xref: /dpdk/drivers/net/ena/ena_ethdev.c (revision 30a1de105a5f40d77b344a891c4a68f79e815c43)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
3  * All rights reserved.
4  */
5 
6 #include <rte_string_fns.h>
7 #include <rte_errno.h>
8 #include <rte_version.h>
9 #include <rte_net.h>
10 #include <rte_kvargs.h>
11 
12 #include "ena_ethdev.h"
13 #include "ena_logs.h"
14 #include "ena_platform.h"
15 #include "ena_com.h"
16 #include "ena_eth_com.h"
17 
18 #include <ena_common_defs.h>
19 #include <ena_regs_defs.h>
20 #include <ena_admin_defs.h>
21 #include <ena_eth_io_defs.h>
22 
23 #define DRV_MODULE_VER_MAJOR	2
24 #define DRV_MODULE_VER_MINOR	5
25 #define DRV_MODULE_VER_SUBMINOR	0
26 
27 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
28 
29 #define GET_L4_HDR_LEN(mbuf)					\
30 	((rte_pktmbuf_mtod_offset(mbuf,	struct rte_tcp_hdr *,	\
31 		mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
32 
33 #define ETH_GSTRING_LEN	32
34 
35 #define ARRAY_SIZE(x) RTE_DIM(x)
36 
37 #define ENA_MIN_RING_DESC	128
38 
39 #define ENA_PTYPE_HAS_HASH	(RTE_PTYPE_L4_TCP | RTE_PTYPE_L4_UDP)
40 
41 enum ethtool_stringset {
42 	ETH_SS_TEST             = 0,
43 	ETH_SS_STATS,
44 };
45 
46 struct ena_stats {
47 	char name[ETH_GSTRING_LEN];
48 	int stat_offset;
49 };
50 
51 #define ENA_STAT_ENTRY(stat, stat_type) { \
52 	.name = #stat, \
53 	.stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
54 }
55 
56 #define ENA_STAT_RX_ENTRY(stat) \
57 	ENA_STAT_ENTRY(stat, rx)
58 
59 #define ENA_STAT_TX_ENTRY(stat) \
60 	ENA_STAT_ENTRY(stat, tx)
61 
62 #define ENA_STAT_ENI_ENTRY(stat) \
63 	ENA_STAT_ENTRY(stat, eni)
64 
65 #define ENA_STAT_GLOBAL_ENTRY(stat) \
66 	ENA_STAT_ENTRY(stat, dev)
67 
68 /* Device arguments */
69 #define ENA_DEVARG_LARGE_LLQ_HDR "large_llq_hdr"
70 
71 /*
72  * Each rte_memzone should have unique name.
73  * To satisfy it, count number of allocation and add it to name.
74  */
75 rte_atomic64_t ena_alloc_cnt;
76 
77 static const struct ena_stats ena_stats_global_strings[] = {
78 	ENA_STAT_GLOBAL_ENTRY(wd_expired),
79 	ENA_STAT_GLOBAL_ENTRY(dev_start),
80 	ENA_STAT_GLOBAL_ENTRY(dev_stop),
81 	ENA_STAT_GLOBAL_ENTRY(tx_drops),
82 };
83 
84 static const struct ena_stats ena_stats_eni_strings[] = {
85 	ENA_STAT_ENI_ENTRY(bw_in_allowance_exceeded),
86 	ENA_STAT_ENI_ENTRY(bw_out_allowance_exceeded),
87 	ENA_STAT_ENI_ENTRY(pps_allowance_exceeded),
88 	ENA_STAT_ENI_ENTRY(conntrack_allowance_exceeded),
89 	ENA_STAT_ENI_ENTRY(linklocal_allowance_exceeded),
90 };
91 
92 static const struct ena_stats ena_stats_tx_strings[] = {
93 	ENA_STAT_TX_ENTRY(cnt),
94 	ENA_STAT_TX_ENTRY(bytes),
95 	ENA_STAT_TX_ENTRY(prepare_ctx_err),
96 	ENA_STAT_TX_ENTRY(linearize),
97 	ENA_STAT_TX_ENTRY(linearize_failed),
98 	ENA_STAT_TX_ENTRY(tx_poll),
99 	ENA_STAT_TX_ENTRY(doorbells),
100 	ENA_STAT_TX_ENTRY(bad_req_id),
101 	ENA_STAT_TX_ENTRY(available_desc),
102 	ENA_STAT_TX_ENTRY(missed_tx),
103 };
104 
105 static const struct ena_stats ena_stats_rx_strings[] = {
106 	ENA_STAT_RX_ENTRY(cnt),
107 	ENA_STAT_RX_ENTRY(bytes),
108 	ENA_STAT_RX_ENTRY(refill_partial),
109 	ENA_STAT_RX_ENTRY(bad_csum),
110 	ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
111 	ENA_STAT_RX_ENTRY(bad_desc_num),
112 	ENA_STAT_RX_ENTRY(bad_req_id),
113 };
114 
115 #define ENA_STATS_ARRAY_GLOBAL	ARRAY_SIZE(ena_stats_global_strings)
116 #define ENA_STATS_ARRAY_ENI	ARRAY_SIZE(ena_stats_eni_strings)
117 #define ENA_STATS_ARRAY_TX	ARRAY_SIZE(ena_stats_tx_strings)
118 #define ENA_STATS_ARRAY_RX	ARRAY_SIZE(ena_stats_rx_strings)
119 
120 #define QUEUE_OFFLOADS (RTE_ETH_TX_OFFLOAD_TCP_CKSUM |\
121 			RTE_ETH_TX_OFFLOAD_UDP_CKSUM |\
122 			RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |\
123 			RTE_ETH_TX_OFFLOAD_TCP_TSO)
124 #define MBUF_OFFLOADS (RTE_MBUF_F_TX_L4_MASK |\
125 		       RTE_MBUF_F_TX_IP_CKSUM |\
126 		       RTE_MBUF_F_TX_TCP_SEG)
127 
128 /** Vendor ID used by Amazon devices */
129 #define PCI_VENDOR_ID_AMAZON 0x1D0F
130 /** Amazon devices */
131 #define PCI_DEVICE_ID_ENA_VF		0xEC20
132 #define PCI_DEVICE_ID_ENA_VF_RSERV0	0xEC21
133 
134 #define	ENA_TX_OFFLOAD_MASK	(RTE_MBUF_F_TX_L4_MASK |         \
135 	RTE_MBUF_F_TX_IPV6 |            \
136 	RTE_MBUF_F_TX_IPV4 |            \
137 	RTE_MBUF_F_TX_IP_CKSUM |        \
138 	RTE_MBUF_F_TX_TCP_SEG)
139 
140 #define	ENA_TX_OFFLOAD_NOTSUP_MASK	\
141 	(RTE_MBUF_F_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
142 
143 /** HW specific offloads capabilities. */
144 /* IPv4 checksum offload. */
145 #define ENA_L3_IPV4_CSUM		0x0001
146 /* TCP/UDP checksum offload for IPv4 packets. */
147 #define ENA_L4_IPV4_CSUM		0x0002
148 /* TCP/UDP checksum offload for IPv4 packets with pseudo header checksum. */
149 #define ENA_L4_IPV4_CSUM_PARTIAL	0x0004
150 /* TCP/UDP checksum offload for IPv6 packets. */
151 #define ENA_L4_IPV6_CSUM		0x0008
152 /* TCP/UDP checksum offload for IPv6 packets with pseudo header checksum. */
153 #define ENA_L4_IPV6_CSUM_PARTIAL	0x0010
154 /* TSO support for IPv4 packets. */
155 #define ENA_IPV4_TSO			0x0020
156 
157 /* Device supports setting RSS hash. */
158 #define ENA_RX_RSS_HASH			0x0040
159 
160 static const struct rte_pci_id pci_id_ena_map[] = {
161 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
162 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF_RSERV0) },
163 	{ .device_id = 0 },
164 };
165 
166 static struct ena_aenq_handlers aenq_handlers;
167 
168 static int ena_device_init(struct ena_com_dev *ena_dev,
169 			   struct rte_pci_device *pdev,
170 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
171 			   bool *wd_state);
172 static int ena_dev_configure(struct rte_eth_dev *dev);
173 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
174 	struct ena_tx_buffer *tx_info,
175 	struct rte_mbuf *mbuf,
176 	void **push_header,
177 	uint16_t *header_len);
178 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf);
179 static void ena_tx_cleanup(struct ena_ring *tx_ring);
180 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
181 				  uint16_t nb_pkts);
182 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
183 		uint16_t nb_pkts);
184 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
185 			      uint16_t nb_desc, unsigned int socket_id,
186 			      const struct rte_eth_txconf *tx_conf);
187 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
188 			      uint16_t nb_desc, unsigned int socket_id,
189 			      const struct rte_eth_rxconf *rx_conf,
190 			      struct rte_mempool *mp);
191 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len);
192 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
193 				    struct ena_com_rx_buf_info *ena_bufs,
194 				    uint32_t descs,
195 				    uint16_t *next_to_clean,
196 				    uint8_t offset);
197 static uint16_t eth_ena_recv_pkts(void *rx_queue,
198 				  struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
199 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
200 				  struct rte_mbuf *mbuf, uint16_t id);
201 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
202 static void ena_init_rings(struct ena_adapter *adapter,
203 			   bool disable_meta_caching);
204 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
205 static int ena_start(struct rte_eth_dev *dev);
206 static int ena_stop(struct rte_eth_dev *dev);
207 static int ena_close(struct rte_eth_dev *dev);
208 static int ena_dev_reset(struct rte_eth_dev *dev);
209 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
210 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
211 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
212 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
213 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
214 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
215 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
216 static int ena_link_update(struct rte_eth_dev *dev,
217 			   int wait_to_complete);
218 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring);
219 static void ena_queue_stop(struct ena_ring *ring);
220 static void ena_queue_stop_all(struct rte_eth_dev *dev,
221 			      enum ena_ring_type ring_type);
222 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring);
223 static int ena_queue_start_all(struct rte_eth_dev *dev,
224 			       enum ena_ring_type ring_type);
225 static void ena_stats_restart(struct rte_eth_dev *dev);
226 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter);
227 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter);
228 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter);
229 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter);
230 static int ena_infos_get(struct rte_eth_dev *dev,
231 			 struct rte_eth_dev_info *dev_info);
232 static void ena_interrupt_handler_rte(void *cb_arg);
233 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
234 static void ena_destroy_device(struct rte_eth_dev *eth_dev);
235 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
236 static int ena_xstats_get_names(struct rte_eth_dev *dev,
237 				struct rte_eth_xstat_name *xstats_names,
238 				unsigned int n);
239 static int ena_xstats_get(struct rte_eth_dev *dev,
240 			  struct rte_eth_xstat *stats,
241 			  unsigned int n);
242 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
243 				const uint64_t *ids,
244 				uint64_t *values,
245 				unsigned int n);
246 static int ena_process_bool_devarg(const char *key,
247 				   const char *value,
248 				   void *opaque);
249 static int ena_parse_devargs(struct ena_adapter *adapter,
250 			     struct rte_devargs *devargs);
251 static int ena_copy_eni_stats(struct ena_adapter *adapter);
252 static int ena_setup_rx_intr(struct rte_eth_dev *dev);
253 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
254 				    uint16_t queue_id);
255 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
256 				     uint16_t queue_id);
257 
258 static const struct eth_dev_ops ena_dev_ops = {
259 	.dev_configure        = ena_dev_configure,
260 	.dev_infos_get        = ena_infos_get,
261 	.rx_queue_setup       = ena_rx_queue_setup,
262 	.tx_queue_setup       = ena_tx_queue_setup,
263 	.dev_start            = ena_start,
264 	.dev_stop             = ena_stop,
265 	.link_update          = ena_link_update,
266 	.stats_get            = ena_stats_get,
267 	.xstats_get_names     = ena_xstats_get_names,
268 	.xstats_get	      = ena_xstats_get,
269 	.xstats_get_by_id     = ena_xstats_get_by_id,
270 	.mtu_set              = ena_mtu_set,
271 	.rx_queue_release     = ena_rx_queue_release,
272 	.tx_queue_release     = ena_tx_queue_release,
273 	.dev_close            = ena_close,
274 	.dev_reset            = ena_dev_reset,
275 	.reta_update          = ena_rss_reta_update,
276 	.reta_query           = ena_rss_reta_query,
277 	.rx_queue_intr_enable = ena_rx_queue_intr_enable,
278 	.rx_queue_intr_disable = ena_rx_queue_intr_disable,
279 	.rss_hash_update      = ena_rss_hash_update,
280 	.rss_hash_conf_get    = ena_rss_hash_conf_get,
281 };
282 
283 static inline void ena_rx_mbuf_prepare(struct rte_mbuf *mbuf,
284 				       struct ena_com_rx_ctx *ena_rx_ctx,
285 				       bool fill_hash)
286 {
287 	uint64_t ol_flags = 0;
288 	uint32_t packet_type = 0;
289 
290 	if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
291 		packet_type |= RTE_PTYPE_L4_TCP;
292 	else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
293 		packet_type |= RTE_PTYPE_L4_UDP;
294 
295 	if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
296 		packet_type |= RTE_PTYPE_L3_IPV4;
297 		if (unlikely(ena_rx_ctx->l3_csum_err))
298 			ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
299 		else
300 			ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
301 	} else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
302 		packet_type |= RTE_PTYPE_L3_IPV6;
303 	}
304 
305 	if (!ena_rx_ctx->l4_csum_checked || ena_rx_ctx->frag)
306 		ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN;
307 	else
308 		if (unlikely(ena_rx_ctx->l4_csum_err))
309 			ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
310 		else
311 			ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
312 
313 	if (fill_hash &&
314 	    likely((packet_type & ENA_PTYPE_HAS_HASH) && !ena_rx_ctx->frag)) {
315 		ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
316 		mbuf->hash.rss = ena_rx_ctx->hash;
317 	}
318 
319 	mbuf->ol_flags = ol_flags;
320 	mbuf->packet_type = packet_type;
321 }
322 
323 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
324 				       struct ena_com_tx_ctx *ena_tx_ctx,
325 				       uint64_t queue_offloads,
326 				       bool disable_meta_caching)
327 {
328 	struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
329 
330 	if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
331 	    (queue_offloads & QUEUE_OFFLOADS)) {
332 		/* check if TSO is required */
333 		if ((mbuf->ol_flags & RTE_MBUF_F_TX_TCP_SEG) &&
334 		    (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_TSO)) {
335 			ena_tx_ctx->tso_enable = true;
336 
337 			ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
338 		}
339 
340 		/* check if L3 checksum is needed */
341 		if ((mbuf->ol_flags & RTE_MBUF_F_TX_IP_CKSUM) &&
