xref: /dpdk/drivers/net/ena/ena_ethdev.c (revision 38faa87eb8873e04ccef8fcaea4aaf3ad125fc83)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
3  * All rights reserved.
4  */
5 
6 #include <rte_string_fns.h>
7 #include <rte_ether.h>
8 #include <rte_ethdev_driver.h>
9 #include <rte_ethdev_pci.h>
10 #include <rte_tcp.h>
11 #include <rte_atomic.h>
12 #include <rte_dev.h>
13 #include <rte_errno.h>
14 #include <rte_version.h>
15 #include <rte_net.h>
16 #include <rte_kvargs.h>
17 
18 #include "ena_ethdev.h"
19 #include "ena_logs.h"
20 #include "ena_platform.h"
21 #include "ena_com.h"
22 #include "ena_eth_com.h"
23 
24 #include <ena_common_defs.h>
25 #include <ena_regs_defs.h>
26 #include <ena_admin_defs.h>
27 #include <ena_eth_io_defs.h>
28 
29 #define DRV_MODULE_VER_MAJOR	2
30 #define DRV_MODULE_VER_MINOR	0
31 #define DRV_MODULE_VER_SUBMINOR	3
32 
33 #define ENA_IO_TXQ_IDX(q)	(2 * (q))
34 #define ENA_IO_RXQ_IDX(q)	(2 * (q) + 1)
35 /*reverse version of ENA_IO_RXQ_IDX*/
36 #define ENA_IO_RXQ_IDX_REV(q)	((q - 1) / 2)
37 
38 /* While processing submitted and completed descriptors (rx and tx path
39  * respectively) in a loop it is desired to:
40  *  - perform batch submissions while populating sumbissmion queue
41  *  - avoid blocking transmission of other packets during cleanup phase
42  * Hence the utilization ratio of 1/8 of a queue size.
43  */
44 #define ENA_RING_DESCS_RATIO(ring_size)	(ring_size / 8)
45 
46 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
47 #define TEST_BIT(val, bit_shift) (val & (1UL << bit_shift))
48 
49 #define GET_L4_HDR_LEN(mbuf)					\
50 	((rte_pktmbuf_mtod_offset(mbuf,	struct rte_tcp_hdr *,	\
51 		mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
52 
53 #define ENA_RX_RSS_TABLE_LOG_SIZE  7
54 #define ENA_RX_RSS_TABLE_SIZE	(1 << ENA_RX_RSS_TABLE_LOG_SIZE)
55 #define ENA_HASH_KEY_SIZE	40
56 #define ETH_GSTRING_LEN	32
57 
58 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
59 
60 #define ENA_MIN_RING_DESC	128
61 
62 enum ethtool_stringset {
63 	ETH_SS_TEST             = 0,
64 	ETH_SS_STATS,
65 };
66 
67 struct ena_stats {
68 	char name[ETH_GSTRING_LEN];
69 	int stat_offset;
70 };
71 
72 #define ENA_STAT_ENTRY(stat, stat_type) { \
73 	.name = #stat, \
74 	.stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
75 }
76 
77 #define ENA_STAT_RX_ENTRY(stat) \
78 	ENA_STAT_ENTRY(stat, rx)
79 
80 #define ENA_STAT_TX_ENTRY(stat) \
81 	ENA_STAT_ENTRY(stat, tx)
82 
83 #define ENA_STAT_GLOBAL_ENTRY(stat) \
84 	ENA_STAT_ENTRY(stat, dev)
85 
86 /* Device arguments */
87 #define ENA_DEVARG_LARGE_LLQ_HDR "large_llq_hdr"
88 
89 /*
90  * Each rte_memzone should have unique name.
91  * To satisfy it, count number of allocation and add it to name.
92  */
93 rte_atomic32_t ena_alloc_cnt;
94 
95 static const struct ena_stats ena_stats_global_strings[] = {
96 	ENA_STAT_GLOBAL_ENTRY(wd_expired),
97 	ENA_STAT_GLOBAL_ENTRY(dev_start),
98 	ENA_STAT_GLOBAL_ENTRY(dev_stop),
99 };
100 
101 static const struct ena_stats ena_stats_tx_strings[] = {
102 	ENA_STAT_TX_ENTRY(cnt),
103 	ENA_STAT_TX_ENTRY(bytes),
104 	ENA_STAT_TX_ENTRY(prepare_ctx_err),
105 	ENA_STAT_TX_ENTRY(linearize),
106 	ENA_STAT_TX_ENTRY(linearize_failed),
107 	ENA_STAT_TX_ENTRY(tx_poll),
108 	ENA_STAT_TX_ENTRY(doorbells),
109 	ENA_STAT_TX_ENTRY(bad_req_id),
110 	ENA_STAT_TX_ENTRY(available_desc),
111 };
112 
113 static const struct ena_stats ena_stats_rx_strings[] = {
114 	ENA_STAT_RX_ENTRY(cnt),
115 	ENA_STAT_RX_ENTRY(bytes),
116 	ENA_STAT_RX_ENTRY(refill_partial),
117 	ENA_STAT_RX_ENTRY(bad_csum),
118 	ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
119 	ENA_STAT_RX_ENTRY(bad_desc_num),
120 	ENA_STAT_RX_ENTRY(bad_req_id),
121 };
122 
123 #define ENA_STATS_ARRAY_GLOBAL	ARRAY_SIZE(ena_stats_global_strings)
124 #define ENA_STATS_ARRAY_TX	ARRAY_SIZE(ena_stats_tx_strings)
125 #define ENA_STATS_ARRAY_RX	ARRAY_SIZE(ena_stats_rx_strings)
126 
127 #define QUEUE_OFFLOADS (DEV_TX_OFFLOAD_TCP_CKSUM |\
128 			DEV_TX_OFFLOAD_UDP_CKSUM |\
129 			DEV_TX_OFFLOAD_IPV4_CKSUM |\
130 			DEV_TX_OFFLOAD_TCP_TSO)
131 #define MBUF_OFFLOADS (PKT_TX_L4_MASK |\
132 		       PKT_TX_IP_CKSUM |\
133 		       PKT_TX_TCP_SEG)
134 
135 /** Vendor ID used by Amazon devices */
136 #define PCI_VENDOR_ID_AMAZON 0x1D0F
137 /** Amazon devices */
138 #define PCI_DEVICE_ID_ENA_VF	0xEC20
139 #define PCI_DEVICE_ID_ENA_LLQ_VF	0xEC21
140 
141 #define	ENA_TX_OFFLOAD_MASK	(\
142 	PKT_TX_L4_MASK |         \
143 	PKT_TX_IPV6 |            \
144 	PKT_TX_IPV4 |            \
145 	PKT_TX_IP_CKSUM |        \
146 	PKT_TX_TCP_SEG)
147 
148 #define	ENA_TX_OFFLOAD_NOTSUP_MASK	\
149 	(PKT_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
150 
151 int ena_logtype_init;
152 int ena_logtype_driver;
153 
154 #ifdef RTE_LIBRTE_ENA_DEBUG_RX
155 int ena_logtype_rx;
156 #endif
157 #ifdef RTE_LIBRTE_ENA_DEBUG_TX
158 int ena_logtype_tx;
159 #endif
160 #ifdef RTE_LIBRTE_ENA_DEBUG_TX_FREE
161 int ena_logtype_tx_free;
162 #endif
163 #ifdef RTE_LIBRTE_ENA_COM_DEBUG
164 int ena_logtype_com;
165 #endif
166 
167 static const struct rte_pci_id pci_id_ena_map[] = {
168 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
169 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_LLQ_VF) },
170 	{ .device_id = 0 },
171 };
172 
173 static struct ena_aenq_handlers aenq_handlers;
174 
175 static int ena_device_init(struct ena_com_dev *ena_dev,
176 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
177 			   bool *wd_state);
178 static int ena_dev_configure(struct rte_eth_dev *dev);
179 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
180 				  uint16_t nb_pkts);
181 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
182 		uint16_t nb_pkts);
183 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
184 			      uint16_t nb_desc, unsigned int socket_id,
185 			      const struct rte_eth_txconf *tx_conf);
186 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
187 			      uint16_t nb_desc, unsigned int socket_id,
188 			      const struct rte_eth_rxconf *rx_conf,
189 			      struct rte_mempool *mp);
190 static uint16_t eth_ena_recv_pkts(void *rx_queue,
191 				  struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
192 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
193 static void ena_init_rings(struct ena_adapter *adapter);
194 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
195 static int ena_start(struct rte_eth_dev *dev);
196 static void ena_stop(struct rte_eth_dev *dev);
197 static void ena_close(struct rte_eth_dev *dev);
198 static int ena_dev_reset(struct rte_eth_dev *dev);
199 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
200 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
201 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
202 static void ena_rx_queue_release(void *queue);
203 static void ena_tx_queue_release(void *queue);
204 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
205 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
206 static int ena_link_update(struct rte_eth_dev *dev,
207 			   int wait_to_complete);
208 static int ena_create_io_queue(struct ena_ring *ring);
209 static void ena_queue_stop(struct ena_ring *ring);
210 static void ena_queue_stop_all(struct rte_eth_dev *dev,
211 			      enum ena_ring_type ring_type);
212 static int ena_queue_start(struct ena_ring *ring);
213 static int ena_queue_start_all(struct rte_eth_dev *dev,
214 			       enum ena_ring_type ring_type);
215 static void ena_stats_restart(struct rte_eth_dev *dev);
216 static int ena_infos_get(struct rte_eth_dev *dev,
217 			 struct rte_eth_dev_info *dev_info);
218 static int ena_rss_reta_update(struct rte_eth_dev *dev,
219 			       struct rte_eth_rss_reta_entry64 *reta_conf,
220 			       uint16_t reta_size);
221 static int ena_rss_reta_query(struct rte_eth_dev *dev,
222 			      struct rte_eth_rss_reta_entry64 *reta_conf,
223 			      uint16_t reta_size);
224 static void ena_interrupt_handler_rte(void *cb_arg);
225 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
226 static void ena_destroy_device(struct rte_eth_dev *eth_dev);
227 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
228 static int ena_xstats_get_names(struct rte_eth_dev *dev,
229 				struct rte_eth_xstat_name *xstats_names,
230 				unsigned int n);
231 static int ena_xstats_get(struct rte_eth_dev *dev,
232 			  struct rte_eth_xstat *stats,
233 			  unsigned int n);
234 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
235 				const uint64_t *ids,
236 				uint64_t *values,
237 				unsigned int n);
238 static int ena_process_bool_devarg(const char *key,
239 				   const char *value,
240 				   void *opaque);
241 static int ena_parse_devargs(struct ena_adapter *adapter,
242 			     struct rte_devargs *devargs);
243 
244 static const struct eth_dev_ops ena_dev_ops = {
245 	.dev_configure        = ena_dev_configure,
246 	.dev_infos_get        = ena_infos_get,
247 	.rx_queue_setup       = ena_rx_queue_setup,
248 	.tx_queue_setup       = ena_tx_queue_setup,
249 	.dev_start            = ena_start,
250 	.dev_stop             = ena_stop,
251 	.link_update          = ena_link_update,
252 	.stats_get            = ena_stats_get,
253 	.xstats_get_names     = ena_xstats_get_names,
254 	.xstats_get	      = ena_xstats_get,
255 	.xstats_get_by_id     = ena_xstats_get_by_id,
256 	.mtu_set              = ena_mtu_set,
257 	.rx_queue_release     = ena_rx_queue_release,
258 	.tx_queue_release     = ena_tx_queue_release,
259 	.dev_close            = ena_close,
260 	.dev_reset            = ena_dev_reset,
261 	.reta_update          = ena_rss_reta_update,
262 	.reta_query           = ena_rss_reta_query,
263 };
264 
265 void ena_rss_key_fill(void *key, size_t size)
266 {
267 	static bool key_generated;
268 	static uint8_t default_key[ENA_HASH_KEY_SIZE];
269 	size_t i;
270 
271 	RTE_ASSERT(size <= ENA_HASH_KEY_SIZE);
272 
273 	if (!key_generated) {
274 		for (i = 0; i < ENA_HASH_KEY_SIZE; ++i)
275 			default_key[i] = rte_rand() & 0xff;
276 		key_generated = true;
277 	}
278 
279 	rte_memcpy(key, default_key, size);
280 }
281 
282 static inline void ena_rx_mbuf_prepare(struct rte_mbuf *mbuf,
283 				       struct ena_com_rx_ctx *ena_rx_ctx)
284 {
285 	uint64_t ol_flags = 0;
286 	uint32_t packet_type = 0;
287 
288 	if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
289 		packet_type |= RTE_PTYPE_L4_TCP;
290 	else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
291 		packet_type |= RTE_PTYPE_L4_UDP;
292 
293 	if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4)
294 		packet_type |= RTE_PTYPE_L3_IPV4;
295 	else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6)
296 		packet_type |= RTE_PTYPE_L3_IPV6;
297 
298 	if (!ena_rx_ctx->l4_csum_checked)
299 		ol_flags |= PKT_RX_L4_CKSUM_UNKNOWN;
300 	else
301 		if (unlikely(ena_rx_ctx->l4_csum_err) && !ena_rx_ctx->frag)
302 			ol_flags |= PKT_RX_L4_CKSUM_BAD;
303 		else
304 			ol_flags |= PKT_RX_L4_CKSUM_UNKNOWN;
305 
306 	if (unlikely(ena_rx_ctx->l3_csum_err))
307 		ol_flags |= PKT_RX_IP_CKSUM_BAD;
308 
309 	mbuf->ol_flags = ol_flags;
310 	mbuf->packet_type = packet_type;
311 }
312 
313 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
314 				       struct ena_com_tx_ctx *ena_tx_ctx,
315 				       uint64_t queue_offloads)
316 {
317 	struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
318 
319 	if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
320 	    (queue_offloads & QUEUE_OFFLOADS)) {
321 		/* check if TSO is required */
322 		if ((mbuf->ol_flags & PKT_TX_TCP_SEG) &&
323 		    (queue_offloads & DEV_TX_OFFLOAD_TCP_TSO)) {
324 			ena_tx_ctx->tso_enable = true;
325 
326 			ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
327 		}
328 
329 		/* check if L3 checksum is needed */
330 		if ((mbuf->ol_flags & PKT_TX_IP_CKSUM) &&
331 		    (queue_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM))
332 			ena_tx_ctx->l3_csum_enable = true;
333 
334 		if (mbuf->ol_flags & PKT_TX_IPV6) {
