xref: /dpdk/drivers/net/ena/ena_ethdev.c (revision 59f3a8acbcdbafeebe816a26d76dfb06e6450f31)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
3  * All rights reserved.
4  */
5 
6 #include <rte_string_fns.h>
7 #include <rte_errno.h>
8 #include <rte_version.h>
9 #include <rte_net.h>
10 #include <rte_kvargs.h>
11 
12 #include "ena_ethdev.h"
13 #include "ena_logs.h"
14 #include "ena_platform.h"
15 #include "ena_com.h"
16 #include "ena_eth_com.h"
17 
18 #include <ena_common_defs.h>
19 #include <ena_regs_defs.h>
20 #include <ena_admin_defs.h>
21 #include <ena_eth_io_defs.h>
22 
23 #define DRV_MODULE_VER_MAJOR	2
24 #define DRV_MODULE_VER_MINOR	5
25 #define DRV_MODULE_VER_SUBMINOR	0
26 
27 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
28 
29 #define GET_L4_HDR_LEN(mbuf)					\
30 	((rte_pktmbuf_mtod_offset(mbuf,	struct rte_tcp_hdr *,	\
31 		mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
32 
33 #define ETH_GSTRING_LEN	32
34 
35 #define ARRAY_SIZE(x) RTE_DIM(x)
36 
37 #define ENA_MIN_RING_DESC	128
38 
39 #define ENA_PTYPE_HAS_HASH	(RTE_PTYPE_L4_TCP | RTE_PTYPE_L4_UDP)
40 
41 enum ethtool_stringset {
42 	ETH_SS_TEST             = 0,
43 	ETH_SS_STATS,
44 };
45 
46 struct ena_stats {
47 	char name[ETH_GSTRING_LEN];
48 	int stat_offset;
49 };
50 
51 #define ENA_STAT_ENTRY(stat, stat_type) { \
52 	.name = #stat, \
53 	.stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
54 }
55 
56 #define ENA_STAT_RX_ENTRY(stat) \
57 	ENA_STAT_ENTRY(stat, rx)
58 
59 #define ENA_STAT_TX_ENTRY(stat) \
60 	ENA_STAT_ENTRY(stat, tx)
61 
62 #define ENA_STAT_ENI_ENTRY(stat) \
63 	ENA_STAT_ENTRY(stat, eni)
64 
65 #define ENA_STAT_GLOBAL_ENTRY(stat) \
66 	ENA_STAT_ENTRY(stat, dev)
67 
68 /* Device arguments */
69 #define ENA_DEVARG_LARGE_LLQ_HDR "large_llq_hdr"
70 
71 /*
72  * Each rte_memzone should have unique name.
73  * To satisfy it, count number of allocation and add it to name.
74  */
75 rte_atomic64_t ena_alloc_cnt;
76 
77 static const struct ena_stats ena_stats_global_strings[] = {
78 	ENA_STAT_GLOBAL_ENTRY(wd_expired),
79 	ENA_STAT_GLOBAL_ENTRY(dev_start),
80 	ENA_STAT_GLOBAL_ENTRY(dev_stop),
81 	ENA_STAT_GLOBAL_ENTRY(tx_drops),
82 };
83 
84 static const struct ena_stats ena_stats_eni_strings[] = {
85 	ENA_STAT_ENI_ENTRY(bw_in_allowance_exceeded),
86 	ENA_STAT_ENI_ENTRY(bw_out_allowance_exceeded),
87 	ENA_STAT_ENI_ENTRY(pps_allowance_exceeded),
88 	ENA_STAT_ENI_ENTRY(conntrack_allowance_exceeded),
89 	ENA_STAT_ENI_ENTRY(linklocal_allowance_exceeded),
90 };
91 
92 static const struct ena_stats ena_stats_tx_strings[] = {
93 	ENA_STAT_TX_ENTRY(cnt),
94 	ENA_STAT_TX_ENTRY(bytes),
95 	ENA_STAT_TX_ENTRY(prepare_ctx_err),
96 	ENA_STAT_TX_ENTRY(linearize),
97 	ENA_STAT_TX_ENTRY(linearize_failed),
98 	ENA_STAT_TX_ENTRY(tx_poll),
99 	ENA_STAT_TX_ENTRY(doorbells),
100 	ENA_STAT_TX_ENTRY(bad_req_id),
101 	ENA_STAT_TX_ENTRY(available_desc),
102 	ENA_STAT_TX_ENTRY(missed_tx),
103 };
104 
105 static const struct ena_stats ena_stats_rx_strings[] = {
106 	ENA_STAT_RX_ENTRY(cnt),
107 	ENA_STAT_RX_ENTRY(bytes),
108 	ENA_STAT_RX_ENTRY(refill_partial),
109 	ENA_STAT_RX_ENTRY(bad_csum),
110 	ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
111 	ENA_STAT_RX_ENTRY(bad_desc_num),
112 	ENA_STAT_RX_ENTRY(bad_req_id),
113 };
114 
115 #define ENA_STATS_ARRAY_GLOBAL	ARRAY_SIZE(ena_stats_global_strings)
116 #define ENA_STATS_ARRAY_ENI	ARRAY_SIZE(ena_stats_eni_strings)
117 #define ENA_STATS_ARRAY_TX	ARRAY_SIZE(ena_stats_tx_strings)
118 #define ENA_STATS_ARRAY_RX	ARRAY_SIZE(ena_stats_rx_strings)
119 
120 #define QUEUE_OFFLOADS (DEV_TX_OFFLOAD_TCP_CKSUM |\
121 			DEV_TX_OFFLOAD_UDP_CKSUM |\
122 			DEV_TX_OFFLOAD_IPV4_CKSUM |\
123 			DEV_TX_OFFLOAD_TCP_TSO)
124 #define MBUF_OFFLOADS (PKT_TX_L4_MASK |\
125 		       PKT_TX_IP_CKSUM |\
126 		       PKT_TX_TCP_SEG)
127 
128 /** Vendor ID used by Amazon devices */
129 #define PCI_VENDOR_ID_AMAZON 0x1D0F
130 /** Amazon devices */
131 #define PCI_DEVICE_ID_ENA_VF		0xEC20
132 #define PCI_DEVICE_ID_ENA_VF_RSERV0	0xEC21
133 
134 #define	ENA_TX_OFFLOAD_MASK	(\
135 	PKT_TX_L4_MASK |         \
136 	PKT_TX_IPV6 |            \
137 	PKT_TX_IPV4 |            \
138 	PKT_TX_IP_CKSUM |        \
139 	PKT_TX_TCP_SEG)
140 
141 #define	ENA_TX_OFFLOAD_NOTSUP_MASK	\
142 	(PKT_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
143 
144 /** HW specific offloads capabilities. */
145 /* IPv4 checksum offload. */
146 #define ENA_L3_IPV4_CSUM		0x0001
147 /* TCP/UDP checksum offload for IPv4 packets. */
148 #define ENA_L4_IPV4_CSUM		0x0002
149 /* TCP/UDP checksum offload for IPv4 packets with pseudo header checksum. */
150 #define ENA_L4_IPV4_CSUM_PARTIAL	0x0004
151 /* TCP/UDP checksum offload for IPv6 packets. */
152 #define ENA_L4_IPV6_CSUM		0x0008
153 /* TCP/UDP checksum offload for IPv6 packets with pseudo header checksum. */
154 #define ENA_L4_IPV6_CSUM_PARTIAL	0x0010
155 /* TSO support for IPv4 packets. */
156 #define ENA_IPV4_TSO			0x0020
157 
158 /* Device supports setting RSS hash. */
159 #define ENA_RX_RSS_HASH			0x0040
160 
161 static const struct rte_pci_id pci_id_ena_map[] = {
162 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
163 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF_RSERV0) },
164 	{ .device_id = 0 },
165 };
166 
167 static struct ena_aenq_handlers aenq_handlers;
168 
169 static int ena_device_init(struct ena_com_dev *ena_dev,
170 			   struct rte_pci_device *pdev,
171 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
172 			   bool *wd_state);
173 static int ena_dev_configure(struct rte_eth_dev *dev);
174 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
175 	struct ena_tx_buffer *tx_info,
176 	struct rte_mbuf *mbuf,
177 	void **push_header,
178 	uint16_t *header_len);
179 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf);
180 static void ena_tx_cleanup(struct ena_ring *tx_ring);
181 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
182 				  uint16_t nb_pkts);
183 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
184 		uint16_t nb_pkts);
185 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
186 			      uint16_t nb_desc, unsigned int socket_id,
187 			      const struct rte_eth_txconf *tx_conf);
188 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
189 			      uint16_t nb_desc, unsigned int socket_id,
190 			      const struct rte_eth_rxconf *rx_conf,
191 			      struct rte_mempool *mp);
192 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len);
193 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
194 				    struct ena_com_rx_buf_info *ena_bufs,
195 				    uint32_t descs,
196 				    uint16_t *next_to_clean,
197 				    uint8_t offset);
198 static uint16_t eth_ena_recv_pkts(void *rx_queue,
199 				  struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
200 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
201 				  struct rte_mbuf *mbuf, uint16_t id);
202 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
203 static void ena_init_rings(struct ena_adapter *adapter,
204 			   bool disable_meta_caching);
205 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
206 static int ena_start(struct rte_eth_dev *dev);
207 static int ena_stop(struct rte_eth_dev *dev);
208 static int ena_close(struct rte_eth_dev *dev);
209 static int ena_dev_reset(struct rte_eth_dev *dev);
210 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
211 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
212 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
213 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
214 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
215 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
216 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
217 static int ena_link_update(struct rte_eth_dev *dev,
218 			   int wait_to_complete);
219 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring);
220 static void ena_queue_stop(struct ena_ring *ring);
221 static void ena_queue_stop_all(struct rte_eth_dev *dev,
222 			      enum ena_ring_type ring_type);
223 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring);
224 static int ena_queue_start_all(struct rte_eth_dev *dev,
225 			       enum ena_ring_type ring_type);
226 static void ena_stats_restart(struct rte_eth_dev *dev);
227 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter);
228 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter);
229 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter);
230 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter);
231 static int ena_infos_get(struct rte_eth_dev *dev,
232 			 struct rte_eth_dev_info *dev_info);
233 static void ena_interrupt_handler_rte(void *cb_arg);
234 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
235 static void ena_destroy_device(struct rte_eth_dev *eth_dev);
236 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
237 static int ena_xstats_get_names(struct rte_eth_dev *dev,
238 				struct rte_eth_xstat_name *xstats_names,
239 				unsigned int n);
240 static int ena_xstats_get(struct rte_eth_dev *dev,
241 			  struct rte_eth_xstat *stats,
242 			  unsigned int n);
243 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
244 				const uint64_t *ids,
245 				uint64_t *values,
246 				unsigned int n);
247 static int ena_process_bool_devarg(const char *key,
248 				   const char *value,
249 				   void *opaque);
250 static int ena_parse_devargs(struct ena_adapter *adapter,
251 			     struct rte_devargs *devargs);
252 static int ena_copy_eni_stats(struct ena_adapter *adapter);
253 static int ena_setup_rx_intr(struct rte_eth_dev *dev);
254 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
255 				    uint16_t queue_id);
256 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
257 				     uint16_t queue_id);
258 
259 static const struct eth_dev_ops ena_dev_ops = {
260 	.dev_configure        = ena_dev_configure,
261 	.dev_infos_get        = ena_infos_get,
262 	.rx_queue_setup       = ena_rx_queue_setup,
263 	.tx_queue_setup       = ena_tx_queue_setup,
264 	.dev_start            = ena_start,
265 	.dev_stop             = ena_stop,
266 	.link_update          = ena_link_update,
267 	.stats_get            = ena_stats_get,
268 	.xstats_get_names     = ena_xstats_get_names,
269 	.xstats_get	      = ena_xstats_get,
270 	.xstats_get_by_id     = ena_xstats_get_by_id,
271 	.mtu_set              = ena_mtu_set,
272 	.rx_queue_release     = ena_rx_queue_release,
273 	.tx_queue_release     = ena_tx_queue_release,
274 	.dev_close            = ena_close,
275 	.dev_reset            = ena_dev_reset,
276 	.reta_update          = ena_rss_reta_update,
277 	.reta_query           = ena_rss_reta_query,
278 	.rx_queue_intr_enable = ena_rx_queue_intr_enable,
279 	.rx_queue_intr_disable = ena_rx_queue_intr_disable,
280 	.rss_hash_update      = ena_rss_hash_update,
281 	.rss_hash_conf_get    = ena_rss_hash_conf_get,
282 };
283 
284 static inline void ena_rx_mbuf_prepare(struct rte_mbuf *mbuf,
285 				       struct ena_com_rx_ctx *ena_rx_ctx,
286 				       bool fill_hash)
287 {
288 	uint64_t ol_flags = 0;
289 	uint32_t packet_type = 0;
290 
291 	if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
292 		packet_type |= RTE_PTYPE_L4_TCP;
293 	else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
294 		packet_type |= RTE_PTYPE_L4_UDP;
295 
296 	if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
297 		packet_type |= RTE_PTYPE_L3_IPV4;
298 		if (unlikely(ena_rx_ctx->l3_csum_err))
299 			ol_flags |= PKT_RX_IP_CKSUM_BAD;
300 		else
301 			ol_flags |= PKT_RX_IP_CKSUM_GOOD;
302 	} else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
303 		packet_type |= RTE_PTYPE_L3_IPV6;
304 	}
305 
306 	if (!ena_rx_ctx->l4_csum_checked || ena_rx_ctx->frag)
307 		ol_flags |= PKT_RX_L4_CKSUM_UNKNOWN;
308 	else
309 		if (unlikely(ena_rx_ctx->l4_csum_err))
310 			ol_flags |= PKT_RX_L4_CKSUM_BAD;
311 		else
312 			ol_flags |= PKT_RX_L4_CKSUM_GOOD;
313 
314 	if (fill_hash &&
315 	    likely((packet_type & ENA_PTYPE_HAS_HASH) && !ena_rx_ctx->frag)) {
316 		ol_flags |= PKT_RX_RSS_HASH;
317 		mbuf->hash.rss = ena_rx_ctx->hash;
318 	}
319 
320 	mbuf->ol_flags = ol_flags;
321 	mbuf->packet_type = packet_type;
322 }
323 
324 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
325 				       struct ena_com_tx_ctx *ena_tx_ctx,
326 				       uint64_t queue_offloads,
327 				       bool disable_meta_caching)
328 {
329 	struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
330 
331 	if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
332 	    (queue_offloads & QUEUE_OFFLOADS)) {
333 		/* check if TSO is required */
334 		if ((mbuf->ol_flags & PKT_TX_TCP_SEG) &&
335 		    (queue_offloads & DEV_TX_OFFLOAD_TCP_TSO)) {
336 			ena_tx_ctx->tso_enable = true;
337 
338 			ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
339 		}
340 
341 		/* check if L3 checksum is needed */
342 		if ((mbuf->ol_flags & PKT_TX_IP_CKSUM) &&
343 		    (queue_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM))
344 			ena_tx_ctx->l3_csum_enable = true;
345 
346 		if (mbuf->ol_flags & PKT_TX_IPV6) {
347 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
