xref: /dpdk/drivers/net/ena/ena_ethdev.c (revision 1cde1b9a9b4dbf31cb5e5ccdfc5da3cb079f43a2)
1 /*-
2 * BSD LICENSE
3 *
4 * Copyright (c) 2015-2016 Amazon.com, Inc. or its affiliates.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * * Neither the name of copyright holder nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33 
34 #include <rte_string_fns.h>
35 #include <rte_ether.h>
36 #include <rte_ethdev_driver.h>
37 #include <rte_ethdev_pci.h>
38 #include <rte_tcp.h>
39 #include <rte_atomic.h>
40 #include <rte_dev.h>
41 #include <rte_errno.h>
42 #include <rte_version.h>
43 #include <rte_net.h>
44 
45 #include "ena_ethdev.h"
46 #include "ena_logs.h"
47 #include "ena_platform.h"
48 #include "ena_com.h"
49 #include "ena_eth_com.h"
50 
51 #include <ena_common_defs.h>
52 #include <ena_regs_defs.h>
53 #include <ena_admin_defs.h>
54 #include <ena_eth_io_defs.h>
55 
56 #define DRV_MODULE_VER_MAJOR	2
57 #define DRV_MODULE_VER_MINOR	0
58 #define DRV_MODULE_VER_SUBMINOR	1
59 
60 #define ENA_IO_TXQ_IDX(q)	(2 * (q))
61 #define ENA_IO_RXQ_IDX(q)	(2 * (q) + 1)
62 /*reverse version of ENA_IO_RXQ_IDX*/
63 #define ENA_IO_RXQ_IDX_REV(q)	((q - 1) / 2)
64 
65 /* While processing submitted and completed descriptors (rx and tx path
66  * respectively) in a loop it is desired to:
67  *  - perform batch submissions while populating sumbissmion queue
68  *  - avoid blocking transmission of other packets during cleanup phase
69  * Hence the utilization ratio of 1/8 of a queue size.
70  */
71 #define ENA_RING_DESCS_RATIO(ring_size)	(ring_size / 8)
72 
73 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
74 #define TEST_BIT(val, bit_shift) (val & (1UL << bit_shift))
75 
76 #define GET_L4_HDR_LEN(mbuf)					\
77 	((rte_pktmbuf_mtod_offset(mbuf,	struct rte_tcp_hdr *,	\
78 		mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
79 
80 #define ENA_RX_RSS_TABLE_LOG_SIZE  7
81 #define ENA_RX_RSS_TABLE_SIZE	(1 << ENA_RX_RSS_TABLE_LOG_SIZE)
82 #define ENA_HASH_KEY_SIZE	40
83 #define ETH_GSTRING_LEN	32
84 
85 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
86 
87 #define ENA_MIN_RING_DESC	128
88 
89 enum ethtool_stringset {
90 	ETH_SS_TEST             = 0,
91 	ETH_SS_STATS,
92 };
93 
94 struct ena_stats {
95 	char name[ETH_GSTRING_LEN];
96 	int stat_offset;
97 };
98 
99 #define ENA_STAT_ENTRY(stat, stat_type) { \
100 	.name = #stat, \
101 	.stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
102 }
103 
104 #define ENA_STAT_RX_ENTRY(stat) \
105 	ENA_STAT_ENTRY(stat, rx)
106 
107 #define ENA_STAT_TX_ENTRY(stat) \
108 	ENA_STAT_ENTRY(stat, tx)
109 
110 #define ENA_STAT_GLOBAL_ENTRY(stat) \
111 	ENA_STAT_ENTRY(stat, dev)
112 
113 #define ENA_MAX_RING_SIZE_RX 8192
114 #define ENA_MAX_RING_SIZE_TX 1024
115 
116 /*
117  * Each rte_memzone should have unique name.
118  * To satisfy it, count number of allocation and add it to name.
