if (rc) {
408 		if (rc == -ENA_COM_UNSUPPORTED)
409 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
410 		else
411 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
412 
413 		goto err;
414 	}
415 
416 	return;
417 
418 err:
419 	ena_com_delete_host_info(ena_dev);
420 }
421 
422 /* This function calculates the number of xstats based on the current config */
423 static unsigned int ena_xstats_calc_num(struct rte_eth_dev *dev)
424 {
425 	return ENA_STATS_ARRAY_GLOBAL +
426 		(dev->data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
427 		(dev->data->nb_rx_queues * ENA_STATS_ARRAY_RX);
428 }
429 
430 static void ena_config_debug_area(struct ena_adapter *adapter)
431 {
432 	u32 debug_area_size;
433 	int rc, ss_count;
434 
435 	ss_count = ena_xstats_calc_num(adapter->rte_dev);
436 
437 	/* allocate 32 bytes for each string and 64bit for the value */
438 	debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
439 
440 	rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
441 	if (rc) {
442 		PMD_DRV_LOG(ERR, "Cannot allocate debug area\n");
443 		return;
444 	}
445 
446 	rc = ena_com_set_host_attributes(&adapter->ena_dev);
447 	if (rc) {
448 		if (rc == -ENA_COM_UNSUPPORTED)
449 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
450 		else
451 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
452 
453 		goto err;
454 	}
455 
456 	return;
457 err:
458 	ena_com_delete_debug_area(&adapter->ena_dev);
459 }
460 
461 static void ena_close(struct rte_eth_dev *dev)
462 {
463 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
464 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
465 	struct ena_adapter *adapter = dev->data->dev_private;
466 
467 	if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
468 		ena_stop(dev);
469 	adapter->state = ENA_ADAPTER_STATE_CLOSED;
470 
471 	ena_rx_queue_release_all(dev);
472 	ena_tx_queue_release_all(dev);
473 
474 	rte_free(adapter->drv_stats);
475 	adapter->drv_stats = NULL;
476 
477 	rte_intr_disable(intr_handle);
478 	rte_intr_callback_unregister(intr_handle,
479 				     ena_interrupt_handler_rte,
480 				     adapter);
481 
482 	/*
483 	 * MAC is not allocated dynamically. Setting NULL should prevent from
484 	 * release of the resource in the rte_eth_dev_release_port().
485 	 */
486 	dev->data->mac_addrs = NULL;
487 }
488 
489 static int
490 ena_dev_reset(struct rte_eth_dev *dev)
491 {
492 	int rc = 0;
493 
494 	ena_destroy_device(dev);
495 	rc = eth_ena_dev_init(dev);
496 	if (rc)
497 		PMD_INIT_LOG(CRIT, "Cannot initialize device");
498 
499 	return rc;
500 }
501 
502 static int ena_rss_reta_update(struct rte_eth_dev *dev,
503 			       struct rte_eth_rss_reta_entry64 *reta_conf,
504 			       uint16_t reta_size)
505 {
506 	struct ena_adapter *adapter = dev->data->dev_private;
507 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
508 	int rc, i;
509 	u16 entry_value;
510 	int conf_idx;
511 	int idx;
512 
513 	if ((reta_size == 0) || (reta_conf == NULL))
514 		return -EINVAL;
515 
516 	if (reta_size > ENA_RX_RSS_TABLE_SIZE) {
517 		PMD_DRV_LOG(WARNING,
518 			"indirection table %d is bigger than supported (%d)\n",
519 			reta_size, ENA_RX_RSS_TABLE_SIZE);
520 		return -EINVAL;
521 	}
522 
523 	for (i = 0 ; i < reta_size ; i++) {
524 		/* each reta_conf is for 64 entries.
525 		 * to support 128 we use 2 conf of 64
526 		 */
527 		conf_idx = i / RTE_RETA_GROUP_SIZE;
528 		idx = i % RTE_RETA_GROUP_SIZE;
529 		if (TEST_BIT(reta_conf[conf_idx].mask, idx)) {
530 			entry_value =
531 				ENA_IO_RXQ_IDX(reta_conf[conf_idx].reta[idx]);
532 
533 			rc = ena_com_indirect_table_fill_entry(ena_dev,
534 							       i,
535 							       entry_value);
536 			if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
537 				PMD_DRV_LOG(ERR,
538 					"Cannot fill indirect table\n");
539 				return rc;
540 			}
541 		}
542 	}
543 
544 	rc = ena_com_indirect_table_set(ena_dev);
545 	if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
546 		PMD_DRV_LOG(ERR, "Cannot flush the indirect table\n");
547 		return rc;
548 	}
549 
550 	PMD_DRV_LOG(DEBUG, "%s(): RSS configured %d entries  for port %d\n",
551 		__func__, reta_size, adapter->rte_dev->data->port_id);
552 
553 	return 0;
554 }
555 
556 /* Query redirection table. */
557 static int ena_rss_reta_query(struct rte_eth_dev *dev,
558 			      struct rte_eth_rss_reta_entry64 *reta_conf,
559 			      uint16_t reta_size)
560 {
561 	struct ena_adapter *adapter = dev->data->dev_private;
562 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
563 	int rc;
564 	int i;
565 	u32 indirect_table[ENA_RX_RSS_TABLE_SIZE] = {0};
566 	int reta_conf_idx;
567 	int reta_idx;
568 
569 	if (reta_size == 0 || reta_conf == NULL ||
570 	    (reta_size > RTE_RETA_GROUP_SIZE && ((reta_conf + 1) == NULL)))
571 		return -EINVAL;
572 
573 	rc = ena_com_indirect_table_get(ena_dev, indirect_table);
574 	if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
575 		PMD_DRV_LOG(ERR, "cannot get indirect table\n");
576 		return -ENOTSUP;
577 	}
578 
579 	for (i = 0 ; i < reta_size ; i++) {
580 		reta_conf_idx = i / RTE_RETA_GROUP_SIZE;
581 		reta_idx = i % RTE_RETA_GROUP_SIZE;
582 		if (TEST_BIT(reta_conf[reta_conf_idx].mask, reta_idx))
583 			reta_conf[reta_conf_idx].reta[reta_idx] =
584 				ENA_IO_RXQ_IDX_REV(indirect_table[i]);
585 	}
586 
587 	return 0;
588 }
589 
590 static int ena_rss_init_default(struct ena_adapter *adapter)
591 {
592 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
593 	uint16_t nb_rx_queues = adapter->rte_dev->data->nb_rx_queues;
594 	int rc, i;
595 	u32 val;
596 
597 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
598 	if (unlikely(rc)) {
599 		PMD_DRV_LOG(ERR, "Cannot init indirect table\n");
600 		goto err_rss_init;
601 	}
602 
603 	for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
604 		val = i % nb_rx_queues;
605 		rc = ena_com_indirect_table_fill_entry(ena_dev, i,
606 						       ENA_IO_RXQ_IDX(val));
607 		if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
608 			PMD_DRV_LOG(ERR, "Cannot fill indirect table\n");
609 			goto err_fill_indir;
610 		}
611 	}
612 
613 	rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL,
614 					ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
615 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
616 		PMD_DRV_LOG(INFO, "Cannot fill hash function\n");
617 		goto err_fill_indir;
618 	}
619 
620 	rc = ena_com_set_default_hash_ctrl(ena_dev);
621 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
622 		PMD_DRV_LOG(INFO, "Cannot fill hash control\n");
623 		goto err_fill_indir;
624 	}
625 
626 	rc = ena_com_indirect_table_set(ena_dev);
627 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
628 		PMD_DRV_LOG(ERR, "Cannot flush the indirect table\n");
629 		goto err_fill_indir;
630 	}
631 	PMD_DRV_LOG(DEBUG, "RSS configured for port %d\n",
632 		adapter->rte_dev->data->port_id);
633 
634 	return 0;
635 
636 err_fill_indir:
637 	ena_com_rss_destroy(ena_dev);
638 err_rss_init:
639 
640 	return rc;
641 }
642 
643 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
644 {
645 	struct ena_ring **queues = (struct ena_ring **)dev->data->rx_queues;
646 	int nb_queues = dev->data->nb_rx_queues;
647 	int i;
648 
649 	for (i = 0; i < nb_queues; i++)
650 		ena_rx_queue_release(queues[i]);
651 }
652 
653 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
654 {
655 	struct ena_ring **queues = (struct ena_ring **)dev->data->tx_queues;
656 	int nb_queues = dev->data->nb_tx_queues;
657 	int i;
658 
659 	for (i = 0; i < nb_queues; i++)
660 		ena_tx_queue_release(queues[i]);
661 }
662 
663 static void ena_rx_queue_release(void *queue)
664 {
665 	struct ena_ring *ring = (struct ena_ring *)queue;
666 
667 	/* Free ring resources */
668 	if (ring->rx_buffer_info)
669 		rte_free(ring->rx_buffer_info);
670 	ring->rx_buffer_info = NULL;
671 
672 	if (ring->rx_refill_buffer)
673 		rte_free(ring->rx_refill_buffer);
674 	ring->rx_refill_buffer = NULL;
675 
676 	if (ring->empty_rx_reqs)
677 		rte_free(ring->empty_rx_reqs);
678 	ring->empty_rx_reqs = NULL;
679 
680 	ring->configured = 0;
681 
682 	PMD_DRV_LOG(NOTICE, "RX Queue %d:%d released\n",
683 		ring->port_id, ring->id);
684 }
685 
686 static void ena_tx_queue_release(void *queue)
687 {
688 	struct ena_ring *ring = (struct ena_ring *)queue;
689 
690 	/* Free ring resources */
691 	if (ring->push_buf_intermediate_buf)
692 		rte_free(ring->push_buf_intermediate_buf);
693 
694 	if (ring->tx_buffer_info)
695 		rte_free(ring->tx_buffer_info);
696 
697 	if (ring->empty_tx_reqs)
698 		rte_free(ring->empty_tx_reqs);
699 
700 	ring->empty_tx_reqs = NULL;
701 	ring->tx_buffer_info = NULL;
702 	ring->push_buf_intermediate_buf = NULL;
703 
704 	ring->configured = 0;
705 
706 	PMD_DRV_LOG(NOTICE, "TX Queue %d:%d released\n",
707 		ring->port_id, ring->id);
708 }
709 
710 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
711 {
712 	unsigned int i;
713 
714 	for (i = 0; i < ring->ring_size; ++i)
715 		if (ring->rx_buffer_info[i]) {
716 			rte_mbuf_raw_free(ring->rx_buffer_info[i]);