348 		} else {
349 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
350 
351 			/* set don't fragment (DF) flag */
352 			if (mbuf->packet_type &
353 				(RTE_PTYPE_L4_NONFRAG
354 				 | RTE_PTYPE_INNER_L4_NONFRAG))
355 				ena_tx_ctx->df = true;
356 		}
357 
358 		/* check if L4 checksum is needed */
359 		if (((mbuf->ol_flags & PKT_TX_L4_MASK) == PKT_TX_TCP_CKSUM) &&
360 		    (queue_offloads & DEV_TX_OFFLOAD_TCP_CKSUM)) {
361 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
362 			ena_tx_ctx->l4_csum_enable = true;
363 		} else if (((mbuf->ol_flags & PKT_TX_L4_MASK) ==
364 				PKT_TX_UDP_CKSUM) &&
365 				(queue_offloads & DEV_TX_OFFLOAD_UDP_CKSUM)) {
366 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
367 			ena_tx_ctx->l4_csum_enable = true;
368 		} else {
369 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
370 			ena_tx_ctx->l4_csum_enable = false;
371 		}
372 
373 		ena_meta->mss = mbuf->tso_segsz;
374 		ena_meta->l3_hdr_len = mbuf->l3_len;
375 		ena_meta->l3_hdr_offset = mbuf->l2_len;
376 
377 		ena_tx_ctx->meta_valid = true;
378 	} else if (disable_meta_caching) {
379 		memset(ena_meta, 0, sizeof(*ena_meta));
380 		ena_tx_ctx->meta_valid = true;
381 	} else {
382 		ena_tx_ctx->meta_valid = false;
383 	}
384 }
385 
386 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
387 {
388 	struct ena_tx_buffer *tx_info = NULL;
389 
390 	if (likely(req_id < tx_ring->ring_size)) {
391 		tx_info = &tx_ring->tx_buffer_info[req_id];
392 		if (likely(tx_info->mbuf))
393 			return 0;
394 	}
395 
396 	if (tx_info)
397 		PMD_TX_LOG(ERR, "tx_info doesn't have valid mbuf\n");
398 	else
399 		PMD_TX_LOG(ERR, "Invalid req_id: %hu\n", req_id);
400 
401 	/* Trigger device reset */
402 	++tx_ring->tx_stats.bad_req_id;
403 	tx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID;
404 	tx_ring->adapter->trigger_reset	= true;
405 	return -EFAULT;
406 }
407 
408 static void ena_config_host_info(struct ena_com_dev *ena_dev)
409 {
410 	struct ena_admin_host_info *host_info;
411 	int rc;
412 
413 	/* Allocate only the host info */
414 	rc = ena_com_allocate_host_info(ena_dev);
415 	if (rc) {
416 		PMD_DRV_LOG(ERR, "Cannot allocate host info\n");
417 		return;
418 	}
419 
420 	host_info = ena_dev->host_attr.host_info;
421 
422 	host_info->os_type = ENA_ADMIN_OS_DPDK;
423 	host_info->kernel_ver = RTE_VERSION;
424 	strlcpy((char *)host_info->kernel_ver_str, rte_version(),
425 		sizeof(host_info->kernel_ver_str));
426 	host_info->os_dist = RTE_VERSION;
427 	strlcpy((char *)host_info->os_dist_str, rte_version(),
428 		sizeof(host_info->os_dist_str));
429 	host_info->driver_version =
430 		(DRV_MODULE_VER_MAJOR) |
431 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
432 		(DRV_MODULE_VER_SUBMINOR <<
433 			ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
434 	host_info->num_cpus = rte_lcore_count();
435 
436 	host_info->driver_supported_features =
437 		ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK |
438 		ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK;
439 
440 	rc = ena_com_set_host_attributes(ena_dev);
441 	if (rc) {
442 		if (rc == -ENA_COM_UNSUPPORTED)
443 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
444 		else
445 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
446 
447 		goto err;
448 	}
449 
450 	return;
451 
452 err:
453 	ena_com_delete_host_info(ena_dev);
454 }
455 
456 /* This function calculates the number of xstats based on the current config */
457 static unsigned int ena_xstats_calc_num(struct rte_eth_dev_data *data)
458 {
459 	return ENA_STATS_ARRAY_GLOBAL + ENA_STATS_ARRAY_ENI +
460 		(data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
461 		(data->nb_rx_queues * ENA_STATS_ARRAY_RX);
462 }
463 
464 static void ena_config_debug_area(struct ena_adapter *adapter)
465 {
466 	u32 debug_area_size;
467 	int rc, ss_count;
468 
469 	ss_count = ena_xstats_calc_num(adapter->edev_data);
470 
471 	/* allocate 32 bytes for each string and 64bit for the value */
472 	debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
473 
474 	rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
475 	if (rc) {
476 		PMD_DRV_LOG(ERR, "Cannot allocate debug area\n");
477 		return;
478 	}
479 
480 	rc = ena_com_set_host_attributes(&adapter->ena_dev);
481 	if (rc) {
482 		if (rc == -ENA_COM_UNSUPPORTED)
483 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
484 		else
485 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
486 
487 		goto err;
488 	}
489 
490 	return;
491 err:
492 	ena_com_delete_debug_area(&adapter->ena_dev);
493 }
494 
495 static int ena_close(struct rte_eth_dev *dev)
496 {
497 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
498 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
499 	struct ena_adapter *adapter = dev->data->dev_private;
500 	int ret = 0;
501 
502 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
503 		return 0;
504 
505 	if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
506 		ret = ena_stop(dev);
507 	adapter->state = ENA_ADAPTER_STATE_CLOSED;
508 
509 	ena_rx_queue_release_all(dev);
510 	ena_tx_queue_release_all(dev);
511 
512 	rte_free(adapter->drv_stats);
513 	adapter->drv_stats = NULL;
514 
515 	rte_intr_disable(intr_handle);
516 	rte_intr_callback_unregister(intr_handle,
517 				     ena_interrupt_handler_rte,
518 				     dev);
519 
520 	/*
521 	 * MAC is not allocated dynamically. Setting NULL should prevent from
522 	 * release of the resource in the rte_eth_dev_release_port().
523 	 */
524 	dev->data->mac_addrs = NULL;
525 
526 	return ret;
527 }
528 
529 static int
530 ena_dev_reset(struct rte_eth_dev *dev)
531 {
532 	int rc = 0;
533 
534 	/* Cannot release memory in secondary process */
535 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
536 		PMD_DRV_LOG(WARNING, "dev_reset not supported in secondary.\n");
537 		return -EPERM;
538 	}
539 
540 	ena_destroy_device(dev);
541 	rc = eth_ena_dev_init(dev);
542 	if (rc)
543 		PMD_INIT_LOG(CRIT, "Cannot initialize device\n");
544 
545 	return rc;
546 }
547 
548 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
549 {
550 	int nb_queues = dev->data->nb_rx_queues;
551 	int i;
552 
553 	for (i = 0; i < nb_queues; i++)
554 		ena_rx_queue_release(dev, i);
555 }
556 
557 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
558 {
559 	int nb_queues = dev->data->nb_tx_queues;
560 	int i;
561 
562 	for (i = 0; i < nb_queues; i++)
563 		ena_tx_queue_release(dev, i);
564 }
565 
566 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
567 {
568 	struct ena_ring *ring = dev->data->rx_queues[qid];
569 
570 	/* Free ring resources */
571 	if (ring->rx_buffer_info)
572 		rte_free(ring->rx_buffer_info);
573 	ring->rx_buffer_info = NULL;
574 
575 	if (ring->rx_refill_buffer)
576 		rte_free(ring->rx_refill_buffer);
577 	ring->rx_refill_buffer = NULL;
578 
579 	if (ring->empty_rx_reqs)
580 		rte_free(ring->empty_rx_reqs);
581 	ring->empty_rx_reqs = NULL;
582 
583 	ring->configured = 0;
584 
585 	PMD_DRV_LOG(NOTICE, "Rx queue %d:%d released\n",
586 		ring->port_id, ring->id);
587 }
588 
589 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
590 {
591 	struct ena_ring *ring = dev->data->tx_queues[qid];
592 
593 	/* Free ring resources */
594 	if (ring->push_buf_intermediate_buf)
595 		rte_free(ring->push_buf_intermediate_buf);
596 
597 	if (ring->tx_buffer_info)
598 		rte_free(ring->tx_buffer_info);
599 
600 	if (ring->empty_tx_reqs)
601 		rte_free(ring->empty_tx_reqs);
602 
603 	ring->empty_tx_reqs = NULL;
604 	ring->tx_buffer_info = NULL;
605 	ring->push_buf_intermediate_buf = NULL;
606 
607 	ring->configured = 0;
608 
609 	PMD_DRV_LOG(NOTICE, "Tx queue %d:%d released\n",
610 		ring->port_id, ring->id);
611 }
612 
613 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
614 {
615 	unsigned int i;
616 
617 	for (i = 0; i < ring->ring_size; ++i) {
618 		struct ena_rx_buffer *rx_info = &ring->rx_buffer_info[i];
619 		if (rx_info->mbuf) {
620 			rte_mbuf_raw_free(rx_info->mbuf);
621 			rx_info->mbuf = NULL;
622 		}
623 	}
624 }
625 
626 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
627 {
628 	unsigned int i;
629 
630 	for (i = 0; i < ring->ring_size; ++i) {
631 		struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
632 
633 		if (tx_buf->mbuf) {
634 			rte_pktmbuf_free(tx_buf->mbuf);
635 			tx_buf->mbuf = NULL;
636 		}
637 	}
638 }
639 
640 static int ena_link_update(struct rte_eth_dev *dev,
641 			   __rte_unused int wait_to_complete)
642 {
643 	struct rte_eth_link *link = &dev->data->dev_link;
644 	struct ena_adapter *adapter = dev->data->dev_private;
645 
646 	link->link_status = adapter->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
647 	link->link_speed = ETH_SPEED_NUM_NONE;
648 	link->link_duplex = ETH_LINK_FULL_DUPLEX;
649 
650 	return 0;
651 }
652 
653 static int ena_queue_start_all(struct rte_eth_dev *dev,
654 			       enum ena_ring_type ring_type)
655 {
656 	struct ena_adapter *adapter = dev->data->dev_private;
657 	struct ena_ring *queues = NULL;
658 	int nb_queues;
659 	int i = 0;
660 	int rc = 0;
661 
662 	if (ring_type == ENA_RING_TYPE_RX) {
663 		queues = adapter->rx_ring;
664 		nb_queues = dev->data->nb_rx_queues;
665 	} else {
666 		queues = adapter->tx_ring;
667 		nb_queues = dev->data->nb_tx_queues;
668 	}
669 	for (i = 0; i < nb_queues; i++) {
670 		if (queues[i].configured) {
671 			if (ring_type == ENA_RING_TYPE_RX) {
672 				ena_assert_msg(
673 					dev->data->rx_queues[i] == &queues[i],
674 					"Inconsistent state of Rx queues\n");
675 			} else {
676 				ena_assert_msg(
677 					dev->data->tx_queues[i] == &queues[i],
678 					"Inconsistent state of Tx queues\n");
679 			}
680 
681 			rc = ena_queue_start(dev, &queues[i]);
682 
683 			if (rc) {
684 				PMD_INIT_LOG(ERR,
685 					"Failed to start queue[%d] of type(%d)\n",
686 					i, ring_type);
687 				goto err;
688 			}
689 		}
690 	}
691 
692 	return 0;
693 
694 err:
695 	while (i--)
696 		if (queues[i].configured)
697 			ena_queue_stop(&queues[i]);
698 
699 	return rc;
700 }
701 
702 static int ena_check_valid_conf(struct ena_adapter *adapter)
703 {
704 	uint32_t mtu = adapter->edev_data->mtu;
705 
706 	if (mtu > adapter->max_mtu || mtu < ENA_MIN_MTU) {
707 		PMD_INIT_LOG(ERR,
708 			"Unsupported MTU of %d. Max MTU: %d, min MTU: %d\n",
709 			mtu, adapter->max_mtu, ENA_MIN_MTU);
710 		return ENA_COM_UNSUPPORTED;
711 	}
712 
713 	return 0;
714 }
715 
716 static int
717 ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx,
718 		       bool use_large_llq_hdr)
719 {
720 	struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
721 	struct ena_com_dev *ena_dev = ctx->ena_dev;
722 	uint32_t max_tx_queue_size;
723 	uint32_t max_rx_queue_size;
724 
725 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
726 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
727 			&ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
728 		max_rx_queue_size = RTE_MIN(max_queue_ext->max_rx_cq_depth,
729 			max_queue_ext->max_rx_sq_depth);
730 		max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
731 
732 		if (ena_dev->tx_mem_queue_type ==
733 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
734 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
735 				llq->max_llq_depth);
736 		} else {
737 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
738 				max_queue_ext->max_tx_sq_depth);
739 		}
740 
741 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
742 			max_queue_ext->max_per_packet_rx_descs);
743 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
744 			max_queue_ext->max_per_packet_tx_descs);
745 	} else {
746 		struct ena_admin_queue_feature_desc *max_queues =
747 			&ctx->get_feat_ctx->max_queues;
748 		max_rx_queue_size = RTE_MIN(max_queues->max_cq_depth,
749 			max_queues->max_sq_depth);
750 		max_tx_queue_size = max_queues->max_cq_depth;
751 
752 		if (ena_dev->tx_mem_queue_type ==
753 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
754 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
755 				llq->max_llq_depth);
756 		} else {
757 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
758 				max_queues->max_sq_depth);
759 		}
760 
761 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
762 			max_queues->max_packet_rx_descs);
763 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
764 			max_queues->max_packet_tx_descs);
765 	}
766 
767 	/* Round down to the nearest power of 2 */
768 	max_rx_queue_size = rte_align32prevpow2(max_rx_queue_size);
769 	max_tx_queue_size = rte_align32prevpow2(max_tx_queue_size);
770 
771 	if (use_large_llq_hdr) {
772 		if ((llq->entry_size_ctrl_supported &
773 		     ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
774 		    (ena_dev->tx_mem_queue_type ==
775 		     ENA_ADMIN_PLACEMENT_POLICY_DEV)) {
776 			max_tx_queue_size /= 2;
777 			PMD_INIT_LOG(INFO,
778 				"Forcing large headers and decreasing maximum Tx queue size to %d\n",
779 				max_tx_queue_size);
780 		} else {
781 			PMD_INIT_LOG(ERR,
782 				"Forcing large headers failed: LLQ is disabled or device does not support large headers\n");
783 		}
784 	}
785 
