xref: /dpdk/drivers/net/ena/ena_ethdev.c (revision 1f11149d85ec5d11893206dbb5ec80a407167ea3)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
3  * All rights reserved.
4  */
5 
6 #include <rte_string_fns.h>
7 #include <rte_errno.h>
8 #include <rte_version.h>
9 #include <rte_net.h>
10 #include <rte_kvargs.h>
11 
12 #include "ena_ethdev.h"
13 #include "ena_logs.h"
14 #include "ena_platform.h"
15 #include "ena_com.h"
16 #include "ena_eth_com.h"
17 
18 #include <ena_common_defs.h>
19 #include <ena_regs_defs.h>
20 #include <ena_admin_defs.h>
21 #include <ena_eth_io_defs.h>
22 
23 #define DRV_MODULE_VER_MAJOR	2
24 #define DRV_MODULE_VER_MINOR	8
25 #define DRV_MODULE_VER_SUBMINOR	0
26 
27 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
28 
29 #define GET_L4_HDR_LEN(mbuf)					\
30 	((rte_pktmbuf_mtod_offset(mbuf,	struct rte_tcp_hdr *,	\
31 		mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
32 
33 #define ETH_GSTRING_LEN	32
34 
35 #define ARRAY_SIZE(x) RTE_DIM(x)
36 
37 #define ENA_MIN_RING_DESC	128
38 
39 #define BITS_PER_BYTE 8
40 
41 #define BITS_PER_TYPE(type) (sizeof(type) * BITS_PER_BYTE)
42 
43 #define DECIMAL_BASE 10
44 
45 /*
46  * We should try to keep ENA_CLEANUP_BUF_SIZE lower than
47  * RTE_MEMPOOL_CACHE_MAX_SIZE, so we can fit this in mempool local cache.
48  */
49 #define ENA_CLEANUP_BUF_SIZE	256
50 
51 #define ENA_PTYPE_HAS_HASH	(RTE_PTYPE_L4_TCP | RTE_PTYPE_L4_UDP)
52 
53 struct ena_stats {
54 	char name[ETH_GSTRING_LEN];
55 	int stat_offset;
56 };
57 
58 #define ENA_STAT_ENTRY(stat, stat_type) { \
59 	.name = #stat, \
60 	.stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
61 }
62 
63 #define ENA_STAT_RX_ENTRY(stat) \
64 	ENA_STAT_ENTRY(stat, rx)
65 
66 #define ENA_STAT_TX_ENTRY(stat) \
67 	ENA_STAT_ENTRY(stat, tx)
68 
69 #define ENA_STAT_METRICS_ENTRY(stat) \
70 	ENA_STAT_ENTRY(stat, metrics)
71 
72 #define ENA_STAT_GLOBAL_ENTRY(stat) \
73 	ENA_STAT_ENTRY(stat, dev)
74 
75 #define ENA_STAT_ENA_SRD_ENTRY(stat) \
76 	ENA_STAT_ENTRY(stat, srd)
77 
78 /* Device arguments */
79 #define ENA_DEVARG_LARGE_LLQ_HDR "large_llq_hdr"
80 #define ENA_DEVARG_NORMAL_LLQ_HDR "normal_llq_hdr"
81 /* Timeout in seconds after which a single uncompleted Tx packet should be
82  * considered as a missing.
83  */
84 #define ENA_DEVARG_MISS_TXC_TO "miss_txc_to"
85 /*
86  * Controls whether LLQ should be used (if available). Enabled by default.
87  * NOTE: It's highly not recommended to disable the LLQ, as it may lead to a
88  * huge performance degradation on 6th generation AWS instances.
89  */
90 #define ENA_DEVARG_ENABLE_LLQ "enable_llq"
91 
92 /*
93  * Each rte_memzone should have unique name.
94  * To satisfy it, count number of allocation and add it to name.
95  */
96 rte_atomic64_t ena_alloc_cnt;
97 
98 static const struct ena_stats ena_stats_global_strings[] = {
99 	ENA_STAT_GLOBAL_ENTRY(wd_expired),
100 	ENA_STAT_GLOBAL_ENTRY(dev_start),
101 	ENA_STAT_GLOBAL_ENTRY(dev_stop),
102 	ENA_STAT_GLOBAL_ENTRY(tx_drops),
103 };
104 
105 /*
106  * The legacy metrics (also known as eni stats) consisted of 5 stats, while the reworked
107  * metrics (also known as customer metrics) support an additional stat.
108  */
109 static struct ena_stats ena_stats_metrics_strings[] = {
110 	ENA_STAT_METRICS_ENTRY(bw_in_allowance_exceeded),
111 	ENA_STAT_METRICS_ENTRY(bw_out_allowance_exceeded),
112 	ENA_STAT_METRICS_ENTRY(pps_allowance_exceeded),
113 	ENA_STAT_METRICS_ENTRY(conntrack_allowance_exceeded),
114 	ENA_STAT_METRICS_ENTRY(linklocal_allowance_exceeded),
115 	ENA_STAT_METRICS_ENTRY(conntrack_allowance_available),
116 };
117 
118 static const struct ena_stats ena_stats_srd_strings[] = {
119 	ENA_STAT_ENA_SRD_ENTRY(ena_srd_mode),
120 	ENA_STAT_ENA_SRD_ENTRY(ena_srd_tx_pkts),
121 	ENA_STAT_ENA_SRD_ENTRY(ena_srd_eligible_tx_pkts),
122 	ENA_STAT_ENA_SRD_ENTRY(ena_srd_rx_pkts),
123 	ENA_STAT_ENA_SRD_ENTRY(ena_srd_resource_utilization),
124 };
125 
126 static const struct ena_stats ena_stats_tx_strings[] = {
127 	ENA_STAT_TX_ENTRY(cnt),
128 	ENA_STAT_TX_ENTRY(bytes),
129 	ENA_STAT_TX_ENTRY(prepare_ctx_err),
130 	ENA_STAT_TX_ENTRY(tx_poll),
131 	ENA_STAT_TX_ENTRY(doorbells),
132 	ENA_STAT_TX_ENTRY(bad_req_id),
133 	ENA_STAT_TX_ENTRY(available_desc),
134 	ENA_STAT_TX_ENTRY(missed_tx),
135 };
136 
137 static const struct ena_stats ena_stats_rx_strings[] = {
138 	ENA_STAT_RX_ENTRY(cnt),
139 	ENA_STAT_RX_ENTRY(bytes),
140 	ENA_STAT_RX_ENTRY(refill_partial),
141 	ENA_STAT_RX_ENTRY(l3_csum_bad),
142 	ENA_STAT_RX_ENTRY(l4_csum_bad),
143 	ENA_STAT_RX_ENTRY(l4_csum_good),
144 	ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
145 	ENA_STAT_RX_ENTRY(bad_desc_num),
146 	ENA_STAT_RX_ENTRY(bad_req_id),
147 };
148 
149 #define ENA_STATS_ARRAY_GLOBAL	ARRAY_SIZE(ena_stats_global_strings)
150 #define ENA_STATS_ARRAY_METRICS	ARRAY_SIZE(ena_stats_metrics_strings)
151 #define ENA_STATS_ARRAY_METRICS_LEGACY	(ENA_STATS_ARRAY_METRICS - 1)
152 #define ENA_STATS_ARRAY_ENA_SRD	ARRAY_SIZE(ena_stats_srd_strings)
153 #define ENA_STATS_ARRAY_TX	ARRAY_SIZE(ena_stats_tx_strings)
154 #define ENA_STATS_ARRAY_RX	ARRAY_SIZE(ena_stats_rx_strings)
155 
156 #define QUEUE_OFFLOADS (RTE_ETH_TX_OFFLOAD_TCP_CKSUM |\
157 			RTE_ETH_TX_OFFLOAD_UDP_CKSUM |\
158 			RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |\
159 			RTE_ETH_TX_OFFLOAD_TCP_TSO)
160 #define MBUF_OFFLOADS (RTE_MBUF_F_TX_L4_MASK |\
161 		       RTE_MBUF_F_TX_IP_CKSUM |\
162 		       RTE_MBUF_F_TX_TCP_SEG)
163 
164 /** Vendor ID used by Amazon devices */
165 #define PCI_VENDOR_ID_AMAZON 0x1D0F
166 /** Amazon devices */
167 #define PCI_DEVICE_ID_ENA_VF		0xEC20
168 #define PCI_DEVICE_ID_ENA_VF_RSERV0	0xEC21
169 
170 #define	ENA_TX_OFFLOAD_MASK	(RTE_MBUF_F_TX_L4_MASK |         \
171 	RTE_MBUF_F_TX_IPV6 |            \
172 	RTE_MBUF_F_TX_IPV4 |            \
173 	RTE_MBUF_F_TX_IP_CKSUM |        \
174 	RTE_MBUF_F_TX_TCP_SEG)
175 
176 #define	ENA_TX_OFFLOAD_NOTSUP_MASK	\
177 	(RTE_MBUF_F_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
178 
179 /** HW specific offloads capabilities. */
180 /* IPv4 checksum offload. */
181 #define ENA_L3_IPV4_CSUM		0x0001
182 /* TCP/UDP checksum offload for IPv4 packets. */
183 #define ENA_L4_IPV4_CSUM		0x0002
184 /* TCP/UDP checksum offload for IPv4 packets with pseudo header checksum. */
185 #define ENA_L4_IPV4_CSUM_PARTIAL	0x0004
186 /* TCP/UDP checksum offload for IPv6 packets. */
187 #define ENA_L4_IPV6_CSUM		0x0008
188 /* TCP/UDP checksum offload for IPv6 packets with pseudo header checksum. */
189 #define ENA_L4_IPV6_CSUM_PARTIAL	0x0010
190 /* TSO support for IPv4 packets. */
191 #define ENA_IPV4_TSO			0x0020
192 
193 /* Device supports setting RSS hash. */
194 #define ENA_RX_RSS_HASH			0x0040
195 
196 static const struct rte_pci_id pci_id_ena_map[] = {
197 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
198 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF_RSERV0) },
199 	{ .device_id = 0 },
200 };
201 
202 static struct ena_aenq_handlers aenq_handlers;
203 
204 static int ena_device_init(struct ena_adapter *adapter,
205 			   struct rte_pci_device *pdev,
206 			   struct ena_com_dev_get_features_ctx *get_feat_ctx);
207 static int ena_dev_configure(struct rte_eth_dev *dev);
208 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
209 	struct ena_tx_buffer *tx_info,
210 	struct rte_mbuf *mbuf,
211 	void **push_header,
212 	uint16_t *header_len);
213 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf);
214 static int ena_tx_cleanup(void *txp, uint32_t free_pkt_cnt);
215 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
216 				  uint16_t nb_pkts);
217 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
218 		uint16_t nb_pkts);
219 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
220 			      uint16_t nb_desc, unsigned int socket_id,
221 			      const struct rte_eth_txconf *tx_conf);
222 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
223 			      uint16_t nb_desc, unsigned int socket_id,
224 			      const struct rte_eth_rxconf *rx_conf,
225 			      struct rte_mempool *mp);
226 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len);
227 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
228 				    struct ena_com_rx_buf_info *ena_bufs,
229 				    uint32_t descs,
230 				    uint16_t *next_to_clean,
231 				    uint8_t offset);
232 static uint16_t eth_ena_recv_pkts(void *rx_queue,
233 				  struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
234 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
235 				  struct rte_mbuf *mbuf, uint16_t id);
236 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
237 static void ena_init_rings(struct ena_adapter *adapter,
238 			   bool disable_meta_caching);
239 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
240 static int ena_start(struct rte_eth_dev *dev);
241 static int ena_stop(struct rte_eth_dev *dev);
242 static int ena_close(struct rte_eth_dev *dev);
243 static int ena_dev_reset(struct rte_eth_dev *dev);
244 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
245 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
246 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
247 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
248 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
249 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
250 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
251 static int ena_link_update(struct rte_eth_dev *dev,
252 			   int wait_to_complete);
253 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring);
254 static void ena_queue_stop(struct ena_ring *ring);
255 static void ena_queue_stop_all(struct rte_eth_dev *dev,
256 			      enum ena_ring_type ring_type);
257 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring);
258 static int ena_queue_start_all(struct rte_eth_dev *dev,
259 			       enum ena_ring_type ring_type);
260 static void ena_stats_restart(struct rte_eth_dev *dev);
261 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter);
262 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter);
263 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter);
264 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter);
265 static int ena_infos_get(struct rte_eth_dev *dev,
266 			 struct rte_eth_dev_info *dev_info);
267 static void ena_interrupt_handler_rte(void *cb_arg);
268 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
269 static void ena_destroy_device(struct rte_eth_dev *eth_dev);
270 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
271 static int ena_xstats_get_names(struct rte_eth_dev *dev,
272 				struct rte_eth_xstat_name *xstats_names,
273 				unsigned int n);
274 static int ena_xstats_get_names_by_id(struct rte_eth_dev *dev,
275 				      const uint64_t *ids,
276 				      struct rte_eth_xstat_name *xstats_names,
277 				      unsigned int size);
278 static int ena_xstats_get(struct rte_eth_dev *dev,
279 			  struct rte_eth_xstat *stats,
280 			  unsigned int n);
281 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
282 				const uint64_t *ids,
283 				uint64_t *values,
284 				unsigned int n);
285 static int ena_process_bool_devarg(const char *key,
286 				   const char *value,
287 				   void *opaque);
288 static int ena_parse_devargs(struct ena_adapter *adapter,
289 			     struct rte_devargs *devargs);
290 static void ena_copy_customer_metrics(struct ena_adapter *adapter,
291 					uint64_t *buf,
292 					size_t buf_size);
293 static void ena_copy_ena_srd_info(struct ena_adapter *adapter,
294 				  struct ena_stats_srd *srd_info);
295 static int ena_setup_rx_intr(struct rte_eth_dev *dev);
296 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
297 				    uint16_t queue_id);
298 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
299 				     uint16_t queue_id);
300 static int ena_configure_aenq(struct ena_adapter *adapter);
301 static int ena_mp_primary_handle(const struct rte_mp_msg *mp_msg,
302 				 const void *peer);
303 static ena_llq_policy ena_define_llq_hdr_policy(struct ena_adapter *adapter);
304 static bool ena_use_large_llq_hdr(struct ena_adapter *adapter, uint8_t recommended_entry_size);
305 
306 static const struct eth_dev_ops ena_dev_ops = {
307 	.dev_configure          = ena_dev_configure,
308 	.dev_infos_get          = ena_infos_get,
309 	.rx_queue_setup         = ena_rx_queue_setup,
310 	.tx_queue_setup         = ena_tx_queue_setup,
311 	.dev_start              = ena_start,
312 	.dev_stop               = ena_stop,
313 	.link_update            = ena_link_update,
314 	.stats_get              = ena_stats_get,
315 	.xstats_get_names       = ena_xstats_get_names,
316 	.xstats_get_names_by_id = ena_xstats_get_names_by_id,
317 	.xstats_get             = ena_xstats_get,
318 	.xstats_get_by_id       = ena_xstats_get_by_id,
319 	.mtu_set                = ena_mtu_set,
320 	.rx_queue_release       = ena_rx_queue_release,
321 	.tx_queue_release       = ena_tx_queue_release,
322 	.dev_close              = ena_close,
323 	.dev_reset              = ena_dev_reset,
324 	.reta_update            = ena_rss_reta_update,
325 	.reta_query             = ena_rss_reta_query,
326 	.rx_queue_intr_enable   = ena_rx_queue_intr_enable,
327 	.rx_queue_intr_disable  = ena_rx_queue_intr_disable,
328 	.rss_hash_update        = ena_rss_hash_update,
329 	.rss_hash_conf_get      = ena_rss_hash_conf_get,
330 	.tx_done_cleanup        = ena_tx_cleanup,
331 };
332 
333 /*********************************************************************
334  *  Multi-Process communication bits
335  *********************************************************************/
336 /* rte_mp IPC message name */
337 #define ENA_MP_NAME	"net_ena_mp"
338 /* Request timeout in seconds */
339 #define ENA_MP_REQ_TMO	5
340 
341 /** Proxy request type */
342 enum ena_mp_req {
343 	ENA_MP_DEV_STATS_GET,
344 	ENA_MP_ENI_STATS_GET,
345 	ENA_MP_MTU_SET,
346 	ENA_MP_IND_TBL_GET,
347 	ENA_MP_IND_TBL_SET,
348 	ENA_MP_CUSTOMER_METRICS_GET,
349 	ENA_MP_SRD_STATS_GET,
350 };
351 
352 /** Proxy message body. Shared between requests and responses. */
353 struct ena_mp_body {
354 	/* Message type */
355 	enum ena_mp_req type;
356 	int port_id;
357 	/* Processing result. Set in replies. 0 if message succeeded, negative
358 	 * error code otherwise.
359 	 */
360 	int result;
361 	union {
362 		int mtu; /* For ENA_MP_MTU_SET */
363 	} args;
364 };
365 
366 /**
367  * Initialize IPC message.
368  *
369  * @param[out] msg
370  *   Pointer to the message to initialize.
371  * @param[in] type
372  *   Message type.
373  * @param[in] port_id
374  *   Port ID of target device.
375  *
376  */
377 static void
378 mp_msg_init(struct rte_mp_msg *msg, enum ena_mp_req type, int port_id)
379 {
380 	struct ena_mp_body *body = (struct ena_mp_body *)&msg->param;
381 
382 	memset(msg, 0, sizeof(*msg));
383 	strlcpy(msg->name, ENA_MP_NAME, sizeof(msg->name));
384 	msg->len_param = sizeof(*body);
385 	body->type = type;
386 	body->port_id = port_id;
387 }
388 
389 /*********************************************************************
390  *  Multi-Process communication PMD API
391  *********************************************************************/
392 /**
393  * Define proxy request descriptor
394  *
395  * Used to define all structures and functions required for proxying a given
396  * function to the primary process including the code to perform to prepare the
397  * request and process the response.
398  *
399  * @param[in] f
400  *   Name of the function to proxy
401  * @param[in] t
402  *   Message type to use
403  * @param[in] prep
404  *   Body of a function to prepare the request in form of a statement
405  *   expression. It is passed all the original function arguments along with two
406  *   extra ones:
407  *   - struct ena_adapter *adapter - PMD data of the device calling the proxy.
408  *   - struct ena_mp_body *req - body of a request to prepare.
409  * @param[in] proc
410  *   Body of a function to process the response in form of a statement
411  *   expression. It is passed all the original function arguments along with two
412  *   extra ones:
413  *   - struct ena_adapter *adapter - PMD data of the device calling the proxy.
414  *   - struct ena_mp_body *rsp - body of a response to process.
415  * @param ...
416  *   Proxied function's arguments
417  *
418  * @note Inside prep and proc any parameters which aren't used should be marked
419  *       as such (with ENA_TOUCH or __rte_unused).
420  */
421 #define ENA_PROXY_DESC(f, t, prep, proc, ...)			\
422 	static const enum ena_mp_req mp_type_ ## f =  t;	\
423 	static const char *mp_name_ ## f = #t;			\
424 	static void mp_prep_ ## f(struct ena_adapter *adapter,	\
425 				  struct ena_mp_body *req,	\
426 				  __VA_ARGS__)			\
427 	{							\
428 		prep;						\
429 	}							\
430 	static void mp_proc_ ## f(struct ena_adapter *adapter,	\
431 				  struct ena_mp_body *rsp,	\
432 				  __VA_ARGS__)			\
433 	{							\
434 		proc;						\
435 	}
436 
437 /**
438  * Proxy wrapper for calling primary functions in a secondary process.
439  *
440  * Depending on whether called in primary or secondary process, calls the
441  * @p func directly or proxies the call to the primary process via rte_mp IPC.
442  * This macro requires a proxy request descriptor to be defined for @p func
443  * using ENA_PROXY_DESC() macro.
444  *
445  * @param[in/out] a
446  *   Device PMD data. Used for sending the message and sharing message results
447  *   between primary and secondary.
448  * @param[in] f
449  *   Function to proxy.
450  * @param ...
451  *   Arguments of @p func.
452  *
453  * @return
454  *   - 0: Processing succeeded and response handler was called.
455  *   - -EPERM: IPC is unavailable on this platform. This means only primary
456  *             process may call the proxied function.
457  *   - -EIO:   IPC returned error on request send. Inspect rte_errno detailed
458  *             error code.
459  *   - Negative error code from the proxied function.
460  *
461  * @note This mechanism is geared towards control-path tasks. Avoid calling it
462  *       in fast-path unless unbound delays are allowed. This is due to the IPC
463  *       mechanism itself (socket based).