335 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
336 		} else {
337 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
338 
339 			/* set don't fragment (DF) flag */
340 			if (mbuf->packet_type &
341 				(RTE_PTYPE_L4_NONFRAG
342 				 | RTE_PTYPE_INNER_L4_NONFRAG))
343 				ena_tx_ctx->df = true;
344 		}
345 
346 		/* check if L4 checksum is needed */
347 		if (((mbuf->ol_flags & PKT_TX_L4_MASK) == PKT_TX_TCP_CKSUM) &&
348 		    (queue_offloads & DEV_TX_OFFLOAD_TCP_CKSUM)) {
349 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
350 			ena_tx_ctx->l4_csum_enable = true;
351 		} else if (((mbuf->ol_flags & PKT_TX_L4_MASK) ==
352 				PKT_TX_UDP_CKSUM) &&
353 				(queue_offloads & DEV_TX_OFFLOAD_UDP_CKSUM)) {
354 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
355 			ena_tx_ctx->l4_csum_enable = true;
356 		} else {
357 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
358 			ena_tx_ctx->l4_csum_enable = false;
359 		}
360 
361 		ena_meta->mss = mbuf->tso_segsz;
362 		ena_meta->l3_hdr_len = mbuf->l3_len;
363 		ena_meta->l3_hdr_offset = mbuf->l2_len;
364 
365 		ena_tx_ctx->meta_valid = true;
366 	} else {
367 		ena_tx_ctx->meta_valid = false;
368 	}
369 }
370 
371 static inline int validate_rx_req_id(struct ena_ring *rx_ring, uint16_t req_id)
372 {
373 	if (likely(req_id < rx_ring->ring_size))
374 		return 0;
375 
376 	PMD_DRV_LOG(ERR, "Invalid rx req_id: %hu\n", req_id);
377 
378 	rx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID;
379 	rx_ring->adapter->trigger_reset = true;
380 	++rx_ring->rx_stats.bad_req_id;
381 
382 	return -EFAULT;
383 }
384 
385 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
386 {
387 	struct ena_tx_buffer *tx_info = NULL;
388 
389 	if (likely(req_id < tx_ring->ring_size)) {
390 		tx_info = &tx_ring->tx_buffer_info[req_id];
391 		if (likely(tx_info->mbuf))
392 			return 0;
393 	}
394 
395 	if (tx_info)
396 		PMD_DRV_LOG(ERR, "tx_info doesn't have valid mbuf\n");
397 	else
398 		PMD_DRV_LOG(ERR, "Invalid req_id: %hu\n", req_id);
399 
400 	/* Trigger device reset */
401 	++tx_ring->tx_stats.bad_req_id;
402 	tx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID;
403 	tx_ring->adapter->trigger_reset	= true;
404 	return -EFAULT;
405 }
406 
407 static void ena_config_host_info(struct ena_com_dev *ena_dev)
408 {
409 	struct ena_admin_host_info *host_info;
410 	int rc;
411 
412 	/* Allocate only the host info */
413 	rc = ena_com_allocate_host_info(ena_dev);
414 	if (rc) {
415 		PMD_DRV_LOG(ERR, "Cannot allocate host info\n");
416 		return;
417 	}
418 
419 	host_info = ena_dev->host_attr.host_info;
420 
421 	host_info->os_type = ENA_ADMIN_OS_DPDK;
422 	host_info->kernel_ver = RTE_VERSION;
423 	strlcpy((char *)host_info->kernel_ver_str, rte_version(),
424 		sizeof(host_info->kernel_ver_str));
425 	host_info->os_dist = RTE_VERSION;
426 	strlcpy((char *)host_info->os_dist_str, rte_version(),
427 		sizeof(host_info->os_dist_str));
428 	host_info->driver_version =
429 		(DRV_MODULE_VER_MAJOR) |
430 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
431 		(DRV_MODULE_VER_SUBMINOR <<
432 			ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
433 	host_info->num_cpus = rte_lcore_count();
434 
435 	host_info->driver_supported_features =
436 		ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK;
437 
438 	rc = ena_com_set_host_attributes(ena_dev);
439 	if (rc) {
440 		if (rc == -ENA_COM_UNSUPPORTED)
441 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
442 		else
443 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
444 
445 		goto err;
446 	}
447 
448 	return;
449 
450 err:
451 	ena_com_delete_host_info(ena_dev);
452 }
453 
454 /* This function calculates the number of xstats based on the current config */
455 static unsigned int ena_xstats_calc_num(struct rte_eth_dev *dev)
456 {
457 	return ENA_STATS_ARRAY_GLOBAL +
458 		(dev->data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
459 		(dev->data->nb_rx_queues * ENA_STATS_ARRAY_RX);
460 }
461 
462 static void ena_config_debug_area(struct ena_adapter *adapter)
463 {
464 	u32 debug_area_size;
465 	int rc, ss_count;
466 
467 	ss_count = ena_xstats_calc_num(adapter->rte_dev);
468 
469 	/* allocate 32 bytes for each string and 64bit for the value */
470 	debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
471 
472 	rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
473 	if (rc) {
474 		PMD_DRV_LOG(ERR, "Cannot allocate debug area\n");
475 		return;
476 	}
477 
478 	rc = ena_com_set_host_attributes(&adapter->ena_dev);
479 	if (rc) {
480 		if (rc == -ENA_COM_UNSUPPORTED)
481 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
482 		else
483 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
484 
485 		goto err;
486 	}
487 
488 	return;
489 err:
490 	ena_com_delete_debug_area(&adapter->ena_dev);
491 }
492 
493 static void ena_close(struct rte_eth_dev *dev)
494 {
495 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
496 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
497 	struct ena_adapter *adapter = dev->data->dev_private;
498 
499 	if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
500 		ena_stop(dev);
501 	adapter->state = ENA_ADAPTER_STATE_CLOSED;
502 
503 	ena_rx_queue_release_all(dev);
504 	ena_tx_queue_release_all(dev);
505 
506 	rte_free(adapter->drv_stats);
507 	adapter->drv_stats = NULL;
508 
509 	rte_intr_disable(intr_handle);
510 	rte_intr_callback_unregister(intr_handle,
511 				     ena_interrupt_handler_rte,
512 				     adapter);
513 
514 	/*
515 	 * MAC is not allocated dynamically. Setting NULL should prevent from
516 	 * release of the resource in the rte_eth_dev_release_port().
517 	 */
518 	dev->data->mac_addrs = NULL;
519 }
520 
521 static int
522 ena_dev_reset(struct rte_eth_dev *dev)
523 {
524 	int rc = 0;
525 
526 	ena_destroy_device(dev);
527 	rc = eth_ena_dev_init(dev);
528 	if (rc)
529 		PMD_INIT_LOG(CRIT, "Cannot initialize device");
530 
531 	return rc;
532 }
533 
534 static int ena_rss_reta_update(struct rte_eth_dev *dev,
535 			       struct rte_eth_rss_reta_entry64 *reta_conf,
536 			       uint16_t reta_size)
537 {
538 	struct ena_adapter *adapter = dev->data->dev_private;
539 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
540 	int rc, i;
541 	u16 entry_value;
542 	int conf_idx;
543 	int idx;
544 
545 	if ((reta_size == 0) || (reta_conf == NULL))
546 		return -EINVAL;
547 
548 	if (reta_size > ENA_RX_RSS_TABLE_SIZE) {
549 		PMD_DRV_LOG(WARNING,
550 			"indirection table %d is bigger than supported (%d)\n",
551 			reta_size, ENA_RX_RSS_TABLE_SIZE);
552 		return -EINVAL;
553 	}
554 
555 	for (i = 0 ; i < reta_size ; i++) {
556 		/* each reta_conf is for 64 entries.
557 		 * to support 128 we use 2 conf of 64
558 		 */
559 		conf_idx = i / RTE_RETA_GROUP_SIZE;
560 		idx = i % RTE_RETA_GROUP_SIZE;
561 		if (TEST_BIT(reta_conf[conf_idx].mask, idx)) {
562 			entry_value =
563 				ENA_IO_RXQ_IDX(reta_conf[conf_idx].reta[idx]);
564 
565 			rc = ena_com_indirect_table_fill_entry(ena_dev,
566 							       i,
567 							       entry_value);
568 			if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
569 				PMD_DRV_LOG(ERR,
570 					"Cannot fill indirect table\n");
571 				return rc;
572 			}
573 		}
574 	}
575 
576 	rc = ena_com_indirect_table_set(ena_dev);
577 	if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
578 		PMD_DRV_LOG(ERR, "Cannot flush the indirect table\n");
579 		return rc;
580 	}
581 
582 	PMD_DRV_LOG(DEBUG, "%s(): RSS configured %d entries  for port %d\n",
583 		__func__, reta_size, adapter->rte_dev->data->port_id);
584 
585 	return 0;
586 }
587 
588 /* Query redirection table. */
589 static int ena_rss_reta_query(struct rte_eth_dev *dev,
590 			      struct rte_eth_rss_reta_entry64 *reta_conf,
591 			      uint16_t reta_size)
592 {
593 	struct ena_adapter *adapter = dev->data->dev_private;
594 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
595 	int rc;
596 	int i;
597 	u32 indirect_table[ENA_RX_RSS_TABLE_SIZE] = {0};
598 	int reta_conf_idx;
599 	int reta_idx;
600 
601 	if (reta_size == 0 || reta_conf == NULL ||
602 	    (reta_size > RTE_RETA_GROUP_SIZE && ((reta_conf + 1) == NULL)))
603 		return -EINVAL;
604 
605 	rc = ena_com_indirect_table_get(ena_dev, indirect_table);
606 	if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
607 		PMD_DRV_LOG(ERR, "cannot get indirect table\n");
608 		return -ENOTSUP;
609 	}
610 
611 	for (i = 0 ; i < reta_size ; i++) {
612 		reta_conf_idx = i / RTE_RETA_GROUP_SIZE;
613 		reta_idx = i % RTE_RETA_GROUP_SIZE;
614 		if (TEST_BIT(reta_conf[reta_conf_idx].mask, reta_idx))
615 			reta_conf[reta_conf_idx].reta[reta_idx] =
616 				ENA_IO_RXQ_IDX_REV(indirect_table[i]);
617 	}
618 
619 	return 0;
620 }
621 
622 static int ena_rss_init_default(struct ena_adapter *adapter)
623 {
624 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
625 	uint16_t nb_rx_queues = adapter->rte_dev->data->nb_rx_queues;
626 	int rc, i;
627 	u32 val;
628 
629 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
630 	if (unlikely(rc)) {
631 		PMD_DRV_LOG(ERR, "Cannot init indirect table\n");
632 		goto err_rss_init;
633 	}
634 
635 	for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
636 		val = i % nb_rx_queues;
637 		rc = ena_com_indirect_table_fill_entry(ena_dev, i,
638 						       ENA_IO_RXQ_IDX(val));
639 		if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
640 			PMD_DRV_LOG(ERR, "Cannot fill indirect table\n");
641 			goto err_fill_indir;
642 		}
643 	}
644 
645 	rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL,
646 					ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
647 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
648 		PMD_DRV_LOG(INFO, "Cannot fill hash function\n");
649 		goto err_fill_indir;
650 	}
651 
652 	rc = ena_com_set_default_hash_ctrl(ena_dev);
653 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
654 		PMD_DRV_LOG(INFO, "Cannot fill hash control\n");
655 		goto err_fill_indir;
656 	}
657 
658 	rc = ena_com_indirect_table_set(ena_dev);
659 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
660 		PMD_DRV_LOG(ERR, "Cannot flush the indirect table\n");
661 		goto err_fill_indir;
662 	}
663 	PMD_DRV_LOG(DEBUG, "RSS configured for port %d\n",
664 		adapter->rte_dev->data->port_id);
665 
666 	return 0;
667 
668 err_fill_indir:
669 	ena_com_rss_destroy(ena_dev);
670 err_rss_init:
671 
672 	return rc;
673 }
674 
675 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
676 {
677 	struct ena_ring **queues = (struct ena_ring **)dev->data->rx_queues;
678 	int nb_queues = dev->data->nb_rx_queues;
679 	int i;
680 
681 	for (i = 0; i < nb_queues; i++)
682 		ena_rx_queue_release(queues[i]);
683 }
684 
685 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
686 {
687 	struct ena_ring **queues = (struct ena_ring **)dev->data->tx_queues;
688 	int nb_queues = dev->data->nb_tx_queues;
689 	int i;
690 
691 	for (i = 0; i < nb_queues; i++)
692 		ena_tx_queue_release(queues[i]);
693 }
694 
695 static void ena_rx_queue_release(void *queue)
696 {
697 	struct ena_ring *ring = (struct ena_ring *)queue;
698 
699 	/* Free ring resources */
700 	if (ring->rx_buffer_info)
701 		rte_free(ring->rx_buffer_info);
702 	ring->rx_buffer_info = NULL;
703 
704 	if (ring->rx_refill_buffer)
705 		rte_free(ring->rx_refill_buffer);
706 	ring->rx_refill_buffer = NULL;
707 
708 	if (ring->empty_rx_reqs)
709 		rte_free(ring->empty_rx_reqs);
710 	ring->empty_rx_reqs = NULL;
711 
712 	ring->configured = 0;
713 
714 	PMD_DRV_LOG(NOTICE, "RX Queue %d:%d released\n",
715 		ring->port_id, ring->id);
716 }
717 
718 static void ena_tx_queue_release(void *queue)
719 {
720 	struct ena_ring *ring = (struct ena_ring *)queue;
721 
722 	/* Free ring resources */
723 	if (ring->push_buf_intermediate_buf)
724 		rte_free(ring->push_buf_intermediate_buf);
725 
726 	if (ring->tx_buffer_info)
727 		rte_free(ring->tx_buffer_info);
728 
729 	if (ring->empty_tx_reqs)
730 		rte_free(ring->empty_tx_reqs);
