xref: /dpdk/drivers/net/ena/ena_ethdev.c (revision 1f949ad90bb558d0b10756bff7bfa909ff9ff7b3)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
3  * All rights reserved.
4  */
5 
6 #include <rte_string_fns.h>
7 #include <rte_ether.h>
8 #include <ethdev_driver.h>
9 #include <ethdev_pci.h>
10 #include <rte_tcp.h>
11 #include <rte_atomic.h>
12 #include <rte_dev.h>
13 #include <rte_errno.h>
14 #include <rte_version.h>
15 #include <rte_net.h>
16 #include <rte_kvargs.h>
17 
18 #include "ena_ethdev.h"
19 #include "ena_logs.h"
20 #include "ena_platform.h"
21 #include "ena_com.h"
22 #include "ena_eth_com.h"
23 
24 #include <ena_common_defs.h>
25 #include <ena_regs_defs.h>
26 #include <ena_admin_defs.h>
27 #include <ena_eth_io_defs.h>
28 
29 #define DRV_MODULE_VER_MAJOR	2
30 #define DRV_MODULE_VER_MINOR	2
31 #define DRV_MODULE_VER_SUBMINOR	0
32 
33 #define ENA_IO_TXQ_IDX(q)	(2 * (q))
34 #define ENA_IO_RXQ_IDX(q)	(2 * (q) + 1)
35 /*reverse version of ENA_IO_RXQ_IDX*/
36 #define ENA_IO_RXQ_IDX_REV(q)	((q - 1) / 2)
37 
38 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
39 #define TEST_BIT(val, bit_shift) (val & (1UL << bit_shift))
40 
41 #define GET_L4_HDR_LEN(mbuf)					\
42 	((rte_pktmbuf_mtod_offset(mbuf,	struct rte_tcp_hdr *,	\
43 		mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
44 
45 #define ENA_RX_RSS_TABLE_LOG_SIZE  7
46 #define ENA_RX_RSS_TABLE_SIZE	(1 << ENA_RX_RSS_TABLE_LOG_SIZE)
47 #define ENA_HASH_KEY_SIZE	40
48 #define ETH_GSTRING_LEN	32
49 
50 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
51 
52 #define ENA_MIN_RING_DESC	128
53 
54 enum ethtool_stringset {
55 	ETH_SS_TEST             = 0,
56 	ETH_SS_STATS,
57 };
58 
59 struct ena_stats {
60 	char name[ETH_GSTRING_LEN];
61 	int stat_offset;
62 };
63 
64 #define ENA_STAT_ENTRY(stat, stat_type) { \
65 	.name = #stat, \
66 	.stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
67 }
68 
69 #define ENA_STAT_RX_ENTRY(stat) \
70 	ENA_STAT_ENTRY(stat, rx)
71 
72 #define ENA_STAT_TX_ENTRY(stat) \
73 	ENA_STAT_ENTRY(stat, tx)
74 
75 #define ENA_STAT_ENI_ENTRY(stat) \
76 	ENA_STAT_ENTRY(stat, eni)
77 
78 #define ENA_STAT_GLOBAL_ENTRY(stat) \
79 	ENA_STAT_ENTRY(stat, dev)
80 
81 /* Device arguments */
82 #define ENA_DEVARG_LARGE_LLQ_HDR "large_llq_hdr"
83 
84 /*
85  * Each rte_memzone should have unique name.
86  * To satisfy it, count number of allocation and add it to name.
87  */
88 rte_atomic32_t ena_alloc_cnt;
89 
90 static const struct ena_stats ena_stats_global_strings[] = {
91 	ENA_STAT_GLOBAL_ENTRY(wd_expired),
92 	ENA_STAT_GLOBAL_ENTRY(dev_start),
93 	ENA_STAT_GLOBAL_ENTRY(dev_stop),
94 	ENA_STAT_GLOBAL_ENTRY(tx_drops),
95 };
96 
97 static const struct ena_stats ena_stats_eni_strings[] = {
98 	ENA_STAT_ENI_ENTRY(bw_in_allowance_exceeded),
99 	ENA_STAT_ENI_ENTRY(bw_out_allowance_exceeded),
100 	ENA_STAT_ENI_ENTRY(pps_allowance_exceeded),
101 	ENA_STAT_ENI_ENTRY(conntrack_allowance_exceeded),
102 	ENA_STAT_ENI_ENTRY(linklocal_allowance_exceeded),
103 };
104 
105 static const struct ena_stats ena_stats_tx_strings[] = {
106 	ENA_STAT_TX_ENTRY(cnt),
107 	ENA_STAT_TX_ENTRY(bytes),
108 	ENA_STAT_TX_ENTRY(prepare_ctx_err),
109 	ENA_STAT_TX_ENTRY(linearize),
110 	ENA_STAT_TX_ENTRY(linearize_failed),
111 	ENA_STAT_TX_ENTRY(tx_poll),
112 	ENA_STAT_TX_ENTRY(doorbells),
113 	ENA_STAT_TX_ENTRY(bad_req_id),
114 	ENA_STAT_TX_ENTRY(available_desc),
115 };
116 
117 static const struct ena_stats ena_stats_rx_strings[] = {
118 	ENA_STAT_RX_ENTRY(cnt),
119 	ENA_STAT_RX_ENTRY(bytes),
120 	ENA_STAT_RX_ENTRY(refill_partial),
121 	ENA_STAT_RX_ENTRY(bad_csum),
122 	ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
123 	ENA_STAT_RX_ENTRY(bad_desc_num),
124 	ENA_STAT_RX_ENTRY(bad_req_id),
125 };
126 
127 #define ENA_STATS_ARRAY_GLOBAL	ARRAY_SIZE(ena_stats_global_strings)
128 #define ENA_STATS_ARRAY_ENI	ARRAY_SIZE(ena_stats_eni_strings)
129 #define ENA_STATS_ARRAY_TX	ARRAY_SIZE(ena_stats_tx_strings)
130 #define ENA_STATS_ARRAY_RX	ARRAY_SIZE(ena_stats_rx_strings)
131 
132 #define QUEUE_OFFLOADS (DEV_TX_OFFLOAD_TCP_CKSUM |\
133 			DEV_TX_OFFLOAD_UDP_CKSUM |\
134 			DEV_TX_OFFLOAD_IPV4_CKSUM |\
135 			DEV_TX_OFFLOAD_TCP_TSO)
136 #define MBUF_OFFLOADS (PKT_TX_L4_MASK |\
137 		       PKT_TX_IP_CKSUM |\
138 		       PKT_TX_TCP_SEG)
139 
140 /** Vendor ID used by Amazon devices */
141 #define PCI_VENDOR_ID_AMAZON 0x1D0F
142 /** Amazon devices */
143 #define PCI_DEVICE_ID_ENA_VF		0xEC20
144 #define PCI_DEVICE_ID_ENA_VF_RSERV0	0xEC21
145 
146 #define	ENA_TX_OFFLOAD_MASK	(\
147 	PKT_TX_L4_MASK |         \
148 	PKT_TX_IPV6 |            \
149 	PKT_TX_IPV4 |            \
150 	PKT_TX_IP_CKSUM |        \
151 	PKT_TX_TCP_SEG)
152 
153 #define	ENA_TX_OFFLOAD_NOTSUP_MASK	\
154 	(PKT_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
155 
156 static const struct rte_pci_id pci_id_ena_map[] = {
157 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
158 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF_RSERV0) },
159 	{ .device_id = 0 },
160 };
161 
162 static struct ena_aenq_handlers aenq_handlers;
163 
164 static int ena_device_init(struct ena_com_dev *ena_dev,
165 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
166 			   bool *wd_state);
167 static int ena_dev_configure(struct rte_eth_dev *dev);
168 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
169 	struct ena_tx_buffer *tx_info,
170 	struct rte_mbuf *mbuf,
171 	void **push_header,
172 	uint16_t *header_len);
173 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf);
174 static void ena_tx_cleanup(struct ena_ring *tx_ring);
175 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
176 				  uint16_t nb_pkts);
177 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
178 		uint16_t nb_pkts);
179 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
180 			      uint16_t nb_desc, unsigned int socket_id,
181 			      const struct rte_eth_txconf *tx_conf);
182 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
183 			      uint16_t nb_desc, unsigned int socket_id,
184 			      const struct rte_eth_rxconf *rx_conf,
185 			      struct rte_mempool *mp);
186 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len);
187 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
188 				    struct ena_com_rx_buf_info *ena_bufs,
189 				    uint32_t descs,
190 				    uint16_t *next_to_clean,
191 				    uint8_t offset);
192 static uint16_t eth_ena_recv_pkts(void *rx_queue,
193 				  struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
194 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
195 				  struct rte_mbuf *mbuf, uint16_t id);
196 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
197 static void ena_init_rings(struct ena_adapter *adapter,
198 			   bool disable_meta_caching);
199 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
200 static int ena_start(struct rte_eth_dev *dev);
201 static int ena_stop(struct rte_eth_dev *dev);
202 static int ena_close(struct rte_eth_dev *dev);
203 static int ena_dev_reset(struct rte_eth_dev *dev);
204 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
205 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
206 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
207 static void ena_rx_queue_release(void *queue);
208 static void ena_tx_queue_release(void *queue);
209 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
210 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
211 static int ena_link_update(struct rte_eth_dev *dev,
212 			   int wait_to_complete);
213 static int ena_create_io_queue(struct ena_ring *ring);
214 static void ena_queue_stop(struct ena_ring *ring);
215 static void ena_queue_stop_all(struct rte_eth_dev *dev,
216 			      enum ena_ring_type ring_type);
217 static int ena_queue_start(struct ena_ring *ring);
218 static int ena_queue_start_all(struct rte_eth_dev *dev,
219 			       enum ena_ring_type ring_type);
220 static void ena_stats_restart(struct rte_eth_dev *dev);
221 static int ena_infos_get(struct rte_eth_dev *dev,
222 			 struct rte_eth_dev_info *dev_info);
223 static int ena_rss_reta_update(struct rte_eth_dev *dev,
224 			       struct rte_eth_rss_reta_entry64 *reta_conf,
225 			       uint16_t reta_size);
226 static int ena_rss_reta_query(struct rte_eth_dev *dev,
227 			      struct rte_eth_rss_reta_entry64 *reta_conf,
228 			      uint16_t reta_size);
229 static void ena_interrupt_handler_rte(void *cb_arg);
230 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
231 static void ena_destroy_device(struct rte_eth_dev *eth_dev);
232 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
233 static int ena_xstats_get_names(struct rte_eth_dev *dev,
234 				struct rte_eth_xstat_name *xstats_names,
235 				unsigned int n);
236 static int ena_xstats_get(struct rte_eth_dev *dev,
237 			  struct rte_eth_xstat *stats,
238 			  unsigned int n);
239 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
240 				const uint64_t *ids,
241 				uint64_t *values,
242 				unsigned int n);
243 static int ena_process_bool_devarg(const char *key,
244 				   const char *value,
245 				   void *opaque);
246 static int ena_parse_devargs(struct ena_adapter *adapter,
247 			     struct rte_devargs *devargs);
248 static int ena_copy_eni_stats(struct ena_adapter *adapter);
249 
250 static const struct eth_dev_ops ena_dev_ops = {
251 	.dev_configure        = ena_dev_configure,
252 	.dev_infos_get        = ena_infos_get,
253 	.rx_queue_setup       = ena_rx_queue_setup,
254 	.tx_queue_setup       = ena_tx_queue_setup,
255 	.dev_start            = ena_start,
256 	.dev_stop             = ena_stop,
257 	.link_update          = ena_link_update,
258 	.stats_get            = ena_stats_get,
259 	.xstats_get_names     = ena_xstats_get_names,
260 	.xstats_get	      = ena_xstats_get,
261 	.xstats_get_by_id     = ena_xstats_get_by_id,
262 	.mtu_set              = ena_mtu_set,
263 	.rx_queue_release     = ena_rx_queue_release,
264 	.tx_queue_release     = ena_tx_queue_release,
265 	.dev_close            = ena_close,
266 	.dev_reset            = ena_dev_reset,
267 	.reta_update          = ena_rss_reta_update,
268 	.reta_query           = ena_rss_reta_query,
269 };
270 
271 void ena_rss_key_fill(void *key, size_t size)
272 {
273 	static bool key_generated;
274 	static uint8_t default_key[ENA_HASH_KEY_SIZE];
275 	size_t i;
276 
277 	RTE_ASSERT(size <= ENA_HASH_KEY_SIZE);
278 
279 	if (!key_generated) {
280 		for (i = 0; i < ENA_HASH_KEY_SIZE; ++i)
281 			default_key[i] = rte_rand() & 0xff;
282 		key_generated = true;
283 	}
284 
285 	rte_memcpy(key, default_key, size);
286 }
287 
288 static inline void ena_rx_mbuf_prepare(struct rte_mbuf *mbuf,
289 				       struct ena_com_rx_ctx *ena_rx_ctx)
290 {
291 	uint64_t ol_flags = 0;
292 	uint32_t packet_type = 0;
293 
294 	if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
295 		packet_type |= RTE_PTYPE_L4_TCP;
296 	else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
297 		packet_type |= RTE_PTYPE_L4_UDP;
298 
299 	if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
300 		packet_type |= RTE_PTYPE_L3_IPV4;
301 		if (unlikely(ena_rx_ctx->l3_csum_err))
302 			ol_flags |= PKT_RX_IP_CKSUM_BAD;
303 		else
304 			ol_flags |= PKT_RX_IP_CKSUM_GOOD;
305 	} else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
306 		packet_type |= RTE_PTYPE_L3_IPV6;
307 	}
308 
309 	if (!ena_rx_ctx->l4_csum_checked || ena_rx_ctx->frag)
310 		ol_flags |= PKT_RX_L4_CKSUM_UNKNOWN;
311 	else
312 		if (unlikely(ena_rx_ctx->l4_csum_err))
313 			ol_flags |= PKT_RX_L4_CKSUM_BAD;
314 		else
315 			ol_flags |= PKT_RX_L4_CKSUM_GOOD;
316 
317 	mbuf->ol_flags = ol_flags;
318 	mbuf->packet_type = packet_type;
319 }
320 
321 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
322 				       struct ena_com_tx_ctx *ena_tx_ctx,
323 				       uint64_t queue_offloads,
324 				       bool disable_meta_caching)
325 {
326 	struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
327 
328 	if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
329 	    (queue_offloads & QUEUE_OFFLOADS)) {
330 		/* check if TSO is required */
331 		if ((mbuf->ol_flags & PKT_TX_TCP_SEG) &&
332 		    (queue_offloads & DEV_TX_OFFLOAD_TCP_TSO)) {
333 			ena_tx_ctx->tso_enable = true;
334 
335 			ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
336 		}
337 
338 		/* check if L3 checksum is needed */
339 		if ((mbuf->ol_flags & PKT_TX_IP_CKSUM) &&
340 		    (queue_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM))
341 			ena_tx_ctx->l3_csum_enable = true;
342 
343 		if (mbuf->ol_flags & PKT_TX_IPV6) {
344 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
345 		} else {
346 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
347 
348 			/* set don't fragment (DF) flag */
349 			if (mbuf->packet_type &
350 				(RTE_PTYPE_L4_NONFRAG
351 				 | RTE_PTYPE_INNER_L4_NONFRAG))
352 				ena_tx_ctx->df = true;
353 		}
354 
355 		/* check if L4 checksum is needed */
356 		if (((mbuf->ol_flags & PKT_TX_L4_MASK) == PKT_TX_TCP_CKSUM) &&
357 		    (queue_offloads & DEV_TX_OFFLOAD_TCP_CKSUM)) {
358 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
359 			ena_tx_ctx->l4_csum_enable = true;
360 		} else if (((mbuf->ol_flags & PKT_TX_L4_MASK) ==
361 				PKT_TX_UDP_CKSUM) &&
362 				(queue_offloads & DEV_TX_OFFLOAD_UDP_CKSUM)) {
363 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
364 			ena_tx_ctx->l4_csum_enable = true;
365 		} else {
366 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
367 			ena_tx_ctx->l4_csum_enable = false;
368 		}
369 