342 		    (queue_offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM))
343 			ena_tx_ctx->l3_csum_enable = true;
344 
345 		if (mbuf->ol_flags & RTE_MBUF_F_TX_IPV6) {
346 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
347 		} else {
348 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
349 
350 			/* set don't fragment (DF) flag */
351 			if (mbuf->packet_type &
352 				(RTE_PTYPE_L4_NONFRAG
353 				 | RTE_PTYPE_INNER_L4_NONFRAG))
354 				ena_tx_ctx->df = true;
355 		}
356 
357 		/* check if L4 checksum is needed */
358 		if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) == RTE_MBUF_F_TX_TCP_CKSUM) &&
359 		    (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) {
360 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
361 			ena_tx_ctx->l4_csum_enable = true;
362 		} else if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) ==
363 				RTE_MBUF_F_TX_UDP_CKSUM) &&
364 				(queue_offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM)) {
365 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
366 			ena_tx_ctx->l4_csum_enable = true;
367 		} else {
368 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
369 			ena_tx_ctx->l4_csum_enable = false;
370 		}
371 
372 		ena_meta->mss = mbuf->tso_segsz;
373 		ena_meta->l3_hdr_len = mbuf->l3_len;
374 		ena_meta->l3_hdr_offset = mbuf->l2_len;
375 
376 		ena_tx_ctx->meta_valid = true;
377 	} else if (disable_meta_caching) {
378 		memset(ena_meta, 0, sizeof(*ena_meta));
379 		ena_tx_ctx->meta_valid = true;
380 	} else {
381 		ena_tx_ctx->meta_valid = false;
382 	}
383 }
384 
385 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
386 {
387 	struct ena_tx_buffer *tx_info = NULL;
388 
389 	if (likely(req_id < tx_ring->ring_size)) {
390 		tx_info = &tx_ring->tx_buffer_info[req_id];
391 		if (likely(tx_info->mbuf))
392 			return 0;
393 	}
394 
395 	if (tx_info)
396 		PMD_TX_LOG(ERR, "tx_info doesn't have valid mbuf\n");
397 	else
398 		PMD_TX_LOG(ERR, "Invalid req_id: %hu\n", req_id);
399 
400 	/* Trigger device reset */
401 	++tx_ring->tx_stats.bad_req_id;
402 	tx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID;
403 	tx_ring->adapter->trigger_reset	= true;
404 	return -EFAULT;
405 }
406 
407 static void ena_config_host_info(struct ena_com_dev *ena_dev)
408 {
409 	struct ena_admin_host_info *host_info;
410 	int rc;
411 
412 	/* Allocate only the host info */
413 	rc = ena_com_allocate_host_info(ena_dev);
414 	if (rc) {
415 		PMD_DRV_LOG(ERR, "Cannot allocate host info\n");
416 		return;
417 	}
418 
419 	host_info = ena_dev->host_attr.host_info;
420 
421 	host_info->os_type = ENA_ADMIN_OS_DPDK;
422 	host_info->kernel_ver = RTE_VERSION;
423 	strlcpy((char *)host_info->kernel_ver_str, rte_version(),
424 		sizeof(host_info->kernel_ver_str));
425 	host_info->os_dist = RTE_VERSION;
426 	strlcpy((char *)host_info->os_dist_str, rte_version(),
427 		sizeof(host_info->os_dist_str));
428 	host_info->driver_version =
429 		(DRV_MODULE_VER_MAJOR) |
430 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
431 		(DRV_MODULE_VER_SUBMINOR <<
432 			ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
433 	host_info->num_cpus = rte_lcore_count();
434 
435 	host_info->driver_supported_features =
436 		ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK |
437 		ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK;
438 
439 	rc = ena_com_set_host_attributes(ena_dev);
440 	if (rc) {
441 		if (rc == -ENA_COM_UNSUPPORTED)
442 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
443 		else
444 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
445 
446 		goto err;
447 	}
448 
449 	return;
450 
451 err:
452 	ena_com_delete_host_info(ena_dev);
453 }
454 
455 /* This function calculates the number of xstats based on the current config */
456 static unsigned int ena_xstats_calc_num(struct rte_eth_dev_data *data)
457 {
458 	return ENA_STATS_ARRAY_GLOBAL + ENA_STATS_ARRAY_ENI +
459 		(data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
460 		(data->nb_rx_queues * ENA_STATS_ARRAY_RX);
461 }
462 
463 static void ena_config_debug_area(struct ena_adapter *adapter)
464 {
465 	u32 debug_area_size;
466 	int rc, ss_count;
467 
468 	ss_count = ena_xstats_calc_num(adapter->edev_data);
469 
470 	/* allocate 32 bytes for each string and 64bit for the value */
471 	debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
472 
473 	rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
474 	if (rc) {
475 		PMD_DRV_LOG(ERR, "Cannot allocate debug area\n");
476 		return;
477 	}
478 
479 	rc = ena_com_set_host_attributes(&adapter->ena_dev);
480 	if (rc) {
481 		if (rc == -ENA_COM_UNSUPPORTED)
482 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
483 		else
484 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
485 
486 		goto err;
487 	}
488 
489 	return;
490 err:
491 	ena_com_delete_debug_area(&adapter->ena_dev);
492 }
493 
494 static int ena_close(struct rte_eth_dev *dev)
495 {
496 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
497 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
498 	struct ena_adapter *adapter = dev->data->dev_private;
499 	int ret = 0;
500 
501 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
502 		return 0;
503 
504 	if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
505 		ret = ena_stop(dev);
506 	adapter->state = ENA_ADAPTER_STATE_CLOSED;
507 
508 	ena_rx_queue_release_all(dev);
509 	ena_tx_queue_release_all(dev);
510 
511 	rte_free(adapter->drv_stats);
512 	adapter->drv_stats = NULL;
513 
514 	rte_intr_disable(intr_handle);
515 	rte_intr_callback_unregister(intr_handle,
516 				     ena_interrupt_handler_rte,
517 				     dev);
518 
519 	/*
520 	 * MAC is not allocated dynamically. Setting NULL should prevent from
521 	 * release of the resource in the rte_eth_dev_release_port().
522 	 */
523 	dev->data->mac_addrs = NULL;
524 
525 	return ret;
526 }
527 
528 static int
529 ena_dev_reset(struct rte_eth_dev *dev)
530 {
531 	int rc = 0;
532 
533 	/* Cannot release memory in secondary process */
534 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
535 		PMD_DRV_LOG(WARNING, "dev_reset not supported in secondary.\n");
536 		return -EPERM;
537 	}
538 
539 	ena_destroy_device(dev);
540 	rc = eth_ena_dev_init(dev);
541 	if (rc)
542 		PMD_INIT_LOG(CRIT, "Cannot initialize device\n");
543 
544 	return rc;
545 }
546 
547 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
548 {
549 	int nb_queues = dev->data->nb_rx_queues;
550 	int i;
551 
552 	for (i = 0; i < nb_queues; i++)
553 		ena_rx_queue_release(dev, i);
554 }
555 
556 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
557 {
558 	int nb_queues = dev->data->nb_tx_queues;
559 	int i;
560 
561 	for (i = 0; i < nb_queues; i++)
562 		ena_tx_queue_release(dev, i);
563 }
564 
565 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
566 {
567 	struct ena_ring *ring = dev->data->rx_queues[qid];
568 
569 	/* Free ring resources */
570 	rte_free(ring->rx_buffer_info);
571 	ring->rx_buffer_info = NULL;
572 
573 	rte_free(ring->rx_refill_buffer);
574 	ring->rx_refill_buffer = NULL;
575 
576 	rte_free(ring->empty_rx_reqs);
577 	ring->empty_rx_reqs = NULL;
578 
579 	ring->configured = 0;
580 
581 	PMD_DRV_LOG(NOTICE, "Rx queue %d:%d released\n",
582 		ring->port_id, ring->id);
583 }
584 
585 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
586 {
587 	struct ena_ring *ring = dev->data->tx_queues[qid];
588 
589 	/* Free ring resources */
590 	rte_free(ring->push_buf_intermediate_buf);
591 
592 	rte_free(ring->tx_buffer_info);
593 
594 	rte_free(ring->empty_tx_reqs);
595 
596 	ring->empty_tx_reqs = NULL;
597 	ring->tx_buffer_info = NULL;
598 	ring->push_buf_intermediate_buf = NULL;
599 
600 	ring->configured = 0;
601 
602 	PMD_DRV_LOG(NOTICE, "Tx queue %d:%d released\n",
603 		ring->port_id, ring->id);
604 }
605 
606 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
607 {
608 	unsigned int i;
609 
610 	for (i = 0; i < ring->ring_size; ++i) {
611 		struct ena_rx_buffer *rx_info = &ring->rx_buffer_info[i];
612 		if (rx_info->mbuf) {
613 			rte_mbuf_raw_free(rx_info->mbuf);
614 			rx_info->mbuf = NULL;
615 		}
616 	}
617 }
618 
619 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
620 {
621 	unsigned int i;
622 
623 	for (i = 0; i < ring->ring_size; ++i) {
624 		struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
625 
626 		if (tx_buf->mbuf) {
627 			rte_pktmbuf_free(tx_buf->mbuf);
628 			tx_buf->mbuf = NULL;
629 		}
630 	}
631 }
632 
633 static int ena_link_update(struct rte_eth_dev *dev,
634 			   __rte_unused int wait_to_complete)
635 {
636 	struct rte_eth_link *link = &dev->data->dev_link;
637 	struct ena_adapter *adapter = dev->data->dev_private;
638 
639 	link->link_status = adapter->link_status ? RTE_ETH_LINK_UP : RTE_ETH_LINK_DOWN;
640 	link->link_speed = RTE_ETH_SPEED_NUM_NONE;
641 	link->link_duplex = RTE_ETH_LINK_FULL_DUPLEX;
642 
643 	return 0;
644 }
645 
646 static int ena_queue_start_all(struct rte_eth_dev *dev,
647 			       enum ena_ring_type ring_type)
648 {
649 	struct ena_adapter *adapter = dev->data->dev_private;
650 	struct ena_ring *queues = NULL;
651 	int nb_queues;
652 	int i = 0;
653 	int rc = 0;
654 
655 	if (ring_type == ENA_RING_TYPE_RX) {
656 		queues = adapter->rx_ring;
657 		nb_queues = dev->data->nb_rx_queues;
658 	} else {
659 		queues = adapter->tx_ring;
660 		nb_queues = dev->data->nb_tx_queues;
661 	}
662 	for (i = 0; i < nb_queues; i++) {
663 		if (queues[i].configured) {
664 			if (ring_type == ENA_RING_TYPE_RX) {
665 				ena_assert_msg(
666 					dev->data->rx_queues[i] == &queues[i],
667 					"Inconsistent state of Rx queues\n");
668 			} else {
669 				ena_assert_msg(
670 					dev->data->tx_queues[i] == &queues[i],
671 					"Inconsistent state of Tx queues\n");
672 			}
673 
674 			rc = ena_queue_start(dev, &queues[i]);
675 
676 			if (rc) {
677 				PMD_INIT_LOG(ERR,
678 					"Failed to start queue[%d] of type(%d)\n",
679 					i, ring_type);
680 				goto err;
681 			}
682 		}
683 	}
684 
685 	return 0;
686 
687 err:
688 	while (i--)
689 		if (queues[i].configured)
690 			ena_queue_stop(&queues[i]);
691 
692 	return rc;
693 }
694 
695 static int ena_check_valid_conf(struct ena_adapter *adapter)
696 {
697 	uint32_t mtu = adapter->edev_data->mtu;
698 
699 	if (mtu > adapter->max_mtu || mtu < ENA_MIN_MTU) {
700 		PMD_INIT_LOG(ERR,
701 			"Unsupported MTU of %d. Max MTU: %d, min MTU: %d\n",
702 			mtu, adapter->max_mtu, ENA_MIN_MTU);
703 		return ENA_COM_UNSUPPORTED;
704 	}
705 
706 	return 0;
707 }
708 
709 static int
710 ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx,
711 		       bool use_large_llq_hdr)
712 {
713 	struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
714 	struct ena_com_dev *ena_dev = ctx->ena_dev;
715 	uint32_t max_tx_queue_size;
716 	uint32_t max_rx_queue_size;
717 
718 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
719 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
720 			&ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
721 		max_rx_queue_size = RTE_MIN(max_queue_ext->max_rx_cq_depth,
722 			max_queue_ext->max_rx_sq_depth);
723 		max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
724 
725 		if (ena_dev->tx_mem_queue_type ==
726 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
727 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
728 				llq->max_llq_depth);
729 		} else {
730 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
731 				max_queue_ext->max_tx_sq_depth);
732 		}
733 
734 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
735 			max_queue_ext->max_per_packet_rx_descs);
736 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
737 			max_queue_ext->max_per_packet_tx_descs);
738 	} else {
739 		struct ena_admin_queue_feature_desc *max_queues =
740 			&ctx->get_feat_ctx->max_queues;
741 		max_rx_queue_size = RTE_MIN(max_queues->max_cq_depth,
742 			max_queues->max_sq_depth);
743 		max_tx_queue_size = max_queues->max_cq_depth;
744 
745 		if (ena_dev->tx_mem_queue_type ==
746 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
747 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
748 				llq->max_llq_depth);
749 		} else {
750 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
751 				max_queues->max_sq_depth);
752 		}
753 
754 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
755 			max_queues->max_packet_rx_descs);
756 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
757 			max_queues->max_packet_tx_descs);
758 	}
759 
760 	/* Round down to the nearest power of 2 */
761 	max_rx_queue_size = rte_align32prevpow2(max_rx_queue_size);
762 	max_tx_queue_size = rte_align32prevpow2(max_tx_queue_size);
763 
764 	if (use_large_llq_hdr) {
765 		if ((llq->entry_size_ctrl_supported &
766 		     ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
767 		    (ena_dev->tx_mem_queue_type ==
768 		     ENA_ADMIN_PLACEMENT_POLICY_DEV)) {
769 			max_tx_queue_size /= 2;
770 			PMD_INIT_LOG(INFO,
771 				"Forcing large headers and decreasing maximum Tx queue size to %d\n",
772 				max_tx_queue_size);
773 		} else {
774 			PMD_INIT_LOG(ERR,
775 				"Forcing large headers failed: LLQ is disabled or device does not support large headers\n");