731 
732 	ring->empty_tx_reqs = NULL;
733 	ring->tx_buffer_info = NULL;
734 	ring->push_buf_intermediate_buf = NULL;
735 
736 	ring->configured = 0;
737 
738 	PMD_DRV_LOG(NOTICE, "TX Queue %d:%d released\n",
739 		ring->port_id, ring->id);
740 }
741 
742 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
743 {
744 	unsigned int i;
745 
746 	for (i = 0; i < ring->ring_size; ++i)
747 		if (ring->rx_buffer_info[i]) {
748 			rte_mbuf_raw_free(ring->rx_buffer_info[i]);
749 			ring->rx_buffer_info[i] = NULL;
750 		}
751 }
752 
753 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
754 {
755 	unsigned int i;
756 
757 	for (i = 0; i < ring->ring_size; ++i) {
758 		struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
759 
760 		if (tx_buf->mbuf)
761 			rte_pktmbuf_free(tx_buf->mbuf);
762 	}
763 }
764 
765 static int ena_link_update(struct rte_eth_dev *dev,
766 			   __rte_unused int wait_to_complete)
767 {
768 	struct rte_eth_link *link = &dev->data->dev_link;
769 	struct ena_adapter *adapter = dev->data->dev_private;
770 
771 	link->link_status = adapter->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
772 	link->link_speed = ETH_SPEED_NUM_NONE;
773 	link->link_duplex = ETH_LINK_FULL_DUPLEX;
774 
775 	return 0;
776 }
777 
778 static int ena_queue_start_all(struct rte_eth_dev *dev,
779 			       enum ena_ring_type ring_type)
780 {
781 	struct ena_adapter *adapter = dev->data->dev_private;
782 	struct ena_ring *queues = NULL;
783 	int nb_queues;
784 	int i = 0;
785 	int rc = 0;
786 
787 	if (ring_type == ENA_RING_TYPE_RX) {
788 		queues = adapter->rx_ring;
789 		nb_queues = dev->data->nb_rx_queues;
790 	} else {
791 		queues = adapter->tx_ring;
792 		nb_queues = dev->data->nb_tx_queues;
793 	}
794 	for (i = 0; i < nb_queues; i++) {
795 		if (queues[i].configured) {
796 			if (ring_type == ENA_RING_TYPE_RX) {
797 				ena_assert_msg(
798 					dev->data->rx_queues[i] == &queues[i],
799 					"Inconsistent state of rx queues\n");
800 			} else {
801 				ena_assert_msg(
802 					dev->data->tx_queues[i] == &queues[i],
803 					"Inconsistent state of tx queues\n");
804 			}
805 
806 			rc = ena_queue_start(&queues[i]);
807 
808 			if (rc) {
809 				PMD_INIT_LOG(ERR,
810 					     "failed to start queue %d type(%d)",
811 					     i, ring_type);
812 				goto err;
813 			}
814 		}
815 	}
816 
817 	return 0;
818 
819 err:
820 	while (i--)
821 		if (queues[i].configured)
822 			ena_queue_stop(&queues[i]);
823 
824 	return rc;
825 }
826 
827 static uint32_t ena_get_mtu_conf(struct ena_adapter *adapter)
828 {
829 	uint32_t max_frame_len = adapter->max_mtu;
830 
831 	if (adapter->rte_eth_dev_data->dev_conf.rxmode.offloads &
832 	    DEV_RX_OFFLOAD_JUMBO_FRAME)
833 		max_frame_len =
834 			adapter->rte_eth_dev_data->dev_conf.rxmode.max_rx_pkt_len;
835 
836 	return max_frame_len;
837 }
838 
839 static int ena_check_valid_conf(struct ena_adapter *adapter)
840 {
841 	uint32_t max_frame_len = ena_get_mtu_conf(adapter);
842 
843 	if (max_frame_len > adapter->max_mtu || max_frame_len < ENA_MIN_MTU) {
844 		PMD_INIT_LOG(ERR, "Unsupported MTU of %d. "
845 				  "max mtu: %d, min mtu: %d",
846 			     max_frame_len, adapter->max_mtu, ENA_MIN_MTU);
847 		return ENA_COM_UNSUPPORTED;
848 	}
849 
850 	return 0;
851 }
852 
853 static int
854 ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx,
855 		       bool use_large_llq_hdr)
856 {
857 	struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
858 	struct ena_com_dev *ena_dev = ctx->ena_dev;
859 	uint32_t max_tx_queue_size;
860 	uint32_t max_rx_queue_size;
861 
862 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
863 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
864 			&ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
865 		max_rx_queue_size = RTE_MIN(max_queue_ext->max_rx_cq_depth,
866 			max_queue_ext->max_rx_sq_depth);
867 		max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
868 
869 		if (ena_dev->tx_mem_queue_type ==
870 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
871 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
872 				llq->max_llq_depth);
873 		} else {
874 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
875 				max_queue_ext->max_tx_sq_depth);
876 		}
877 
878 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
879 			max_queue_ext->max_per_packet_rx_descs);
880 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
881 			max_queue_ext->max_per_packet_tx_descs);
882 	} else {
883 		struct ena_admin_queue_feature_desc *max_queues =
884 			&ctx->get_feat_ctx->max_queues;
885 		max_rx_queue_size = RTE_MIN(max_queues->max_cq_depth,
886 			max_queues->max_sq_depth);
887 		max_tx_queue_size = max_queues->max_cq_depth;
888 
889 		if (ena_dev->tx_mem_queue_type ==
890 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
891 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
892 				llq->max_llq_depth);
893 		} else {
894 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
895 				max_queues->max_sq_depth);
896 		}
897 
898 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
899 			max_queues->max_packet_rx_descs);
900 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
901 			max_queues->max_packet_tx_descs);
902 	}
903 
904 	/* Round down to the nearest power of 2 */
905 	max_rx_queue_size = rte_align32prevpow2(max_rx_queue_size);
906 	max_tx_queue_size = rte_align32prevpow2(max_tx_queue_size);
907 
908 	if (use_large_llq_hdr) {
909 		if ((llq->entry_size_ctrl_supported &
910 		     ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
911 		    (ena_dev->tx_mem_queue_type ==
912 		     ENA_ADMIN_PLACEMENT_POLICY_DEV)) {
913 			max_tx_queue_size /= 2;
914 			PMD_INIT_LOG(INFO,
915 				"Forcing large headers and decreasing maximum TX queue size to %d\n",
916 				max_tx_queue_size);
917 		} else {
918 			PMD_INIT_LOG(ERR,
919 				"Forcing large headers failed: LLQ is disabled or device does not support large headers\n");
920 		}
921 	}
922 
923 	if (unlikely(max_rx_queue_size == 0 || max_tx_queue_size == 0)) {
924 		PMD_INIT_LOG(ERR, "Invalid queue size");
925 		return -EFAULT;
926 	}
927 
928 	ctx->max_tx_queue_size = max_tx_queue_size;
929 	ctx->max_rx_queue_size = max_rx_queue_size;
930 
931 	return 0;
932 }
933 
934 static void ena_stats_restart(struct rte_eth_dev *dev)
935 {
936 	struct ena_adapter *adapter = dev->data->dev_private;
937 
938 	rte_atomic64_init(&adapter->drv_stats->ierrors);
939 	rte_atomic64_init(&adapter->drv_stats->oerrors);
940 	rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
941 	rte_atomic64_init(&adapter->drv_stats->rx_drops);
942 }
943 
944 static int ena_stats_get(struct rte_eth_dev *dev,
945 			  struct rte_eth_stats *stats)
946 {
947 	struct ena_admin_basic_stats ena_stats;
948 	struct ena_adapter *adapter = dev->data->dev_private;
949 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
950 	int rc;
951 	int i;
952 	int max_rings_stats;
953 
954 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
955 		return -ENOTSUP;
956 
957 	memset(&ena_stats, 0, sizeof(ena_stats));
958 	rc = ena_com_get_dev_basic_stats(ena_dev, &ena_stats);
959 	if (unlikely(rc)) {
960 		PMD_DRV_LOG(ERR, "Could not retrieve statistics from ENA\n");
961 		return rc;
962 	}
963 
964 	/* Set of basic statistics from ENA */
965 	stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
966 					  ena_stats.rx_pkts_low);
967 	stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
968 					  ena_stats.tx_pkts_low);
969 	stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
970 					ena_stats.rx_bytes_low);
971 	stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
972 					ena_stats.tx_bytes_low);
973 
974 	/* Driver related stats */
975 	stats->imissed = rte_atomic64_read(&adapter->drv_stats->rx_drops);
976 	stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
977 	stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
978 	stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
979 
980 	max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
981 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
982 	for (i = 0; i < max_rings_stats; ++i) {
983 		struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
984 
985 		stats->q_ibytes[i] = rx_stats->bytes;
986 		stats->q_ipackets[i] = rx_stats->cnt;
987 		stats->q_errors[i] = rx_stats->bad_desc_num +
988 			rx_stats->bad_req_id;
989 	}
990 
991 	max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
992 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
993 	for (i = 0; i < max_rings_stats; ++i) {
994 		struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
995 
996 		stats->q_obytes[i] = tx_stats->bytes;
997 		stats->q_opackets[i] = tx_stats->cnt;
998 	}
999 
1000 	return 0;
1001 }
1002 
1003 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1004 {
1005 	struct ena_adapter *adapter;
1006 	struct ena_com_dev *ena_dev;
1007 	int rc = 0;
1008 
1009 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
1010 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
1011 	adapter = dev->data->dev_private;
1012 
1013 	ena_dev = &adapter->ena_dev;
1014 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
1015 
1016 	if (mtu > ena_get_mtu_conf(adapter) || mtu < ENA_MIN_MTU) {
1017 		PMD_DRV_LOG(ERR,
1018 			"Invalid MTU setting. new_mtu: %d "
1019 			"max mtu: %d min mtu: %d\n",
1020 			mtu, ena_get_mtu_conf(adapter), ENA_MIN_MTU);
1021 		return -EINVAL;
1022 	}
1023 
1024 	rc = ena_com_set_dev_mtu(ena_dev, mtu);
1025 	if (rc)
1026 		PMD_DRV_LOG(ERR, "Could not set MTU: %d\n", mtu);
1027 	else
1028 		PMD_DRV_LOG(NOTICE, "Set MTU: %d\n", mtu);
1029 
1030 	return rc;
1031 }
1032 
1033 static int ena_start(struct rte_eth_dev *dev)
1034 {
1035 	struct ena_adapter *adapter = dev->data->dev_private;
1036 	uint64_t ticks;
1037 	int rc = 0;
1038 
1039 	rc = ena_check_valid_conf(adapter);
1040 	if (rc)
1041 		return rc;
1042 
1043 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
1044 	if (rc)
1045 		return rc;
1046 
1047 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
1048 	if (rc)
1049 		goto err_start_tx;
1050 
1051 	if (adapter->rte_dev->data->dev_conf.rxmode.mq_mode &
1052 	    ETH_MQ_RX_RSS_FLAG && adapter->rte_dev->data->nb_rx_queues > 0) {
1053 		rc = ena_rss_init_default(adapter);
1054 		if (rc)
1055 			goto err_rss_init;
1056 	}
1057 
1058 	ena_stats_restart(dev);
1059 
1060 	adapter->timestamp_wd = rte_get_timer_cycles();
1061 	adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
1062 
1063 	ticks = rte_get_timer_hz();
1064 	rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
1065 			ena_timer_wd_callback, adapter);
1066 
1067 	++adapter->dev_stats.dev_start;
1068 	adapter->state = ENA_ADAPTER_STATE_RUNNING;
1069 
1070 	return 0;
1071 
1072 err_rss_init:
1073 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1074 err_start_tx:
1075 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1076 	return rc;
1077 }
1078 
1079 static void ena_stop(struct rte_eth_dev *dev)
1080 {
1081 	struct ena_adapter *adapter = dev->data->dev_private;
1082 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1083 	int rc;
1084 
1085 	rte_timer_stop_sync(&adapter->timer_wd);
1086 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1087 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1088 
1089 	if (adapter->trigger_reset) {
1090 		rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
1091 		if (rc)
1092 			PMD_DRV_LOG(ERR, "Device reset failed rc=%d\n", rc);
1093 	}
1094 
1095 	++adapter->dev_stats.dev_stop;
1096 	adapter->state = ENA_ADAPTER_STATE_STOPPED;
1097 }
1098 
1099 static int ena_create_io_queue(struct ena_ring *ring)
1100 {
1101 	struct ena_adapter *adapter;
1102 	struct ena_com_dev *ena_dev;
1103 	struct ena_com_create_io_ctx ctx =
1104 		/* policy set to _HOST just to satisfy icc compiler */
1105 		{ ENA_ADMIN_PLACEMENT_POLICY_HOST,
1106 		  0, 0, 0, 0, 0 };
1107 	uint16_t ena_qid;