464  * @note Due to IPC parameter size limitations the proxy logic shares call
465  *       results through the struct ena_adapter shared memory. This makes the
466  *       proxy mechanism strictly single-threaded. Therefore be sure to make all
467  *       calls to the same proxied function under the same lock.
468  */
469 #define ENA_PROXY(a, f, ...)						\
470 __extension__ ({							\
471 	struct ena_adapter *_a = (a);					\
472 	struct timespec ts = { .tv_sec = ENA_MP_REQ_TMO };		\
473 	struct ena_mp_body *req, *rsp;					\
474 	struct rte_mp_reply mp_rep;					\
475 	struct rte_mp_msg mp_req;					\
476 	int ret;							\
477 									\
478 	if (rte_eal_process_type() == RTE_PROC_PRIMARY) {		\
479 		ret = f(__VA_ARGS__);					\
480 	} else {							\
481 		/* Prepare and send request */				\
482 		req = (struct ena_mp_body *)&mp_req.param;		\
483 		mp_msg_init(&mp_req, mp_type_ ## f, _a->edev_data->port_id); \
484 		mp_prep_ ## f(_a, req, ## __VA_ARGS__);			\
485 									\
486 		ret = rte_mp_request_sync(&mp_req, &mp_rep, &ts);	\
487 		if (likely(!ret)) {					\
488 			RTE_ASSERT(mp_rep.nb_received == 1);		\
489 			rsp = (struct ena_mp_body *)&mp_rep.msgs[0].param; \
490 			ret = rsp->result;				\
491 			if (ret == 0) {					\
492 				mp_proc_##f(_a, rsp, ## __VA_ARGS__);	\
493 			} else {					\
494 				PMD_DRV_LOG(ERR,			\
495 					    "%s returned error: %d\n",	\
496 					    mp_name_ ## f, rsp->result);\
497 			}						\
498 			free(mp_rep.msgs);				\
499 		} else if (rte_errno == ENOTSUP) {			\
500 			PMD_DRV_LOG(ERR,				\
501 				    "No IPC, can't proxy to primary\n");\
502 			ret = -rte_errno;				\
503 		} else {						\
504 			PMD_DRV_LOG(ERR, "Request %s failed: %s\n",	\
505 				    mp_name_ ## f,			\
506 				    rte_strerror(rte_errno));		\
507 			ret = -EIO;					\
508 		}							\
509 	}								\
510 	ret;								\
511 })
512 
513 /*********************************************************************
514  *  Multi-Process communication request descriptors
515  *********************************************************************/
516 
517 ENA_PROXY_DESC(ena_com_get_dev_basic_stats, ENA_MP_DEV_STATS_GET,
518 __extension__ ({
519 	ENA_TOUCH(adapter);
520 	ENA_TOUCH(req);
521 	ENA_TOUCH(ena_dev);
522 	ENA_TOUCH(stats);
523 }),
524 __extension__ ({
525 	ENA_TOUCH(rsp);
526 	ENA_TOUCH(ena_dev);
527 	if (stats != &adapter->basic_stats)
528 		rte_memcpy(stats, &adapter->basic_stats, sizeof(*stats));
529 }),
530 	struct ena_com_dev *ena_dev, struct ena_admin_basic_stats *stats);
531 
532 ENA_PROXY_DESC(ena_com_get_eni_stats, ENA_MP_ENI_STATS_GET,
533 __extension__ ({
534 	ENA_TOUCH(adapter);
535 	ENA_TOUCH(req);
536 	ENA_TOUCH(ena_dev);
537 	ENA_TOUCH(stats);
538 }),
539 __extension__ ({
540 	ENA_TOUCH(rsp);
541 	ENA_TOUCH(ena_dev);
542 	if (stats != (struct ena_admin_eni_stats *)adapter->metrics_stats)
543 		rte_memcpy(stats, adapter->metrics_stats, sizeof(*stats));
544 }),
545 	struct ena_com_dev *ena_dev, struct ena_admin_eni_stats *stats);
546 
547 ENA_PROXY_DESC(ena_com_set_dev_mtu, ENA_MP_MTU_SET,
548 __extension__ ({
549 	ENA_TOUCH(adapter);
550 	ENA_TOUCH(ena_dev);
551 	req->args.mtu = mtu;
552 }),
553 __extension__ ({
554 	ENA_TOUCH(adapter);
555 	ENA_TOUCH(rsp);
556 	ENA_TOUCH(ena_dev);
557 	ENA_TOUCH(mtu);
558 }),
559 	struct ena_com_dev *ena_dev, int mtu);
560 
561 ENA_PROXY_DESC(ena_com_indirect_table_set, ENA_MP_IND_TBL_SET,
562 __extension__ ({
563 	ENA_TOUCH(adapter);
564 	ENA_TOUCH(req);
565 	ENA_TOUCH(ena_dev);
566 }),
567 __extension__ ({
568 	ENA_TOUCH(adapter);
569 	ENA_TOUCH(rsp);
570 	ENA_TOUCH(ena_dev);
571 }),
572 	struct ena_com_dev *ena_dev);
573 
574 ENA_PROXY_DESC(ena_com_indirect_table_get, ENA_MP_IND_TBL_GET,
575 __extension__ ({
576 	ENA_TOUCH(adapter);
577 	ENA_TOUCH(req);
578 	ENA_TOUCH(ena_dev);
579 	ENA_TOUCH(ind_tbl);
580 }),
581 __extension__ ({
582 	ENA_TOUCH(rsp);
583 	ENA_TOUCH(ena_dev);
584 	if (ind_tbl != adapter->indirect_table)
585 		rte_memcpy(ind_tbl, adapter->indirect_table,
586 			   sizeof(adapter->indirect_table));
587 }),
588 	struct ena_com_dev *ena_dev, u32 *ind_tbl);
589 
590 ENA_PROXY_DESC(ena_com_get_customer_metrics, ENA_MP_CUSTOMER_METRICS_GET,
591 __extension__ ({
592 	ENA_TOUCH(adapter);
593 	ENA_TOUCH(req);
594 	ENA_TOUCH(ena_dev);
595 	ENA_TOUCH(buf);
596 	ENA_TOUCH(buf_size);
597 }),
598 __extension__ ({
599 	ENA_TOUCH(rsp);
600 	ENA_TOUCH(ena_dev);
601 	if (buf != (char *)adapter->metrics_stats)
602 		rte_memcpy(buf, adapter->metrics_stats, buf_size);
603 }),
604 	struct ena_com_dev *ena_dev, char *buf, size_t buf_size);
605 
606 ENA_PROXY_DESC(ena_com_get_ena_srd_info, ENA_MP_SRD_STATS_GET,
607 __extension__ ({
608 	ENA_TOUCH(adapter);
609 	ENA_TOUCH(req);
610 	ENA_TOUCH(ena_dev);
611 	ENA_TOUCH(info);
612 }),
613 __extension__ ({
614 	ENA_TOUCH(rsp);
615 	ENA_TOUCH(ena_dev);
616 	if ((struct ena_stats_srd *)info != &adapter->srd_stats)
617 		rte_memcpy((struct ena_stats_srd *)info,
618 				&adapter->srd_stats,
619 				sizeof(struct ena_stats_srd));
620 }),
621 	struct ena_com_dev *ena_dev, struct ena_admin_ena_srd_info *info);
622 
623 static inline void ena_trigger_reset(struct ena_adapter *adapter,
624 				     enum ena_regs_reset_reason_types reason)
625 {
626 	if (likely(!adapter->trigger_reset)) {
627 		adapter->reset_reason = reason;
628 		adapter->trigger_reset = true;
629 	}
630 }
631 
632 static inline void ena_rx_mbuf_prepare(struct ena_ring *rx_ring,
633 				       struct rte_mbuf *mbuf,
634 				       struct ena_com_rx_ctx *ena_rx_ctx,
635 				       bool fill_hash)
636 {
637 	struct ena_stats_rx *rx_stats = &rx_ring->rx_stats;
638 	uint64_t ol_flags = 0;
639 	uint32_t packet_type = 0;
640 
641 	if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
642 		packet_type |= RTE_PTYPE_L4_TCP;
643 	else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
644 		packet_type |= RTE_PTYPE_L4_UDP;
645 
646 	if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
647 		packet_type |= RTE_PTYPE_L3_IPV4;
648 		if (unlikely(ena_rx_ctx->l3_csum_err)) {
649 			++rx_stats->l3_csum_bad;
650 			ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
651 		} else {
652 			ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
653 		}
654 	} else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
655 		packet_type |= RTE_PTYPE_L3_IPV6;
656 	}
657 
658 	if (!ena_rx_ctx->l4_csum_checked || ena_rx_ctx->frag) {
659 		ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN;
660 	} else {
661 		if (unlikely(ena_rx_ctx->l4_csum_err)) {
662 			++rx_stats->l4_csum_bad;
663 			/*
664 			 * For the L4 Rx checksum offload the HW may indicate
665 			 * bad checksum although it's valid. Because of that,
666 			 * we're setting the UNKNOWN flag to let the app
667 			 * re-verify the checksum.
668 			 */
669 			ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN;
670 		} else {
671 			++rx_stats->l4_csum_good;
672 			ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
673 		}
674 	}
675 
676 	if (fill_hash &&
677 	    likely((packet_type & ENA_PTYPE_HAS_HASH) && !ena_rx_ctx->frag)) {
678 		ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
679 		mbuf->hash.rss = ena_rx_ctx->hash;
680 	}
681 
682 	mbuf->ol_flags = ol_flags;
683 	mbuf->packet_type = packet_type;
684 }
685 
686 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
687 				       struct ena_com_tx_ctx *ena_tx_ctx,
688 				       uint64_t queue_offloads,
689 				       bool disable_meta_caching)
690 {
691 	struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
692 
693 	if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
694 	    (queue_offloads & QUEUE_OFFLOADS)) {
695 		/* check if TSO is required */
696 		if ((mbuf->ol_flags & RTE_MBUF_F_TX_TCP_SEG) &&
697 		    (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_TSO)) {
698 			ena_tx_ctx->tso_enable = true;
699 
700 			ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
701 		}
702 
703 		/* check if L3 checksum is needed */
704 		if ((mbuf->ol_flags & RTE_MBUF_F_TX_IP_CKSUM) &&
705 		    (queue_offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM))
706 			ena_tx_ctx->l3_csum_enable = true;
707 
708 		if (mbuf->ol_flags & RTE_MBUF_F_TX_IPV6) {
709 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
710 			/* For the IPv6 packets, DF always needs to be true. */
711 			ena_tx_ctx->df = 1;
712 		} else {
713 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
714 
715 			/* set don't fragment (DF) flag */
716 			if (mbuf->packet_type &
717 				(RTE_PTYPE_L4_NONFRAG
718 				 | RTE_PTYPE_INNER_L4_NONFRAG))
719 				ena_tx_ctx->df = 1;
720 		}
721 
722 		/* check if L4 checksum is needed */
723 		if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) == RTE_MBUF_F_TX_TCP_CKSUM) &&
724 		    (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) {
725 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
726 			ena_tx_ctx->l4_csum_enable = true;
727 		} else if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) ==
728 				RTE_MBUF_F_TX_UDP_CKSUM) &&
729 				(queue_offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM)) {
730 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
731 			ena_tx_ctx->l4_csum_enable = true;
732 		} else {
733 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
734 			ena_tx_ctx->l4_csum_enable = false;
735 		}
736 
737 		ena_meta->mss = mbuf->tso_segsz;
738 		ena_meta->l3_hdr_len = mbuf->l3_len;
739 		ena_meta->l3_hdr_offset = mbuf->l2_len;
740 
741 		ena_tx_ctx->meta_valid = true;
742 	} else if (disable_meta_caching) {
743 		memset(ena_meta, 0, sizeof(*ena_meta));
744 		ena_tx_ctx->meta_valid = true;
745 	} else {
746 		ena_tx_ctx->meta_valid = false;
747 	}
748 }
749 
750 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
751 {
752 	struct ena_tx_buffer *tx_info = NULL;
753 
754 	if (likely(req_id < tx_ring->ring_size)) {
755 		tx_info = &tx_ring->tx_buffer_info[req_id];
756 		if (likely(tx_info->mbuf))
757 			return 0;
758 	}
759 
760 	if (tx_info)
761 		PMD_TX_LOG(ERR, "tx_info doesn't have valid mbuf. queue %d:%d req_id %u\n",
762 			tx_ring->port_id, tx_ring->id, req_id);
763 	else
764 		PMD_TX_LOG(ERR, "Invalid req_id: %hu in queue %d:%d\n",
765 			req_id, tx_ring->port_id, tx_ring->id);
766 
767 	/* Trigger device reset */
768 	++tx_ring->tx_stats.bad_req_id;
769 	ena_trigger_reset(tx_ring->adapter, ENA_REGS_RESET_INV_TX_REQ_ID);
770 	return -EFAULT;
771 }
772 
773 static void ena_config_host_info(struct ena_com_dev *ena_dev)
774 {
775 	struct ena_admin_host_info *host_info;
776 	int rc;
777 
778 	/* Allocate only the host info */
779 	rc = ena_com_allocate_host_info(ena_dev);
780 	if (rc) {
781 		PMD_DRV_LOG(ERR, "Cannot allocate host info\n");
782 		return;
783 	}
784 
785 	host_info = ena_dev->host_attr.host_info;
786 
787 	host_info->os_type = ENA_ADMIN_OS_DPDK;
788 	host_info->kernel_ver = RTE_VERSION;
789 	strlcpy((char *)host_info->kernel_ver_str, rte_version(),
790 		sizeof(host_info->kernel_ver_str));
791 	host_info->os_dist = RTE_VERSION;
792 	strlcpy((char *)host_info->os_dist_str, rte_version(),
793 		sizeof(host_info->os_dist_str));
794 	host_info->driver_version =
795 		(DRV_MODULE_VER_MAJOR) |
796 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
797 		(DRV_MODULE_VER_SUBMINOR <<
798 			ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
799 	host_info->num_cpus = rte_lcore_count();
800 
801 	host_info->driver_supported_features =
802 		ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK |
803 		ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK;
804 
805 	rc = ena_com_set_host_attributes(ena_dev);
806 	if (rc) {
807 		if (rc == -ENA_COM_UNSUPPORTED)
808 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
809 		else
810 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
811 
812 		goto err;
813 	}
814 
815 	return;
816 
817 err:
818 	ena_com_delete_host_info(ena_dev);
819 }
820 
821 /* This function calculates the number of xstats based on the current config */
822 static unsigned int ena_xstats_calc_num(struct rte_eth_dev_data *data)
823 {
824 	struct ena_adapter *adapter = data->dev_private;
825 
826 	return ENA_STATS_ARRAY_GLOBAL +
827 		adapter->metrics_num +
828 		ENA_STATS_ARRAY_ENA_SRD +
829 		(data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
830 		(data->nb_rx_queues * ENA_STATS_ARRAY_RX);
831 }
832 
833 static void ena_config_debug_area(struct ena_adapter *adapter)
834 {
835 	u32 debug_area_size;
836 	int rc, ss_count;
837 
838 	ss_count = ena_xstats_calc_num(adapter->edev_data);
839 
840 	/* allocate 32 bytes for each string and 64bit for the value */
841 	debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
842 
843 	rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
844 	if (rc) {
845 		PMD_DRV_LOG(ERR, "Cannot allocate debug area\n");
846 		return;
847 	}
848 
849 	rc = ena_com_set_host_attributes(&adapter->ena_dev);
850 	if (rc) {
851 		if (rc == -ENA_COM_UNSUPPORTED)
852 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
853 		else
854 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
855 
856 		goto err;
857 	}
858 
859 	return;
860 err:
861 	ena_com_delete_debug_area(&adapter->ena_dev);
862 }
863 
864 static int ena_close(struct rte_eth_dev *dev)
865 {
866 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
867 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
868 	struct ena_adapter *adapter = dev->data->dev_private;
869 	int ret = 0;
870 
871 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
872 		return 0;
873 
874 	if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
875 		ret = ena_stop(dev);
876 	adapter->state = ENA_ADAPTER_STATE_CLOSED;
877 
878 	ena_rx_queue_release_all(dev);
879 	ena_tx_queue_release_all(dev);
880 
881 	rte_free(adapter->drv_stats);
882 	adapter->drv_stats = NULL;
883 
884 	rte_intr_disable(intr_handle);
885 	rte_intr_callback_unregister(intr_handle,
886 				     ena_interrupt_handler_rte,
887 				     dev);
888 
889 	/*
890 	 * MAC is not allocated dynamically. Setting NULL should prevent from
891 	 * release of the resource in the rte_eth_dev_release_port().