776 		}
777 	}
778 
779 	if (unlikely(max_rx_queue_size == 0 || max_tx_queue_size == 0)) {
780 		PMD_INIT_LOG(ERR, "Invalid queue size\n");
781 		return -EFAULT;
782 	}
783 
784 	ctx->max_tx_queue_size = max_tx_queue_size;
785 	ctx->max_rx_queue_size = max_rx_queue_size;
786 
787 	return 0;
788 }
789 
790 static void ena_stats_restart(struct rte_eth_dev *dev)
791 {
792 	struct ena_adapter *adapter = dev->data->dev_private;
793 
794 	rte_atomic64_init(&adapter->drv_stats->ierrors);
795 	rte_atomic64_init(&adapter->drv_stats->oerrors);
796 	rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
797 	adapter->drv_stats->rx_drops = 0;
798 }
799 
800 static int ena_stats_get(struct rte_eth_dev *dev,
801 			  struct rte_eth_stats *stats)
802 {
803 	struct ena_admin_basic_stats ena_stats;
804 	struct ena_adapter *adapter = dev->data->dev_private;
805 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
806 	int rc;
807 	int i;
808 	int max_rings_stats;
809 
810 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
811 		return -ENOTSUP;
812 
813 	memset(&ena_stats, 0, sizeof(ena_stats));
814 
815 	rte_spinlock_lock(&adapter->admin_lock);
816 	rc = ena_com_get_dev_basic_stats(ena_dev, &ena_stats);
817 	rte_spinlock_unlock(&adapter->admin_lock);
818 	if (unlikely(rc)) {
819 		PMD_DRV_LOG(ERR, "Could not retrieve statistics from ENA\n");
820 		return rc;
821 	}
822 
823 	/* Set of basic statistics from ENA */
824 	stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
825 					  ena_stats.rx_pkts_low);
826 	stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
827 					  ena_stats.tx_pkts_low);
828 	stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
829 					ena_stats.rx_bytes_low);
830 	stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
831 					ena_stats.tx_bytes_low);
832 
833 	/* Driver related stats */
834 	stats->imissed = adapter->drv_stats->rx_drops;
835 	stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
836 	stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
837 	stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
838 
839 	max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
840 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
841 	for (i = 0; i < max_rings_stats; ++i) {
842 		struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
843 
844 		stats->q_ibytes[i] = rx_stats->bytes;
845 		stats->q_ipackets[i] = rx_stats->cnt;
846 		stats->q_errors[i] = rx_stats->bad_desc_num +
847 			rx_stats->bad_req_id;
848 	}
849 
850 	max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
851 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
852 	for (i = 0; i < max_rings_stats; ++i) {
853 		struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
854 
855 		stats->q_obytes[i] = tx_stats->bytes;
856 		stats->q_opackets[i] = tx_stats->cnt;
857 	}
858 
859 	return 0;
860 }
861 
862 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
863 {
864 	struct ena_adapter *adapter;
865 	struct ena_com_dev *ena_dev;
866 	int rc = 0;
867 
868 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
869 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
870 	adapter = dev->data->dev_private;
871 
872 	ena_dev = &adapter->ena_dev;
873 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
874 
875 	if (mtu > adapter->max_mtu || mtu < ENA_MIN_MTU) {
876 		PMD_DRV_LOG(ERR,
877 			"Invalid MTU setting. New MTU: %d, max MTU: %d, min MTU: %d\n",
878 			mtu, adapter->max_mtu, ENA_MIN_MTU);
879 		return -EINVAL;
880 	}
881 
882 	rc = ena_com_set_dev_mtu(ena_dev, mtu);
883 	if (rc)
884 		PMD_DRV_LOG(ERR, "Could not set MTU: %d\n", mtu);
885 	else
886 		PMD_DRV_LOG(NOTICE, "MTU set to: %d\n", mtu);
887 
888 	return rc;
889 }
890 
891 static int ena_start(struct rte_eth_dev *dev)
892 {
893 	struct ena_adapter *adapter = dev->data->dev_private;
894 	uint64_t ticks;
895 	int rc = 0;
896 
897 	/* Cannot allocate memory in secondary process */
898 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
899 		PMD_DRV_LOG(WARNING, "dev_start not supported in secondary.\n");
900 		return -EPERM;
901 	}
902 
903 	rc = ena_check_valid_conf(adapter);
904 	if (rc)
905 		return rc;
906 
907 	rc = ena_setup_rx_intr(dev);
908 	if (rc)
909 		return rc;
910 
911 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
912 	if (rc)
913 		return rc;
914 
915 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
916 	if (rc)
917 		goto err_start_tx;
918 
919 	if (adapter->edev_data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG) {
920 		rc = ena_rss_configure(adapter);
921 		if (rc)
922 			goto err_rss_init;
923 	}
924 
925 	ena_stats_restart(dev);
926 
927 	adapter->timestamp_wd = rte_get_timer_cycles();
928 	adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
929 
930 	ticks = rte_get_timer_hz();
931 	rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
932 			ena_timer_wd_callback, dev);
933 
934 	++adapter->dev_stats.dev_start;
935 	adapter->state = ENA_ADAPTER_STATE_RUNNING;
936 
937 	return 0;
938 
939 err_rss_init:
940 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
941 err_start_tx:
942 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
943 	return rc;
944 }
945 
946 static int ena_stop(struct rte_eth_dev *dev)
947 {
948 	struct ena_adapter *adapter = dev->data->dev_private;
949 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
950 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
951 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
952 	int rc;
953 
954 	/* Cannot free memory in secondary process */
955 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
956 		PMD_DRV_LOG(WARNING, "dev_stop not supported in secondary.\n");
957 		return -EPERM;
958 	}
959 
960 	rte_timer_stop_sync(&adapter->timer_wd);
961 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
962 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
963 
964 	if (adapter->trigger_reset) {
965 		rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
966 		if (rc)
967 			PMD_DRV_LOG(ERR, "Device reset failed, rc: %d\n", rc);
968 	}
969 
970 	rte_intr_disable(intr_handle);
971 
972 	rte_intr_efd_disable(intr_handle);
973 
974 	/* Cleanup vector list */
975 	rte_intr_vec_list_free(intr_handle);
976 
977 	rte_intr_enable(intr_handle);
978 
979 	++adapter->dev_stats.dev_stop;
980 	adapter->state = ENA_ADAPTER_STATE_STOPPED;
981 	dev->data->dev_started = 0;
982 
983 	return 0;
984 }
985 
986 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring)
987 {
988 	struct ena_adapter *adapter = ring->adapter;
989 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
990 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
991 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
992 	struct ena_com_create_io_ctx ctx =
993 		/* policy set to _HOST just to satisfy icc compiler */
994 		{ ENA_ADMIN_PLACEMENT_POLICY_HOST,
995 		  0, 0, 0, 0, 0 };
996 	uint16_t ena_qid;
997 	unsigned int i;
998 	int rc;
999 
1000 	ctx.msix_vector = -1;
1001 	if (ring->type == ENA_RING_TYPE_TX) {
1002 		ena_qid = ENA_IO_TXQ_IDX(ring->id);
1003 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1004 		ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1005 		for (i = 0; i < ring->ring_size; i++)
1006 			ring->empty_tx_reqs[i] = i;
1007 	} else {
1008 		ena_qid = ENA_IO_RXQ_IDX(ring->id);
1009 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1010 		if (rte_intr_dp_is_en(intr_handle))
1011 			ctx.msix_vector =
1012 				rte_intr_vec_list_index_get(intr_handle,
1013 								   ring->id);
1014 
1015 		for (i = 0; i < ring->ring_size; i++)
1016 			ring->empty_rx_reqs[i] = i;
1017 	}
1018 	ctx.queue_size = ring->ring_size;
1019 	ctx.qid = ena_qid;
1020 	ctx.numa_node = ring->numa_socket_id;
1021 
1022 	rc = ena_com_create_io_queue(ena_dev, &ctx);
1023 	if (rc) {
1024 		PMD_DRV_LOG(ERR,
1025 			"Failed to create IO queue[%d] (qid:%d), rc: %d\n",
1026 			ring->id, ena_qid, rc);
1027 		return rc;
1028 	}
1029 
1030 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1031 				     &ring->ena_com_io_sq,
1032 				     &ring->ena_com_io_cq);
1033 	if (rc) {
1034 		PMD_DRV_LOG(ERR,
1035 			"Failed to get IO queue[%d] handlers, rc: %d\n",
1036 			ring->id, rc);
1037 		ena_com_destroy_io_queue(ena_dev, ena_qid);
1038 		return rc;
1039 	}
1040 
1041 	if (ring->type == ENA_RING_TYPE_TX)
1042 		ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1043 
1044 	/* Start with Rx interrupts being masked. */
1045 	if (ring->type == ENA_RING_TYPE_RX && rte_intr_dp_is_en(intr_handle))
1046 		ena_rx_queue_intr_disable(dev, ring->id);
1047 
1048 	return 0;
1049 }
1050 
1051 static void ena_queue_stop(struct ena_ring *ring)
1052 {
1053 	struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
1054 
1055 	if (ring->type == ENA_RING_TYPE_RX) {
1056 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
1057 		ena_rx_queue_release_bufs(ring);
1058 	} else {
1059 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
1060 		ena_tx_queue_release_bufs(ring);
1061 	}
1062 }
1063 
1064 static void ena_queue_stop_all(struct rte_eth_dev *dev,
1065 			      enum ena_ring_type ring_type)
1066 {
1067 	struct ena_adapter *adapter = dev->data->dev_private;
1068 	struct ena_ring *queues = NULL;
1069 	uint16_t nb_queues, i;
1070 
1071 	if (ring_type == ENA_RING_TYPE_RX) {
1072 		queues = adapter->rx_ring;
1073 		nb_queues = dev->data->nb_rx_queues;
1074 	} else {
1075 		queues = adapter->tx_ring;
1076 		nb_queues = dev->data->nb_tx_queues;
1077 	}
1078 
1079 	for (i = 0; i < nb_queues; ++i)
1080 		if (queues[i].configured)
1081 			ena_queue_stop(&queues[i]);
1082 }
1083 
1084 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring)
1085 {
1086 	int rc, bufs_num;
1087 
1088 	ena_assert_msg(ring->configured == 1,
1089 		       "Trying to start unconfigured queue\n");
1090 
1091 	rc = ena_create_io_queue(dev, ring);
1092 	if (rc) {
1093 		PMD_INIT_LOG(ERR, "Failed to create IO queue\n");
1094 		return rc;
1095 	}
1096 
1097 	ring->next_to_clean = 0;
1098 	ring->next_to_use = 0;
1099 
1100 	if (ring->type == ENA_RING_TYPE_TX) {
1101 		ring->tx_stats.available_desc =
1102 			ena_com_free_q_entries(ring->ena_com_io_sq);
1103 		return 0;
1104 	}
1105 
1106 	bufs_num = ring->ring_size - 1;
1107 	rc = ena_populate_rx_queue(ring, bufs_num);
1108 	if (rc != bufs_num) {
1109 		ena_com_destroy_io_queue(&ring->adapter->ena_dev,
1110 					 ENA_IO_RXQ_IDX(ring->id));
1111 		PMD_INIT_LOG(ERR, "Failed to populate Rx ring\n");
1112 		return ENA_COM_FAULT;
1113 	}
1114 	/* Flush per-core RX buffers pools cache as they can be used on other
1115 	 * cores as well.
1116 	 */
1117 	rte_mempool_cache_flush(NULL, ring->mb_pool);
1118 
1119 	return 0;
1120 }
1121 
1122 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1123 			      uint16_t queue_idx,
1124 			      uint16_t nb_desc,
1125 			      unsigned int socket_id,
1126 			      const struct rte_eth_txconf *tx_conf)
1127 {
1128 	struct ena_ring *txq = NULL;
1129 	struct ena_adapter *adapter = dev->data->dev_private;
1130 	unsigned int i;
1131 	uint16_t dyn_thresh;
1132 
1133 	txq = &adapter->tx_ring[queue_idx];
1134 
1135 	if (txq->configured) {
1136 		PMD_DRV_LOG(CRIT,
1137 			"API violation. Queue[%d] is already configured\n",
1138 			queue_idx);
1139 		return ENA_COM_FAULT;
1140 	}
1141 
1142 	if (!rte_is_power_of_2(nb_desc)) {
1143 		PMD_DRV_LOG(ERR,
1144 			"Unsupported size of Tx queue: %d is not a power of 2.\n",
1145 			nb_desc);
1146 		return -EINVAL;
1147 	}
1148 
1149 	if (nb_desc > adapter->max_tx_ring_size) {
1150 		PMD_DRV_LOG(ERR,
1151 			"Unsupported size of Tx queue (max size: %d)\n",
1152 			adapter->max_tx_ring_size);
1153 		return -EINVAL;
1154 	}
1155 
1156 	txq->port_id = dev->data->port_id;
1157 	txq->next_to_clean = 0;
1158 	txq->next_to_use = 0;
1159 	txq->ring_size = nb_desc;
1160 	txq->size_mask = nb_desc - 1;
1161 	txq->numa_socket_id = socket_id;
1162 	txq->pkts_without_db = false;
1163 	txq->last_cleanup_ticks = 0;
1164 
1165 	txq->tx_buffer_info = rte_zmalloc_socket("txq->tx_buffer_info",
1166 		sizeof(struct ena_tx_buffer) * txq->ring_size,
1167 		RTE_CACHE_LINE_SIZE,
1168 		socket_id);
1169 	if (!txq->tx_buffer_info) {
1170 		PMD_DRV_LOG(ERR,
1171 			"Failed to allocate memory for Tx buffer info\n");
1172 		return -ENOMEM;
1173 	}
1174 
1175 	txq->empty_tx_reqs = rte_zmalloc_socket("txq->empty_tx_reqs",
1176 		sizeof(uint16_t) * txq->ring_size,
1177 		RTE_CACHE_LINE_SIZE,
1178 		socket_id);
1179 	if (!txq->empty_tx_reqs) {
1180 		PMD_DRV_LOG(ERR,
1181 			"Failed to allocate memory for empty Tx requests\n");
1182 		rte_free(txq->tx_buffer_info);
1183 		return -ENOMEM;
1184 	}
1185 
1186 	txq->push_buf_intermediate_buf =
1187 		rte_zmalloc_socket("txq->push_buf_intermediate_buf",
1188 			txq->tx_max_header_size,
1189 			RTE_CACHE_LINE_SIZE,
1190 			socket_id);
1191 	if (!txq->push_buf_intermediate_buf) {
1192 		PMD_DRV_LOG(ERR, "Failed to alloc push buffer for LLQ\n");
1193 		rte_free(txq->tx_buffer_info);
1194 		rte_free(txq->empty_tx_reqs);
1195 		return -ENOMEM;
1196 	}
1197 
1198 	for (i = 0; i < txq->ring_size; i++)