717 			ring->rx_buffer_info[i] = NULL;
718 		}
719 }
720 
721 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
722 {
723 	unsigned int i;
724 
725 	for (i = 0; i < ring->ring_size; ++i) {
726 		struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
727 
728 		if (tx_buf->mbuf)
729 			rte_pktmbuf_free(tx_buf->mbuf);
730 	}
731 }
732 
733 static int ena_link_update(struct rte_eth_dev *dev,
734 			   __rte_unused int wait_to_complete)
735 {
736 	struct rte_eth_link *link = &dev->data->dev_link;
737 	struct ena_adapter *adapter = dev->data->dev_private;
738 
739 	link->link_status = adapter->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
740 	link->link_speed = ETH_SPEED_NUM_NONE;
741 	link->link_duplex = ETH_LINK_FULL_DUPLEX;
742 
743 	return 0;
744 }
745 
746 static int ena_queue_start_all(struct rte_eth_dev *dev,
747 			       enum ena_ring_type ring_type)
748 {
749 	struct ena_adapter *adapter = dev->data->dev_private;
750 	struct ena_ring *queues = NULL;
751 	int nb_queues;
752 	int i = 0;
753 	int rc = 0;
754 
755 	if (ring_type == ENA_RING_TYPE_RX) {
756 		queues = adapter->rx_ring;
757 		nb_queues = dev->data->nb_rx_queues;
758 	} else {
759 		queues = adapter->tx_ring;
760 		nb_queues = dev->data->nb_tx_queues;
761 	}
762 	for (i = 0; i < nb_queues; i++) {
763 		if (queues[i].configured) {
764 			if (ring_type == ENA_RING_TYPE_RX) {
765 				ena_assert_msg(
766 					dev->data->rx_queues[i] == &queues[i],
767 					"Inconsistent state of rx queues\n");
768 			} else {
769 				ena_assert_msg(
770 					dev->data->tx_queues[i] == &queues[i],
771 					"Inconsistent state of tx queues\n");
772 			}
773 
774 			rc = ena_queue_start(&queues[i]);
775 
776 			if (rc) {
777 				PMD_INIT_LOG(ERR,
778 					     "failed to start queue %d type(%d)",
779 					     i, ring_type);
780 				goto err;
781 			}
782 		}
783 	}
784 
785 	return 0;
786 
787 err:
788 	while (i--)
789 		if (queues[i].configured)
790 			ena_queue_stop(&queues[i]);
791 
792 	return rc;
793 }
794 
795 static uint32_t ena_get_mtu_conf(struct ena_adapter *adapter)
796 {
797 	uint32_t max_frame_len = adapter->max_mtu;
798 
799 	if (adapter->rte_eth_dev_data->dev_conf.rxmode.offloads &
800 	    DEV_RX_OFFLOAD_JUMBO_FRAME)
801 		max_frame_len =
802 			adapter->rte_eth_dev_data->dev_conf.rxmode.max_rx_pkt_len;
803 
804 	return max_frame_len;
805 }
806 
807 static int ena_check_valid_conf(struct ena_adapter *adapter)
808 {
809 	uint32_t max_frame_len = ena_get_mtu_conf(adapter);
810 
811 	if (max_frame_len > adapter->max_mtu || max_frame_len < ENA_MIN_MTU) {
812 		PMD_INIT_LOG(ERR, "Unsupported MTU of %d. "
813 				  "max mtu: %d, min mtu: %d",
814 			     max_frame_len, adapter->max_mtu, ENA_MIN_MTU);
815 		return ENA_COM_UNSUPPORTED;
816 	}
817 
818 	return 0;
819 }
820 
821 static int
822 ena_calc_queue_size(struct ena_calc_queue_size_ctx *ctx)
823 {
824 	struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
825 	struct ena_com_dev *ena_dev = ctx->ena_dev;
826 	uint32_t tx_queue_size = ENA_MAX_RING_SIZE_TX;
827 	uint32_t rx_queue_size = ENA_MAX_RING_SIZE_RX;
828 
829 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
830 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
831 			&ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
832 		rx_queue_size = RTE_MIN(rx_queue_size,
833 			max_queue_ext->max_rx_cq_depth);
834 		rx_queue_size = RTE_MIN(rx_queue_size,
835 			max_queue_ext->max_rx_sq_depth);
836 		tx_queue_size = RTE_MIN(tx_queue_size,
837 			max_queue_ext->max_tx_cq_depth);
838 
839 		if (ena_dev->tx_mem_queue_type ==
840 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
841 			tx_queue_size = RTE_MIN(tx_queue_size,
842 				llq->max_llq_depth);
843 		} else {
844 			tx_queue_size = RTE_MIN(tx_queue_size,
845 				max_queue_ext->max_tx_sq_depth);
846 		}
847 
848 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
849 			max_queue_ext->max_per_packet_rx_descs);
850 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
851 			max_queue_ext->max_per_packet_tx_descs);
852 	} else {
853 		struct ena_admin_queue_feature_desc *max_queues =
854 			&ctx->get_feat_ctx->max_queues;
855 		rx_queue_size = RTE_MIN(rx_queue_size,
856 			max_queues->max_cq_depth);
857 		rx_queue_size = RTE_MIN(rx_queue_size,
858 			max_queues->max_sq_depth);
859 		tx_queue_size = RTE_MIN(tx_queue_size,
860 			max_queues->max_cq_depth);
861 
862 		if (ena_dev->tx_mem_queue_type ==
863 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
864 			tx_queue_size = RTE_MIN(tx_queue_size,
865 				llq->max_llq_depth);
866 		} else {
867 			tx_queue_size = RTE_MIN(tx_queue_size,
868 				max_queues->max_sq_depth);
869 		}
870 
871 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
872 			max_queues->max_packet_tx_descs);
873 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
874 			max_queues->max_packet_rx_descs);
875 	}
876 
877 	/* Round down to the nearest power of 2 */
878 	rx_queue_size = rte_align32prevpow2(rx_queue_size);
879 	tx_queue_size = rte_align32prevpow2(tx_queue_size);
880 
881 	if (unlikely(rx_queue_size == 0 || tx_queue_size == 0)) {
882 		PMD_INIT_LOG(ERR, "Invalid queue size");
883 		return -EFAULT;
884 	}
885 
886 	ctx->rx_queue_size = rx_queue_size;
887 	ctx->tx_queue_size = tx_queue_size;
888 
889 	return 0;
890 }
891 
892 static void ena_stats_restart(struct rte_eth_dev *dev)
893 {
894 	struct ena_adapter *adapter = dev->data->dev_private;
895 
896 	rte_atomic64_init(&adapter->drv_stats->ierrors);
897 	rte_atomic64_init(&adapter->drv_stats->oerrors);
898 	rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
899 	rte_atomic64_init(&adapter->drv_stats->rx_drops);
900 }
901 
902 static int ena_stats_get(struct rte_eth_dev *dev,
903 			  struct rte_eth_stats *stats)
904 {
905 	struct ena_admin_basic_stats ena_stats;
906 	struct ena_adapter *adapter = dev->data->dev_private;
907 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
908 	int rc;
909 	int i;
910 	int max_rings_stats;
911 
912 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
913 		return -ENOTSUP;
914 
915 	memset(&ena_stats, 0, sizeof(ena_stats));
916 	rc = ena_com_get_dev_basic_stats(ena_dev, &ena_stats);
917 	if (unlikely(rc)) {
918 		PMD_DRV_LOG(ERR, "Could not retrieve statistics from ENA\n");
919 		return rc;
920 	}
921 
922 	/* Set of basic statistics from ENA */
923 	stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
924 					  ena_stats.rx_pkts_low);
925 	stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
926 					  ena_stats.tx_pkts_low);
927 	stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
928 					ena_stats.rx_bytes_low);
929 	stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
930 					ena_stats.tx_bytes_low);
931 
932 	/* Driver related stats */
933 	stats->imissed = rte_atomic64_read(&adapter->drv_stats->rx_drops);
934 	stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
935 	stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
936 	stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
937 
938 	max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
939 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
940 	for (i = 0; i < max_rings_stats; ++i) {
941 		struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
942 
943 		stats->q_ibytes[i] = rx_stats->bytes;
944 		stats->q_ipackets[i] = rx_stats->cnt;
945 		stats->q_errors[i] = rx_stats->bad_desc_num +
946 			rx_stats->bad_req_id;
947 	}
948 
949 	max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
950 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
951 	for (i = 0; i < max_rings_stats; ++i) {
952 		struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
953 
954 		stats->q_obytes[i] = tx_stats->bytes;
955 		stats->q_opackets[i] = tx_stats->cnt;
956 	}
957 
958 	return 0;
959 }
960 
961 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
962 {
963 	struct ena_adapter *adapter;
964 	struct ena_com_dev *ena_dev;
965 	int rc = 0;
966 
967 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
968 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
969 	adapter = dev->data->dev_private;
970 
971 	ena_dev = &adapter->ena_dev;
972 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
973 
974 	if (mtu > ena_get_mtu_conf(adapter) || mtu < ENA_MIN_MTU) {
975 		PMD_DRV_LOG(ERR,
976 			"Invalid MTU setting. new_mtu: %d "
977 			"max mtu: %d min mtu: %d\n",
978 			mtu, ena_get_mtu_conf(adapter), ENA_MIN_MTU);
979 		return -EINVAL;
980 	}
981 
982 	rc = ena_com_set_dev_mtu(ena_dev, mtu);
983 	if (rc)
984 		PMD_DRV_LOG(ERR, "Could not set MTU: %d\n", mtu);
985 	else
986 		PMD_DRV_LOG(NOTICE, "Set MTU: %d\n", mtu);
987 
988 	return rc;
989 }
990 
991 static int ena_start(struct rte_eth_dev *dev)
992 {
993 	struct ena_adapter *adapter = dev->data->dev_private;
994 	uint64_t ticks;
995 	int rc = 0;
996 
997 	rc = ena_check_valid_conf(adapter);
998 	if (rc)
999 		return rc;
1000 
1001 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
1002 	if (rc)
1003 		return rc;
1004 
1005 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