370 		ena_meta->mss = mbuf->tso_segsz;
371 		ena_meta->l3_hdr_len = mbuf->l3_len;
372 		ena_meta->l3_hdr_offset = mbuf->l2_len;
373 
374 		ena_tx_ctx->meta_valid = true;
375 	} else if (disable_meta_caching) {
376 		memset(ena_meta, 0, sizeof(*ena_meta));
377 		ena_tx_ctx->meta_valid = true;
378 	} else {
379 		ena_tx_ctx->meta_valid = false;
380 	}
381 }
382 
383 static inline int validate_rx_req_id(struct ena_ring *rx_ring, uint16_t req_id)
384 {
385 	if (likely(req_id < rx_ring->ring_size))
386 		return 0;
387 
388 	PMD_DRV_LOG(ERR, "Invalid rx req_id: %hu\n", req_id);
389 
390 	rx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID;
391 	rx_ring->adapter->trigger_reset = true;
392 	++rx_ring->rx_stats.bad_req_id;
393 
394 	return -EFAULT;
395 }
396 
397 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
398 {
399 	struct ena_tx_buffer *tx_info = NULL;
400 
401 	if (likely(req_id < tx_ring->ring_size)) {
402 		tx_info = &tx_ring->tx_buffer_info[req_id];
403 		if (likely(tx_info->mbuf))
404 			return 0;
405 	}
406 
407 	if (tx_info)
408 		PMD_DRV_LOG(ERR, "tx_info doesn't have valid mbuf\n");
409 	else
410 		PMD_DRV_LOG(ERR, "Invalid req_id: %hu\n", req_id);
411 
412 	/* Trigger device reset */
413 	++tx_ring->tx_stats.bad_req_id;
414 	tx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID;
415 	tx_ring->adapter->trigger_reset	= true;
416 	return -EFAULT;
417 }
418 
419 static void ena_config_host_info(struct ena_com_dev *ena_dev)
420 {
421 	struct ena_admin_host_info *host_info;
422 	int rc;
423 
424 	/* Allocate only the host info */
425 	rc = ena_com_allocate_host_info(ena_dev);
426 	if (rc) {
427 		PMD_DRV_LOG(ERR, "Cannot allocate host info\n");
428 		return;
429 	}
430 
431 	host_info = ena_dev->host_attr.host_info;
432 
433 	host_info->os_type = ENA_ADMIN_OS_DPDK;
434 	host_info->kernel_ver = RTE_VERSION;
435 	strlcpy((char *)host_info->kernel_ver_str, rte_version(),
436 		sizeof(host_info->kernel_ver_str));
437 	host_info->os_dist = RTE_VERSION;
438 	strlcpy((char *)host_info->os_dist_str, rte_version(),
439 		sizeof(host_info->os_dist_str));
440 	host_info->driver_version =
441 		(DRV_MODULE_VER_MAJOR) |
442 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
443 		(DRV_MODULE_VER_SUBMINOR <<
444 			ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
445 	host_info->num_cpus = rte_lcore_count();
446 
447 	host_info->driver_supported_features =
448 		ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK;
449 
450 	rc = ena_com_set_host_attributes(ena_dev);
451 	if (rc) {
452 		if (rc == -ENA_COM_UNSUPPORTED)
453 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
454 		else
455 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
456 
457 		goto err;
458 	}
459 
460 	return;
461 
462 err:
463 	ena_com_delete_host_info(ena_dev);
464 }
465 
466 /* This function calculates the number of xstats based on the current config */
467 static unsigned int ena_xstats_calc_num(struct rte_eth_dev *dev)
468 {
469 	return ENA_STATS_ARRAY_GLOBAL + ENA_STATS_ARRAY_ENI +
470 		(dev->data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
471 		(dev->data->nb_rx_queues * ENA_STATS_ARRAY_RX);
472 }
473 
474 static void ena_config_debug_area(struct ena_adapter *adapter)
475 {
476 	u32 debug_area_size;
477 	int rc, ss_count;
478 
479 	ss_count = ena_xstats_calc_num(adapter->rte_dev);
480 
481 	/* allocate 32 bytes for each string and 64bit for the value */
482 	debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
483 
484 	rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
485 	if (rc) {
486 		PMD_DRV_LOG(ERR, "Cannot allocate debug area\n");
487 		return;
488 	}
489 
490 	rc = ena_com_set_host_attributes(&adapter->ena_dev);
491 	if (rc) {
492 		if (rc == -ENA_COM_UNSUPPORTED)
493 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
494 		else
495 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
496 
497 		goto err;
498 	}
499 
500 	return;
501 err:
502 	ena_com_delete_debug_area(&adapter->ena_dev);
503 }
504 
505 static int ena_close(struct rte_eth_dev *dev)
506 {
507 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
508 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
509 	struct ena_adapter *adapter = dev->data->dev_private;
510 	int ret = 0;
511 
512 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
513 		return 0;
514 
515 	if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
516 		ret = ena_stop(dev);
517 	adapter->state = ENA_ADAPTER_STATE_CLOSED;
518 
519 	ena_rx_queue_release_all(dev);
520 	ena_tx_queue_release_all(dev);
521 
522 	rte_free(adapter->drv_stats);
523 	adapter->drv_stats = NULL;
524 
525 	rte_intr_disable(intr_handle);
526 	rte_intr_callback_unregister(intr_handle,
527 				     ena_interrupt_handler_rte,
528 				     adapter);
529 
530 	/*
531 	 * MAC is not allocated dynamically. Setting NULL should prevent from
532 	 * release of the resource in the rte_eth_dev_release_port().
533 	 */
534 	dev->data->mac_addrs = NULL;
535 
536 	return ret;
537 }
538 
539 static int
540 ena_dev_reset(struct rte_eth_dev *dev)
541 {
542 	int rc = 0;
543 
544 	ena_destroy_device(dev);
545 	rc = eth_ena_dev_init(dev);
546 	if (rc)
547 		PMD_INIT_LOG(CRIT, "Cannot initialize device");
548 
549 	return rc;
550 }
551 
552 static int ena_rss_reta_update(struct rte_eth_dev *dev,
553 			       struct rte_eth_rss_reta_entry64 *reta_conf,
554 			       uint16_t reta_size)
555 {
556 	struct ena_adapter *adapter = dev->data->dev_private;
557 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
558 	int rc, i;
559 	u16 entry_value;
560 	int conf_idx;
561 	int idx;
562 
563 	if ((reta_size == 0) || (reta_conf == NULL))
564 		return -EINVAL;
565 
566 	if (reta_size > ENA_RX_RSS_TABLE_SIZE) {
567 		PMD_DRV_LOG(WARNING,
568 			"indirection table %d is bigger than supported (%d)\n",
569 			reta_size, ENA_RX_RSS_TABLE_SIZE);
570 		return -EINVAL;
571 	}
572 
573 	for (i = 0 ; i < reta_size ; i++) {
574 		/* each reta_conf is for 64 entries.
575 		 * to support 128 we use 2 conf of 64
576 		 */
577 		conf_idx = i / RTE_RETA_GROUP_SIZE;
578 		idx = i % RTE_RETA_GROUP_SIZE;
579 		if (TEST_BIT(reta_conf[conf_idx].mask, idx)) {
580 			entry_value =
581 				ENA_IO_RXQ_IDX(reta_conf[conf_idx].reta[idx]);
582 
583 			rc = ena_com_indirect_table_fill_entry(ena_dev,
584 							       i,
585 							       entry_value);
586 			if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
587 				PMD_DRV_LOG(ERR,
588 					"Cannot fill indirect table\n");
589 				return rc;
590 			}
591 		}
592 	}
593 
594 	rte_spinlock_lock(&adapter->admin_lock);
595 	rc = ena_com_indirect_table_set(ena_dev);
596 	rte_spinlock_unlock(&adapter->admin_lock);
597 	if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
598 		PMD_DRV_LOG(ERR, "Cannot flush the indirect table\n");
599 		return rc;
600 	}
601 
602 	PMD_DRV_LOG(DEBUG, "%s(): RSS configured %d entries  for port %d\n",
603 		__func__, reta_size, adapter->rte_dev->data->port_id);
604 
605 	return 0;
606 }
607 
608 /* Query redirection table. */
609 static int ena_rss_reta_query(struct rte_eth_dev *dev,
610 			      struct rte_eth_rss_reta_entry64 *reta_conf,
611 			      uint16_t reta_size)
612 {
613 	struct ena_adapter *adapter = dev->data->dev_private;
614 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
615 	int rc;
616 	int i;
617 	u32 indirect_table[ENA_RX_RSS_TABLE_SIZE] = {0};
618 	int reta_conf_idx;
619 	int reta_idx;
620 
621 	if (reta_size == 0 || reta_conf == NULL ||
622 	    (reta_size > RTE_RETA_GROUP_SIZE && ((reta_conf + 1) == NULL)))
623 		return -EINVAL;
624 
625 	rte_spinlock_lock(&adapter->admin_lock);
626 	rc = ena_com_indirect_table_get(ena_dev, indirect_table);
627 	rte_spinlock_unlock(&adapter->admin_lock);
628 	if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
629 		PMD_DRV_LOG(ERR, "cannot get indirect table\n");
630 		return -ENOTSUP;
631 	}
632 
633 	for (i = 0 ; i < reta_size ; i++) {
634 		reta_conf_idx = i / RTE_RETA_GROUP_SIZE;
635 		reta_idx = i % RTE_RETA_GROUP_SIZE;
636 		if (TEST_BIT(reta_conf[reta_conf_idx].mask, reta_idx))
637 			reta_conf[reta_conf_idx].reta[reta_idx] =
638 				ENA_IO_RXQ_IDX_REV(indirect_table[i]);
639 	}
640 
641 	return 0;
642 }
643 
644 static int ena_rss_init_default(struct ena_adapter *adapter)
645 {
646 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
647 	uint16_t nb_rx_queues = adapter->rte_dev->data->nb_rx_queues;
648 	int rc, i;
649 	u32 val;
650 
651 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
652 	if (unlikely(rc)) {
653 		PMD_DRV_LOG(ERR, "Cannot init indirect table\n");
654 		goto err_rss_init;
655 	}
656 
657 	for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
658 		val = i % nb_rx_queues;
659 		rc = ena_com_indirect_table_fill_entry(ena_dev, i,
660 						       ENA_IO_RXQ_IDX(val));
661 		if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
662 			PMD_DRV_LOG(ERR, "Cannot fill indirect table\n");
663 			goto err_fill_indir;
664 		}
665 	}
666 
667 	rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL,
668 					ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
669 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
670 		PMD_DRV_LOG(INFO, "Cannot fill hash function\n");
671 		goto err_fill_indir;
672 	}
673 
674 	rc = ena_com_set_default_hash_ctrl(ena_dev);
675 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
676 		PMD_DRV_LOG(INFO, "Cannot fill hash control\n");
677 		goto err_fill_indir;
678 	}
679 
680 	rc = ena_com_indirect_table_set(ena_dev);
681 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
682 		PMD_DRV_LOG(ERR, "Cannot flush the indirect table\n");
683 		goto err_fill_indir;
684 	}
685 	PMD_DRV_LOG(DEBUG, "RSS configured for port %d\n",
686 		adapter->rte_dev->data->port_id);
687 
688 	return 0;
689 
690 err_fill_indir:
691 	ena_com_rss_destroy(ena_dev);
692 err_rss_init:
693 
694 	return rc;
695 }
696 
697 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
698 {
699 	struct ena_ring **queues = (struct ena_ring **)dev->data->rx_queues;
700 	int nb_queues = dev->data->nb_rx_queues;
701 	int i;
702 
703 	for (i = 0; i < nb_queues; i++)
704 		ena_rx_queue_release(queues[i]);
705 }
706 
707 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
708 {
709 	struct ena_ring **queues = (struct ena_ring **)dev->data->tx_queues;
710 	int nb_queues = dev->data->nb_tx_queues;
711 	int i;
712 
713 	for (i = 0; i < nb_queues; i++)
714 		ena_tx_queue_release(queues[i]);
715 }
716 
717 static void ena_rx_queue_release(void *queue)
718 {
719 	struct ena_ring *ring = (struct ena_ring *)queue;
720 
721 	/* Free ring resources */
722 	if (ring->rx_buffer_info)
723 		rte_free(ring->rx_buffer_info);
724 	ring->rx_buffer_info = NULL;
725 
726 	if (ring->rx_refill_buffer)
727 		rte_free(ring->rx_refill_buffer);
728 	ring->rx_refill_buffer = NULL;
729 
730 	if (ring->empty_rx_reqs)
731 		rte_free(ring->empty_rx_reqs);
732 	ring->empty_rx_reqs = NULL;
733 
734 	ring->configured = 0;
735 
736 	PMD_DRV_LOG(NOTICE, "RX Queue %d:%d released\n",
737 		ring->port_id, ring->id);
738 }
739 
740 static void ena_tx_queue_release(void *queue)
741 {
742 	struct ena_ring *ring = (struct ena_ring *)queue;
743 
744 	/* Free ring resources */
745 	if (ring->push_buf_intermediate_buf)
746 		rte_free(ring->push_buf_intermediate_buf);
747 
748 	if (ring->tx_buffer_info)
749 		rte_free(ring->tx_buffer_info);
750 
751 	if (ring->empty_tx_reqs)
752 		rte_free(ring->empty_tx_reqs);
753 
754 	ring->empty_tx_reqs = NULL;
755 	ring->tx_buffer_info = NULL;
756 	ring->push_buf_intermediate_buf = NULL;
757 
758 	ring->configured = 0;
759 
760 	PMD_DRV_LOG(NOTICE, "TX Queue %d:%d released\n",
761 		ring->port_id, ring->id);
762 }
763 
764 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
765 {
766 	unsigned int i;
767 
768 	for (i = 0; i < ring->ring_size; ++i) {
769 		struct ena_rx_buffer *rx_info = &ring->rx_buffer_info[i];
770 		if (rx_info->mbuf) {
771 			rte_mbuf_raw_free(rx_info->mbuf);
772 			rx_info->mbuf = NULL;
773 		}
774 	}
775 }
776 
777 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
778 {
779 	unsigned int i;
780 
781 	for (i = 0; i < ring->ring_size; ++i) {
782 		struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
783 
784 		if (tx_buf->mbuf)
785 			rte_pktmbuf_free(tx_buf->mbuf);
786 	}
787 }
788 
789 static int ena_link_update(struct rte_eth_dev *dev,
790 			   __rte_unused int wait_to_complete)
791 {
792 	struct rte_eth_link *link = &dev->data->dev_link;
793 	struct ena_adapter *adapter = dev->data->dev_private;
794 
795 	link->link_status = adapter->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
796 	link->link_speed = ETH_SPEED_NUM_NONE;
797 	link->link_duplex = ETH_LINK_FULL_DUPLEX;
798 
799 	return 0;
800 }
801 
802 static int ena_queue_start_all(struct rte_eth_dev *dev,
803 			       enum ena_ring_type ring_type)
804 {
805 	struct ena_adapter *adapter = dev->data->dev_private;
806 	struct ena_ring *queues = NULL;
807 	int nb_queues;
808 	int i = 0;
809 	int rc = 0;
810 
811 	if (ring_type == ENA_RING_TYPE_RX) {
812 		queues = adapter->rx_ring;
813 		nb_queues = dev->data->nb_rx_queues;
814 	} else {
815 		queues = adapter->tx_ring;
816 		nb_queues = dev->data->nb_tx_queues;
817 	}
818 	for (i = 0; i < nb_queues; i++) {
819 		if (queues[i].configured) {
820 			if (ring_type == ENA_RING_TYPE_RX) {
821 				ena_assert_msg(
822 					dev->data->rx_queues[i] == &queues[i],
823 					"Inconsistent state of rx queues\n");
824 			} else {
825 				ena_assert_msg(