1199 		txq->empty_tx_reqs[i] = i;
1200 
1201 	txq->offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1202 
1203 	/* Check if caller provided the Tx cleanup threshold value. */
1204 	if (tx_conf->tx_free_thresh != 0) {
1205 		txq->tx_free_thresh = tx_conf->tx_free_thresh;
1206 	} else {
1207 		dyn_thresh = txq->ring_size -
1208 			txq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1209 		txq->tx_free_thresh = RTE_MAX(dyn_thresh,
1210 			txq->ring_size - ENA_REFILL_THRESH_PACKET);
1211 	}
1212 
1213 	txq->missing_tx_completion_threshold =
1214 		RTE_MIN(txq->ring_size / 2, ENA_DEFAULT_MISSING_COMP);
1215 
1216 	/* Store pointer to this queue in upper layer */
1217 	txq->configured = 1;
1218 	dev->data->tx_queues[queue_idx] = txq;
1219 
1220 	return 0;
1221 }
1222 
1223 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1224 			      uint16_t queue_idx,
1225 			      uint16_t nb_desc,
1226 			      unsigned int socket_id,
1227 			      const struct rte_eth_rxconf *rx_conf,
1228 			      struct rte_mempool *mp)
1229 {
1230 	struct ena_adapter *adapter = dev->data->dev_private;
1231 	struct ena_ring *rxq = NULL;
1232 	size_t buffer_size;
1233 	int i;
1234 	uint16_t dyn_thresh;
1235 
1236 	rxq = &adapter->rx_ring[queue_idx];
1237 	if (rxq->configured) {
1238 		PMD_DRV_LOG(CRIT,
1239 			"API violation. Queue[%d] is already configured\n",
1240 			queue_idx);
1241 		return ENA_COM_FAULT;
1242 	}
1243 
1244 	if (!rte_is_power_of_2(nb_desc)) {
1245 		PMD_DRV_LOG(ERR,
1246 			"Unsupported size of Rx queue: %d is not a power of 2.\n",
1247 			nb_desc);
1248 		return -EINVAL;
1249 	}
1250 
1251 	if (nb_desc > adapter->max_rx_ring_size) {
1252 		PMD_DRV_LOG(ERR,
1253 			"Unsupported size of Rx queue (max size: %d)\n",
1254 			adapter->max_rx_ring_size);
1255 		return -EINVAL;
1256 	}
1257 
1258 	/* ENA isn't supporting buffers smaller than 1400 bytes */
1259 	buffer_size = rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
1260 	if (buffer_size < ENA_RX_BUF_MIN_SIZE) {
1261 		PMD_DRV_LOG(ERR,
1262 			"Unsupported size of Rx buffer: %zu (min size: %d)\n",
1263 			buffer_size, ENA_RX_BUF_MIN_SIZE);
1264 		return -EINVAL;
1265 	}
1266 
1267 	rxq->port_id = dev->data->port_id;
1268 	rxq->next_to_clean = 0;
1269 	rxq->next_to_use = 0;
1270 	rxq->ring_size = nb_desc;
1271 	rxq->size_mask = nb_desc - 1;
1272 	rxq->numa_socket_id = socket_id;
1273 	rxq->mb_pool = mp;
1274 
1275 	rxq->rx_buffer_info = rte_zmalloc_socket("rxq->buffer_info",
1276 		sizeof(struct ena_rx_buffer) * nb_desc,
1277 		RTE_CACHE_LINE_SIZE,
1278 		socket_id);
1279 	if (!rxq->rx_buffer_info) {
1280 		PMD_DRV_LOG(ERR,
1281 			"Failed to allocate memory for Rx buffer info\n");
1282 		return -ENOMEM;
1283 	}
1284 
1285 	rxq->rx_refill_buffer = rte_zmalloc_socket("rxq->rx_refill_buffer",
1286 		sizeof(struct rte_mbuf *) * nb_desc,
1287 		RTE_CACHE_LINE_SIZE,
1288 		socket_id);
1289 	if (!rxq->rx_refill_buffer) {
1290 		PMD_DRV_LOG(ERR,
1291 			"Failed to allocate memory for Rx refill buffer\n");
1292 		rte_free(rxq->rx_buffer_info);
1293 		rxq->rx_buffer_info = NULL;
1294 		return -ENOMEM;
1295 	}
1296 
1297 	rxq->empty_rx_reqs = rte_zmalloc_socket("rxq->empty_rx_reqs",
1298 		sizeof(uint16_t) * nb_desc,
1299 		RTE_CACHE_LINE_SIZE,
1300 		socket_id);
1301 	if (!rxq->empty_rx_reqs) {
1302 		PMD_DRV_LOG(ERR,
1303 			"Failed to allocate memory for empty Rx requests\n");
1304 		rte_free(rxq->rx_buffer_info);
1305 		rxq->rx_buffer_info = NULL;
1306 		rte_free(rxq->rx_refill_buffer);
1307 		rxq->rx_refill_buffer = NULL;
1308 		return -ENOMEM;
1309 	}
1310 
1311 	for (i = 0; i < nb_desc; i++)
1312 		rxq->empty_rx_reqs[i] = i;
1313 
1314 	rxq->offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1315 
1316 	if (rx_conf->rx_free_thresh != 0) {
1317 		rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1318 	} else {
1319 		dyn_thresh = rxq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1320 		rxq->rx_free_thresh = RTE_MIN(dyn_thresh,
1321 			(uint16_t)(ENA_REFILL_THRESH_PACKET));
1322 	}
1323 
1324 	/* Store pointer to this queue in upper layer */
1325 	rxq->configured = 1;
1326 	dev->data->rx_queues[queue_idx] = rxq;
1327 
1328 	return 0;
1329 }
1330 
1331 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
1332 				  struct rte_mbuf *mbuf, uint16_t id)
1333 {
1334 	struct ena_com_buf ebuf;
1335 	int rc;
1336 
1337 	/* prepare physical address for DMA transaction */
1338 	ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1339 	ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1340 
1341 	/* pass resource to device */
1342 	rc = ena_com_add_single_rx_desc(io_sq, &ebuf, id);
1343 	if (unlikely(rc != 0))
1344 		PMD_RX_LOG(WARNING, "Failed adding Rx desc\n");
1345 
1346 	return rc;
1347 }
1348 
1349 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1350 {
1351 	unsigned int i;
1352 	int rc;
1353 	uint16_t next_to_use = rxq->next_to_use;
1354 	uint16_t req_id;
1355 #ifdef RTE_ETHDEV_DEBUG_RX
1356 	uint16_t in_use;
1357 #endif
1358 	struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1359 
1360 	if (unlikely(!count))
1361 		return 0;
1362 
1363 #ifdef RTE_ETHDEV_DEBUG_RX
1364 	in_use = rxq->ring_size - 1 -
1365 		ena_com_free_q_entries(rxq->ena_com_io_sq);
1366 	if (unlikely((in_use + count) >= rxq->ring_size))
1367 		PMD_RX_LOG(ERR, "Bad Rx ring state\n");
1368 #endif
1369 
1370 	/* get resources for incoming packets */
1371 	rc = rte_pktmbuf_alloc_bulk(rxq->mb_pool, mbufs, count);
1372 	if (unlikely(rc < 0)) {
1373 		rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1374 		++rxq->rx_stats.mbuf_alloc_fail;
1375 		PMD_RX_LOG(DEBUG, "There are not enough free buffers\n");
1376 		return 0;
1377 	}
1378 
1379 	for (i = 0; i < count; i++) {
1380 		struct rte_mbuf *mbuf = mbufs[i];
1381 		struct ena_rx_buffer *rx_info;
1382 
1383 		if (likely((i + 4) < count))
1384 			rte_prefetch0(mbufs[i + 4]);
1385 
1386 		req_id = rxq->empty_rx_reqs[next_to_use];
1387 		rx_info = &rxq->rx_buffer_info[req_id];
1388 
1389 		rc = ena_add_single_rx_desc(rxq->ena_com_io_sq, mbuf, req_id);
1390 		if (unlikely(rc != 0))
1391 			break;
1392 
1393 		rx_info->mbuf = mbuf;
1394 		next_to_use = ENA_IDX_NEXT_MASKED(next_to_use, rxq->size_mask);
1395 	}
1396 
1397 	if (unlikely(i < count)) {
1398 		PMD_RX_LOG(WARNING,
1399 			"Refilled Rx queue[%d] with only %d/%d buffers\n",
1400 			rxq->id, i, count);
1401 		rte_pktmbuf_free_bulk(&mbufs[i], count - i);
1402 		++rxq->rx_stats.refill_partial;
1403 	}
1404 
1405 	/* When we submitted free resources to device... */
1406 	if (likely(i > 0)) {
1407 		/* ...let HW know that it can fill buffers with data. */
1408 		ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1409 
1410 		rxq->next_to_use = next_to_use;
1411 	}
1412 
1413 	return i;
1414 }
1415 
1416 static int ena_device_init(struct ena_com_dev *ena_dev,
1417 			   struct rte_pci_device *pdev,
1418 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
1419 			   bool *wd_state)
1420 {
1421 	uint32_t aenq_groups;
1422 	int rc;
1423 	bool readless_supported;
1424 
1425 	/* Initialize mmio registers */
1426 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
1427 	if (rc) {
1428 		PMD_DRV_LOG(ERR, "Failed to init MMIO read less\n");
1429 		return rc;
1430 	}
1431 
1432 	/* The PCIe configuration space revision id indicate if mmio reg
1433 	 * read is disabled.
1434 	 */
1435 	readless_supported = !(pdev->id.class_id & ENA_MMIO_DISABLE_REG_READ);
1436 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1437 
1438 	/* reset device */
1439 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1440 	if (rc) {
1441 		PMD_DRV_LOG(ERR, "Cannot reset device\n");
1442 		goto err_mmio_read_less;
1443 	}
1444 
1445 	/* check FW version */
1446 	rc = ena_com_validate_version(ena_dev);
1447 	if (rc) {
1448 		PMD_DRV_LOG(ERR, "Device version is too low\n");
1449 		goto err_mmio_read_less;
1450 	}
1451 
1452 	ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1453 
1454 	/* ENA device administration layer init */
1455 	rc = ena_com_admin_init(ena_dev, &aenq_handlers);
1456 	if (rc) {
1457 		PMD_DRV_LOG(ERR,
1458 			"Cannot initialize ENA admin queue\n");
1459 		goto err_mmio_read_less;
1460 	}
1461 
1462 	/* To enable the msix interrupts the driver needs to know the number
1463 	 * of queues. So the driver uses polling mode to retrieve this
1464 	 * information.
1465 	 */
1466 	ena_com_set_admin_polling_mode(ena_dev, true);
1467 
1468 	ena_config_host_info(ena_dev);
1469 
1470 	/* Get Device Attributes and features */
1471 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1472 	if (rc) {
1473 		PMD_DRV_LOG(ERR,
1474 			"Cannot get attribute for ENA device, rc: %d\n", rc);
1475 		goto err_admin_init;
1476 	}
1477 
1478 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1479 		      BIT(ENA_ADMIN_NOTIFICATION) |
1480 		      BIT(ENA_ADMIN_KEEP_ALIVE) |
1481 		      BIT(ENA_ADMIN_FATAL_ERROR) |
1482 		      BIT(ENA_ADMIN_WARNING);
1483 
1484 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
1485 	rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
1486 	if (rc) {
1487 		PMD_DRV_LOG(ERR, "Cannot configure AENQ groups, rc: %d\n", rc);
1488 		goto err_admin_init;
1489 	}
1490 
1491 	*wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
1492 
1493 	return 0;
1494 
1495 err_admin_init:
1496 	ena_com_admin_destroy(ena_dev);
1497 
1498 err_mmio_read_less:
1499 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1500 
1501 	return rc;
1502 }
1503 
1504 static void ena_interrupt_handler_rte(void *cb_arg)
1505 {
1506 	struct rte_eth_dev *dev = cb_arg;
1507 	struct ena_adapter *adapter = dev->data->dev_private;
1508 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1509 
1510 	ena_com_admin_q_comp_intr_handler(ena_dev);
1511 	if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED))
1512 		ena_com_aenq_intr_handler(ena_dev, dev);
1513 }
1514 
1515 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1516 {
1517 	if (!adapter->wd_state)
1518 		return;
1519 
1520 	if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1521 		return;
1522 
1523 	if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1524 	    adapter->keep_alive_timeout)) {
1525 		PMD_DRV_LOG(ERR, "Keep alive timeout\n");
1526 		adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
1527 		adapter->trigger_reset = true;
1528 		++adapter->dev_stats.wd_expired;
1529 	}
1530 }
1531 
1532 /* Check if admin queue is enabled */
1533 static void check_for_admin_com_state(struct ena_adapter *adapter)
1534 {
1535 	if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1536 		PMD_DRV_LOG(ERR, "ENA admin queue is not in running state\n");
1537 		adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
1538 		adapter->trigger_reset = true;
1539 	}
1540 }
1541 
1542 static int check_for_tx_completion_in_queue(struct ena_adapter *adapter,
1543 					    struct ena_ring *tx_ring)
1544 {
1545 	struct ena_tx_buffer *tx_buf;
1546 	uint64_t timestamp;
1547 	uint64_t completion_delay;
1548 	uint32_t missed_tx = 0;
1549 	unsigned int i;
1550 	int rc = 0;
1551 
1552 	for (i = 0; i < tx_ring->ring_size; ++i) {
1553 		tx_buf = &tx_ring->tx_buffer_info[i];
1554 		timestamp = tx_buf->timestamp;
1555 
1556 		if (timestamp == 0)
1557 			continue;
1558 
1559 		completion_delay = rte_get_timer_cycles() - timestamp;
1560 		if (completion_delay > adapter->missing_tx_completion_to) {
1561 			if (unlikely(!tx_buf->print_once)) {
1562 				PMD_TX_LOG(WARNING,
1563 					"Found a Tx that wasn't completed on time, qid %d, index %d. "
1564 					"Missing Tx outstanding for %" PRIu64 " msecs.\n",
1565 					tx_ring->id, i,	completion_delay /
1566 					rte_get_timer_hz() * 1000);
1567 				tx_buf->print_once = true;
1568 			}
1569 			++missed_tx;
1570 		}
1571 	}
1572 
1573 	if (unlikely(missed_tx > tx_ring->missing_tx_completion_threshold)) {
1574 		PMD_DRV_LOG(ERR,
1575 			"The number of lost Tx completions is above the threshold (%d > %d). "
1576 			"Trigger the device reset.\n",
1577 			missed_tx,
1578 			tx_ring->missing_tx_completion_threshold);
1579 		adapter->reset_reason = ENA_REGS_RESET_MISS_TX_CMPL;
1580 		adapter->trigger_reset = true;
1581 		rc = -EIO;
1582 	}
1583 
1584 	tx_ring->tx_stats.missed_tx += missed_tx;
1585 
1586 	return rc;
1587 }
1588 
1589 static void check_for_tx_completions(struct ena_adapter *adapter)
1590 {
1591 	struct ena_ring *tx_ring;
1592 	uint64_t tx_cleanup_delay;
1593 	size_t qid;
1594 	int budget;
1595 	uint16_t nb_tx_queues = adapter->edev_data->nb_tx_queues;
1596 
1597 	if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT)
1598 		return;
1599 
1600 	nb_tx_queues = adapter->edev_data->nb_tx_queues;
1601 	budget = adapter->missing_tx_completion_budget;
1602 
1603 	qid = adapter->last_tx_comp_qid;
1604 	while (budget-- > 0) {
1605 		tx_ring = &adapter->tx_ring[qid];
1606 
1607 		/* Tx cleanup is called only by the burst function and can be
1608 		 * called dynamically by the application. Also cleanup is
1609 		 * limited by the threshold. To avoid false detection of the
1610 		 * missing HW Tx completion, get the delay since last cleanup
1611 		 * function was called.