1108 	unsigned int i;
1109 	int rc;
1110 
1111 	adapter = ring->adapter;
1112 	ena_dev = &adapter->ena_dev;
1113 
1114 	if (ring->type == ENA_RING_TYPE_TX) {
1115 		ena_qid = ENA_IO_TXQ_IDX(ring->id);
1116 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1117 		ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1118 		for (i = 0; i < ring->ring_size; i++)
1119 			ring->empty_tx_reqs[i] = i;
1120 	} else {
1121 		ena_qid = ENA_IO_RXQ_IDX(ring->id);
1122 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1123 		for (i = 0; i < ring->ring_size; i++)
1124 			ring->empty_rx_reqs[i] = i;
1125 	}
1126 	ctx.queue_size = ring->ring_size;
1127 	ctx.qid = ena_qid;
1128 	ctx.msix_vector = -1; /* interrupts not used */
1129 	ctx.numa_node = ring->numa_socket_id;
1130 
1131 	rc = ena_com_create_io_queue(ena_dev, &ctx);
1132 	if (rc) {
1133 		PMD_DRV_LOG(ERR,
1134 			"failed to create io queue #%d (qid:%d) rc: %d\n",
1135 			ring->id, ena_qid, rc);
1136 		return rc;
1137 	}
1138 
1139 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1140 				     &ring->ena_com_io_sq,
1141 				     &ring->ena_com_io_cq);
1142 	if (rc) {
1143 		PMD_DRV_LOG(ERR,
1144 			"Failed to get io queue handlers. queue num %d rc: %d\n",
1145 			ring->id, rc);
1146 		ena_com_destroy_io_queue(ena_dev, ena_qid);
1147 		return rc;
1148 	}
1149 
1150 	if (ring->type == ENA_RING_TYPE_TX)
1151 		ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1152 
1153 	return 0;
1154 }
1155 
1156 static void ena_queue_stop(struct ena_ring *ring)
1157 {
1158 	struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
1159 
1160 	if (ring->type == ENA_RING_TYPE_RX) {
1161 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
1162 		ena_rx_queue_release_bufs(ring);
1163 	} else {
1164 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
1165 		ena_tx_queue_release_bufs(ring);
1166 	}
1167 }
1168 
1169 static void ena_queue_stop_all(struct rte_eth_dev *dev,
1170 			      enum ena_ring_type ring_type)
1171 {
1172 	struct ena_adapter *adapter = dev->data->dev_private;
1173 	struct ena_ring *queues = NULL;
1174 	uint16_t nb_queues, i;
1175 
1176 	if (ring_type == ENA_RING_TYPE_RX) {
1177 		queues = adapter->rx_ring;
1178 		nb_queues = dev->data->nb_rx_queues;
1179 	} else {
1180 		queues = adapter->tx_ring;
1181 		nb_queues = dev->data->nb_tx_queues;
1182 	}
1183 
1184 	for (i = 0; i < nb_queues; ++i)
1185 		if (queues[i].configured)
1186 			ena_queue_stop(&queues[i]);
1187 }
1188 
1189 static int ena_queue_start(struct ena_ring *ring)
1190 {
1191 	int rc, bufs_num;
1192 
1193 	ena_assert_msg(ring->configured == 1,
1194 		       "Trying to start unconfigured queue\n");
1195 
1196 	rc = ena_create_io_queue(ring);
1197 	if (rc) {
1198 		PMD_INIT_LOG(ERR, "Failed to create IO queue!");
1199 		return rc;
1200 	}
1201 
1202 	ring->next_to_clean = 0;
1203 	ring->next_to_use = 0;
1204 
1205 	if (ring->type == ENA_RING_TYPE_TX) {
1206 		ring->tx_stats.available_desc =
1207 			ena_com_free_q_entries(ring->ena_com_io_sq);
1208 		return 0;
1209 	}
1210 
1211 	bufs_num = ring->ring_size - 1;
1212 	rc = ena_populate_rx_queue(ring, bufs_num);
1213 	if (rc != bufs_num) {
1214 		ena_com_destroy_io_queue(&ring->adapter->ena_dev,
1215 					 ENA_IO_RXQ_IDX(ring->id));
1216 		PMD_INIT_LOG(ERR, "Failed to populate rx ring !");
1217 		return ENA_COM_FAULT;
1218 	}
1219 
1220 	return 0;
1221 }
1222 
1223 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1224 			      uint16_t queue_idx,
1225 			      uint16_t nb_desc,
1226 			      unsigned int socket_id,
1227 			      const struct rte_eth_txconf *tx_conf)
1228 {
1229 	struct ena_ring *txq = NULL;
1230 	struct ena_adapter *adapter = dev->data->dev_private;
1231 	unsigned int i;
1232 
1233 	txq = &adapter->tx_ring[queue_idx];
1234 
1235 	if (txq->configured) {
1236 		PMD_DRV_LOG(CRIT,
1237 			"API violation. Queue %d is already configured\n",
1238 			queue_idx);
1239 		return ENA_COM_FAULT;
1240 	}
1241 
1242 	if (!rte_is_power_of_2(nb_desc)) {
1243 		PMD_DRV_LOG(ERR,
1244 			"Unsupported size of TX queue: %d is not a power of 2.\n",
1245 			nb_desc);
1246 		return -EINVAL;
1247 	}
1248 
1249 	if (nb_desc > adapter->max_tx_ring_size) {
1250 		PMD_DRV_LOG(ERR,
1251 			"Unsupported size of TX queue (max size: %d)\n",
1252 			adapter->max_tx_ring_size);
1253 		return -EINVAL;
1254 	}
1255 
1256 	if (nb_desc == RTE_ETH_DEV_FALLBACK_TX_RINGSIZE)
1257 		nb_desc = adapter->max_tx_ring_size;
1258 
1259 	txq->port_id = dev->data->port_id;
1260 	txq->next_to_clean = 0;
1261 	txq->next_to_use = 0;
1262 	txq->ring_size = nb_desc;
1263 	txq->numa_socket_id = socket_id;
1264 
1265 	txq->tx_buffer_info = rte_zmalloc("txq->tx_buffer_info",
1266 					  sizeof(struct ena_tx_buffer) *
1267 					  txq->ring_size,
1268 					  RTE_CACHE_LINE_SIZE);
1269 	if (!txq->tx_buffer_info) {
1270 		PMD_DRV_LOG(ERR, "failed to alloc mem for tx buffer info\n");
1271 		return -ENOMEM;
1272 	}
1273 
1274 	txq->empty_tx_reqs = rte_zmalloc("txq->empty_tx_reqs",
1275 					 sizeof(u16) * txq->ring_size,
1276 					 RTE_CACHE_LINE_SIZE);
1277 	if (!txq->empty_tx_reqs) {
1278 		PMD_DRV_LOG(ERR, "failed to alloc mem for tx reqs\n");
1279 		rte_free(txq->tx_buffer_info);
1280 		return -ENOMEM;
1281 	}
1282 
1283 	txq->push_buf_intermediate_buf =
1284 		rte_zmalloc("txq->push_buf_intermediate_buf",
1285 			    txq->tx_max_header_size,
1286 			    RTE_CACHE_LINE_SIZE);
1287 	if (!txq->push_buf_intermediate_buf) {
1288 		PMD_DRV_LOG(ERR, "failed to alloc push buff for LLQ\n");
1289 		rte_free(txq->tx_buffer_info);
1290 		rte_free(txq->empty_tx_reqs);
1291 		return -ENOMEM;
1292 	}
1293 
1294 	for (i = 0; i < txq->ring_size; i++)
1295 		txq->empty_tx_reqs[i] = i;
1296 
1297 	if (tx_conf != NULL) {
1298 		txq->offloads =
1299 			tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1300 	}
1301 	/* Store pointer to this queue in upper layer */
1302 	txq->configured = 1;
1303 	dev->data->tx_queues[queue_idx] = txq;
1304 
1305 	return 0;
1306 }
1307 
1308 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1309 			      uint16_t queue_idx,
1310 			      uint16_t nb_desc,
1311 			      unsigned int socket_id,
1312 			      __rte_unused const struct rte_eth_rxconf *rx_conf,
1313 			      struct rte_mempool *mp)
1314 {
1315 	struct ena_adapter *adapter = dev->data->dev_private;
1316 	struct ena_ring *rxq = NULL;
1317 	size_t buffer_size;
1318 	int i;
1319 
1320 	rxq = &adapter->rx_ring[queue_idx];
1321 	if (rxq->configured) {
1322 		PMD_DRV_LOG(CRIT,
1323 			"API violation. Queue %d is already configured\n",
1324 			queue_idx);
1325 		return ENA_COM_FAULT;
1326 	}
1327 
1328 	if (nb_desc == RTE_ETH_DEV_FALLBACK_RX_RINGSIZE)
1329 		nb_desc = adapter->max_rx_ring_size;
1330 
1331 	if (!rte_is_power_of_2(nb_desc)) {
1332 		PMD_DRV_LOG(ERR,
1333 			"Unsupported size of RX queue: %d is not a power of 2.\n",
1334 			nb_desc);
1335 		return -EINVAL;
1336 	}
1337 
1338 	if (nb_desc > adapter->max_rx_ring_size) {
1339 		PMD_DRV_LOG(ERR,
1340 			"Unsupported size of RX queue (max size: %d)\n",
1341 			adapter->max_rx_ring_size);
1342 		return -EINVAL;
1343 	}
1344 
1345 	/* ENA isn't supporting buffers smaller than 1400 bytes */
1346 	buffer_size = rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
1347 	if (buffer_size < ENA_RX_BUF_MIN_SIZE) {
1348 		PMD_DRV_LOG(ERR,
1349 			"Unsupported size of RX buffer: %zu (min size: %d)\n",
1350 			buffer_size, ENA_RX_BUF_MIN_SIZE);
1351 		return -EINVAL;
1352 	}
1353 
1354 	rxq->port_id = dev->data->port_id;
1355 	rxq->next_to_clean = 0;
1356 	rxq->next_to_use = 0;
1357 	rxq->ring_size = nb_desc;
1358 	rxq->numa_socket_id = socket_id;
1359 	rxq->mb_pool = mp;
1360 
1361 	rxq->rx_buffer_info = rte_zmalloc("rxq->buffer_info",
1362 					  sizeof(struct rte_mbuf *) * nb_desc,
1363 					  RTE_CACHE_LINE_SIZE);
1364 	if (!rxq->rx_buffer_info) {
1365 		PMD_DRV_LOG(ERR, "failed to alloc mem for rx buffer info\n");
1366 		return -ENOMEM;
1367 	}
1368 
1369 	rxq->rx_refill_buffer = rte_zmalloc("rxq->rx_refill_buffer",
1370 					    sizeof(struct rte_mbuf *) * nb_desc,
1371 					    RTE_CACHE_LINE_SIZE);
1372 
1373 	if (!rxq->rx_refill_buffer) {
1374 		PMD_DRV_LOG(ERR, "failed to alloc mem for rx refill buffer\n");
1375 		rte_free(rxq->rx_buffer_info);
1376 		rxq->rx_buffer_info = NULL;
1377 		return -ENOMEM;
1378 	}
1379 
1380 	rxq->empty_rx_reqs = rte_zmalloc("rxq->empty_rx_reqs",
1381 					 sizeof(uint16_t) * nb_desc,
1382 					 RTE_CACHE_LINE_SIZE);
1383 	if (!rxq->empty_rx_reqs) {
1384 		PMD_DRV_LOG(ERR, "failed to alloc mem for empty rx reqs\n");
1385 		rte_free(rxq->rx_buffer_info);
1386 		rxq->rx_buffer_info = NULL;
1387 		rte_free(rxq->rx_refill_buffer);
1388 		rxq->rx_refill_buffer = NULL;
1389 		return -ENOMEM;
1390 	}
1391 
1392 	for (i = 0; i < nb_desc; i++)
1393 		rxq->empty_rx_reqs[i] = i;
1394 
1395 	/* Store pointer to this queue in upper layer */
1396 	rxq->configured = 1;
1397 	dev->data->rx_queues[queue_idx] = rxq;
1398 
1399 	return 0;
1400 }
1401 
1402 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1403 {
1404 	unsigned int i;
1405 	int rc;
1406 	uint16_t ring_size = rxq->ring_size;
1407 	uint16_t ring_mask = ring_size - 1;
1408 	uint16_t next_to_use = rxq->next_to_use;
1409 	uint16_t in_use, req_id;
1410 	struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1411 
1412 	if (unlikely(!count))
1413 		return 0;
1414 
1415 	in_use = rxq->next_to_use - rxq->next_to_clean;
1416 	ena_assert_msg(((in_use + count) < ring_size), "bad ring state\n");
1417 
1418 	/* get resources for incoming packets */
1419 	rc = rte_mempool_get_bulk(rxq->mb_pool, (void **)mbufs, count);
1420 	if (unlikely(rc < 0)) {
1421 		rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1422 		++rxq->rx_stats.mbuf_alloc_fail;
1423 		PMD_RX_LOG(DEBUG, "there are no enough free buffers");
1424 		return 0;
1425 	}
1426 
1427 	for (i = 0; i < count; i++) {
1428 		uint16_t next_to_use_masked = next_to_use & ring_mask;
1429 		struct rte_mbuf *mbuf = mbufs[i];
1430 		struct ena_com_buf ebuf;
1431 
1432 		if (likely((i + 4) < count))
1433 			rte_prefetch0(mbufs[i + 4]);
1434 
1435 		req_id = rxq->empty_rx_reqs[next_to_use_masked];
1436 		rc = validate_rx_req_id(rxq, req_id);
1437 		if (unlikely(rc < 0))
1438 			break;
1439 		rxq->rx_buffer_info[req_id] = mbuf;
1440 
1441 		/* prepare physical address for DMA transaction */
1442 		ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1443 		ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1444 		/* pass resource to device */
1445 		rc = ena_com_add_single_rx_desc(rxq->ena_com_io_sq,
1446 						&ebuf, req_id);
1447 		if (unlikely(rc)) {
1448 			PMD_DRV_LOG(WARNING, "failed adding rx desc\n");
1449 			rxq->rx_buffer_info[req_id] = NULL;
1450 			break;
1451 		}
1452 		next_to_use++;
1453 	}
1454 
1455 	if (unlikely(i < count)) {
1456 		PMD_DRV_LOG(WARNING, "refilled rx qid %d with only %d "
1457 			"buffers (from %d)\n", rxq->id, i, count);
1458 		rte_mempool_put_bulk(rxq->mb_pool, (void **)(&mbufs[i]),
1459 				     count - i);
1460 		++rxq->rx_stats.refill_partial;
1461 	}
1462 
1463 	/* When we submitted free recources to device... */
1464 	if (likely(i > 0)) {
1465 		/* ...let HW know that it can fill buffers with data. */
1466 		ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1467 
1468 		rxq->next_to_use = next_to_use;
1469 	}
1470 
1471 	return i;
1472 }
1473 
1474 static int ena_device_init(struct ena_com_dev *ena_dev,
1475 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
1476 			   bool *wd_state)
1477 {
1478 	uint32_t aenq_groups;
1479 	int rc;
1480 	bool readless_supported;
1481 
1482 	/* Initialize mmio registers */
1483 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
1484 	if (rc) {
1485 		PMD_DRV_LOG(ERR, "failed to init mmio read less\n");
1486 		return rc;
1487 	}
1488 
1489 	/* The PCIe configuration space revision id indicate if mmio reg
1490 	 * read is disabled.