826 					dev->data->tx_queues[i] == &queues[i],
827 					"Inconsistent state of tx queues\n");
828 			}
829 
830 			rc = ena_queue_start(&queues[i]);
831 
832 			if (rc) {
833 				PMD_INIT_LOG(ERR,
834 					     "failed to start queue %d type(%d)",
835 					     i, ring_type);
836 				goto err;
837 			}
838 		}
839 	}
840 
841 	return 0;
842 
843 err:
844 	while (i--)
845 		if (queues[i].configured)
846 			ena_queue_stop(&queues[i]);
847 
848 	return rc;
849 }
850 
851 static uint32_t ena_get_mtu_conf(struct ena_adapter *adapter)
852 {
853 	uint32_t max_frame_len = adapter->max_mtu;
854 
855 	if (adapter->rte_eth_dev_data->dev_conf.rxmode.offloads &
856 	    DEV_RX_OFFLOAD_JUMBO_FRAME)
857 		max_frame_len =
858 			adapter->rte_eth_dev_data->dev_conf.rxmode.max_rx_pkt_len;
859 
860 	return max_frame_len;
861 }
862 
863 static int ena_check_valid_conf(struct ena_adapter *adapter)
864 {
865 	uint32_t max_frame_len = ena_get_mtu_conf(adapter);
866 
867 	if (max_frame_len > adapter->max_mtu || max_frame_len < ENA_MIN_MTU) {
868 		PMD_INIT_LOG(ERR, "Unsupported MTU of %d. "
869 				  "max mtu: %d, min mtu: %d",
870 			     max_frame_len, adapter->max_mtu, ENA_MIN_MTU);
871 		return ENA_COM_UNSUPPORTED;
872 	}
873 
874 	return 0;
875 }
876 
877 static int
878 ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx,
879 		       bool use_large_llq_hdr)
880 {
881 	struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
882 	struct ena_com_dev *ena_dev = ctx->ena_dev;
883 	uint32_t max_tx_queue_size;
884 	uint32_t max_rx_queue_size;
885 
886 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
887 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
888 			&ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
889 		max_rx_queue_size = RTE_MIN(max_queue_ext->max_rx_cq_depth,
890 			max_queue_ext->max_rx_sq_depth);
891 		max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
892 
893 		if (ena_dev->tx_mem_queue_type ==
894 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
895 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
896 				llq->max_llq_depth);
897 		} else {
898 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
899 				max_queue_ext->max_tx_sq_depth);
900 		}
901 
902 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
903 			max_queue_ext->max_per_packet_rx_descs);
904 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
905 			max_queue_ext->max_per_packet_tx_descs);
906 	} else {
907 		struct ena_admin_queue_feature_desc *max_queues =
908 			&ctx->get_feat_ctx->max_queues;
909 		max_rx_queue_size = RTE_MIN(max_queues->max_cq_depth,
910 			max_queues->max_sq_depth);
911 		max_tx_queue_size = max_queues->max_cq_depth;
912 
913 		if (ena_dev->tx_mem_queue_type ==
914 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
915 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
916 				llq->max_llq_depth);
917 		} else {
918 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
919 				max_queues->max_sq_depth);
920 		}
921 
922 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
923 			max_queues->max_packet_rx_descs);
924 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
925 			max_queues->max_packet_tx_descs);
926 	}
927 
928 	/* Round down to the nearest power of 2 */
929 	max_rx_queue_size = rte_align32prevpow2(max_rx_queue_size);
930 	max_tx_queue_size = rte_align32prevpow2(max_tx_queue_size);
931 
932 	if (use_large_llq_hdr) {
933 		if ((llq->entry_size_ctrl_supported &
934 		     ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
935 		    (ena_dev->tx_mem_queue_type ==
936 		     ENA_ADMIN_PLACEMENT_POLICY_DEV)) {
937 			max_tx_queue_size /= 2;
938 			PMD_INIT_LOG(INFO,
939 				"Forcing large headers and decreasing maximum TX queue size to %d\n",
940 				max_tx_queue_size);
941 		} else {
942 			PMD_INIT_LOG(ERR,
943 				"Forcing large headers failed: LLQ is disabled or device does not support large headers\n");
944 		}
945 	}
946 
947 	if (unlikely(max_rx_queue_size == 0 || max_tx_queue_size == 0)) {
948 		PMD_INIT_LOG(ERR, "Invalid queue size");
949 		return -EFAULT;
950 	}
951 
952 	ctx->max_tx_queue_size = max_tx_queue_size;
953 	ctx->max_rx_queue_size = max_rx_queue_size;
954 
955 	return 0;
956 }
957 
958 static void ena_stats_restart(struct rte_eth_dev *dev)
959 {
960 	struct ena_adapter *adapter = dev->data->dev_private;
961 
962 	rte_atomic64_init(&adapter->drv_stats->ierrors);
963 	rte_atomic64_init(&adapter->drv_stats->oerrors);
964 	rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
965 	adapter->drv_stats->rx_drops = 0;
966 }
967 
968 static int ena_stats_get(struct rte_eth_dev *dev,
969 			  struct rte_eth_stats *stats)
970 {
971 	struct ena_admin_basic_stats ena_stats;
972 	struct ena_adapter *adapter = dev->data->dev_private;
973 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
974 	int rc;
975 	int i;
976 	int max_rings_stats;
977 
978 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
979 		return -ENOTSUP;
980 
981 	memset(&ena_stats, 0, sizeof(ena_stats));
982 
983 	rte_spinlock_lock(&adapter->admin_lock);
984 	rc = ena_com_get_dev_basic_stats(ena_dev, &ena_stats);
985 	rte_spinlock_unlock(&adapter->admin_lock);
986 	if (unlikely(rc)) {
987 		PMD_DRV_LOG(ERR, "Could not retrieve statistics from ENA\n");
988 		return rc;
989 	}
990 
991 	/* Set of basic statistics from ENA */
992 	stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
993 					  ena_stats.rx_pkts_low);
994 	stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
995 					  ena_stats.tx_pkts_low);
996 	stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
997 					ena_stats.rx_bytes_low);
998 	stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
999 					ena_stats.tx_bytes_low);
1000 
1001 	/* Driver related stats */
1002 	stats->imissed = adapter->drv_stats->rx_drops;
1003 	stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
1004 	stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
1005 	stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
1006 
1007 	max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
1008 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
1009 	for (i = 0; i < max_rings_stats; ++i) {
1010 		struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
1011 
1012 		stats->q_ibytes[i] = rx_stats->bytes;
1013 		stats->q_ipackets[i] = rx_stats->cnt;
1014 		stats->q_errors[i] = rx_stats->bad_desc_num +
1015 			rx_stats->bad_req_id;
1016 	}
1017 
1018 	max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
1019 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
1020 	for (i = 0; i < max_rings_stats; ++i) {
1021 		struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
1022 
1023 		stats->q_obytes[i] = tx_stats->bytes;
1024 		stats->q_opackets[i] = tx_stats->cnt;
1025 	}
1026 
1027 	return 0;
1028 }
1029 
1030 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1031 {
1032 	struct ena_adapter *adapter;
1033 	struct ena_com_dev *ena_dev;
1034 	int rc = 0;
1035 
1036 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
1037 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
1038 	adapter = dev->data->dev_private;
1039 
1040 	ena_dev = &adapter->ena_dev;
1041 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
1042 
1043 	if (mtu > ena_get_mtu_conf(adapter) || mtu < ENA_MIN_MTU) {
1044 		PMD_DRV_LOG(ERR,
1045 			"Invalid MTU setting. new_mtu: %d "
1046 			"max mtu: %d min mtu: %d\n",
1047 			mtu, ena_get_mtu_conf(adapter), ENA_MIN_MTU);
1048 		return -EINVAL;
1049 	}
1050 
1051 	rc = ena_com_set_dev_mtu(ena_dev, mtu);
1052 	if (rc)
1053 		PMD_DRV_LOG(ERR, "Could not set MTU: %d\n", mtu);
1054 	else
1055 		PMD_DRV_LOG(NOTICE, "Set MTU: %d\n", mtu);
1056 
1057 	return rc;
1058 }
1059 
1060 static int ena_start(struct rte_eth_dev *dev)
1061 {
1062 	struct ena_adapter *adapter = dev->data->dev_private;
1063 	uint64_t ticks;
1064 	int rc = 0;
1065 
1066 	rc = ena_check_valid_conf(adapter);
1067 	if (rc)
1068 		return rc;
1069 
1070 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
1071 	if (rc)
1072 		return rc;
1073 
1074 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
1075 	if (rc)
1076 		goto err_start_tx;
1077 
1078 	if (adapter->rte_dev->data->dev_conf.rxmode.mq_mode &
1079 	    ETH_MQ_RX_RSS_FLAG && adapter->rte_dev->data->nb_rx_queues > 0) {
1080 		rc = ena_rss_init_default(adapter);
1081 		if (rc)
1082 			goto err_rss_init;
1083 	}
1084 
1085 	ena_stats_restart(dev);
1086 
1087 	adapter->timestamp_wd = rte_get_timer_cycles();
1088 	adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
1089 
1090 	ticks = rte_get_timer_hz();
1091 	rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
1092 			ena_timer_wd_callback, adapter);
1093 
1094 	++adapter->dev_stats.dev_start;
1095 	adapter->state = ENA_ADAPTER_STATE_RUNNING;
1096 
1097 	return 0;
1098 
1099 err_rss_init:
1100 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1101 err_start_tx:
1102 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1103 	return rc;
1104 }
1105 
1106 static int ena_stop(struct rte_eth_dev *dev)
1107 {
1108 	struct ena_adapter *adapter = dev->data->dev_private;
1109 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1110 	int rc;
1111 
1112 	rte_timer_stop_sync(&adapter->timer_wd);
1113 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1114 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1115 
1116 	if (adapter->trigger_reset) {
1117 		rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
1118 		if (rc)
1119 			PMD_DRV_LOG(ERR, "Device reset failed rc=%d\n", rc);
1120 	}
1121 
1122 	++adapter->dev_stats.dev_stop;
1123 	adapter->state = ENA_ADAPTER_STATE_STOPPED;
1124 	dev->data->dev_started = 0;
1125 
1126 	return 0;
1127 }
1128 
1129 static int ena_create_io_queue(struct ena_ring *ring)
1130 {
1131 	struct ena_adapter *adapter;
1132 	struct ena_com_dev *ena_dev;
1133 	struct ena_com_create_io_ctx ctx =
1134 		/* policy set to _HOST just to satisfy icc compiler */
1135 		{ ENA_ADMIN_PLACEMENT_POLICY_HOST,
1136 		  0, 0, 0, 0, 0 };
1137 	uint16_t ena_qid;
1138 	unsigned int i;
1139 	int rc;
1140 
1141 	adapter = ring->adapter;
1142 	ena_dev = &adapter->ena_dev;
1143 
1144 	if (ring->type == ENA_RING_TYPE_TX) {
1145 		ena_qid = ENA_IO_TXQ_IDX(ring->id);
1146 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1147 		ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1148 		for (i = 0; i < ring->ring_size; i++)
1149 			ring->empty_tx_reqs[i] = i;
1150 	} else {
1151 		ena_qid = ENA_IO_RXQ_IDX(ring->id);
1152 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1153 		for (i = 0; i < ring->ring_size; i++)
1154 			ring->empty_rx_reqs[i] = i;
1155 	}
1156 	ctx.queue_size = ring->ring_size;
1157 	ctx.qid = ena_qid;
1158 	ctx.msix_vector = -1; /* interrupts not used */
1159 	ctx.numa_node = ring->numa_socket_id;
1160 
1161 	rc = ena_com_create_io_queue(ena_dev, &ctx);
1162 	if (rc) {
1163 		PMD_DRV_LOG(ERR,
1164 			"failed to create io queue #%d (qid:%d) rc: %d\n",
1165 			ring->id, ena_qid, rc);
1166 		return rc;
1167 	}
1168 
1169 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1170 				     &ring->ena_com_io_sq,
1171 				     &ring->ena_com_io_cq);
1172 	if (rc) {
1173 		PMD_DRV_LOG(ERR,
1174 			"Failed to get io queue handlers. queue num %d rc: %d\n",
1175 			ring->id, rc);
1176 		ena_com_destroy_io_queue(ena_dev, ena_qid);
1177 		return rc;
1178 	}
1179 
1180 	if (ring->type == ENA_RING_TYPE_TX)
1181 		ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1182 
1183 	return 0;
1184 }
1185 
1186 static void ena_queue_stop(struct ena_ring *ring)
1187 {
1188 	struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
1189 
1190 	if (ring->type == ENA_RING_TYPE_RX) {
1191 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
1192 		ena_rx_queue_release_bufs(ring);
1193 	} else {
1194 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
1195 		ena_tx_queue_release_bufs(ring);
1196 	}
1197 }
1198 
1199 static void ena_queue_stop_all(struct rte_eth_dev *dev,
1200 			      enum ena_ring_type ring_type)
1201 {
1202 	struct ena_adapter *adapter = dev->data->dev_private;
1203 	struct ena_ring *queues = NULL;
1204 	uint16_t nb_queues, i;
1205 
1206 	if (ring_type == ENA_RING_TYPE_RX) {
1207 		queues = adapter->rx_ring;
1208 		nb_queues = dev->data->nb_rx_queues;
1209 	} else {
1210 		queues = adapter->tx_ring;
1211 		nb_queues = dev->data->nb_tx_queues;
1212 	}
1213 
1214 	for (i = 0; i < nb_queues; ++i)
1215 		if (queues[i].configured)
1216 			ena_queue_stop(&queues[i]);
1217 }
1218 
1219 static int ena_queue_start(struct ena_ring *ring)
1220 {
1221 	int rc, bufs_num;
1222 
1223 	ena_assert_msg(ring->configured == 1,
1224 		       "Trying to start unconfigured queue\n");
1225 
1226 	rc = ena_create_io_queue(ring);
1227 	if (rc) {
1228 		PMD_INIT_LOG(ERR, "Failed to create IO queue!");
1229 		return rc;
1230 	}
1231 
1232 	ring->next_to_clean = 0;
1233 	ring->next_to_use = 0;
1234 
1235 	if (ring->type == ENA_RING_TYPE_TX) {
1236 		ring->tx_stats.available_desc =
1237 			ena_com_free_q_entries(ring->ena_com_io_sq);
1238 		return 0;
1239 	}
1240 
1241 	bufs_num = ring->ring_size - 1;
1242 	rc = ena_populate_rx_queue(ring, bufs_num);
1243 	if (rc != bufs_num) {
1244 		ena_com_destroy_io_queue(&ring->adapter->ena_dev,
1245 					 ENA_IO_RXQ_IDX(ring->id));
1246 		PMD_INIT_LOG(ERR, "Failed to populate rx ring !");
1247 		return ENA_COM_FAULT;
1248 	}
1249 	/* Flush per-core RX buffers pools cache as they can be used on other
1250 	 * cores as well.