1612 		 */
1613 		tx_cleanup_delay = rte_get_timer_cycles() -
1614 			tx_ring->last_cleanup_ticks;
1615 		if (tx_cleanup_delay < adapter->tx_cleanup_stall_delay)
1616 			check_for_tx_completion_in_queue(adapter, tx_ring);
1617 		qid = (qid + 1) % nb_tx_queues;
1618 	}
1619 
1620 	adapter->last_tx_comp_qid = qid;
1621 }
1622 
1623 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
1624 				  void *arg)
1625 {
1626 	struct rte_eth_dev *dev = arg;
1627 	struct ena_adapter *adapter = dev->data->dev_private;
1628 
1629 	check_for_missing_keep_alive(adapter);
1630 	check_for_admin_com_state(adapter);
1631 	check_for_tx_completions(adapter);
1632 
1633 	if (unlikely(adapter->trigger_reset)) {
1634 		PMD_DRV_LOG(ERR, "Trigger reset is on\n");
1635 		rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
1636 			NULL);
1637 	}
1638 }
1639 
1640 static inline void
1641 set_default_llq_configurations(struct ena_llq_configurations *llq_config,
1642 			       struct ena_admin_feature_llq_desc *llq,
1643 			       bool use_large_llq_hdr)
1644 {
1645 	llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
1646 	llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
1647 	llq_config->llq_num_decs_before_header =
1648 		ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
1649 
1650 	if (use_large_llq_hdr &&
1651 	    (llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B)) {
1652 		llq_config->llq_ring_entry_size =
1653 			ENA_ADMIN_LIST_ENTRY_SIZE_256B;
1654 		llq_config->llq_ring_entry_size_value = 256;
1655 	} else {
1656 		llq_config->llq_ring_entry_size =
1657 			ENA_ADMIN_LIST_ENTRY_SIZE_128B;
1658 		llq_config->llq_ring_entry_size_value = 128;
1659 	}
1660 }
1661 
1662 static int
1663 ena_set_queues_placement_policy(struct ena_adapter *adapter,
1664 				struct ena_com_dev *ena_dev,
1665 				struct ena_admin_feature_llq_desc *llq,
1666 				struct ena_llq_configurations *llq_default_configurations)
1667 {
1668 	int rc;
1669 	u32 llq_feature_mask;
1670 
1671 	llq_feature_mask = 1 << ENA_ADMIN_LLQ;
1672 	if (!(ena_dev->supported_features & llq_feature_mask)) {
1673 		PMD_DRV_LOG(INFO,
1674 			"LLQ is not supported. Fallback to host mode policy.\n");
1675 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1676 		return 0;
1677 	}
1678 
1679 	rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
1680 	if (unlikely(rc)) {
1681 		PMD_INIT_LOG(WARNING,
1682 			"Failed to config dev mode. Fallback to host mode policy.\n");
1683 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1684 		return 0;
1685 	}
1686 
1687 	/* Nothing to config, exit */
1688 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1689 		return 0;
1690 
1691 	if (!adapter->dev_mem_base) {
1692 		PMD_DRV_LOG(ERR,
1693 			"Unable to access LLQ BAR resource. Fallback to host mode policy.\n");
1694 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1695 		return 0;
1696 	}
1697 
1698 	ena_dev->mem_bar = adapter->dev_mem_base;
1699 
1700 	return 0;
1701 }
1702 
1703 static uint32_t ena_calc_max_io_queue_num(struct ena_com_dev *ena_dev,
1704 	struct ena_com_dev_get_features_ctx *get_feat_ctx)
1705 {
1706 	uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
1707 
1708 	/* Regular queues capabilities */
1709 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1710 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1711 			&get_feat_ctx->max_queue_ext.max_queue_ext;
1712 		io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
1713 				    max_queue_ext->max_rx_cq_num);
1714 		io_tx_sq_num = max_queue_ext->max_tx_sq_num;
1715 		io_tx_cq_num = max_queue_ext->max_tx_cq_num;
1716 	} else {
1717 		struct ena_admin_queue_feature_desc *max_queues =
1718 			&get_feat_ctx->max_queues;
1719 		io_tx_sq_num = max_queues->max_sq_num;
1720 		io_tx_cq_num = max_queues->max_cq_num;
1721 		io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
1722 	}
1723 
1724 	/* In case of LLQ use the llq number in the get feature cmd */
1725 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
1726 		io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
1727 
1728 	max_num_io_queues = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
1729 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_sq_num);
1730 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_cq_num);
1731 
1732 	if (unlikely(max_num_io_queues == 0)) {
1733 		PMD_DRV_LOG(ERR, "Number of IO queues cannot not be 0\n");
1734 		return -EFAULT;
1735 	}
1736 
1737 	return max_num_io_queues;
1738 }
1739 
1740 static void
1741 ena_set_offloads(struct ena_offloads *offloads,
1742 		 struct ena_admin_feature_offload_desc *offload_desc)
1743 {
1744 	if (offload_desc->tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK)
1745 		offloads->tx_offloads |= ENA_IPV4_TSO;
1746 
1747 	/* Tx IPv4 checksum offloads */
1748 	if (offload_desc->tx &
1749 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)
1750 		offloads->tx_offloads |= ENA_L3_IPV4_CSUM;
1751 	if (offload_desc->tx &
1752 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK)
1753 		offloads->tx_offloads |= ENA_L4_IPV4_CSUM;
1754 	if (offload_desc->tx &
1755 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)
1756 		offloads->tx_offloads |= ENA_L4_IPV4_CSUM_PARTIAL;
1757 
1758 	/* Tx IPv6 checksum offloads */
1759 	if (offload_desc->tx &
1760 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK)
1761 		offloads->tx_offloads |= ENA_L4_IPV6_CSUM;
1762 	if (offload_desc->tx &
1763 	     ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)
1764 		offloads->tx_offloads |= ENA_L4_IPV6_CSUM_PARTIAL;
1765 
1766 	/* Rx IPv4 checksum offloads */
1767 	if (offload_desc->rx_supported &
1768 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)
1769 		offloads->rx_offloads |= ENA_L3_IPV4_CSUM;
1770 	if (offload_desc->rx_supported &
1771 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK)
1772 		offloads->rx_offloads |= ENA_L4_IPV4_CSUM;
1773 
1774 	/* Rx IPv6 checksum offloads */
1775 	if (offload_desc->rx_supported &
1776 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK)
1777 		offloads->rx_offloads |= ENA_L4_IPV6_CSUM;
1778 
1779 	if (offload_desc->rx_supported &
1780 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_HASH_MASK)
1781 		offloads->rx_offloads |= ENA_RX_RSS_HASH;
1782 }
1783 
1784 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
1785 {
1786 	struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
1787 	struct rte_pci_device *pci_dev;
1788 	struct rte_intr_handle *intr_handle;
1789 	struct ena_adapter *adapter = eth_dev->data->dev_private;
1790 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1791 	struct ena_com_dev_get_features_ctx get_feat_ctx;
1792 	struct ena_llq_configurations llq_config;
1793 	const char *queue_type_str;
1794 	uint32_t max_num_io_queues;
1795 	int rc;
1796 	static int adapters_found;
1797 	bool disable_meta_caching;
1798 	bool wd_state = false;
1799 
1800 	eth_dev->dev_ops = &ena_dev_ops;
1801 	eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
1802 	eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
1803 	eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
1804 
1805 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1806 		return 0;
1807 
1808 	eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
1809 
1810 	memset(adapter, 0, sizeof(struct ena_adapter));
1811 	ena_dev = &adapter->ena_dev;
1812 
1813 	adapter->edev_data = eth_dev->data;
1814 
1815 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1816 
1817 	PMD_INIT_LOG(INFO, "Initializing %x:%x:%x.%d\n",
1818 		     pci_dev->addr.domain,
1819 		     pci_dev->addr.bus,
1820 		     pci_dev->addr.devid,
1821 		     pci_dev->addr.function);
1822 
1823 	intr_handle = pci_dev->intr_handle;
1824 
1825 	adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
1826 	adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
1827 
1828 	if (!adapter->regs) {
1829 		PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)\n",
1830 			     ENA_REGS_BAR);
1831 		return -ENXIO;
1832 	}
1833 
1834 	ena_dev->reg_bar = adapter->regs;
1835 	/* This is a dummy pointer for ena_com functions. */
1836 	ena_dev->dmadev = adapter;
1837 
1838 	adapter->id_number = adapters_found;
1839 
1840 	snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
1841 		 adapter->id_number);
1842 
1843 	rc = ena_parse_devargs(adapter, pci_dev->device.devargs);
1844 	if (rc != 0) {
1845 		PMD_INIT_LOG(CRIT, "Failed to parse devargs\n");
1846 		goto err;
1847 	}
1848 
1849 	/* device specific initialization routine */
1850 	rc = ena_device_init(ena_dev, pci_dev, &get_feat_ctx, &wd_state);
1851 	if (rc) {
1852 		PMD_INIT_LOG(CRIT, "Failed to init ENA device\n");
1853 		goto err;
1854 	}
1855 	adapter->wd_state = wd_state;
1856 
1857 	set_default_llq_configurations(&llq_config, &get_feat_ctx.llq,
1858 		adapter->use_large_llq_hdr);
1859 	rc = ena_set_queues_placement_policy(adapter, ena_dev,
1860 					     &get_feat_ctx.llq, &llq_config);
1861 	if (unlikely(rc)) {
1862 		PMD_INIT_LOG(CRIT, "Failed to set placement policy\n");
1863 		return rc;
1864 	}
1865 
1866 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1867 		queue_type_str = "Regular";
1868 	else
1869 		queue_type_str = "Low latency";
1870 	PMD_DRV_LOG(INFO, "Placement policy: %s\n", queue_type_str);
1871 
1872 	calc_queue_ctx.ena_dev = ena_dev;
1873 	calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
1874 
1875 	max_num_io_queues = ena_calc_max_io_queue_num(ena_dev, &get_feat_ctx);
1876 	rc = ena_calc_io_queue_size(&calc_queue_ctx,
1877 		adapter->use_large_llq_hdr);
1878 	if (unlikely((rc != 0) || (max_num_io_queues == 0))) {
1879 		rc = -EFAULT;
1880 		goto err_device_destroy;
1881 	}
1882 
1883 	adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
1884 	adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
1885 	adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
1886 	adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
1887 	adapter->max_num_io_queues = max_num_io_queues;
1888 
1889 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1890 		disable_meta_caching =
1891 			!!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
1892 			BIT(ENA_ADMIN_DISABLE_META_CACHING));
1893 	} else {
1894 		disable_meta_caching = false;
1895 	}
1896 
1897 	/* prepare ring structures */
1898 	ena_init_rings(adapter, disable_meta_caching);
1899 
1900 	ena_config_debug_area(adapter);
1901 
1902 	/* Set max MTU for this device */
1903 	adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
1904 
1905 	ena_set_offloads(&adapter->offloads, &get_feat_ctx.offload);
1906 
1907 	/* Copy MAC address and point DPDK to it */
1908 	eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr;
1909 	rte_ether_addr_copy((struct rte_ether_addr *)
1910 			get_feat_ctx.dev_attr.mac_addr,
1911 			(struct rte_ether_addr *)adapter->mac_addr);
1912 
1913 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
1914 	if (unlikely(rc != 0)) {
1915 		PMD_DRV_LOG(ERR, "Failed to initialize RSS in ENA device\n");
1916 		goto err_delete_debug_area;
1917 	}
1918 
1919 	adapter->drv_stats = rte_zmalloc("adapter stats",
1920 					 sizeof(*adapter->drv_stats),
1921 					 RTE_CACHE_LINE_SIZE);
1922 	if (!adapter->drv_stats) {
1923 		PMD_DRV_LOG(ERR,
1924 			"Failed to allocate memory for adapter statistics\n");
1925 		rc = -ENOMEM;
1926 		goto err_rss_destroy;
1927 	}
1928 
1929 	rte_spinlock_init(&adapter->admin_lock);
1930 
1931 	rte_intr_callback_register(intr_handle,
1932 				   ena_interrupt_handler_rte,
1933 				   eth_dev);
1934 	rte_intr_enable(intr_handle);
1935 	ena_com_set_admin_polling_mode(ena_dev, false);
1936 	ena_com_admin_aenq_enable(ena_dev);
1937 
1938 	if (adapters_found == 0)
1939 		rte_timer_subsystem_init();
1940 	rte_timer_init(&adapter->timer_wd);
1941 
1942 	adapters_found++;
1943 	adapter->state = ENA_ADAPTER_STATE_INIT;
1944 
1945 	return 0;
1946 
1947 err_rss_destroy:
1948 	ena_com_rss_destroy(ena_dev);
1949 err_delete_debug_area:
1950 	ena_com_delete_debug_area(ena_dev);
1951 
1952 err_device_destroy:
1953 	ena_com_delete_host_info(ena_dev);
1954 	ena_com_admin_destroy(ena_dev);
1955 
1956 err:
1957 	return rc;
1958 }
1959 
1960 static void ena_destroy_device(struct rte_eth_dev *eth_dev)
1961 {
1962 	struct ena_adapter *adapter = eth_dev->data->dev_private;
1963 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1964 
1965 	if (adapter->state == ENA_ADAPTER_STATE_FREE)
1966 		return;
1967 
1968 	ena_com_set_admin_running_state(ena_dev, false);
1969 
1970 	if (adapter->state != ENA_ADAPTER_STATE_CLOSED)
1971 		ena_close(eth_dev);
1972 
1973 	ena_com_rss_destroy(ena_dev);
1974 
1975 	ena_com_delete_debug_area(ena_dev);
1976 	ena_com_delete_host_info(ena_dev);
1977 
1978 	ena_com_abort_admin_commands(ena_dev);
1979 	ena_com_wait_for_abort_completion(ena_dev);
1980 	ena_com_admin_destroy(ena_dev);
1981 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1982 
1983 	adapter->state = ENA_ADAPTER_STATE_FREE;
1984 }
1985 
1986 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
1987 {
1988 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1989 		return 0;
1990 
1991 	ena_destroy_device(eth_dev);
1992 
1993 	return 0;
1994 }
1995 
1996 static int ena_dev_configure(struct rte_eth_dev *dev)
1997 {
1998 	struct ena_adapter *adapter = dev->data->dev_private;
1999 
2000 	adapter->state = ENA_ADAPTER_STATE_CONFIG;
2001 
2002 	if (dev->data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG)
2003 		dev->data->dev_conf.rxmode.offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2004 	dev->data->dev_conf.txmode.offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2005 
2006 	/* Scattered Rx cannot be turned off in the HW, so this capability must
2007 	 * be forced.
2008 	 */
2009 	dev->data->scattered_rx = 1;
2010 
2011 	adapter->last_tx_comp_qid = 0;
2012 
2013 	adapter->missing_tx_completion_budget =
2014 		RTE_MIN(ENA_MONITORED_TX_QUEUES, dev->data->nb_tx_queues);
2015 
2016 	adapter->missing_tx_completion_to = ENA_TX_TIMEOUT;
2017 	/* To avoid detection of the spurious Tx completion timeout due to
2018 	 * application not calling the Tx cleanup function, set timeout for the
2019 	 * Tx queue which should be half of the missing completion timeout for a
2020 	 * safety. If there will be a lot of missing Tx completions in the
2021 	 * queue, they will be detected sooner or later.