119  */
120 uint32_t ena_alloc_cnt;
121 
122 static const struct ena_stats ena_stats_global_strings[] = {
123 	ENA_STAT_GLOBAL_ENTRY(wd_expired),
124 	ENA_STAT_GLOBAL_ENTRY(dev_start),
125 	ENA_STAT_GLOBAL_ENTRY(dev_stop),
126 };
127 
128 static const struct ena_stats ena_stats_tx_strings[] = {
129 	ENA_STAT_TX_ENTRY(cnt),
130 	ENA_STAT_TX_ENTRY(bytes),
131 	ENA_STAT_TX_ENTRY(prepare_ctx_err),
132 	ENA_STAT_TX_ENTRY(linearize),
133 	ENA_STAT_TX_ENTRY(linearize_failed),
134 	ENA_STAT_TX_ENTRY(tx_poll),
135 	ENA_STAT_TX_ENTRY(doorbells),
136 	ENA_STAT_TX_ENTRY(bad_req_id),
137 	ENA_STAT_TX_ENTRY(available_desc),
138 };
139 
140 static const struct ena_stats ena_stats_rx_strings[] = {
141 	ENA_STAT_RX_ENTRY(cnt),
142 	ENA_STAT_RX_ENTRY(bytes),
143 	ENA_STAT_RX_ENTRY(refill_partial),
144 	ENA_STAT_RX_ENTRY(bad_csum),
145 	ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
146 	ENA_STAT_RX_ENTRY(bad_desc_num),
147 	ENA_STAT_RX_ENTRY(bad_req_id),
148 };
149 
150 #define ENA_STATS_ARRAY_GLOBAL	ARRAY_SIZE(ena_stats_global_strings)
151 #define ENA_STATS_ARRAY_TX	ARRAY_SIZE(ena_stats_tx_strings)
152 #define ENA_STATS_ARRAY_RX	ARRAY_SIZE(ena_stats_rx_strings)
153 
154 #define QUEUE_OFFLOADS (DEV_TX_OFFLOAD_TCP_CKSUM |\
155 			DEV_TX_OFFLOAD_UDP_CKSUM |\
156 			DEV_TX_OFFLOAD_IPV4_CKSUM |\
157 			DEV_TX_OFFLOAD_TCP_TSO)
158 #define MBUF_OFFLOADS (PKT_TX_L4_MASK |\
159 		       PKT_TX_IP_CKSUM |\
160 		       PKT_TX_TCP_SEG)
161 
162 /** Vendor ID used by Amazon devices */
163 #define PCI_VENDOR_ID_AMAZON 0x1D0F
164 /** Amazon devices */
165 #define PCI_DEVICE_ID_ENA_VF	0xEC20
166 #define PCI_DEVICE_ID_ENA_LLQ_VF	0xEC21
167 
168 #define	ENA_TX_OFFLOAD_MASK	(\
169 	PKT_TX_L4_MASK |         \
170 	PKT_TX_IPV6 |            \
171 	PKT_TX_IPV4 |            \
172 	PKT_TX_IP_CKSUM |        \
173 	PKT_TX_TCP_SEG)
174 
175 #define	ENA_TX_OFFLOAD_NOTSUP_MASK	\
176 	(PKT_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
177 
178 int ena_logtype_init;
179 int ena_logtype_driver;
180 
181 #ifdef RTE_LIBRTE_ENA_DEBUG_RX
182 int ena_logtype_rx;
183 #endif
184 #ifdef RTE_LIBRTE_ENA_DEBUG_TX
185 int ena_logtype_tx;
186 #endif
187 #ifdef RTE_LIBRTE_ENA_DEBUG_TX_FREE
188 int ena_logtype_tx_free;
189 #endif
190 #ifdef RTE_LIBRTE_ENA_COM_DEBUG
191 int ena_logtype_com;
192 #endif
193 
194 static const struct rte_pci_id pci_id_ena_map[] = {
195 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
196 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_LLQ_VF) },
197 	{ .device_id = 0 },
198 };
199 
200 static struct ena_aenq_handlers aenq_handlers;
201 
202 static int ena_device_init(struct ena_com_dev *ena_dev,
203 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
204 			   bool *wd_state);
205 static int ena_dev_configure(struct rte_eth_dev *dev);
206 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
207 				  uint16_t nb_pkts);
208 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
209 		uint16_t nb_pkts);
210 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
211 			      uint16_t nb_desc, unsigned int socket_id,
212 			      const struct rte_eth_txconf *tx_conf);
213 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
214 			      uint16_t nb_desc, unsigned int socket_id,
215 			      const struct rte_eth_rxconf *rx_conf,
216 			      struct rte_mempool *mp);
217 static uint16_t eth_ena_recv_pkts(void *rx_queue,
218 				  struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
219 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
220 static void ena_init_rings(struct ena_adapter *adapter);
221 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
222 static int ena_start(struct rte_eth_dev *dev);
223 static void ena_stop(struct rte_eth_dev *dev);
224 static void ena_close(struct rte_eth_dev *dev);
225 static int ena_dev_reset(struct rte_eth_dev *dev);
226 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
227 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
228 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
229 static void ena_rx_queue_release(void *queue);
230 static void ena_tx_queue_release(void *queue);
231 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
232 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
233 static int ena_link_update(struct rte_eth_dev *dev,
234 			   int wait_to_complete);
235 static int ena_create_io_queue(struct ena_ring *ring);
236 static void ena_queue_stop(struct ena_ring *ring);
237 static void ena_queue_stop_all(struct rte_eth_dev *dev,
238 			      enum ena_ring_type ring_type);
239 static int ena_queue_start(struct ena_ring *ring);
240 static int ena_queue_start_all(struct rte_eth_dev *dev,
241 			       enum ena_ring_type ring_type);
242 static void ena_stats_restart(struct rte_eth_dev *dev);