892 	 */
893 	dev->data->mac_addrs = NULL;
894 
895 	return ret;
896 }
897 
898 static int
899 ena_dev_reset(struct rte_eth_dev *dev)
900 {
901 	int rc = 0;
902 
903 	/* Cannot release memory in secondary process */
904 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
905 		PMD_DRV_LOG(WARNING, "dev_reset not supported in secondary.\n");
906 		return -EPERM;
907 	}
908 
909 	ena_destroy_device(dev);
910 	rc = eth_ena_dev_init(dev);
911 	if (rc)
912 		PMD_INIT_LOG(CRIT, "Cannot initialize device\n");
913 
914 	return rc;
915 }
916 
917 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
918 {
919 	int nb_queues = dev->data->nb_rx_queues;
920 	int i;
921 
922 	for (i = 0; i < nb_queues; i++)
923 		ena_rx_queue_release(dev, i);
924 }
925 
926 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
927 {
928 	int nb_queues = dev->data->nb_tx_queues;
929 	int i;
930 
931 	for (i = 0; i < nb_queues; i++)
932 		ena_tx_queue_release(dev, i);
933 }
934 
935 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
936 {
937 	struct ena_ring *ring = dev->data->rx_queues[qid];
938 
939 	/* Free ring resources */
940 	rte_free(ring->rx_buffer_info);
941 	ring->rx_buffer_info = NULL;
942 
943 	rte_free(ring->rx_refill_buffer);
944 	ring->rx_refill_buffer = NULL;
945 
946 	rte_free(ring->empty_rx_reqs);
947 	ring->empty_rx_reqs = NULL;
948 
949 	ring->configured = 0;
950 
951 	PMD_DRV_LOG(NOTICE, "Rx queue %d:%d released\n",
952 		ring->port_id, ring->id);
953 }
954 
955 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
956 {
957 	struct ena_ring *ring = dev->data->tx_queues[qid];
958 
959 	/* Free ring resources */
960 	rte_free(ring->push_buf_intermediate_buf);
961 
962 	rte_free(ring->tx_buffer_info);
963 
964 	rte_free(ring->empty_tx_reqs);
965 
966 	ring->empty_tx_reqs = NULL;
967 	ring->tx_buffer_info = NULL;
968 	ring->push_buf_intermediate_buf = NULL;
969 
970 	ring->configured = 0;
971 
972 	PMD_DRV_LOG(NOTICE, "Tx queue %d:%d released\n",
973 		ring->port_id, ring->id);
974 }
975 
976 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
977 {
978 	unsigned int i;
979 
980 	for (i = 0; i < ring->ring_size; ++i) {
981 		struct ena_rx_buffer *rx_info = &ring->rx_buffer_info[i];
982 		if (rx_info->mbuf) {
983 			rte_mbuf_raw_free(rx_info->mbuf);
984 			rx_info->mbuf = NULL;
985 		}
986 	}
987 }
988 
989 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
990 {
991 	unsigned int i;
992 
993 	for (i = 0; i < ring->ring_size; ++i) {
994 		struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
995 
996 		if (tx_buf->mbuf) {
997 			rte_pktmbuf_free(tx_buf->mbuf);
998 			tx_buf->mbuf = NULL;
999 		}
1000 	}
1001 }
1002 
1003 static int ena_link_update(struct rte_eth_dev *dev,
1004 			   __rte_unused int wait_to_complete)
1005 {
1006 	struct rte_eth_link *link = &dev->data->dev_link;
1007 	struct ena_adapter *adapter = dev->data->dev_private;
1008 
1009 	link->link_status = adapter->link_status ? RTE_ETH_LINK_UP : RTE_ETH_LINK_DOWN;
1010 	link->link_speed = RTE_ETH_SPEED_NUM_NONE;
1011 	link->link_duplex = RTE_ETH_LINK_FULL_DUPLEX;
1012 
1013 	return 0;
1014 }
1015 
1016 static int ena_queue_start_all(struct rte_eth_dev *dev,
1017 			       enum ena_ring_type ring_type)
1018 {
1019 	struct ena_adapter *adapter = dev->data->dev_private;
1020 	struct ena_ring *queues = NULL;
1021 	int nb_queues;
1022 	int i = 0;
1023 	int rc = 0;
1024 
1025 	if (ring_type == ENA_RING_TYPE_RX) {
1026 		queues = adapter->rx_ring;
1027 		nb_queues = dev->data->nb_rx_queues;
1028 	} else {
1029 		queues = adapter->tx_ring;
1030 		nb_queues = dev->data->nb_tx_queues;
1031 	}
1032 	for (i = 0; i < nb_queues; i++) {
1033 		if (queues[i].configured) {
1034 			if (ring_type == ENA_RING_TYPE_RX) {
1035 				ena_assert_msg(
1036 					dev->data->rx_queues[i] == &queues[i],
1037 					"Inconsistent state of Rx queues\n");
1038 			} else {
1039 				ena_assert_msg(
1040 					dev->data->tx_queues[i] == &queues[i],
1041 					"Inconsistent state of Tx queues\n");
1042 			}
1043 
1044 			rc = ena_queue_start(dev, &queues[i]);
1045 
1046 			if (rc) {
1047 				PMD_INIT_LOG(ERR,
1048 					"Failed to start queue[%d] of type(%d)\n",
1049 					i, ring_type);
1050 				goto err;
1051 			}
1052 		}
1053 	}
1054 
1055 	return 0;
1056 
1057 err:
1058 	while (i--)
1059 		if (queues[i].configured)
1060 			ena_queue_stop(&queues[i]);
1061 
1062 	return rc;
1063 }
1064 
1065 static int
1066 ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx,
1067 		       bool use_large_llq_hdr)
1068 {
1069 	struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
1070 	struct ena_com_dev *ena_dev = ctx->ena_dev;
1071 	uint32_t max_tx_queue_size;
1072 	uint32_t max_rx_queue_size;
1073 
1074 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1075 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1076 			&ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
1077 		max_rx_queue_size = RTE_MIN(max_queue_ext->max_rx_cq_depth,
1078 			max_queue_ext->max_rx_sq_depth);
1079 		max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
1080 
1081 		if (ena_dev->tx_mem_queue_type ==
1082 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1083 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1084 				llq->max_llq_depth);
1085 		} else {
1086 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1087 				max_queue_ext->max_tx_sq_depth);
1088 		}
1089 
1090 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1091 			max_queue_ext->max_per_packet_rx_descs);
1092 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1093 			max_queue_ext->max_per_packet_tx_descs);
1094 	} else {
1095 		struct ena_admin_queue_feature_desc *max_queues =
1096 			&ctx->get_feat_ctx->max_queues;
1097 		max_rx_queue_size = RTE_MIN(max_queues->max_cq_depth,
1098 			max_queues->max_sq_depth);
1099 		max_tx_queue_size = max_queues->max_cq_depth;
1100 
1101 		if (ena_dev->tx_mem_queue_type ==
1102 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1103 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1104 				llq->max_llq_depth);
1105 		} else {
1106 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1107 				max_queues->max_sq_depth);
1108 		}
1109 
1110 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1111 			max_queues->max_packet_rx_descs);
1112 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1113 			max_queues->max_packet_tx_descs);
1114 	}
1115 
1116 	/* Round down to the nearest power of 2 */
1117 	max_rx_queue_size = rte_align32prevpow2(max_rx_queue_size);
1118 	max_tx_queue_size = rte_align32prevpow2(max_tx_queue_size);
1119 
1120 	if (use_large_llq_hdr) {
1121 		if ((llq->entry_size_ctrl_supported &
1122 		     ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
1123 		    (ena_dev->tx_mem_queue_type ==
1124 		     ENA_ADMIN_PLACEMENT_POLICY_DEV)) {
1125 			max_tx_queue_size /= 2;
1126 			PMD_INIT_LOG(INFO,
1127 				"Forcing large headers and decreasing maximum Tx queue size to %d\n",
1128 				max_tx_queue_size);
1129 		} else {
1130 			PMD_INIT_LOG(ERR,
1131 				"Forcing large headers failed: LLQ is disabled or device does not support large headers\n");
1132 		}
1133 	}
1134 
1135 	if (unlikely(max_rx_queue_size == 0 || max_tx_queue_size == 0)) {
1136 		PMD_INIT_LOG(ERR, "Invalid queue size\n");
1137 		return -EFAULT;
1138 	}
1139 
1140 	ctx->max_tx_queue_size = max_tx_queue_size;
1141 	ctx->max_rx_queue_size = max_rx_queue_size;
1142 
1143 	PMD_DRV_LOG(INFO, "tx queue size %u\n", max_tx_queue_size);
1144 	return 0;
1145 }
1146 
1147 static void ena_stats_restart(struct rte_eth_dev *dev)
1148 {
1149 	struct ena_adapter *adapter = dev->data->dev_private;
1150 
1151 	rte_atomic64_init(&adapter->drv_stats->ierrors);
1152 	rte_atomic64_init(&adapter->drv_stats->oerrors);
1153 	rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
1154 	adapter->drv_stats->rx_drops = 0;
1155 }
1156 
1157 static int ena_stats_get(struct rte_eth_dev *dev,
1158 			  struct rte_eth_stats *stats)
1159 {
1160 	struct ena_admin_basic_stats ena_stats;
1161 	struct ena_adapter *adapter = dev->data->dev_private;
1162 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1163 	int rc;
1164 	int i;
1165 	int max_rings_stats;
1166 
1167 	memset(&ena_stats, 0, sizeof(ena_stats));
1168 
1169 	rte_spinlock_lock(&adapter->admin_lock);
1170 	rc = ENA_PROXY(adapter, ena_com_get_dev_basic_stats, ena_dev,
1171 		       &ena_stats);
1172 	rte_spinlock_unlock(&adapter->admin_lock);
1173 	if (unlikely(rc)) {
1174 		PMD_DRV_LOG(ERR, "Could not retrieve statistics from ENA\n");
1175 		return rc;
1176 	}
1177 
1178 	/* Set of basic statistics from ENA */
1179 	stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
1180 					  ena_stats.rx_pkts_low);
1181 	stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
1182 					  ena_stats.tx_pkts_low);
1183 	stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
1184 					ena_stats.rx_bytes_low);
1185 	stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
1186 					ena_stats.tx_bytes_low);
1187 
1188 	/* Driver related stats */
1189 	stats->imissed = adapter->drv_stats->rx_drops;
1190 	stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
1191 	stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
1192 	stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
1193 
1194 	max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
1195 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
1196 	for (i = 0; i < max_rings_stats; ++i) {
1197 		struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
1198 
1199 		stats->q_ibytes[i] = rx_stats->bytes;
1200 		stats->q_ipackets[i] = rx_stats->cnt;
1201 		stats->q_errors[i] = rx_stats->bad_desc_num +
1202 			rx_stats->bad_req_id;
1203 	}
1204 
1205 	max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
1206 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
1207 	for (i = 0; i < max_rings_stats; ++i) {
1208 		struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
1209 
1210 		stats->q_obytes[i] = tx_stats->bytes;
1211 		stats->q_opackets[i] = tx_stats->cnt;
1212 	}
1213 
1214 	return 0;
1215 }
1216 
1217 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1218 {
1219 	struct ena_adapter *adapter;
1220 	struct ena_com_dev *ena_dev;
1221 	int rc = 0;
1222 
1223 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
1224 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
1225 	adapter = dev->data->dev_private;
1226 
1227 	ena_dev = &adapter->ena_dev;
1228 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
1229 
1230 	rc = ENA_PROXY(adapter, ena_com_set_dev_mtu, ena_dev, mtu);
1231 	if (rc)
1232 		PMD_DRV_LOG(ERR, "Could not set MTU: %d\n", mtu);
1233 	else
1234 		PMD_DRV_LOG(NOTICE, "MTU set to: %d\n", mtu);
1235 
1236 	return rc;
1237 }
1238 
1239 static int ena_start(struct rte_eth_dev *dev)
1240 {
1241 	struct ena_adapter *adapter = dev->data->dev_private;
1242 	uint64_t ticks;
1243 	int rc = 0;
1244 	uint16_t i;
1245 
1246 	/* Cannot allocate memory in secondary process */
1247 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1248 		PMD_DRV_LOG(WARNING, "dev_start not supported in secondary.\n");
1249 		return -EPERM;
1250 	}
1251 
1252 	rc = ena_setup_rx_intr(dev);
1253 	if (rc)
1254 		return rc;
1255 
1256 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
1257 	if (rc)
1258 		return rc;
1259 
1260 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
1261 	if (rc)
1262 		goto err_start_tx;
1263 
1264 	if (adapter->edev_data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG) {
1265 		rc = ena_rss_configure(adapter);
1266 		if (rc)
1267 			goto err_rss_init;
1268 	}
1269 
1270 	ena_stats_restart(dev);
1271 
1272 	adapter->timestamp_wd = rte_get_timer_cycles();
1273 	adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
1274 
1275 	ticks = rte_get_timer_hz();
1276 	rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
1277 			ena_timer_wd_callback, dev);
1278 
1279 	++adapter->dev_stats.dev_start;
1280 	adapter->state = ENA_ADAPTER_STATE_RUNNING;
1281 
1282 	for (i = 0; i < dev->data->nb_rx_queues; i++)
1283 		dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
1284 	for (i = 0; i < dev->data->nb_tx_queues; i++)
1285 		dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
1286 
1287 	return 0;
1288 
1289 err_rss_init:
1290 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1291 err_start_tx:
1292 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1293 	return rc;
1294 }
1295 
1296 static int ena_stop(struct rte_eth_dev *dev)
1297 {
1298 	struct ena_adapter *adapter = dev->data->dev_private;
1299 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1300 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1301 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
1302 	uint16_t i;
1303 	int rc;
1304 
1305 	/* Cannot free memory in secondary process */
1306 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1307 		PMD_DRV_LOG(WARNING, "dev_stop not supported in secondary.\n");
1308 		return -EPERM;
1309 	}
1310 
1311 	rte_timer_stop_sync(&adapter->timer_wd);
1312 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1313 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1314 
1315 	if (adapter->trigger_reset) {
1316 		rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
1317 		if (rc)
1318 			PMD_DRV_LOG(ERR, "Device reset failed, rc: %d\n", rc);
1319 	}
1320 
1321 	rte_intr_disable(intr_handle);
1322 
1323 	rte_intr_efd_disable(intr_handle);
1324 
1325 	/* Cleanup vector list */
1326 	rte_intr_vec_list_free(intr_handle);
1327 
1328 	rte_intr_enable(intr_handle);
1329 
1330 	++adapter->dev_stats.dev_stop;
1331 	adapter->state = ENA_ADAPTER_STATE_STOPPED;
1332 	dev->data->dev_started = 0;
1333 
1334 	for (i = 0; i < dev->data->nb_rx_queues; i++)
1335 		dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
1336 	for (i = 0; i < dev->data->nb_tx_queues; i++)
1337 		dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
1338 
1339 	return 0;
1340 }
1341 
1342 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring)
1343 {
1344 	struct ena_adapter *adapter = ring->adapter;
1345 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1346 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1347 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
1348 	struct ena_com_create_io_ctx ctx =
1349 		/* policy set to _HOST just to satisfy icc compiler */
1350 		{ ENA_ADMIN_PLACEMENT_POLICY_HOST,
1351 		  0, 0, 0, 0, 0 };
1352 	uint16_t ena_qid;
1353 	unsigned int i;
1354 	int rc;
1355 
1356 	ctx.msix_vector = -1;
1357 	if (ring->type == ENA_RING_TYPE_TX) {
1358 		ena_qid = ENA_IO_TXQ_IDX(ring->id);
1359 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1360 		ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1361 		for (i = 0; i < ring->ring_size; i++)
1362 			ring->empty_tx_reqs[i] = i;
1363 	} else {
1364 		ena_qid = ENA_IO_RXQ_IDX(ring->id);
1365 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1366 		if (rte_intr_dp_is_en(intr_handle))
1367 			ctx.msix_vector =
1368 				rte_intr_vec_list_index_get(intr_handle,
1369 								   ring->id);
1370 
1371 		for (i = 0; i < ring->ring_size; i++)
1372 			ring->empty_rx_reqs[i] = i;
1373 	}
1374 	ctx.queue_size = ring->ring_size;
1375 	ctx.qid = ena_qid;
1376 	ctx.numa_node = ring->numa_socket_id;
1377 
1378 	rc = ena_com_create_io_queue(ena_dev, &ctx);
1379 	if (rc) {
1380 		PMD_DRV_LOG(ERR,
1381 			"Failed to create IO queue[%d] (qid:%d), rc: %d\n",
1382 			ring->id, ena_qid, rc);
1383 		return rc;
1384 	}
1385 
1386 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1387 				     &ring->ena_com_io_sq,
1388 				     &ring->ena_com_io_cq);
1389 	if (rc) {
1390 		PMD_DRV_LOG(ERR,
1391 			"Failed to get IO queue[%d] handlers, rc: %d\n",
1392 			ring->id, rc);
1393 		ena_com_destroy_io_queue(ena_dev, ena_qid);
1394 		return rc;
1395 	}
1396 
1397 	if (ring->type == ENA_RING_TYPE_TX)
1398 		ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1399 
1400 	/* Start with Rx interrupts being masked. */
1401 	if (ring->type == ENA_RING_TYPE_RX && rte_intr_dp_is_en(intr_handle))
1402 		ena_rx_queue_intr_disable(dev, ring->id);
1403 
1404 	return 0;
1405 }
1406 
1407 static void ena_queue_stop(struct ena_ring *ring)
1408 {
1409 	struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
1410 
1411 	if (ring->type == ENA_RING_TYPE_RX) {
1412 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
1413 		ena_rx_queue_release_bufs(ring);
1414 	} else {
1415 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
1416 		ena_tx_queue_release_bufs(ring);
1417 	}
1418 }
1419 
1420 static void ena_queue_stop_all(struct rte_eth_dev *dev,
1421 			      enum ena_ring_type ring_type)
1422 {
1423 	struct ena_adapter *adapter = dev->data->dev_private;
1424 	struct ena_ring *queues = NULL;
1425 	uint16_t nb_queues, i;
1426 
1427 	if (ring_type == ENA_RING_TYPE_RX) {
1428 		queues = adapter->rx_ring;
1429 		nb_queues = dev->data->nb_rx_queues;
1430 	} else {
1431 		queues = adapter->tx_ring;
1432 		nb_queues = dev->data->nb_tx_queues;
1433 	}
1434 
1435 	for (i = 0; i < nb_queues; ++i)
1436 		if (queues[i].configured)
1437 			ena_queue_stop(&queues[i]);
1438 }
1439 
1440 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring)
1441 {
1442 	int rc, bufs_num;
1443 
1444 	ena_assert_msg(ring->configured == 1,
1445 		       "Trying to start unconfigured queue\n");
1446 
1447 	rc = ena_create_io_queue(dev, ring);
1448 	if (rc) {
1449 		PMD_INIT_LOG(ERR, "Failed to create IO queue\n");
1450 		return rc;
1451 	}
1452 
1453 	ring->next_to_clean = 0;
1454 	ring->next_to_use = 0;
1455 
1456 	if (ring->type == ENA_RING_TYPE_TX) {
1457 		ring->tx_stats.available_desc =
1458 			ena_com_free_q_entries(ring->ena_com_io_sq);
1459 		return 0;
1460 	}
1461 
1462 	bufs_num = ring->ring_size - 1;
1463 	rc = ena_populate_rx_queue(ring, bufs_num);
1464 	if (rc != bufs_num) {
1465 		ena_com_destroy_io_queue(&ring->adapter->ena_dev,
1466 					 ENA_IO_RXQ_IDX(ring->id));
1467 		PMD_INIT_LOG(ERR, "Failed to populate Rx ring\n");
1468 		return ENA_COM_FAULT;
1469 	}
1470 	/* Flush per-core RX buffers pools cache as they can be used on other
1471 	 * cores as well.