1006 	if (rc)
1007 		goto err_start_tx;
1008 
1009 	if (adapter->rte_dev->data->dev_conf.rxmode.mq_mode &
1010 	    ETH_MQ_RX_RSS_FLAG && adapter->rte_dev->data->nb_rx_queues > 0) {
1011 		rc = ena_rss_init_default(adapter);
1012 		if (rc)
1013 			goto err_rss_init;
1014 	}
1015 
1016 	ena_stats_restart(dev);
1017 
1018 	adapter->timestamp_wd = rte_get_timer_cycles();
1019 	adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
1020 
1021 	ticks = rte_get_timer_hz();
1022 	rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
1023 			ena_timer_wd_callback, adapter);
1024 
1025 	++adapter->dev_stats.dev_start;
1026 	adapter->state = ENA_ADAPTER_STATE_RUNNING;
1027 
1028 	return 0;
1029 
1030 err_rss_init:
1031 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1032 err_start_tx:
1033 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1034 	return rc;
1035 }
1036 
1037 static void ena_stop(struct rte_eth_dev *dev)
1038 {
1039 	struct ena_adapter *adapter = dev->data->dev_private;
1040 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1041 	int rc;
1042 
1043 	rte_timer_stop_sync(&adapter->timer_wd);
1044 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1045 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1046 
1047 	if (adapter->trigger_reset) {
1048 		rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
1049 		if (rc)
1050 			PMD_DRV_LOG(ERR, "Device reset failed rc=%d\n", rc);
1051 	}
1052 
1053 	++adapter->dev_stats.dev_stop;
1054 	adapter->state = ENA_ADAPTER_STATE_STOPPED;
1055 }
1056 
1057 static int ena_create_io_queue(struct ena_ring *ring)
1058 {
1059 	struct ena_adapter *adapter;
1060 	struct ena_com_dev *ena_dev;
1061 	struct ena_com_create_io_ctx ctx =
1062 		/* policy set to _HOST just to satisfy icc compiler */
1063 		{ ENA_ADMIN_PLACEMENT_POLICY_HOST,
1064 		  0, 0, 0, 0, 0 };
1065 	uint16_t ena_qid;
1066 	unsigned int i;
1067 	int rc;
1068 
1069 	adapter = ring->adapter;
1070 	ena_dev = &adapter->ena_dev;
1071 
1072 	if (ring->type == ENA_RING_TYPE_TX) {
1073 		ena_qid = ENA_IO_TXQ_IDX(ring->id);
1074 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1075 		ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1076 		ctx.queue_size = adapter->tx_ring_size;
1077 		for (i = 0; i < ring->ring_size; i++)
1078 			ring->empty_tx_reqs[i] = i;
1079 	} else {
1080 		ena_qid = ENA_IO_RXQ_IDX(ring->id);
1081 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1082 		ctx.queue_size = adapter->rx_ring_size;
1083 		for (i = 0; i < ring->ring_size; i++)
1084 			ring->empty_rx_reqs[i] = i;
1085 	}
1086 	ctx.qid = ena_qid;
1087 	ctx.msix_vector = -1; /* interrupts not used */
1088 	ctx.numa_node = ring->numa_socket_id;
1089 
1090 	rc = ena_com_create_io_queue(ena_dev, &ctx);
1091 	if (rc) {
1092 		PMD_DRV_LOG(ERR,
1093 			"failed to create io queue #%d (qid:%d) rc: %d\n",
1094 			ring->id, ena_qid, rc);
1095 		return rc;
1096 	}
1097 
1098 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1099 				     &ring->ena_com_io_sq,
1100 				     &ring->ena_com_io_cq);
1101 	if (rc) {
1102 		PMD_DRV_LOG(ERR,
1103 			"Failed to get io queue handlers. queue num %d rc: %d\n",
1104 			ring->id, rc);
1105 		ena_com_destroy_io_queue(ena_dev, ena_qid);
1106 		return rc;
1107 	}
1108 
1109 	if (ring->type == ENA_RING_TYPE_TX)
1110 		ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1111 
1112 	return 0;
1113 }
1114 
1115 static void ena_queue_stop(struct ena_ring *ring)
1116 {
1117 	struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
1118 
1119 	if (ring->type == ENA_RING_TYPE_RX) {
1120 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
1121 		ena_rx_queue_release_bufs(ring);
1122 	} else {
1123 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
1124 		ena_tx_queue_release_bufs(ring);
1125 	}
1126 }
1127 
1128 static void ena_queue_stop_all(struct rte_eth_dev *dev,
1129 			      enum ena_ring_type ring_type)
1130 {
1131 	struct ena_adapter *adapter = dev->data->dev_private;
1132 	struct ena_ring *queues = NULL;
1133 	uint16_t nb_queues, i;
1134 
1135 	if (ring_type == ENA_RING_TYPE_RX) {
1136 		queues = adapter->rx_ring;
1137 		nb_queues = dev->data->nb_rx_queues;
1138 	} else {
1139 		queues = adapter->tx_ring;
1140 		nb_queues = dev->data->nb_tx_queues;
1141 	}
1142 
1143 	for (i = 0; i < nb_queues; ++i)
1144 		if (queues[i].configured)
1145 			ena_queue_stop(&queues[i]);
1146 }
1147 
1148 static int ena_queue_start(struct ena_ring *ring)
1149 {
1150 	int rc, bufs_num;
1151 
1152 	ena_assert_msg(ring->configured == 1,
1153 		       "Trying to start unconfigured queue\n");
1154 
1155 	rc = ena_create_io_queue(ring);
1156 	if (rc) {
1157 		PMD_INIT_LOG(ERR, "Failed to create IO queue!");
1158 		return rc;
1159 	}
1160 
1161 	ring->next_to_clean = 0;
1162 	ring->next_to_use = 0;
1163 
1164 	if (ring->type == ENA_RING_TYPE_TX) {
1165 		ring->tx_stats.available_desc =
1166 			ena_com_free_desc(ring->ena_com_io_sq);
1167 		return 0;
1168 	}
1169 
1170 	bufs_num = ring->ring_size - 1;
1171 	rc = ena_populate_rx_queue(ring, bufs_num);
1172 	if (rc != bufs_num) {
1173 		ena_com_destroy_io_queue(&ring->adapter->ena_dev,
1174 					 ENA_IO_RXQ_IDX(ring->id));
1175 		PMD_INIT_LOG(ERR, "Failed to populate rx ring !");
1176 		return ENA_COM_FAULT;
1177 	}
1178 
1179 	return 0;
1180 }
1181 
1182 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1183 			      uint16_t queue_idx,
1184 			      uint16_t nb_desc,
1185 			      unsigned int socket_id,
1186 			      const struct rte_eth_txconf *tx_conf)
1187 {
1188 	struct ena_ring *txq = NULL;
1189 	struct ena_adapter *adapter = dev->data->dev_private;
1190 	unsigned int i;
1191 
1192 	txq = &adapter->tx_ring[queue_idx];
1193 
1194 	if (txq->configured) {
1195 		PMD_DRV_LOG(CRIT,
1196 			"API violation. Queue %d is already configured\n",
1197 			queue_idx);
1198 		return ENA_COM_FAULT;
1199 	}
1200 
1201 	if (!rte_is_power_of_2(nb_desc)) {
1202 		PMD_DRV_LOG(ERR,
1203 			"Unsupported size of TX queue: %d is not a power of 2.\n",
1204 			nb_desc);
1205 		return -EINVAL;
1206 	}
1207 
1208 	if (nb_desc > adapter->tx_ring_size) {
1209 		PMD_DRV_LOG(ERR,
1210 			"Unsupported size of TX queue (max size: %d)\n",
1211 			adapter->tx_ring_size);
1212 		return -EINVAL;
1213 	}
1214 
1215 	if (nb_desc == RTE_ETH_DEV_FALLBACK_TX_RINGSIZE)
1216 		nb_desc = adapter->tx_ring_size;
1217 
1218 	txq->port_id = dev->data->port_id;
1219 	txq->next_to_clean = 0;
1220 	txq->next_to_use = 0;
1221 	txq->ring_size = nb_desc;
1222 	txq->numa_socket_id = socket_id;
1223 
1224 	txq->tx_buffer_info = rte_zmalloc("txq->tx_buffer_info",
1225 					  sizeof(struct ena_tx_buffer) *
1226 					  txq->ring_size,
1227 					  RTE_CACHE_LINE_SIZE);
1228 	if (!txq->tx_buffer_info) {
1229 		PMD_DRV_LOG(ERR, "failed to alloc mem for tx buffer info\n");
1230 		return -ENOMEM;
1231 	}
1232 
1233 	txq->empty_tx_reqs = rte_zmalloc("txq->empty_tx_reqs",
1234 					 sizeof(u16) * txq->ring_size,
1235 					 RTE_CACHE_LINE_SIZE);
1236 	if (!txq->empty_tx_reqs) {
1237 		PMD_DRV_LOG(ERR, "failed to alloc mem for tx reqs\n");
1238 		rte_free(txq->tx_buffer_info);
1239 		return -ENOMEM;
1240 	}
1241 
1242 	txq->push_buf_intermediate_buf =
1243 		rte_zmalloc("txq->push_buf_intermediate_buf",
1244 			    txq->tx_max_header_size,
1245 			    RTE_CACHE_LINE_SIZE);
1246 	if (!txq->push_buf_intermediate_buf) {
1247 		PMD_DRV_LOG(ERR, "failed to alloc push buff for LLQ\n");
1248 		rte_free(txq->tx_buffer_info);
1249 		rte_free(txq->empty_tx_reqs);
1250 		return -ENOMEM;
1251 	}
1252 
1253 	for (i = 0; i < txq->ring_size; i++)
1254 		txq->empty_tx_reqs[i] = i;
1255 
1256 	if (tx_conf != NULL) {
1257 		txq->offloads =
1258 			tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1259 	}
1260 	/* Store pointer to this queue in upper layer */
1261 	txq->configured = 1;
1262 	dev->data->tx_queues[queue_idx] = txq;
1263 
1264 	return 0;
1265 }
1266 
1267 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1268 			      uint16_t queue_idx,
1269 			      uint16_t nb_desc,
1270 			      unsigned int socket_id,
1271 			      __rte_unused const struct rte_eth_rxconf *rx_conf,
1272 			      struct rte_mempool *mp)
1273 {
1274 	struct ena_adapter *adapter = dev->data->dev_private;
1275 	struct ena_ring *rxq = NULL;
1276 	int i;
1277 
1278 	rxq = &adapter->rx_ring[queue_idx];
1279 	if (rxq->configured) {
1280 		PMD_DRV_LOG(CRIT,
1281 			"API violation. Queue %d is already configured\n",
1282 			queue_idx);
1283 		return ENA_COM_FAULT;
1284 	}
1285 
1286 	if (nb_desc == RTE_ETH_DEV_FALLBACK_RX_RINGSIZE)
1287 		nb_desc = adapter->rx_ring_size;
1288 
1289 	if (!rte_is_power_of_2(nb_desc)) {
1290 		PMD_DRV_LOG(ERR,
1291 			"Unsupported size of RX queue: %d is not a power of 2.\n",
1292 			nb_desc);
1293 		return -EINVAL;
1294 	}
1295 
1296 	if (nb_desc > adapter->rx_ring_size) {
1297 		PMD_DRV_LOG(ERR,
1298 			"Unsupported size of RX queue (max size: %d)\n",
1299 			adapter->rx_ring_size);
1300 		return -EINVAL;
1301 	}
1302 
1303 	rxq->port_id = dev->data->port_id;
1304 	rxq->next_to_clean = 0;