1491 	 */
1492 	readless_supported =
1493 		!(((struct rte_pci_device *)ena_dev->dmadev)->id.class_id
1494 			       & ENA_MMIO_DISABLE_REG_READ);
1495 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1496 
1497 	/* reset device */
1498 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1499 	if (rc) {
1500 		PMD_DRV_LOG(ERR, "cannot reset device\n");
1501 		goto err_mmio_read_less;
1502 	}
1503 
1504 	/* check FW version */
1505 	rc = ena_com_validate_version(ena_dev);
1506 	if (rc) {
1507 		PMD_DRV_LOG(ERR, "device version is too low\n");
1508 		goto err_mmio_read_less;
1509 	}
1510 
1511 	ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1512 
1513 	/* ENA device administration layer init */
1514 	rc = ena_com_admin_init(ena_dev, &aenq_handlers);
1515 	if (rc) {
1516 		PMD_DRV_LOG(ERR,
1517 			"cannot initialize ena admin queue with device\n");
1518 		goto err_mmio_read_less;
1519 	}
1520 
1521 	/* To enable the msix interrupts the driver needs to know the number
1522 	 * of queues. So the driver uses polling mode to retrieve this
1523 	 * information.
1524 	 */
1525 	ena_com_set_admin_polling_mode(ena_dev, true);
1526 
1527 	ena_config_host_info(ena_dev);
1528 
1529 	/* Get Device Attributes and features */
1530 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1531 	if (rc) {
1532 		PMD_DRV_LOG(ERR,
1533 			"cannot get attribute for ena device rc= %d\n", rc);
1534 		goto err_admin_init;
1535 	}
1536 
1537 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1538 		      BIT(ENA_ADMIN_NOTIFICATION) |
1539 		      BIT(ENA_ADMIN_KEEP_ALIVE) |
1540 		      BIT(ENA_ADMIN_FATAL_ERROR) |
1541 		      BIT(ENA_ADMIN_WARNING);
1542 
1543 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
1544 	rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
1545 	if (rc) {
1546 		PMD_DRV_LOG(ERR, "Cannot configure aenq groups rc: %d\n", rc);
1547 		goto err_admin_init;
1548 	}
1549 
1550 	*wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
1551 
1552 	return 0;
1553 
1554 err_admin_init:
1555 	ena_com_admin_destroy(ena_dev);
1556 
1557 err_mmio_read_less:
1558 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1559 
1560 	return rc;
1561 }
1562 
1563 static void ena_interrupt_handler_rte(void *cb_arg)
1564 {
1565 	struct ena_adapter *adapter = cb_arg;
1566 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1567 
1568 	ena_com_admin_q_comp_intr_handler(ena_dev);
1569 	if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED))
1570 		ena_com_aenq_intr_handler(ena_dev, adapter);
1571 }
1572 
1573 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1574 {
1575 	if (!adapter->wd_state)
1576 		return;
1577 
1578 	if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1579 		return;
1580 
1581 	if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1582 	    adapter->keep_alive_timeout)) {
1583 		PMD_DRV_LOG(ERR, "Keep alive timeout\n");
1584 		adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
1585 		adapter->trigger_reset = true;
1586 		++adapter->dev_stats.wd_expired;
1587 	}
1588 }
1589 
1590 /* Check if admin queue is enabled */
1591 static void check_for_admin_com_state(struct ena_adapter *adapter)
1592 {
1593 	if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1594 		PMD_DRV_LOG(ERR, "ENA admin queue is not in running state!\n");
1595 		adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
1596 		adapter->trigger_reset = true;
1597 	}
1598 }
1599 
1600 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
1601 				  void *arg)
1602 {
1603 	struct ena_adapter *adapter = arg;
1604 	struct rte_eth_dev *dev = adapter->rte_dev;
1605 
1606 	check_for_missing_keep_alive(adapter);
1607 	check_for_admin_com_state(adapter);
1608 
1609 	if (unlikely(adapter->trigger_reset)) {
1610 		PMD_DRV_LOG(ERR, "Trigger reset is on\n");
1611 		_rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
1612 			NULL);
1613 	}
1614 }
1615 
1616 static inline void
1617 set_default_llq_configurations(struct ena_llq_configurations *llq_config,
1618 			       struct ena_admin_feature_llq_desc *llq,
1619 			       bool use_large_llq_hdr)
1620 {
1621 	llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
1622 	llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
1623 	llq_config->llq_num_decs_before_header =
1624 		ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
1625 
1626 	if (use_large_llq_hdr &&
1627 	    (llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B)) {
1628 		llq_config->llq_ring_entry_size =
1629 			ENA_ADMIN_LIST_ENTRY_SIZE_256B;
1630 		llq_config->llq_ring_entry_size_value = 256;
1631 	} else {
1632 		llq_config->llq_ring_entry_size =
1633 			ENA_ADMIN_LIST_ENTRY_SIZE_128B;
1634 		llq_config->llq_ring_entry_size_value = 128;
1635 	}
1636 }
1637 
1638 static int
1639 ena_set_queues_placement_policy(struct ena_adapter *adapter,
1640 				struct ena_com_dev *ena_dev,
1641 				struct ena_admin_feature_llq_desc *llq,
1642 				struct ena_llq_configurations *llq_default_configurations)
1643 {
1644 	int rc;
1645 	u32 llq_feature_mask;
1646 
1647 	llq_feature_mask = 1 << ENA_ADMIN_LLQ;
1648 	if (!(ena_dev->supported_features & llq_feature_mask)) {
1649 		PMD_DRV_LOG(INFO,
1650 			"LLQ is not supported. Fallback to host mode policy.\n");
1651 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1652 		return 0;
1653 	}
1654 
1655 	rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
1656 	if (unlikely(rc)) {
1657 		PMD_INIT_LOG(WARNING, "Failed to config dev mode. "
1658 			"Fallback to host mode policy.");
1659 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1660 		return 0;
1661 	}
1662 
1663 	/* Nothing to config, exit */
1664 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1665 		return 0;
1666 
1667 	if (!adapter->dev_mem_base) {
1668 		PMD_DRV_LOG(ERR, "Unable to access LLQ bar resource. "
1669 			"Fallback to host mode policy.\n.");
1670 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1671 		return 0;
1672 	}
1673 
1674 	ena_dev->mem_bar = adapter->dev_mem_base;
1675 
1676 	return 0;
1677 }
1678 
1679 static uint32_t ena_calc_max_io_queue_num(struct ena_com_dev *ena_dev,
1680 	struct ena_com_dev_get_features_ctx *get_feat_ctx)
1681 {
1682 	uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
1683 
1684 	/* Regular queues capabilities */
1685 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1686 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1687 			&get_feat_ctx->max_queue_ext.max_queue_ext;
1688 		io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
1689 				    max_queue_ext->max_rx_cq_num);
1690 		io_tx_sq_num = max_queue_ext->max_tx_sq_num;
1691 		io_tx_cq_num = max_queue_ext->max_tx_cq_num;
1692 	} else {
1693 		struct ena_admin_queue_feature_desc *max_queues =
1694 			&get_feat_ctx->max_queues;
1695 		io_tx_sq_num = max_queues->max_sq_num;
1696 		io_tx_cq_num = max_queues->max_cq_num;
1697 		io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
1698 	}
1699 
1700 	/* In case of LLQ use the llq number in the get feature cmd */
1701 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
1702 		io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
1703 
1704 	max_num_io_queues = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
1705 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_sq_num);
1706 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_cq_num);
1707 
1708 	if (unlikely(max_num_io_queues == 0)) {
1709 		PMD_DRV_LOG(ERR, "Number of IO queues should not be 0\n");
1710 		return -EFAULT;
1711 	}
1712 
1713 	return max_num_io_queues;
1714 }
1715 
1716 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
1717 {
1718 	struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
1719 	struct rte_pci_device *pci_dev;
1720 	struct rte_intr_handle *intr_handle;
1721 	struct ena_adapter *adapter = eth_dev->data->dev_private;
1722 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1723 	struct ena_com_dev_get_features_ctx get_feat_ctx;
1724 	struct ena_llq_configurations llq_config;
1725 	const char *queue_type_str;
1726 	uint32_t max_num_io_queues;
1727 	int rc;
1728 
1729 	static int adapters_found;
1730 	bool wd_state;
1731 
1732 	eth_dev->dev_ops = &ena_dev_ops;
1733 	eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
1734 	eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
1735 	eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
1736 
1737 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1738 		return 0;
1739 
1740 	memset(adapter, 0, sizeof(struct ena_adapter));
1741 	ena_dev = &adapter->ena_dev;
1742 
1743 	adapter->rte_eth_dev_data = eth_dev->data;
1744 	adapter->rte_dev = eth_dev;
1745 
1746 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1747 	adapter->pdev = pci_dev;
1748 
1749 	PMD_INIT_LOG(INFO, "Initializing %x:%x:%x.%d",
1750 		     pci_dev->addr.domain,
1751 		     pci_dev->addr.bus,
1752 		     pci_dev->addr.devid,
1753 		     pci_dev->addr.function);
1754 
1755 	intr_handle = &pci_dev->intr_handle;
1756 
1757 	adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
1758 	adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
1759 
1760 	if (!adapter->regs) {
1761 		PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)",
1762 			     ENA_REGS_BAR);
1763 		return -ENXIO;
1764 	}
1765 
1766 	ena_dev->reg_bar = adapter->regs;
1767 	ena_dev->dmadev = adapter->pdev;
1768 
1769 	adapter->id_number = adapters_found;
1770 
1771 	snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
1772 		 adapter->id_number);
1773 
1774 	rc = ena_parse_devargs(adapter, pci_dev->device.devargs);
1775 	if (rc != 0) {
1776 		PMD_INIT_LOG(CRIT, "Failed to parse devargs\n");
1777 		goto err;
1778 	}
1779 
1780 	/* device specific initialization routine */
1781 	rc = ena_device_init(ena_dev, &get_feat_ctx, &wd_state);
1782 	if (rc) {
1783 		PMD_INIT_LOG(CRIT, "Failed to init ENA device");
1784 		goto err;
1785 	}
1786 	adapter->wd_state = wd_state;
1787 
1788 	set_default_llq_configurations(&llq_config, &get_feat_ctx.llq,
1789 		adapter->use_large_llq_hdr);
1790 	rc = ena_set_queues_placement_policy(adapter, ena_dev,
1791 					     &get_feat_ctx.llq, &llq_config);
1792 	if (unlikely(rc)) {
1793 		PMD_INIT_LOG(CRIT, "Failed to set placement policy");
1794 		return rc;
1795 	}
1796 
1797 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1798 		queue_type_str = "Regular";
1799 	else
1800 		queue_type_str = "Low latency";
1801 	PMD_DRV_LOG(INFO, "Placement policy: %s\n", queue_type_str);
1802 
1803 	calc_queue_ctx.ena_dev = ena_dev;
1804 	calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
1805 
1806 	max_num_io_queues = ena_calc_max_io_queue_num(ena_dev, &get_feat_ctx);
1807 	rc = ena_calc_io_queue_size(&calc_queue_ctx,
1808 		adapter->use_large_llq_hdr);
1809 	if (unlikely((rc != 0) || (max_num_io_queues == 0))) {
1810 		rc = -EFAULT;
1811 		goto err_device_destroy;
1812 	}
1813 
1814 	adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
1815 	adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
1816 	adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
1817 	adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
1818 	adapter->max_num_io_queues = max_num_io_queues;
1819 
1820 	/* prepare ring structures */
1821 	ena_init_rings(adapter);
1822 
1823 	ena_config_debug_area(adapter);
1824 
1825 	/* Set max MTU for this device */
1826 	adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
1827 
1828 	/* set device support for offloads */
1829 	adapter->offloads.tso4_supported = (get_feat_ctx.offload.tx &
1830 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) != 0;
1831 	adapter->offloads.tx_csum_supported = (get_feat_ctx.offload.tx &
1832 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK) != 0;
1833 	adapter->offloads.rx_csum_supported =
1834 		(get_feat_ctx.offload.rx_supported &
1835 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK) != 0;
1836 
1837 	/* Copy MAC address and point DPDK to it */
1838 	eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr;
1839 	rte_ether_addr_copy((struct rte_ether_addr *)
1840 			get_feat_ctx.dev_attr.mac_addr,
1841 			(struct rte_ether_addr *)adapter->mac_addr);
1842 
1843 	/*
1844 	 * Pass the information to the rte_eth_dev_close() that it should also
1845 	 * release the private port resources.