786 	if (unlikely(max_rx_queue_size == 0 || max_tx_queue_size == 0)) {
787 		PMD_INIT_LOG(ERR, "Invalid queue size\n");
788 		return -EFAULT;
789 	}
790 
791 	ctx->max_tx_queue_size = max_tx_queue_size;
792 	ctx->max_rx_queue_size = max_rx_queue_size;
793 
794 	return 0;
795 }
796 
797 static void ena_stats_restart(struct rte_eth_dev *dev)
798 {
799 	struct ena_adapter *adapter = dev->data->dev_private;
800 
801 	rte_atomic64_init(&adapter->drv_stats->ierrors);
802 	rte_atomic64_init(&adapter->drv_stats->oerrors);
803 	rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
804 	adapter->drv_stats->rx_drops = 0;
805 }
806 
807 static int ena_stats_get(struct rte_eth_dev *dev,
808 			  struct rte_eth_stats *stats)
809 {
810 	struct ena_admin_basic_stats ena_stats;
811 	struct ena_adapter *adapter = dev->data->dev_private;
812 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
813 	int rc;
814 	int i;
815 	int max_rings_stats;
816 
817 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
818 		return -ENOTSUP;
819 
820 	memset(&ena_stats, 0, sizeof(ena_stats));
821 
822 	rte_spinlock_lock(&adapter->admin_lock);
823 	rc = ena_com_get_dev_basic_stats(ena_dev, &ena_stats);
824 	rte_spinlock_unlock(&adapter->admin_lock);
825 	if (unlikely(rc)) {
826 		PMD_DRV_LOG(ERR, "Could not retrieve statistics from ENA\n");
827 		return rc;
828 	}
829 
830 	/* Set of basic statistics from ENA */
831 	stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
832 					  ena_stats.rx_pkts_low);
833 	stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
834 					  ena_stats.tx_pkts_low);
835 	stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
836 					ena_stats.rx_bytes_low);
837 	stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
838 					ena_stats.tx_bytes_low);
839 
840 	/* Driver related stats */
841 	stats->imissed = adapter->drv_stats->rx_drops;
842 	stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
843 	stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
844 	stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
845 
846 	max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
847 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
848 	for (i = 0; i < max_rings_stats; ++i) {
849 		struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
850 
851 		stats->q_ibytes[i] = rx_stats->bytes;
852 		stats->q_ipackets[i] = rx_stats->cnt;
853 		stats->q_errors[i] = rx_stats->bad_desc_num +
854 			rx_stats->bad_req_id;
855 	}
856 
857 	max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
858 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
859 	for (i = 0; i < max_rings_stats; ++i) {
860 		struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
861 
862 		stats->q_obytes[i] = tx_stats->bytes;
863 		stats->q_opackets[i] = tx_stats->cnt;
864 	}
865 
866 	return 0;
867 }
868 
869 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
870 {
871 	struct ena_adapter *adapter;
872 	struct ena_com_dev *ena_dev;
873 	int rc = 0;
874 
875 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
876 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
877 	adapter = dev->data->dev_private;
878 
879 	ena_dev = &adapter->ena_dev;
880 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
881 
882 	if (mtu > adapter->max_mtu || mtu < ENA_MIN_MTU) {
883 		PMD_DRV_LOG(ERR,
884 			"Invalid MTU setting. New MTU: %d, max MTU: %d, min MTU: %d\n",
885 			mtu, adapter->max_mtu, ENA_MIN_MTU);
886 		return -EINVAL;
887 	}
888 
889 	rc = ena_com_set_dev_mtu(ena_dev, mtu);
890 	if (rc)
891 		PMD_DRV_LOG(ERR, "Could not set MTU: %d\n", mtu);
892 	else
893 		PMD_DRV_LOG(NOTICE, "MTU set to: %d\n", mtu);
894 
895 	return rc;
896 }
897 
898 static int ena_start(struct rte_eth_dev *dev)
899 {
900 	struct ena_adapter *adapter = dev->data->dev_private;
901 	uint64_t ticks;
902 	int rc = 0;
903 
904 	/* Cannot allocate memory in secondary process */
905 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
906 		PMD_DRV_LOG(WARNING, "dev_start not supported in secondary.\n");
907 		return -EPERM;
908 	}
909 
910 	rc = ena_check_valid_conf(adapter);
911 	if (rc)
912 		return rc;
913 
914 	rc = ena_setup_rx_intr(dev);
915 	if (rc)
916 		return rc;
917 
918 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
919 	if (rc)
920 		return rc;
921 
922 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
923 	if (rc)
924 		goto err_start_tx;
925 
926 	if (adapter->edev_data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG) {
927 		rc = ena_rss_configure(adapter);
928 		if (rc)
929 			goto err_rss_init;
930 	}
931 
932 	ena_stats_restart(dev);
933 
934 	adapter->timestamp_wd = rte_get_timer_cycles();
935 	adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
936 
937 	ticks = rte_get_timer_hz();
938 	rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
939 			ena_timer_wd_callback, dev);
940 
941 	++adapter->dev_stats.dev_start;
942 	adapter->state = ENA_ADAPTER_STATE_RUNNING;
943 
944 	return 0;
945 
946 err_rss_init:
947 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
948 err_start_tx:
949 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
950 	return rc;
951 }
952 
953 static int ena_stop(struct rte_eth_dev *dev)
954 {
955 	struct ena_adapter *adapter = dev->data->dev_private;
956 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
957 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
958 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
959 	int rc;
960 
961 	/* Cannot free memory in secondary process */
962 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
963 		PMD_DRV_LOG(WARNING, "dev_stop not supported in secondary.\n");
964 		return -EPERM;
965 	}
966 
967 	rte_timer_stop_sync(&adapter->timer_wd);
968 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
969 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
970 
971 	if (adapter->trigger_reset) {
972 		rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
973 		if (rc)
974 			PMD_DRV_LOG(ERR, "Device reset failed, rc: %d\n", rc);
975 	}
976 
977 	rte_intr_disable(intr_handle);
978 
979 	rte_intr_efd_disable(intr_handle);
980 	if (intr_handle->intr_vec != NULL) {
981 		rte_free(intr_handle->intr_vec);
982 		intr_handle->intr_vec = NULL;
983 	}
984 
985 	rte_intr_enable(intr_handle);
986 
987 	++adapter->dev_stats.dev_stop;
988 	adapter->state = ENA_ADAPTER_STATE_STOPPED;
989 	dev->data->dev_started = 0;
990 
991 	return 0;
992 }
993 
994 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring)
995 {
996 	struct ena_adapter *adapter = ring->adapter;
997 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
998 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
999 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1000 	struct ena_com_create_io_ctx ctx =
1001 		/* policy set to _HOST just to satisfy icc compiler */
1002 		{ ENA_ADMIN_PLACEMENT_POLICY_HOST,
1003 		  0, 0, 0, 0, 0 };
1004 	uint16_t ena_qid;
1005 	unsigned int i;
1006 	int rc;
1007 
1008 	ctx.msix_vector = -1;
1009 	if (ring->type == ENA_RING_TYPE_TX) {
1010 		ena_qid = ENA_IO_TXQ_IDX(ring->id);
1011 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1012 		ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1013 		for (i = 0; i < ring->ring_size; i++)
1014 			ring->empty_tx_reqs[i] = i;
1015 	} else {
1016 		ena_qid = ENA_IO_RXQ_IDX(ring->id);
1017 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1018 		if (rte_intr_dp_is_en(intr_handle))
1019 			ctx.msix_vector = intr_handle->intr_vec[ring->id];
1020 		for (i = 0; i < ring->ring_size; i++)
1021 			ring->empty_rx_reqs[i] = i;
1022 	}
1023 	ctx.queue_size = ring->ring_size;
1024 	ctx.qid = ena_qid;
1025 	ctx.numa_node = ring->numa_socket_id;
1026 
1027 	rc = ena_com_create_io_queue(ena_dev, &ctx);
1028 	if (rc) {
1029 		PMD_DRV_LOG(ERR,
1030 			"Failed to create IO queue[%d] (qid:%d), rc: %d\n",
1031 			ring->id, ena_qid, rc);
1032 		return rc;
1033 	}
1034 
1035 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1036 				     &ring->ena_com_io_sq,
1037 				     &ring->ena_com_io_cq);
1038 	if (rc) {
1039 		PMD_DRV_LOG(ERR,
1040 			"Failed to get IO queue[%d] handlers, rc: %d\n",
1041 			ring->id, rc);
1042 		ena_com_destroy_io_queue(ena_dev, ena_qid);
1043 		return rc;
1044 	}
1045 
1046 	if (ring->type == ENA_RING_TYPE_TX)
1047 		ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1048 
1049 	/* Start with Rx interrupts being masked. */
1050 	if (ring->type == ENA_RING_TYPE_RX && rte_intr_dp_is_en(intr_handle))
1051 		ena_rx_queue_intr_disable(dev, ring->id);
1052 
1053 	return 0;
1054 }
1055 
1056 static void ena_queue_stop(struct ena_ring *ring)
1057 {
1058 	struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
1059 
1060 	if (ring->type == ENA_RING_TYPE_RX) {
1061 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
1062 		ena_rx_queue_release_bufs(ring);
1063 	} else {
1064 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
1065 		ena_tx_queue_release_bufs(ring);
1066 	}
1067 }
1068 
1069 static void ena_queue_stop_all(struct rte_eth_dev *dev,
1070 			      enum ena_ring_type ring_type)
1071 {
1072 	struct ena_adapter *adapter = dev->data->dev_private;
1073 	struct ena_ring *queues = NULL;
1074 	uint16_t nb_queues, i;
1075 
1076 	if (ring_type == ENA_RING_TYPE_RX) {
1077 		queues = adapter->rx_ring;
1078 		nb_queues = dev->data->nb_rx_queues;
1079 	} else {
1080 		queues = adapter->tx_ring;
1081 		nb_queues = dev->data->nb_tx_queues;
1082 	}
1083 
1084 	for (i = 0; i < nb_queues; ++i)
1085 		if (queues[i].configured)
1086 			ena_queue_stop(&queues[i]);
1087 }
1088 
1089 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring)
1090 {
1091 	int rc, bufs_num;
1092 
1093 	ena_assert_msg(ring->configured == 1,
1094 		       "Trying to start unconfigured queue\n");
1095 
1096 	rc = ena_create_io_queue(dev, ring);
1097 	if (rc) {
1098 		PMD_INIT_LOG(ERR, "Failed to create IO queue\n");
1099 		return rc;
1100 	}
1101 
1102 	ring->next_to_clean = 0;
1103 	ring->next_to_use = 0;
1104 
1105 	if (ring->type == ENA_RING_TYPE_TX) {
1106 		ring->tx_stats.available_desc =
1107 			ena_com_free_q_entries(ring->ena_com_io_sq);
1108 		return 0;
1109 	}
1110 
1111 	bufs_num = ring->ring_size - 1;
1112 	rc = ena_populate_rx_queue(ring, bufs_num);
1113 	if (rc != bufs_num) {
1114 		ena_com_destroy_io_queue(&ring->adapter->ena_dev,
1115 					 ENA_IO_RXQ_IDX(ring->id));
1116 		PMD_INIT_LOG(ERR, "Failed to populate Rx ring\n");
1117 		return ENA_COM_FAULT;
1118 	}
1119 	/* Flush per-core RX buffers pools cache as they can be used on other
1120 	 * cores as well.
1121 	 */
1122 	rte_mempool_cache_flush(NULL, ring->mb_pool);
1123 
1124 	return 0;
1125 }
1126 
1127 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1128 			      uint16_t queue_idx,
1129 			      uint16_t nb_desc,
1130 			      unsigned int socket_id,
1131 			      const struct rte_eth_txconf *tx_conf)
1132 {
1133 	struct ena_ring *txq = NULL;
1134 	struct ena_adapter *adapter = dev->data->dev_private;
1135 	unsigned int i;
1136 	uint16_t dyn_thresh;
1137 
1138 	txq = &adapter->tx_ring[queue_idx];
1139 
1140 	if (txq->configured) {
1141 		PMD_DRV_LOG(CRIT,
1142 			"API violation. Queue[%d] is already configured\n",
1143 			queue_idx);
1144 		return ENA_COM_FAULT;
1145 	}
1146 
1147 	if (!rte_is_power_of_2(nb_desc)) {
1148 		PMD_DRV_LOG(ERR,
1149 			"Unsupported size of Tx queue: %d is not a power of 2.\n",
1150 			nb_desc);
1151 		return -EINVAL;
1152 	}
1153 
1154 	if (nb_desc > adapter->max_tx_ring_size) {
1155 		PMD_DRV_LOG(ERR,
1156 			"Unsupported size of Tx queue (max size: %d)\n",
1157 			adapter->max_tx_ring_size);
1158 		return -EINVAL;
1159 	}
1160 
1161 	txq->port_id = dev->data->port_id;
1162 	txq->next_to_clean = 0;
1163 	txq->next_to_use = 0;
1164 	txq->ring_size = nb_desc;
1165 	txq->size_mask = nb_desc - 1;
1166 	txq->numa_socket_id = socket_id;
1167 	txq->pkts_without_db = false;
1168 	txq->last_cleanup_ticks = 0;
1169 
1170 	txq->tx_buffer_info = rte_zmalloc_socket("txq->tx_buffer_info",
1171 		sizeof(struct ena_tx_buffer) * txq->ring_size,
1172 		RTE_CACHE_LINE_SIZE,
1173 		socket_id);
1174 	if (!txq->tx_buffer_info) {
1175 		PMD_DRV_LOG(ERR,
1176 			"Failed to allocate memory for Tx buffer info\n");
1177 		return -ENOMEM;
1178 	}
1179 
1180 	txq->empty_tx_reqs = rte_zmalloc_socket("txq->empty_tx_reqs",
1181 		sizeof(uint16_t) * txq->ring_size,
1182 		RTE_CACHE_LINE_SIZE,
1183 		socket_id);
1184 	if (!txq->empty_tx_reqs) {
1185 		PMD_DRV_LOG(ERR,
1186 			"Failed to allocate memory for empty Tx requests\n");
1187 		rte_free(txq->tx_buffer_info);
1188 		return -ENOMEM;
1189 	}
1190 
1191 	txq->push_buf_intermediate_buf =
1192 		rte_zmalloc_socket("txq->push_buf_intermediate_buf",
1193 			txq->tx_max_header_size,
1194 			RTE_CACHE_LINE_SIZE,
1195 			socket_id);
1196 	if (!txq->push_buf_intermediate_buf) {
1197 		PMD_DRV_LOG(ERR, "Failed to alloc push buffer for LLQ\n");
1198 		rte_free(txq->tx_buffer_info);
1199 		rte_free(txq->empty_tx_reqs);
1200 		return -ENOMEM;
1201 	}
1202 
1203 	for (i = 0; i < txq->ring_size; i++)
1204 		txq->empty_tx_reqs[i] = i;
1205 