1305 	rxq->next_to_use = 0;
1306 	rxq->ring_size = nb_desc;
1307 	rxq->numa_socket_id = socket_id;
1308 	rxq->mb_pool = mp;
1309 
1310 	rxq->rx_buffer_info = rte_zmalloc("rxq->buffer_info",
1311 					  sizeof(struct rte_mbuf *) * nb_desc,
1312 					  RTE_CACHE_LINE_SIZE);
1313 	if (!rxq->rx_buffer_info) {
1314 		PMD_DRV_LOG(ERR, "failed to alloc mem for rx buffer info\n");
1315 		return -ENOMEM;
1316 	}
1317 
1318 	rxq->rx_refill_buffer = rte_zmalloc("rxq->rx_refill_buffer",
1319 					    sizeof(struct rte_mbuf *) * nb_desc,
1320 					    RTE_CACHE_LINE_SIZE);
1321 
1322 	if (!rxq->rx_refill_buffer) {
1323 		PMD_DRV_LOG(ERR, "failed to alloc mem for rx refill buffer\n");
1324 		rte_free(rxq->rx_buffer_info);
1325 		rxq->rx_buffer_info = NULL;
1326 		return -ENOMEM;
1327 	}
1328 
1329 	rxq->empty_rx_reqs = rte_zmalloc("rxq->empty_rx_reqs",
1330 					 sizeof(uint16_t) * nb_desc,
1331 					 RTE_CACHE_LINE_SIZE);
1332 	if (!rxq->empty_rx_reqs) {
1333 		PMD_DRV_LOG(ERR, "failed to alloc mem for empty rx reqs\n");
1334 		rte_free(rxq->rx_buffer_info);
1335 		rxq->rx_buffer_info = NULL;
1336 		rte_free(rxq->rx_refill_buffer);
1337 		rxq->rx_refill_buffer = NULL;
1338 		return -ENOMEM;
1339 	}
1340 
1341 	for (i = 0; i < nb_desc; i++)
1342 		rxq->empty_rx_reqs[i] = i;
1343 
1344 	/* Store pointer to this queue in upper layer */
1345 	rxq->configured = 1;
1346 	dev->data->rx_queues[queue_idx] = rxq;
1347 
1348 	return 0;
1349 }
1350 
1351 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1352 {
1353 	unsigned int i;
1354 	int rc;
1355 	uint16_t ring_size = rxq->ring_size;
1356 	uint16_t ring_mask = ring_size - 1;
1357 	uint16_t next_to_use = rxq->next_to_use;
1358 	uint16_t in_use, req_id;
1359 	struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1360 
1361 	if (unlikely(!count))
1362 		return 0;
1363 
1364 	in_use = rxq->next_to_use - rxq->next_to_clean;
1365 	ena_assert_msg(((in_use + count) < ring_size), "bad ring state\n");
1366 
1367 	/* get resources for incoming packets */
1368 	rc = rte_mempool_get_bulk(rxq->mb_pool, (void **)mbufs, count);
1369 	if (unlikely(rc < 0)) {
1370 		rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1371 		++rxq->rx_stats.mbuf_alloc_fail;
1372 		PMD_RX_LOG(DEBUG, "there are no enough free buffers");
1373 		return 0;
1374 	}
1375 
1376 	for (i = 0; i < count; i++) {
1377 		uint16_t next_to_use_masked = next_to_use & ring_mask;
1378 		struct rte_mbuf *mbuf = mbufs[i];
1379 		struct ena_com_buf ebuf;
1380 
1381 		if (likely((i + 4) < count))
1382 			rte_prefetch0(mbufs[i + 4]);
1383 
1384 		req_id = rxq->empty_rx_reqs[next_to_use_masked];
1385 		rc = validate_rx_req_id(rxq, req_id);
1386 		if (unlikely(rc < 0))
1387 			break;
1388 		rxq->rx_buffer_info[req_id] = mbuf;
1389 
1390 		/* prepare physical address for DMA transaction */
1391 		ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1392 		ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1393 		/* pass resource to device */
1394 		rc = ena_com_add_single_rx_desc(rxq->ena_com_io_sq,
1395 						&ebuf, req_id);
1396 		if (unlikely(rc)) {
1397 			PMD_DRV_LOG(WARNING, "failed adding rx desc\n");
1398 			rxq->rx_buffer_info[req_id] = NULL;
1399 			break;
1400 		}
1401 		next_to_use++;
1402 	}
1403 
1404 	if (unlikely(i < count)) {
1405 		PMD_DRV_LOG(WARNING, "refilled rx qid %d with only %d "
1406 			"buffers (from %d)\n", rxq->id, i, count);
1407 		rte_mempool_put_bulk(rxq->mb_pool, (void **)(&mbufs[i]),
1408 				     count - i);
1409 		++rxq->rx_stats.refill_partial;
1410 	}
1411 
1412 	/* When we submitted free recources to device... */
1413 	if (likely(i > 0)) {
1414 		/* ...let HW know that it can fill buffers with data
1415 		 *
1416 		 * Add memory barrier to make sure the desc were written before
1417 		 * issue a doorbell
1418 		 */
1419 		rte_wmb();
1420 		ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1421 
1422 		rxq->next_to_use = next_to_use;
1423 	}
1424 
1425 	return i;
1426 }
1427 
1428 static int ena_device_init(struct ena_com_dev *ena_dev,
1429 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
1430 			   bool *wd_state)
1431 {
1432 	uint32_t aenq_groups;
1433 	int rc;
1434 	bool readless_supported;
1435 
1436 	/* Initialize mmio registers */
1437 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
1438 	if (rc) {
1439 		PMD_DRV_LOG(ERR, "failed to init mmio read less\n");
1440 		return rc;
1441 	}
1442 
1443 	/* The PCIe configuration space revision id indicate if mmio reg
1444 	 * read is disabled.
1445 	 */
1446 	readless_supported =
1447 		!(((struct rte_pci_device *)ena_dev->dmadev)->id.class_id
1448 			       & ENA_MMIO_DISABLE_REG_READ);
1449 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1450 
1451 	/* reset device */
1452 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1453 	if (rc) {
1454 		PMD_DRV_LOG(ERR, "cannot reset device\n");
1455 		goto err_mmio_read_less;
1456 	}
1457 
1458 	/* check FW version */
1459 	rc = ena_com_validate_version(ena_dev);
1460 	if (rc) {
1461 		PMD_DRV_LOG(ERR, "device version is too low\n");
1462 		goto err_mmio_read_less;
1463 	}
1464 
1465 	ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1466 
1467 	/* ENA device administration layer init */
1468 	rc = ena_com_admin_init(ena_dev, &aenq_handlers);
1469 	if (rc) {
1470 		PMD_DRV_LOG(ERR,
1471 			"cannot initialize ena admin queue with device\n");
1472 		goto err_mmio_read_less;
1473 	}
1474 
1475 	/* To enable the msix interrupts the driver needs to know the number
1476 	 * of queues. So the driver uses polling mode to retrieve this
1477 	 * information.
1478 	 */
1479 	ena_com_set_admin_polling_mode(ena_dev, true);
1480 
1481 	ena_config_host_info(ena_dev);
1482 
1483 	/* Get Device Attributes and features */
1484 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1485 	if (rc) {
1486 		PMD_DRV_LOG(ERR,
1487 			"cannot get attribute for ena device rc= %d\n", rc);
1488 		goto err_admin_init;
1489 	}
1490 
1491 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1492 		      BIT(ENA_ADMIN_NOTIFICATION) |
1493 		      BIT(ENA_ADMIN_KEEP_ALIVE) |
1494 		      BIT(ENA_ADMIN_FATAL_ERROR) |
1495 		      BIT(ENA_ADMIN_WARNING);
1496 
1497 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
1498 	rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
1499 	if (rc) {
1500 		PMD_DRV_LOG(ERR, "Cannot configure aenq groups rc: %d\n", rc);
1501 		goto err_admin_init;
1502 	}
1503 
1504 	*wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
1505 
1506 	return 0;
1507 
1508 err_admin_init:
1509 	ena_com_admin_destroy(ena_dev);
1510 
1511 err_mmio_read_less:
1512 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1513 
1514 	return rc;
1515 }
1516 
1517 static void ena_interrupt_handler_rte(void *cb_arg)
1518 {
1519 	struct ena_adapter *adapter = cb_arg;
1520 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1521 
1522 	ena_com_admin_q_comp_intr_handler(ena_dev);
1523 	if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED))
1524 		ena_com_aenq_intr_handler(ena_dev, adapter);
1525 }
1526 
1527 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1528 {
1529 	if (!adapter->wd_state)
1530 		return;
1531 
1532 	if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1533 		return;
1534 
1535 	if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1536 	    adapter->keep_alive_timeout)) {
1537 		PMD_DRV_LOG(ERR, "Keep alive timeout\n");
1538 		adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
1539 		adapter->trigger_reset = true;
1540 		++adapter->dev_stats.wd_expired;
1541 	}
1542 }
1543 
1544 /* Check if admin queue is enabled */
1545 static void check_for_admin_com_state(struct ena_adapter *adapter)
1546 {
1547 	if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1548 		PMD_DRV_LOG(ERR, "ENA admin queue is not in running state!\n");
1549 		adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
1550 		adapter->trigger_reset = true;
1551 	}
1552 }
1553 
1554 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
1555 				  void *arg)
1556 {
1557 	struct ena_adapter *adapter = arg;
1558 	struct rte_eth_dev *dev = adapter->rte_dev;
1559 
1560 	check_for_missing_keep_alive(adapter);
1561 	check_for_admin_com_state(adapter);
1562 
1563 	if (unlikely(adapter->trigger_reset)) {
1564 		PMD_DRV_LOG(ERR, "Trigger reset is on\n");
1565 		_rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
1566 			NULL);
1567 	}
1568 }
1569 
1570 static inline void
1571 set_default_llq_configurations(struct ena_llq_configurations *llq_config)
1572 {
1573 	llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
1574 	llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_128B;
1575 	llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
1576 	llq_config->llq_num_decs_before_header =
1577 		ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
1578 	llq_config->llq_ring_entry_size_value = 128;
1579 }
1580 
1581 static int
1582 ena_set_queues_placement_policy(struct ena_adapter *adapter,
1583 				struct ena_com_dev *ena_dev,
1584 				struct ena_admin_feature_llq_desc *llq,