2022 	 */
2023 	adapter->tx_cleanup_stall_delay = adapter->missing_tx_completion_to / 2;
2024 
2025 	adapter->tx_selected_offloads = dev->data->dev_conf.txmode.offloads;
2026 	adapter->rx_selected_offloads = dev->data->dev_conf.rxmode.offloads;
2027 
2028 	return 0;
2029 }
2030 
2031 static void ena_init_rings(struct ena_adapter *adapter,
2032 			   bool disable_meta_caching)
2033 {
2034 	size_t i;
2035 
2036 	for (i = 0; i < adapter->max_num_io_queues; i++) {
2037 		struct ena_ring *ring = &adapter->tx_ring[i];
2038 
2039 		ring->configured = 0;
2040 		ring->type = ENA_RING_TYPE_TX;
2041 		ring->adapter = adapter;
2042 		ring->id = i;
2043 		ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
2044 		ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
2045 		ring->sgl_size = adapter->max_tx_sgl_size;
2046 		ring->disable_meta_caching = disable_meta_caching;
2047 	}
2048 
2049 	for (i = 0; i < adapter->max_num_io_queues; i++) {
2050 		struct ena_ring *ring = &adapter->rx_ring[i];
2051 
2052 		ring->configured = 0;
2053 		ring->type = ENA_RING_TYPE_RX;
2054 		ring->adapter = adapter;
2055 		ring->id = i;
2056 		ring->sgl_size = adapter->max_rx_sgl_size;
2057 	}
2058 }
2059 
2060 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter)
2061 {
2062 	uint64_t port_offloads = 0;
2063 
2064 	if (adapter->offloads.rx_offloads & ENA_L3_IPV4_CSUM)
2065 		port_offloads |= RTE_ETH_RX_OFFLOAD_IPV4_CKSUM;
2066 
2067 	if (adapter->offloads.rx_offloads &
2068 	    (ENA_L4_IPV4_CSUM | ENA_L4_IPV6_CSUM))
2069 		port_offloads |=
2070 			RTE_ETH_RX_OFFLOAD_UDP_CKSUM | RTE_ETH_RX_OFFLOAD_TCP_CKSUM;
2071 
2072 	if (adapter->offloads.rx_offloads & ENA_RX_RSS_HASH)
2073 		port_offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2074 
2075 	port_offloads |= RTE_ETH_RX_OFFLOAD_SCATTER;
2076 
2077 	return port_offloads;
2078 }
2079 
2080 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter)
2081 {
2082 	uint64_t port_offloads = 0;
2083 
2084 	if (adapter->offloads.tx_offloads & ENA_IPV4_TSO)
2085 		port_offloads |= RTE_ETH_TX_OFFLOAD_TCP_TSO;
2086 
2087 	if (adapter->offloads.tx_offloads & ENA_L3_IPV4_CSUM)
2088 		port_offloads |= RTE_ETH_TX_OFFLOAD_IPV4_CKSUM;
2089 	if (adapter->offloads.tx_offloads &
2090 	    (ENA_L4_IPV4_CSUM_PARTIAL | ENA_L4_IPV4_CSUM |
2091 	     ENA_L4_IPV6_CSUM | ENA_L4_IPV6_CSUM_PARTIAL))
2092 		port_offloads |=
2093 			RTE_ETH_TX_OFFLOAD_UDP_CKSUM | RTE_ETH_TX_OFFLOAD_TCP_CKSUM;
2094 
2095 	port_offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2096 
2097 	return port_offloads;
2098 }
2099 
2100 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter)
2101 {
2102 	RTE_SET_USED(adapter);
2103 
2104 	return 0;
2105 }
2106 
2107 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter)
2108 {
2109 	RTE_SET_USED(adapter);
2110 
2111 	return 0;
2112 }
2113 
2114 static int ena_infos_get(struct rte_eth_dev *dev,
2115 			  struct rte_eth_dev_info *dev_info)
2116 {
2117 	struct ena_adapter *adapter;
2118 	struct ena_com_dev *ena_dev;
2119 
2120 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
2121 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
2122 	adapter = dev->data->dev_private;
2123 
2124 	ena_dev = &adapter->ena_dev;
2125 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
2126 
2127 	dev_info->speed_capa =
2128 			RTE_ETH_LINK_SPEED_1G   |
2129 			RTE_ETH_LINK_SPEED_2_5G |
2130 			RTE_ETH_LINK_SPEED_5G   |
2131 			RTE_ETH_LINK_SPEED_10G  |
2132 			RTE_ETH_LINK_SPEED_25G  |
2133 			RTE_ETH_LINK_SPEED_40G  |
2134 			RTE_ETH_LINK_SPEED_50G  |
2135 			RTE_ETH_LINK_SPEED_100G;
2136 
2137 	/* Inform framework about available features */
2138 	dev_info->rx_offload_capa = ena_get_rx_port_offloads(adapter);
2139 	dev_info->tx_offload_capa = ena_get_tx_port_offloads(adapter);
2140 	dev_info->rx_queue_offload_capa = ena_get_rx_queue_offloads(adapter);
2141 	dev_info->tx_queue_offload_capa = ena_get_tx_queue_offloads(adapter);
2142 
2143 	dev_info->flow_type_rss_offloads = ENA_ALL_RSS_HF;
2144 	dev_info->hash_key_size = ENA_HASH_KEY_SIZE;
2145 
2146 	dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
2147 	dev_info->max_rx_pktlen  = adapter->max_mtu + RTE_ETHER_HDR_LEN +
2148 		RTE_ETHER_CRC_LEN;
2149 	dev_info->min_mtu = ENA_MIN_MTU;
2150 	dev_info->max_mtu = adapter->max_mtu;
2151 	dev_info->max_mac_addrs = 1;
2152 
2153 	dev_info->max_rx_queues = adapter->max_num_io_queues;
2154 	dev_info->max_tx_queues = adapter->max_num_io_queues;
2155 	dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
2156 
2157 	dev_info->rx_desc_lim.nb_max = adapter->max_rx_ring_size;
2158 	dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2159 	dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2160 					adapter->max_rx_sgl_size);
2161 	dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2162 					adapter->max_rx_sgl_size);
2163 
2164 	dev_info->tx_desc_lim.nb_max = adapter->max_tx_ring_size;
2165 	dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2166 	dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2167 					adapter->max_tx_sgl_size);
2168 	dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2169 					adapter->max_tx_sgl_size);
2170 
2171 	dev_info->default_rxportconf.ring_size = ENA_DEFAULT_RING_SIZE;
2172 	dev_info->default_txportconf.ring_size = ENA_DEFAULT_RING_SIZE;
2173 
2174 	return 0;
2175 }
2176 
2177 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len)
2178 {
2179 	mbuf->data_len = len;
2180 	mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2181 	mbuf->refcnt = 1;
2182 	mbuf->next = NULL;
2183 }
2184 
2185 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
2186 				    struct ena_com_rx_buf_info *ena_bufs,
2187 				    uint32_t descs,
2188 				    uint16_t *next_to_clean,
2189 				    uint8_t offset)
2190 {
2191 	struct rte_mbuf *mbuf;
2192 	struct rte_mbuf *mbuf_head;
2193 	struct ena_rx_buffer *rx_info;
2194 	int rc;
2195 	uint16_t ntc, len, req_id, buf = 0;
2196 
2197 	if (unlikely(descs == 0))
2198 		return NULL;
2199 
2200 	ntc = *next_to_clean;
2201 
2202 	len = ena_bufs[buf].len;
2203 	req_id = ena_bufs[buf].req_id;
2204 
2205 	rx_info = &rx_ring->rx_buffer_info[req_id];
2206 
2207 	mbuf = rx_info->mbuf;
2208 	RTE_ASSERT(mbuf != NULL);
2209 
2210 	ena_init_rx_mbuf(mbuf, len);
2211 
2212 	/* Fill the mbuf head with the data specific for 1st segment. */
2213 	mbuf_head = mbuf;
2214 	mbuf_head->nb_segs = descs;
2215 	mbuf_head->port = rx_ring->port_id;
2216 	mbuf_head->pkt_len = len;
2217 	mbuf_head->data_off += offset;
2218 
2219 	rx_info->mbuf = NULL;
2220 	rx_ring->empty_rx_reqs[ntc] = req_id;
2221 	ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2222 
2223 	while (--descs) {
2224 		++buf;
2225 		len = ena_bufs[buf].len;
2226 		req_id = ena_bufs[buf].req_id;
2227 
2228 		rx_info = &rx_ring->rx_buffer_info[req_id];
2229 		RTE_ASSERT(rx_info->mbuf != NULL);
2230 
2231 		if (unlikely(len == 0)) {
2232 			/*
2233 			 * Some devices can pass descriptor with the length 0.
2234 			 * To avoid confusion, the PMD is simply putting the
2235 			 * descriptor back, as it was never used. We'll avoid
2236 			 * mbuf allocation that way.
2237 			 */
2238 			rc = ena_add_single_rx_desc(rx_ring->ena_com_io_sq,
2239 				rx_info->mbuf, req_id);
2240 			if (unlikely(rc != 0)) {
2241 				/* Free the mbuf in case of an error. */
2242 				rte_mbuf_raw_free(rx_info->mbuf);
2243 			} else {
2244 				/*
2245 				 * If there was no error, just exit the loop as
2246 				 * 0 length descriptor is always the last one.
2247 				 */
2248 				break;
2249 			}
2250 		} else {
2251 			/* Create an mbuf chain. */
2252 			mbuf->next = rx_info->mbuf;
2253 			mbuf = mbuf->next;
2254 
2255 			ena_init_rx_mbuf(mbuf, len);
2256 			mbuf_head->pkt_len += len;
2257 		}
2258 
2259 		/*
2260 		 * Mark the descriptor as depleted and perform necessary
2261 		 * cleanup.
2262 		 * This code will execute in two cases:
2263 		 *  1. Descriptor len was greater than 0 - normal situation.
2264 		 *  2. Descriptor len was 0 and we failed to add the descriptor
2265 		 *     to the device. In that situation, we should try to add
2266 		 *     the mbuf again in the populate routine and mark the
2267 		 *     descriptor as used up by the device.
2268 		 */
2269 		rx_info->mbuf = NULL;
2270 		rx_ring->empty_rx_reqs[ntc] = req_id;
2271 		ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2272 	}
2273 
2274 	*next_to_clean = ntc;
2275 
2276 	return mbuf_head;
2277 }
2278 
2279 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
2280 				  uint16_t nb_pkts)
2281 {
2282 	struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
2283 	unsigned int free_queue_entries;
2284 	uint16_t next_to_clean = rx_ring->next_to_clean;
2285 	uint16_t descs_in_use;
2286 	struct rte_mbuf *mbuf;
2287 	uint16_t completed;
2288 	struct ena_com_rx_ctx ena_rx_ctx;
2289 	int i, rc = 0;
2290 	bool fill_hash;
2291 
2292 #ifdef RTE_ETHDEV_DEBUG_RX
2293 	/* Check adapter state */
2294 	if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2295 		PMD_RX_LOG(ALERT,
2296 			"Trying to receive pkts while device is NOT running\n");
2297 		return 0;
2298 	}
2299 #endif
2300 
2301 	fill_hash = rx_ring->offloads & RTE_ETH_RX_OFFLOAD_RSS_HASH;
2302 
2303 	descs_in_use = rx_ring->ring_size -
2304 		ena_com_free_q_entries(rx_ring->ena_com_io_sq) - 1;
2305 	nb_pkts = RTE_MIN(descs_in_use, nb_pkts);
2306 
2307 	for (completed = 0; completed < nb_pkts; completed++) {
2308 		ena_rx_ctx.max_bufs = rx_ring->sgl_size;
2309 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
2310 		ena_rx_ctx.descs = 0;
2311 		ena_rx_ctx.pkt_offset = 0;
2312 		/* receive packet context */
2313 		rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
2314 				    rx_ring->ena_com_io_sq,
2315 				    &ena_rx_ctx);
2316 		if (unlikely(rc)) {
2317 			PMD_RX_LOG(ERR,
2318 				"Failed to get the packet from the device, rc: %d\n",
2319 				rc);
2320 			if (rc == ENA_COM_NO_SPACE) {
2321 				++rx_ring->rx_stats.bad_desc_num;
2322 				rx_ring->adapter->reset_reason =
2323 					ENA_REGS_RESET_TOO_MANY_RX_DESCS;
2324 			} else {
2325 				++rx_ring->rx_stats.bad_req_id;
2326 				rx_ring->adapter->reset_reason =
2327 					ENA_REGS_RESET_INV_RX_REQ_ID;
2328 			}
2329 			rx_ring->adapter->trigger_reset = true;
2330 			return 0;
2331 		}
2332 
2333 		mbuf = ena_rx_mbuf(rx_ring,
2334 			ena_rx_ctx.ena_bufs,
2335 			ena_rx_ctx.descs,
2336 			&next_to_clean,
2337 			ena_rx_ctx.pkt_offset);
2338 		if (unlikely(mbuf == NULL)) {
2339 			for (i = 0; i < ena_rx_ctx.descs; ++i) {
2340 				rx_ring->empty_rx_reqs[next_to_clean] =
2341 					rx_ring->ena_bufs[i].req_id;
2342 				next_to_clean = ENA_IDX_NEXT_MASKED(
2343 					next_to_clean, rx_ring->size_mask);
2344 			}
2345 			break;
2346 		}
2347 
2348 		/* fill mbuf attributes if any */
2349 		ena_rx_mbuf_prepare(mbuf, &ena_rx_ctx, fill_hash);
2350 
2351 		if (unlikely(mbuf->ol_flags &
2352 				(RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD))) {
2353 			rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors);
2354 			++rx_ring->rx_stats.bad_csum;
2355 		}
2356 
2357 		rx_pkts[completed] = mbuf;
2358 		rx_ring->rx_stats.bytes += mbuf->pkt_len;
2359 	}
2360 
2361 	rx_ring->rx_stats.cnt += completed;
2362 	rx_ring->next_to_clean = next_to_clean;
2363 
2364 	free_queue_entries = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
2365 
2366 	/* Burst refill to save doorbells, memory barriers, const interval */
2367 	if (free_queue_entries >= rx_ring->rx_free_thresh) {
2368 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
2369 		ena_populate_rx_queue(rx_ring, free_queue_entries);
2370 	}
2371 
2372 	return completed;
2373 }
2374 
2375 static uint16_t
2376 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2377 		uint16_t nb_pkts)
2378 {
2379 	int32_t ret;
2380 	uint32_t i;
2381 	struct rte_mbuf *m;
2382 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2383 	struct ena_adapter *adapter = tx_ring->adapter;
2384 	struct rte_ipv4_hdr *ip_hdr;
2385 	uint64_t ol_flags;
2386 	uint64_t l4_csum_flag;
2387 	uint64_t dev_offload_capa;
2388 	uint16_t frag_field;
2389 	bool need_pseudo_csum;
2390 
2391 	dev_offload_capa = adapter->offloads.tx_offloads;
2392 	for (i = 0; i != nb_pkts; i++) {
2393 		m = tx_pkts[i];
2394 		ol_flags = m->ol_flags;
2395 
2396 		/* Check if any offload flag was set */
2397 		if (ol_flags == 0)
2398 			continue;
2399 
2400 		l4_csum_flag = ol_flags & RTE_MBUF_F_TX_L4_MASK;
2401 		/* SCTP checksum offload is not supported by the ENA. */
2402 		if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) ||
2403 		    l4_csum_flag == RTE_MBUF_F_TX_SCTP_CKSUM) {
2404 			PMD_TX_LOG(DEBUG,
2405 				"mbuf[%" PRIu32 "] has unsupported offloads flags set: 0x%" PRIu64 "\n",
2406 				i, ol_flags);
2407 			rte_errno = ENOTSUP;
2408 			return i;
2409 		}
2410 
2411 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2412 		/* Check if requested offload is also enabled for the queue */
2413 		if ((ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
2414 		     !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM)) ||
2415 		    (l4_csum_flag == RTE_MBUF_F_TX_TCP_CKSUM &&
2416 		     !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) ||
2417 		    (l4_csum_flag == RTE_MBUF_F_TX_UDP_CKSUM &&
2418 		     !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM))) {
2419 			PMD_TX_LOG(DEBUG,
2420 				"mbuf[%" PRIu32 "]: requested offloads: %" PRIu16 " are not enabled for the queue[%u]\n",
2421 				i, m->nb_segs, tx_ring->id);
2422 			rte_errno = EINVAL;
2423 			return i;
2424 		}
2425 
2426 		/* The caller is obligated to set l2 and l3 len if any cksum
2427 		 * offload is enabled.
2428 		 */
2429 		if (unlikely(ol_flags & (RTE_MBUF_F_TX_IP_CKSUM | RTE_MBUF_F_TX_L4_MASK) &&
2430 		    (m->l2_len == 0 || m->l3_len == 0))) {
2431 			PMD_TX_LOG(DEBUG,
2432 				"mbuf[%" PRIu32 "]: l2_len or l3_len values are 0 while the offload was requested\n",
2433 				i);
2434 			rte_errno = EINVAL;
2435 			return i;
2436 		}
2437 		ret = rte_validate_tx_offload(m);
2438 		if (ret != 0) {
2439 			rte_errno = -ret;
2440 			return i;
2441 		}
2442 #endif
2443 
2444 		/* Verify HW support for requested offloads and determine if
2445 		 * pseudo header checksum is needed.
2446 		 */
2447 		need_pseudo_csum = false;
2448 		if (ol_flags & RTE_MBUF_F_TX_IPV4) {
2449 			if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
2450 			    !(dev_offload_capa & ENA_L3_IPV4_CSUM)) {
2451 				rte_errno = ENOTSUP;
2452 				return i;
2453 			}
2454 
2455 			if (ol_flags & RTE_MBUF_F_TX_TCP_SEG &&
2456 			    !(dev_offload_capa & ENA_IPV4_TSO)) {
2457 				rte_errno = ENOTSUP;
2458 				return i;
2459 			}
2460 
2461 			/* Check HW capabilities and if pseudo csum is needed
2462 			 * for L4 offloads.
2463 			 */
2464 			if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
2465 			    !(dev_offload_capa & ENA_L4_IPV4_CSUM)) {
2466 				if (dev_offload_capa &
2467 				    ENA_L4_IPV4_CSUM_PARTIAL) {
2468 					need_pseudo_csum = true;
2469 				} else {
2470 					rte_errno = ENOTSUP;
2471 					return i;
2472 				}
2473 			}
2474 
2475 			/* Parse the DF flag */
2476 			ip_hdr = rte_pktmbuf_mtod_offset(m,
2477 				struct rte_ipv4_hdr *, m->l2_len);
2478 			frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
2479 			if (frag_field & RTE_IPV4_HDR_DF_FLAG) {
2480 				m->packet_type |= RTE_PTYPE_L4_NONFRAG;
2481 			} else if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2482 				/* In case we are supposed to TSO and have DF
2483 				 * not set (DF=0) hardware must be provided with
2484 				 * partial checksum.