1251 	 */
1252 	rte_mempool_cache_flush(NULL, ring->mb_pool);
1253 
1254 	return 0;
1255 }
1256 
1257 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1258 			      uint16_t queue_idx,
1259 			      uint16_t nb_desc,
1260 			      unsigned int socket_id,
1261 			      const struct rte_eth_txconf *tx_conf)
1262 {
1263 	struct ena_ring *txq = NULL;
1264 	struct ena_adapter *adapter = dev->data->dev_private;
1265 	unsigned int i;
1266 
1267 	txq = &adapter->tx_ring[queue_idx];
1268 
1269 	if (txq->configured) {
1270 		PMD_DRV_LOG(CRIT,
1271 			"API violation. Queue %d is already configured\n",
1272 			queue_idx);
1273 		return ENA_COM_FAULT;
1274 	}
1275 
1276 	if (!rte_is_power_of_2(nb_desc)) {
1277 		PMD_DRV_LOG(ERR,
1278 			"Unsupported size of TX queue: %d is not a power of 2.\n",
1279 			nb_desc);
1280 		return -EINVAL;
1281 	}
1282 
1283 	if (nb_desc > adapter->max_tx_ring_size) {
1284 		PMD_DRV_LOG(ERR,
1285 			"Unsupported size of TX queue (max size: %d)\n",
1286 			adapter->max_tx_ring_size);
1287 		return -EINVAL;
1288 	}
1289 
1290 	if (nb_desc == RTE_ETH_DEV_FALLBACK_TX_RINGSIZE)
1291 		nb_desc = adapter->max_tx_ring_size;
1292 
1293 	txq->port_id = dev->data->port_id;
1294 	txq->next_to_clean = 0;
1295 	txq->next_to_use = 0;
1296 	txq->ring_size = nb_desc;
1297 	txq->size_mask = nb_desc - 1;
1298 	txq->numa_socket_id = socket_id;
1299 
1300 	txq->tx_buffer_info = rte_zmalloc("txq->tx_buffer_info",
1301 					  sizeof(struct ena_tx_buffer) *
1302 					  txq->ring_size,
1303 					  RTE_CACHE_LINE_SIZE);
1304 	if (!txq->tx_buffer_info) {
1305 		PMD_DRV_LOG(ERR, "failed to alloc mem for tx buffer info\n");
1306 		return -ENOMEM;
1307 	}
1308 
1309 	txq->empty_tx_reqs = rte_zmalloc("txq->empty_tx_reqs",
1310 					 sizeof(u16) * txq->ring_size,
1311 					 RTE_CACHE_LINE_SIZE);
1312 	if (!txq->empty_tx_reqs) {
1313 		PMD_DRV_LOG(ERR, "failed to alloc mem for tx reqs\n");
1314 		rte_free(txq->tx_buffer_info);
1315 		return -ENOMEM;
1316 	}
1317 
1318 	txq->push_buf_intermediate_buf =
1319 		rte_zmalloc("txq->push_buf_intermediate_buf",
1320 			    txq->tx_max_header_size,
1321 			    RTE_CACHE_LINE_SIZE);
1322 	if (!txq->push_buf_intermediate_buf) {
1323 		PMD_DRV_LOG(ERR, "failed to alloc push buff for LLQ\n");
1324 		rte_free(txq->tx_buffer_info);
1325 		rte_free(txq->empty_tx_reqs);
1326 		return -ENOMEM;
1327 	}
1328 
1329 	for (i = 0; i < txq->ring_size; i++)
1330 		txq->empty_tx_reqs[i] = i;
1331 
1332 	if (tx_conf != NULL) {
1333 		txq->offloads =
1334 			tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1335 	}
1336 	/* Store pointer to this queue in upper layer */
1337 	txq->configured = 1;
1338 	dev->data->tx_queues[queue_idx] = txq;
1339 
1340 	return 0;
1341 }
1342 
1343 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1344 			      uint16_t queue_idx,
1345 			      uint16_t nb_desc,
1346 			      unsigned int socket_id,
1347 			      __rte_unused const struct rte_eth_rxconf *rx_conf,
1348 			      struct rte_mempool *mp)
1349 {
1350 	struct ena_adapter *adapter = dev->data->dev_private;
1351 	struct ena_ring *rxq = NULL;
1352 	size_t buffer_size;
1353 	int i;
1354 
1355 	rxq = &adapter->rx_ring[queue_idx];
1356 	if (rxq->configured) {
1357 		PMD_DRV_LOG(CRIT,
1358 			"API violation. Queue %d is already configured\n",
1359 			queue_idx);
1360 		return ENA_COM_FAULT;
1361 	}
1362 
1363 	if (nb_desc == RTE_ETH_DEV_FALLBACK_RX_RINGSIZE)
1364 		nb_desc = adapter->max_rx_ring_size;
1365 
1366 	if (!rte_is_power_of_2(nb_desc)) {
1367 		PMD_DRV_LOG(ERR,
1368 			"Unsupported size of RX queue: %d is not a power of 2.\n",
1369 			nb_desc);
1370 		return -EINVAL;
1371 	}
1372 
1373 	if (nb_desc > adapter->max_rx_ring_size) {
1374 		PMD_DRV_LOG(ERR,
1375 			"Unsupported size of RX queue (max size: %d)\n",
1376 			adapter->max_rx_ring_size);
1377 		return -EINVAL;
1378 	}
1379 
1380 	/* ENA isn't supporting buffers smaller than 1400 bytes */
1381 	buffer_size = rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
1382 	if (buffer_size < ENA_RX_BUF_MIN_SIZE) {
1383 		PMD_DRV_LOG(ERR,
1384 			"Unsupported size of RX buffer: %zu (min size: %d)\n",
1385 			buffer_size, ENA_RX_BUF_MIN_SIZE);
1386 		return -EINVAL;
1387 	}
1388 
1389 	rxq->port_id = dev->data->port_id;
1390 	rxq->next_to_clean = 0;
1391 	rxq->next_to_use = 0;
1392 	rxq->ring_size = nb_desc;
1393 	rxq->size_mask = nb_desc - 1;
1394 	rxq->numa_socket_id = socket_id;
1395 	rxq->mb_pool = mp;
1396 
1397 	rxq->rx_buffer_info = rte_zmalloc("rxq->buffer_info",
1398 		sizeof(struct ena_rx_buffer) * nb_desc,
1399 		RTE_CACHE_LINE_SIZE);
1400 	if (!rxq->rx_buffer_info) {
1401 		PMD_DRV_LOG(ERR, "failed to alloc mem for rx buffer info\n");
1402 		return -ENOMEM;
1403 	}
1404 
1405 	rxq->rx_refill_buffer = rte_zmalloc("rxq->rx_refill_buffer",
1406 					    sizeof(struct rte_mbuf *) * nb_desc,
1407 					    RTE_CACHE_LINE_SIZE);
1408 
1409 	if (!rxq->rx_refill_buffer) {
1410 		PMD_DRV_LOG(ERR, "failed to alloc mem for rx refill buffer\n");
1411 		rte_free(rxq->rx_buffer_info);
1412 		rxq->rx_buffer_info = NULL;
1413 		return -ENOMEM;
1414 	}
1415 
1416 	rxq->empty_rx_reqs = rte_zmalloc("rxq->empty_rx_reqs",
1417 					 sizeof(uint16_t) * nb_desc,
1418 					 RTE_CACHE_LINE_SIZE);
1419 	if (!rxq->empty_rx_reqs) {
1420 		PMD_DRV_LOG(ERR, "failed to alloc mem for empty rx reqs\n");
1421 		rte_free(rxq->rx_buffer_info);
1422 		rxq->rx_buffer_info = NULL;
1423 		rte_free(rxq->rx_refill_buffer);
1424 		rxq->rx_refill_buffer = NULL;
1425 		return -ENOMEM;
1426 	}
1427 
1428 	for (i = 0; i < nb_desc; i++)
1429 		rxq->empty_rx_reqs[i] = i;
1430 
1431 	/* Store pointer to this queue in upper layer */
1432 	rxq->configured = 1;
1433 	dev->data->rx_queues[queue_idx] = rxq;
1434 
1435 	return 0;
1436 }
1437 
1438 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
1439 				  struct rte_mbuf *mbuf, uint16_t id)
1440 {
1441 	struct ena_com_buf ebuf;
1442 	int rc;
1443 
1444 	/* prepare physical address for DMA transaction */
1445 	ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1446 	ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1447 
1448 	/* pass resource to device */
1449 	rc = ena_com_add_single_rx_desc(io_sq, &ebuf, id);
1450 	if (unlikely(rc != 0))
1451 		PMD_DRV_LOG(WARNING, "failed adding rx desc\n");
1452 
1453 	return rc;
1454 }
1455 
1456 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1457 {
1458 	unsigned int i;
1459 	int rc;
1460 	uint16_t next_to_use = rxq->next_to_use;
1461 	uint16_t in_use, req_id;
1462 	struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1463 
1464 	if (unlikely(!count))
1465 		return 0;
1466 
1467 	in_use = rxq->ring_size - 1 -
1468 		ena_com_free_q_entries(rxq->ena_com_io_sq);
1469 	ena_assert_msg(((in_use + count) < rxq->ring_size),
1470 		"bad ring state\n");
1471 
1472 	/* get resources for incoming packets */
1473 	rc = rte_mempool_get_bulk(rxq->mb_pool, (void **)mbufs, count);
1474 	if (unlikely(rc < 0)) {
1475 		rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1476 		++rxq->rx_stats.mbuf_alloc_fail;
1477 		PMD_RX_LOG(DEBUG, "there are no enough free buffers");
1478 		return 0;
1479 	}
1480 
1481 	for (i = 0; i < count; i++) {
1482 		struct rte_mbuf *mbuf = mbufs[i];
1483 		struct ena_rx_buffer *rx_info;
1484 
1485 		if (likely((i + 4) < count))
1486 			rte_prefetch0(mbufs[i + 4]);
1487 
1488 		req_id = rxq->empty_rx_reqs[next_to_use];
1489 		rc = validate_rx_req_id(rxq, req_id);
1490 		if (unlikely(rc))
1491 			break;
1492 
1493 		rx_info = &rxq->rx_buffer_info[req_id];
1494 
1495 		rc = ena_add_single_rx_desc(rxq->ena_com_io_sq, mbuf, req_id);
1496 		if (unlikely(rc != 0))
1497 			break;
1498 
1499 		rx_info->mbuf = mbuf;
1500 		next_to_use = ENA_IDX_NEXT_MASKED(next_to_use, rxq->size_mask);
1501 	}
1502 
1503 	if (unlikely(i < count)) {
1504 		PMD_DRV_LOG(WARNING, "refilled rx qid %d with only %d "
1505 			"buffers (from %d)\n", rxq->id, i, count);
1506 		rte_mempool_put_bulk(rxq->mb_pool, (void **)(&mbufs[i]),
1507 				     count - i);
1508 		++rxq->rx_stats.refill_partial;
1509 	}
1510 
1511 	/* When we submitted free recources to device... */
1512 	if (likely(i > 0)) {
1513 		/* ...let HW know that it can fill buffers with data. */
1514 		ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1515 
1516 		rxq->next_to_use = next_to_use;
1517 	}
1518 
1519 	return i;
1520 }
1521 
1522 static int ena_device_init(struct ena_com_dev *ena_dev,
1523 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
1524 			   bool *wd_state)
1525 {
1526 	uint32_t aenq_groups;
1527 	int rc;
1528 	bool readless_supported;
1529 
1530 	/* Initialize mmio registers */
1531 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
1532 	if (rc) {
1533 		PMD_DRV_LOG(ERR, "failed to init mmio read less\n");
1534 		return rc;
1535 	}
1536 
1537 	/* The PCIe configuration space revision id indicate if mmio reg
1538 	 * read is disabled.