1472 	 */
1473 	rte_mempool_cache_flush(NULL, ring->mb_pool);
1474 
1475 	return 0;
1476 }
1477 
1478 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1479 			      uint16_t queue_idx,
1480 			      uint16_t nb_desc,
1481 			      unsigned int socket_id,
1482 			      const struct rte_eth_txconf *tx_conf)
1483 {
1484 	struct ena_ring *txq = NULL;
1485 	struct ena_adapter *adapter = dev->data->dev_private;
1486 	unsigned int i;
1487 	uint16_t dyn_thresh;
1488 
1489 	txq = &adapter->tx_ring[queue_idx];
1490 
1491 	if (txq->configured) {
1492 		PMD_DRV_LOG(CRIT,
1493 			"API violation. Queue[%d] is already configured\n",
1494 			queue_idx);
1495 		return ENA_COM_FAULT;
1496 	}
1497 
1498 	if (!rte_is_power_of_2(nb_desc)) {
1499 		PMD_DRV_LOG(ERR,
1500 			"Unsupported size of Tx queue: %d is not a power of 2.\n",
1501 			nb_desc);
1502 		return -EINVAL;
1503 	}
1504 
1505 	if (nb_desc > adapter->max_tx_ring_size) {
1506 		PMD_DRV_LOG(ERR,
1507 			"Unsupported size of Tx queue (max size: %d)\n",
1508 			adapter->max_tx_ring_size);
1509 		return -EINVAL;
1510 	}
1511 
1512 	txq->port_id = dev->data->port_id;
1513 	txq->next_to_clean = 0;
1514 	txq->next_to_use = 0;
1515 	txq->ring_size = nb_desc;
1516 	txq->size_mask = nb_desc - 1;
1517 	txq->numa_socket_id = socket_id;
1518 	txq->pkts_without_db = false;
1519 	txq->last_cleanup_ticks = 0;
1520 
1521 	txq->tx_buffer_info = rte_zmalloc_socket("txq->tx_buffer_info",
1522 		sizeof(struct ena_tx_buffer) * txq->ring_size,
1523 		RTE_CACHE_LINE_SIZE,
1524 		socket_id);
1525 	if (!txq->tx_buffer_info) {
1526 		PMD_DRV_LOG(ERR,
1527 			"Failed to allocate memory for Tx buffer info\n");
1528 		return -ENOMEM;
1529 	}
1530 
1531 	txq->empty_tx_reqs = rte_zmalloc_socket("txq->empty_tx_reqs",
1532 		sizeof(uint16_t) * txq->ring_size,
1533 		RTE_CACHE_LINE_SIZE,
1534 		socket_id);
1535 	if (!txq->empty_tx_reqs) {
1536 		PMD_DRV_LOG(ERR,
1537 			"Failed to allocate memory for empty Tx requests\n");
1538 		rte_free(txq->tx_buffer_info);
1539 		return -ENOMEM;
1540 	}
1541 
1542 	txq->push_buf_intermediate_buf =
1543 		rte_zmalloc_socket("txq->push_buf_intermediate_buf",
1544 			txq->tx_max_header_size,
1545 			RTE_CACHE_LINE_SIZE,
1546 			socket_id);
1547 	if (!txq->push_buf_intermediate_buf) {
1548 		PMD_DRV_LOG(ERR, "Failed to alloc push buffer for LLQ\n");
1549 		rte_free(txq->tx_buffer_info);
1550 		rte_free(txq->empty_tx_reqs);
1551 		return -ENOMEM;
1552 	}
1553 
1554 	for (i = 0; i < txq->ring_size; i++)
1555 		txq->empty_tx_reqs[i] = i;
1556 
1557 	txq->offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1558 
1559 	/* Check if caller provided the Tx cleanup threshold value. */
1560 	if (tx_conf->tx_free_thresh != 0) {
1561 		txq->tx_free_thresh = tx_conf->tx_free_thresh;
1562 	} else {
1563 		dyn_thresh = txq->ring_size -
1564 			txq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1565 		txq->tx_free_thresh = RTE_MAX(dyn_thresh,
1566 			txq->ring_size - ENA_REFILL_THRESH_PACKET);
1567 	}
1568 
1569 	txq->missing_tx_completion_threshold =
1570 		RTE_MIN(txq->ring_size / 2, ENA_DEFAULT_MISSING_COMP);
1571 
1572 	/* Store pointer to this queue in upper layer */
1573 	txq->configured = 1;
1574 	dev->data->tx_queues[queue_idx] = txq;
1575 
1576 	return 0;
1577 }
1578 
1579 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1580 			      uint16_t queue_idx,
1581 			      uint16_t nb_desc,
1582 			      unsigned int socket_id,
1583 			      const struct rte_eth_rxconf *rx_conf,
1584 			      struct rte_mempool *mp)
1585 {
1586 	struct ena_adapter *adapter = dev->data->dev_private;
1587 	struct ena_ring *rxq = NULL;
1588 	size_t buffer_size;
1589 	int i;
1590 	uint16_t dyn_thresh;
1591 
1592 	rxq = &adapter->rx_ring[queue_idx];
1593 	if (rxq->configured) {
1594 		PMD_DRV_LOG(CRIT,
1595 			"API violation. Queue[%d] is already configured\n",
1596 			queue_idx);
1597 		return ENA_COM_FAULT;
1598 	}
1599 
1600 	if (!rte_is_power_of_2(nb_desc)) {
1601 		PMD_DRV_LOG(ERR,
1602 			"Unsupported size of Rx queue: %d is not a power of 2.\n",
1603 			nb_desc);
1604 		return -EINVAL;
1605 	}
1606 
1607 	if (nb_desc > adapter->max_rx_ring_size) {
1608 		PMD_DRV_LOG(ERR,
1609 			"Unsupported size of Rx queue (max size: %d)\n",
1610 			adapter->max_rx_ring_size);
1611 		return -EINVAL;
1612 	}
1613 
1614 	/* ENA isn't supporting buffers smaller than 1400 bytes */
1615 	buffer_size = rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
1616 	if (buffer_size < ENA_RX_BUF_MIN_SIZE) {
1617 		PMD_DRV_LOG(ERR,
1618 			"Unsupported size of Rx buffer: %zu (min size: %d)\n",
1619 			buffer_size, ENA_RX_BUF_MIN_SIZE);
1620 		return -EINVAL;
1621 	}
1622 
1623 	rxq->port_id = dev->data->port_id;
1624 	rxq->next_to_clean = 0;
1625 	rxq->next_to_use = 0;
1626 	rxq->ring_size = nb_desc;
1627 	rxq->size_mask = nb_desc - 1;
1628 	rxq->numa_socket_id = socket_id;
1629 	rxq->mb_pool = mp;
1630 
1631 	rxq->rx_buffer_info = rte_zmalloc_socket("rxq->buffer_info",
1632 		sizeof(struct ena_rx_buffer) * nb_desc,
1633 		RTE_CACHE_LINE_SIZE,
1634 		socket_id);
1635 	if (!rxq->rx_buffer_info) {
1636 		PMD_DRV_LOG(ERR,
1637 			"Failed to allocate memory for Rx buffer info\n");
1638 		return -ENOMEM;
1639 	}
1640 
1641 	rxq->rx_refill_buffer = rte_zmalloc_socket("rxq->rx_refill_buffer",
1642 		sizeof(struct rte_mbuf *) * nb_desc,
1643 		RTE_CACHE_LINE_SIZE,
1644 		socket_id);
1645 	if (!rxq->rx_refill_buffer) {
1646 		PMD_DRV_LOG(ERR,
1647 			"Failed to allocate memory for Rx refill buffer\n");
1648 		rte_free(rxq->rx_buffer_info);
1649 		rxq->rx_buffer_info = NULL;
1650 		return -ENOMEM;
1651 	}
1652 
1653 	rxq->empty_rx_reqs = rte_zmalloc_socket("rxq->empty_rx_reqs",
1654 		sizeof(uint16_t) * nb_desc,
1655 		RTE_CACHE_LINE_SIZE,
1656 		socket_id);
1657 	if (!rxq->empty_rx_reqs) {
1658 		PMD_DRV_LOG(ERR,
1659 			"Failed to allocate memory for empty Rx requests\n");
1660 		rte_free(rxq->rx_buffer_info);
1661 		rxq->rx_buffer_info = NULL;
1662 		rte_free(rxq->rx_refill_buffer);
1663 		rxq->rx_refill_buffer = NULL;
1664 		return -ENOMEM;
1665 	}
1666 
1667 	for (i = 0; i < nb_desc; i++)
1668 		rxq->empty_rx_reqs[i] = i;
1669 
1670 	rxq->offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1671 
1672 	if (rx_conf->rx_free_thresh != 0) {
1673 		rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1674 	} else {
1675 		dyn_thresh = rxq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1676 		rxq->rx_free_thresh = RTE_MIN(dyn_thresh,
1677 			(uint16_t)(ENA_REFILL_THRESH_PACKET));
1678 	}
1679 
1680 	/* Store pointer to this queue in upper layer */
1681 	rxq->configured = 1;
1682 	dev->data->rx_queues[queue_idx] = rxq;
1683 
1684 	return 0;
1685 }
1686 
1687 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
1688 				  struct rte_mbuf *mbuf, uint16_t id)
1689 {
1690 	struct ena_com_buf ebuf;
1691 	int rc;
1692 
1693 	/* prepare physical address for DMA transaction */
1694 	ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1695 	ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1696 
1697 	/* pass resource to device */
1698 	rc = ena_com_add_single_rx_desc(io_sq, &ebuf, id);
1699 	if (unlikely(rc != 0))
1700 		PMD_RX_LOG(WARNING, "Failed adding Rx desc\n");
1701 
1702 	return rc;
1703 }
1704 
1705 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1706 {
1707 	unsigned int i;
1708 	int rc;
1709 	uint16_t next_to_use = rxq->next_to_use;
1710 	uint16_t req_id;
1711 #ifdef RTE_ETHDEV_DEBUG_RX
1712 	uint16_t in_use;
1713 #endif
1714 	struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1715 
1716 	if (unlikely(!count))
1717 		return 0;
1718 
1719 #ifdef RTE_ETHDEV_DEBUG_RX
1720 	in_use = rxq->ring_size - 1 -
1721 		ena_com_free_q_entries(rxq->ena_com_io_sq);
1722 	if (unlikely((in_use + count) >= rxq->ring_size))
1723 		PMD_RX_LOG(ERR, "Bad Rx ring state\n");
1724 #endif
1725 
1726 	/* get resources for incoming packets */
1727 	rc = rte_pktmbuf_alloc_bulk(rxq->mb_pool, mbufs, count);
1728 	if (unlikely(rc < 0)) {
1729 		rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1730 		++rxq->rx_stats.mbuf_alloc_fail;
1731 		PMD_RX_LOG(DEBUG, "There are not enough free buffers\n");
1732 		return 0;
1733 	}
1734 
1735 	for (i = 0; i < count; i++) {
1736 		struct rte_mbuf *mbuf = mbufs[i];
1737 		struct ena_rx_buffer *rx_info;
1738 
1739 		if (likely((i + 4) < count))
1740 			rte_prefetch0(mbufs[i + 4]);
1741 
1742 		req_id = rxq->empty_rx_reqs[next_to_use];
1743 		rx_info = &rxq->rx_buffer_info[req_id];
1744 
1745 		rc = ena_add_single_rx_desc(rxq->ena_com_io_sq, mbuf, req_id);
1746 		if (unlikely(rc != 0))
1747 			break;
1748 
1749 		rx_info->mbuf = mbuf;
1750 		next_to_use = ENA_IDX_NEXT_MASKED(next_to_use, rxq->size_mask);
1751 	}
1752 
1753 	if (unlikely(i < count)) {
1754 		PMD_RX_LOG(WARNING,
1755 			"Refilled Rx queue[%d] with only %d/%d buffers\n",
1756 			rxq->id, i, count);
1757 		rte_pktmbuf_free_bulk(&mbufs[i], count - i);
1758 		++rxq->rx_stats.refill_partial;
1759 	}
1760 
1761 	/* When we submitted free resources to device... */
1762 	if (likely(i > 0)) {
1763 		/* ...let HW know that it can fill buffers with data. */
1764 		ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1765 
1766 		rxq->next_to_use = next_to_use;
1767 	}
1768 
1769 	return i;
1770 }
1771 
1772 static size_t ena_get_metrics_entries(struct ena_adapter *adapter)
1773 {
1774 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1775 	size_t metrics_num = 0;
1776 
1777 	if (ena_com_get_cap(ena_dev, ENA_ADMIN_CUSTOMER_METRICS))
1778 		metrics_num = ENA_STATS_ARRAY_METRICS;
1779 	else if (ena_com_get_cap(ena_dev, ENA_ADMIN_ENI_STATS))
1780 		metrics_num = ENA_STATS_ARRAY_METRICS_LEGACY;
1781 	PMD_DRV_LOG(NOTICE, "0x%x customer metrics are supported\n", (unsigned int)metrics_num);
1782 	if (metrics_num > ENA_MAX_CUSTOMER_METRICS) {
1783 		PMD_DRV_LOG(NOTICE, "Not enough space for the requested customer metrics\n");
1784 		metrics_num = ENA_MAX_CUSTOMER_METRICS;
1785 	}
1786 	return metrics_num;
1787 }
1788 
1789 static int ena_device_init(struct ena_adapter *adapter,
1790 			   struct rte_pci_device *pdev,
1791 			   struct ena_com_dev_get_features_ctx *get_feat_ctx)
1792 {
1793 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1794 	uint32_t aenq_groups;
1795 	int rc;
1796 	bool readless_supported;
1797 
1798 	/* Initialize mmio registers */
1799 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
1800 	if (rc) {
1801 		PMD_DRV_LOG(ERR, "Failed to init MMIO read less\n");
1802 		return rc;
1803 	}
1804 
1805 	/* The PCIe configuration space revision id indicate if mmio reg
1806 	 * read is disabled.
1807 	 */
1808 	readless_supported = !(pdev->id.class_id & ENA_MMIO_DISABLE_REG_READ);
1809 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1810 
1811 	/* reset device */
1812 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1813 	if (rc) {
1814 		PMD_DRV_LOG(ERR, "Cannot reset device\n");
1815 		goto err_mmio_read_less;
1816 	}
1817 
1818 	/* check FW version */
1819 	rc = ena_com_validate_version(ena_dev);
1820 	if (rc) {
1821 		PMD_DRV_LOG(ERR, "Device version is too low\n");
1822 		goto err_mmio_read_less;
1823 	}
1824 
1825 	ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1826 
1827 	/* ENA device administration layer init */
1828 	rc = ena_com_admin_init(ena_dev, &aenq_handlers);
1829 	if (rc) {
1830 		PMD_DRV_LOG(ERR,
1831 			"Cannot initialize ENA admin queue\n");
1832 		goto err_mmio_read_less;
1833 	}
1834 
1835 	/* To enable the msix interrupts the driver needs to know the number
1836 	 * of queues. So the driver uses polling mode to retrieve this
1837 	 * information.
1838 	 */
1839 	ena_com_set_admin_polling_mode(ena_dev, true);
1840 
1841 	ena_config_host_info(ena_dev);
1842 
1843 	/* Get Device Attributes and features */
1844 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1845 	if (rc) {
1846 		PMD_DRV_LOG(ERR,
1847 			"Cannot get attribute for ENA device, rc: %d\n", rc);
1848 		goto err_admin_init;
1849 	}
1850 
1851 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1852 		      BIT(ENA_ADMIN_NOTIFICATION) |
1853 		      BIT(ENA_ADMIN_KEEP_ALIVE) |
1854 		      BIT(ENA_ADMIN_FATAL_ERROR) |
1855 		      BIT(ENA_ADMIN_WARNING) |
1856 		      BIT(ENA_ADMIN_CONF_NOTIFICATIONS);
1857 
1858 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
1859 
1860 	adapter->all_aenq_groups = aenq_groups;
1861 	/* The actual supported number of metrics is negotiated with the device at runtime */
1862 	adapter->metrics_num = ena_get_metrics_entries(adapter);
1863 
1864 	return 0;
1865 
1866 err_admin_init:
1867 	ena_com_admin_destroy(ena_dev);
1868 
1869 err_mmio_read_less:
1870 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1871 
1872 	return rc;
1873 }
1874 
1875 static void ena_interrupt_handler_rte(void *cb_arg)
1876 {
1877 	struct rte_eth_dev *dev = cb_arg;
1878 	struct ena_adapter *adapter = dev->data->dev_private;
1879 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1880 
1881 	ena_com_admin_q_comp_intr_handler(ena_dev);
1882 	if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED))
1883 		ena_com_aenq_intr_handler(ena_dev, dev);
1884 }
1885 
1886 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1887 {
1888 	if (!(adapter->active_aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE)))
1889 		return;
1890 
1891 	if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1892 		return;
1893 
1894 	if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1895 	    adapter->keep_alive_timeout)) {
1896 		PMD_DRV_LOG(ERR, "Keep alive timeout\n");
1897 		ena_trigger_reset(adapter, ENA_REGS_RESET_KEEP_ALIVE_TO);
1898 		++adapter->dev_stats.wd_expired;
1899 	}
1900 }
1901 
1902 /* Check if admin queue is enabled */
1903 static void check_for_admin_com_state(struct ena_adapter *adapter)
1904 {
1905 	if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1906 		PMD_DRV_LOG(ERR, "ENA admin queue is not in running state\n");
1907 		ena_trigger_reset(adapter, ENA_REGS_RESET_ADMIN_TO);
1908 	}
1909 }
1910 
1911 static int check_for_tx_completion_in_queue(struct ena_adapter *adapter,
1912 					    struct ena_ring *tx_ring)
1913 {
1914 	struct ena_tx_buffer *tx_buf;
1915 	uint64_t timestamp;
1916 	uint64_t completion_delay;
1917 	uint32_t missed_tx = 0;
1918 	unsigned int i;
1919 	int rc = 0;
1920 
1921 	for (i = 0; i < tx_ring->ring_size; ++i) {
1922 		tx_buf = &tx_ring->tx_buffer_info[i];
1923 		timestamp = tx_buf->timestamp;
1924 
1925 		if (timestamp == 0)
1926 			continue;
1927 
1928 		completion_delay = rte_get_timer_cycles() - timestamp;
1929 		if (completion_delay > adapter->missing_tx_completion_to) {
1930 			if (unlikely(!tx_buf->print_once)) {
1931 				PMD_TX_LOG(WARNING,
1932 					"Found a Tx that wasn't completed on time, qid %d, index %d. "
1933 					"Missing Tx outstanding for %" PRIu64 " msecs.\n",
1934 					tx_ring->id, i,	completion_delay /
1935 					rte_get_timer_hz() * 1000);
1936 				tx_buf->print_once = true;
1937 			}
1938 			++missed_tx;
1939 		}
1940 	}
1941 
1942 	if (unlikely(missed_tx > tx_ring->missing_tx_completion_threshold)) {
1943 		PMD_DRV_LOG(ERR,
1944 			"The number of lost Tx completions is above the threshold (%d > %d). "
1945 			"Trigger the device reset.\n",
1946 			missed_tx,
1947 			tx_ring->missing_tx_completion_threshold);
1948 		adapter->reset_reason = ENA_REGS_RESET_MISS_TX_CMPL;
1949 		adapter->trigger_reset = true;
1950 		rc = -EIO;
1951 	}
1952 
1953 	tx_ring->tx_stats.missed_tx += missed_tx;
1954 
1955 	return rc;
1956 }
1957 
1958 static void check_for_tx_completions(struct ena_adapter *adapter)
1959 {
1960 	struct ena_ring *tx_ring;
1961 	uint64_t tx_cleanup_delay;
1962 	size_t qid;
1963 	int budget;
1964 	uint16_t nb_tx_queues = adapter->edev_data->nb_tx_queues;
1965 
1966 	if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT)
1967 		return;
1968 
1969 	nb_tx_queues = adapter->edev_data->nb_tx_queues;
1970 	budget = adapter->missing_tx_completion_budget;
1971 
1972 	qid = adapter->last_tx_comp_qid;
1973 	while (budget-- > 0) {
1974 		tx_ring = &adapter->tx_ring[qid];
1975 
1976 		/* Tx cleanup is called only by the burst function and can be
1977 		 * called dynamically by the application. Also cleanup is
1978 		 * limited by the threshold. To avoid false detection of the
1979 		 * missing HW Tx completion, get the delay since last cleanup
1980 		 * function was called.
1981 		 */
1982 		tx_cleanup_delay = rte_get_timer_cycles() -
1983 			tx_ring->last_cleanup_ticks;
1984 		if (tx_cleanup_delay < adapter->tx_cleanup_stall_delay)
1985 			check_for_tx_completion_in_queue(adapter, tx_ring);
1986 		qid = (qid + 1) % nb_tx_queues;
1987 	}
1988 
1989 	adapter->last_tx_comp_qid = qid;
1990 }
1991 
1992 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
1993 				  void *arg)
1994 {
1995 	struct rte_eth_dev *dev = arg;
1996 	struct ena_adapter *adapter = dev->data->dev_private;
1997 
1998 	if (unlikely(adapter->trigger_reset))
1999 		return;
2000 
2001 	check_for_missing_keep_alive(adapter);
2002 	check_for_admin_com_state(adapter);
2003 	check_for_tx_completions(adapter);
2004 
2005 	if (unlikely(adapter->trigger_reset)) {
2006 		PMD_DRV_LOG(ERR, "Trigger reset is on\n");
2007 		rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
2008 			NULL);
2009 	}
2010 }
2011 
2012 static inline void
2013 set_default_llq_configurations(struct ena_llq_configurations *llq_config,
2014 			       struct ena_admin_feature_llq_desc *llq,
2015 			       bool use_large_llq_hdr)
2016 {
2017 	llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
2018 	llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
2019 	llq_config->llq_num_decs_before_header =
2020 		ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
2021 
2022 	if (use_large_llq_hdr &&
2023 	    (llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B)) {
2024 		llq_config->llq_ring_entry_size =
2025 			ENA_ADMIN_LIST_ENTRY_SIZE_256B;
2026 		llq_config->llq_ring_entry_size_value = 256;
2027 	} else {
2028 		llq_config->llq_ring_entry_size =
2029 			ENA_ADMIN_LIST_ENTRY_SIZE_128B;
2030 		llq_config->llq_ring_entry_size_value = 128;
2031 	}
2032 }
2033 
2034 static int
2035 ena_set_queues_placement_policy(struct ena_adapter *adapter,
2036 				struct ena_com_dev *ena_dev,
2037 				struct ena_admin_feature_llq_desc *llq,
2038 				struct ena_llq_configurations *llq_default_configurations)
2039 {
2040 	int rc;
2041 	u32 llq_feature_mask;
2042 
2043 	if (adapter->llq_header_policy == ENA_LLQ_POLICY_DISABLED) {
2044 		PMD_DRV_LOG(WARNING,
2045 			"NOTE: LLQ has been disabled as per user's request. "
2046 			"This may lead to a huge performance degradation!\n");
2047 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
2048 		return 0;
2049 	}
2050 
2051 	llq_feature_mask = 1 << ENA_ADMIN_LLQ;
2052 	if (!(ena_dev->supported_features & llq_feature_mask)) {
2053 		PMD_DRV_LOG(INFO,
2054 			"LLQ is not supported. Fallback to host mode policy.\n");
2055 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
2056 		return 0;
2057 	}
2058 
2059 	if (adapter->dev_mem_base == NULL) {
2060 		PMD_DRV_LOG(ERR,
2061 			"LLQ is advertised as supported, but device doesn't expose mem bar\n");
2062 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
2063 		return 0;
2064 	}
2065 
2066 	rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
2067 	if (unlikely(rc)) {
2068 		PMD_INIT_LOG(WARNING,
2069 			"Failed to config dev mode. Fallback to host mode policy.\n");
2070 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
2071 		return 0;
2072 	}
2073 
2074 	/* Nothing to config, exit */
2075 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
2076 		return 0;
2077 
2078 	ena_dev->mem_bar = adapter->dev_mem_base;
2079 
2080 	return 0;
2081 }
2082 
2083 static uint32_t ena_calc_max_io_queue_num(struct ena_com_dev *ena_dev,
2084 	struct ena_com_dev_get_features_ctx *get_feat_ctx)
2085 {
2086 	uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
2087 
2088 	/* Regular queues capabilities */
2089 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
2090 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
2091 			&get_feat_ctx->max_queue_ext.max_queue_ext;
2092 		io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
2093 				    max_queue_ext->max_rx_cq_num);
2094 		io_tx_sq_num = max_queue_ext->max_tx_sq_num;
2095 		io_tx_cq_num = max_queue_ext->max_tx_cq_num;
2096 	} else {
2097 		struct ena_admin_queue_feature_desc *max_queues =
2098 			&get_feat_ctx->max_queues;
2099 		io_tx_sq_num = max_queues->max_sq_num;
2100 		io_tx_cq_num = max_queues->max_cq_num;
2101 		io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
2102 	}
2103 
2104 	/* In case of LLQ use the llq number in the get feature cmd */
2105 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
2106 		io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
2107 
2108 	max_num_io_queues = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
2109 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_sq_num);
2110 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_cq_num);
2111 
2112 	if (unlikely(max_num_io_queues == 0)) {
2113 		PMD_DRV_LOG(ERR, "Number of IO queues cannot not be 0\n");
2114 		return -EFAULT;
2115 	}
2116 
2117 	return max_num_io_queues;
2118 }
2119 
2120 static void
2121 ena_set_offloads(struct ena_offloads *offloads,
2122 		 struct ena_admin_feature_offload_desc *offload_desc)
2123 {
2124 	if (offload_desc->tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK)
2125 		offloads->tx_offloads |= ENA_IPV4_TSO;
2126 
2127 	/* Tx IPv4 checksum offloads */
2128 	if (offload_desc->tx &
2129 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)
2130 		offloads->tx_offloads |= ENA_L3_IPV4_CSUM;
2131 	if (offload_desc->tx &
2132 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK)
2133 		offloads->tx_offloads |= ENA_L4_IPV4_CSUM;
2134 	if (offload_desc->tx &
2135 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)
2136 		offloads->tx_offloads |= ENA_L4_IPV4_CSUM_PARTIAL;
2137 
2138 	/* Tx IPv6 checksum offloads */
2139 	if (offload_desc->tx &
2140 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK)
2141 		offloads->tx_offloads |= ENA_L4_IPV6_CSUM;
2142 	if (offload_desc->tx &
2143 	     ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)
2144 		offloads->tx_offloads |= ENA_L4_IPV6_CSUM_PARTIAL;
2145 
2146 	/* Rx IPv4 checksum offloads */
2147 	if (offload_desc->rx_supported &
2148 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)
2149 		offloads->rx_offloads |= ENA_L3_IPV4_CSUM;
2150 	if (offload_desc->rx_supported &
2151 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK)
2152 		offloads->rx_offloads |= ENA_L4_IPV4_CSUM;
2153 
2154 	/* Rx IPv6 checksum offloads */
2155 	if (offload_desc->rx_supported &
2156 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK)
2157 		offloads->rx_offloads |= ENA_L4_IPV6_CSUM;
2158 
2159 	if (offload_desc->rx_supported &
2160 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_HASH_MASK)
2161 		offloads->rx_offloads |= ENA_RX_RSS_HASH;
2162 }
2163 
2164 static int ena_init_once(void)
2165 {
2166 	static bool init_done;
2167 
2168 	if (init_done)
2169 		return 0;
2170 
2171 	if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
2172 		/* Init timer subsystem for the ENA timer service. */
2173 		rte_timer_subsystem_init();
2174 		/* Register handler for requests from secondary processes. */
2175 		rte_mp_action_register(ENA_MP_NAME, ena_mp_primary_handle);
2176 	}
2177 
2178 	init_done = true;
2179 	return 0;
2180 }
2181 
2182 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
2183 {
2184 	struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
2185 	struct rte_pci_device *pci_dev;
2186 	struct rte_intr_handle *intr_handle;
2187 	struct ena_adapter *adapter = eth_dev->data->dev_private;
2188 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
2189 	struct ena_com_dev_get_features_ctx get_feat_ctx;
2190 	struct ena_llq_configurations llq_config;
2191 	const char *queue_type_str;
2192 	uint32_t max_num_io_queues;
2193 	int rc;
2194 	static int adapters_found;
2195 	bool disable_meta_caching;
2196 
2197 	eth_dev->dev_ops = &ena_dev_ops;
2198 	eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
2199 	eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
2200 	eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
2201 
2202 	rc = ena_init_once();
2203 	if (rc != 0)
2204 		return rc;
2205 
2206 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2207 		return 0;
2208 
2209 	eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
2210 
2211 	memset(adapter, 0, sizeof(struct ena_adapter));
2212 	ena_dev = &adapter->ena_dev;
2213 
2214 	adapter->edev_data = eth_dev->data;
2215 
2216 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2217 
2218 	PMD_INIT_LOG(INFO, "Initializing " PCI_PRI_FMT "\n",
2219 		     pci_dev->addr.domain,
2220 		     pci_dev->addr.bus,
2221 		     pci_dev->addr.devid,
2222 		     pci_dev->addr.function);
2223 
2224 	intr_handle = pci_dev->intr_handle;
2225 
2226 	adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
2227 	adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
2228 
2229 	if (!adapter->regs) {
2230 		PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)\n",
2231 			     ENA_REGS_BAR);
2232 		return -ENXIO;
2233 	}
2234 
2235 	ena_dev->reg_bar = adapter->regs;
2236 	/* Pass device data as a pointer which can be passed to the IO functions
2237 	 * by the ena_com (for example - the memory allocation).