1206 	txq->offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1207 
1208 	/* Check if caller provided the Tx cleanup threshold value. */
1209 	if (tx_conf->tx_free_thresh != 0) {
1210 		txq->tx_free_thresh = tx_conf->tx_free_thresh;
1211 	} else {
1212 		dyn_thresh = txq->ring_size -
1213 			txq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1214 		txq->tx_free_thresh = RTE_MAX(dyn_thresh,
1215 			txq->ring_size - ENA_REFILL_THRESH_PACKET);
1216 	}
1217 
1218 	txq->missing_tx_completion_threshold =
1219 		RTE_MIN(txq->ring_size / 2, ENA_DEFAULT_MISSING_COMP);
1220 
1221 	/* Store pointer to this queue in upper layer */
1222 	txq->configured = 1;
1223 	dev->data->tx_queues[queue_idx] = txq;
1224 
1225 	return 0;
1226 }
1227 
1228 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1229 			      uint16_t queue_idx,
1230 			      uint16_t nb_desc,
1231 			      unsigned int socket_id,
1232 			      const struct rte_eth_rxconf *rx_conf,
1233 			      struct rte_mempool *mp)
1234 {
1235 	struct ena_adapter *adapter = dev->data->dev_private;
1236 	struct ena_ring *rxq = NULL;
1237 	size_t buffer_size;
1238 	int i;
1239 	uint16_t dyn_thresh;
1240 
1241 	rxq = &adapter->rx_ring[queue_idx];
1242 	if (rxq->configured) {
1243 		PMD_DRV_LOG(CRIT,
1244 			"API violation. Queue[%d] is already configured\n",
1245 			queue_idx);
1246 		return ENA_COM_FAULT;
1247 	}
1248 
1249 	if (!rte_is_power_of_2(nb_desc)) {
1250 		PMD_DRV_LOG(ERR,
1251 			"Unsupported size of Rx queue: %d is not a power of 2.\n",
1252 			nb_desc);
1253 		return -EINVAL;
1254 	}
1255 
1256 	if (nb_desc > adapter->max_rx_ring_size) {
1257 		PMD_DRV_LOG(ERR,
1258 			"Unsupported size of Rx queue (max size: %d)\n",
1259 			adapter->max_rx_ring_size);
1260 		return -EINVAL;
1261 	}
1262 
1263 	/* ENA isn't supporting buffers smaller than 1400 bytes */
1264 	buffer_size = rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
1265 	if (buffer_size < ENA_RX_BUF_MIN_SIZE) {
1266 		PMD_DRV_LOG(ERR,
1267 			"Unsupported size of Rx buffer: %zu (min size: %d)\n",
1268 			buffer_size, ENA_RX_BUF_MIN_SIZE);
1269 		return -EINVAL;
1270 	}
1271 
1272 	rxq->port_id = dev->data->port_id;
1273 	rxq->next_to_clean = 0;
1274 	rxq->next_to_use = 0;
1275 	rxq->ring_size = nb_desc;
1276 	rxq->size_mask = nb_desc - 1;
1277 	rxq->numa_socket_id = socket_id;
1278 	rxq->mb_pool = mp;
1279 
1280 	rxq->rx_buffer_info = rte_zmalloc_socket("rxq->buffer_info",
1281 		sizeof(struct ena_rx_buffer) * nb_desc,
1282 		RTE_CACHE_LINE_SIZE,
1283 		socket_id);
1284 	if (!rxq->rx_buffer_info) {
1285 		PMD_DRV_LOG(ERR,
1286 			"Failed to allocate memory for Rx buffer info\n");
1287 		return -ENOMEM;
1288 	}
1289 
1290 	rxq->rx_refill_buffer = rte_zmalloc_socket("rxq->rx_refill_buffer",
1291 		sizeof(struct rte_mbuf *) * nb_desc,
1292 		RTE_CACHE_LINE_SIZE,
1293 		socket_id);
1294 	if (!rxq->rx_refill_buffer) {
1295 		PMD_DRV_LOG(ERR,
1296 			"Failed to allocate memory for Rx refill buffer\n");
1297 		rte_free(rxq->rx_buffer_info);
1298 		rxq->rx_buffer_info = NULL;
1299 		return -ENOMEM;
1300 	}
1301 
1302 	rxq->empty_rx_reqs = rte_zmalloc_socket("rxq->empty_rx_reqs",
1303 		sizeof(uint16_t) * nb_desc,
1304 		RTE_CACHE_LINE_SIZE,
1305 		socket_id);
1306 	if (!rxq->empty_rx_reqs) {
1307 		PMD_DRV_LOG(ERR,
1308 			"Failed to allocate memory for empty Rx requests\n");
1309 		rte_free(rxq->rx_buffer_info);
1310 		rxq->rx_buffer_info = NULL;
1311 		rte_free(rxq->rx_refill_buffer);
1312 		rxq->rx_refill_buffer = NULL;
1313 		return -ENOMEM;
1314 	}
1315 
1316 	for (i = 0; i < nb_desc; i++)
1317 		rxq->empty_rx_reqs[i] = i;
1318 
1319 	rxq->offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1320 
1321 	if (rx_conf->rx_free_thresh != 0) {
1322 		rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1323 	} else {
1324 		dyn_thresh = rxq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1325 		rxq->rx_free_thresh = RTE_MIN(dyn_thresh,
1326 			(uint16_t)(ENA_REFILL_THRESH_PACKET));
1327 	}
1328 
1329 	/* Store pointer to this queue in upper layer */
1330 	rxq->configured = 1;
1331 	dev->data->rx_queues[queue_idx] = rxq;
1332 
1333 	return 0;
1334 }
1335 
1336 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
1337 				  struct rte_mbuf *mbuf, uint16_t id)
1338 {
1339 	struct ena_com_buf ebuf;
1340 	int rc;
1341 
1342 	/* prepare physical address for DMA transaction */
1343 	ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1344 	ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1345 
1346 	/* pass resource to device */
1347 	rc = ena_com_add_single_rx_desc(io_sq, &ebuf, id);
1348 	if (unlikely(rc != 0))
1349 		PMD_RX_LOG(WARNING, "Failed adding Rx desc\n");
1350 
1351 	return rc;
1352 }
1353 
1354 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1355 {
1356 	unsigned int i;
1357 	int rc;
1358 	uint16_t next_to_use = rxq->next_to_use;
1359 	uint16_t req_id;
1360 #ifdef RTE_ETHDEV_DEBUG_RX
1361 	uint16_t in_use;
1362 #endif
1363 	struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1364 
1365 	if (unlikely(!count))
1366 		return 0;
1367 
1368 #ifdef RTE_ETHDEV_DEBUG_RX
1369 	in_use = rxq->ring_size - 1 -
1370 		ena_com_free_q_entries(rxq->ena_com_io_sq);
1371 	if (unlikely((in_use + count) >= rxq->ring_size))
1372 		PMD_RX_LOG(ERR, "Bad Rx ring state\n");
1373 #endif
1374 
1375 	/* get resources for incoming packets */
1376 	rc = rte_pktmbuf_alloc_bulk(rxq->mb_pool, mbufs, count);
1377 	if (unlikely(rc < 0)) {
1378 		rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1379 		++rxq->rx_stats.mbuf_alloc_fail;
1380 		PMD_RX_LOG(DEBUG, "There are not enough free buffers\n");
1381 		return 0;
1382 	}
1383 
1384 	for (i = 0; i < count; i++) {
1385 		struct rte_mbuf *mbuf = mbufs[i];
1386 		struct ena_rx_buffer *rx_info;
1387 
1388 		if (likely((i + 4) < count))
1389 			rte_prefetch0(mbufs[i + 4]);
1390 
1391 		req_id = rxq->empty_rx_reqs[next_to_use];
1392 		rx_info = &rxq->rx_buffer_info[req_id];
1393 
1394 		rc = ena_add_single_rx_desc(rxq->ena_com_io_sq, mbuf, req_id);
1395 		if (unlikely(rc != 0))
1396 			break;
1397 
1398 		rx_info->mbuf = mbuf;
1399 		next_to_use = ENA_IDX_NEXT_MASKED(next_to_use, rxq->size_mask);
1400 	}
1401 
1402 	if (unlikely(i < count)) {
1403 		PMD_RX_LOG(WARNING,
1404 			"Refilled Rx queue[%d] with only %d/%d buffers\n",
1405 			rxq->id, i, count);
1406 		rte_pktmbuf_free_bulk(&mbufs[i], count - i);
1407 		++rxq->rx_stats.refill_partial;
1408 	}
1409 
1410 	/* When we submitted free recources to device... */
1411 	if (likely(i > 0)) {
1412 		/* ...let HW know that it can fill buffers with data. */
1413 		ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1414 
1415 		rxq->next_to_use = next_to_use;
1416 	}
1417 
1418 	return i;
1419 }
1420 
1421 static int ena_device_init(struct ena_com_dev *ena_dev,
1422 			   struct rte_pci_device *pdev,
1423 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
1424 			   bool *wd_state)
1425 {
1426 	uint32_t aenq_groups;
1427 	int rc;
1428 	bool readless_supported;
1429 
1430 	/* Initialize mmio registers */
1431 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
1432 	if (rc) {
1433 		PMD_DRV_LOG(ERR, "Failed to init MMIO read less\n");
1434 		return rc;
1435 	}
1436 
1437 	/* The PCIe configuration space revision id indicate if mmio reg
1438 	 * read is disabled.
1439 	 */
1440 	readless_supported = !(pdev->id.class_id & ENA_MMIO_DISABLE_REG_READ);
1441 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1442 
1443 	/* reset device */
1444 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1445 	if (rc) {
1446 		PMD_DRV_LOG(ERR, "Cannot reset device\n");
1447 		goto err_mmio_read_less;
1448 	}
1449 
1450 	/* check FW version */
1451 	rc = ena_com_validate_version(ena_dev);
1452 	if (rc) {
1453 		PMD_DRV_LOG(ERR, "Device version is too low\n");
1454 		goto err_mmio_read_less;
1455 	}
1456 
1457 	ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1458 
1459 	/* ENA device administration layer init */
1460 	rc = ena_com_admin_init(ena_dev, &aenq_handlers);
1461 	if (rc) {
1462 		PMD_DRV_LOG(ERR,
1463 			"Cannot initialize ENA admin queue\n");
1464 		goto err_mmio_read_less;
1465 	}
1466 
1467 	/* To enable the msix interrupts the driver needs to know the number
1468 	 * of queues. So the driver uses polling mode to retrieve this
1469 	 * information.
1470 	 */
1471 	ena_com_set_admin_polling_mode(ena_dev, true);
1472 
1473 	ena_config_host_info(ena_dev);
1474 
1475 	/* Get Device Attributes and features */
1476 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1477 	if (rc) {
1478 		PMD_DRV_LOG(ERR,
1479 			"Cannot get attribute for ENA device, rc: %d\n", rc);
1480 		goto err_admin_init;
1481 	}
1482 
1483 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1484 		      BIT(ENA_ADMIN_NOTIFICATION) |
1485 		      BIT(ENA_ADMIN_KEEP_ALIVE) |
1486 		      BIT(ENA_ADMIN_FATAL_ERROR) |
1487 		      BIT(ENA_ADMIN_WARNING);
1488 
1489 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
1490 	rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
1491 	if (rc) {
1492 		PMD_DRV_LOG(ERR, "Cannot configure AENQ groups, rc: %d\n", rc);
1493 		goto err_admin_init;
1494 	}
1495 
1496 	*wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
1497 
1498 	return 0;
1499 
1500 err_admin_init:
1501 	ena_com_admin_destroy(ena_dev);
1502 
1503 err_mmio_read_less:
1504 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1505 
1506 	return rc;
1507 }
1508 
1509 static void ena_interrupt_handler_rte(void *cb_arg)
1510 {
1511 	struct rte_eth_dev *dev = cb_arg;
1512 	struct ena_adapter *adapter = dev->data->dev_private;
1513 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1514 
1515 	ena_com_admin_q_comp_intr_handler(ena_dev);
1516 	if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED))
1517 		ena_com_aenq_intr_handler(ena_dev, dev);
1518 }
1519 
1520 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1521 {
1522 	if (!adapter->wd_state)
1523 		return;
1524 
1525 	if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1526 		return;
1527 
1528 	if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1529 	    adapter->keep_alive_timeout)) {
1530 		PMD_DRV_LOG(ERR, "Keep alive timeout\n");
1531 		adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
1532 		adapter->trigger_reset = true;
1533 		++adapter->dev_stats.wd_expired;
1534 	}
1535 }
1536 
1537 /* Check if admin queue is enabled */
1538 static void check_for_admin_com_state(struct ena_adapter *adapter)
1539 {
1540 	if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1541 		PMD_DRV_LOG(ERR, "ENA admin queue is not in running state\n");
1542 		adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
1543 		adapter->trigger_reset = true;
1544 	}
1545 }
1546 
1547 static int check_for_tx_completion_in_queue(struct ena_adapter *adapter,
1548 					    struct ena_ring *tx_ring)
1549 {
1550 	struct ena_tx_buffer *tx_buf;
1551 	uint64_t timestamp;
1552 	uint64_t completion_delay;
1553 	uint32_t missed_tx = 0;
1554 	unsigned int i;
1555 	int rc = 0;
1556 
1557 	for (i = 0; i < tx_ring->ring_size; ++i) {
1558 		tx_buf = &tx_ring->tx_buffer_info[i];
1559 		timestamp = tx_buf->timestamp;
1560 
1561 		if (timestamp == 0)
1562 			continue;
1563 
1564 		completion_delay = rte_get_timer_cycles() - timestamp;
1565 		if (completion_delay > adapter->missing_tx_completion_to) {
1566 			if (unlikely(!tx_buf->print_once)) {
1567 				PMD_TX_LOG(WARNING,
1568 					"Found a Tx that wasn't completed on time, qid %d, index %d. "
1569 					"Missing Tx outstanding for %" PRIu64 " msecs.\n",
1570 					tx_ring->id, i,	completion_delay /
1571 					rte_get_timer_hz() * 1000);
1572 				tx_buf->print_once = true;
1573 			}
1574 			++missed_tx;
1575 		}
1576 	}
1577 
1578 	if (unlikely(missed_tx > tx_ring->missing_tx_completion_threshold)) {
1579 		PMD_DRV_LOG(ERR,
1580 			"The number of lost Tx completions is above the threshold (%d > %d). "
1581 			"Trigger the device reset.\n",
1582 			missed_tx,
1583 			tx_ring->missing_tx_completion_threshold);
1584 		adapter->reset_reason = ENA_REGS_RESET_MISS_TX_CMPL;
1585 		adapter->trigger_reset = true;
1586 		rc = -EIO;
1587 	}
1588 
1589 	tx_ring->tx_stats.missed_tx += missed_tx;
1590 
1591 	return rc;
1592 }
1593 
1594 static void check_for_tx_completions(struct ena_adapter *adapter)
1595 {
1596 	struct ena_ring *tx_ring;
1597 	uint64_t tx_cleanup_delay;
1598 	size_t qid;
1599 	int budget;
1600 	uint16_t nb_tx_queues = adapter->edev_data->nb_tx_queues;
1601 
1602 	if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT)
1603 		return;
1604 
1605 	nb_tx_queues = adapter->edev_data->nb_tx_queues;
1606 	budget = adapter->missing_tx_completion_budget;
1607 
1608 	qid = adapter->last_tx_comp_qid;
1609 	while (budget-- > 0) {
1610 		tx_ring = &adapter->tx_ring[qid];
1611 
1612 		/* Tx cleanup is called only by the burst function and can be
1613 		 * called dynamically by the application. Also cleanup is
1614 		 * limited by the threshold. To avoid false detection of the
1615 		 * missing HW Tx completion, get the delay since last cleanup
1616 		 * function was called.