1539 	 */
1540 	readless_supported =
1541 		!(((struct rte_pci_device *)ena_dev->dmadev)->id.class_id
1542 			       & ENA_MMIO_DISABLE_REG_READ);
1543 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1544 
1545 	/* reset device */
1546 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1547 	if (rc) {
1548 		PMD_DRV_LOG(ERR, "cannot reset device\n");
1549 		goto err_mmio_read_less;
1550 	}
1551 
1552 	/* check FW version */
1553 	rc = ena_com_validate_version(ena_dev);
1554 	if (rc) {
1555 		PMD_DRV_LOG(ERR, "device version is too low\n");
1556 		goto err_mmio_read_less;
1557 	}
1558 
1559 	ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1560 
1561 	/* ENA device administration layer init */
1562 	rc = ena_com_admin_init(ena_dev, &aenq_handlers);
1563 	if (rc) {
1564 		PMD_DRV_LOG(ERR,
1565 			"cannot initialize ena admin queue with device\n");
1566 		goto err_mmio_read_less;
1567 	}
1568 
1569 	/* To enable the msix interrupts the driver needs to know the number
1570 	 * of queues. So the driver uses polling mode to retrieve this
1571 	 * information.
1572 	 */
1573 	ena_com_set_admin_polling_mode(ena_dev, true);
1574 
1575 	ena_config_host_info(ena_dev);
1576 
1577 	/* Get Device Attributes and features */
1578 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1579 	if (rc) {
1580 		PMD_DRV_LOG(ERR,
1581 			"cannot get attribute for ena device rc= %d\n", rc);
1582 		goto err_admin_init;
1583 	}
1584 
1585 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1586 		      BIT(ENA_ADMIN_NOTIFICATION) |
1587 		      BIT(ENA_ADMIN_KEEP_ALIVE) |
1588 		      BIT(ENA_ADMIN_FATAL_ERROR) |
1589 		      BIT(ENA_ADMIN_WARNING);
1590 
1591 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
1592 	rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
1593 	if (rc) {
1594 		PMD_DRV_LOG(ERR, "Cannot configure aenq groups rc: %d\n", rc);
1595 		goto err_admin_init;
1596 	}
1597 
1598 	*wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
1599 
1600 	return 0;
1601 
1602 err_admin_init:
1603 	ena_com_admin_destroy(ena_dev);
1604 
1605 err_mmio_read_less:
1606 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1607 
1608 	return rc;
1609 }
1610 
1611 static void ena_interrupt_handler_rte(void *cb_arg)
1612 {
1613 	struct ena_adapter *adapter = cb_arg;
1614 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1615 
1616 	ena_com_admin_q_comp_intr_handler(ena_dev);
1617 	if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED))
1618 		ena_com_aenq_intr_handler(ena_dev, adapter);
1619 }
1620 
1621 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1622 {
1623 	if (!adapter->wd_state)
1624 		return;
1625 
1626 	if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1627 		return;
1628 
1629 	if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1630 	    adapter->keep_alive_timeout)) {
1631 		PMD_DRV_LOG(ERR, "Keep alive timeout\n");
1632 		adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
1633 		adapter->trigger_reset = true;
1634 		++adapter->dev_stats.wd_expired;
1635 	}
1636 }
1637 
1638 /* Check if admin queue is enabled */
1639 static void check_for_admin_com_state(struct ena_adapter *adapter)
1640 {
1641 	if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1642 		PMD_DRV_LOG(ERR, "ENA admin queue is not in running state!\n");
1643 		adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
1644 		adapter->trigger_reset = true;
1645 	}
1646 }
1647 
1648 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
1649 				  void *arg)
1650 {
1651 	struct ena_adapter *adapter = arg;
1652 	struct rte_eth_dev *dev = adapter->rte_dev;
1653 
1654 	check_for_missing_keep_alive(adapter);
1655 	check_for_admin_com_state(adapter);
1656 
1657 	if (unlikely(adapter->trigger_reset)) {
1658 		PMD_DRV_LOG(ERR, "Trigger reset is on\n");
1659 		rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
1660 			NULL);
1661 	}
1662 }
1663 
1664 static inline void
1665 set_default_llq_configurations(struct ena_llq_configurations *llq_config,
1666 			       struct ena_admin_feature_llq_desc *llq,
1667 			       bool use_large_llq_hdr)
1668 {
1669 	llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
1670 	llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
1671 	llq_config->llq_num_decs_before_header =
1672 		ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
1673 
1674 	if (use_large_llq_hdr &&
1675 	    (llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B)) {
1676 		llq_config->llq_ring_entry_size =
1677 			ENA_ADMIN_LIST_ENTRY_SIZE_256B;
1678 		llq_config->llq_ring_entry_size_value = 256;
1679 	} else {
1680 		llq_config->llq_ring_entry_size =
1681 			ENA_ADMIN_LIST_ENTRY_SIZE_128B;
1682 		llq_config->llq_ring_entry_size_value = 128;
1683 	}
1684 }
1685 
1686 static int
1687 ena_set_queues_placement_policy(struct ena_adapter *adapter,
1688 				struct ena_com_dev *ena_dev,
1689 				struct ena_admin_feature_llq_desc *llq,
1690 				struct ena_llq_configurations *llq_default_configurations)
1691 {
1692 	int rc;
1693 	u32 llq_feature_mask;
1694 
1695 	llq_feature_mask = 1 << ENA_ADMIN_LLQ;
1696 	if (!(ena_dev->supported_features & llq_feature_mask)) {
1697 		PMD_DRV_LOG(INFO,
1698 			"LLQ is not supported. Fallback to host mode policy.\n");
1699 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1700 		return 0;
1701 	}
1702 
1703 	rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
1704 	if (unlikely(rc)) {
1705 		PMD_INIT_LOG(WARNING, "Failed to config dev mode. "
1706 			"Fallback to host mode policy.");
1707 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1708 		return 0;
1709 	}
1710 
1711 	/* Nothing to config, exit */
1712 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1713 		return 0;
1714 
1715 	if (!adapter->dev_mem_base) {
1716 		PMD_DRV_LOG(ERR, "Unable to access LLQ bar resource. "
1717 			"Fallback to host mode policy.\n.");
1718 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1719 		return 0;
1720 	}
1721 
1722 	ena_dev->mem_bar = adapter->dev_mem_base;
1723 
1724 	return 0;
1725 }
1726 
1727 static uint32_t ena_calc_max_io_queue_num(struct ena_com_dev *ena_dev,
1728 	struct ena_com_dev_get_features_ctx *get_feat_ctx)
1729 {
1730 	uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
1731 
1732 	/* Regular queues capabilities */
1733 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1734 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1735 			&get_feat_ctx->max_queue_ext.max_queue_ext;
1736 		io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
1737 				    max_queue_ext->max_rx_cq_num);
1738 		io_tx_sq_num = max_queue_ext->max_tx_sq_num;
1739 		io_tx_cq_num = max_queue_ext->max_tx_cq_num;
1740 	} else {
1741 		struct ena_admin_queue_feature_desc *max_queues =
1742 			&get_feat_ctx->max_queues;
1743 		io_tx_sq_num = max_queues->max_sq_num;
1744 		io_tx_cq_num = max_queues->max_cq_num;
1745 		io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
1746 	}
1747 
1748 	/* In case of LLQ use the llq number in the get feature cmd */
1749 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
1750 		io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
1751 
1752 	max_num_io_queues = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
1753 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_sq_num);
1754 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_cq_num);
1755 
1756 	if (unlikely(max_num_io_queues == 0)) {
1757 		PMD_DRV_LOG(ERR, "Number of IO queues should not be 0\n");
1758 		return -EFAULT;
1759 	}
1760 
1761 	return max_num_io_queues;
1762 }
1763 
1764 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
1765 {
1766 	struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
1767 	struct rte_pci_device *pci_dev;
1768 	struct rte_intr_handle *intr_handle;
1769 	struct ena_adapter *adapter = eth_dev->data->dev_private;
1770 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1771 	struct ena_com_dev_get_features_ctx get_feat_ctx;
1772 	struct ena_llq_configurations llq_config;
1773 	const char *queue_type_str;
1774 	uint32_t max_num_io_queues;
1775 	int rc;
1776 	static int adapters_found;
1777 	bool disable_meta_caching;
1778 	bool wd_state = false;
1779 
1780 	eth_dev->dev_ops = &ena_dev_ops;
1781 	eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
1782 	eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
1783 	eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
1784 
1785 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1786 		return 0;
1787 
1788 	eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
1789 
1790 	memset(adapter, 0, sizeof(struct ena_adapter));
1791 	ena_dev = &adapter->ena_dev;
1792 
1793 	adapter->rte_eth_dev_data = eth_dev->data;
1794 	adapter->rte_dev = eth_dev;
1795 
1796 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1797 	adapter->pdev = pci_dev;
1798 
1799 	PMD_INIT_LOG(INFO, "Initializing %x:%x:%x.%d",
1800 		     pci_dev->addr.domain,
1801 		     pci_dev->addr.bus,
1802 		     pci_dev->addr.devid,
1803 		     pci_dev->addr.function);
1804 
1805 	intr_handle = &pci_dev->intr_handle;
1806 
1807 	adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
1808 	adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
1809 
1810 	if (!adapter->regs) {
1811 		PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)",
1812 			     ENA_REGS_BAR);
1813 		return -ENXIO;
1814 	}
1815 
1816 	ena_dev->reg_bar = adapter->regs;
1817 	ena_dev->dmadev = adapter->pdev;
1818 
1819 	adapter->id_number = adapters_found;
1820 
1821 	snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
1822 		 adapter->id_number);
1823 
1824 	rc = ena_parse_devargs(adapter, pci_dev->device.devargs);
1825 	if (rc != 0) {
1826 		PMD_INIT_LOG(CRIT, "Failed to parse devargs\n");
1827 		goto err;
1828 	}
1829 
1830 	/* device specific initialization routine */
1831 	rc = ena_device_init(ena_dev, &get_feat_ctx, &wd_state);
1832 	if (rc) {
1833 		PMD_INIT_LOG(CRIT, "Failed to init ENA device");
1834 		goto err;
1835 	}
1836 	adapter->wd_state = wd_state;
1837 
1838 	set_default_llq_configurations(&llq_config, &get_feat_ctx.llq,
1839 		adapter->use_large_llq_hdr);
1840 	rc = ena_set_queues_placement_policy(adapter, ena_dev,
1841 					     &get_feat_ctx.llq, &llq_config);
1842 	if (unlikely(rc)) {
1843 		PMD_INIT_LOG(CRIT, "Failed to set placement policy");
1844 		return rc;
1845 	}
1846 
1847 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1848 		queue_type_str = "Regular";
1849 	else
1850 		queue_type_str = "Low latency";
1851 	PMD_DRV_LOG(INFO, "Placement policy: %s\n", queue_type_str);
1852 
1853 	calc_queue_ctx.ena_dev = ena_dev;
1854 	calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
1855 
1856 	max_num_io_queues = ena_calc_max_io_queue_num(ena_dev, &get_feat_ctx);
1857 	rc = ena_calc_io_queue_size(&calc_queue_ctx,
1858 		adapter->use_large_llq_hdr);
1859 	if (unlikely((rc != 0) || (max_num_io_queues == 0))) {
1860 		rc = -EFAULT;
1861 		goto err_device_destroy;
1862 	}
1863 
1864 	adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
1865 	adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
1866 	adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
1867 	adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
1868 	adapter->max_num_io_queues = max_num_io_queues;
1869 
1870 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1871 		disable_meta_caching =
1872 			!!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
1873 			BIT(ENA_ADMIN_DISABLE_META_CACHING));
1874 	} else {
1875 		disable_meta_caching = false;
1876 	}
1877 
1878 	/* prepare ring structures */
1879 	ena_init_rings(adapter, disable_meta_caching);
1880 
1881 	ena_config_debug_area(adapter);
1882 
1883 	/* Set max MTU for this device */
1884 	adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
1885 
1886 	/* set device support for offloads */
1887 	adapter->offloads.tso4_supported = (get_feat_ctx.offload.tx &
1888 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) != 0;
1889 	adapter->offloads.tx_csum_supported = (get_feat_ctx.offload.tx &
1890 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK) != 0;
1891 	adapter->offloads.rx_csum_supported =
1892 		(get_feat_ctx.offload.rx_supported &
1893 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK) != 0;
1894 
1895 	/* Copy MAC address and point DPDK to it */
1896 	eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr;
1897 	rte_ether_addr_copy((struct rte_ether_addr *)
1898 			get_feat_ctx.dev_attr.mac_addr,
1899 			(struct rte_ether_addr *)adapter->mac_addr);
1900 
1901 	adapter->drv_stats = rte_zmalloc("adapter stats",
1902 					 sizeof(*adapter->drv_stats),
1903 					 RTE_CACHE_LINE_SIZE);
1904 	if (!adapter->drv_stats) {
1905 		PMD_DRV_LOG(ERR, "failed to alloc mem for adapter stats\n");