1585 				struct ena_llq_configurations *llq_default_configurations)
1586 {
1587 	int rc;
1588 	u32 llq_feature_mask;
1589 
1590 	llq_feature_mask = 1 << ENA_ADMIN_LLQ;
1591 	if (!(ena_dev->supported_features & llq_feature_mask)) {
1592 		PMD_DRV_LOG(INFO,
1593 			"LLQ is not supported. Fallback to host mode policy.\n");
1594 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1595 		return 0;
1596 	}
1597 
1598 	rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
1599 	if (unlikely(rc)) {
1600 		PMD_INIT_LOG(WARNING, "Failed to config dev mode. "
1601 			"Fallback to host mode policy.");
1602 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1603 		return 0;
1604 	}
1605 
1606 	/* Nothing to config, exit */
1607 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1608 		return 0;
1609 
1610 	if (!adapter->dev_mem_base) {
1611 		PMD_DRV_LOG(ERR, "Unable to access LLQ bar resource. "
1612 			"Fallback to host mode policy.\n.");
1613 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1614 		return 0;
1615 	}
1616 
1617 	ena_dev->mem_bar = adapter->dev_mem_base;
1618 
1619 	return 0;
1620 }
1621 
1622 static int ena_calc_io_queue_num(struct ena_com_dev *ena_dev,
1623 				 struct ena_com_dev_get_features_ctx *get_feat_ctx)
1624 {
1625 	uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, io_queue_num;
1626 
1627 	/* Regular queues capabilities */
1628 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1629 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1630 			&get_feat_ctx->max_queue_ext.max_queue_ext;
1631 		io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
1632 				    max_queue_ext->max_rx_cq_num);
1633 		io_tx_sq_num = max_queue_ext->max_tx_sq_num;
1634 		io_tx_cq_num = max_queue_ext->max_tx_cq_num;
1635 	} else {
1636 		struct ena_admin_queue_feature_desc *max_queues =
1637 			&get_feat_ctx->max_queues;
1638 		io_tx_sq_num = max_queues->max_sq_num;
1639 		io_tx_cq_num = max_queues->max_cq_num;
1640 		io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
1641 	}
1642 
1643 	/* In case of LLQ use the llq number in the get feature cmd */
1644 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
1645 		io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
1646 
1647 	io_queue_num = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
1648 	io_queue_num = RTE_MIN(io_queue_num, io_tx_sq_num);
1649 	io_queue_num = RTE_MIN(io_queue_num, io_tx_cq_num);
1650 
1651 	if (unlikely(io_queue_num == 0)) {
1652 		PMD_DRV_LOG(ERR, "Number of IO queues should not be 0\n");
1653 		return -EFAULT;
1654 	}
1655 
1656 	return io_queue_num;
1657 }
1658 
1659 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
1660 {
1661 	struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
1662 	struct rte_pci_device *pci_dev;
1663 	struct rte_intr_handle *intr_handle;
1664 	struct ena_adapter *adapter = eth_dev->data->dev_private;
1665 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1666 	struct ena_com_dev_get_features_ctx get_feat_ctx;
1667 	struct ena_llq_configurations llq_config;
1668 	const char *queue_type_str;
1669 	int rc;
1670 
1671 	static int adapters_found;
1672 	bool wd_state;
1673 
1674 	eth_dev->dev_ops = &ena_dev_ops;
1675 	eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
1676 	eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
1677 	eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
1678 
1679 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1680 		return 0;
1681 
1682 	memset(adapter, 0, sizeof(struct ena_adapter));
1683 	ena_dev = &adapter->ena_dev;
1684 
1685 	adapter->rte_eth_dev_data = eth_dev->data;
1686 	adapter->rte_dev = eth_dev;
1687 
1688 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1689 	adapter->pdev = pci_dev;
1690 
1691 	PMD_INIT_LOG(INFO, "Initializing %x:%x:%x.%d",
1692 		     pci_dev->addr.domain,
1693 		     pci_dev->addr.bus,
1694 		     pci_dev->addr.devid,
1695 		     pci_dev->addr.function);
1696 
1697 	intr_handle = &pci_dev->intr_handle;
1698 
1699 	adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
1700 	adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
1701 
1702 	if (!adapter->regs) {
1703 		PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)",
1704 			     ENA_REGS_BAR);
1705 		return -ENXIO;
1706 	}
1707 
1708 	ena_dev->reg_bar = adapter->regs;
1709 	ena_dev->dmadev = adapter->pdev;
1710 
1711 	adapter->id_number = adapters_found;
1712 
1713 	snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
1714 		 adapter->id_number);
1715 
1716 	/* device specific initialization routine */
1717 	rc = ena_device_init(ena_dev, &get_feat_ctx, &wd_state);
1718 	if (rc) {
1719 		PMD_INIT_LOG(CRIT, "Failed to init ENA device");
1720 		goto err;
1721 	}
1722 	adapter->wd_state = wd_state;
1723 
1724 	set_default_llq_configurations(&llq_config);
1725 	rc = ena_set_queues_placement_policy(adapter, ena_dev,
1726 					     &get_feat_ctx.llq, &llq_config);
1727 	if (unlikely(rc)) {
1728 		PMD_INIT_LOG(CRIT, "Failed to set placement policy");
1729 		return rc;
1730 	}
1731 
1732 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1733 		queue_type_str = "Regular";
1734 	else
1735 		queue_type_str = "Low latency";
1736 	PMD_DRV_LOG(INFO, "Placement policy: %s\n", queue_type_str);
1737 
1738 	calc_queue_ctx.ena_dev = ena_dev;
1739 	calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
1740 	adapter->num_queues = ena_calc_io_queue_num(ena_dev,
1741 						    &get_feat_ctx);
1742 
1743 	rc = ena_calc_queue_size(&calc_queue_ctx);
1744 	if (unlikely((rc != 0) || (adapter->num_queues <= 0))) {
1745 		rc = -EFAULT;
1746 		goto err_device_destroy;
1747 	}
1748 
1749 	adapter->tx_ring_size = calc_queue_ctx.tx_queue_size;
1750 	adapter->rx_ring_size = calc_queue_ctx.rx_queue_size;
1751 
1752 	adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
1753 	adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
1754 
1755 	/* prepare ring structures */
1756 	ena_init_rings(adapter);
1757 
1758 	ena_config_debug_area(adapter);
1759 
1760 	/* Set max MTU for this device */
1761 	adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
1762 
1763 	/* set device support for offloads */
1764 	adapter->offloads.tso4_supported = (get_feat_ctx.offload.tx &
1765 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) != 0;
1766 	adapter->offloads.tx_csum_supported = (get_feat_ctx.offload.tx &
1767 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK) != 0;
1768 	adapter->offloads.rx_csum_supported =
1769 		(get_feat_ctx.offload.rx_supported &
1770 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK) != 0;
1771 
1772 	/* Copy MAC address and point DPDK to it */
1773 	eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr;
1774 	rte_ether_addr_copy((struct rte_ether_addr *)
1775 			get_feat_ctx.dev_attr.mac_addr,
1776 			(struct rte_ether_addr *)adapter->mac_addr);
1777 
1778 	/*
1779 	 * Pass the information to the rte_eth_dev_close() that it should also
1780 	 * release the private port resources.
1781 	 */
1782 	eth_dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE;
1783 
1784 	adapter->drv_stats = rte_zmalloc("adapter stats",
1785 					 sizeof(*adapter->drv_stats),
1786 					 RTE_CACHE_LINE_SIZE);
1787 	if (!adapter->drv_stats) {
1788 		PMD_DRV_LOG(ERR, "failed to alloc mem for adapter stats\n");
1789 		rc = -ENOMEM;
1790 		goto err_delete_debug_area;
1791 	}
1792 
1793 	rte_intr_callback_register(intr_handle,
1794 				   ena_interrupt_handler_rte,
1795 				   adapter);
1796 	rte_intr_enable(intr_handle);
1797 	ena_com_set_admin_polling_mode(ena_dev, false);
1798 	ena_com_admin_aenq_enable(ena_dev);
1799 
1800 	if (adapters_found == 0)
1801 		rte_timer_subsystem_init();
1802 	rte_timer_init(&adapter->timer_wd);
1803 
1804 	adapters_found++;
1805 	adapter->state = ENA_ADAPTER_STATE_INIT;
1806 
1807 	return 0;
1808 
1809 err_delete_debug_area:
1810 	ena_com_delete_debug_area(ena_dev);
1811 
1812 err_device_destroy:
1813 	ena_com_delete_host_info(ena_dev);
1814 	ena_com_admin_destroy(ena_dev);
1815 
1816 err:
1817 	return rc;
1818 }
1819 
1820 static void ena_destroy_device(struct rte_eth_dev *eth_dev)
1821 {
1822 	struct ena_adapter *adapter = eth_dev->data->dev_private;
1823 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1824 
1825 	if (adapter->state == ENA_ADAPTER_STATE_FREE)
1826 		return;
1827 
1828 	ena_com_set_admin_running_state(ena_dev, false);
1829 
1830 	if (adapter->state != ENA_ADAPTER_STATE_CLOSED)
1831 		ena_close(eth_dev);
1832 
1833 	ena_com_delete_debug_area(ena_dev);
1834 	ena_com_delete_host_info(ena_dev);
1835 
1836 	ena_com_abort_admin_commands(ena_dev);
1837 	ena_com_wait_for_abort_completion(ena_dev);
1838 	ena_com_admin_destroy(ena_dev);
1839 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1840 
1841 	adapter->state = ENA_ADAPTER_STATE_FREE;
1842 }
1843 
1844 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
1845 {
1846 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1847 		return 0;
1848 
1849 	ena_destroy_device(eth_dev);
1850 
1851 	eth_dev->dev_ops = NULL;