1617 		 */
1618 		tx_cleanup_delay = rte_get_timer_cycles() -
1619 			tx_ring->last_cleanup_ticks;
1620 		if (tx_cleanup_delay < adapter->tx_cleanup_stall_delay)
1621 			check_for_tx_completion_in_queue(adapter, tx_ring);
1622 		qid = (qid + 1) % nb_tx_queues;
1623 	}
1624 
1625 	adapter->last_tx_comp_qid = qid;
1626 }
1627 
1628 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
1629 				  void *arg)
1630 {
1631 	struct rte_eth_dev *dev = arg;
1632 	struct ena_adapter *adapter = dev->data->dev_private;
1633 
1634 	check_for_missing_keep_alive(adapter);
1635 	check_for_admin_com_state(adapter);
1636 	check_for_tx_completions(adapter);
1637 
1638 	if (unlikely(adapter->trigger_reset)) {
1639 		PMD_DRV_LOG(ERR, "Trigger reset is on\n");
1640 		rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
1641 			NULL);
1642 	}
1643 }
1644 
1645 static inline void
1646 set_default_llq_configurations(struct ena_llq_configurations *llq_config,
1647 			       struct ena_admin_feature_llq_desc *llq,
1648 			       bool use_large_llq_hdr)
1649 {
1650 	llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
1651 	llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
1652 	llq_config->llq_num_decs_before_header =
1653 		ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
1654 
1655 	if (use_large_llq_hdr &&
1656 	    (llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B)) {
1657 		llq_config->llq_ring_entry_size =
1658 			ENA_ADMIN_LIST_ENTRY_SIZE_256B;
1659 		llq_config->llq_ring_entry_size_value = 256;
1660 	} else {
1661 		llq_config->llq_ring_entry_size =
1662 			ENA_ADMIN_LIST_ENTRY_SIZE_128B;
1663 		llq_config->llq_ring_entry_size_value = 128;
1664 	}
1665 }
1666 
1667 static int
1668 ena_set_queues_placement_policy(struct ena_adapter *adapter,
1669 				struct ena_com_dev *ena_dev,
1670 				struct ena_admin_feature_llq_desc *llq,
1671 				struct ena_llq_configurations *llq_default_configurations)
1672 {
1673 	int rc;
1674 	u32 llq_feature_mask;
1675 
1676 	llq_feature_mask = 1 << ENA_ADMIN_LLQ;
1677 	if (!(ena_dev->supported_features & llq_feature_mask)) {
1678 		PMD_DRV_LOG(INFO,
1679 			"LLQ is not supported. Fallback to host mode policy.\n");
1680 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1681 		return 0;
1682 	}
1683 
1684 	rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
1685 	if (unlikely(rc)) {
1686 		PMD_INIT_LOG(WARNING,
1687 			"Failed to config dev mode. Fallback to host mode policy.\n");
1688 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1689 		return 0;
1690 	}
1691 
1692 	/* Nothing to config, exit */
1693 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1694 		return 0;
1695 
1696 	if (!adapter->dev_mem_base) {
1697 		PMD_DRV_LOG(ERR,
1698 			"Unable to access LLQ BAR resource. Fallback to host mode policy.\n");
1699 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1700 		return 0;
1701 	}
1702 
1703 	ena_dev->mem_bar = adapter->dev_mem_base;
1704 
1705 	return 0;
1706 }
1707 
1708 static uint32_t ena_calc_max_io_queue_num(struct ena_com_dev *ena_dev,
1709 	struct ena_com_dev_get_features_ctx *get_feat_ctx)
1710 {
1711 	uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
1712 
1713 	/* Regular queues capabilities */
1714 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1715 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1716 			&get_feat_ctx->max_queue_ext.max_queue_ext;
1717 		io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
1718 				    max_queue_ext->max_rx_cq_num);
1719 		io_tx_sq_num = max_queue_ext->max_tx_sq_num;
1720 		io_tx_cq_num = max_queue_ext->max_tx_cq_num;
1721 	} else {
1722 		struct ena_admin_queue_feature_desc *max_queues =
1723 			&get_feat_ctx->max_queues;
1724 		io_tx_sq_num = max_queues->max_sq_num;
1725 		io_tx_cq_num = max_queues->max_cq_num;
1726 		io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
1727 	}
1728 
1729 	/* In case of LLQ use the llq number in the get feature cmd */
1730 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
1731 		io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
1732 
1733 	max_num_io_queues = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
1734 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_sq_num);
1735 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_cq_num);
1736 
1737 	if (unlikely(max_num_io_queues == 0)) {
1738 		PMD_DRV_LOG(ERR, "Number of IO queues cannot not be 0\n");
1739 		return -EFAULT;
1740 	}
1741 
1742 	return max_num_io_queues;
1743 }
1744 
1745 static void
1746 ena_set_offloads(struct ena_offloads *offloads,
1747 		 struct ena_admin_feature_offload_desc *offload_desc)
1748 {
1749 	if (offload_desc->tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK)
1750 		offloads->tx_offloads |= ENA_IPV4_TSO;
1751 
1752 	/* Tx IPv4 checksum offloads */
1753 	if (offload_desc->tx &
1754 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)
1755 		offloads->tx_offloads |= ENA_L3_IPV4_CSUM;
1756 	if (offload_desc->tx &
1757 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK)
1758 		offloads->tx_offloads |= ENA_L4_IPV4_CSUM;
1759 	if (offload_desc->tx &
1760 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)
1761 		offloads->tx_offloads |= ENA_L4_IPV4_CSUM_PARTIAL;
1762 
1763 	/* Tx IPv6 checksum offloads */
1764 	if (offload_desc->tx &
1765 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK)
1766 		offloads->tx_offloads |= ENA_L4_IPV6_CSUM;
1767 	if (offload_desc->tx &
1768 	     ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)
1769 		offloads->tx_offloads |= ENA_L4_IPV6_CSUM_PARTIAL;
1770 
1771 	/* Rx IPv4 checksum offloads */
1772 	if (offload_desc->rx_supported &
1773 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)
1774 		offloads->rx_offloads |= ENA_L3_IPV4_CSUM;
1775 	if (offload_desc->rx_supported &
1776 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK)
1777 		offloads->rx_offloads |= ENA_L4_IPV4_CSUM;
1778 
1779 	/* Rx IPv6 checksum offloads */
1780 	if (offload_desc->rx_supported &
1781 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK)
1782 		offloads->rx_offloads |= ENA_L4_IPV6_CSUM;
1783 
1784 	if (offload_desc->rx_supported &
1785 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_HASH_MASK)
1786 		offloads->rx_offloads |= ENA_RX_RSS_HASH;
1787 }
1788 
1789 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
1790 {
1791 	struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
1792 	struct rte_pci_device *pci_dev;
1793 	struct rte_intr_handle *intr_handle;
1794 	struct ena_adapter *adapter = eth_dev->data->dev_private;
1795 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1796 	struct ena_com_dev_get_features_ctx get_feat_ctx;
1797 	struct ena_llq_configurations llq_config;
1798 	const char *queue_type_str;
1799 	uint32_t max_num_io_queues;
1800 	int rc;
1801 	static int adapters_found;
1802 	bool disable_meta_caching;
1803 	bool wd_state = false;
1804 
1805 	eth_dev->dev_ops = &ena_dev_ops;
1806 	eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
1807 	eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
1808 	eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
1809 
1810 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1811 		return 0;
1812 
1813 	eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
1814 
1815 	memset(adapter, 0, sizeof(struct ena_adapter));
1816 	ena_dev = &adapter->ena_dev;
1817 
1818 	adapter->edev_data = eth_dev->data;
1819 
1820 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1821 
1822 	PMD_INIT_LOG(INFO, "Initializing %x:%x:%x.%d\n",
1823 		     pci_dev->addr.domain,
1824 		     pci_dev->addr.bus,
1825 		     pci_dev->addr.devid,
1826 		     pci_dev->addr.function);
1827 
1828 	intr_handle = &pci_dev->intr_handle;
1829 
1830 	adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
1831 	adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
1832 
1833 	if (!adapter->regs) {
1834 		PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)\n",
1835 			     ENA_REGS_BAR);
1836 		return -ENXIO;
1837 	}
1838 
1839 	ena_dev->reg_bar = adapter->regs;
1840 	/* This is a dummy pointer for ena_com functions. */
1841 	ena_dev->dmadev = adapter;
1842 
1843 	adapter->id_number = adapters_found;
1844 
1845 	snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
1846 		 adapter->id_number);
1847 
1848 	rc = ena_parse_devargs(adapter, pci_dev->device.devargs);
1849 	if (rc != 0) {
1850 		PMD_INIT_LOG(CRIT, "Failed to parse devargs\n");
1851 		goto err;
1852 	}
1853 
1854 	/* device specific initialization routine */
1855 	rc = ena_device_init(ena_dev, pci_dev, &get_feat_ctx, &wd_state);
1856 	if (rc) {
1857 		PMD_INIT_LOG(CRIT, "Failed to init ENA device\n");
1858 		goto err;
1859 	}
1860 	adapter->wd_state = wd_state;
1861 
1862 	set_default_llq_configurations(&llq_config, &get_feat_ctx.llq,
1863 		adapter->use_large_llq_hdr);
1864 	rc = ena_set_queues_placement_policy(adapter, ena_dev,
1865 					     &get_feat_ctx.llq, &llq_config);
1866 	if (unlikely(rc)) {
1867 		PMD_INIT_LOG(CRIT, "Failed to set placement policy\n");
1868 		return rc;
1869 	}
1870 
1871 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1872 		queue_type_str = "Regular";
1873 	else
1874 		queue_type_str = "Low latency";
1875 	PMD_DRV_LOG(INFO, "Placement policy: %s\n", queue_type_str);
1876 
1877 	calc_queue_ctx.ena_dev = ena_dev;
1878 	calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
1879 
1880 	max_num_io_queues = ena_calc_max_io_queue_num(ena_dev, &get_feat_ctx);
1881 	rc = ena_calc_io_queue_size(&calc_queue_ctx,
1882 		adapter->use_large_llq_hdr);
1883 	if (unlikely((rc != 0) || (max_num_io_queues == 0))) {
1884 		rc = -EFAULT;
1885 		goto err_device_destroy;
1886 	}
1887 
1888 	adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
1889 	adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
1890 	adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
1891 	adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
1892 	adapter->max_num_io_queues = max_num_io_queues;
1893 
1894 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1895 		disable_meta_caching =
1896 			!!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
1897 			BIT(ENA_ADMIN_DISABLE_META_CACHING));
1898 	} else {
1899 		disable_meta_caching = false;
1900 	}
1901 
1902 	/* prepare ring structures */
1903 	ena_init_rings(adapter, disable_meta_caching);
1904 
1905 	ena_config_debug_area(adapter);
1906 
1907 	/* Set max MTU for this device */
1908 	adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
1909 
1910 	ena_set_offloads(&adapter->offloads, &get_feat_ctx.offload);
1911 
1912 	/* Copy MAC address and point DPDK to it */
1913 	eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr;
1914 	rte_ether_addr_copy((struct rte_ether_addr *)
1915 			get_feat_ctx.dev_attr.mac_addr,
1916 			(struct rte_ether_addr *)adapter->mac_addr);
1917 
1918 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
1919 	if (unlikely(rc != 0)) {
1920 		PMD_DRV_LOG(ERR, "Failed to initialize RSS in ENA device\n");
1921 		goto err_delete_debug_area;
1922 	}
1923 
1924 	adapter->drv_stats = rte_zmalloc("adapter stats",
1925 					 sizeof(*adapter->drv_stats),
1926 					 RTE_CACHE_LINE_SIZE);
1927 	if (!adapter->drv_stats) {
1928 		PMD_DRV_LOG(ERR,
1929 			"Failed to allocate memory for adapter statistics\n");
1930 		rc = -ENOMEM;
1931 		goto err_rss_destroy;
1932 	}
1933 
1934 	rte_spinlock_init(&adapter->admin_lock);
1935 
1936 	rte_intr_callback_register(intr_handle,
1937 				   ena_interrupt_handler_rte,
1938 				   eth_dev);
1939 	rte_intr_enable(intr_handle);
1940 	ena_com_set_admin_polling_mode(ena_dev, false);
1941 	ena_com_admin_aenq_enable(ena_dev);
1942 
1943 	if (adapters_found == 0)
1944 		rte_timer_subsystem_init();
1945 	rte_timer_init(&adapter->timer_wd);
1946 
1947 	adapters_found++;
1948 	adapter->state = ENA_ADAPTER_STATE_INIT;
1949 
1950 	return 0;
1951 
1952 err_rss_destroy:
1953 	ena_com_rss_destroy(ena_dev);
1954 err_delete_debug_area:
1955 	ena_com_delete_debug_area(ena_dev);
1956 
1957 err_device_destroy:
1958 	ena_com_delete_host_info(ena_dev);
1959 	ena_com_admin_destroy(ena_dev);
1960 
1961 err:
1962 	return rc;
1963 }
1964 
1965 static void ena_destroy_device(struct rte_eth_dev *eth_dev)
1966 {
1967 	struct ena_adapter *adapter = eth_dev->data->dev_private;
1968 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1969 
1970 	if (adapter->state == ENA_ADAPTER_STATE_FREE)
1971 		return;
1972 
1973 	ena_com_set_admin_running_state(ena_dev, false);
1974 
1975 	if (adapter->state != ENA_ADAPTER_STATE_CLOSED)
1976 		ena_close(eth_dev);
1977 
1978 	ena_com_rss_destroy(ena_dev);
1979 
1980 	ena_com_delete_debug_area(ena_dev);
1981 	ena_com_delete_host_info(ena_dev);
1982 
1983 	ena_com_abort_admin_commands(ena_dev);
1984 	ena_com_wait_for_abort_completion(ena_dev);
1985 	ena_com_admin_destroy(ena_dev);
1986 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1987 
1988 	adapter->state = ENA_ADAPTER_STATE_FREE;
1989 }
1990 
1991 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
1992 {
1993 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1994 		return 0;
1995 
1996 	ena_destroy_device(eth_dev);
1997 
1998 	return 0;
1999 }
2000 
2001 static int ena_dev_configure(struct rte_eth_dev *dev)
2002 {
2003 	struct ena_adapter *adapter = dev->data->dev_private;
2004 
2005 	adapter->state = ENA_ADAPTER_STATE_CONFIG;
2006 
2007 	if (dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG)
2008 		dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
2009 	dev->data->dev_conf.txmode.offloads |= DEV_TX_OFFLOAD_MULTI_SEGS;
2010 
2011 	/* Scattered Rx cannot be turned off in the HW, so this capability must
2012 	 * be forced.
2013 	 */
2014 	dev->data->scattered_rx = 1;
2015 
2016 	adapter->last_tx_comp_qid = 0;
2017 
2018 	adapter->missing_tx_completion_budget =
2019 		RTE_MIN(ENA_MONITORED_TX_QUEUES, dev->data->nb_tx_queues);
2020 
2021 	adapter->missing_tx_completion_to = ENA_TX_TIMEOUT;
2022 	/* To avoid detection of the spurious Tx completion timeout due to
2023 	 * application not calling the Tx cleanup function, set timeout for the
2024 	 * Tx queue which should be half of the missing completion timeout for a
2025 	 * safety. If there will be a lot of missing Tx completions in the
2026 	 * queue, they will be detected sooner or later.