1846 	 */
1847 	eth_dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE;
1848 
1849 	adapter->drv_stats = rte_zmalloc("adapter stats",
1850 					 sizeof(*adapter->drv_stats),
1851 					 RTE_CACHE_LINE_SIZE);
1852 	if (!adapter->drv_stats) {
1853 		PMD_DRV_LOG(ERR, "failed to alloc mem for adapter stats\n");
1854 		rc = -ENOMEM;
1855 		goto err_delete_debug_area;
1856 	}
1857 
1858 	rte_intr_callback_register(intr_handle,
1859 				   ena_interrupt_handler_rte,
1860 				   adapter);
1861 	rte_intr_enable(intr_handle);
1862 	ena_com_set_admin_polling_mode(ena_dev, false);
1863 	ena_com_admin_aenq_enable(ena_dev);
1864 
1865 	if (adapters_found == 0)
1866 		rte_timer_subsystem_init();
1867 	rte_timer_init(&adapter->timer_wd);
1868 
1869 	adapters_found++;
1870 	adapter->state = ENA_ADAPTER_STATE_INIT;
1871 
1872 	return 0;
1873 
1874 err_delete_debug_area:
1875 	ena_com_delete_debug_area(ena_dev);
1876 
1877 err_device_destroy:
1878 	ena_com_delete_host_info(ena_dev);
1879 	ena_com_admin_destroy(ena_dev);
1880 
1881 err:
1882 	return rc;
1883 }
1884 
1885 static void ena_destroy_device(struct rte_eth_dev *eth_dev)
1886 {
1887 	struct ena_adapter *adapter = eth_dev->data->dev_private;
1888 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1889 
1890 	if (adapter->state == ENA_ADAPTER_STATE_FREE)
1891 		return;
1892 
1893 	ena_com_set_admin_running_state(ena_dev, false);
1894 
1895 	if (adapter->state != ENA_ADAPTER_STATE_CLOSED)
1896 		ena_close(eth_dev);
1897 
1898 	ena_com_delete_debug_area(ena_dev);
1899 	ena_com_delete_host_info(ena_dev);
1900 
1901 	ena_com_abort_admin_commands(ena_dev);
1902 	ena_com_wait_for_abort_completion(ena_dev);
1903 	ena_com_admin_destroy(ena_dev);
1904 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1905 
1906 	adapter->state = ENA_ADAPTER_STATE_FREE;
1907 }
1908 
1909 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
1910 {
1911 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1912 		return 0;
1913 
1914 	ena_destroy_device(eth_dev);
1915 
1916 	eth_dev->dev_ops = NULL;
1917 	eth_dev->rx_pkt_burst = NULL;
1918 	eth_dev->tx_pkt_burst = NULL;
1919 	eth_dev->tx_pkt_prepare = NULL;
1920 
1921 	return 0;
1922 }
1923 
1924 static int ena_dev_configure(struct rte_eth_dev *dev)
1925 {
1926 	struct ena_adapter *adapter = dev->data->dev_private;
1927 
1928 	adapter->state = ENA_ADAPTER_STATE_CONFIG;
1929 
1930 	adapter->tx_selected_offloads = dev->data->dev_conf.txmode.offloads;
1931 	adapter->rx_selected_offloads = dev->data->dev_conf.rxmode.offloads;
1932 	return 0;
1933 }
1934 
1935 static void ena_init_rings(struct ena_adapter *adapter)
1936 {
1937 	size_t i;
1938 
1939 	for (i = 0; i < adapter->max_num_io_queues; i++) {
1940 		struct ena_ring *ring = &adapter->tx_ring[i];
1941 
1942 		ring->configured = 0;
1943 		ring->type = ENA_RING_TYPE_TX;
1944 		ring->adapter = adapter;
1945 		ring->id = i;
1946 		ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
1947 		ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
1948 		ring->sgl_size = adapter->max_tx_sgl_size;
1949 	}
1950 
1951 	for (i = 0; i < adapter->max_num_io_queues; i++) {
1952 		struct ena_ring *ring = &adapter->rx_ring[i];
1953 
1954 		ring->configured = 0;
1955 		ring->type = ENA_RING_TYPE_RX;
1956 		ring->adapter = adapter;
1957 		ring->id = i;
1958 		ring->sgl_size = adapter->max_rx_sgl_size;
1959 	}
1960 }
1961 
1962 static int ena_infos_get(struct rte_eth_dev *dev,
1963 			  struct rte_eth_dev_info *dev_info)
1964 {
1965 	struct ena_adapter *adapter;
1966 	struct ena_com_dev *ena_dev;
1967 	uint64_t rx_feat = 0, tx_feat = 0;
1968 
1969 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
1970 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
1971 	adapter = dev->data->dev_private;
1972 
1973 	ena_dev = &adapter->ena_dev;
1974 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
1975 
1976 	dev_info->speed_capa =
1977 			ETH_LINK_SPEED_1G   |
1978 			ETH_LINK_SPEED_2_5G |
1979 			ETH_LINK_SPEED_5G   |
1980 			ETH_LINK_SPEED_10G  |
1981 			ETH_LINK_SPEED_25G  |
1982 			ETH_LINK_SPEED_40G  |
1983 			ETH_LINK_SPEED_50G  |
1984 			ETH_LINK_SPEED_100G;
1985 
1986 	/* Set Tx & Rx features available for device */
1987 	if (adapter->offloads.tso4_supported)
1988 		tx_feat	|= DEV_TX_OFFLOAD_TCP_TSO;
1989 
1990 	if (adapter->offloads.tx_csum_supported)
1991 		tx_feat |= DEV_TX_OFFLOAD_IPV4_CKSUM |
1992 			DEV_TX_OFFLOAD_UDP_CKSUM |
1993 			DEV_TX_OFFLOAD_TCP_CKSUM;
1994 
1995 	if (adapter->offloads.rx_csum_supported)
1996 		rx_feat |= DEV_RX_OFFLOAD_IPV4_CKSUM |
1997 			DEV_RX_OFFLOAD_UDP_CKSUM  |
1998 			DEV_RX_OFFLOAD_TCP_CKSUM;
1999 
2000 	rx_feat |= DEV_RX_OFFLOAD_JUMBO_FRAME;
2001 
2002 	/* Inform framework about available features */
2003 	dev_info->rx_offload_capa = rx_feat;
2004 	dev_info->rx_queue_offload_capa = rx_feat;
2005 	dev_info->tx_offload_capa = tx_feat;
2006 	dev_info->tx_queue_offload_capa = tx_feat;
2007 
2008 	dev_info->flow_type_rss_offloads = ETH_RSS_IP | ETH_RSS_TCP |
2009 					   ETH_RSS_UDP;
2010 
2011 	dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
2012 	dev_info->max_rx_pktlen  = adapter->max_mtu;
2013 	dev_info->max_mac_addrs = 1;
2014 
2015 	dev_info->max_rx_queues = adapter->max_num_io_queues;
2016 	dev_info->max_tx_queues = adapter->max_num_io_queues;
2017 	dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
2018 
2019 	adapter->tx_supported_offloads = tx_feat;
2020 	adapter->rx_supported_offloads = rx_feat;
2021 
2022 	dev_info->rx_desc_lim.nb_max = adapter->max_rx_ring_size;
2023 	dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2024 	dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2025 					adapter->max_rx_sgl_size);
2026 	dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2027 					adapter->max_rx_sgl_size);
2028 
2029 	dev_info->tx_desc_lim.nb_max = adapter->max_tx_ring_size;
2030 	dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2031 	dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2032 					adapter->max_tx_sgl_size);
2033 	dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2034 					adapter->max_tx_sgl_size);
2035 
2036 	return 0;
2037 }
2038 
2039 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
2040 				  uint16_t nb_pkts)
2041 {
2042 	struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
2043 	unsigned int ring_size = rx_ring->ring_size;
2044 	unsigned int ring_mask = ring_size - 1;
2045 	uint16_t next_to_clean = rx_ring->next_to_clean;
2046 	uint16_t desc_in_use = 0;
2047 	uint16_t req_id;
2048 	unsigned int recv_idx = 0;
2049 	struct rte_mbuf *mbuf = NULL;
2050 	struct rte_mbuf *mbuf_head = NULL;
2051 	struct rte_mbuf *mbuf_prev = NULL;
2052 	struct rte_mbuf **rx_buff_info = rx_ring->rx_buffer_info;
2053 	unsigned int completed;
2054 
2055 	struct ena_com_rx_ctx ena_rx_ctx;
2056 	int rc = 0;
2057 
2058 	/* Check adapter state */
2059 	if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2060 		PMD_DRV_LOG(ALERT,
2061 			"Trying to receive pkts while device is NOT running\n");
2062 		return 0;
2063 	}
2064 
2065 	desc_in_use = rx_ring->next_to_use - next_to_clean;
2066 	if (unlikely(nb_pkts > desc_in_use))
2067 		nb_pkts = desc_in_use;
2068 
2069 	for (completed = 0; completed < nb_pkts; completed++) {
2070 		int segments = 0;
2071 
2072 		ena_rx_ctx.max_bufs = rx_ring->sgl_size;
2073 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
2074 		ena_rx_ctx.descs = 0;
2075 		ena_rx_ctx.pkt_offset = 0;
2076 		/* receive packet context */
2077 		rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
2078 				    rx_ring->ena_com_io_sq,
2079 				    &ena_rx_ctx);
2080 		if (unlikely(rc)) {
2081 			PMD_DRV_LOG(ERR, "ena_com_rx_pkt error %d\n", rc);
2082 			rx_ring->adapter->reset_reason =
2083 				ENA_REGS_RESET_TOO_MANY_RX_DESCS;
2084 			rx_ring->adapter->trigger_reset = true;
2085 			++rx_ring->rx_stats.bad_desc_num;
2086 			return 0;
2087 		}
2088 
2089 		if (unlikely(ena_rx_ctx.descs == 0))
2090 			break;
2091 
2092 		while (segments < ena_rx_ctx.descs) {
2093 			req_id = ena_rx_ctx.ena_bufs[segments].req_id;
2094 			rc = validate_rx_req_id(rx_ring, req_id);
2095 			if (unlikely(rc)) {
2096 				if (segments != 0)
2097 					rte_mbuf_raw_free(mbuf_head);
2098 				break;
2099 			}
2100 
2101 			mbuf = rx_buff_info[req_id];
2102 			rx_buff_info[req_id] = NULL;
2103 			mbuf->data_len = ena_rx_ctx.ena_bufs[segments].len;
2104 			mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2105 			mbuf->refcnt = 1;
2106 			mbuf->next = NULL;
2107 			if (unlikely(segments == 0)) {
2108 				mbuf->nb_segs = ena_rx_ctx.descs;
2109 				mbuf->port = rx_ring->port_id;
2110 				mbuf->pkt_len = 0;
2111 				mbuf->data_off += ena_rx_ctx.pkt_offset;
2112 				mbuf_head = mbuf;
2113 			} else {
2114 				/* for multi-segment pkts create mbuf chain */
2115 				mbuf_prev->next = mbuf;
2116 			}
2117 			mbuf_head->pkt_len += mbuf->data_len;
2118 
2119 			mbuf_prev = mbuf;
2120 			rx_ring->empty_rx_reqs[next_to_clean & ring_mask] =
2121 				req_id;
2122 			segments++;
2123 			next_to_clean++;
2124 		}
2125 		if (unlikely(rc))
2126 			break;
2127 
2128 		/* fill mbuf attributes if any */
2129 		ena_rx_mbuf_prepare(mbuf_head, &ena_rx_ctx);
2130 
2131 		if (unlikely(mbuf_head->ol_flags &
2132 				(PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD))) {
2133 			rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors);
2134 			++rx_ring->rx_stats.bad_csum;
2135 		}
2136 
2137 		mbuf_head->hash.rss = ena_rx_ctx.hash;
2138 
2139 		/* pass to DPDK application head mbuf */
2140 		rx_pkts[recv_idx] = mbuf_head;
2141 		recv_idx++;
2142 		rx_ring->rx_stats.bytes += mbuf_head->pkt_len;
2143 	}
2144 
2145 	rx_ring->rx_stats.cnt += recv_idx;
2146 	rx_ring->next_to_clean = next_to_clean;
2147 
2148 	desc_in_use = desc_in_use - completed + 1;
2149 	/* Burst refill to save doorbells, memory barriers, const interval */
2150 	if (ring_size - desc_in_use > ENA_RING_DESCS_RATIO(ring_size)) {
2151 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
2152 		ena_populate_rx_queue(rx_ring, ring_size - desc_in_use);
2153 	}
2154 
2155 	return recv_idx;
2156 }
2157 
2158 static uint16_t
2159 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2160 		uint16_t nb_pkts)
2161 {
2162 	int32_t ret;
2163 	uint32_t i;
2164 	struct rte_mbuf *m;
2165 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2166 	struct rte_ipv4_hdr *ip_hdr;
2167 	uint64_t ol_flags;
2168 	uint16_t frag_field;
2169 
2170 	for (i = 0; i != nb_pkts; i++) {
2171 		m = tx_pkts[i];
2172 		ol_flags = m->ol_flags;
2173 
2174 		if (!(ol_flags & PKT_TX_IPV4))
2175 			continue;
2176 
2177 		/* If there was not L2 header length specified, assume it is
2178 		 * length of the ethernet header.