2238 	 */
2239 	ena_dev->dmadev = eth_dev->data;
2240 
2241 	adapter->id_number = adapters_found;
2242 
2243 	snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
2244 		 adapter->id_number);
2245 
2246 	/* Assign default devargs values */
2247 	adapter->missing_tx_completion_to = ENA_TX_TIMEOUT;
2248 	adapter->enable_llq = true;
2249 	adapter->use_large_llq_hdr = false;
2250 	adapter->use_normal_llq_hdr = false;
2251 
2252 	/* Get user bypass */
2253 	rc = ena_parse_devargs(adapter, pci_dev->device.devargs);
2254 	if (rc != 0) {
2255 		PMD_INIT_LOG(CRIT, "Failed to parse devargs\n");
2256 		goto err;
2257 	}
2258 	adapter->llq_header_policy = ena_define_llq_hdr_policy(adapter);
2259 
2260 	rc = ena_com_allocate_customer_metrics_buffer(ena_dev);
2261 	if (rc != 0) {
2262 		PMD_INIT_LOG(CRIT, "Failed to allocate customer metrics buffer\n");
2263 		goto err;
2264 	}
2265 
2266 	/* device specific initialization routine */
2267 	rc = ena_device_init(adapter, pci_dev, &get_feat_ctx);
2268 	if (rc) {
2269 		PMD_INIT_LOG(CRIT, "Failed to init ENA device\n");
2270 		goto err_metrics_delete;
2271 	}
2272 
2273 	/* Check if device supports LSC */
2274 	if (!(adapter->all_aenq_groups & BIT(ENA_ADMIN_LINK_CHANGE)))
2275 		adapter->edev_data->dev_flags &= ~RTE_ETH_DEV_INTR_LSC;
2276 
2277 	bool use_large_llq_hdr = ena_use_large_llq_hdr(adapter,
2278 						       get_feat_ctx.llq.entry_size_recommended);
2279 	set_default_llq_configurations(&llq_config, &get_feat_ctx.llq, use_large_llq_hdr);
2280 	rc = ena_set_queues_placement_policy(adapter, ena_dev,
2281 					     &get_feat_ctx.llq, &llq_config);
2282 	if (unlikely(rc)) {
2283 		PMD_INIT_LOG(CRIT, "Failed to set placement policy\n");
2284 		return rc;
2285 	}
2286 
2287 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST) {
2288 		queue_type_str = "Regular";
2289 	} else {
2290 		queue_type_str = "Low latency";
2291 		PMD_DRV_LOG(INFO, "LLQ entry size %uB\n", llq_config.llq_ring_entry_size_value);
2292 	}
2293 	PMD_DRV_LOG(INFO, "Placement policy: %s\n", queue_type_str);
2294 
2295 	calc_queue_ctx.ena_dev = ena_dev;
2296 	calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
2297 
2298 	max_num_io_queues = ena_calc_max_io_queue_num(ena_dev, &get_feat_ctx);
2299 	rc = ena_calc_io_queue_size(&calc_queue_ctx, use_large_llq_hdr);
2300 	if (unlikely((rc != 0) || (max_num_io_queues == 0))) {
2301 		rc = -EFAULT;
2302 		goto err_device_destroy;
2303 	}
2304 
2305 	adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
2306 	adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
2307 	adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
2308 	adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
2309 	adapter->max_num_io_queues = max_num_io_queues;
2310 
2311 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2312 		disable_meta_caching =
2313 			!!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
2314 			BIT(ENA_ADMIN_DISABLE_META_CACHING));
2315 	} else {
2316 		disable_meta_caching = false;
2317 	}
2318 
2319 	/* prepare ring structures */
2320 	ena_init_rings(adapter, disable_meta_caching);
2321 
2322 	ena_config_debug_area(adapter);
2323 
2324 	/* Set max MTU for this device */
2325 	adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
2326 
2327 	ena_set_offloads(&adapter->offloads, &get_feat_ctx.offload);
2328 
2329 	/* Copy MAC address and point DPDK to it */
2330 	eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr;
2331 	rte_ether_addr_copy((struct rte_ether_addr *)
2332 			get_feat_ctx.dev_attr.mac_addr,
2333 			(struct rte_ether_addr *)adapter->mac_addr);
2334 
2335 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
2336 	if (unlikely(rc != 0)) {
2337 		PMD_DRV_LOG(ERR, "Failed to initialize RSS in ENA device\n");
2338 		goto err_delete_debug_area;
2339 	}
2340 
2341 	adapter->drv_stats = rte_zmalloc("adapter stats",
2342 					 sizeof(*adapter->drv_stats),
2343 					 RTE_CACHE_LINE_SIZE);
2344 	if (!adapter->drv_stats) {
2345 		PMD_DRV_LOG(ERR,
2346 			"Failed to allocate memory for adapter statistics\n");
2347 		rc = -ENOMEM;
2348 		goto err_rss_destroy;
2349 	}
2350 
2351 	rte_spinlock_init(&adapter->admin_lock);
2352 
2353 	rte_intr_callback_register(intr_handle,
2354 				   ena_interrupt_handler_rte,
2355 				   eth_dev);
2356 	rte_intr_enable(intr_handle);
2357 	ena_com_set_admin_polling_mode(ena_dev, false);
2358 	ena_com_admin_aenq_enable(ena_dev);
2359 
2360 	rte_timer_init(&adapter->timer_wd);
2361 
2362 	adapters_found++;
2363 	adapter->state = ENA_ADAPTER_STATE_INIT;
2364 
2365 	return 0;
2366 
2367 err_rss_destroy:
2368 	ena_com_rss_destroy(ena_dev);
2369 err_delete_debug_area:
2370 	ena_com_delete_debug_area(ena_dev);
2371 
2372 err_device_destroy:
2373 	ena_com_delete_host_info(ena_dev);
2374 	ena_com_admin_destroy(ena_dev);
2375 err_metrics_delete:
2376 	ena_com_delete_customer_metrics_buffer(ena_dev);
2377 err:
2378 	return rc;
2379 }
2380 
2381 static void ena_destroy_device(struct rte_eth_dev *eth_dev)
2382 {
2383 	struct ena_adapter *adapter = eth_dev->data->dev_private;
2384 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
2385 
2386 	if (adapter->state == ENA_ADAPTER_STATE_FREE)
2387 		return;
2388 
2389 	ena_com_set_admin_running_state(ena_dev, false);
2390 
2391 	if (adapter->state != ENA_ADAPTER_STATE_CLOSED)
2392 		ena_close(eth_dev);
2393 
2394 	ena_com_rss_destroy(ena_dev);
2395 
2396 	ena_com_delete_debug_area(ena_dev);
2397 	ena_com_delete_host_info(ena_dev);
2398 
2399 	ena_com_abort_admin_commands(ena_dev);
2400 	ena_com_wait_for_abort_completion(ena_dev);
2401 	ena_com_admin_destroy(ena_dev);
2402 	ena_com_mmio_reg_read_request_destroy(ena_dev);
2403 	ena_com_delete_customer_metrics_buffer(ena_dev);
2404 
2405 	adapter->state = ENA_ADAPTER_STATE_FREE;
2406 }
2407 
2408 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
2409 {
2410 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2411 		return 0;
2412 
2413 	ena_destroy_device(eth_dev);
2414 
2415 	return 0;
2416 }
2417 
2418 static int ena_dev_configure(struct rte_eth_dev *dev)
2419 {
2420 	struct ena_adapter *adapter = dev->data->dev_private;
2421 	int rc;
2422 
2423 	adapter->state = ENA_ADAPTER_STATE_CONFIG;
2424 
2425 	if (dev->data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG)
2426 		dev->data->dev_conf.rxmode.offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2427 	dev->data->dev_conf.txmode.offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2428 
2429 	/* Scattered Rx cannot be turned off in the HW, so this capability must
2430 	 * be forced.
2431 	 */
2432 	dev->data->scattered_rx = 1;
2433 
2434 	adapter->last_tx_comp_qid = 0;
2435 
2436 	adapter->missing_tx_completion_budget =
2437 		RTE_MIN(ENA_MONITORED_TX_QUEUES, dev->data->nb_tx_queues);
2438 
2439 	/* To avoid detection of the spurious Tx completion timeout due to
2440 	 * application not calling the Tx cleanup function, set timeout for the
2441 	 * Tx queue which should be half of the missing completion timeout for a
2442 	 * safety. If there will be a lot of missing Tx completions in the
2443 	 * queue, they will be detected sooner or later.
2444 	 */
2445 	adapter->tx_cleanup_stall_delay = adapter->missing_tx_completion_to / 2;
2446 
2447 	rc = ena_configure_aenq(adapter);
2448 
2449 	return rc;
2450 }
2451 
2452 static void ena_init_rings(struct ena_adapter *adapter,
2453 			   bool disable_meta_caching)
2454 {
2455 	size_t i;
2456 
2457 	for (i = 0; i < adapter->max_num_io_queues; i++) {
2458 		struct ena_ring *ring = &adapter->tx_ring[i];
2459 
2460 		ring->configured = 0;
2461 		ring->type = ENA_RING_TYPE_TX;
2462 		ring->adapter = adapter;
2463 		ring->id = i;
2464 		ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
2465 		ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
2466 		ring->sgl_size = adapter->max_tx_sgl_size;
2467 		ring->disable_meta_caching = disable_meta_caching;
2468 	}
2469 
2470 	for (i = 0; i < adapter->max_num_io_queues; i++) {
2471 		struct ena_ring *ring = &adapter->rx_ring[i];
2472 
2473 		ring->configured = 0;
2474 		ring->type = ENA_RING_TYPE_RX;
2475 		ring->adapter = adapter;
2476 		ring->id = i;
2477 		ring->sgl_size = adapter->max_rx_sgl_size;
2478 	}
2479 }
2480 
2481 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter)
2482 {
2483 	uint64_t port_offloads = 0;
2484 
2485 	if (adapter->offloads.rx_offloads & ENA_L3_IPV4_CSUM)
2486 		port_offloads |= RTE_ETH_RX_OFFLOAD_IPV4_CKSUM;
2487 
2488 	if (adapter->offloads.rx_offloads &
2489 	    (ENA_L4_IPV4_CSUM | ENA_L4_IPV6_CSUM))
2490 		port_offloads |=
2491 			RTE_ETH_RX_OFFLOAD_UDP_CKSUM | RTE_ETH_RX_OFFLOAD_TCP_CKSUM;
2492 
2493 	if (adapter->offloads.rx_offloads & ENA_RX_RSS_HASH)
2494 		port_offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2495 
2496 	port_offloads |= RTE_ETH_RX_OFFLOAD_SCATTER;
2497 
2498 	return port_offloads;
2499 }
2500 
2501 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter)
2502 {
2503 	uint64_t port_offloads = 0;
2504 
2505 	if (adapter->offloads.tx_offloads & ENA_IPV4_TSO)
2506 		port_offloads |= RTE_ETH_TX_OFFLOAD_TCP_TSO;
2507 
2508 	if (adapter->offloads.tx_offloads & ENA_L3_IPV4_CSUM)
2509 		port_offloads |= RTE_ETH_TX_OFFLOAD_IPV4_CKSUM;
2510 	if (adapter->offloads.tx_offloads &
2511 	    (ENA_L4_IPV4_CSUM_PARTIAL | ENA_L4_IPV4_CSUM |
2512 	     ENA_L4_IPV6_CSUM | ENA_L4_IPV6_CSUM_PARTIAL))
2513 		port_offloads |=
2514 			RTE_ETH_TX_OFFLOAD_UDP_CKSUM | RTE_ETH_TX_OFFLOAD_TCP_CKSUM;
2515 
2516 	port_offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2517 
2518 	port_offloads |= RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
2519 
2520 	return port_offloads;
2521 }
2522 
2523 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter)
2524 {
2525 	RTE_SET_USED(adapter);
2526 
2527 	return 0;
2528 }
2529 
2530 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter)
2531 {
2532 	uint64_t queue_offloads = 0;
2533 	RTE_SET_USED(adapter);
2534 
2535 	queue_offloads |= RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
2536 
2537 	return queue_offloads;
2538 }
2539 
2540 static int ena_infos_get(struct rte_eth_dev *dev,
2541 			  struct rte_eth_dev_info *dev_info)
2542 {
2543 	struct ena_adapter *adapter;
2544 	struct ena_com_dev *ena_dev;
2545 
2546 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
2547 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
2548 	adapter = dev->data->dev_private;
2549 
2550 	ena_dev = &adapter->ena_dev;
2551 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
2552 
2553 	dev_info->speed_capa =
2554 			RTE_ETH_LINK_SPEED_1G   |
2555 			RTE_ETH_LINK_SPEED_2_5G |
2556 			RTE_ETH_LINK_SPEED_5G   |
2557 			RTE_ETH_LINK_SPEED_10G  |
2558 			RTE_ETH_LINK_SPEED_25G  |
2559 			RTE_ETH_LINK_SPEED_40G  |
2560 			RTE_ETH_LINK_SPEED_50G  |
2561 			RTE_ETH_LINK_SPEED_100G |
2562 			RTE_ETH_LINK_SPEED_200G |
2563 			RTE_ETH_LINK_SPEED_400G;
2564 
2565 	/* Inform framework about available features */
2566 	dev_info->rx_offload_capa = ena_get_rx_port_offloads(adapter);
2567 	dev_info->tx_offload_capa = ena_get_tx_port_offloads(adapter);
2568 	dev_info->rx_queue_offload_capa = ena_get_rx_queue_offloads(adapter);
2569 	dev_info->tx_queue_offload_capa = ena_get_tx_queue_offloads(adapter);
2570 
2571 	dev_info->flow_type_rss_offloads = ENA_ALL_RSS_HF;
2572 	dev_info->hash_key_size = ENA_HASH_KEY_SIZE;
2573 
2574 	dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
2575 	dev_info->max_rx_pktlen  = adapter->max_mtu + RTE_ETHER_HDR_LEN +
2576 		RTE_ETHER_CRC_LEN;
2577 	dev_info->min_mtu = ENA_MIN_MTU;
2578 	dev_info->max_mtu = adapter->max_mtu;
2579 	dev_info->max_mac_addrs = 1;
2580 
2581 	dev_info->max_rx_queues = adapter->max_num_io_queues;
2582 	dev_info->max_tx_queues = adapter->max_num_io_queues;
2583 	dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
2584 
2585 	dev_info->rx_desc_lim.nb_max = adapter->max_rx_ring_size;
2586 	dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2587 	dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2588 					adapter->max_rx_sgl_size);
2589 	dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2590 					adapter->max_rx_sgl_size);
2591 
2592 	dev_info->tx_desc_lim.nb_max = adapter->max_tx_ring_size;
2593 	dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2594 	dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2595 					adapter->max_tx_sgl_size);
2596 	dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2597 					adapter->max_tx_sgl_size);
2598 
2599 	dev_info->default_rxportconf.ring_size = ENA_DEFAULT_RING_SIZE;
2600 	dev_info->default_txportconf.ring_size = ENA_DEFAULT_RING_SIZE;
2601 
2602 	dev_info->err_handle_mode = RTE_ETH_ERROR_HANDLE_MODE_PASSIVE;
2603 
2604 	return 0;
2605 }
2606 
2607 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len)
2608 {
2609 	mbuf->data_len = len;
2610 	mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2611 	mbuf->refcnt = 1;
2612 	mbuf->next = NULL;
2613 }
2614 
2615 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
2616 				    struct ena_com_rx_buf_info *ena_bufs,
2617 				    uint32_t descs,
2618 				    uint16_t *next_to_clean,
2619 				    uint8_t offset)
2620 {
2621 	struct rte_mbuf *mbuf;
2622 	struct rte_mbuf *mbuf_head;
2623 	struct ena_rx_buffer *rx_info;
2624 	int rc;
2625 	uint16_t ntc, len, req_id, buf = 0;
2626 
2627 	if (unlikely(descs == 0))
2628 		return NULL;
2629 
2630 	ntc = *next_to_clean;
2631 
2632 	len = ena_bufs[buf].len;
2633 	req_id = ena_bufs[buf].req_id;
2634 
2635 	rx_info = &rx_ring->rx_buffer_info[req_id];
2636 
2637 	mbuf = rx_info->mbuf;
2638 	RTE_ASSERT(mbuf != NULL);
2639 
2640 	ena_init_rx_mbuf(mbuf, len);
2641 
2642 	/* Fill the mbuf head with the data specific for 1st segment. */
2643 	mbuf_head = mbuf;
2644 	mbuf_head->nb_segs = descs;
2645 	mbuf_head->port = rx_ring->port_id;
2646 	mbuf_head->pkt_len = len;
2647 	mbuf_head->data_off += offset;
2648 
2649 	rx_info->mbuf = NULL;
2650 	rx_ring->empty_rx_reqs[ntc] = req_id;
2651 	ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2652 
2653 	while (--descs) {
2654 		++buf;
2655 		len = ena_bufs[buf].len;
2656 		req_id = ena_bufs[buf].req_id;
2657 
2658 		rx_info = &rx_ring->rx_buffer_info[req_id];
2659 		RTE_ASSERT(rx_info->mbuf != NULL);
2660 
2661 		if (unlikely(len == 0)) {
2662 			/*
2663 			 * Some devices can pass descriptor with the length 0.