1852 	eth_dev->rx_pkt_burst = NULL;
1853 	eth_dev->tx_pkt_burst = NULL;
1854 	eth_dev->tx_pkt_prepare = NULL;
1855 
1856 	return 0;
1857 }
1858 
1859 static int ena_dev_configure(struct rte_eth_dev *dev)
1860 {
1861 	struct ena_adapter *adapter = dev->data->dev_private;
1862 
1863 	adapter->state = ENA_ADAPTER_STATE_CONFIG;
1864 
1865 	adapter->tx_selected_offloads = dev->data->dev_conf.txmode.offloads;
1866 	adapter->rx_selected_offloads = dev->data->dev_conf.rxmode.offloads;
1867 	return 0;
1868 }
1869 
1870 static void ena_init_rings(struct ena_adapter *adapter)
1871 {
1872 	int i;
1873 
1874 	for (i = 0; i < adapter->num_queues; i++) {
1875 		struct ena_ring *ring = &adapter->tx_ring[i];
1876 
1877 		ring->configured = 0;
1878 		ring->type = ENA_RING_TYPE_TX;
1879 		ring->adapter = adapter;
1880 		ring->id = i;
1881 		ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
1882 		ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
1883 		ring->sgl_size = adapter->max_tx_sgl_size;
1884 	}
1885 
1886 	for (i = 0; i < adapter->num_queues; i++) {
1887 		struct ena_ring *ring = &adapter->rx_ring[i];
1888 
1889 		ring->configured = 0;
1890 		ring->type = ENA_RING_TYPE_RX;
1891 		ring->adapter = adapter;
1892 		ring->id = i;
1893 		ring->sgl_size = adapter->max_rx_sgl_size;
1894 	}
1895 }
1896 
1897 static int ena_infos_get(struct rte_eth_dev *dev,
1898 			  struct rte_eth_dev_info *dev_info)
1899 {
1900 	struct ena_adapter *adapter;
1901 	struct ena_com_dev *ena_dev;
1902 	uint64_t rx_feat = 0, tx_feat = 0;
1903 
1904 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
1905 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
1906 	adapter = dev->data->dev_private;
1907 
1908 	ena_dev = &adapter->ena_dev;
1909 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
1910 
1911 	dev_info->speed_capa =
1912 			ETH_LINK_SPEED_1G   |
1913 			ETH_LINK_SPEED_2_5G |
1914 			ETH_LINK_SPEED_5G   |
1915 			ETH_LINK_SPEED_10G  |
1916 			ETH_LINK_SPEED_25G  |
1917 			ETH_LINK_SPEED_40G  |
1918 			ETH_LINK_SPEED_50G  |
1919 			ETH_LINK_SPEED_100G;
1920 
1921 	/* Set Tx & Rx features available for device */
1922 	if (adapter->offloads.tso4_supported)
1923 		tx_feat	|= DEV_TX_OFFLOAD_TCP_TSO;
1924 
1925 	if (adapter->offloads.tx_csum_supported)
1926 		tx_feat |= DEV_TX_OFFLOAD_IPV4_CKSUM |
1927 			DEV_TX_OFFLOAD_UDP_CKSUM |
1928 			DEV_TX_OFFLOAD_TCP_CKSUM;
1929 
1930 	if (adapter->offloads.rx_csum_supported)
1931 		rx_feat |= DEV_RX_OFFLOAD_IPV4_CKSUM |
1932 			DEV_RX_OFFLOAD_UDP_CKSUM  |
1933 			DEV_RX_OFFLOAD_TCP_CKSUM;
1934 
1935 	rx_feat |= DEV_RX_OFFLOAD_JUMBO_FRAME;
1936 
1937 	/* Inform framework about available features */
1938 	dev_info->rx_offload_capa = rx_feat;
1939 	dev_info->rx_queue_offload_capa = rx_feat;
1940 	dev_info->tx_offload_capa = tx_feat;
1941 	dev_info->tx_queue_offload_capa = tx_feat;
1942 
1943 	dev_info->flow_type_rss_offloads = ETH_RSS_IP | ETH_RSS_TCP |
1944 					   ETH_RSS_UDP;
1945 
1946 	dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
1947 	dev_info->max_rx_pktlen  = adapter->max_mtu;
1948 	dev_info->max_mac_addrs = 1;
1949 
1950 	dev_info->max_rx_queues = adapter->num_queues;
1951 	dev_info->max_tx_queues = adapter->num_queues;
1952 	dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
1953 
1954 	adapter->tx_supported_offloads = tx_feat;
1955 	adapter->rx_supported_offloads = rx_feat;
1956 
1957 	dev_info->rx_desc_lim.nb_max = adapter->rx_ring_size;
1958 	dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
1959 	dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
1960 					adapter->max_rx_sgl_size);
1961 	dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
1962 					adapter->max_rx_sgl_size);
1963 
1964 	dev_info->tx_desc_lim.nb_max = adapter->tx_ring_size;
1965 	dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
1966 	dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
1967 					adapter->max_tx_sgl_size);
1968 	dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
1969 					adapter->max_tx_sgl_size);
1970 
1971 	return 0;
1972 }
1973 
1974 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
1975 				  uint16_t nb_pkts)
1976 {
1977 	struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
1978 	unsigned int ring_size = rx_ring->ring_size;
1979 	unsigned int ring_mask = ring_size - 1;
1980 	uint16_t next_to_clean = rx_ring->next_to_clean;
1981 	uint16_t desc_in_use = 0;
1982 	uint16_t req_id;
1983 	unsigned int recv_idx = 0;
1984 	struct rte_mbuf *mbuf = NULL;
1985 	struct rte_mbuf *mbuf_head = NULL;
1986 	struct rte_mbuf *mbuf_prev = NULL;
1987 	struct rte_mbuf **rx_buff_info = rx_ring->rx_buffer_info;
1988 	unsigned int completed;
1989 
1990 	struct ena_com_rx_ctx ena_rx_ctx;
1991 	int rc = 0;
1992 
1993 	/* Check adapter state */
1994 	if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
1995 		PMD_DRV_LOG(ALERT,
1996 			"Trying to receive pkts while device is NOT running\n");
1997 		return 0;
1998 	}
1999 
2000 	desc_in_use = rx_ring->next_to_use - next_to_clean;
2001 	if (unlikely(nb_pkts > desc_in_use))
2002 		nb_pkts = desc_in_use;
2003 
2004 	for (completed = 0; completed < nb_pkts; completed++) {
2005 		int segments = 0;
2006 
2007 		ena_rx_ctx.max_bufs = rx_ring->sgl_size;
2008 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
2009 		ena_rx_ctx.descs = 0;
2010 		/* receive packet context */
2011 		rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
2012 				    rx_ring->ena_com_io_sq,
2013 				    &ena_rx_ctx);
2014 		if (unlikely(rc)) {
2015 			PMD_DRV_LOG(ERR, "ena_com_rx_pkt error %d\n", rc);
2016 			rx_ring->adapter->reset_reason =
2017 				ENA_REGS_RESET_TOO_MANY_RX_DESCS;
2018 			rx_ring->adapter->trigger_reset = true;
2019 			++rx_ring->rx_stats.bad_desc_num;
2020 			return 0;
2021 		}
2022 
2023 		if (unlikely(ena_rx_ctx.descs == 0))
2024 			break;
2025 
2026 		while (segments < ena_rx_ctx.descs) {
2027 			req_id = ena_rx_ctx.ena_bufs[segments].req_id;
2028 			rc = validate_rx_req_id(rx_ring, req_id);
2029 			if (unlikely(rc)) {
2030 				if (segments != 0)
2031 					rte_mbuf_raw_free(mbuf_head);
2032 				break;
2033 			}
2034 
2035 			mbuf = rx_buff_info[req_id];
2036 			rx_buff_info[req_id] = NULL;
2037 			mbuf->data_len = ena_rx_ctx.ena_bufs[segments].len;
2038 			mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2039 			mbuf->refcnt = 1;
2040 			mbuf->next = NULL;
2041 			if (unlikely(segments == 0)) {
2042 				mbuf->nb_segs = ena_rx_ctx.descs;
2043 				mbuf->port = rx_ring->port_id;
2044 				mbuf->pkt_len = 0;
2045 				mbuf_head = mbuf;
2046 			} else {
2047 				/* for multi-segment pkts create mbuf chain */
2048 				mbuf_prev->next = mbuf;
2049 			}
2050 			mbuf_head->pkt_len += mbuf->data_len;
2051 
2052 			mbuf_prev = mbuf;
2053 			rx_ring->empty_rx_reqs[next_to_clean & ring_mask] =
2054 				req_id;
2055 			segments++;
2056 			next_to_clean++;
2057 		}
2058 		if (unlikely(rc))
2059 			break;
2060 
2061 		/* fill mbuf attributes if any */
2062 		ena_rx_mbuf_prepare(mbuf_head, &ena_rx_ctx);
2063 
2064 		if (unlikely(mbuf_head->ol_flags &
2065 				(PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD))) {
2066 			rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors);
2067 			++rx_ring->rx_stats.bad_csum;
2068 		}
2069 
2070 		mbuf_head->hash.rss = ena_rx_ctx.hash;
2071 
2072 		/* pass to DPDK application head mbuf */
2073 		rx_pkts[recv_idx] = mbuf_head;
2074 		recv_idx++;
2075 		rx_ring->rx_stats.bytes += mbuf_head->pkt_len;
2076 	}
2077 
2078 	rx_ring->rx_stats.cnt += recv_idx;
2079 	rx_ring->next_to_clean = next_to_clean;
2080 
2081 	desc_in_use = desc_in_use - completed + 1;
2082 	/* Burst refill to save doorbells, memory barriers, const interval */
2083 	if (ring_size - desc_in_use > ENA_RING_DESCS_RATIO(ring_size)) {
2084 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
2085 		ena_populate_rx_queue(rx_ring, ring_size - desc_in_use);
2086 	}
2087 
2088 	return recv_idx;
2089 }
2090 
2091 static uint16_t
2092 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2093 		uint16_t nb_pkts)
2094 {
2095 	int32_t ret;
2096 	uint32_t i;
2097 	struct rte_mbuf *m;
2098 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2099 	struct rte_ipv4_hdr *ip_hdr;
2100 	uint64_t ol_flags;
2101 	uint16_t frag_field;
2102 
2103 	for (i = 0; i != nb_pkts; i++) {
2104 		m = tx_pkts[i];
2105 		ol_flags = m->ol_flags;
2106 
2107 		if (!(ol_flags & PKT_TX_IPV4))
2108 			continue;
2109 
2110 		/* If there was not L2 header length specified, assume it is
2111 		 * length of the ethernet header.
2112 		 */
2113 		if (unlikely(m->l2_len == 0))
2114 			m->l2_len = sizeof(struct rte_ether_hdr);
2115 
2116 		ip_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *,
2117 						 m->l2_len);
2118 		frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
2119 
2120 		if ((frag_field & RTE_IPV4_HDR_DF_FLAG) != 0) {
2121 			m->packet_type |= RTE_PTYPE_L4_NONFRAG;
2122 
2123 			/* If IPv4 header has DF flag enabled and TSO support is
2124 			 * disabled, partial chcecksum should not be calculated.