1906 		rc = -ENOMEM;
1907 		goto err_delete_debug_area;
1908 	}
1909 
1910 	rte_spinlock_init(&adapter->admin_lock);
1911 
1912 	rte_intr_callback_register(intr_handle,
1913 				   ena_interrupt_handler_rte,
1914 				   adapter);
1915 	rte_intr_enable(intr_handle);
1916 	ena_com_set_admin_polling_mode(ena_dev, false);
1917 	ena_com_admin_aenq_enable(ena_dev);
1918 
1919 	if (adapters_found == 0)
1920 		rte_timer_subsystem_init();
1921 	rte_timer_init(&adapter->timer_wd);
1922 
1923 	adapters_found++;
1924 	adapter->state = ENA_ADAPTER_STATE_INIT;
1925 
1926 	return 0;
1927 
1928 err_delete_debug_area:
1929 	ena_com_delete_debug_area(ena_dev);
1930 
1931 err_device_destroy:
1932 	ena_com_delete_host_info(ena_dev);
1933 	ena_com_admin_destroy(ena_dev);
1934 
1935 err:
1936 	return rc;
1937 }
1938 
1939 static void ena_destroy_device(struct rte_eth_dev *eth_dev)
1940 {
1941 	struct ena_adapter *adapter = eth_dev->data->dev_private;
1942 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1943 
1944 	if (adapter->state == ENA_ADAPTER_STATE_FREE)
1945 		return;
1946 
1947 	ena_com_set_admin_running_state(ena_dev, false);
1948 
1949 	if (adapter->state != ENA_ADAPTER_STATE_CLOSED)
1950 		ena_close(eth_dev);
1951 
1952 	ena_com_delete_debug_area(ena_dev);
1953 	ena_com_delete_host_info(ena_dev);
1954 
1955 	ena_com_abort_admin_commands(ena_dev);
1956 	ena_com_wait_for_abort_completion(ena_dev);
1957 	ena_com_admin_destroy(ena_dev);
1958 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1959 
1960 	adapter->state = ENA_ADAPTER_STATE_FREE;
1961 }
1962 
1963 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
1964 {
1965 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1966 		return 0;
1967 
1968 	ena_destroy_device(eth_dev);
1969 
1970 	return 0;
1971 }
1972 
1973 static int ena_dev_configure(struct rte_eth_dev *dev)
1974 {
1975 	struct ena_adapter *adapter = dev->data->dev_private;
1976 
1977 	adapter->state = ENA_ADAPTER_STATE_CONFIG;
1978 
1979 	adapter->tx_selected_offloads = dev->data->dev_conf.txmode.offloads;
1980 	adapter->rx_selected_offloads = dev->data->dev_conf.rxmode.offloads;
1981 	return 0;
1982 }
1983 
1984 static void ena_init_rings(struct ena_adapter *adapter,
1985 			   bool disable_meta_caching)
1986 {
1987 	size_t i;
1988 
1989 	for (i = 0; i < adapter->max_num_io_queues; i++) {
1990 		struct ena_ring *ring = &adapter->tx_ring[i];
1991 
1992 		ring->configured = 0;
1993 		ring->type = ENA_RING_TYPE_TX;
1994 		ring->adapter = adapter;
1995 		ring->id = i;
1996 		ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
1997 		ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
1998 		ring->sgl_size = adapter->max_tx_sgl_size;
1999 		ring->disable_meta_caching = disable_meta_caching;
2000 	}
2001 
2002 	for (i = 0; i < adapter->max_num_io_queues; i++) {
2003 		struct ena_ring *ring = &adapter->rx_ring[i];
2004 
2005 		ring->configured = 0;
2006 		ring->type = ENA_RING_TYPE_RX;
2007 		ring->adapter = adapter;
2008 		ring->id = i;
2009 		ring->sgl_size = adapter->max_rx_sgl_size;
2010 	}
2011 }
2012 
2013 static int ena_infos_get(struct rte_eth_dev *dev,
2014 			  struct rte_eth_dev_info *dev_info)
2015 {
2016 	struct ena_adapter *adapter;
2017 	struct ena_com_dev *ena_dev;
2018 	uint64_t rx_feat = 0, tx_feat = 0;
2019 
2020 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
2021 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
2022 	adapter = dev->data->dev_private;
2023 
2024 	ena_dev = &adapter->ena_dev;
2025 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
2026 
2027 	dev_info->speed_capa =
2028 			ETH_LINK_SPEED_1G   |
2029 			ETH_LINK_SPEED_2_5G |
2030 			ETH_LINK_SPEED_5G   |
2031 			ETH_LINK_SPEED_10G  |
2032 			ETH_LINK_SPEED_25G  |
2033 			ETH_LINK_SPEED_40G  |
2034 			ETH_LINK_SPEED_50G  |
2035 			ETH_LINK_SPEED_100G;
2036 
2037 	/* Set Tx & Rx features available for device */
2038 	if (adapter->offloads.tso4_supported)
2039 		tx_feat	|= DEV_TX_OFFLOAD_TCP_TSO;
2040 
2041 	if (adapter->offloads.tx_csum_supported)
2042 		tx_feat |= DEV_TX_OFFLOAD_IPV4_CKSUM |
2043 			DEV_TX_OFFLOAD_UDP_CKSUM |
2044 			DEV_TX_OFFLOAD_TCP_CKSUM;
2045 
2046 	if (adapter->offloads.rx_csum_supported)
2047 		rx_feat |= DEV_RX_OFFLOAD_IPV4_CKSUM |
2048 			DEV_RX_OFFLOAD_UDP_CKSUM  |
2049 			DEV_RX_OFFLOAD_TCP_CKSUM;
2050 
2051 	rx_feat |= DEV_RX_OFFLOAD_JUMBO_FRAME;
2052 
2053 	/* Inform framework about available features */
2054 	dev_info->rx_offload_capa = rx_feat;
2055 	dev_info->rx_queue_offload_capa = rx_feat;
2056 	dev_info->tx_offload_capa = tx_feat;
2057 	dev_info->tx_queue_offload_capa = tx_feat;
2058 
2059 	dev_info->flow_type_rss_offloads = ETH_RSS_IP | ETH_RSS_TCP |
2060 					   ETH_RSS_UDP;
2061 
2062 	dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
2063 	dev_info->max_rx_pktlen  = adapter->max_mtu;
2064 	dev_info->max_mac_addrs = 1;
2065 
2066 	dev_info->max_rx_queues = adapter->max_num_io_queues;
2067 	dev_info->max_tx_queues = adapter->max_num_io_queues;
2068 	dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
2069 
2070 	adapter->tx_supported_offloads = tx_feat;
2071 	adapter->rx_supported_offloads = rx_feat;
2072 
2073 	dev_info->rx_desc_lim.nb_max = adapter->max_rx_ring_size;
2074 	dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2075 	dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2076 					adapter->max_rx_sgl_size);
2077 	dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2078 					adapter->max_rx_sgl_size);
2079 
2080 	dev_info->tx_desc_lim.nb_max = adapter->max_tx_ring_size;
2081 	dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2082 	dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2083 					adapter->max_tx_sgl_size);
2084 	dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2085 					adapter->max_tx_sgl_size);
2086 
2087 	return 0;
2088 }
2089 
2090 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len)
2091 {
2092 	mbuf->data_len = len;
2093 	mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2094 	mbuf->refcnt = 1;
2095 	mbuf->next = NULL;
2096 }
2097 
2098 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
2099 				    struct ena_com_rx_buf_info *ena_bufs,
2100 				    uint32_t descs,
2101 				    uint16_t *next_to_clean,
2102 				    uint8_t offset)
2103 {
2104 	struct rte_mbuf *mbuf;
2105 	struct rte_mbuf *mbuf_head;
2106 	struct ena_rx_buffer *rx_info;
2107 	int rc;
2108 	uint16_t ntc, len, req_id, buf = 0;
2109 
2110 	if (unlikely(descs == 0))
2111 		return NULL;
2112 
2113 	ntc = *next_to_clean;
2114 
2115 	len = ena_bufs[buf].len;
2116 	req_id = ena_bufs[buf].req_id;
2117 	if (unlikely(validate_rx_req_id(rx_ring, req_id)))
2118 		return NULL;
2119 
2120 	rx_info = &rx_ring->rx_buffer_info[req_id];
2121 
2122 	mbuf = rx_info->mbuf;
2123 	RTE_ASSERT(mbuf != NULL);
2124 
2125 	ena_init_rx_mbuf(mbuf, len);
2126 
2127 	/* Fill the mbuf head with the data specific for 1st segment. */
2128 	mbuf_head = mbuf;
2129 	mbuf_head->nb_segs = descs;
2130 	mbuf_head->port = rx_ring->port_id;
2131 	mbuf_head->pkt_len = len;
2132 	mbuf_head->data_off += offset;
2133 
2134 	rx_info->mbuf = NULL;
2135 	rx_ring->empty_rx_reqs[ntc] = req_id;
2136 	ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2137 
2138 	while (--descs) {
2139 		++buf;
2140 		len = ena_bufs[buf].len;
2141 		req_id = ena_bufs[buf].req_id;
2142 		if (unlikely(validate_rx_req_id(rx_ring, req_id))) {
2143 			rte_mbuf_raw_free(mbuf_head);
2144 			return NULL;
2145 		}
2146 
2147 		rx_info = &rx_ring->rx_buffer_info[req_id];
2148 		RTE_ASSERT(rx_info->mbuf != NULL);
2149 
2150 		if (unlikely(len == 0)) {
2151 			/*
2152 			 * Some devices can pass descriptor with the length 0.
2153 			 * To avoid confusion, the PMD is simply putting the
2154 			 * descriptor back, as it was never used. We'll avoid
2155 			 * mbuf allocation that way.
2156 			 */
2157 			rc = ena_add_single_rx_desc(rx_ring->ena_com_io_sq,
2158 				rx_info->mbuf, req_id);
2159 			if (unlikely(rc != 0)) {
2160 				/* Free the mbuf in case of an error. */
2161 				rte_mbuf_raw_free(rx_info->mbuf);
2162 			} else {
2163 				/*
2164 				 * If there was no error, just exit the loop as
2165 				 * 0 length descriptor is always the last one.
2166 				 */
2167 				break;
2168 			}
2169 		} else {
2170 			/* Create an mbuf chain. */
2171 			mbuf->next = rx_info->mbuf;
2172 			mbuf = mbuf->next;
2173 
2174 			ena_init_rx_mbuf(mbuf, len);
2175 			mbuf_head->pkt_len += len;
2176 		}
2177 
2178 		/*
2179 		 * Mark the descriptor as depleted and perform necessary
2180 		 * cleanup.
2181 		 * This code will execute in two cases:
2182 		 *  1. Descriptor len was greater than 0 - normal situation.
2183 		 *  2. Descriptor len was 0 and we failed to add the descriptor
2184 		 *     to the device. In that situation, we should try to add
2185 		 *     the mbuf again in the populate routine and mark the
2186 		 *     descriptor as used up by the device.
2187 		 */
2188 		rx_info->mbuf = NULL;
2189 		rx_ring->empty_rx_reqs[ntc] = req_id;
2190 		ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2191 	}
2192 
2193 	*next_to_clean = ntc;
2194 
2195 	return mbuf_head;
2196 }
2197 
2198 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
2199 				  uint16_t nb_pkts)
2200 {
2201 	struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
2202 	unsigned int free_queue_entries;
2203 	unsigned int refill_threshold;
2204 	uint16_t next_to_clean = rx_ring->next_to_clean;
2205 	uint16_t descs_in_use;
2206 	struct rte_mbuf *mbuf;
2207 	uint16_t completed;
2208 	struct ena_com_rx_ctx ena_rx_ctx;
2209 	int i, rc = 0;
2210 
2211 	/* Check adapter state */
2212 	if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2213 		PMD_DRV_LOG(ALERT,
2214 			"Trying to receive pkts while device is NOT running\n");
2215 		return 0;
2216 	}
2217 
2218 	descs_in_use = rx_ring->ring_size -
2219 		ena_com_free_q_entries(rx_ring->ena_com_io_sq) - 1;
2220 	nb_pkts = RTE_MIN(descs_in_use, nb_pkts);
2221 
2222 	for (completed = 0; completed < nb_pkts; completed++) {
2223 		ena_rx_ctx.max_bufs = rx_ring->sgl_size;
2224 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
2225 		ena_rx_ctx.descs = 0;
2226 		ena_rx_ctx.pkt_offset = 0;
2227 		/* receive packet context */
2228 		rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
2229 				    rx_ring->ena_com_io_sq,
2230 				    &ena_rx_ctx);
2231 		if (unlikely(rc)) {
2232 			PMD_DRV_LOG(ERR, "ena_com_rx_pkt error %d\n", rc);
2233 			rx_ring->adapter->reset_reason =
2234 				ENA_REGS_RESET_TOO_MANY_RX_DESCS;
2235 			rx_ring->adapter->trigger_reset = true;
2236 			++rx_ring->rx_stats.bad_desc_num;
2237 			return 0;
2238 		}
2239 
2240 		mbuf = ena_rx_mbuf(rx_ring,
2241 			ena_rx_ctx.ena_bufs,
2242 			ena_rx_ctx.descs,
2243 			&next_to_clean,
2244 			ena_rx_ctx.pkt_offset);
2245 		if (unlikely(mbuf == NULL)) {
2246 			for (i = 0; i < ena_rx_ctx.descs; ++i) {
2247 				rx_ring->empty_rx_reqs[next_to_clean] =
2248 					rx_ring->ena_bufs[i].req_id;
2249 				next_to_clean = ENA_IDX_NEXT_MASKED(
2250 					next_to_clean, rx_ring->size_mask);
2251 			}
2252 			break;
2253 		}
2254 
2255 		/* fill mbuf attributes if any */
2256 		ena_rx_mbuf_prepare(mbuf, &ena_rx_ctx);
2257 
2258 		if (unlikely(mbuf->ol_flags &
2259 				(PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD))) {
2260 			rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors);
2261 			++rx_ring->rx_stats.bad_csum;
2262 		}
2263 
2264 		mbuf->hash.rss = ena_rx_ctx.hash;
2265 
2266 		rx_pkts[completed] = mbuf;
2267 		rx_ring->rx_stats.bytes += mbuf->pkt_len;
2268 	}
2269 
2270 	rx_ring->rx_stats.cnt += completed;
2271 	rx_ring->next_to_clean = next_to_clean;
2272 
2273 	free_queue_entries = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
2274 	refill_threshold =
2275 		RTE_MIN(rx_ring->ring_size / ENA_REFILL_THRESH_DIVIDER,
2276 		(unsigned int)ENA_REFILL_THRESH_PACKET);
2277 
2278 	/* Burst refill to save doorbells, memory barriers, const interval */
2279 	if (free_queue_entries > refill_threshold) {
2280 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
2281 		ena_populate_rx_queue(rx_ring, free_queue_entries);
2282 	}
2283 
2284 	return completed;
2285 }
2286 
2287 static uint16_t
2288 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2289 		uint16_t nb_pkts)
2290 {
2291 	int32_t ret;
2292 	uint32_t i;
2293 	struct rte_mbuf *m;
2294 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2295 	struct rte_ipv4_hdr *ip_hdr;
2296 	uint64_t ol_flags;
2297 	uint16_t frag_field;
2298 
2299 	for (i = 0; i != nb_pkts; i++) {
2300 		m = tx_pkts[i];
2301 		ol_flags = m->ol_flags;
2302 
2303 		if (!(ol_flags & PKT_TX_IPV4))
2304 			continue;
2305 
2306 		/* If there was not L2 header length specified, assume it is
2307 		 * length of the ethernet header.