2664 			 * To avoid confusion, the PMD is simply putting the
2665 			 * descriptor back, as it was never used. We'll avoid
2666 			 * mbuf allocation that way.
2667 			 */
2668 			rc = ena_add_single_rx_desc(rx_ring->ena_com_io_sq,
2669 				rx_info->mbuf, req_id);
2670 			if (unlikely(rc != 0)) {
2671 				/* Free the mbuf in case of an error. */
2672 				rte_mbuf_raw_free(rx_info->mbuf);
2673 			} else {
2674 				/*
2675 				 * If there was no error, just exit the loop as
2676 				 * 0 length descriptor is always the last one.
2677 				 */
2678 				break;
2679 			}
2680 		} else {
2681 			/* Create an mbuf chain. */
2682 			mbuf->next = rx_info->mbuf;
2683 			mbuf = mbuf->next;
2684 
2685 			ena_init_rx_mbuf(mbuf, len);
2686 			mbuf_head->pkt_len += len;
2687 		}
2688 
2689 		/*
2690 		 * Mark the descriptor as depleted and perform necessary
2691 		 * cleanup.
2692 		 * This code will execute in two cases:
2693 		 *  1. Descriptor len was greater than 0 - normal situation.
2694 		 *  2. Descriptor len was 0 and we failed to add the descriptor
2695 		 *     to the device. In that situation, we should try to add
2696 		 *     the mbuf again in the populate routine and mark the
2697 		 *     descriptor as used up by the device.
2698 		 */
2699 		rx_info->mbuf = NULL;
2700 		rx_ring->empty_rx_reqs[ntc] = req_id;
2701 		ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2702 	}
2703 
2704 	*next_to_clean = ntc;
2705 
2706 	return mbuf_head;
2707 }
2708 
2709 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
2710 				  uint16_t nb_pkts)
2711 {
2712 	struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
2713 	unsigned int free_queue_entries;
2714 	uint16_t next_to_clean = rx_ring->next_to_clean;
2715 	uint16_t descs_in_use;
2716 	struct rte_mbuf *mbuf;
2717 	uint16_t completed;
2718 	struct ena_com_rx_ctx ena_rx_ctx;
2719 	int i, rc = 0;
2720 	bool fill_hash;
2721 
2722 #ifdef RTE_ETHDEV_DEBUG_RX
2723 	/* Check adapter state */
2724 	if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2725 		PMD_RX_LOG(ALERT,
2726 			"Trying to receive pkts while device is NOT running\n");
2727 		return 0;
2728 	}
2729 #endif
2730 
2731 	fill_hash = rx_ring->offloads & RTE_ETH_RX_OFFLOAD_RSS_HASH;
2732 
2733 	descs_in_use = rx_ring->ring_size -
2734 		ena_com_free_q_entries(rx_ring->ena_com_io_sq) - 1;
2735 	nb_pkts = RTE_MIN(descs_in_use, nb_pkts);
2736 
2737 	for (completed = 0; completed < nb_pkts; completed++) {
2738 		ena_rx_ctx.max_bufs = rx_ring->sgl_size;
2739 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
2740 		ena_rx_ctx.descs = 0;
2741 		ena_rx_ctx.pkt_offset = 0;
2742 		/* receive packet context */
2743 		rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
2744 				    rx_ring->ena_com_io_sq,
2745 				    &ena_rx_ctx);
2746 		if (unlikely(rc)) {
2747 			PMD_RX_LOG(ERR,
2748 				"Failed to get the packet from the device, rc: %d\n",
2749 				rc);
2750 			if (rc == ENA_COM_NO_SPACE) {
2751 				++rx_ring->rx_stats.bad_desc_num;
2752 				ena_trigger_reset(rx_ring->adapter,
2753 					ENA_REGS_RESET_TOO_MANY_RX_DESCS);
2754 			} else {
2755 				++rx_ring->rx_stats.bad_req_id;
2756 				ena_trigger_reset(rx_ring->adapter,
2757 					ENA_REGS_RESET_INV_RX_REQ_ID);
2758 			}
2759 			return 0;
2760 		}
2761 
2762 		mbuf = ena_rx_mbuf(rx_ring,
2763 			ena_rx_ctx.ena_bufs,
2764 			ena_rx_ctx.descs,
2765 			&next_to_clean,
2766 			ena_rx_ctx.pkt_offset);
2767 		if (unlikely(mbuf == NULL)) {
2768 			for (i = 0; i < ena_rx_ctx.descs; ++i) {
2769 				rx_ring->empty_rx_reqs[next_to_clean] =
2770 					rx_ring->ena_bufs[i].req_id;
2771 				next_to_clean = ENA_IDX_NEXT_MASKED(
2772 					next_to_clean, rx_ring->size_mask);
2773 			}
2774 			break;
2775 		}
2776 
2777 		/* fill mbuf attributes if any */
2778 		ena_rx_mbuf_prepare(rx_ring, mbuf, &ena_rx_ctx, fill_hash);
2779 
2780 		if (unlikely(mbuf->ol_flags &
2781 				(RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD)))
2782 			rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors);
2783 
2784 		rx_pkts[completed] = mbuf;
2785 		rx_ring->rx_stats.bytes += mbuf->pkt_len;
2786 	}
2787 
2788 	rx_ring->rx_stats.cnt += completed;
2789 	rx_ring->next_to_clean = next_to_clean;
2790 
2791 	free_queue_entries = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
2792 
2793 	/* Burst refill to save doorbells, memory barriers, const interval */
2794 	if (free_queue_entries >= rx_ring->rx_free_thresh) {
2795 		ena_populate_rx_queue(rx_ring, free_queue_entries);
2796 	}
2797 
2798 	return completed;
2799 }
2800 
2801 static uint16_t
2802 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2803 		uint16_t nb_pkts)
2804 {
2805 	int32_t ret;
2806 	uint32_t i;
2807 	struct rte_mbuf *m;
2808 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2809 	struct ena_adapter *adapter = tx_ring->adapter;
2810 	struct rte_ipv4_hdr *ip_hdr;
2811 	uint64_t ol_flags;
2812 	uint64_t l4_csum_flag;
2813 	uint64_t dev_offload_capa;
2814 	uint16_t frag_field;
2815 	bool need_pseudo_csum;
2816 
2817 	dev_offload_capa = adapter->offloads.tx_offloads;
2818 	for (i = 0; i != nb_pkts; i++) {
2819 		m = tx_pkts[i];
2820 		ol_flags = m->ol_flags;
2821 
2822 		/* Check if any offload flag was set */
2823 		if (ol_flags == 0)
2824 			continue;
2825 
2826 		l4_csum_flag = ol_flags & RTE_MBUF_F_TX_L4_MASK;
2827 		/* SCTP checksum offload is not supported by the ENA. */
2828 		if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) ||
2829 		    l4_csum_flag == RTE_MBUF_F_TX_SCTP_CKSUM) {
2830 			PMD_TX_LOG(DEBUG,
2831 				"mbuf[%" PRIu32 "] has unsupported offloads flags set: 0x%" PRIu64 "\n",
2832 				i, ol_flags);
2833 			rte_errno = ENOTSUP;
2834 			return i;
2835 		}
2836 
2837 		if (unlikely(m->nb_segs >= tx_ring->sgl_size &&
2838 		    !(tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
2839 		      m->nb_segs == tx_ring->sgl_size &&
2840 		      m->data_len < tx_ring->tx_max_header_size))) {
2841 			PMD_TX_LOG(DEBUG,
2842 				"mbuf[%" PRIu32 "] has too many segments: %" PRIu16 "\n",
2843 				i, m->nb_segs);
2844 			rte_errno = EINVAL;
2845 			return i;
2846 		}
2847 
2848 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2849 		/* Check if requested offload is also enabled for the queue */
2850 		if ((ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
2851 		     !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM)) ||
2852 		    (l4_csum_flag == RTE_MBUF_F_TX_TCP_CKSUM &&
2853 		     !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) ||
2854 		    (l4_csum_flag == RTE_MBUF_F_TX_UDP_CKSUM &&
2855 		     !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM))) {
2856 			PMD_TX_LOG(DEBUG,
2857 				"mbuf[%" PRIu32 "]: requested offloads: %" PRIu16 " are not enabled for the queue[%u]\n",
2858 				i, m->nb_segs, tx_ring->id);
2859 			rte_errno = EINVAL;
2860 			return i;
2861 		}
2862 
2863 		/* The caller is obligated to set l2 and l3 len if any cksum
2864 		 * offload is enabled.
2865 		 */
2866 		if (unlikely(ol_flags & (RTE_MBUF_F_TX_IP_CKSUM | RTE_MBUF_F_TX_L4_MASK) &&
2867 		    (m->l2_len == 0 || m->l3_len == 0))) {
2868 			PMD_TX_LOG(DEBUG,
2869 				"mbuf[%" PRIu32 "]: l2_len or l3_len values are 0 while the offload was requested\n",
2870 				i);
2871 			rte_errno = EINVAL;
2872 			return i;
2873 		}
2874 		ret = rte_validate_tx_offload(m);
2875 		if (ret != 0) {
2876 			rte_errno = -ret;
2877 			return i;
2878 		}
2879 #endif
2880 
2881 		/* Verify HW support for requested offloads and determine if
2882 		 * pseudo header checksum is needed.
2883 		 */
2884 		need_pseudo_csum = false;
2885 		if (ol_flags & RTE_MBUF_F_TX_IPV4) {
2886 			if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
2887 			    !(dev_offload_capa & ENA_L3_IPV4_CSUM)) {
2888 				rte_errno = ENOTSUP;
2889 				return i;
2890 			}
2891 
2892 			if (ol_flags & RTE_MBUF_F_TX_TCP_SEG &&
2893 			    !(dev_offload_capa & ENA_IPV4_TSO)) {
2894 				rte_errno = ENOTSUP;
2895 				return i;
2896 			}
2897 
2898 			/* Check HW capabilities and if pseudo csum is needed
2899 			 * for L4 offloads.
2900 			 */
2901 			if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
2902 			    !(dev_offload_capa & ENA_L4_IPV4_CSUM)) {
2903 				if (dev_offload_capa &
2904 				    ENA_L4_IPV4_CSUM_PARTIAL) {
2905 					need_pseudo_csum = true;
2906 				} else {
2907 					rte_errno = ENOTSUP;
2908 					return i;
2909 				}
2910 			}
2911 
2912 			/* Parse the DF flag */
2913 			ip_hdr = rte_pktmbuf_mtod_offset(m,
2914 				struct rte_ipv4_hdr *, m->l2_len);
2915 			frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
2916 			if (frag_field & RTE_IPV4_HDR_DF_FLAG) {
2917 				m->packet_type |= RTE_PTYPE_L4_NONFRAG;
2918 			} else if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2919 				/* In case we are supposed to TSO and have DF
2920 				 * not set (DF=0) hardware must be provided with
2921 				 * partial checksum.
2922 				 */
2923 				need_pseudo_csum = true;
2924 			}
2925 		} else if (ol_flags & RTE_MBUF_F_TX_IPV6) {
2926 			/* There is no support for IPv6 TSO as for now. */
2927 			if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2928 				rte_errno = ENOTSUP;
2929 				return i;
2930 			}
2931 
2932 			/* Check HW capabilities and if pseudo csum is needed */
2933 			if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
2934 			    !(dev_offload_capa & ENA_L4_IPV6_CSUM)) {
2935 				if (dev_offload_capa &
2936 				    ENA_L4_IPV6_CSUM_PARTIAL) {
2937 					need_pseudo_csum = true;
2938 				} else {
2939 					rte_errno = ENOTSUP;
2940 					return i;
2941 				}
2942 			}
2943 		}
2944 
2945 		if (need_pseudo_csum) {
2946 			ret = rte_net_intel_cksum_flags_prepare(m, ol_flags);
2947 			if (ret != 0) {
2948 				rte_errno = -ret;
2949 				return i;
2950 			}
2951 		}
2952 	}
2953 
2954 	return i;
2955 }
2956 
2957 static void ena_update_hints(struct ena_adapter *adapter,
2958 			     struct ena_admin_ena_hw_hints *hints)
2959 {
2960 	if (hints->admin_completion_tx_timeout)
2961 		adapter->ena_dev.admin_queue.completion_timeout =
2962 			hints->admin_completion_tx_timeout * 1000;
2963 
2964 	if (hints->mmio_read_timeout)
2965 		/* convert to usec */
2966 		adapter->ena_dev.mmio_read.reg_read_to =
2967 			hints->mmio_read_timeout * 1000;
2968 
2969 	if (hints->driver_watchdog_timeout) {
2970 		if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
2971 			adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
2972 		else
2973 			// Convert msecs to ticks
2974 			adapter->keep_alive_timeout =
2975 				(hints->driver_watchdog_timeout *
2976 				rte_get_timer_hz()) / 1000;
2977 	}
2978 }
2979 
2980 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
2981 	struct ena_tx_buffer *tx_info,
2982 	struct rte_mbuf *mbuf,
2983 	void **push_header,
2984 	uint16_t *header_len)
2985 {
2986 	struct ena_com_buf *ena_buf;
2987 	uint16_t delta, seg_len, push_len;
2988 
2989 	delta = 0;
2990 	seg_len = mbuf->data_len;
2991 
2992 	tx_info->mbuf = mbuf;
2993 	ena_buf = tx_info->bufs;
2994 
2995 	if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2996 		/*
2997 		 * Tx header might be (and will be in most cases) smaller than
2998 		 * tx_max_header_size. But it's not an issue to send more data
2999 		 * to the device, than actually needed if the mbuf size is
3000 		 * greater than tx_max_header_size.
3001 		 */
3002 		push_len = RTE_MIN(mbuf->pkt_len, tx_ring->tx_max_header_size);
3003 		*header_len = push_len;
3004 
3005 		if (likely(push_len <= seg_len)) {
3006 			/* If the push header is in the single segment, then
3007 			 * just point it to the 1st mbuf data.
3008 			 */
3009 			*push_header = rte_pktmbuf_mtod(mbuf, uint8_t *);
3010 		} else {
3011 			/* If the push header lays in the several segments, copy
3012 			 * it to the intermediate buffer.