2125 			 */
2126 			if (!tx_ring->adapter->offloads.tso4_supported)
2127 				continue;
2128 		}
2129 
2130 		if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) != 0 ||
2131 				(ol_flags & PKT_TX_L4_MASK) ==
2132 				PKT_TX_SCTP_CKSUM) {
2133 			rte_errno = ENOTSUP;
2134 			return i;
2135 		}
2136 
2137 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2138 		ret = rte_validate_tx_offload(m);
2139 		if (ret != 0) {
2140 			rte_errno = -ret;
2141 			return i;
2142 		}
2143 #endif
2144 
2145 		/* In case we are supposed to TSO and have DF not set (DF=0)
2146 		 * hardware must be provided with partial checksum, otherwise
2147 		 * it will take care of necessary calculations.
2148 		 */
2149 
2150 		ret = rte_net_intel_cksum_flags_prepare(m,
2151 			ol_flags & ~PKT_TX_TCP_SEG);
2152 		if (ret != 0) {
2153 			rte_errno = -ret;
2154 			return i;
2155 		}
2156 	}
2157 
2158 	return i;
2159 }
2160 
2161 static void ena_update_hints(struct ena_adapter *adapter,
2162 			     struct ena_admin_ena_hw_hints *hints)
2163 {
2164 	if (hints->admin_completion_tx_timeout)
2165 		adapter->ena_dev.admin_queue.completion_timeout =
2166 			hints->admin_completion_tx_timeout * 1000;
2167 
2168 	if (hints->mmio_read_timeout)
2169 		/* convert to usec */
2170 		adapter->ena_dev.mmio_read.reg_read_to =
2171 			hints->mmio_read_timeout * 1000;
2172 
2173 	if (hints->driver_watchdog_timeout) {
2174 		if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
2175 			adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
2176 		else
2177 			// Convert msecs to ticks
2178 			adapter->keep_alive_timeout =
2179 				(hints->driver_watchdog_timeout *
2180 				rte_get_timer_hz()) / 1000;
2181 	}
2182 }
2183 
2184 static int ena_check_and_linearize_mbuf(struct ena_ring *tx_ring,
2185 					struct rte_mbuf *mbuf)
2186 {
2187 	struct ena_com_dev *ena_dev;
2188 	int num_segments, header_len, rc;
2189 
2190 	ena_dev = &tx_ring->adapter->ena_dev;
2191 	num_segments = mbuf->nb_segs;
2192 	header_len = mbuf->data_len;
2193 
2194 	if (likely(num_segments < tx_ring->sgl_size))
2195 		return 0;
2196 
2197 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
2198 	    (num_segments == tx_ring->sgl_size) &&
2199 	    (header_len < tx_ring->tx_max_header_size))
2200 		return 0;
2201 
2202 	++tx_ring->tx_stats.linearize;
2203 	rc = rte_pktmbuf_linearize(mbuf);
2204 	if (unlikely(rc)) {
2205 		PMD_DRV_LOG(WARNING, "Mbuf linearize failed\n");
2206 		rte_atomic64_inc(&tx_ring->adapter->drv_stats->ierrors);
2207 		++tx_ring->tx_stats.linearize_failed;
2208 		return rc;
2209 	}
2210 
2211 	return rc;
2212 }
2213 
2214 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2215 				  uint16_t nb_pkts)
2216 {
2217 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2218 	uint16_t next_to_use = tx_ring->next_to_use;
2219 	uint16_t next_to_clean = tx_ring->next_to_clean;
2220 	struct rte_mbuf *mbuf;
2221 	uint16_t seg_len;
2222 	unsigned int ring_size = tx_ring->ring_size;
2223 	unsigned int ring_mask = ring_size - 1;
2224 	struct ena_com_tx_ctx ena_tx_ctx;
2225 	struct ena_tx_buffer *tx_info;
2226 	struct ena_com_buf *ebuf;
2227 	uint16_t rc, req_id, total_tx_descs = 0;
2228 	uint16_t sent_idx = 0, empty_tx_reqs;
2229 	uint16_t push_len = 0;
2230 	uint16_t delta = 0;
2231 	int nb_hw_desc;
2232 	uint32_t total_length;
2233 
2234 	/* Check adapter state */
2235 	if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2236 		PMD_DRV_LOG(ALERT,
2237 			"Trying to xmit pkts while device is NOT running\n");
2238 		return 0;
2239 	}
2240 
2241 	empty_tx_reqs = ring_size - (next_to_use - next_to_clean);
2242 	if (nb_pkts > empty_tx_reqs)
2243 		nb_pkts = empty_tx_reqs;
2244 
2245 	for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
2246 		mbuf = tx_pkts[sent_idx];
2247 		total_length = 0;
2248 
2249 		rc = ena_check_and_linearize_mbuf(tx_ring, mbuf);
2250 		if (unlikely(rc))
2251 			break;
2252 
2253 		req_id = tx_ring->empty_tx_reqs[next_to_use & ring_mask];
2254 		tx_info = &tx_ring->tx_buffer_info[req_id];
2255 		tx_info->mbuf = mbuf;
2256 		tx_info->num_of_bufs = 0;
2257 		ebuf = tx_info->bufs;
2258 
2259 		/* Prepare TX context */
2260 		memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
2261 		memset(&ena_tx_ctx.ena_meta, 0x0,
2262 		       sizeof(struct ena_com_tx_meta));
2263 		ena_tx_ctx.ena_bufs = ebuf;
2264 		ena_tx_ctx.req_id = req_id;
2265 
2266 		delta = 0;
2267 		seg_len = mbuf->data_len;
2268 
2269 		if (tx_ring->tx_mem_queue_type ==
2270 				ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2271 			push_len = RTE_MIN(mbuf->pkt_len,
2272 					   tx_ring->tx_max_header_size);
2273 			ena_tx_ctx.header_len = push_len;
2274 
2275 			if (likely(push_len <= seg_len)) {
2276 				/* If the push header is in the single segment,
2277 				 * then just point it to the 1st mbuf data.
2278 				 */
2279 				ena_tx_ctx.push_header =
2280 					rte_pktmbuf_mtod(mbuf, uint8_t *);
2281 			} else {
2282 				/* If the push header lays in the several
2283 				 * segments, copy it to the intermediate buffer.
2284 				 */
2285 				rte_pktmbuf_read(mbuf, 0, push_len,
2286 					tx_ring->push_buf_intermediate_buf);
2287 				ena_tx_ctx.push_header =
2288 					tx_ring->push_buf_intermediate_buf;
2289 				delta = push_len - seg_len;
2290 			}
2291 		} /* there's no else as we take advantage of memset zeroing */
2292 
2293 		/* Set TX offloads flags, if applicable */
2294 		ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads);
2295 
2296 		rte_prefetch0(tx_pkts[(sent_idx + 4) & ring_mask]);
2297 
2298 		/* Process first segment taking into
2299 		 * consideration pushed header
2300 		 */
2301 		if (seg_len > push_len) {
2302 			ebuf->paddr = mbuf->buf_iova +
2303 				      mbuf->data_off +
2304 				      push_len;
2305 			ebuf->len = seg_len - push_len;
2306 			ebuf++;
2307 			tx_info->num_of_bufs++;
2308 		}
2309 		total_length += mbuf->data_len;
2310 
2311 		while ((mbuf = mbuf->next) != NULL) {
2312 			seg_len = mbuf->data_len;
2313 
2314 			/* Skip mbufs if whole data is pushed as a header */
2315 			if (unlikely(delta > seg_len)) {
2316 				delta -= seg_len;
2317 				continue;
2318 			}
2319 
2320 			ebuf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
2321 			ebuf->len = seg_len - delta;
2322 			total_length += ebuf->len;
2323 			ebuf++;
2324 			tx_info->num_of_bufs++;
2325 
2326 			delta = 0;
2327 		}
2328 
2329 		ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2330 
2331 		if (ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
2332 					       &ena_tx_ctx)) {
2333 			PMD_DRV_LOG(DEBUG, "llq tx max burst size of queue %d"
2334 				" achieved, writing doorbell to send burst\n",
2335 				tx_ring->id);
2336 			rte_wmb();
2337 			ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2338 		}
2339 
2340 		/* prepare the packet's descriptors to dma engine */
2341 		rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq,
2342 					&ena_tx_ctx, &nb_hw_desc);
2343 		if (unlikely(rc)) {
2344 			++tx_ring->tx_stats.prepare_ctx_err;
2345 			break;
2346 		}
2347 		tx_info->tx_descs = nb_hw_desc;
2348 
2349 		next_to_use++;
2350 		tx_ring->tx_stats.cnt++;
2351 		tx_ring->tx_stats.bytes += total_length;
2352 	}
2353 	tx_ring->tx_stats.available_desc =
2354 		ena_com_free_desc(tx_ring->ena_com_io_sq);
2355 
2356 	/* If there are ready packets to be xmitted... */
2357 	if (sent_idx > 0) {
2358 		/* ...let HW do its best :-) */
2359 		rte_wmb();
2360 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2361 		tx_ring->tx_stats.doorbells++;
2362 		tx_ring->next_to_use = next_to_use;
2363 	}
2364 
2365 	/* Clear complete packets  */
2366 	while (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) >= 0) {
2367 		rc = validate_tx_req_id(tx_ring, req_id);
2368 		if (rc)
2369 			break;
2370 
2371 		/* Get Tx info & store how many descs were processed  */
2372 		tx_info = &tx_ring->tx_buffer_info[req_id];
2373 		total_tx_descs += tx_info->tx_descs;
2374 
2375 		/* Free whole mbuf chain  */
2376 		mbuf = tx_info->mbuf;
2377 		rte_pktmbuf_free(mbuf);
2378 		tx_info->mbuf = NULL;
2379 
2380 		/* Put back descriptor to the ring for reuse */
2381 		tx_ring->empty_tx_reqs[next_to_clean & ring_mask] = req_id;
2382 		next_to_clean++;
2383 
2384 		/* If too many descs to clean, leave it for another run */
2385 		if (unlikely(total_tx_descs > ENA_RING_DESCS_RATIO(ring_size)))
2386 			break;
2387 	}
2388 	tx_ring->tx_stats.available_desc =
2389 		ena_com_free_desc(tx_ring->ena_com_io_sq);
2390 
2391 	if (total_tx_descs > 0) {
2392 		/* acknowledge completion of sent packets */
2393 		tx_ring->next_to_clean = next_to_clean;
2394 		ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
2395 		ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
2396 	}
2397 
2398 	tx_ring->tx_stats.tx_poll++;
2399 
2400 	return sent_idx;
2401 }
2402 
2403 /**
2404  * DPDK callback to retrieve names of extended device statistics
2405  *
2406  * @param dev
2407  *   Pointer to Ethernet device structure.
2408  * @param[out] xstats_names
2409  *   Buffer to insert names into.