2179 		 */
2180 		if (unlikely(m->l2_len == 0))
2181 			m->l2_len = sizeof(struct rte_ether_hdr);
2182 
2183 		ip_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *,
2184 						 m->l2_len);
2185 		frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
2186 
2187 		if ((frag_field & RTE_IPV4_HDR_DF_FLAG) != 0) {
2188 			m->packet_type |= RTE_PTYPE_L4_NONFRAG;
2189 
2190 			/* If IPv4 header has DF flag enabled and TSO support is
2191 			 * disabled, partial chcecksum should not be calculated.
2192 			 */
2193 			if (!tx_ring->adapter->offloads.tso4_supported)
2194 				continue;
2195 		}
2196 
2197 		if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) != 0 ||
2198 				(ol_flags & PKT_TX_L4_MASK) ==
2199 				PKT_TX_SCTP_CKSUM) {
2200 			rte_errno = ENOTSUP;
2201 			return i;
2202 		}
2203 
2204 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2205 		ret = rte_validate_tx_offload(m);
2206 		if (ret != 0) {
2207 			rte_errno = -ret;
2208 			return i;
2209 		}
2210 #endif
2211 
2212 		/* In case we are supposed to TSO and have DF not set (DF=0)
2213 		 * hardware must be provided with partial checksum, otherwise
2214 		 * it will take care of necessary calculations.
2215 		 */
2216 
2217 		ret = rte_net_intel_cksum_flags_prepare(m,
2218 			ol_flags & ~PKT_TX_TCP_SEG);
2219 		if (ret != 0) {
2220 			rte_errno = -ret;
2221 			return i;
2222 		}
2223 	}
2224 
2225 	return i;
2226 }
2227 
2228 static void ena_update_hints(struct ena_adapter *adapter,
2229 			     struct ena_admin_ena_hw_hints *hints)
2230 {
2231 	if (hints->admin_completion_tx_timeout)
2232 		adapter->ena_dev.admin_queue.completion_timeout =
2233 			hints->admin_completion_tx_timeout * 1000;
2234 
2235 	if (hints->mmio_read_timeout)
2236 		/* convert to usec */
2237 		adapter->ena_dev.mmio_read.reg_read_to =
2238 			hints->mmio_read_timeout * 1000;
2239 
2240 	if (hints->driver_watchdog_timeout) {
2241 		if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
2242 			adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
2243 		else
2244 			// Convert msecs to ticks
2245 			adapter->keep_alive_timeout =
2246 				(hints->driver_watchdog_timeout *
2247 				rte_get_timer_hz()) / 1000;
2248 	}
2249 }
2250 
2251 static int ena_check_and_linearize_mbuf(struct ena_ring *tx_ring,
2252 					struct rte_mbuf *mbuf)
2253 {
2254 	struct ena_com_dev *ena_dev;
2255 	int num_segments, header_len, rc;
2256 
2257 	ena_dev = &tx_ring->adapter->ena_dev;
2258 	num_segments = mbuf->nb_segs;
2259 	header_len = mbuf->data_len;
2260 
2261 	if (likely(num_segments < tx_ring->sgl_size))
2262 		return 0;
2263 
2264 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
2265 	    (num_segments == tx_ring->sgl_size) &&
2266 	    (header_len < tx_ring->tx_max_header_size))
2267 		return 0;
2268 
2269 	++tx_ring->tx_stats.linearize;
2270 	rc = rte_pktmbuf_linearize(mbuf);
2271 	if (unlikely(rc)) {
2272 		PMD_DRV_LOG(WARNING, "Mbuf linearize failed\n");
2273 		rte_atomic64_inc(&tx_ring->adapter->drv_stats->ierrors);
2274 		++tx_ring->tx_stats.linearize_failed;
2275 		return rc;
2276 	}
2277 
2278 	return rc;
2279 }
2280 
2281 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2282 				  uint16_t nb_pkts)
2283 {
2284 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2285 	uint16_t next_to_use = tx_ring->next_to_use;
2286 	uint16_t next_to_clean = tx_ring->next_to_clean;
2287 	struct rte_mbuf *mbuf;
2288 	uint16_t seg_len;
2289 	unsigned int ring_size = tx_ring->ring_size;
2290 	unsigned int ring_mask = ring_size - 1;
2291 	struct ena_com_tx_ctx ena_tx_ctx;
2292 	struct ena_tx_buffer *tx_info;
2293 	struct ena_com_buf *ebuf;
2294 	uint16_t rc, req_id, total_tx_descs = 0;
2295 	uint16_t sent_idx = 0, empty_tx_reqs;
2296 	uint16_t push_len = 0;
2297 	uint16_t delta = 0;
2298 	int nb_hw_desc;
2299 	uint32_t total_length;
2300 
2301 	/* Check adapter state */
2302 	if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2303 		PMD_DRV_LOG(ALERT,
2304 			"Trying to xmit pkts while device is NOT running\n");
2305 		return 0;
2306 	}
2307 
2308 	empty_tx_reqs = ring_size - (next_to_use - next_to_clean);
2309 	if (nb_pkts > empty_tx_reqs)
2310 		nb_pkts = empty_tx_reqs;
2311 
2312 	for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
2313 		mbuf = tx_pkts[sent_idx];
2314 		total_length = 0;
2315 
2316 		rc = ena_check_and_linearize_mbuf(tx_ring, mbuf);
2317 		if (unlikely(rc))
2318 			break;
2319 
2320 		req_id = tx_ring->empty_tx_reqs[next_to_use & ring_mask];
2321 		tx_info = &tx_ring->tx_buffer_info[req_id];
2322 		tx_info->mbuf = mbuf;
2323 		tx_info->num_of_bufs = 0;
2324 		ebuf = tx_info->bufs;
2325 
2326 		/* Prepare TX context */
2327 		memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
2328 		memset(&ena_tx_ctx.ena_meta, 0x0,
2329 		       sizeof(struct ena_com_tx_meta));
2330 		ena_tx_ctx.ena_bufs = ebuf;
2331 		ena_tx_ctx.req_id = req_id;
2332 
2333 		delta = 0;
2334 		seg_len = mbuf->data_len;
2335 
2336 		if (tx_ring->tx_mem_queue_type ==
2337 				ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2338 			push_len = RTE_MIN(mbuf->pkt_len,
2339 					   tx_ring->tx_max_header_size);
2340 			ena_tx_ctx.header_len = push_len;
2341 
2342 			if (likely(push_len <= seg_len)) {
2343 				/* If the push header is in the single segment,
2344 				 * then just point it to the 1st mbuf data.
2345 				 */
2346 				ena_tx_ctx.push_header =
2347 					rte_pktmbuf_mtod(mbuf, uint8_t *);
2348 			} else {
2349 				/* If the push header lays in the several
2350 				 * segments, copy it to the intermediate buffer.
2351 				 */
2352 				rte_pktmbuf_read(mbuf, 0, push_len,
2353 					tx_ring->push_buf_intermediate_buf);
2354 				ena_tx_ctx.push_header =
2355 					tx_ring->push_buf_intermediate_buf;
2356 				delta = push_len - seg_len;
2357 			}
2358 		} /* there's no else as we take advantage of memset zeroing */
2359 
2360 		/* Set TX offloads flags, if applicable */
2361 		ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads);
2362 
2363 		rte_prefetch0(tx_pkts[(sent_idx + 4) & ring_mask]);
2364 
2365 		/* Process first segment taking into
2366 		 * consideration pushed header
2367 		 */
2368 		if (seg_len > push_len) {
2369 			ebuf->paddr = mbuf->buf_iova +
2370 				      mbuf->data_off +
2371 				      push_len;
2372 			ebuf->len = seg_len - push_len;
2373 			ebuf++;
2374 			tx_info->num_of_bufs++;
2375 		}
2376 		total_length += mbuf->data_len;
2377 
2378 		while ((mbuf = mbuf->next) != NULL) {
2379 			seg_len = mbuf->data_len;
2380 
2381 			/* Skip mbufs if whole data is pushed as a header */
2382 			if (unlikely(delta > seg_len)) {
2383 				delta -= seg_len;
2384 				continue;
2385 			}
2386 
2387 			ebuf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
2388 			ebuf->len = seg_len - delta;
2389 			total_length += ebuf->len;
2390 			ebuf++;
2391 			tx_info->num_of_bufs++;
2392 
2393 			delta = 0;
2394 		}
2395 
2396 		ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2397 
2398 		if (ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
2399 					       &ena_tx_ctx)) {
2400 			PMD_DRV_LOG(DEBUG, "llq tx max burst size of queue %d"
2401 				" achieved, writing doorbell to send burst\n",
2402 				tx_ring->id);
2403 			ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2404 		}
2405 
2406 		/* prepare the packet's descriptors to dma engine */
2407 		rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq,
2408 					&ena_tx_ctx, &nb_hw_desc);
2409 		if (unlikely(rc)) {
2410 			++tx_ring->tx_stats.prepare_ctx_err;
2411 			break;
2412 		}
2413 		tx_info->tx_descs = nb_hw_desc;
2414 
2415 		next_to_use++;
2416 		tx_ring->tx_stats.cnt++;
2417 		tx_ring->tx_stats.bytes += total_length;
2418 	}
2419 	tx_ring->tx_stats.available_desc =
2420 		ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2421 
2422 	/* If there are ready packets to be xmitted... */
2423 	if (sent_idx > 0) {
2424 		/* ...let HW do its best :-) */
2425 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2426 		tx_ring->tx_stats.doorbells++;
2427 		tx_ring->next_to_use = next_to_use;
2428 	}
2429 
2430 	/* Clear complete packets  */
2431 	while (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) >= 0) {
2432 		rc = validate_tx_req_id(tx_ring, req_id);
2433 		if (rc)
2434 			break;
2435 
2436 		/* Get Tx info & store how many descs were processed  */
2437 		tx_info = &tx_ring->tx_buffer_info[req_id];
2438 		total_tx_descs += tx_info->tx_descs;
2439 
2440 		/* Free whole mbuf chain  */
2441 		mbuf = tx_info->mbuf;
2442 		rte_pktmbuf_free(mbuf);
2443 		tx_info->mbuf = NULL;
2444 
2445 		/* Put back descriptor to the ring for reuse */
2446 		tx_ring->empty_tx_reqs[next_to_clean & ring_mask] = req_id;
2447 		next_to_clean++;
2448 
2449 		/* If too many descs to clean, leave it for another run */
2450 		if (unlikely(total_tx_descs > ENA_RING_DESCS_RATIO(ring_size)))
2451 			break;
2452 	}
2453 	tx_ring->tx_stats.available_desc =
2454 		ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2455 
2456 	if (total_tx_descs > 0) {
2457 		/* acknowledge completion of sent packets */
2458 		tx_ring->next_to_clean = next_to_clean;
2459 		ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
2460 		ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
2461 	}
2462 
2463 	tx_ring->tx_stats.tx_poll++;
2464 
2465 	return sent_idx;
2466 }
2467 
2468 /**
2469  * DPDK callback to retrieve names of extended device statistics
2470  *
2471  * @param dev
2472  *   Pointer to Ethernet device structure.