2485 				 */
2486 				need_pseudo_csum = true;
2487 			}
2488 		} else if (ol_flags & RTE_MBUF_F_TX_IPV6) {
2489 			/* There is no support for IPv6 TSO as for now. */
2490 			if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2491 				rte_errno = ENOTSUP;
2492 				return i;
2493 			}
2494 
2495 			/* Check HW capabilities and if pseudo csum is needed */
2496 			if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
2497 			    !(dev_offload_capa & ENA_L4_IPV6_CSUM)) {
2498 				if (dev_offload_capa &
2499 				    ENA_L4_IPV6_CSUM_PARTIAL) {
2500 					need_pseudo_csum = true;
2501 				} else {
2502 					rte_errno = ENOTSUP;
2503 					return i;
2504 				}
2505 			}
2506 		}
2507 
2508 		if (need_pseudo_csum) {
2509 			ret = rte_net_intel_cksum_flags_prepare(m, ol_flags);
2510 			if (ret != 0) {
2511 				rte_errno = -ret;
2512 				return i;
2513 			}
2514 		}
2515 	}
2516 
2517 	return i;
2518 }
2519 
2520 static void ena_update_hints(struct ena_adapter *adapter,
2521 			     struct ena_admin_ena_hw_hints *hints)
2522 {
2523 	if (hints->admin_completion_tx_timeout)
2524 		adapter->ena_dev.admin_queue.completion_timeout =
2525 			hints->admin_completion_tx_timeout * 1000;
2526 
2527 	if (hints->mmio_read_timeout)
2528 		/* convert to usec */
2529 		adapter->ena_dev.mmio_read.reg_read_to =
2530 			hints->mmio_read_timeout * 1000;
2531 
2532 	if (hints->missing_tx_completion_timeout) {
2533 		if (hints->missing_tx_completion_timeout ==
2534 		    ENA_HW_HINTS_NO_TIMEOUT) {
2535 			adapter->missing_tx_completion_to =
2536 				ENA_HW_HINTS_NO_TIMEOUT;
2537 		} else {
2538 			/* Convert from msecs to ticks */
2539 			adapter->missing_tx_completion_to = rte_get_timer_hz() *
2540 				hints->missing_tx_completion_timeout / 1000;
2541 			adapter->tx_cleanup_stall_delay =
2542 				adapter->missing_tx_completion_to / 2;
2543 		}
2544 	}
2545 
2546 	if (hints->driver_watchdog_timeout) {
2547 		if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
2548 			adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
2549 		else
2550 			// Convert msecs to ticks
2551 			adapter->keep_alive_timeout =
2552 				(hints->driver_watchdog_timeout *
2553 				rte_get_timer_hz()) / 1000;
2554 	}
2555 }
2556 
2557 static int ena_check_space_and_linearize_mbuf(struct ena_ring *tx_ring,
2558 					      struct rte_mbuf *mbuf)
2559 {
2560 	struct ena_com_dev *ena_dev;
2561 	int num_segments, header_len, rc;
2562 
2563 	ena_dev = &tx_ring->adapter->ena_dev;
2564 	num_segments = mbuf->nb_segs;
2565 	header_len = mbuf->data_len;
2566 
2567 	if (likely(num_segments < tx_ring->sgl_size))
2568 		goto checkspace;
2569 
2570 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
2571 	    (num_segments == tx_ring->sgl_size) &&
2572 	    (header_len < tx_ring->tx_max_header_size))
2573 		goto checkspace;
2574 
2575 	/* Checking for space for 2 additional metadata descriptors due to
2576 	 * possible header split and metadata descriptor. Linearization will
2577 	 * be needed so we reduce the segments number from num_segments to 1
2578 	 */
2579 	if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 3)) {
2580 		PMD_TX_LOG(DEBUG, "Not enough space in the Tx queue\n");
2581 		return ENA_COM_NO_MEM;
2582 	}
2583 	++tx_ring->tx_stats.linearize;
2584 	rc = rte_pktmbuf_linearize(mbuf);
2585 	if (unlikely(rc)) {
2586 		PMD_TX_LOG(WARNING, "Mbuf linearize failed\n");
2587 		rte_atomic64_inc(&tx_ring->adapter->drv_stats->ierrors);
2588 		++tx_ring->tx_stats.linearize_failed;
2589 		return rc;
2590 	}
2591 
2592 	return 0;
2593 
2594 checkspace:
2595 	/* Checking for space for 2 additional metadata descriptors due to
2596 	 * possible header split and metadata descriptor
2597 	 */
2598 	if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
2599 					  num_segments + 2)) {
2600 		PMD_TX_LOG(DEBUG, "Not enough space in the Tx queue\n");
2601 		return ENA_COM_NO_MEM;
2602 	}
2603 
2604 	return 0;
2605 }
2606 
2607 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
2608 	struct ena_tx_buffer *tx_info,
2609 	struct rte_mbuf *mbuf,
2610 	void **push_header,
2611 	uint16_t *header_len)
2612 {
2613 	struct ena_com_buf *ena_buf;
2614 	uint16_t delta, seg_len, push_len;
2615 
2616 	delta = 0;
2617 	seg_len = mbuf->data_len;
2618 
2619 	tx_info->mbuf = mbuf;
2620 	ena_buf = tx_info->bufs;
2621 
2622 	if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2623 		/*
2624 		 * Tx header might be (and will be in most cases) smaller than
2625 		 * tx_max_header_size. But it's not an issue to send more data
2626 		 * to the device, than actually needed if the mbuf size is
2627 		 * greater than tx_max_header_size.
2628 		 */
2629 		push_len = RTE_MIN(mbuf->pkt_len, tx_ring->tx_max_header_size);
2630 		*header_len = push_len;
2631 
2632 		if (likely(push_len <= seg_len)) {
2633 			/* If the push header is in the single segment, then
2634 			 * just point it to the 1st mbuf data.
2635 			 */
2636 			*push_header = rte_pktmbuf_mtod(mbuf, uint8_t *);
2637 		} else {
2638 			/* If the push header lays in the several segments, copy
2639 			 * it to the intermediate buffer.
2640 			 */
2641 			rte_pktmbuf_read(mbuf, 0, push_len,
2642 				tx_ring->push_buf_intermediate_buf);
2643 			*push_header = tx_ring->push_buf_intermediate_buf;
2644 			delta = push_len - seg_len;
2645 		}
2646 	} else {
2647 		*push_header = NULL;
2648 		*header_len = 0;
2649 		push_len = 0;
2650 	}
2651 
2652 	/* Process first segment taking into consideration pushed header */
2653 	if (seg_len > push_len) {
2654 		ena_buf->paddr = mbuf->buf_iova +
2655 				mbuf->data_off +
2656 				push_len;
2657 		ena_buf->len = seg_len - push_len;
2658 		ena_buf++;
2659 		tx_info->num_of_bufs++;
2660 	}
2661 
2662 	while ((mbuf = mbuf->next) != NULL) {
2663 		seg_len = mbuf->data_len;
2664 
2665 		/* Skip mbufs if whole data is pushed as a header */
2666 		if (unlikely(delta > seg_len)) {
2667 			delta -= seg_len;
2668 			continue;
2669 		}
2670 
2671 		ena_buf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
2672 		ena_buf->len = seg_len - delta;
2673 		ena_buf++;
2674 		tx_info->num_of_bufs++;
2675 
2676 		delta = 0;
2677 	}
2678 }
2679 
2680 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf)
2681 {
2682 	struct ena_tx_buffer *tx_info;
2683 	struct ena_com_tx_ctx ena_tx_ctx = { { 0 } };
2684 	uint16_t next_to_use;
2685 	uint16_t header_len;
2686 	uint16_t req_id;
2687 	void *push_header;
2688 	int nb_hw_desc;
2689 	int rc;
2690 
2691 	rc = ena_check_space_and_linearize_mbuf(tx_ring, mbuf);
2692 	if (unlikely(rc))
2693 		return rc;
2694 
2695 	next_to_use = tx_ring->next_to_use;
2696 
2697 	req_id = tx_ring->empty_tx_reqs[next_to_use];
2698 	tx_info = &tx_ring->tx_buffer_info[req_id];
2699 	tx_info->num_of_bufs = 0;
2700 
2701 	ena_tx_map_mbuf(tx_ring, tx_info, mbuf, &push_header, &header_len);
2702 
2703 	ena_tx_ctx.ena_bufs = tx_info->bufs;
2704 	ena_tx_ctx.push_header = push_header;
2705 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2706 	ena_tx_ctx.req_id = req_id;
2707 	ena_tx_ctx.header_len = header_len;
2708 
2709 	/* Set Tx offloads flags, if applicable */
2710 	ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads,
2711 		tx_ring->disable_meta_caching);
2712 
2713 	if (unlikely(ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
2714 			&ena_tx_ctx))) {
2715 		PMD_TX_LOG(DEBUG,
2716 			"LLQ Tx max burst size of queue %d achieved, writing doorbell to send burst\n",
2717 			tx_ring->id);
2718 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2719 		tx_ring->tx_stats.doorbells++;
2720 		tx_ring->pkts_without_db = false;
2721 	}
2722 
2723 	/* prepare the packet's descriptors to dma engine */
2724 	rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq,	&ena_tx_ctx,
2725 		&nb_hw_desc);
2726 	if (unlikely(rc)) {
2727 		PMD_DRV_LOG(ERR, "Failed to prepare Tx buffers, rc: %d\n", rc);
2728 		++tx_ring->tx_stats.prepare_ctx_err;
2729 		tx_ring->adapter->reset_reason =
2730 		    ENA_REGS_RESET_DRIVER_INVALID_STATE;
2731 		tx_ring->adapter->trigger_reset = true;
2732 		return rc;
2733 	}
2734 
2735 	tx_info->tx_descs = nb_hw_desc;
2736 	tx_info->timestamp = rte_get_timer_cycles();
2737 
2738 	tx_ring->tx_stats.cnt++;
2739 	tx_ring->tx_stats.bytes += mbuf->pkt_len;
2740 
2741 	tx_ring->next_to_use = ENA_IDX_NEXT_MASKED(next_to_use,
2742 		tx_ring->size_mask);
2743 
2744 	return 0;
2745 }
2746 
2747 static void ena_tx_cleanup(struct ena_ring *tx_ring)
2748 {
2749 	unsigned int total_tx_descs = 0;
2750 	uint16_t cleanup_budget;
2751 	uint16_t next_to_clean = tx_ring->next_to_clean;
2752 
2753 	/* Attempt to release all Tx descriptors (ring_size - 1 -> size_mask) */
2754 	cleanup_budget = tx_ring->size_mask;
2755 
2756 	while (likely(total_tx_descs < cleanup_budget)) {
2757 		struct rte_mbuf *mbuf;
2758 		struct ena_tx_buffer *tx_info;
2759 		uint16_t req_id;
2760 
2761 		if (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) != 0)
2762 			break;
2763 
2764 		if (unlikely(validate_tx_req_id(tx_ring, req_id) != 0))
2765 			break;
2766 
2767 		/* Get Tx info & store how many descs were processed  */
2768 		tx_info = &tx_ring->tx_buffer_info[req_id];
2769 		tx_info->timestamp = 0;
2770 
2771 		mbuf = tx_info->mbuf;
2772 		rte_pktmbuf_free(mbuf);
2773 
2774 		tx_info->mbuf = NULL;
2775 		tx_ring->empty_tx_reqs[next_to_clean] = req_id;
2776 
2777 		total_tx_descs += tx_info->tx_descs;
2778 
2779 		/* Put back descriptor to the ring for reuse */
2780 		next_to_clean = ENA_IDX_NEXT_MASKED(next_to_clean,
2781 			tx_ring->size_mask);
2782 	}
2783 
2784 	if (likely(total_tx_descs > 0)) {
2785 		/* acknowledge completion of sent packets */
2786 		tx_ring->next_to_clean = next_to_clean;
2787 		ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
2788 		ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
2789 	}
2790 
2791 	/* Notify completion handler that the cleanup was just called */
2792 	tx_ring->last_cleanup_ticks = rte_get_timer_cycles();
2793 }
2794 
2795 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2796 				  uint16_t nb_pkts)
2797 {
2798 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2799 	int available_desc;
2800 	uint16_t sent_idx = 0;
2801 
2802 #ifdef RTE_ETHDEV_DEBUG_TX
2803 	/* Check adapter state */
2804 	if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2805 		PMD_TX_LOG(ALERT,
2806 			"Trying to xmit pkts while device is NOT running\n");
2807 		return 0;
2808 	}
2809 #endif
2810 
2811 	for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
2812 		if (ena_xmit_mbuf(tx_ring, tx_pkts[sent_idx]))
2813 			break;
2814 		tx_ring->pkts_without_db = true;
2815 		rte_prefetch0(tx_pkts[ENA_IDX_ADD_MASKED(sent_idx, 4,
2816 			tx_ring->size_mask)]);
2817 	}
2818 
2819 	available_desc = ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2820 	tx_ring->tx_stats.available_desc = available_desc;
2821 
2822 	/* If there are ready packets to be xmitted... */
2823 	if (likely(tx_ring->pkts_without_db)) {
2824 		/* ...let HW do its best :-) */
2825 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2826 		tx_ring->tx_stats.doorbells++;
2827 		tx_ring->pkts_without_db = false;
2828 	}
2829 
2830 	if (available_desc < tx_ring->tx_free_thresh)
2831 		ena_tx_cleanup(tx_ring);
2832 
2833 	tx_ring->tx_stats.available_desc =
2834 		ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2835 	tx_ring->tx_stats.tx_poll++;
2836 
2837 	return sent_idx;
2838 }
2839 
2840 int ena_copy_eni_stats(struct ena_adapter *adapter)
2841 {
2842 	struct ena_admin_eni_stats admin_eni_stats;
2843 	int rc;
2844 
2845 	rte_spinlock_lock(&adapter->admin_lock);
2846 	rc = ena_com_get_eni_stats(&adapter->ena_dev, &admin_eni_stats);
2847 	rte_spinlock_unlock(&adapter->admin_lock);
2848 	if (rc != 0) {
2849 		if (rc == ENA_COM_UNSUPPORTED) {
2850 			PMD_DRV_LOG(DEBUG,
2851 				"Retrieving ENI metrics is not supported\n");
2852 		} else {
2853 			PMD_DRV_LOG(WARNING,
2854 				"Failed to get ENI metrics, rc: %d\n", rc);
2855 		}
2856 		return rc;
2857 	}
2858 
2859 	rte_memcpy(&adapter->eni_stats, &admin_eni_stats,
2860 		sizeof(struct ena_stats_eni));
2861 
2862 	return 0;
2863 }
2864 
2865 /**
2866  * DPDK callback to retrieve names of extended device statistics
2867  *
2868  * @param dev
2869  *   Pointer to Ethernet device structure.
2870  * @param[out] xstats_names
2871  *   Buffer to insert names into.
2872  * @param n
2873  *   Number of names.
2874  *
2875  * @return
2876  *   Number of xstats names.
2877  */
2878 static int ena_xstats_get_names(struct rte_eth_dev *dev,
2879 				struct rte_eth_xstat_name *xstats_names,
2880 				unsigned int n)
2881 {
2882 	unsigned int xstats_count = ena_xstats_calc_num(dev->data);
2883 	unsigned int stat, i, count = 0;
2884 
2885 	if (n < xstats_count || !xstats_names)
2886 		return xstats_count;
2887 
2888 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
2889 		strcpy(xstats_names[count].name,
2890 			ena_stats_global_strings[stat].name);
2891 
2892 	for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++)
2893 		strcpy(xstats_names[count].name,
2894 			ena_stats_eni_strings[stat].name);
2895 
2896 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
2897 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
2898 			snprintf(xstats_names[count].name,
2899 				sizeof(xstats_names[count].name),
2900 				"rx_q%d_%s", i,
2901 				ena_stats_rx_strings[stat].name);
2902 
2903 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
2904 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
2905 			snprintf(xstats_names[count].name,
2906 				sizeof(xstats_names[count].name),
2907 				"tx_q%d_%s", i,
2908 				ena_stats_tx_strings[stat].name);
2909 
2910 	return xstats_count;
2911 }
2912 
2913 /**
2914  * DPDK callback to get extended device statistics.