2027 	 */
2028 	adapter->tx_cleanup_stall_delay = adapter->missing_tx_completion_to / 2;
2029 
2030 	adapter->tx_selected_offloads = dev->data->dev_conf.txmode.offloads;
2031 	adapter->rx_selected_offloads = dev->data->dev_conf.rxmode.offloads;
2032 
2033 	return 0;
2034 }
2035 
2036 static void ena_init_rings(struct ena_adapter *adapter,
2037 			   bool disable_meta_caching)
2038 {
2039 	size_t i;
2040 
2041 	for (i = 0; i < adapter->max_num_io_queues; i++) {
2042 		struct ena_ring *ring = &adapter->tx_ring[i];
2043 
2044 		ring->configured = 0;
2045 		ring->type = ENA_RING_TYPE_TX;
2046 		ring->adapter = adapter;
2047 		ring->id = i;
2048 		ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
2049 		ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
2050 		ring->sgl_size = adapter->max_tx_sgl_size;
2051 		ring->disable_meta_caching = disable_meta_caching;
2052 	}
2053 
2054 	for (i = 0; i < adapter->max_num_io_queues; i++) {
2055 		struct ena_ring *ring = &adapter->rx_ring[i];
2056 
2057 		ring->configured = 0;
2058 		ring->type = ENA_RING_TYPE_RX;
2059 		ring->adapter = adapter;
2060 		ring->id = i;
2061 		ring->sgl_size = adapter->max_rx_sgl_size;
2062 	}
2063 }
2064 
2065 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter)
2066 {
2067 	uint64_t port_offloads = 0;
2068 
2069 	if (adapter->offloads.rx_offloads & ENA_L3_IPV4_CSUM)
2070 		port_offloads |= DEV_RX_OFFLOAD_IPV4_CKSUM;
2071 
2072 	if (adapter->offloads.rx_offloads &
2073 	    (ENA_L4_IPV4_CSUM | ENA_L4_IPV6_CSUM))
2074 		port_offloads |=
2075 			DEV_RX_OFFLOAD_UDP_CKSUM | DEV_RX_OFFLOAD_TCP_CKSUM;
2076 
2077 	if (adapter->offloads.rx_offloads & ENA_RX_RSS_HASH)
2078 		port_offloads |= DEV_RX_OFFLOAD_RSS_HASH;
2079 
2080 	port_offloads |= DEV_RX_OFFLOAD_SCATTER;
2081 
2082 	return port_offloads;
2083 }
2084 
2085 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter)
2086 {
2087 	uint64_t port_offloads = 0;
2088 
2089 	if (adapter->offloads.tx_offloads & ENA_IPV4_TSO)
2090 		port_offloads |= DEV_TX_OFFLOAD_TCP_TSO;
2091 
2092 	if (adapter->offloads.tx_offloads & ENA_L3_IPV4_CSUM)
2093 		port_offloads |= DEV_TX_OFFLOAD_IPV4_CKSUM;
2094 	if (adapter->offloads.tx_offloads &
2095 	    (ENA_L4_IPV4_CSUM_PARTIAL | ENA_L4_IPV4_CSUM |
2096 	     ENA_L4_IPV6_CSUM | ENA_L4_IPV6_CSUM_PARTIAL))
2097 		port_offloads |=
2098 			DEV_TX_OFFLOAD_UDP_CKSUM | DEV_TX_OFFLOAD_TCP_CKSUM;
2099 
2100 	port_offloads |= DEV_TX_OFFLOAD_MULTI_SEGS;
2101 
2102 	return port_offloads;
2103 }
2104 
2105 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter)
2106 {
2107 	RTE_SET_USED(adapter);
2108 
2109 	return 0;
2110 }
2111 
2112 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter)
2113 {
2114 	RTE_SET_USED(adapter);
2115 
2116 	return 0;
2117 }
2118 
2119 static int ena_infos_get(struct rte_eth_dev *dev,
2120 			  struct rte_eth_dev_info *dev_info)
2121 {
2122 	struct ena_adapter *adapter;
2123 	struct ena_com_dev *ena_dev;
2124 
2125 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
2126 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
2127 	adapter = dev->data->dev_private;
2128 
2129 	ena_dev = &adapter->ena_dev;
2130 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
2131 
2132 	dev_info->speed_capa =
2133 			ETH_LINK_SPEED_1G   |
2134 			ETH_LINK_SPEED_2_5G |
2135 			ETH_LINK_SPEED_5G   |
2136 			ETH_LINK_SPEED_10G  |
2137 			ETH_LINK_SPEED_25G  |
2138 			ETH_LINK_SPEED_40G  |
2139 			ETH_LINK_SPEED_50G  |
2140 			ETH_LINK_SPEED_100G;
2141 
2142 	/* Inform framework about available features */
2143 	dev_info->rx_offload_capa = ena_get_rx_port_offloads(adapter);
2144 	dev_info->tx_offload_capa = ena_get_tx_port_offloads(adapter);
2145 	dev_info->rx_queue_offload_capa = ena_get_rx_queue_offloads(adapter);
2146 	dev_info->tx_queue_offload_capa = ena_get_tx_queue_offloads(adapter);
2147 
2148 	dev_info->flow_type_rss_offloads = ENA_ALL_RSS_HF;
2149 	dev_info->hash_key_size = ENA_HASH_KEY_SIZE;
2150 
2151 	dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
2152 	dev_info->max_rx_pktlen  = adapter->max_mtu + RTE_ETHER_HDR_LEN +
2153 		RTE_ETHER_CRC_LEN;
2154 	dev_info->min_mtu = ENA_MIN_MTU;
2155 	dev_info->max_mtu = adapter->max_mtu;
2156 	dev_info->max_mac_addrs = 1;
2157 
2158 	dev_info->max_rx_queues = adapter->max_num_io_queues;
2159 	dev_info->max_tx_queues = adapter->max_num_io_queues;
2160 	dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
2161 
2162 	dev_info->rx_desc_lim.nb_max = adapter->max_rx_ring_size;
2163 	dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2164 	dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2165 					adapter->max_rx_sgl_size);
2166 	dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2167 					adapter->max_rx_sgl_size);
2168 
2169 	dev_info->tx_desc_lim.nb_max = adapter->max_tx_ring_size;
2170 	dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2171 	dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2172 					adapter->max_tx_sgl_size);
2173 	dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2174 					adapter->max_tx_sgl_size);
2175 
2176 	dev_info->default_rxportconf.ring_size = ENA_DEFAULT_RING_SIZE;
2177 	dev_info->default_txportconf.ring_size = ENA_DEFAULT_RING_SIZE;
2178 
2179 	return 0;
2180 }
2181 
2182 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len)
2183 {
2184 	mbuf->data_len = len;
2185 	mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2186 	mbuf->refcnt = 1;
2187 	mbuf->next = NULL;
2188 }
2189 
2190 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
2191 				    struct ena_com_rx_buf_info *ena_bufs,
2192 				    uint32_t descs,
2193 				    uint16_t *next_to_clean,
2194 				    uint8_t offset)
2195 {
2196 	struct rte_mbuf *mbuf;
2197 	struct rte_mbuf *mbuf_head;
2198 	struct ena_rx_buffer *rx_info;
2199 	int rc;
2200 	uint16_t ntc, len, req_id, buf = 0;
2201 
2202 	if (unlikely(descs == 0))
2203 		return NULL;
2204 
2205 	ntc = *next_to_clean;
2206 
2207 	len = ena_bufs[buf].len;
2208 	req_id = ena_bufs[buf].req_id;
2209 
2210 	rx_info = &rx_ring->rx_buffer_info[req_id];
2211 
2212 	mbuf = rx_info->mbuf;
2213 	RTE_ASSERT(mbuf != NULL);
2214 
2215 	ena_init_rx_mbuf(mbuf, len);
2216 
2217 	/* Fill the mbuf head with the data specific for 1st segment. */
2218 	mbuf_head = mbuf;
2219 	mbuf_head->nb_segs = descs;
2220 	mbuf_head->port = rx_ring->port_id;
2221 	mbuf_head->pkt_len = len;
2222 	mbuf_head->data_off += offset;
2223 
2224 	rx_info->mbuf = NULL;
2225 	rx_ring->empty_rx_reqs[ntc] = req_id;
2226 	ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2227 
2228 	while (--descs) {
2229 		++buf;
2230 		len = ena_bufs[buf].len;
2231 		req_id = ena_bufs[buf].req_id;
2232 
2233 		rx_info = &rx_ring->rx_buffer_info[req_id];
2234 		RTE_ASSERT(rx_info->mbuf != NULL);
2235 
2236 		if (unlikely(len == 0)) {
2237 			/*
2238 			 * Some devices can pass descriptor with the length 0.
2239 			 * To avoid confusion, the PMD is simply putting the
2240 			 * descriptor back, as it was never used. We'll avoid
2241 			 * mbuf allocation that way.
2242 			 */
2243 			rc = ena_add_single_rx_desc(rx_ring->ena_com_io_sq,
2244 				rx_info->mbuf, req_id);
2245 			if (unlikely(rc != 0)) {
2246 				/* Free the mbuf in case of an error. */
2247 				rte_mbuf_raw_free(rx_info->mbuf);
2248 			} else {
2249 				/*
2250 				 * If there was no error, just exit the loop as
2251 				 * 0 length descriptor is always the last one.
2252 				 */
2253 				break;
2254 			}
2255 		} else {
2256 			/* Create an mbuf chain. */
2257 			mbuf->next = rx_info->mbuf;
2258 			mbuf = mbuf->next;
2259 
2260 			ena_init_rx_mbuf(mbuf, len);
2261 			mbuf_head->pkt_len += len;
2262 		}
2263 
2264 		/*
2265 		 * Mark the descriptor as depleted and perform necessary
2266 		 * cleanup.
2267 		 * This code will execute in two cases:
2268 		 *  1. Descriptor len was greater than 0 - normal situation.
2269 		 *  2. Descriptor len was 0 and we failed to add the descriptor
2270 		 *     to the device. In that situation, we should try to add
2271 		 *     the mbuf again in the populate routine and mark the
2272 		 *     descriptor as used up by the device.
2273 		 */
2274 		rx_info->mbuf = NULL;
2275 		rx_ring->empty_rx_reqs[ntc] = req_id;
2276 		ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2277 	}
2278 
2279 	*next_to_clean = ntc;
2280 
2281 	return mbuf_head;
2282 }
2283 
2284 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
2285 				  uint16_t nb_pkts)
2286 {
2287 	struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
2288 	unsigned int free_queue_entries;
2289 	uint16_t next_to_clean = rx_ring->next_to_clean;
2290 	uint16_t descs_in_use;
2291 	struct rte_mbuf *mbuf;
2292 	uint16_t completed;
2293 	struct ena_com_rx_ctx ena_rx_ctx;
2294 	int i, rc = 0;
2295 	bool fill_hash;
2296 
2297 #ifdef RTE_ETHDEV_DEBUG_RX
2298 	/* Check adapter state */
2299 	if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2300 		PMD_RX_LOG(ALERT,
2301 			"Trying to receive pkts while device is NOT running\n");
2302 		return 0;
2303 	}
2304 #endif
2305 
2306 	fill_hash = rx_ring->offloads & DEV_RX_OFFLOAD_RSS_HASH;
2307 
2308 	descs_in_use = rx_ring->ring_size -
2309 		ena_com_free_q_entries(rx_ring->ena_com_io_sq) - 1;
2310 	nb_pkts = RTE_MIN(descs_in_use, nb_pkts);
2311 
2312 	for (completed = 0; completed < nb_pkts; completed++) {
2313 		ena_rx_ctx.max_bufs = rx_ring->sgl_size;
2314 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
2315 		ena_rx_ctx.descs = 0;
2316 		ena_rx_ctx.pkt_offset = 0;
2317 		/* receive packet context */
2318 		rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
2319 				    rx_ring->ena_com_io_sq,
2320 				    &ena_rx_ctx);
2321 		if (unlikely(rc)) {
2322 			PMD_RX_LOG(ERR,
2323 				"Failed to get the packet from the device, rc: %d\n",
2324 				rc);
2325 			if (rc == ENA_COM_NO_SPACE) {
2326 				++rx_ring->rx_stats.bad_desc_num;
2327 				rx_ring->adapter->reset_reason =
2328 					ENA_REGS_RESET_TOO_MANY_RX_DESCS;
2329 			} else {
2330 				++rx_ring->rx_stats.bad_req_id;
2331 				rx_ring->adapter->reset_reason =
2332 					ENA_REGS_RESET_INV_RX_REQ_ID;
2333 			}
2334 			rx_ring->adapter->trigger_reset = true;
2335 			return 0;
2336 		}
2337 
2338 		mbuf = ena_rx_mbuf(rx_ring,
2339 			ena_rx_ctx.ena_bufs,
2340 			ena_rx_ctx.descs,
2341 			&next_to_clean,
2342 			ena_rx_ctx.pkt_offset);
2343 		if (unlikely(mbuf == NULL)) {
2344 			for (i = 0; i < ena_rx_ctx.descs; ++i) {
2345 				rx_ring->empty_rx_reqs[next_to_clean] =
2346 					rx_ring->ena_bufs[i].req_id;
2347 				next_to_clean = ENA_IDX_NEXT_MASKED(
2348 					next_to_clean, rx_ring->size_mask);
2349 			}
2350 			break;
2351 		}
2352 
2353 		/* fill mbuf attributes if any */
2354 		ena_rx_mbuf_prepare(mbuf, &ena_rx_ctx, fill_hash);
2355 
2356 		if (unlikely(mbuf->ol_flags &
2357 				(PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD))) {
2358 			rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors);
2359 			++rx_ring->rx_stats.bad_csum;
2360 		}
2361 
2362 		rx_pkts[completed] = mbuf;
2363 		rx_ring->rx_stats.bytes += mbuf->pkt_len;
2364 	}
2365 
2366 	rx_ring->rx_stats.cnt += completed;
2367 	rx_ring->next_to_clean = next_to_clean;
2368 
2369 	free_queue_entries = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
2370 
2371 	/* Burst refill to save doorbells, memory barriers, const interval */
2372 	if (free_queue_entries >= rx_ring->rx_free_thresh) {
2373 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
2374 		ena_populate_rx_queue(rx_ring, free_queue_entries);
2375 	}
2376 
2377 	return completed;
2378 }
2379 
2380 static uint16_t
2381 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2382 		uint16_t nb_pkts)
2383 {
2384 	int32_t ret;
2385 	uint32_t i;
2386 	struct rte_mbuf *m;
2387 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2388 	struct ena_adapter *adapter = tx_ring->adapter;
2389 	struct rte_ipv4_hdr *ip_hdr;
2390 	uint64_t ol_flags;
2391 	uint64_t l4_csum_flag;
2392 	uint64_t dev_offload_capa;
2393 	uint16_t frag_field;
2394 	bool need_pseudo_csum;
2395 
2396 	dev_offload_capa = adapter->offloads.tx_offloads;
2397 	for (i = 0; i != nb_pkts; i++) {
2398 		m = tx_pkts[i];
2399 		ol_flags = m->ol_flags;
2400 
2401 		/* Check if any offload flag was set */
2402 		if (ol_flags == 0)
2403 			continue;
2404 
2405 		l4_csum_flag = ol_flags & PKT_TX_L4_MASK;
2406 		/* SCTP checksum offload is not supported by the ENA. */
2407 		if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) ||
2408 		    l4_csum_flag == PKT_TX_SCTP_CKSUM) {
2409 			PMD_TX_LOG(DEBUG,
2410 				"mbuf[%" PRIu32 "] has unsupported offloads flags set: 0x%" PRIu64 "\n",
2411 				i, ol_flags);
2412 			rte_errno = ENOTSUP;
2413 			return i;
2414 		}
2415 
2416 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2417 		/* Check if requested offload is also enabled for the queue */
2418 		if ((ol_flags & PKT_TX_IP_CKSUM &&
2419 		     !(tx_ring->offloads & DEV_TX_OFFLOAD_IPV4_CKSUM)) ||
2420 		    (l4_csum_flag == PKT_TX_TCP_CKSUM &&
2421 		     !(tx_ring->offloads & DEV_TX_OFFLOAD_TCP_CKSUM)) ||
2422 		    (l4_csum_flag == PKT_TX_UDP_CKSUM &&
2423 		     !(tx_ring->offloads & DEV_TX_OFFLOAD_UDP_CKSUM))) {
2424 			PMD_TX_LOG(DEBUG,
2425 				"mbuf[%" PRIu32 "]: requested offloads: %" PRIu16 " are not enabled for the queue[%u]\n",
2426 				i, m->nb_segs, tx_ring->id);
2427 			rte_errno = EINVAL;
2428 			return i;
2429 		}
2430 
2431 		/* The caller is obligated to set l2 and l3 len if any cksum
2432 		 * offload is enabled.
2433 		 */
2434 		if (unlikely(ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_L4_MASK) &&
2435 		    (m->l2_len == 0 || m->l3_len == 0))) {
2436 			PMD_TX_LOG(DEBUG,
2437 				"mbuf[%" PRIu32 "]: l2_len or l3_len values are 0 while the offload was requested\n",
2438 				i);
2439 			rte_errno = EINVAL;
2440 			return i;
2441 		}
2442 		ret = rte_validate_tx_offload(m);
2443 		if (ret != 0) {
2444 			rte_errno = -ret;
2445 			return i;
2446 		}
2447 #endif
2448 
2449 		/* Verify HW support for requested offloads and determine if
2450 		 * pseudo header checksum is needed.
2451 		 */
2452 		need_pseudo_csum = false;
2453 		if (ol_flags & PKT_TX_IPV4) {
2454 			if (ol_flags & PKT_TX_IP_CKSUM &&
2455 			    !(dev_offload_capa & ENA_L3_IPV4_CSUM)) {
2456 				rte_errno = ENOTSUP;
2457 				return i;
2458 			}
2459 
2460 			if (ol_flags & PKT_TX_TCP_SEG &&
2461 			    !(dev_offload_capa & ENA_IPV4_TSO)) {
2462 				rte_errno = ENOTSUP;
2463 				return i;
2464 			}
2465 
2466 			/* Check HW capabilities and if pseudo csum is needed
2467 			 * for L4 offloads.
2468 			 */
2469 			if (l4_csum_flag != PKT_TX_L4_NO_CKSUM &&
2470 			    !(dev_offload_capa & ENA_L4_IPV4_CSUM)) {
2471 				if (dev_offload_capa &
2472 				    ENA_L4_IPV4_CSUM_PARTIAL) {
2473 					need_pseudo_csum = true;
2474 				} else {
2475 					rte_errno = ENOTSUP;
2476 					return i;
2477 				}
2478 			}
2479 
2480 			/* Parse the DF flag */
2481 			ip_hdr = rte_pktmbuf_mtod_offset(m,
2482 				struct rte_ipv4_hdr *, m->l2_len);
2483 			frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
2484 			if (frag_field & RTE_IPV4_HDR_DF_FLAG) {
2485 				m->packet_type |= RTE_PTYPE_L4_NONFRAG;
2486 			} else if (ol_flags & PKT_TX_TCP_SEG) {
2487 				/* In case we are supposed to TSO and have DF
2488 				 * not set (DF=0) hardware must be provided with
2489 				 * partial checksum.