2308 		 */
2309 		if (unlikely(m->l2_len == 0))
2310 			m->l2_len = sizeof(struct rte_ether_hdr);
2311 
2312 		ip_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *,
2313 						 m->l2_len);
2314 		frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
2315 
2316 		if ((frag_field & RTE_IPV4_HDR_DF_FLAG) != 0) {
2317 			m->packet_type |= RTE_PTYPE_L4_NONFRAG;
2318 
2319 			/* If IPv4 header has DF flag enabled and TSO support is
2320 			 * disabled, partial chcecksum should not be calculated.
2321 			 */
2322 			if (!tx_ring->adapter->offloads.tso4_supported)
2323 				continue;
2324 		}
2325 
2326 		if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) != 0 ||
2327 				(ol_flags & PKT_TX_L4_MASK) ==
2328 				PKT_TX_SCTP_CKSUM) {
2329 			rte_errno = ENOTSUP;
2330 			return i;
2331 		}
2332 
2333 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2334 		ret = rte_validate_tx_offload(m);
2335 		if (ret != 0) {
2336 			rte_errno = -ret;
2337 			return i;
2338 		}
2339 #endif
2340 
2341 		/* In case we are supposed to TSO and have DF not set (DF=0)
2342 		 * hardware must be provided with partial checksum, otherwise
2343 		 * it will take care of necessary calculations.
2344 		 */
2345 
2346 		ret = rte_net_intel_cksum_flags_prepare(m,
2347 			ol_flags & ~PKT_TX_TCP_SEG);
2348 		if (ret != 0) {
2349 			rte_errno = -ret;
2350 			return i;
2351 		}
2352 	}
2353 
2354 	return i;
2355 }
2356 
2357 static void ena_update_hints(struct ena_adapter *adapter,
2358 			     struct ena_admin_ena_hw_hints *hints)
2359 {
2360 	if (hints->admin_completion_tx_timeout)
2361 		adapter->ena_dev.admin_queue.completion_timeout =
2362 			hints->admin_completion_tx_timeout * 1000;
2363 
2364 	if (hints->mmio_read_timeout)
2365 		/* convert to usec */
2366 		adapter->ena_dev.mmio_read.reg_read_to =
2367 			hints->mmio_read_timeout * 1000;
2368 
2369 	if (hints->driver_watchdog_timeout) {
2370 		if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
2371 			adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
2372 		else
2373 			// Convert msecs to ticks
2374 			adapter->keep_alive_timeout =
2375 				(hints->driver_watchdog_timeout *
2376 				rte_get_timer_hz()) / 1000;
2377 	}
2378 }
2379 
2380 static int ena_check_and_linearize_mbuf(struct ena_ring *tx_ring,
2381 					struct rte_mbuf *mbuf)
2382 {
2383 	struct ena_com_dev *ena_dev;
2384 	int num_segments, header_len, rc;
2385 
2386 	ena_dev = &tx_ring->adapter->ena_dev;
2387 	num_segments = mbuf->nb_segs;
2388 	header_len = mbuf->data_len;
2389 
2390 	if (likely(num_segments < tx_ring->sgl_size))
2391 		return 0;
2392 
2393 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
2394 	    (num_segments == tx_ring->sgl_size) &&
2395 	    (header_len < tx_ring->tx_max_header_size))
2396 		return 0;
2397 
2398 	++tx_ring->tx_stats.linearize;
2399 	rc = rte_pktmbuf_linearize(mbuf);
2400 	if (unlikely(rc)) {
2401 		PMD_DRV_LOG(WARNING, "Mbuf linearize failed\n");
2402 		rte_atomic64_inc(&tx_ring->adapter->drv_stats->ierrors);
2403 		++tx_ring->tx_stats.linearize_failed;
2404 		return rc;
2405 	}
2406 
2407 	return rc;
2408 }
2409 
2410 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
2411 	struct ena_tx_buffer *tx_info,
2412 	struct rte_mbuf *mbuf,
2413 	void **push_header,
2414 	uint16_t *header_len)
2415 {
2416 	struct ena_com_buf *ena_buf;
2417 	uint16_t delta, seg_len, push_len;
2418 
2419 	delta = 0;
2420 	seg_len = mbuf->data_len;
2421 
2422 	tx_info->mbuf = mbuf;
2423 	ena_buf = tx_info->bufs;
2424 
2425 	if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2426 		/*
2427 		 * Tx header might be (and will be in most cases) smaller than
2428 		 * tx_max_header_size. But it's not an issue to send more data
2429 		 * to the device, than actually needed if the mbuf size is
2430 		 * greater than tx_max_header_size.
2431 		 */
2432 		push_len = RTE_MIN(mbuf->pkt_len, tx_ring->tx_max_header_size);
2433 		*header_len = push_len;
2434 
2435 		if (likely(push_len <= seg_len)) {
2436 			/* If the push header is in the single segment, then
2437 			 * just point it to the 1st mbuf data.
2438 			 */
2439 			*push_header = rte_pktmbuf_mtod(mbuf, uint8_t *);
2440 		} else {
2441 			/* If the push header lays in the several segments, copy
2442 			 * it to the intermediate buffer.
2443 			 */
2444 			rte_pktmbuf_read(mbuf, 0, push_len,
2445 				tx_ring->push_buf_intermediate_buf);
2446 			*push_header = tx_ring->push_buf_intermediate_buf;
2447 			delta = push_len - seg_len;
2448 		}
2449 	} else {
2450 		*push_header = NULL;
2451 		*header_len = 0;
2452 		push_len = 0;
2453 	}
2454 
2455 	/* Process first segment taking into consideration pushed header */
2456 	if (seg_len > push_len) {
2457 		ena_buf->paddr = mbuf->buf_iova +
2458 				mbuf->data_off +
2459 				push_len;
2460 		ena_buf->len = seg_len - push_len;
2461 		ena_buf++;
2462 		tx_info->num_of_bufs++;
2463 	}
2464 
2465 	while ((mbuf = mbuf->next) != NULL) {
2466 		seg_len = mbuf->data_len;
2467 
2468 		/* Skip mbufs if whole data is pushed as a header */
2469 		if (unlikely(delta > seg_len)) {
2470 			delta -= seg_len;
2471 			continue;
2472 		}
2473 
2474 		ena_buf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
2475 		ena_buf->len = seg_len - delta;
2476 		ena_buf++;
2477 		tx_info->num_of_bufs++;
2478 
2479 		delta = 0;
2480 	}
2481 }
2482 
2483 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf)
2484 {
2485 	struct ena_tx_buffer *tx_info;
2486 	struct ena_com_tx_ctx ena_tx_ctx = { { 0 } };
2487 	uint16_t next_to_use;
2488 	uint16_t header_len;
2489 	uint16_t req_id;
2490 	void *push_header;
2491 	int nb_hw_desc;
2492 	int rc;
2493 
2494 	rc = ena_check_and_linearize_mbuf(tx_ring, mbuf);
2495 	if (unlikely(rc))
2496 		return rc;
2497 
2498 	next_to_use = tx_ring->next_to_use;
2499 
2500 	req_id = tx_ring->empty_tx_reqs[next_to_use];
2501 	tx_info = &tx_ring->tx_buffer_info[req_id];
2502 	tx_info->num_of_bufs = 0;
2503 
2504 	ena_tx_map_mbuf(tx_ring, tx_info, mbuf, &push_header, &header_len);
2505 
2506 	ena_tx_ctx.ena_bufs = tx_info->bufs;
2507 	ena_tx_ctx.push_header = push_header;
2508 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2509 	ena_tx_ctx.req_id = req_id;
2510 	ena_tx_ctx.header_len = header_len;
2511 
2512 	/* Set Tx offloads flags, if applicable */
2513 	ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads,
2514 		tx_ring->disable_meta_caching);
2515 
2516 	if (unlikely(ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
2517 			&ena_tx_ctx))) {
2518 		PMD_DRV_LOG(DEBUG,
2519 			"llq tx max burst size of queue %d achieved, writing doorbell to send burst\n",
2520 			tx_ring->id);
2521 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2522 		tx_ring->tx_stats.doorbells++;
2523 	}
2524 
2525 	/* prepare the packet's descriptors to dma engine */
2526 	rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq,	&ena_tx_ctx,
2527 		&nb_hw_desc);
2528 	if (unlikely(rc)) {
2529 		++tx_ring->tx_stats.prepare_ctx_err;
2530 		return rc;
2531 	}
2532 
2533 	tx_info->tx_descs = nb_hw_desc;
2534 
2535 	tx_ring->tx_stats.cnt++;
2536 	tx_ring->tx_stats.bytes += mbuf->pkt_len;
2537 
2538 	tx_ring->next_to_use = ENA_IDX_NEXT_MASKED(next_to_use,
2539 		tx_ring->size_mask);
2540 
2541 	return 0;
2542 }
2543 
2544 static void ena_tx_cleanup(struct ena_ring *tx_ring)
2545 {
2546 	unsigned int cleanup_budget;
2547 	unsigned int total_tx_descs = 0;
2548 	uint16_t next_to_clean = tx_ring->next_to_clean;
2549 
2550 	cleanup_budget = RTE_MIN(tx_ring->ring_size / ENA_REFILL_THRESH_DIVIDER,
2551 		(unsigned int)ENA_REFILL_THRESH_PACKET);
2552 
2553 	while (likely(total_tx_descs < cleanup_budget)) {
2554 		struct rte_mbuf *mbuf;
2555 		struct ena_tx_buffer *tx_info;
2556 		uint16_t req_id;
2557 
2558 		if (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) != 0)
2559 			break;
2560 
2561 		if (unlikely(validate_tx_req_id(tx_ring, req_id) != 0))
2562 			break;
2563 
2564 		/* Get Tx info & store how many descs were processed  */
2565 		tx_info = &tx_ring->tx_buffer_info[req_id];
2566 
2567 		mbuf = tx_info->mbuf;
2568 		rte_pktmbuf_free(mbuf);
2569 
2570 		tx_info->mbuf = NULL;
2571 		tx_ring->empty_tx_reqs[next_to_clean] = req_id;
2572 
2573 		total_tx_descs += tx_info->tx_descs;
2574 
2575 		/* Put back descriptor to the ring for reuse */
2576 		next_to_clean = ENA_IDX_NEXT_MASKED(next_to_clean,
2577 			tx_ring->size_mask);
2578 	}
2579 
2580 	if (likely(total_tx_descs > 0)) {
2581 		/* acknowledge completion of sent packets */
2582 		tx_ring->next_to_clean = next_to_clean;
2583 		ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
2584 		ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
2585 	}
2586 }
2587 
2588 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2589 				  uint16_t nb_pkts)
2590 {
2591 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2592 	uint16_t sent_idx = 0;
2593 
2594 	/* Check adapter state */
2595 	if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2596 		PMD_DRV_LOG(ALERT,
2597 			"Trying to xmit pkts while device is NOT running\n");
2598 		return 0;
2599 	}
2600 
2601 	nb_pkts = RTE_MIN(ena_com_free_q_entries(tx_ring->ena_com_io_sq),
2602 		nb_pkts);
2603 
2604 	for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
2605 		if (ena_xmit_mbuf(tx_ring, tx_pkts[sent_idx]))
2606 			break;
2607 
2608 		rte_prefetch0(tx_pkts[ENA_IDX_ADD_MASKED(sent_idx, 4,
2609 			tx_ring->size_mask)]);
2610 	}
2611 
2612 	tx_ring->tx_stats.available_desc =
2613 		ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2614 
2615 	/* If there are ready packets to be xmitted... */
2616 	if (sent_idx > 0) {
2617 		/* ...let HW do its best :-) */
2618 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2619 		tx_ring->tx_stats.doorbells++;
2620 	}
2621 
2622 	ena_tx_cleanup(tx_ring);
2623 
2624 	tx_ring->tx_stats.available_desc =
2625 		ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2626 	tx_ring->tx_stats.tx_poll++;
2627 
2628 	return sent_idx;
2629 }
2630 
2631 int ena_copy_eni_stats(struct ena_adapter *adapter)
2632 {
2633 	struct ena_admin_eni_stats admin_eni_stats;
2634 	int rc;
2635 
2636 	rte_spinlock_lock(&adapter->admin_lock);
2637 	rc = ena_com_get_eni_stats(&adapter->ena_dev, &admin_eni_stats);
2638 	rte_spinlock_unlock(&adapter->admin_lock);
2639 	if (rc != 0) {
2640 		if (rc == ENA_COM_UNSUPPORTED) {
2641 			PMD_DRV_LOG(DEBUG,
2642 				"Retrieving ENI metrics is not supported.\n");
2643 		} else {
2644 			PMD_DRV_LOG(WARNING,
2645 				"Failed to get ENI metrics: %d\n", rc);
2646 		}
2647 		return rc;
2648 	}
2649 
2650 	rte_memcpy(&adapter->eni_stats, &admin_eni_stats,
2651 		sizeof(struct ena_stats_eni));
2652 
2653 	return 0;
2654 }
2655 
2656 /**
2657  * DPDK callback to retrieve names of extended device statistics
2658  *
2659  * @param dev
2660  *   Pointer to Ethernet device structure.