2915  *
2916  * @param dev
2917  *   Pointer to Ethernet device structure.
2918  * @param[out] stats
2919  *   Stats table output buffer.
2920  * @param n
2921  *   The size of the stats table.
2922  *
2923  * @return
2924  *   Number of xstats on success, negative on failure.
2925  */
2926 static int ena_xstats_get(struct rte_eth_dev *dev,
2927 			  struct rte_eth_xstat *xstats,
2928 			  unsigned int n)
2929 {
2930 	struct ena_adapter *adapter = dev->data->dev_private;
2931 	unsigned int xstats_count = ena_xstats_calc_num(dev->data);
2932 	unsigned int stat, i, count = 0;
2933 	int stat_offset;
2934 	void *stats_begin;
2935 
2936 	if (n < xstats_count)
2937 		return xstats_count;
2938 
2939 	if (!xstats)
2940 		return 0;
2941 
2942 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
2943 		stat_offset = ena_stats_global_strings[stat].stat_offset;
2944 		stats_begin = &adapter->dev_stats;
2945 
2946 		xstats[count].id = count;
2947 		xstats[count].value = *((uint64_t *)
2948 			((char *)stats_begin + stat_offset));
2949 	}
2950 
2951 	/* Even if the function below fails, we should copy previous (or initial
2952 	 * values) to keep structure of rte_eth_xstat consistent.
2953 	 */
2954 	ena_copy_eni_stats(adapter);
2955 	for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++) {
2956 		stat_offset = ena_stats_eni_strings[stat].stat_offset;
2957 		stats_begin = &adapter->eni_stats;
2958 
2959 		xstats[count].id = count;
2960 		xstats[count].value = *((uint64_t *)
2961 		    ((char *)stats_begin + stat_offset));
2962 	}
2963 
2964 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
2965 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
2966 			stat_offset = ena_stats_rx_strings[stat].stat_offset;
2967 			stats_begin = &adapter->rx_ring[i].rx_stats;
2968 
2969 			xstats[count].id = count;
2970 			xstats[count].value = *((uint64_t *)
2971 				((char *)stats_begin + stat_offset));
2972 		}
2973 	}
2974 
2975 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
2976 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
2977 			stat_offset = ena_stats_tx_strings[stat].stat_offset;
2978 			stats_begin = &adapter->tx_ring[i].rx_stats;
2979 
2980 			xstats[count].id = count;
2981 			xstats[count].value = *((uint64_t *)
2982 				((char *)stats_begin + stat_offset));
2983 		}
2984 	}
2985 
2986 	return count;
2987 }
2988 
2989 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
2990 				const uint64_t *ids,
2991 				uint64_t *values,
2992 				unsigned int n)
2993 {
2994 	struct ena_adapter *adapter = dev->data->dev_private;
2995 	uint64_t id;
2996 	uint64_t rx_entries, tx_entries;
2997 	unsigned int i;
2998 	int qid;
2999 	int valid = 0;
3000 	bool was_eni_copied = false;
3001 
3002 	for (i = 0; i < n; ++i) {
3003 		id = ids[i];
3004 		/* Check if id belongs to global statistics */
3005 		if (id < ENA_STATS_ARRAY_GLOBAL) {
3006 			values[i] = *((uint64_t *)&adapter->dev_stats + id);
3007 			++valid;
3008 			continue;
3009 		}
3010 
3011 		/* Check if id belongs to ENI statistics */
3012 		id -= ENA_STATS_ARRAY_GLOBAL;
3013 		if (id < ENA_STATS_ARRAY_ENI) {
3014 			/* Avoid reading ENI stats multiple times in a single
3015 			 * function call, as it requires communication with the
3016 			 * admin queue.
3017 			 */
3018 			if (!was_eni_copied) {
3019 				was_eni_copied = true;
3020 				ena_copy_eni_stats(adapter);
3021 			}
3022 			values[i] = *((uint64_t *)&adapter->eni_stats + id);
3023 			++valid;
3024 			continue;
3025 		}
3026 
3027 		/* Check if id belongs to rx queue statistics */
3028 		id -= ENA_STATS_ARRAY_ENI;
3029 		rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
3030 		if (id < rx_entries) {
3031 			qid = id % dev->data->nb_rx_queues;
3032 			id /= dev->data->nb_rx_queues;
3033 			values[i] = *((uint64_t *)
3034 				&adapter->rx_ring[qid].rx_stats + id);
3035 			++valid;
3036 			continue;
3037 		}
3038 				/* Check if id belongs to rx queue statistics */
3039 		id -= rx_entries;
3040 		tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
3041 		if (id < tx_entries) {
3042 			qid = id % dev->data->nb_tx_queues;
3043 			id /= dev->data->nb_tx_queues;
3044 			values[i] = *((uint64_t *)
3045 				&adapter->tx_ring[qid].tx_stats + id);
3046 			++valid;
3047 			continue;
3048 		}
3049 	}
3050 
3051 	return valid;
3052 }
3053 
3054 static int ena_process_bool_devarg(const char *key,
3055 				   const char *value,
3056 				   void *opaque)
3057 {
3058 	struct ena_adapter *adapter = opaque;
3059 	bool bool_value;
3060 
3061 	/* Parse the value. */
3062 	if (strcmp(value, "1") == 0) {
3063 		bool_value = true;
3064 	} else if (strcmp(value, "0") == 0) {
3065 		bool_value = false;
3066 	} else {
3067 		PMD_INIT_LOG(ERR,
3068 			"Invalid value: '%s' for key '%s'. Accepted: '0' or '1'\n",
3069 			value, key);
3070 		return -EINVAL;
3071 	}
3072 
3073 	/* Now, assign it to the proper adapter field. */
3074 	if (strcmp(key, ENA_DEVARG_LARGE_LLQ_HDR) == 0)
3075 		adapter->use_large_llq_hdr = bool_value;
3076 
3077 	return 0;
3078 }
3079 
3080 static int ena_parse_devargs(struct ena_adapter *adapter,
3081 			     struct rte_devargs *devargs)
3082 {
3083 	static const char * const allowed_args[] = {
3084 		ENA_DEVARG_LARGE_LLQ_HDR,
3085 		NULL,
3086 	};
3087 	struct rte_kvargs *kvlist;
3088 	int rc;
3089 
3090 	if (devargs == NULL)
3091 		return 0;
3092 
3093 	kvlist = rte_kvargs_parse(devargs->args, allowed_args);
3094 	if (kvlist == NULL) {
3095 		PMD_INIT_LOG(ERR, "Invalid device arguments: %s\n",
3096 			devargs->args);
3097 		return -EINVAL;
3098 	}
3099 
3100 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_LARGE_LLQ_HDR,
3101 		ena_process_bool_devarg, adapter);
3102 
3103 	rte_kvargs_free(kvlist);
3104 
3105 	return rc;
3106 }
3107 
3108 static int ena_setup_rx_intr(struct rte_eth_dev *dev)
3109 {
3110 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3111 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
3112 	int rc;
3113 	uint16_t vectors_nb, i;
3114 	bool rx_intr_requested = dev->data->dev_conf.intr_conf.rxq;
3115 
3116 	if (!rx_intr_requested)
3117 		return 0;
3118 
3119 	if (!rte_intr_cap_multiple(intr_handle)) {
3120 		PMD_DRV_LOG(ERR,
3121 			"Rx interrupt requested, but it isn't supported by the PCI driver\n");
3122 		return -ENOTSUP;
3123 	}
3124 
3125 	/* Disable interrupt mapping before the configuration starts. */
3126 	rte_intr_disable(intr_handle);
3127 
3128 	/* Verify if there are enough vectors available. */
3129 	vectors_nb = dev->data->nb_rx_queues;
3130 	if (vectors_nb > RTE_MAX_RXTX_INTR_VEC_ID) {
3131 		PMD_DRV_LOG(ERR,
3132 			"Too many Rx interrupts requested, maximum number: %d\n",
3133 			RTE_MAX_RXTX_INTR_VEC_ID);
3134 		rc = -ENOTSUP;
3135 		goto enable_intr;
3136 	}
3137 
3138 	/* Allocate the vector list */
3139 	if (rte_intr_vec_list_alloc(intr_handle, "intr_vec",
3140 					   dev->data->nb_rx_queues)) {
3141 		PMD_DRV_LOG(ERR,
3142 			"Failed to allocate interrupt vector for %d queues\n",
3143 			dev->data->nb_rx_queues);
3144 		rc = -ENOMEM;
3145 		goto enable_intr;
3146 	}
3147 
3148 	rc = rte_intr_efd_enable(intr_handle, vectors_nb);
3149 	if (rc != 0)
3150 		goto free_intr_vec;
3151 
3152 	if (!rte_intr_allow_others(intr_handle)) {
3153 		PMD_DRV_LOG(ERR,
3154 			"Not enough interrupts available to use both ENA Admin and Rx interrupts\n");
3155 		goto disable_intr_efd;
3156 	}
3157 
3158 	for (i = 0; i < vectors_nb; ++i)
3159 		if (rte_intr_vec_list_index_set(intr_handle, i,
3160 					   RTE_INTR_VEC_RXTX_OFFSET + i))
3161 			goto disable_intr_efd;
3162 
3163 	rte_intr_enable(intr_handle);
3164 	return 0;
3165 
3166 disable_intr_efd:
3167 	rte_intr_efd_disable(intr_handle);
3168 free_intr_vec:
3169 	rte_intr_vec_list_free(intr_handle);
3170 enable_intr:
3171 	rte_intr_enable(intr_handle);
3172 	return rc;
3173 }
3174 
3175 static void ena_rx_queue_intr_set(struct rte_eth_dev *dev,
3176 				 uint16_t queue_id,
3177 				 bool unmask)
3178 {
3179 	struct ena_adapter *adapter = dev->data->dev_private;
3180 	struct ena_ring *rxq = &adapter->rx_ring[queue_id];
3181 	struct ena_eth_io_intr_reg intr_reg;
3182 
3183 	ena_com_update_intr_reg(&intr_reg, 0, 0, unmask);
3184 	ena_com_unmask_intr(rxq->ena_com_io_cq, &intr_reg);
3185 }
3186 
3187 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
3188 				    uint16_t queue_id)
3189 {
3190 	ena_rx_queue_intr_set(dev, queue_id, true);
3191 
3192 	return 0;
3193 }
3194 
3195 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
3196 				     uint16_t queue_id)
3197 {
3198 	ena_rx_queue_intr_set(dev, queue_id, false);
3199 
3200 	return 0;
3201 }
3202 
3203 /*********************************************************************
3204  *  PMD configuration
3205  *********************************************************************/
3206 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
3207 	struct rte_pci_device *pci_dev)
3208 {
3209 	return rte_eth_dev_pci_generic_probe(pci_dev,
3210 		sizeof(struct ena_adapter), eth_ena_dev_init);
3211 }
3212 
3213 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
3214 {
3215 	return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
3216 }
3217 
3218 static struct rte_pci_driver rte_ena_pmd = {
3219 	.id_table = pci_id_ena_map,
3220 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
3221 		     RTE_PCI_DRV_WC_ACTIVATE,
3222 	.probe = eth_ena_pci_probe,
3223 	.remove = eth_ena_pci_remove,
3224 };
3225 
3226 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
3227 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
3228 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
3229 RTE_PMD_REGISTER_PARAM_STRING(net_ena, ENA_DEVARG_LARGE_LLQ_HDR "=<0|1>");
3230 RTE_LOG_REGISTER_SUFFIX(ena_logtype_init, init, NOTICE);
3231 RTE_LOG_REGISTER_SUFFIX(ena_logtype_driver, driver, NOTICE);
3232 #ifdef RTE_ETHDEV_DEBUG_RX
3233 RTE_LOG_REGISTER_SUFFIX(ena_logtype_rx, rx, DEBUG);
3234 #endif
3235 #ifdef RTE_ETHDEV_DEBUG_TX
3236 RTE_LOG_REGISTER_SUFFIX(ena_logtype_tx, tx, DEBUG);
3237 #endif
3238 RTE_LOG_REGISTER_SUFFIX(ena_logtype_com, com, WARNING);
3239 
3240 /******************************************************************************
3241  ******************************** AENQ Handlers *******************************
3242  *****************************************************************************/
3243 static void ena_update_on_link_change(void *adapter_data,
3244 				      struct ena_admin_aenq_entry *aenq_e)
3245 {
3246 	struct rte_eth_dev *eth_dev = adapter_data;
3247 	struct ena_adapter *adapter = eth_dev->data->dev_private;
3248 	struct ena_admin_aenq_link_change_desc *aenq_link_desc;
3249 	uint32_t status;
3250 
3251 	aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
3252 
3253 	status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
3254 	adapter->link_status = status;
3255 
3256 	ena_link_update(eth_dev, 0);
3257 	rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
3258 }
3259 
3260 static void ena_notification(void *adapter_data,
3261 			     struct ena_admin_aenq_entry *aenq_e)
3262 {
3263 	struct rte_eth_dev *eth_dev = adapter_data;
3264 	struct ena_adapter *adapter = eth_dev->data->dev_private;
3265 	struct ena_admin_ena_hw_hints *hints;
3266 
3267 	if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
3268 		PMD_DRV_LOG(WARNING, "Invalid AENQ group: %x. Expected: %x\n",
3269 			aenq_e->aenq_common_desc.group,
3270 			ENA_ADMIN_NOTIFICATION);
3271 
3272 	switch (aenq_e->aenq_common_desc.syndrome) {
3273 	case ENA_ADMIN_UPDATE_HINTS:
3274 		hints = (struct ena_admin_ena_hw_hints *)
3275 			(&aenq_e->inline_data_w4);
3276 		ena_update_hints(adapter, hints);
3277 		break;
3278 	default:
3279 		PMD_DRV_LOG(ERR, "Invalid AENQ notification link state: %d\n",
3280 			aenq_e->aenq_common_desc.syndrome);
3281 	}
3282 }
3283 
3284 static void ena_keep_alive(void *adapter_data,
3285 			   __rte_unused struct ena_admin_aenq_entry *aenq_e)
3286 {
3287 	struct rte_eth_dev *eth_dev = adapter_data;
3288 	struct ena_adapter *adapter = eth_dev->data->dev_private;
3289 	struct ena_admin_aenq_keep_alive_desc *desc;
3290 	uint64_t rx_drops;
3291 	uint64_t tx_drops;
3292 
3293 	adapter->timestamp_wd = rte_get_timer_cycles();
3294 
3295 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
3296 	rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
3297 	tx_drops = ((uint64_t)desc->tx_drops_high << 32) | desc->tx_drops_low;
3298 
3299 	adapter->drv_stats->rx_drops = rx_drops;
3300 	adapter->dev_stats.tx_drops = tx_drops;
3301 }
3302 
3303 /**
3304  * This handler will called for unknown event group or unimplemented handlers
3305  **/
3306 static void unimplemented_aenq_handler(__rte_unused void *data,
3307 				       __rte_unused struct ena_admin_aenq_entry *aenq_e)
3308 {
3309 	PMD_DRV_LOG(ERR,
3310 		"Unknown event was received or event with unimplemented handler\n");
3311 }
3312 
3313 static struct ena_aenq_handlers aenq_handlers = {
3314 	.handlers = {
3315 		[ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
3316 		[ENA_ADMIN_NOTIFICATION] = ena_notification,
3317 		[ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive
3318 	},
3319 	.unimplemented_handler = unimplemented_aenq_handler
3320 };
3321