3013 			 */
3014 			rte_pktmbuf_read(mbuf, 0, push_len,
3015 				tx_ring->push_buf_intermediate_buf);
3016 			*push_header = tx_ring->push_buf_intermediate_buf;
3017 			delta = push_len - seg_len;
3018 		}
3019 	} else {
3020 		*push_header = NULL;
3021 		*header_len = 0;
3022 		push_len = 0;
3023 	}
3024 
3025 	/* Process first segment taking into consideration pushed header */
3026 	if (seg_len > push_len) {
3027 		ena_buf->paddr = mbuf->buf_iova +
3028 				mbuf->data_off +
3029 				push_len;
3030 		ena_buf->len = seg_len - push_len;
3031 		ena_buf++;
3032 		tx_info->num_of_bufs++;
3033 	}
3034 
3035 	while ((mbuf = mbuf->next) != NULL) {
3036 		seg_len = mbuf->data_len;
3037 
3038 		/* Skip mbufs if whole data is pushed as a header */
3039 		if (unlikely(delta > seg_len)) {
3040 			delta -= seg_len;
3041 			continue;
3042 		}
3043 
3044 		ena_buf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
3045 		ena_buf->len = seg_len - delta;
3046 		ena_buf++;
3047 		tx_info->num_of_bufs++;
3048 
3049 		delta = 0;
3050 	}
3051 }
3052 
3053 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf)
3054 {
3055 	struct ena_tx_buffer *tx_info;
3056 	struct ena_com_tx_ctx ena_tx_ctx = { { 0 } };
3057 	uint16_t next_to_use;
3058 	uint16_t header_len;
3059 	uint16_t req_id;
3060 	void *push_header;
3061 	int nb_hw_desc;
3062 	int rc;
3063 
3064 	/* Checking for space for 2 additional metadata descriptors due to
3065 	 * possible header split and metadata descriptor
3066 	 */
3067 	if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
3068 					  mbuf->nb_segs + 2)) {
3069 		PMD_DRV_LOG(DEBUG, "Not enough space in the tx queue\n");
3070 		return ENA_COM_NO_MEM;
3071 	}
3072 
3073 	next_to_use = tx_ring->next_to_use;
3074 
3075 	req_id = tx_ring->empty_tx_reqs[next_to_use];
3076 	tx_info = &tx_ring->tx_buffer_info[req_id];
3077 	tx_info->num_of_bufs = 0;
3078 	RTE_ASSERT(tx_info->mbuf == NULL);
3079 
3080 	ena_tx_map_mbuf(tx_ring, tx_info, mbuf, &push_header, &header_len);
3081 
3082 	ena_tx_ctx.ena_bufs = tx_info->bufs;
3083 	ena_tx_ctx.push_header = push_header;
3084 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
3085 	ena_tx_ctx.req_id = req_id;
3086 	ena_tx_ctx.header_len = header_len;
3087 
3088 	/* Set Tx offloads flags, if applicable */
3089 	ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads,
3090 		tx_ring->disable_meta_caching);
3091 
3092 	if (unlikely(ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
3093 			&ena_tx_ctx))) {
3094 		PMD_TX_LOG(DEBUG,
3095 			"LLQ Tx max burst size of queue %d achieved, writing doorbell to send burst\n",
3096 			tx_ring->id);
3097 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
3098 		tx_ring->tx_stats.doorbells++;
3099 		tx_ring->pkts_without_db = false;
3100 	}
3101 
3102 	/* prepare the packet's descriptors to dma engine */
3103 	rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq,	&ena_tx_ctx,
3104 		&nb_hw_desc);
3105 	if (unlikely(rc)) {
3106 		PMD_DRV_LOG(ERR, "Failed to prepare Tx buffers, rc: %d\n", rc);
3107 		++tx_ring->tx_stats.prepare_ctx_err;
3108 		ena_trigger_reset(tx_ring->adapter,
3109 			ENA_REGS_RESET_DRIVER_INVALID_STATE);
3110 		return rc;
3111 	}
3112 
3113 	tx_info->tx_descs = nb_hw_desc;
3114 	tx_info->timestamp = rte_get_timer_cycles();
3115 
3116 	tx_ring->tx_stats.cnt++;
3117 	tx_ring->tx_stats.bytes += mbuf->pkt_len;
3118 
3119 	tx_ring->next_to_use = ENA_IDX_NEXT_MASKED(next_to_use,
3120 		tx_ring->size_mask);
3121 
3122 	return 0;
3123 }
3124 
3125 static __rte_always_inline size_t
3126 ena_tx_cleanup_mbuf_fast(struct rte_mbuf **mbufs_to_clean,
3127 			 struct rte_mbuf *mbuf,
3128 			 size_t mbuf_cnt,
3129 			 size_t buf_size)
3130 {
3131 	struct rte_mbuf *m_next;
3132 
3133 	while (mbuf != NULL) {
3134 		m_next = mbuf->next;
3135 		mbufs_to_clean[mbuf_cnt++] = mbuf;
3136 		if (mbuf_cnt == buf_size) {
3137 			rte_pktmbuf_free_bulk(mbufs_to_clean, mbuf_cnt);
3138 			mbuf_cnt = 0;
3139 		}
3140 		mbuf = m_next;
3141 	}
3142 
3143 	return mbuf_cnt;
3144 }
3145 
3146 static int ena_tx_cleanup(void *txp, uint32_t free_pkt_cnt)
3147 {
3148 	struct rte_mbuf *mbufs_to_clean[ENA_CLEANUP_BUF_SIZE];
3149 	struct ena_ring *tx_ring = (struct ena_ring *)txp;
3150 	size_t mbuf_cnt = 0;
3151 	unsigned int total_tx_descs = 0;
3152 	unsigned int total_tx_pkts = 0;
3153 	uint16_t cleanup_budget;
3154 	uint16_t next_to_clean = tx_ring->next_to_clean;
3155 	bool fast_free = tx_ring->offloads & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
3156 
3157 	/*
3158 	 * If free_pkt_cnt is equal to 0, it means that the user requested
3159 	 * full cleanup, so attempt to release all Tx descriptors
3160 	 * (ring_size - 1 -> size_mask)
3161 	 */
3162 	cleanup_budget = (free_pkt_cnt == 0) ? tx_ring->size_mask : free_pkt_cnt;
3163 
3164 	while (likely(total_tx_pkts < cleanup_budget)) {
3165 		struct rte_mbuf *mbuf;
3166 		struct ena_tx_buffer *tx_info;
3167 		uint16_t req_id;
3168 
3169 		if (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) != 0)
3170 			break;
3171 
3172 		if (unlikely(validate_tx_req_id(tx_ring, req_id) != 0))
3173 			break;
3174 
3175 		/* Get Tx info & store how many descs were processed  */
3176 		tx_info = &tx_ring->tx_buffer_info[req_id];
3177 		tx_info->timestamp = 0;
3178 
3179 		mbuf = tx_info->mbuf;
3180 		if (fast_free) {
3181 			mbuf_cnt = ena_tx_cleanup_mbuf_fast(mbufs_to_clean, mbuf, mbuf_cnt,
3182 				ENA_CLEANUP_BUF_SIZE);
3183 		} else {
3184 			rte_pktmbuf_free(mbuf);
3185 		}
3186 
3187 		tx_info->mbuf = NULL;
3188 		tx_ring->empty_tx_reqs[next_to_clean] = req_id;
3189 
3190 		total_tx_descs += tx_info->tx_descs;
3191 		total_tx_pkts++;
3192 
3193 		/* Put back descriptor to the ring for reuse */
3194 		next_to_clean = ENA_IDX_NEXT_MASKED(next_to_clean,
3195 			tx_ring->size_mask);
3196 	}
3197 
3198 	if (likely(total_tx_descs > 0)) {
3199 		/* acknowledge completion of sent packets */
3200 		tx_ring->next_to_clean = next_to_clean;
3201 		ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
3202 	}
3203 
3204 	if (mbuf_cnt != 0)
3205 		rte_pktmbuf_free_bulk(mbufs_to_clean, mbuf_cnt);
3206 
3207 	/* Notify completion handler that full cleanup was performed */
3208 	if (free_pkt_cnt == 0 || total_tx_pkts < cleanup_budget)
3209 		tx_ring->last_cleanup_ticks = rte_get_timer_cycles();
3210 
3211 	return total_tx_pkts;
3212 }
3213 
3214 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
3215 				  uint16_t nb_pkts)
3216 {
3217 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
3218 	int available_desc;
3219 	uint16_t sent_idx = 0;
3220 
3221 #ifdef RTE_ETHDEV_DEBUG_TX
3222 	/* Check adapter state */
3223 	if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
3224 		PMD_TX_LOG(ALERT,
3225 			"Trying to xmit pkts while device is NOT running\n");
3226 		return 0;
3227 	}
3228 #endif
3229 
3230 	available_desc = ena_com_free_q_entries(tx_ring->ena_com_io_sq);
3231 	if (available_desc < tx_ring->tx_free_thresh)
3232 		ena_tx_cleanup((void *)tx_ring, 0);
3233 
3234 	for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
3235 		if (ena_xmit_mbuf(tx_ring, tx_pkts[sent_idx]))
3236 			break;
3237 		tx_ring->pkts_without_db = true;
3238 		rte_prefetch0(tx_pkts[ENA_IDX_ADD_MASKED(sent_idx, 4,
3239 			tx_ring->size_mask)]);
3240 	}
3241 
3242 	/* If there are ready packets to be xmitted... */
3243 	if (likely(tx_ring->pkts_without_db)) {
3244 		/* ...let HW do its best :-) */
3245 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
3246 		tx_ring->tx_stats.doorbells++;
3247 		tx_ring->pkts_without_db = false;
3248 	}
3249 
3250 	tx_ring->tx_stats.available_desc =
3251 		ena_com_free_q_entries(tx_ring->ena_com_io_sq);
3252 	tx_ring->tx_stats.tx_poll++;
3253 
3254 	return sent_idx;
3255 }
3256 
3257 static void ena_copy_customer_metrics(struct ena_adapter *adapter, uint64_t *buf,
3258 					     size_t num_metrics)
3259 {
3260 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
3261 	int rc;
3262 
3263 	if (ena_com_get_cap(ena_dev, ENA_ADMIN_CUSTOMER_METRICS)) {
3264 		if (num_metrics != ENA_STATS_ARRAY_METRICS) {
3265 			PMD_DRV_LOG(ERR, "Detected discrepancy in the number of customer metrics");
3266 			return;
3267 		}
3268 		rte_spinlock_lock(&adapter->admin_lock);
3269 		rc = ENA_PROXY(adapter,
3270 					ena_com_get_customer_metrics,
3271 					&adapter->ena_dev,
3272 					(char *)buf,
3273 					num_metrics * sizeof(uint64_t));
3274 		rte_spinlock_unlock(&adapter->admin_lock);
3275 		if (rc != 0) {
3276 			PMD_DRV_LOG(WARNING, "Failed to get customer metrics, rc: %d\n", rc);
3277 			return;
3278 		}
3279 
3280 	} else if (ena_com_get_cap(ena_dev, ENA_ADMIN_ENI_STATS)) {
3281 		if (num_metrics != ENA_STATS_ARRAY_METRICS_LEGACY) {
3282 			PMD_DRV_LOG(ERR, "Detected discrepancy in the number of legacy metrics");
3283 			return;
3284 		}
3285 
3286 		rte_spinlock_lock(&adapter->admin_lock);
3287 		rc = ENA_PROXY(adapter,
3288 			       ena_com_get_eni_stats,
3289 			       &adapter->ena_dev,
3290 			       (struct ena_admin_eni_stats *)buf);
3291 		rte_spinlock_unlock(&adapter->admin_lock);
3292 		if (rc != 0) {
3293 			PMD_DRV_LOG(WARNING,
3294 				"Failed to get ENI metrics, rc: %d\n", rc);
3295 			return;
3296 		}
3297 	}
3298 }
3299 
3300 static void ena_copy_ena_srd_info(struct ena_adapter *adapter,
3301 		struct ena_stats_srd *srd_info)
3302 {
3303 	int rc;
3304 
3305 	if (!ena_com_get_cap(&adapter->ena_dev, ENA_ADMIN_ENA_SRD_INFO))
3306 		return;
3307 
3308 	rte_spinlock_lock(&adapter->admin_lock);
3309 	rc = ENA_PROXY(adapter,
3310 		       ena_com_get_ena_srd_info,
3311 		       &adapter->ena_dev,
3312 		       (struct ena_admin_ena_srd_info *)srd_info);
3313 	rte_spinlock_unlock(&adapter->admin_lock);
3314 	if (rc != ENA_COM_OK && rc != ENA_COM_UNSUPPORTED) {
3315 		PMD_DRV_LOG(WARNING,
3316 				"Failed to get ENA express srd info, rc: %d\n", rc);
3317 		return;
3318 	}
3319 }
3320 
3321 /**
3322  * DPDK callback to retrieve names of extended device statistics
3323  *
3324  * @param dev
3325  *   Pointer to Ethernet device structure.
3326  * @param[out] xstats_names
3327  *   Buffer to insert names into.
3328  * @param n
3329  *   Number of names.
3330  *
3331  * @return
3332  *   Number of xstats names.
3333  */
3334 static int ena_xstats_get_names(struct rte_eth_dev *dev,
3335 				struct rte_eth_xstat_name *xstats_names,
3336 				unsigned int n)
3337 {
3338 	struct ena_adapter *adapter = dev->data->dev_private;
3339 	unsigned int xstats_count = ena_xstats_calc_num(dev->data);
3340 	unsigned int stat, i, count = 0;
3341 
3342 	if (n < xstats_count || !xstats_names)
3343 		return xstats_count;
3344 
3345 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
3346 		strcpy(xstats_names[count].name,
3347 			ena_stats_global_strings[stat].name);
3348 
3349 	for (stat = 0; stat < adapter->metrics_num; stat++, count++)
3350 		rte_strscpy(xstats_names[count].name,
3351 			    ena_stats_metrics_strings[stat].name,
3352 			    RTE_ETH_XSTATS_NAME_SIZE);
3353 	for (stat = 0; stat < ENA_STATS_ARRAY_ENA_SRD; stat++, count++)
3354 		rte_strscpy(xstats_names[count].name,
3355 			    ena_stats_srd_strings[stat].name,
3356 			    RTE_ETH_XSTATS_NAME_SIZE);
3357 
3358 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
3359 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
3360 			snprintf(xstats_names[count].name,
3361 				sizeof(xstats_names[count].name),
3362 				"rx_q%d_%s", i,
3363 				ena_stats_rx_strings[stat].name);
3364 
3365 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
3366 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
3367 			snprintf(xstats_names[count].name,
3368 				sizeof(xstats_names[count].name),
3369 				"tx_q%d_%s", i,
3370 				ena_stats_tx_strings[stat].name);
3371 
3372 	return xstats_count;
3373 }
3374 
3375 /**
3376  * DPDK callback to retrieve names of extended device statistics for the given
3377  * ids.
3378  *
3379  * @param dev
3380  *   Pointer to Ethernet device structure.
3381  * @param[out] xstats_names
3382  *   Buffer to insert names into.
3383  * @param ids
3384  *   IDs array for which the names should be retrieved.
3385  * @param size
3386  *   Number of ids.
3387  *
3388  * @return
3389  *   Positive value: number of xstats names. Negative value: error code.
3390  */
3391 static int ena_xstats_get_names_by_id(struct rte_eth_dev *dev,
3392 				      const uint64_t *ids,
3393 				      struct rte_eth_xstat_name *xstats_names,
3394 				      unsigned int size)
3395 {
3396 	struct ena_adapter *adapter = dev->data->dev_private;
3397 	uint64_t xstats_count = ena_xstats_calc_num(dev->data);
3398 	uint64_t id, qid;
3399 	unsigned int i;
3400 
3401 	if (xstats_names == NULL)
3402 		return xstats_count;
3403 
3404 	for (i = 0; i < size; ++i) {
3405 		id = ids[i];
3406 		if (id > xstats_count) {
3407 			PMD_DRV_LOG(ERR,
3408 				"ID value out of range: id=%" PRIu64 ", xstats_num=%" PRIu64 "\n",
3409 				 id, xstats_count);
3410 			return -EINVAL;
3411 		}
3412 
3413 		if (id < ENA_STATS_ARRAY_GLOBAL) {
3414 			strcpy(xstats_names[i].name,
3415 			       ena_stats_global_strings[id].name);
3416 			continue;
3417 		}
3418 
3419 		id -= ENA_STATS_ARRAY_GLOBAL;
3420 		if (id < adapter->metrics_num) {
3421 			rte_strscpy(xstats_names[i].name,
3422 				    ena_stats_metrics_strings[id].name,
3423 				    RTE_ETH_XSTATS_NAME_SIZE);
3424 			continue;
3425 		}
3426 
3427 		id -= adapter->metrics_num;
3428 
3429 		if (id < ENA_STATS_ARRAY_ENA_SRD) {
3430 			rte_strscpy(xstats_names[i].name,
3431 				    ena_stats_srd_strings[id].name,
3432 				    RTE_ETH_XSTATS_NAME_SIZE);
3433 			continue;
3434 		}
3435 		id -= ENA_STATS_ARRAY_ENA_SRD;
3436 
3437 		if (id < ENA_STATS_ARRAY_RX) {
3438 			qid = id / dev->data->nb_rx_queues;
3439 			id %= dev->data->nb_rx_queues;
3440 			snprintf(xstats_names[i].name,
3441 				 sizeof(xstats_names[i].name),
3442 				 "rx_q%" PRIu64 "d_%s",
3443 				 qid, ena_stats_rx_strings[id].name);
3444 			continue;
3445 		}
3446 
3447 		id -= ENA_STATS_ARRAY_RX;
3448 		/* Although this condition is not needed, it was added for
3449 		 * compatibility if new xstat structure would be ever added.
3450 		 */
3451 		if (id < ENA_STATS_ARRAY_TX) {
3452 			qid = id / dev->data->nb_tx_queues;
3453 			id %= dev->data->nb_tx_queues;
3454 			snprintf(xstats_names[i].name,
3455 				 sizeof(xstats_names[i].name),
3456 				 "tx_q%" PRIu64 "_%s",
3457 				 qid, ena_stats_tx_strings[id].name);
3458 			continue;
3459 		}
3460 	}
3461 
3462 	return i;
3463 }
3464 
3465 /**
3466  * DPDK callback to get extended device statistics.
3467  *
3468  * @param dev
3469  *   Pointer to Ethernet device structure.
3470  * @param[out] stats
3471  *   Stats table output buffer.
3472  * @param n
3473  *   The size of the stats table.
3474  *
3475  * @return
3476  *   Number of xstats on success, negative on failure.
3477  */
3478 static int ena_xstats_get(struct rte_eth_dev *dev,
3479 			  struct rte_eth_xstat *xstats,
3480 			  unsigned int n)
3481 {
3482 	struct ena_adapter *adapter = dev->data->dev_private;
3483 	unsigned int xstats_count = ena_xstats_calc_num(dev->data);
3484 	unsigned int stat, i, count = 0;
3485 	int stat_offset;
3486 	void *stats_begin;
3487 	uint64_t metrics_stats[ENA_MAX_CUSTOMER_METRICS];
3488 	struct ena_stats_srd srd_info = {0};
3489 
3490 	if (n < xstats_count)
3491 		return xstats_count;
3492 
3493 	if (!xstats)
3494 		return 0;
3495 
3496 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
3497 		stat_offset = ena_stats_global_strings[stat].stat_offset;
3498 		stats_begin = &adapter->dev_stats;
3499 
3500 		xstats[count].id = count;
3501 		xstats[count].value = *((uint64_t *)
3502 			((char *)stats_begin + stat_offset));
3503 	}
3504 
3505 	ena_copy_customer_metrics(adapter, metrics_stats, adapter->metrics_num);
3506 	stats_begin = metrics_stats;
3507 	for (stat = 0; stat < adapter->metrics_num; stat++, count++) {
3508 		stat_offset = ena_stats_metrics_strings[stat].stat_offset;
3509 
3510 		xstats[count].id = count;
3511 		xstats[count].value = *((uint64_t *)
3512 		    ((char *)stats_begin + stat_offset));
3513 	}
3514 
3515 	ena_copy_ena_srd_info(adapter, &srd_info);
3516 	stats_begin = &srd_info;
3517 	for (stat = 0; stat < ENA_STATS_ARRAY_ENA_SRD; stat++, count++) {
3518 		stat_offset = ena_stats_srd_strings[stat].stat_offset;
3519 		xstats[count].id = count;
3520 		xstats[count].value = *((uint64_t *)
3521 		    ((char *)stats_begin + stat_offset));
3522 	}
3523 
3524 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
3525 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
3526 			stat_offset = ena_stats_rx_strings[stat].stat_offset;
3527 			stats_begin = &adapter->rx_ring[i].rx_stats;
3528 
3529 			xstats[count].id = count;
3530 			xstats[count].value = *((uint64_t *)
3531 				((char *)stats_begin + stat_offset));
3532 		}
3533 	}
3534 
3535 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
3536 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
3537 			stat_offset = ena_stats_tx_strings[stat].stat_offset;
3538 			stats_begin = &adapter->tx_ring[i].rx_stats;
3539 
3540 			xstats[count].id = count;
3541 			xstats[count].value = *((uint64_t *)
3542 				((char *)stats_begin + stat_offset));
3543 		}
3544 	}
3545 
3546 	return count;
3547 }
3548 
3549 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
3550 				const uint64_t *ids,
3551 				uint64_t *values,
3552 				unsigned int n)
3553 {
3554 	struct ena_adapter *adapter = dev->data->dev_private;
3555 	uint64_t id;
3556 	uint64_t rx_entries, tx_entries;
3557 	unsigned int i;
3558 	int qid;
3559 	int valid = 0;
3560 	bool were_metrics_copied = false;
3561 	bool was_srd_info_copied = false;
3562 	uint64_t metrics_stats[ENA_MAX_CUSTOMER_METRICS];
3563 	struct ena_stats_srd srd_info = {0};
3564 
3565 	for (i = 0; i < n; ++i) {
3566 		id = ids[i];
3567 		/* Check if id belongs to global statistics */
3568 		if (id < ENA_STATS_ARRAY_GLOBAL) {
3569 			values[i] = *((uint64_t *)&adapter->dev_stats + id);
3570 			++valid;
3571 			continue;
3572 		}
3573 
3574 		/* Check if id belongs to ENI statistics */
3575 		id -= ENA_STATS_ARRAY_GLOBAL;
3576 		if (id < adapter->metrics_num) {
3577 			/* Avoid reading metrics multiple times in a single
3578 			 * function call, as it requires communication with the
3579 			 * admin queue.
3580 			 */
3581 			if (!were_metrics_copied) {
3582 				were_metrics_copied = true;
3583 				ena_copy_customer_metrics(adapter,
3584 						metrics_stats,
3585 						adapter->metrics_num);
3586 			}
3587 
3588 			values[i] = *((uint64_t *)&metrics_stats + id);
3589 			++valid;
3590 			continue;
3591 		}
3592 
3593 		/* Check if id belongs to SRD info statistics */
3594 		id -= adapter->metrics_num;
3595 
3596 		if (id < ENA_STATS_ARRAY_ENA_SRD) {
3597 			/*
3598 			 * Avoid reading srd info multiple times in a single
3599 			 * function call, as it requires communication with the
3600 			 * admin queue.