2661  * @param[out] xstats_names
2662  *   Buffer to insert names into.
2663  * @param n
2664  *   Number of names.
2665  *
2666  * @return
2667  *   Number of xstats names.
2668  */
2669 static int ena_xstats_get_names(struct rte_eth_dev *dev,
2670 				struct rte_eth_xstat_name *xstats_names,
2671 				unsigned int n)
2672 {
2673 	unsigned int xstats_count = ena_xstats_calc_num(dev);
2674 	unsigned int stat, i, count = 0;
2675 
2676 	if (n < xstats_count || !xstats_names)
2677 		return xstats_count;
2678 
2679 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
2680 		strcpy(xstats_names[count].name,
2681 			ena_stats_global_strings[stat].name);
2682 
2683 	for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++)
2684 		strcpy(xstats_names[count].name,
2685 			ena_stats_eni_strings[stat].name);
2686 
2687 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
2688 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
2689 			snprintf(xstats_names[count].name,
2690 				sizeof(xstats_names[count].name),
2691 				"rx_q%d_%s", i,
2692 				ena_stats_rx_strings[stat].name);
2693 
2694 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
2695 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
2696 			snprintf(xstats_names[count].name,
2697 				sizeof(xstats_names[count].name),
2698 				"tx_q%d_%s", i,
2699 				ena_stats_tx_strings[stat].name);
2700 
2701 	return xstats_count;
2702 }
2703 
2704 /**
2705  * DPDK callback to get extended device statistics.
2706  *
2707  * @param dev
2708  *   Pointer to Ethernet device structure.
2709  * @param[out] stats
2710  *   Stats table output buffer.
2711  * @param n
2712  *   The size of the stats table.
2713  *
2714  * @return
2715  *   Number of xstats on success, negative on failure.
2716  */
2717 static int ena_xstats_get(struct rte_eth_dev *dev,
2718 			  struct rte_eth_xstat *xstats,
2719 			  unsigned int n)
2720 {
2721 	struct ena_adapter *adapter = dev->data->dev_private;
2722 	unsigned int xstats_count = ena_xstats_calc_num(dev);
2723 	unsigned int stat, i, count = 0;
2724 	int stat_offset;
2725 	void *stats_begin;
2726 
2727 	if (n < xstats_count)
2728 		return xstats_count;
2729 
2730 	if (!xstats)
2731 		return 0;
2732 
2733 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
2734 		stat_offset = ena_stats_global_strings[stat].stat_offset;
2735 		stats_begin = &adapter->dev_stats;
2736 
2737 		xstats[count].id = count;
2738 		xstats[count].value = *((uint64_t *)
2739 			((char *)stats_begin + stat_offset));
2740 	}
2741 
2742 	/* Even if the function below fails, we should copy previous (or initial
2743 	 * values) to keep structure of rte_eth_xstat consistent.
2744 	 */
2745 	ena_copy_eni_stats(adapter);
2746 	for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++) {
2747 		stat_offset = ena_stats_eni_strings[stat].stat_offset;
2748 		stats_begin = &adapter->eni_stats;
2749 
2750 		xstats[count].id = count;
2751 		xstats[count].value = *((uint64_t *)
2752 		    ((char *)stats_begin + stat_offset));
2753 	}
2754 
2755 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
2756 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
2757 			stat_offset = ena_stats_rx_strings[stat].stat_offset;
2758 			stats_begin = &adapter->rx_ring[i].rx_stats;
2759 
2760 			xstats[count].id = count;
2761 			xstats[count].value = *((uint64_t *)
2762 				((char *)stats_begin + stat_offset));
2763 		}
2764 	}
2765 
2766 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
2767 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
2768 			stat_offset = ena_stats_tx_strings[stat].stat_offset;
2769 			stats_begin = &adapter->tx_ring[i].rx_stats;
2770 
2771 			xstats[count].id = count;
2772 			xstats[count].value = *((uint64_t *)
2773 				((char *)stats_begin + stat_offset));
2774 		}
2775 	}
2776 
2777 	return count;
2778 }
2779 
2780 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
2781 				const uint64_t *ids,
2782 				uint64_t *values,
2783 				unsigned int n)
2784 {
2785 	struct ena_adapter *adapter = dev->data->dev_private;
2786 	uint64_t id;
2787 	uint64_t rx_entries, tx_entries;
2788 	unsigned int i;
2789 	int qid;
2790 	int valid = 0;
2791 	bool was_eni_copied = false;
2792 
2793 	for (i = 0; i < n; ++i) {
2794 		id = ids[i];
2795 		/* Check if id belongs to global statistics */
2796 		if (id < ENA_STATS_ARRAY_GLOBAL) {
2797 			values[i] = *((uint64_t *)&adapter->dev_stats + id);
2798 			++valid;
2799 			continue;
2800 		}
2801 
2802 		/* Check if id belongs to ENI statistics */
2803 		id -= ENA_STATS_ARRAY_GLOBAL;
2804 		if (id < ENA_STATS_ARRAY_ENI) {
2805 			/* Avoid reading ENI stats multiple times in a single
2806 			 * function call, as it requires communication with the
2807 			 * admin queue.
2808 			 */
2809 			if (!was_eni_copied) {
2810 				was_eni_copied = true;
2811 				ena_copy_eni_stats(adapter);
2812 			}
2813 			values[i] = *((uint64_t *)&adapter->eni_stats + id);
2814 			++valid;
2815 			continue;
2816 		}
2817 
2818 		/* Check if id belongs to rx queue statistics */
2819 		id -= ENA_STATS_ARRAY_ENI;
2820 		rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
2821 		if (id < rx_entries) {
2822 			qid = id % dev->data->nb_rx_queues;
2823 			id /= dev->data->nb_rx_queues;
2824 			values[i] = *((uint64_t *)
2825 				&adapter->rx_ring[qid].rx_stats + id);
2826 			++valid;
2827 			continue;
2828 		}
2829 				/* Check if id belongs to rx queue statistics */
2830 		id -= rx_entries;
2831 		tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
2832 		if (id < tx_entries) {
2833 			qid = id % dev->data->nb_tx_queues;
2834 			id /= dev->data->nb_tx_queues;
2835 			values[i] = *((uint64_t *)
2836 				&adapter->tx_ring[qid].tx_stats + id);
2837 			++valid;
2838 			continue;
2839 		}
2840 	}
2841 
2842 	return valid;
2843 }
2844 
2845 static int ena_process_bool_devarg(const char *key,
2846 				   const char *value,
2847 				   void *opaque)
2848 {
2849 	struct ena_adapter *adapter = opaque;
2850 	bool bool_value;
2851 
2852 	/* Parse the value. */
2853 	if (strcmp(value, "1") == 0) {
2854 		bool_value = true;
2855 	} else if (strcmp(value, "0") == 0) {
2856 		bool_value = false;
2857 	} else {
2858 		PMD_INIT_LOG(ERR,
2859 			"Invalid value: '%s' for key '%s'. Accepted: '0' or '1'\n",
2860 			value, key);
2861 		return -EINVAL;
2862 	}
2863 
2864 	/* Now, assign it to the proper adapter field. */
2865 	if (strcmp(key, ENA_DEVARG_LARGE_LLQ_HDR))
2866 		adapter->use_large_llq_hdr = bool_value;
2867 
2868 	return 0;
2869 }
2870 
2871 static int ena_parse_devargs(struct ena_adapter *adapter,
2872 			     struct rte_devargs *devargs)
2873 {
2874 	static const char * const allowed_args[] = {
2875 		ENA_DEVARG_LARGE_LLQ_HDR,
2876 	};
2877 	struct rte_kvargs *kvlist;
2878 	int rc;
2879 
2880 	if (devargs == NULL)
2881 		return 0;
2882 
2883 	kvlist = rte_kvargs_parse(devargs->args, allowed_args);
2884 	if (kvlist == NULL) {
2885 		PMD_INIT_LOG(ERR, "Invalid device arguments: %s\n",
2886 			devargs->args);
2887 		return -EINVAL;
2888 	}
2889 
2890 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_LARGE_LLQ_HDR,
2891 		ena_process_bool_devarg, adapter);
2892 
2893 	rte_kvargs_free(kvlist);
2894 
2895 	return rc;
2896 }
2897 
2898 /*********************************************************************
2899  *  PMD configuration
2900  *********************************************************************/
2901 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2902 	struct rte_pci_device *pci_dev)
2903 {
2904 	return rte_eth_dev_pci_generic_probe(pci_dev,
2905 		sizeof(struct ena_adapter), eth_ena_dev_init);
2906 }
2907 
2908 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
2909 {
2910 	return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
2911 }
2912 
2913 static struct rte_pci_driver rte_ena_pmd = {
2914 	.id_table = pci_id_ena_map,
2915 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
2916 		     RTE_PCI_DRV_WC_ACTIVATE,
2917 	.probe = eth_ena_pci_probe,
2918 	.remove = eth_ena_pci_remove,
2919 };
2920 
2921 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
2922 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
2923 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
2924 RTE_PMD_REGISTER_PARAM_STRING(net_ena, ENA_DEVARG_LARGE_LLQ_HDR "=<0|1>");
2925 RTE_LOG_REGISTER(ena_logtype_init, pmd.net.ena.init, NOTICE);
2926 RTE_LOG_REGISTER(ena_logtype_driver, pmd.net.ena.driver, NOTICE);
2927 #ifdef RTE_LIBRTE_ENA_DEBUG_RX
2928 RTE_LOG_REGISTER(ena_logtype_rx, pmd.net.ena.rx, NOTICE);
2929 #endif
2930 #ifdef RTE_LIBRTE_ENA_DEBUG_TX
2931 RTE_LOG_REGISTER(ena_logtype_tx, pmd.net.ena.tx, NOTICE);
2932 #endif
2933 #ifdef RTE_LIBRTE_ENA_DEBUG_TX_FREE
2934 RTE_LOG_REGISTER(ena_logtype_tx_free, pmd.net.ena.tx_free, NOTICE);
2935 #endif
2936 #ifdef RTE_LIBRTE_ENA_COM_DEBUG
2937 RTE_LOG_REGISTER(ena_logtype_com, pmd.net.ena.com, NOTICE);
2938 #endif
2939 
2940 /******************************************************************************
2941  ******************************** AENQ Handlers *******************************
2942  *****************************************************************************/
2943 static void ena_update_on_link_change(void *adapter_data,
2944 				      struct ena_admin_aenq_entry *aenq_e)
2945 {
2946 	struct rte_eth_dev *eth_dev;
2947 	struct ena_adapter *adapter;
2948 	struct ena_admin_aenq_link_change_desc *aenq_link_desc;
2949 	uint32_t status;
2950 
2951 	adapter = adapter_data;
2952 	aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
2953 	eth_dev = adapter->rte_dev;
2954 
2955 	status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
2956 	adapter->link_status = status;
2957 
2958 	ena_link_update(eth_dev, 0);
2959 	rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
2960 }
2961 
2962 static void ena_notification(void *data,
2963 			     struct ena_admin_aenq_entry *aenq_e)
2964 {
2965 	struct ena_adapter *adapter = data;
2966 	struct ena_admin_ena_hw_hints *hints;
2967 
2968 	if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
2969 		PMD_DRV_LOG(WARNING, "Invalid group(%x) expected %x\n",
2970 			aenq_e->aenq_common_desc.group,
2971 			ENA_ADMIN_NOTIFICATION);
2972 
2973 	switch (aenq_e->aenq_common_desc.syndrom) {
2974 	case ENA_ADMIN_UPDATE_HINTS:
2975 		hints = (struct ena_admin_ena_hw_hints *)
2976 			(&aenq_e->inline_data_w4);
2977 		ena_update_hints(adapter, hints);
2978 		break;
2979 	default:
2980 		PMD_DRV_LOG(ERR, "Invalid aenq notification link state %d\n",
2981 			aenq_e->aenq_common_desc.syndrom);
2982 	}
2983 }
2984 
2985 static void ena_keep_alive(void *adapter_data,
2986 			   __rte_unused struct ena_admin_aenq_entry *aenq_e)
2987 {
2988 	struct ena_adapter *adapter = adapter_data;
2989 	struct ena_admin_aenq_keep_alive_desc *desc;
2990 	uint64_t rx_drops;
2991 	uint64_t tx_drops;
2992 
2993 	adapter->timestamp_wd = rte_get_timer_cycles();
2994 
2995 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
2996 	rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
2997 	tx_drops = ((uint64_t)desc->tx_drops_high << 32) | desc->tx_drops_low;
2998 
2999 	adapter->drv_stats->rx_drops = rx_drops;
3000 	adapter->dev_stats.tx_drops = tx_drops;
3001 }
3002 
3003 /**
3004  * This handler will called for unknown event group or unimplemented handlers
3005  **/
3006 static void unimplemented_aenq_handler(__rte_unused void *data,
3007 				       __rte_unused struct ena_admin_aenq_entry *aenq_e)
3008 {
3009 	PMD_DRV_LOG(ERR, "Unknown event was received or event with "
3010 			  "unimplemented handler\n");
3011 }
3012 
3013 static struct ena_aenq_handlers aenq_handlers = {
3014 	.handlers = {
3015 		[ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
3016 		[ENA_ADMIN_NOTIFICATION] = ena_notification,
3017 		[ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive
3018 	},
3019 	.unimplemented_handler = unimplemented_aenq_handler
3020 };
3021