2490 				 */
2491 				need_pseudo_csum = true;
2492 			}
2493 		} else if (ol_flags & PKT_TX_IPV6) {
2494 			/* There is no support for IPv6 TSO as for now. */
2495 			if (ol_flags & PKT_TX_TCP_SEG) {
2496 				rte_errno = ENOTSUP;
2497 				return i;
2498 			}
2499 
2500 			/* Check HW capabilities and if pseudo csum is needed */
2501 			if (l4_csum_flag != PKT_TX_L4_NO_CKSUM &&
2502 			    !(dev_offload_capa & ENA_L4_IPV6_CSUM)) {
2503 				if (dev_offload_capa &
2504 				    ENA_L4_IPV6_CSUM_PARTIAL) {
2505 					need_pseudo_csum = true;
2506 				} else {
2507 					rte_errno = ENOTSUP;
2508 					return i;
2509 				}
2510 			}
2511 		}
2512 
2513 		if (need_pseudo_csum) {
2514 			ret = rte_net_intel_cksum_flags_prepare(m, ol_flags);
2515 			if (ret != 0) {
2516 				rte_errno = -ret;
2517 				return i;
2518 			}
2519 		}
2520 	}
2521 
2522 	return i;
2523 }
2524 
2525 static void ena_update_hints(struct ena_adapter *adapter,
2526 			     struct ena_admin_ena_hw_hints *hints)
2527 {
2528 	if (hints->admin_completion_tx_timeout)
2529 		adapter->ena_dev.admin_queue.completion_timeout =
2530 			hints->admin_completion_tx_timeout * 1000;
2531 
2532 	if (hints->mmio_read_timeout)
2533 		/* convert to usec */
2534 		adapter->ena_dev.mmio_read.reg_read_to =
2535 			hints->mmio_read_timeout * 1000;
2536 
2537 	if (hints->missing_tx_completion_timeout) {
2538 		if (hints->missing_tx_completion_timeout ==
2539 		    ENA_HW_HINTS_NO_TIMEOUT) {
2540 			adapter->missing_tx_completion_to =
2541 				ENA_HW_HINTS_NO_TIMEOUT;
2542 		} else {
2543 			/* Convert from msecs to ticks */
2544 			adapter->missing_tx_completion_to = rte_get_timer_hz() *
2545 				hints->missing_tx_completion_timeout / 1000;
2546 			adapter->tx_cleanup_stall_delay =
2547 				adapter->missing_tx_completion_to / 2;
2548 		}
2549 	}
2550 
2551 	if (hints->driver_watchdog_timeout) {
2552 		if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
2553 			adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
2554 		else
2555 			// Convert msecs to ticks
2556 			adapter->keep_alive_timeout =
2557 				(hints->driver_watchdog_timeout *
2558 				rte_get_timer_hz()) / 1000;
2559 	}
2560 }
2561 
2562 static int ena_check_space_and_linearize_mbuf(struct ena_ring *tx_ring,
2563 					      struct rte_mbuf *mbuf)
2564 {
2565 	struct ena_com_dev *ena_dev;
2566 	int num_segments, header_len, rc;
2567 
2568 	ena_dev = &tx_ring->adapter->ena_dev;
2569 	num_segments = mbuf->nb_segs;
2570 	header_len = mbuf->data_len;
2571 
2572 	if (likely(num_segments < tx_ring->sgl_size))
2573 		goto checkspace;
2574 
2575 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
2576 	    (num_segments == tx_ring->sgl_size) &&
2577 	    (header_len < tx_ring->tx_max_header_size))
2578 		goto checkspace;
2579 
2580 	/* Checking for space for 2 additional metadata descriptors due to
2581 	 * possible header split and metadata descriptor. Linearization will
2582 	 * be needed so we reduce the segments number from num_segments to 1
2583 	 */
2584 	if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 3)) {
2585 		PMD_TX_LOG(DEBUG, "Not enough space in the Tx queue\n");
2586 		return ENA_COM_NO_MEM;
2587 	}
2588 	++tx_ring->tx_stats.linearize;
2589 	rc = rte_pktmbuf_linearize(mbuf);
2590 	if (unlikely(rc)) {
2591 		PMD_TX_LOG(WARNING, "Mbuf linearize failed\n");
2592 		rte_atomic64_inc(&tx_ring->adapter->drv_stats->ierrors);
2593 		++tx_ring->tx_stats.linearize_failed;
2594 		return rc;
2595 	}
2596 
2597 	return 0;
2598 
2599 checkspace:
2600 	/* Checking for space for 2 additional metadata descriptors due to
2601 	 * possible header split and metadata descriptor
2602 	 */
2603 	if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
2604 					  num_segments + 2)) {
2605 		PMD_TX_LOG(DEBUG, "Not enough space in the Tx queue\n");
2606 		return ENA_COM_NO_MEM;
2607 	}
2608 
2609 	return 0;
2610 }
2611 
2612 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
2613 	struct ena_tx_buffer *tx_info,
2614 	struct rte_mbuf *mbuf,
2615 	void **push_header,
2616 	uint16_t *header_len)
2617 {
2618 	struct ena_com_buf *ena_buf;
2619 	uint16_t delta, seg_len, push_len;
2620 
2621 	delta = 0;
2622 	seg_len = mbuf->data_len;
2623 
2624 	tx_info->mbuf = mbuf;
2625 	ena_buf = tx_info->bufs;
2626 
2627 	if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2628 		/*
2629 		 * Tx header might be (and will be in most cases) smaller than
2630 		 * tx_max_header_size. But it's not an issue to send more data
2631 		 * to the device, than actually needed if the mbuf size is
2632 		 * greater than tx_max_header_size.
2633 		 */
2634 		push_len = RTE_MIN(mbuf->pkt_len, tx_ring->tx_max_header_size);
2635 		*header_len = push_len;
2636 
2637 		if (likely(push_len <= seg_len)) {
2638 			/* If the push header is in the single segment, then
2639 			 * just point it to the 1st mbuf data.
2640 			 */
2641 			*push_header = rte_pktmbuf_mtod(mbuf, uint8_t *);
2642 		} else {
2643 			/* If the push header lays in the several segments, copy
2644 			 * it to the intermediate buffer.
2645 			 */
2646 			rte_pktmbuf_read(mbuf, 0, push_len,
2647 				tx_ring->push_buf_intermediate_buf);
2648 			*push_header = tx_ring->push_buf_intermediate_buf;
2649 			delta = push_len - seg_len;
2650 		}
2651 	} else {
2652 		*push_header = NULL;
2653 		*header_len = 0;
2654 		push_len = 0;
2655 	}
2656 
2657 	/* Process first segment taking into consideration pushed header */
2658 	if (seg_len > push_len) {
2659 		ena_buf->paddr = mbuf->buf_iova +
2660 				mbuf->data_off +
2661 				push_len;
2662 		ena_buf->len = seg_len - push_len;
2663 		ena_buf++;
2664 		tx_info->num_of_bufs++;
2665 	}
2666 
2667 	while ((mbuf = mbuf->next) != NULL) {
2668 		seg_len = mbuf->data_len;
2669 
2670 		/* Skip mbufs if whole data is pushed as a header */
2671 		if (unlikely(delta > seg_len)) {
2672 			delta -= seg_len;
2673 			continue;
2674 		}
2675 
2676 		ena_buf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
2677 		ena_buf->len = seg_len - delta;
2678 		ena_buf++;
2679 		tx_info->num_of_bufs++;
2680 
2681 		delta = 0;
2682 	}
2683 }
2684 
2685 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf)
2686 {
2687 	struct ena_tx_buffer *tx_info;
2688 	struct ena_com_tx_ctx ena_tx_ctx = { { 0 } };
2689 	uint16_t next_to_use;
2690 	uint16_t header_len;
2691 	uint16_t req_id;
2692 	void *push_header;
2693 	int nb_hw_desc;
2694 	int rc;
2695 
2696 	rc = ena_check_space_and_linearize_mbuf(tx_ring, mbuf);
2697 	if (unlikely(rc))
2698 		return rc;
2699 
2700 	next_to_use = tx_ring->next_to_use;
2701 
2702 	req_id = tx_ring->empty_tx_reqs[next_to_use];
2703 	tx_info = &tx_ring->tx_buffer_info[req_id];
2704 	tx_info->num_of_bufs = 0;
2705 
2706 	ena_tx_map_mbuf(tx_ring, tx_info, mbuf, &push_header, &header_len);
2707 
2708 	ena_tx_ctx.ena_bufs = tx_info->bufs;
2709 	ena_tx_ctx.push_header = push_header;
2710 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2711 	ena_tx_ctx.req_id = req_id;
2712 	ena_tx_ctx.header_len = header_len;
2713 
2714 	/* Set Tx offloads flags, if applicable */
2715 	ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads,
2716 		tx_ring->disable_meta_caching);
2717 
2718 	if (unlikely(ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
2719 			&ena_tx_ctx))) {
2720 		PMD_TX_LOG(DEBUG,
2721 			"LLQ Tx max burst size of queue %d achieved, writing doorbell to send burst\n",
2722 			tx_ring->id);
2723 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2724 		tx_ring->tx_stats.doorbells++;
2725 		tx_ring->pkts_without_db = false;
2726 	}
2727 
2728 	/* prepare the packet's descriptors to dma engine */
2729 	rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq,	&ena_tx_ctx,
2730 		&nb_hw_desc);
2731 	if (unlikely(rc)) {
2732 		PMD_DRV_LOG(ERR, "Failed to prepare Tx buffers, rc: %d\n", rc);
2733 		++tx_ring->tx_stats.prepare_ctx_err;
2734 		tx_ring->adapter->reset_reason =
2735 		    ENA_REGS_RESET_DRIVER_INVALID_STATE;
2736 		tx_ring->adapter->trigger_reset = true;
2737 		return rc;
2738 	}
2739 
2740 	tx_info->tx_descs = nb_hw_desc;
2741 	tx_info->timestamp = rte_get_timer_cycles();
2742 
2743 	tx_ring->tx_stats.cnt++;
2744 	tx_ring->tx_stats.bytes += mbuf->pkt_len;
2745 
2746 	tx_ring->next_to_use = ENA_IDX_NEXT_MASKED(next_to_use,
2747 		tx_ring->size_mask);
2748 
2749 	return 0;
2750 }
2751 
2752 static void ena_tx_cleanup(struct ena_ring *tx_ring)
2753 {
2754 	unsigned int total_tx_descs = 0;
2755 	uint16_t cleanup_budget;
2756 	uint16_t next_to_clean = tx_ring->next_to_clean;
2757 
2758 	/* Attempt to release all Tx descriptors (ring_size - 1 -> size_mask) */
2759 	cleanup_budget = tx_ring->size_mask;
2760 
2761 	while (likely(total_tx_descs < cleanup_budget)) {
2762 		struct rte_mbuf *mbuf;
2763 		struct ena_tx_buffer *tx_info;
2764 		uint16_t req_id;
2765 
2766 		if (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) != 0)
2767 			break;
2768 
2769 		if (unlikely(validate_tx_req_id(tx_ring, req_id) != 0))
2770 			break;
2771 
2772 		/* Get Tx info & store how many descs were processed  */
2773 		tx_info = &tx_ring->tx_buffer_info[req_id];
2774 		tx_info->timestamp = 0;
2775 
2776 		mbuf = tx_info->mbuf;
2777 		rte_pktmbuf_free(mbuf);
2778 
2779 		tx_info->mbuf = NULL;
2780 		tx_ring->empty_tx_reqs[next_to_clean] = req_id;
2781 
2782 		total_tx_descs += tx_info->tx_descs;
2783 
2784 		/* Put back descriptor to the ring for reuse */
2785 		next_to_clean = ENA_IDX_NEXT_MASKED(next_to_clean,
2786 			tx_ring->size_mask);
2787 	}
2788 
2789 	if (likely(total_tx_descs > 0)) {
2790 		/* acknowledge completion of sent packets */
2791 		tx_ring->next_to_clean = next_to_clean;
2792 		ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
2793 		ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
2794 	}
2795 
2796 	/* Notify completion handler that the cleanup was just called */
2797 	tx_ring->last_cleanup_ticks = rte_get_timer_cycles();
2798 }
2799 
2800 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2801 				  uint16_t nb_pkts)
2802 {
2803 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2804 	int available_desc;
2805 	uint16_t sent_idx = 0;
2806 
2807 #ifdef RTE_ETHDEV_DEBUG_TX
2808 	/* Check adapter state */
2809 	if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2810 		PMD_TX_LOG(ALERT,
2811 			"Trying to xmit pkts while device is NOT running\n");
2812 		return 0;
2813 	}
2814 #endif
2815 
2816 	for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
2817 		if (ena_xmit_mbuf(tx_ring, tx_pkts[sent_idx]))
2818 			break;
2819 		tx_ring->pkts_without_db = true;
2820 		rte_prefetch0(tx_pkts[ENA_IDX_ADD_MASKED(sent_idx, 4,
2821 			tx_ring->size_mask)]);
2822 	}
2823 
2824 	available_desc = ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2825 	tx_ring->tx_stats.available_desc = available_desc;
2826 
2827 	/* If there are ready packets to be xmitted... */
2828 	if (likely(tx_ring->pkts_without_db)) {
2829 		/* ...let HW do its best :-) */
2830 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2831 		tx_ring->tx_stats.doorbells++;
2832 		tx_ring->pkts_without_db = false;
2833 	}
2834 
2835 	if (available_desc < tx_ring->tx_free_thresh)
2836 		ena_tx_cleanup(tx_ring);
2837 
2838 	tx_ring->tx_stats.available_desc =
2839 		ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2840 	tx_ring->tx_stats.tx_poll++;
2841 
2842 	return sent_idx;
2843 }
2844 
2845 int ena_copy_eni_stats(struct ena_adapter *adapter)
2846 {
2847 	struct ena_admin_eni_stats admin_eni_stats;
2848 	int rc;
2849 
2850 	rte_spinlock_lock(&adapter->admin_lock);
2851 	rc = ena_com_get_eni_stats(&adapter->ena_dev, &admin_eni_stats);
2852 	rte_spinlock_unlock(&adapter->admin_lock);
2853 	if (rc != 0) {
2854 		if (rc == ENA_COM_UNSUPPORTED) {
2855 			PMD_DRV_LOG(DEBUG,
2856 				"Retrieving ENI metrics is not supported\n");
2857 		} else {
2858 			PMD_DRV_LOG(WARNING,
2859 				"Failed to get ENI metrics, rc: %d\n", rc);
2860 		}
2861 		return rc;
2862 	}
2863 
2864 	rte_memcpy(&adapter->eni_stats, &admin_eni_stats,
2865 		sizeof(struct ena_stats_eni));
2866 
2867 	return 0;
2868 }
2869 
2870 /**
2871  * DPDK callback to retrieve names of extended device statistics
2872  *
2873  * @param dev
2874  *   Pointer to Ethernet device structure.
2875  * @param[out] xstats_names
2876  *   Buffer to insert names into.
2877  * @param n
2878  *   Number of names.
2879  *
2880  * @return
2881  *   Number of xstats names.
2882  */
2883 static int ena_xstats_get_names(struct rte_eth_dev *dev,
2884 				struct rte_eth_xstat_name *xstats_names,
2885 				unsigned int n)
2886 {
2887 	unsigned int xstats_count = ena_xstats_calc_num(dev->data);
2888 	unsigned int stat, i, count = 0;
2889 
2890 	if (n < xstats_count || !xstats_names)
2891 		return xstats_count;
2892 
2893 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
2894 		strcpy(xstats_names[count].name,
2895 			ena_stats_global_strings[stat].name);
2896 
2897 	for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++)
2898 		strcpy(xstats_names[count].name,
2899 			ena_stats_eni_strings[stat].name);
2900 
2901 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
2902 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
2903 			snprintf(xstats_names[count].name,
2904 				sizeof(xstats_names[count].name),
2905 				"rx_q%d_%s", i,
2906 				ena_stats_rx_strings[stat].name);
2907 
2908 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
2909 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
2910 			snprintf(xstats_names[count].name,
2911 				sizeof(xstats_names[count].name),
2912 				"tx_q%d_%s", i,
2913 				ena_stats_tx_strings[stat].name);
2914 
2915 	return xstats_count;
2916 }
2917 
2918 /**
2919  * DPDK callback to get extended device statistics.