3601 			 */
3602 			if (!was_srd_info_copied) {
3603 				was_srd_info_copied = true;
3604 				ena_copy_ena_srd_info(adapter, &srd_info);
3605 			}
3606 			values[i] = *((uint64_t *)&adapter->srd_stats + id);
3607 			++valid;
3608 			continue;
3609 		}
3610 
3611 		/* Check if id belongs to rx queue statistics */
3612 		id -= ENA_STATS_ARRAY_ENA_SRD;
3613 
3614 		rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
3615 		if (id < rx_entries) {
3616 			qid = id % dev->data->nb_rx_queues;
3617 			id /= dev->data->nb_rx_queues;
3618 			values[i] = *((uint64_t *)
3619 				&adapter->rx_ring[qid].rx_stats + id);
3620 			++valid;
3621 			continue;
3622 		}
3623 				/* Check if id belongs to rx queue statistics */
3624 		id -= rx_entries;
3625 		tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
3626 		if (id < tx_entries) {
3627 			qid = id % dev->data->nb_tx_queues;
3628 			id /= dev->data->nb_tx_queues;
3629 			values[i] = *((uint64_t *)
3630 				&adapter->tx_ring[qid].tx_stats + id);
3631 			++valid;
3632 			continue;
3633 		}
3634 	}
3635 
3636 	return valid;
3637 }
3638 
3639 static int ena_process_uint_devarg(const char *key,
3640 				  const char *value,
3641 				  void *opaque)
3642 {
3643 	struct ena_adapter *adapter = opaque;
3644 	char *str_end;
3645 	uint64_t uint_value;
3646 
3647 	uint_value = strtoull(value, &str_end, DECIMAL_BASE);
3648 	if (value == str_end) {
3649 		PMD_INIT_LOG(ERR,
3650 			"Invalid value for key '%s'. Only uint values are accepted.\n",
3651 			key);
3652 		return -EINVAL;
3653 	}
3654 
3655 	if (strcmp(key, ENA_DEVARG_MISS_TXC_TO) == 0) {
3656 		if (uint_value > ENA_MAX_TX_TIMEOUT_SECONDS) {
3657 			PMD_INIT_LOG(ERR,
3658 				"Tx timeout too high: %" PRIu64 " sec. Maximum allowed: %d sec.\n",
3659 				uint_value, ENA_MAX_TX_TIMEOUT_SECONDS);
3660 			return -EINVAL;
3661 		} else if (uint_value == 0) {
3662 			PMD_INIT_LOG(INFO,
3663 				"Check for missing Tx completions has been disabled.\n");
3664 			adapter->missing_tx_completion_to =
3665 				ENA_HW_HINTS_NO_TIMEOUT;
3666 		} else {
3667 			PMD_INIT_LOG(INFO,
3668 				"Tx packet completion timeout set to %" PRIu64 " seconds.\n",
3669 				uint_value);
3670 			adapter->missing_tx_completion_to =
3671 				uint_value * rte_get_timer_hz();
3672 		}
3673 	}
3674 
3675 	return 0;
3676 }
3677 
3678 static int ena_process_bool_devarg(const char *key,
3679 				   const char *value,
3680 				   void *opaque)
3681 {
3682 	struct ena_adapter *adapter = opaque;
3683 	bool bool_value;
3684 
3685 	/* Parse the value. */
3686 	if (strcmp(value, "1") == 0) {
3687 		bool_value = true;
3688 	} else if (strcmp(value, "0") == 0) {
3689 		bool_value = false;
3690 	} else {
3691 		PMD_INIT_LOG(ERR,
3692 			"Invalid value: '%s' for key '%s'. Accepted: '0' or '1'\n",
3693 			value, key);
3694 		return -EINVAL;
3695 	}
3696 
3697 	/* Now, assign it to the proper adapter field. */
3698 	if (strcmp(key, ENA_DEVARG_LARGE_LLQ_HDR) == 0)
3699 		adapter->use_large_llq_hdr = bool_value;
3700 	else if (strcmp(key, ENA_DEVARG_NORMAL_LLQ_HDR) == 0)
3701 		adapter->use_normal_llq_hdr = bool_value;
3702 	else if (strcmp(key, ENA_DEVARG_ENABLE_LLQ) == 0)
3703 		adapter->enable_llq = bool_value;
3704 
3705 	return 0;
3706 }
3707 
3708 static int ena_parse_devargs(struct ena_adapter *adapter,
3709 			     struct rte_devargs *devargs)
3710 {
3711 	static const char * const allowed_args[] = {
3712 		ENA_DEVARG_LARGE_LLQ_HDR,
3713 		ENA_DEVARG_NORMAL_LLQ_HDR,
3714 		ENA_DEVARG_MISS_TXC_TO,
3715 		ENA_DEVARG_ENABLE_LLQ,
3716 		NULL,
3717 	};
3718 	struct rte_kvargs *kvlist;
3719 	int rc;
3720 
3721 	if (devargs == NULL)
3722 		return 0;
3723 
3724 	kvlist = rte_kvargs_parse(devargs->args, allowed_args);
3725 	if (kvlist == NULL) {
3726 		PMD_INIT_LOG(ERR, "Invalid device arguments: %s\n",
3727 			devargs->args);
3728 		return -EINVAL;
3729 	}
3730 
3731 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_LARGE_LLQ_HDR,
3732 		ena_process_bool_devarg, adapter);
3733 	if (rc != 0)
3734 		goto exit;
3735 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_NORMAL_LLQ_HDR,
3736 		ena_process_bool_devarg, adapter);
3737 	if (rc != 0)
3738 		goto exit;
3739 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_MISS_TXC_TO,
3740 		ena_process_uint_devarg, adapter);
3741 	if (rc != 0)
3742 		goto exit;
3743 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_ENABLE_LLQ,
3744 		ena_process_bool_devarg, adapter);
3745 
3746 exit:
3747 	rte_kvargs_free(kvlist);
3748 
3749 	return rc;
3750 }
3751 
3752 static int ena_setup_rx_intr(struct rte_eth_dev *dev)
3753 {
3754 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3755 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
3756 	int rc;
3757 	uint16_t vectors_nb, i;
3758 	bool rx_intr_requested = dev->data->dev_conf.intr_conf.rxq;
3759 
3760 	if (!rx_intr_requested)
3761 		return 0;
3762 
3763 	if (!rte_intr_cap_multiple(intr_handle)) {
3764 		PMD_DRV_LOG(ERR,
3765 			"Rx interrupt requested, but it isn't supported by the PCI driver\n");
3766 		return -ENOTSUP;
3767 	}
3768 
3769 	/* Disable interrupt mapping before the configuration starts. */
3770 	rte_intr_disable(intr_handle);
3771 
3772 	/* Verify if there are enough vectors available. */
3773 	vectors_nb = dev->data->nb_rx_queues;
3774 	if (vectors_nb > RTE_MAX_RXTX_INTR_VEC_ID) {
3775 		PMD_DRV_LOG(ERR,
3776 			"Too many Rx interrupts requested, maximum number: %d\n",
3777 			RTE_MAX_RXTX_INTR_VEC_ID);
3778 		rc = -ENOTSUP;
3779 		goto enable_intr;
3780 	}
3781 
3782 	/* Allocate the vector list */
3783 	if (rte_intr_vec_list_alloc(intr_handle, "intr_vec",
3784 					   dev->data->nb_rx_queues)) {
3785 		PMD_DRV_LOG(ERR,
3786 			"Failed to allocate interrupt vector for %d queues\n",
3787 			dev->data->nb_rx_queues);
3788 		rc = -ENOMEM;
3789 		goto enable_intr;
3790 	}
3791 
3792 	rc = rte_intr_efd_enable(intr_handle, vectors_nb);
3793 	if (rc != 0)
3794 		goto free_intr_vec;
3795 
3796 	if (!rte_intr_allow_others(intr_handle)) {
3797 		PMD_DRV_LOG(ERR,
3798 			"Not enough interrupts available to use both ENA Admin and Rx interrupts\n");
3799 		goto disable_intr_efd;
3800 	}
3801 
3802 	for (i = 0; i < vectors_nb; ++i)
3803 		if (rte_intr_vec_list_index_set(intr_handle, i,
3804 					   RTE_INTR_VEC_RXTX_OFFSET + i))
3805 			goto disable_intr_efd;
3806 
3807 	rte_intr_enable(intr_handle);
3808 	return 0;
3809 
3810 disable_intr_efd:
3811 	rte_intr_efd_disable(intr_handle);
3812 free_intr_vec:
3813 	rte_intr_vec_list_free(intr_handle);
3814 enable_intr:
3815 	rte_intr_enable(intr_handle);
3816 	return rc;
3817 }
3818 
3819 static void ena_rx_queue_intr_set(struct rte_eth_dev *dev,
3820 				 uint16_t queue_id,
3821 				 bool unmask)
3822 {
3823 	struct ena_adapter *adapter = dev->data->dev_private;
3824 	struct ena_ring *rxq = &adapter->rx_ring[queue_id];
3825 	struct ena_eth_io_intr_reg intr_reg;
3826 
3827 	ena_com_update_intr_reg(&intr_reg, 0, 0, unmask, 1);
3828 	ena_com_unmask_intr(rxq->ena_com_io_cq, &intr_reg);
3829 }
3830 
3831 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
3832 				    uint16_t queue_id)
3833 {
3834 	ena_rx_queue_intr_set(dev, queue_id, true);
3835 
3836 	return 0;
3837 }
3838 
3839 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
3840 				     uint16_t queue_id)
3841 {
3842 	ena_rx_queue_intr_set(dev, queue_id, false);
3843 
3844 	return 0;
3845 }
3846 
3847 static int ena_configure_aenq(struct ena_adapter *adapter)
3848 {
3849 	uint32_t aenq_groups = adapter->all_aenq_groups;
3850 	int rc;
3851 
3852 	/* All_aenq_groups holds all AENQ functions supported by the device and
3853 	 * the HW, so at first we need to be sure the LSC request is valid.
3854 	 */
3855 	if (adapter->edev_data->dev_conf.intr_conf.lsc != 0) {
3856 		if (!(aenq_groups & BIT(ENA_ADMIN_LINK_CHANGE))) {
3857 			PMD_DRV_LOG(ERR,
3858 				"LSC requested, but it's not supported by the AENQ\n");
3859 			return -EINVAL;
3860 		}
3861 	} else {
3862 		/* If LSC wasn't enabled by the app, let's enable all supported
3863 		 * AENQ procedures except the LSC.
3864 		 */
3865 		aenq_groups &= ~BIT(ENA_ADMIN_LINK_CHANGE);
3866 	}
3867 
3868 	rc = ena_com_set_aenq_config(&adapter->ena_dev, aenq_groups);
3869 	if (rc != 0) {
3870 		PMD_DRV_LOG(ERR, "Cannot configure AENQ groups, rc=%d\n", rc);
3871 		return rc;
3872 	}
3873 
3874 	adapter->active_aenq_groups = aenq_groups;
3875 
3876 	return 0;
3877 }
3878 
3879 int ena_mp_indirect_table_set(struct ena_adapter *adapter)
3880 {
3881 	return ENA_PROXY(adapter, ena_com_indirect_table_set, &adapter->ena_dev);
3882 }
3883 
3884 int ena_mp_indirect_table_get(struct ena_adapter *adapter,
3885 			      uint32_t *indirect_table)
3886 {
3887 	return ENA_PROXY(adapter, ena_com_indirect_table_get, &adapter->ena_dev,
3888 		indirect_table);
3889 }
3890 
3891 /*********************************************************************
3892  *  ena_plat_dpdk.h functions implementations
3893  *********************************************************************/
3894 
3895 const struct rte_memzone *
3896 ena_mem_alloc_coherent(struct rte_eth_dev_data *data, size_t size,
3897 		       int socket_id, unsigned int alignment, void **virt_addr,
3898 		       dma_addr_t *phys_addr)
3899 {
3900 	char z_name[RTE_MEMZONE_NAMESIZE];
3901 	struct ena_adapter *adapter = data->dev_private;
3902 	const struct rte_memzone *memzone;
3903 	int rc;
3904 
3905 	rc = snprintf(z_name, RTE_MEMZONE_NAMESIZE, "ena_p%d_mz%" PRIu64 "",
3906 		data->port_id, adapter->memzone_cnt);
3907 	if (rc >= RTE_MEMZONE_NAMESIZE) {
3908 		PMD_DRV_LOG(ERR,
3909 			"Name for the ena_com memzone is too long. Port: %d, mz_num: %" PRIu64 "\n",
3910 			data->port_id, adapter->memzone_cnt);
3911 		goto error;
3912 	}
3913 	adapter->memzone_cnt++;
3914 
3915 	memzone = rte_memzone_reserve_aligned(z_name, size, socket_id,
3916 		RTE_MEMZONE_IOVA_CONTIG, alignment);
3917 	if (memzone == NULL) {
3918 		PMD_DRV_LOG(ERR, "Failed to allocate ena_com memzone: %s\n",
3919 			z_name);
3920 		goto error;
3921 	}
3922 
3923 	memset(memzone->addr, 0, size);
3924 	*virt_addr = memzone->addr;
3925 	*phys_addr = memzone->iova;
3926 
3927 	return memzone;
3928 
3929 error:
3930 	*virt_addr = NULL;
3931 	*phys_addr = 0;
3932 
3933 	return NULL;
3934 }
3935 
3936 
3937 /*********************************************************************
3938  *  PMD configuration
3939  *********************************************************************/
3940 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
3941 	struct rte_pci_device *pci_dev)
3942 {
3943 	return rte_eth_dev_pci_generic_probe(pci_dev,
3944 		sizeof(struct ena_adapter), eth_ena_dev_init);
3945 }
3946 
3947 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
3948 {
3949 	return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
3950 }
3951 
3952 static struct rte_pci_driver rte_ena_pmd = {
3953 	.id_table = pci_id_ena_map,
3954 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
3955 		     RTE_PCI_DRV_WC_ACTIVATE,
3956 	.probe = eth_ena_pci_probe,
3957 	.remove = eth_ena_pci_remove,
3958 };
3959 
3960 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
3961 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
3962 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
3963 RTE_PMD_REGISTER_PARAM_STRING(net_ena,
3964 	ENA_DEVARG_LARGE_LLQ_HDR "=<0|1> "
3965 	ENA_DEVARG_NORMAL_LLQ_HDR "=<0|1> "
3966 	ENA_DEVARG_ENABLE_LLQ "=<0|1> "
3967 	ENA_DEVARG_MISS_TXC_TO "=<uint>");
3968 RTE_LOG_REGISTER_SUFFIX(ena_logtype_init, init, NOTICE);
3969 RTE_LOG_REGISTER_SUFFIX(ena_logtype_driver, driver, NOTICE);
3970 #ifdef RTE_ETHDEV_DEBUG_RX
3971 RTE_LOG_REGISTER_SUFFIX(ena_logtype_rx, rx, DEBUG);
3972 #endif
3973 #ifdef RTE_ETHDEV_DEBUG_TX
3974 RTE_LOG_REGISTER_SUFFIX(ena_logtype_tx, tx, DEBUG);
3975 #endif
3976 RTE_LOG_REGISTER_SUFFIX(ena_logtype_com, com, WARNING);
3977 
3978 /******************************************************************************
3979  ******************************** AENQ Handlers *******************************
3980  *****************************************************************************/
3981 static void ena_update_on_link_change(void *adapter_data,
3982 				      struct ena_admin_aenq_entry *aenq_e)
3983 {
3984 	struct rte_eth_dev *eth_dev = adapter_data;
3985 	struct ena_adapter *adapter = eth_dev->data->dev_private;
3986 	struct ena_admin_aenq_link_change_desc *aenq_link_desc;
3987 	uint32_t status;
3988 
3989 	aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
3990 
3991 	status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
3992 	adapter->link_status = status;
3993 
3994 	ena_link_update(eth_dev, 0);
3995 	rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
3996 }
3997 
3998 static void ena_notification(void *adapter_data,
3999 			     struct ena_admin_aenq_entry *aenq_e)
4000 {
4001 	struct rte_eth_dev *eth_dev = adapter_data;
4002 	struct ena_adapter *adapter = eth_dev->data->dev_private;
4003 	struct ena_admin_ena_hw_hints *hints;
4004 
4005 	if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
4006 		PMD_DRV_LOG(WARNING, "Invalid AENQ group: %x. Expected: %x\n",
4007 			aenq_e->aenq_common_desc.group,
4008 			ENA_ADMIN_NOTIFICATION);
4009 
4010 	switch (aenq_e->aenq_common_desc.syndrome) {
4011 	case ENA_ADMIN_UPDATE_HINTS:
4012 		hints = (struct ena_admin_ena_hw_hints *)
4013 			(&aenq_e->inline_data_w4);
4014 		ena_update_hints(adapter, hints);
4015 		break;
4016 	default:
4017 		PMD_DRV_LOG(ERR, "Invalid AENQ notification link state: %d\n",
4018 			aenq_e->aenq_common_desc.syndrome);
4019 	}
4020 }
4021 
4022 static void ena_keep_alive(void *adapter_data,
4023 			   __rte_unused struct ena_admin_aenq_entry *aenq_e)
4024 {
4025 	struct rte_eth_dev *eth_dev = adapter_data;
4026 	struct ena_adapter *adapter = eth_dev->data->dev_private;
4027 	struct ena_admin_aenq_keep_alive_desc *desc;
4028 	uint64_t rx_drops;
4029 	uint64_t tx_drops;
4030 	uint64_t rx_overruns;
4031 
4032 	adapter->timestamp_wd = rte_get_timer_cycles();
4033 
4034 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
4035 	rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
4036 	tx_drops = ((uint64_t)desc->tx_drops_high << 32) | desc->tx_drops_low;
4037 	rx_overruns = ((uint64_t)desc->rx_overruns_high << 32) | desc->rx_overruns_low;
4038 
4039 	/*
4040 	 * Depending on its acceleration support, the device updates a different statistic when
4041 	 * Rx packet is dropped because there are no available buffers to accommodate it.
4042 	 */
4043 	adapter->drv_stats->rx_drops = rx_drops + rx_overruns;
4044 	adapter->dev_stats.tx_drops = tx_drops;
4045 }
4046 
4047 static void ena_suboptimal_configuration(__rte_unused void *adapter_data,
4048 					 struct ena_admin_aenq_entry *aenq_e)
4049 {
4050 	struct ena_admin_aenq_conf_notifications_desc *desc;
4051 	int bit, num_bits;
4052 
4053 	desc = (struct ena_admin_aenq_conf_notifications_desc *)aenq_e;
4054 	num_bits = BITS_PER_TYPE(desc->notifications_bitmap);
4055 	for (bit = 0; bit < num_bits; bit++) {
4056 		if (desc->notifications_bitmap & RTE_BIT64(bit)) {
4057 			PMD_DRV_LOG(WARNING,
4058 				"Sub-optimal configuration notification code: %d\n", bit + 1);
4059 		}
4060 	}
4061 }
4062 
4063 /**
4064  * This handler will called for unknown event group or unimplemented handlers
4065  **/
4066 static void unimplemented_aenq_handler(__rte_unused void *data,
4067 				       __rte_unused struct ena_admin_aenq_entry *aenq_e)
4068 {
4069 	PMD_DRV_LOG(ERR,
4070 		"Unknown event was received or event with unimplemented handler\n");
4071 }
4072 
4073 static struct ena_aenq_handlers aenq_handlers = {
4074 	.handlers = {
4075 		[ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
4076 		[ENA_ADMIN_NOTIFICATION] = ena_notification,
4077 		[ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive,
4078 		[ENA_ADMIN_CONF_NOTIFICATIONS] = ena_suboptimal_configuration
4079 	},
4080 	.unimplemented_handler = unimplemented_aenq_handler
4081 };
4082 
4083 /*********************************************************************
4084  *  Multi-Process communication request handling (in primary)
4085  *********************************************************************/
4086 static int
4087 ena_mp_primary_handle(const struct rte_mp_msg *mp_msg, const void *peer)
4088 {
4089 	const struct ena_mp_body *req =
4090 		(const struct ena_mp_body *)mp_msg->param;
4091 	struct ena_adapter *adapter;
4092 	struct ena_com_dev *ena_dev;
4093 	struct ena_mp_body *rsp;
4094 	struct rte_mp_msg mp_rsp;
4095 	struct rte_eth_dev *dev;
4096 	int res = 0;
4097 
4098 	rsp = (struct ena_mp_body *)&mp_rsp.param;
4099 	mp_msg_init(&mp_rsp, req->type, req->port_id);
4100 
4101 	if (!rte_eth_dev_is_valid_port(req->port_id)) {
4102 		rte_errno = ENODEV;
4103 		res = -rte_errno;
4104 		PMD_DRV_LOG(ERR, "Unknown port %d in request %d\n",
4105 			    req->port_id, req->type);
4106 		goto end;
4107 	}
4108 	dev = &rte_eth_devices[req->port_id];
4109 	adapter = dev->data->dev_private;
4110 	ena_dev = &adapter->ena_dev;
4111 
4112 	switch (req->type) {
4113 	case ENA_MP_DEV_STATS_GET:
4114 		res = ena_com_get_dev_basic_stats(ena_dev,
4115 						  &adapter->basic_stats);
4116 		break;
4117 	case ENA_MP_ENI_STATS_GET:
4118 		res = ena_com_get_eni_stats(ena_dev,
4119 			(struct ena_admin_eni_stats *)&adapter->metrics_stats);
4120 		break;
4121 	case ENA_MP_MTU_SET:
4122 		res = ena_com_set_dev_mtu(ena_dev, req->args.mtu);
4123 		break;
4124 	case ENA_MP_IND_TBL_GET:
4125 		res = ena_com_indirect_table_get(ena_dev,
4126 						 adapter->indirect_table);
4127 		break;
4128 	case ENA_MP_IND_TBL_SET:
4129 		res = ena_com_indirect_table_set(ena_dev);
4130 		break;
4131 	case ENA_MP_CUSTOMER_METRICS_GET:
4132 		res = ena_com_get_customer_metrics(ena_dev,
4133 				(char *)adapter->metrics_stats,
4134 				adapter->metrics_num * sizeof(uint64_t));
4135 		break;
4136 	case ENA_MP_SRD_STATS_GET:
4137 		res = ena_com_get_ena_srd_info(ena_dev,
4138 				(struct ena_admin_ena_srd_info *)&adapter->srd_stats);
4139 		break;
4140 	default:
4141 		PMD_DRV_LOG(ERR, "Unknown request type %d\n", req->type);
4142 		res = -EINVAL;
4143 		break;
4144 	}
4145 
4146 end:
4147 	/* Save processing result in the reply */
4148 	rsp->result = res;
4149 	/* Return just IPC processing status */
4150 	return rte_mp_reply(&mp_rsp, peer);
4151 }
4152 
4153 static ena_llq_policy ena_define_llq_hdr_policy(struct ena_adapter *adapter)
4154 {
4155 	if (!adapter->enable_llq)
4156 		return ENA_LLQ_POLICY_DISABLED;
4157 	if (adapter->use_large_llq_hdr)
4158 		return ENA_LLQ_POLICY_LARGE;
4159 	if (adapter->use_normal_llq_hdr)
4160 		return ENA_LLQ_POLICY_NORMAL;
4161 	return ENA_LLQ_POLICY_RECOMMENDED;
4162 }
4163 
4164 static bool ena_use_large_llq_hdr(struct ena_adapter *adapter, uint8_t recommended_entry_size)
4165 {
4166 	if (adapter->llq_header_policy == ENA_LLQ_POLICY_LARGE) {
4167 		return true;
4168 	} else if (adapter->llq_header_policy == ENA_LLQ_POLICY_RECOMMENDED) {
4169 		PMD_DRV_LOG(INFO, "Recommended device entry size policy %u\n",
4170 			recommended_entry_size);
4171 		if (recommended_entry_size == ENA_ADMIN_LIST_ENTRY_SIZE_256B)
4172 			return true;
4173 	}
4174 	return false;
4175 }
4176