2473  * @param[out] xstats_names
2474  *   Buffer to insert names into.
2475  * @param n
2476  *   Number of names.
2477  *
2478  * @return
2479  *   Number of xstats names.
2480  */
2481 static int ena_xstats_get_names(struct rte_eth_dev *dev,
2482 				struct rte_eth_xstat_name *xstats_names,
2483 				unsigned int n)
2484 {
2485 	unsigned int xstats_count = ena_xstats_calc_num(dev);
2486 	unsigned int stat, i, count = 0;
2487 
2488 	if (n < xstats_count || !xstats_names)
2489 		return xstats_count;
2490 
2491 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
2492 		strcpy(xstats_names[count].name,
2493 			ena_stats_global_strings[stat].name);
2494 
2495 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
2496 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
2497 			snprintf(xstats_names[count].name,
2498 				sizeof(xstats_names[count].name),
2499 				"rx_q%d_%s", i,
2500 				ena_stats_rx_strings[stat].name);
2501 
2502 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
2503 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
2504 			snprintf(xstats_names[count].name,
2505 				sizeof(xstats_names[count].name),
2506 				"tx_q%d_%s", i,
2507 				ena_stats_tx_strings[stat].name);
2508 
2509 	return xstats_count;
2510 }
2511 
2512 /**
2513  * DPDK callback to get extended device statistics.
2514  *
2515  * @param dev
2516  *   Pointer to Ethernet device structure.
2517  * @param[out] stats
2518  *   Stats table output buffer.
2519  * @param n
2520  *   The size of the stats table.
2521  *
2522  * @return
2523  *   Number of xstats on success, negative on failure.
2524  */
2525 static int ena_xstats_get(struct rte_eth_dev *dev,
2526 			  struct rte_eth_xstat *xstats,
2527 			  unsigned int n)
2528 {
2529 	struct ena_adapter *adapter = dev->data->dev_private;
2530 	unsigned int xstats_count = ena_xstats_calc_num(dev);
2531 	unsigned int stat, i, count = 0;
2532 	int stat_offset;
2533 	void *stats_begin;
2534 
2535 	if (n < xstats_count)
2536 		return xstats_count;
2537 
2538 	if (!xstats)
2539 		return 0;
2540 
2541 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
2542 		stat_offset = ena_stats_rx_strings[stat].stat_offset;
2543 		stats_begin = &adapter->dev_stats;
2544 
2545 		xstats[count].id = count;
2546 		xstats[count].value = *((uint64_t *)
2547 			((char *)stats_begin + stat_offset));
2548 	}
2549 
2550 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
2551 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
2552 			stat_offset = ena_stats_rx_strings[stat].stat_offset;
2553 			stats_begin = &adapter->rx_ring[i].rx_stats;
2554 
2555 			xstats[count].id = count;
2556 			xstats[count].value = *((uint64_t *)
2557 				((char *)stats_begin + stat_offset));
2558 		}
2559 	}
2560 
2561 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
2562 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
2563 			stat_offset = ena_stats_tx_strings[stat].stat_offset;
2564 			stats_begin = &adapter->tx_ring[i].rx_stats;
2565 
2566 			xstats[count].id = count;
2567 			xstats[count].value = *((uint64_t *)
2568 				((char *)stats_begin + stat_offset));
2569 		}
2570 	}
2571 
2572 	return count;
2573 }
2574 
2575 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
2576 				const uint64_t *ids,
2577 				uint64_t *values,
2578 				unsigned int n)
2579 {
2580 	struct ena_adapter *adapter = dev->data->dev_private;
2581 	uint64_t id;
2582 	uint64_t rx_entries, tx_entries;
2583 	unsigned int i;
2584 	int qid;
2585 	int valid = 0;
2586 	for (i = 0; i < n; ++i) {
2587 		id = ids[i];
2588 		/* Check if id belongs to global statistics */
2589 		if (id < ENA_STATS_ARRAY_GLOBAL) {
2590 			values[i] = *((uint64_t *)&adapter->dev_stats + id);
2591 			++valid;
2592 			continue;
2593 		}
2594 
2595 		/* Check if id belongs to rx queue statistics */
2596 		id -= ENA_STATS_ARRAY_GLOBAL;
2597 		rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
2598 		if (id < rx_entries) {
2599 			qid = id % dev->data->nb_rx_queues;
2600 			id /= dev->data->nb_rx_queues;
2601 			values[i] = *((uint64_t *)
2602 				&adapter->rx_ring[qid].rx_stats + id);
2603 			++valid;
2604 			continue;
2605 		}
2606 				/* Check if id belongs to rx queue statistics */
2607 		id -= rx_entries;
2608 		tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
2609 		if (id < tx_entries) {
2610 			qid = id % dev->data->nb_tx_queues;
2611 			id /= dev->data->nb_tx_queues;
2612 			values[i] = *((uint64_t *)
2613 				&adapter->tx_ring[qid].tx_stats + id);
2614 			++valid;
2615 			continue;
2616 		}
2617 	}
2618 
2619 	return valid;
2620 }
2621 
2622 static int ena_process_bool_devarg(const char *key,
2623 				   const char *value,
2624 				   void *opaque)
2625 {
2626 	struct ena_adapter *adapter = opaque;
2627 	bool bool_value;
2628 
2629 	/* Parse the value. */
2630 	if (strcmp(value, "1") == 0) {
2631 		bool_value = true;
2632 	} else if (strcmp(value, "0") == 0) {
2633 		bool_value = false;
2634 	} else {
2635 		PMD_INIT_LOG(ERR,
2636 			"Invalid value: '%s' for key '%s'. Accepted: '0' or '1'\n",
2637 			value, key);
2638 		return -EINVAL;
2639 	}
2640 
2641 	/* Now, assign it to the proper adapter field. */
2642 	if (strcmp(key, ENA_DEVARG_LARGE_LLQ_HDR))
2643 		adapter->use_large_llq_hdr = bool_value;
2644 
2645 	return 0;
2646 }
2647 
2648 static int ena_parse_devargs(struct ena_adapter *adapter,
2649 			     struct rte_devargs *devargs)
2650 {
2651 	static const char * const allowed_args[] = {
2652 		ENA_DEVARG_LARGE_LLQ_HDR,
2653 	};
2654 	struct rte_kvargs *kvlist;
2655 	int rc;
2656 
2657 	if (devargs == NULL)
2658 		return 0;
2659 
2660 	kvlist = rte_kvargs_parse(devargs->args, allowed_args);
2661 	if (kvlist == NULL) {
2662 		PMD_INIT_LOG(ERR, "Invalid device arguments: %s\n",
2663 			devargs->args);
2664 		return -EINVAL;
2665 	}
2666 
2667 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_LARGE_LLQ_HDR,
2668 		ena_process_bool_devarg, adapter);
2669 
2670 	rte_kvargs_free(kvlist);
2671 
2672 	return rc;
2673 }
2674 
2675 /*********************************************************************
2676  *  PMD configuration
2677  *********************************************************************/
2678 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2679 	struct rte_pci_device *pci_dev)
2680 {
2681 	return rte_eth_dev_pci_generic_probe(pci_dev,
2682 		sizeof(struct ena_adapter), eth_ena_dev_init);
2683 }
2684 
2685 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
2686 {
2687 	return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
2688 }
2689 
2690 static struct rte_pci_driver rte_ena_pmd = {
2691 	.id_table = pci_id_ena_map,
2692 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
2693 		     RTE_PCI_DRV_WC_ACTIVATE,
2694 	.probe = eth_ena_pci_probe,
2695 	.remove = eth_ena_pci_remove,
2696 };
2697 
2698 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
2699 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
2700 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
2701 RTE_PMD_REGISTER_PARAM_STRING(net_ena, ENA_DEVARG_LARGE_LLQ_HDR "=<0|1>");
2702 
2703 RTE_INIT(ena_init_log)
2704 {
2705 	ena_logtype_init = rte_log_register("pmd.net.ena.init");
2706 	if (ena_logtype_init >= 0)
2707 		rte_log_set_level(ena_logtype_init, RTE_LOG_NOTICE);
2708 	ena_logtype_driver = rte_log_register("pmd.net.ena.driver");
2709 	if (ena_logtype_driver >= 0)
2710 		rte_log_set_level(ena_logtype_driver, RTE_LOG_NOTICE);
2711 
2712 #ifdef RTE_LIBRTE_ENA_DEBUG_RX
2713 	ena_logtype_rx = rte_log_register("pmd.net.ena.rx");
2714 	if (ena_logtype_rx >= 0)
2715 		rte_log_set_level(ena_logtype_rx, RTE_LOG_NOTICE);
2716 #endif
2717 
2718 #ifdef RTE_LIBRTE_ENA_DEBUG_TX
2719 	ena_logtype_tx = rte_log_register("pmd.net.ena.tx");
2720 	if (ena_logtype_tx >= 0)
2721 		rte_log_set_level(ena_logtype_tx, RTE_LOG_NOTICE);
2722 #endif
2723 
2724 #ifdef RTE_LIBRTE_ENA_DEBUG_TX_FREE
2725 	ena_logtype_tx_free = rte_log_register("pmd.net.ena.tx_free");
2726 	if (ena_logtype_tx_free >= 0)
2727 		rte_log_set_level(ena_logtype_tx_free, RTE_LOG_NOTICE);
2728 #endif
2729 
2730 #ifdef RTE_LIBRTE_ENA_COM_DEBUG
2731 	ena_logtype_com = rte_log_register("pmd.net.ena.com");
2732 	if (ena_logtype_com >= 0)
2733 		rte_log_set_level(ena_logtype_com, RTE_LOG_NOTICE);
2734 #endif
2735 }
2736 
2737 /******************************************************************************
2738  ******************************** AENQ Handlers *******************************
2739  *****************************************************************************/
2740 static void ena_update_on_link_change(void *adapter_data,
2741 				      struct ena_admin_aenq_entry *aenq_e)
2742 {
2743 	struct rte_eth_dev *eth_dev;
2744 	struct ena_adapter *adapter;
2745 	struct ena_admin_aenq_link_change_desc *aenq_link_desc;
2746 	uint32_t status;
2747 
2748 	adapter = adapter_data;
2749 	aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
2750 	eth_dev = adapter->rte_dev;
2751 
2752 	status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
2753 	adapter->link_status = status;
2754 
2755 	ena_link_update(eth_dev, 0);
2756 	_rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
2757 }
2758 
2759 static void ena_notification(void *data,
2760 			     struct ena_admin_aenq_entry *aenq_e)
2761 {
2762 	struct ena_adapter *adapter = data;
2763 	struct ena_admin_ena_hw_hints *hints;
2764 
2765 	if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
2766 		PMD_DRV_LOG(WARNING, "Invalid group(%x) expected %x\n",
2767 			aenq_e->aenq_common_desc.group,
2768 			ENA_ADMIN_NOTIFICATION);
2769 
2770 	switch (aenq_e->aenq_common_desc.syndrom) {
2771 	case ENA_ADMIN_UPDATE_HINTS:
2772 		hints = (struct ena_admin_ena_hw_hints *)
2773 			(&aenq_e->inline_data_w4);
2774 		ena_update_hints(adapter, hints);
2775 		break;
2776 	default:
2777 		PMD_DRV_LOG(ERR, "Invalid aenq notification link state %d\n",
2778 			aenq_e->aenq_common_desc.syndrom);
2779 	}
2780 }
2781 
2782 static void ena_keep_alive(void *adapter_data,
2783 			   __rte_unused struct ena_admin_aenq_entry *aenq_e)
2784 {
2785 	struct ena_adapter *adapter = adapter_data;
2786 	struct ena_admin_aenq_keep_alive_desc *desc;
2787 	uint64_t rx_drops;
2788 
2789 	adapter->timestamp_wd = rte_get_timer_cycles();
2790 
2791 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
2792 	rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
2793 	rte_atomic64_set(&adapter->drv_stats->rx_drops, rx_drops);
2794 }
2795 
2796 /**
2797  * This handler will called for unknown event group or unimplemented handlers
2798  **/
2799 static void unimplemented_aenq_handler(__rte_unused void *data,
2800 				       __rte_unused struct ena_admin_aenq_entry *aenq_e)
2801 {
2802 	PMD_DRV_LOG(ERR, "Unknown event was received or event with "
2803 			  "unimplemented handler\n");
2804 }
2805 
2806 static struct ena_aenq_handlers aenq_handlers = {
2807 	.handlers = {
2808 		[ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
2809 		[ENA_ADMIN_NOTIFICATION] = ena_notification,
2810 		[ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive
2811 	},
2812 	.unimplemented_handler = unimplemented_aenq_handler
2813 };
2814