2410  * @param n
2411  *   Number of names.
2412  *
2413  * @return
2414  *   Number of xstats names.
2415  */
2416 static int ena_xstats_get_names(struct rte_eth_dev *dev,
2417 				struct rte_eth_xstat_name *xstats_names,
2418 				unsigned int n)
2419 {
2420 	unsigned int xstats_count = ena_xstats_calc_num(dev);
2421 	unsigned int stat, i, count = 0;
2422 
2423 	if (n < xstats_count || !xstats_names)
2424 		return xstats_count;
2425 
2426 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
2427 		strcpy(xstats_names[count].name,
2428 			ena_stats_global_strings[stat].name);
2429 
2430 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
2431 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
2432 			snprintf(xstats_names[count].name,
2433 				sizeof(xstats_names[count].name),
2434 				"rx_q%d_%s", i,
2435 				ena_stats_rx_strings[stat].name);
2436 
2437 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
2438 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
2439 			snprintf(xstats_names[count].name,
2440 				sizeof(xstats_names[count].name),
2441 				"tx_q%d_%s", i,
2442 				ena_stats_tx_strings[stat].name);
2443 
2444 	return xstats_count;
2445 }
2446 
2447 /**
2448  * DPDK callback to get extended device statistics.
2449  *
2450  * @param dev
2451  *   Pointer to Ethernet device structure.
2452  * @param[out] stats
2453  *   Stats table output buffer.
2454  * @param n
2455  *   The size of the stats table.
2456  *
2457  * @return
2458  *   Number of xstats on success, negative on failure.
2459  */
2460 static int ena_xstats_get(struct rte_eth_dev *dev,
2461 			  struct rte_eth_xstat *xstats,
2462 			  unsigned int n)
2463 {
2464 	struct ena_adapter *adapter = dev->data->dev_private;
2465 	unsigned int xstats_count = ena_xstats_calc_num(dev);
2466 	unsigned int stat, i, count = 0;
2467 	int stat_offset;
2468 	void *stats_begin;
2469 
2470 	if (n < xstats_count)
2471 		return xstats_count;
2472 
2473 	if (!xstats)
2474 		return 0;
2475 
2476 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
2477 		stat_offset = ena_stats_rx_strings[stat].stat_offset;
2478 		stats_begin = &adapter->dev_stats;
2479 
2480 		xstats[count].id = count;
2481 		xstats[count].value = *((uint64_t *)
2482 			((char *)stats_begin + stat_offset));
2483 	}
2484 
2485 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
2486 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
2487 			stat_offset = ena_stats_rx_strings[stat].stat_offset;
2488 			stats_begin = &adapter->rx_ring[i].rx_stats;
2489 
2490 			xstats[count].id = count;
2491 			xstats[count].value = *((uint64_t *)
2492 				((char *)stats_begin + stat_offset));
2493 		}
2494 	}
2495 
2496 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
2497 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
2498 			stat_offset = ena_stats_tx_strings[stat].stat_offset;
2499 			stats_begin = &adapter->tx_ring[i].rx_stats;
2500 
2501 			xstats[count].id = count;
2502 			xstats[count].value = *((uint64_t *)
2503 				((char *)stats_begin + stat_offset));
2504 		}
2505 	}
2506 
2507 	return count;
2508 }
2509 
2510 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
2511 				const uint64_t *ids,
2512 				uint64_t *values,
2513 				unsigned int n)
2514 {
2515 	struct ena_adapter *adapter = dev->data->dev_private;
2516 	uint64_t id;
2517 	uint64_t rx_entries, tx_entries;
2518 	unsigned int i;
2519 	int qid;
2520 	int valid = 0;
2521 	for (i = 0; i < n; ++i) {
2522 		id = ids[i];
2523 		/* Check if id belongs to global statistics */
2524 		if (id < ENA_STATS_ARRAY_GLOBAL) {
2525 			values[i] = *((uint64_t *)&adapter->dev_stats + id);
2526 			++valid;
2527 			continue;
2528 		}
2529 
2530 		/* Check if id belongs to rx queue statistics */
2531 		id -= ENA_STATS_ARRAY_GLOBAL;
2532 		rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
2533 		if (id < rx_entries) {
2534 			qid = id % dev->data->nb_rx_queues;
2535 			id /= dev->data->nb_rx_queues;
2536 			values[i] = *((uint64_t *)
2537 				&adapter->rx_ring[qid].rx_stats + id);
2538 			++valid;
2539 			continue;
2540 		}
2541 				/* Check if id belongs to rx queue statistics */
2542 		id -= rx_entries;
2543 		tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
2544 		if (id < tx_entries) {
2545 			qid = id % dev->data->nb_tx_queues;
2546 			id /= dev->data->nb_tx_queues;
2547 			values[i] = *((uint64_t *)
2548 				&adapter->tx_ring[qid].tx_stats + id);
2549 			++valid;
2550 			continue;
2551 		}
2552 	}
2553 
2554 	return valid;
2555 }
2556 
2557 /*********************************************************************
2558  *  PMD configuration
2559  *********************************************************************/
2560 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2561 	struct rte_pci_device *pci_dev)
2562 {
2563 	return rte_eth_dev_pci_generic_probe(pci_dev,
2564 		sizeof(struct ena_adapter), eth_ena_dev_init);
2565 }
2566 
2567 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
2568 {
2569 	return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
2570 }
2571 
2572 static struct rte_pci_driver rte_ena_pmd = {
2573 	.id_table = pci_id_ena_map,
2574 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
2575 		     RTE_PCI_DRV_WC_ACTIVATE,
2576 	.probe = eth_ena_pci_probe,
2577 	.remove = eth_ena_pci_remove,
2578 };
2579 
2580 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
2581 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
2582 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
2583 
2584 RTE_INIT(ena_init_log)
2585 {
2586 	ena_logtype_init = rte_log_register("pmd.net.ena.init");
2587 	if (ena_logtype_init >= 0)
2588 		rte_log_set_level(ena_logtype_init, RTE_LOG_NOTICE);
2589 	ena_logtype_driver = rte_log_register("pmd.net.ena.driver");
2590 	if (ena_logtype_driver >= 0)
2591 		rte_log_set_level(ena_logtype_driver, RTE_LOG_NOTICE);
2592 
2593 #ifdef RTE_LIBRTE_ENA_DEBUG_RX
2594 	ena_logtype_rx = rte_log_register("pmd.net.ena.rx");
2595 	if (ena_logtype_rx >= 0)
2596 		rte_log_set_level(ena_logtype_rx, RTE_LOG_NOTICE);
2597 #endif
2598 
2599 #ifdef RTE_LIBRTE_ENA_DEBUG_TX
2600 	ena_logtype_tx = rte_log_register("pmd.net.ena.tx");
2601 	if (ena_logtype_tx >= 0)
2602 		rte_log_set_level(ena_logtype_tx, RTE_LOG_NOTICE);
2603 #endif
2604 
2605 #ifdef RTE_LIBRTE_ENA_DEBUG_TX_FREE
2606 	ena_logtype_tx_free = rte_log_register("pmd.net.ena.tx_free");
2607 	if (ena_logtype_tx_free >= 0)
2608 		rte_log_set_level(ena_logtype_tx_free, RTE_LOG_NOTICE);
2609 #endif
2610 
2611 #ifdef RTE_LIBRTE_ENA_COM_DEBUG
2612 	ena_logtype_com = rte_log_register("pmd.net.ena.com");
2613 	if (ena_logtype_com >= 0)
2614 		rte_log_set_level(ena_logtype_com, RTE_LOG_NOTICE);
2615 #endif
2616 }
2617 
2618 /******************************************************************************
2619  ******************************** AENQ Handlers *******************************
2620  *****************************************************************************/
2621 static void ena_update_on_link_change(void *adapter_data,
2622 				      struct ena_admin_aenq_entry *aenq_e)
2623 {
2624 	struct rte_eth_dev *eth_dev;
2625 	struct ena_adapter *adapter;
2626 	struct ena_admin_aenq_link_change_desc *aenq_link_desc;
2627 	uint32_t status;
2628 
2629 	adapter = adapter_data;
2630 	aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
2631 	eth_dev = adapter->rte_dev;
2632 
2633 	status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
2634 	adapter->link_status = status;
2635 
2636 	ena_link_update(eth_dev, 0);
2637 	_rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
2638 }
2639 
2640 static void ena_notification(void *data,
2641 			     struct ena_admin_aenq_entry *aenq_e)
2642 {
2643 	struct ena_adapter *adapter = data;
2644 	struct ena_admin_ena_hw_hints *hints;
2645 
2646 	if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
2647 		PMD_DRV_LOG(WARNING, "Invalid group(%x) expected %x\n",
2648 			aenq_e->aenq_common_desc.group,
2649 			ENA_ADMIN_NOTIFICATION);
2650 
2651 	switch (aenq_e->aenq_common_desc.syndrom) {
2652 	case ENA_ADMIN_UPDATE_HINTS:
2653 		hints = (struct ena_admin_ena_hw_hints *)
2654 			(&aenq_e->inline_data_w4);
2655 		ena_update_hints(adapter, hints);
2656 		break;
2657 	default:
2658 		PMD_DRV_LOG(ERR, "Invalid aenq notification link state %d\n",
2659 			aenq_e->aenq_common_desc.syndrom);
2660 	}
2661 }
2662 
2663 static void ena_keep_alive(void *adapter_data,
2664 			   __rte_unused struct ena_admin_aenq_entry *aenq_e)
2665 {
2666 	struct ena_adapter *adapter = adapter_data;
2667 	struct ena_admin_aenq_keep_alive_desc *desc;
2668 	uint64_t rx_drops;
2669 
2670 	adapter->timestamp_wd = rte_get_timer_cycles();
2671 
2672 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
2673 	rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
2674 	rte_atomic64_set(&adapter->drv_stats->rx_drops, rx_drops);
2675 }
2676 
2677 /**
2678  * This handler will called for unknown event group or unimplemented handlers
2679  **/
2680 static void unimplemented_aenq_handler(__rte_unused void *data,
2681 				       __rte_unused struct ena_admin_aenq_entry *aenq_e)
2682 {
2683 	PMD_DRV_LOG(ERR, "Unknown event was received or event with "
2684 			  "unimplemented handler\n");
2685 }
2686 
2687 static struct ena_aenq_handlers aenq_handlers = {
2688 	.handlers = {
2689 		[ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
2690 		[ENA_ADMIN_NOTIFICATION] = ena_notification,
2691 		[ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive
2692 	},
2693 	.unimplemented_handler = unimplemented_aenq_handler
2694 };
2695