2920  *
2921  * @param dev
2922  *   Pointer to Ethernet device structure.
2923  * @param[out] stats
2924  *   Stats table output buffer.
2925  * @param n
2926  *   The size of the stats table.
2927  *
2928  * @return
2929  *   Number of xstats on success, negative on failure.
2930  */
2931 static int ena_xstats_get(struct rte_eth_dev *dev,
2932 			  struct rte_eth_xstat *xstats,
2933 			  unsigned int n)
2934 {
2935 	struct ena_adapter *adapter = dev->data->dev_private;
2936 	unsigned int xstats_count = ena_xstats_calc_num(dev->data);
2937 	unsigned int stat, i, count = 0;
2938 	int stat_offset;
2939 	void *stats_begin;
2940 
2941 	if (n < xstats_count)
2942 		return xstats_count;
2943 
2944 	if (!xstats)
2945 		return 0;
2946 
2947 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
2948 		stat_offset = ena_stats_global_strings[stat].stat_offset;
2949 		stats_begin = &adapter->dev_stats;
2950 
2951 		xstats[count].id = count;
2952 		xstats[count].value = *((uint64_t *)
2953 			((char *)stats_begin + stat_offset));
2954 	}
2955 
2956 	/* Even if the function below fails, we should copy previous (or initial
2957 	 * values) to keep structure of rte_eth_xstat consistent.
2958 	 */
2959 	ena_copy_eni_stats(adapter);
2960 	for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++) {
2961 		stat_offset = ena_stats_eni_strings[stat].stat_offset;
2962 		stats_begin = &adapter->eni_stats;
2963 
2964 		xstats[count].id = count;
2965 		xstats[count].value = *((uint64_t *)
2966 		    ((char *)stats_begin + stat_offset));
2967 	}
2968 
2969 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
2970 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
2971 			stat_offset = ena_stats_rx_strings[stat].stat_offset;
2972 			stats_begin = &adapter->rx_ring[i].rx_stats;
2973 
2974 			xstats[count].id = count;
2975 			xstats[count].value = *((uint64_t *)
2976 				((char *)stats_begin + stat_offset));
2977 		}
2978 	}
2979 
2980 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
2981 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
2982 			stat_offset = ena_stats_tx_strings[stat].stat_offset;
2983 			stats_begin = &adapter->tx_ring[i].rx_stats;
2984 
2985 			xstats[count].id = count;
2986 			xstats[count].value = *((uint64_t *)
2987 				((char *)stats_begin + stat_offset));
2988 		}
2989 	}
2990 
2991 	return count;
2992 }
2993 
2994 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
2995 				const uint64_t *ids,
2996 				uint64_t *values,
2997 				unsigned int n)
2998 {
2999 	struct ena_adapter *adapter = dev->data->dev_private;
3000 	uint64_t id;
3001 	uint64_t rx_entries, tx_entries;
3002 	unsigned int i;
3003 	int qid;
3004 	int valid = 0;
3005 	bool was_eni_copied = false;
3006 
3007 	for (i = 0; i < n; ++i) {
3008 		id = ids[i];
3009 		/* Check if id belongs to global statistics */
3010 		if (id < ENA_STATS_ARRAY_GLOBAL) {
3011 			values[i] = *((uint64_t *)&adapter->dev_stats + id);
3012 			++valid;
3013 			continue;
3014 		}
3015 
3016 		/* Check if id belongs to ENI statistics */
3017 		id -= ENA_STATS_ARRAY_GLOBAL;
3018 		if (id < ENA_STATS_ARRAY_ENI) {
3019 			/* Avoid reading ENI stats multiple times in a single
3020 			 * function call, as it requires communication with the
3021 			 * admin queue.
3022 			 */
3023 			if (!was_eni_copied) {
3024 				was_eni_copied = true;
3025 				ena_copy_eni_stats(adapter);
3026 			}
3027 			values[i] = *((uint64_t *)&adapter->eni_stats + id);
3028 			++valid;
3029 			continue;
3030 		}
3031 
3032 		/* Check if id belongs to rx queue statistics */
3033 		id -= ENA_STATS_ARRAY_ENI;
3034 		rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
3035 		if (id < rx_entries) {
3036 			qid = id % dev->data->nb_rx_queues;
3037 			id /= dev->data->nb_rx_queues;
3038 			values[i] = *((uint64_t *)
3039 				&adapter->rx_ring[qid].rx_stats + id);
3040 			++valid;
3041 			continue;
3042 		}
3043 				/* Check if id belongs to rx queue statistics */
3044 		id -= rx_entries;
3045 		tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
3046 		if (id < tx_entries) {
3047 			qid = id % dev->data->nb_tx_queues;
3048 			id /= dev->data->nb_tx_queues;
3049 			values[i] = *((uint64_t *)
3050 				&adapter->tx_ring[qid].tx_stats + id);
3051 			++valid;
3052 			continue;
3053 		}
3054 	}
3055 
3056 	return valid;
3057 }
3058 
3059 static int ena_process_bool_devarg(const char *key,
3060 				   const char *value,
3061 				   void *opaque)
3062 {
3063 	struct ena_adapter *adapter = opaque;
3064 	bool bool_value;
3065 
3066 	/* Parse the value. */
3067 	if (strcmp(value, "1") == 0) {
3068 		bool_value = true;
3069 	} else if (strcmp(value, "0") == 0) {
3070 		bool_value = false;
3071 	} else {
3072 		PMD_INIT_LOG(ERR,
3073 			"Invalid value: '%s' for key '%s'. Accepted: '0' or '1'\n",
3074 			value, key);
3075 		return -EINVAL;
3076 	}
3077 
3078 	/* Now, assign it to the proper adapter field. */
3079 	if (strcmp(key, ENA_DEVARG_LARGE_LLQ_HDR) == 0)
3080 		adapter->use_large_llq_hdr = bool_value;
3081 
3082 	return 0;
3083 }
3084 
3085 static int ena_parse_devargs(struct ena_adapter *adapter,
3086 			     struct rte_devargs *devargs)
3087 {
3088 	static const char * const allowed_args[] = {
3089 		ENA_DEVARG_LARGE_LLQ_HDR,
3090 		NULL,
3091 	};
3092 	struct rte_kvargs *kvlist;
3093 	int rc;
3094 
3095 	if (devargs == NULL)
3096 		return 0;
3097 
3098 	kvlist = rte_kvargs_parse(devargs->args, allowed_args);
3099 	if (kvlist == NULL) {
3100 		PMD_INIT_LOG(ERR, "Invalid device arguments: %s\n",
3101 			devargs->args);
3102 		return -EINVAL;
3103 	}
3104 
3105 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_LARGE_LLQ_HDR,
3106 		ena_process_bool_devarg, adapter);
3107 
3108 	rte_kvargs_free(kvlist);
3109 
3110 	return rc;
3111 }
3112 
3113 static int ena_setup_rx_intr(struct rte_eth_dev *dev)
3114 {
3115 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3116 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
3117 	int rc;
3118 	uint16_t vectors_nb, i;
3119 	bool rx_intr_requested = dev->data->dev_conf.intr_conf.rxq;
3120 
3121 	if (!rx_intr_requested)
3122 		return 0;
3123 
3124 	if (!rte_intr_cap_multiple(intr_handle)) {
3125 		PMD_DRV_LOG(ERR,
3126 			"Rx interrupt requested, but it isn't supported by the PCI driver\n");
3127 		return -ENOTSUP;
3128 	}
3129 
3130 	/* Disable interrupt mapping before the configuration starts. */
3131 	rte_intr_disable(intr_handle);
3132 
3133 	/* Verify if there are enough vectors available. */
3134 	vectors_nb = dev->data->nb_rx_queues;
3135 	if (vectors_nb > RTE_MAX_RXTX_INTR_VEC_ID) {
3136 		PMD_DRV_LOG(ERR,
3137 			"Too many Rx interrupts requested, maximum number: %d\n",
3138 			RTE_MAX_RXTX_INTR_VEC_ID);
3139 		rc = -ENOTSUP;
3140 		goto enable_intr;
3141 	}
3142 
3143 	intr_handle->intr_vec =	rte_zmalloc("intr_vec",
3144 		dev->data->nb_rx_queues * sizeof(*intr_handle->intr_vec), 0);
3145 	if (intr_handle->intr_vec == NULL) {
3146 		PMD_DRV_LOG(ERR,
3147 			"Failed to allocate interrupt vector for %d queues\n",
3148 			dev->data->nb_rx_queues);
3149 		rc = -ENOMEM;
3150 		goto enable_intr;
3151 	}
3152 
3153 	rc = rte_intr_efd_enable(intr_handle, vectors_nb);
3154 	if (rc != 0)
3155 		goto free_intr_vec;
3156 
3157 	if (!rte_intr_allow_others(intr_handle)) {
3158 		PMD_DRV_LOG(ERR,
3159 			"Not enough interrupts available to use both ENA Admin and Rx interrupts\n");
3160 		goto disable_intr_efd;
3161 	}
3162 
3163 	for (i = 0; i < vectors_nb; ++i)
3164 		intr_handle->intr_vec[i] = RTE_INTR_VEC_RXTX_OFFSET + i;
3165 
3166 	rte_intr_enable(intr_handle);
3167 	return 0;
3168 
3169 disable_intr_efd:
3170 	rte_intr_efd_disable(intr_handle);
3171 free_intr_vec:
3172 	rte_free(intr_handle->intr_vec);
3173 	intr_handle->intr_vec = NULL;
3174 enable_intr:
3175 	rte_intr_enable(intr_handle);
3176 	return rc;
3177 }
3178 
3179 static void ena_rx_queue_intr_set(struct rte_eth_dev *dev,
3180 				 uint16_t queue_id,
3181 				 bool unmask)
3182 {
3183 	struct ena_adapter *adapter = dev->data->dev_private;
3184 	struct ena_ring *rxq = &adapter->rx_ring[queue_id];
3185 	struct ena_eth_io_intr_reg intr_reg;
3186 
3187 	ena_com_update_intr_reg(&intr_reg, 0, 0, unmask);
3188 	ena_com_unmask_intr(rxq->ena_com_io_cq, &intr_reg);
3189 }
3190 
3191 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
3192 				    uint16_t queue_id)
3193 {
3194 	ena_rx_queue_intr_set(dev, queue_id, true);
3195 
3196 	return 0;
3197 }
3198 
3199 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
3200 				     uint16_t queue_id)
3201 {
3202 	ena_rx_queue_intr_set(dev, queue_id, false);
3203 
3204 	return 0;
3205 }
3206 
3207 /*********************************************************************
3208  *  PMD configuration
3209  *********************************************************************/
3210 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
3211 	struct rte_pci_device *pci_dev)
3212 {
3213 	return rte_eth_dev_pci_generic_probe(pci_dev,
3214 		sizeof(struct ena_adapter), eth_ena_dev_init);
3215 }
3216 
3217 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
3218 {
3219 	return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
3220 }
3221 
3222 static struct rte_pci_driver rte_ena_pmd = {
3223 	.id_table = pci_id_ena_map,
3224 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
3225 		     RTE_PCI_DRV_WC_ACTIVATE,
3226 	.probe = eth_ena_pci_probe,
3227 	.remove = eth_ena_pci_remove,
3228 };
3229 
3230 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
3231 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
3232 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
3233 RTE_PMD_REGISTER_PARAM_STRING(net_ena, ENA_DEVARG_LARGE_LLQ_HDR "=<0|1>");
3234 RTE_LOG_REGISTER_SUFFIX(ena_logtype_init, init, NOTICE);
3235 RTE_LOG_REGISTER_SUFFIX(ena_logtype_driver, driver, NOTICE);
3236 #ifdef RTE_ETHDEV_DEBUG_RX
3237 RTE_LOG_REGISTER_SUFFIX(ena_logtype_rx, rx, DEBUG);
3238 #endif
3239 #ifdef RTE_ETHDEV_DEBUG_TX
3240 RTE_LOG_REGISTER_SUFFIX(ena_logtype_tx, tx, DEBUG);
3241 #endif
3242 RTE_LOG_REGISTER_SUFFIX(ena_logtype_com, com, WARNING);
3243 
3244 /******************************************************************************
3245  ******************************** AENQ Handlers *******************************
3246  *****************************************************************************/
3247 static void ena_update_on_link_change(void *adapter_data,
3248 				      struct ena_admin_aenq_entry *aenq_e)
3249 {
3250 	struct rte_eth_dev *eth_dev = adapter_data;
3251 	struct ena_adapter *adapter = eth_dev->data->dev_private;
3252 	struct ena_admin_aenq_link_change_desc *aenq_link_desc;
3253 	uint32_t status;
3254 
3255 	aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
3256 
3257 	status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
3258 	adapter->link_status = status;
3259 
3260 	ena_link_update(eth_dev, 0);
3261 	rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
3262 }
3263 
3264 static void ena_notification(void *adapter_data,
3265 			     struct ena_admin_aenq_entry *aenq_e)
3266 {
3267 	struct rte_eth_dev *eth_dev = adapter_data;
3268 	struct ena_adapter *adapter = eth_dev->data->dev_private;
3269 	struct ena_admin_ena_hw_hints *hints;
3270 
3271 	if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
3272 		PMD_DRV_LOG(WARNING, "Invalid AENQ group: %x. Expected: %x\n",
3273 			aenq_e->aenq_common_desc.group,
3274 			ENA_ADMIN_NOTIFICATION);
3275 
3276 	switch (aenq_e->aenq_common_desc.syndrome) {
3277 	case ENA_ADMIN_UPDATE_HINTS:
3278 		hints = (struct ena_admin_ena_hw_hints *)
3279 			(&aenq_e->inline_data_w4);
3280 		ena_update_hints(adapter, hints);
3281 		break;
3282 	default:
3283 		PMD_DRV_LOG(ERR, "Invalid AENQ notification link state: %d\n",
3284 			aenq_e->aenq_common_desc.syndrome);
3285 	}
3286 }
3287 
3288 static void ena_keep_alive(void *adapter_data,
3289 			   __rte_unused struct ena_admin_aenq_entry *aenq_e)
3290 {
3291 	struct rte_eth_dev *eth_dev = adapter_data;
3292 	struct ena_adapter *adapter = eth_dev->data->dev_private;
3293 	struct ena_admin_aenq_keep_alive_desc *desc;
3294 	uint64_t rx_drops;
3295 	uint64_t tx_drops;
3296 
3297 	adapter->timestamp_wd = rte_get_timer_cycles();
3298 
3299 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
3300 	rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
3301 	tx_drops = ((uint64_t)desc->tx_drops_high << 32) | desc->tx_drops_low;
3302 
3303 	adapter->drv_stats->rx_drops = rx_drops;
3304 	adapter->dev_stats.tx_drops = tx_drops;
3305 }
3306 
3307 /**
3308  * This handler will called for unknown event group or unimplemented handlers
3309  **/
3310 static void unimplemented_aenq_handler(__rte_unused void *data,
3311 				       __rte_unused struct ena_admin_aenq_entry *aenq_e)
3312 {
3313 	PMD_DRV_LOG(ERR,
3314 		"Unknown event was received or event with unimplemented handler\n");
3315 }
3316 
3317 static struct ena_aenq_handlers aenq_handlers = {
3318 	.handlers = {
3319 		[ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
3320 		[ENA_ADMIN_NOTIFICATION] = ena_notification,
3321 		[ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive
3322 	},
3323 	.unimplemented_handler = unimplemented_aenq_handler
3324 };
3325