243 static int ena_infos_get(struct rte_eth_dev *dev,
244 			 struct rte_eth_dev_info *dev_info);
245 static int ena_rss_reta_update(struct rte_eth_dev *dev,
246 			       struct rte_eth_rss_reta_entry64 *reta_conf,
247 			       uint16_t reta_size);
248 static int ena_rss_reta_query(struct rte_eth_dev *dev,
249 			      struct rte_eth_rss_reta_entry64 *reta_conf,
250 			      uint16_t reta_size);
251 static void ena_interrupt_handler_rte(void *cb_arg);
252 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
253 static void ena_destroy_device(struct rte_eth_dev *eth_dev);
254 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
255 static int ena_xstats_get_names(struct rte_eth_dev *dev,
256 				struct rte_eth_xstat_name *xstats_names,
257 				unsigned int n);
258 static int ena_xstats_get(struct rte_eth_dev *dev,
259 			  struct rte_eth_xstat *stats,
260 			  unsigned int n);
261 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
262 				const uint64_t *ids,
263 				uint64_t *values,
264 				unsigned int n);
265 
266 static const struct eth_dev_ops ena_dev_ops = {
267 	.dev_configure        = ena_dev_configure,
268 	.dev_infos_get        = ena_infos_get,
269 	.rx_queue_setup       = ena_rx_queue_setup,
270 	.tx_queue_setup       = ena_tx_queue_setup,
271 	.dev_start            = ena_start,
272 	.dev_stop             = ena_stop,
273 	.link_update          = ena_link_update,
274 	.stats_get            = ena_stats_get,
275 	.xstats_get_names     = ena_xstats_get_names,
276 	.xstats_get	      = ena_xstats_get,
277 	.xstats_get_by_id     = ena_xstats_get_by_id,
278 	.mtu_set              = ena_mtu_set,
279 	.rx_queue_release     = ena_rx_queue_release,
280 	.tx_queue_release     = ena_tx_queue_release,
281 	.dev_close            = ena_close,
282 	.dev_reset            = ena_dev_reset,
283 	.reta_update          = ena_rss_reta_update,
284 	.reta_query           = ena_rss_reta_query,
285 };
286 
287 static inline void ena_rx_mbuf_prepare(struct rte_mbuf *mbuf,
288 				       struct ena_com_rx_ctx *ena_rx_ctx)
289 {
290 	uint64_t ol_flags = 0;
291 	uint32_t packet_type = 0;
292 
293 	if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
294 		packet_type |= RTE_PTYPE_L4_TCP;
295 	else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
296 		packet_type |= RTE_PTYPE_L4_UDP;
297 
298 	if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4)
299 		packet_type |= RTE_PTYPE_L3_IPV4;
300 	else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6)
301 		packet_type |= RTE_PTYPE_L3_IPV6;
302 
303 	if (unlikely(ena_rx_ctx->l4_csum_err))
304 		ol_flags |= PKT_RX_L4_CKSUM_BAD;
305 	if (unlikely(ena_rx_ctx->l3_csum_err))
306 		ol_flags |= PKT_RX_IP_CKSUM_BAD;
307 
308 	mbuf->ol_flags = ol_flags;
309 	mbuf->packet_type = packet_type;
310 }
311 
312 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
313 				       struct ena_com_tx_ctx *ena_tx_ctx,
314 				       uint64_t queue_offloads)
315 {
316 	struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
317 
318 	if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
319 	    (queue_offloads & QUEUE_OFFLOADS)) {
320 		/* check if TSO is required */
321 		if ((mbuf->ol_flags & PKT_TX_TCP_SEG) &&
322 		    (queue_offloads & DEV_TX_OFFLOAD_TCP_TSO)) {
323 			ena_tx_ctx->tso_enable = true;
324 
325 			ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
326 		}
327 
328 		/* check if L3 checksum is needed */
329 		if ((mbuf->ol_flags & PKT_TX_IP_CKSUM) &&
330 		    (queue_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM))
331 			ena_tx_ctx->l3_csum_enable = true;
332 
333 		if (mbuf->ol_flags & PKT_TX_IPV6) {
334 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
335 		} else {
336 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
337 
338 			/* set don't fragment (DF) flag */
339 			if (mbuf->packet_type &
340 				(RTE_PTYPE_L4_NONFRAG
341 				 | RTE_PTYPE_INNER_L4_NONFRAG))
342 				ena_tx_ctx->df = true;
343 		}
344 
345 		/* check if L4 checksum is needed */
346 		if (((mbuf->ol_flags & PKT_TX_L4_MASK) == PKT_TX_TCP_CKSUM) &&
347 		    (queue_offloads & DEV_TX_OFFLOAD_TCP_CKSUM)) {
348 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
349 			ena_tx_ctx->l4_csum_enable = true;
350 		} else if (((mbuf->ol_flags & PKT_TX_L4_MASK) ==
351 				PKT_TX_UDP_CKSUM) &&
352 				(queue_offloads & DEV_TX_OFFLOAD_UDP_CKSUM)) {
353 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
354 			ena_tx_ctx->l4_csum_enable = true;
355 		} else {
356 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
357 			ena_tx_ctx->l4_csum_enable = false;
358 		}
359 
360 		ena_meta->mss = mbuf->tso_segsz;
361 		ena_meta->l3_hdr_len = mbuf->l3_len;
362 		ena_meta->l3_hdr_offset = mbuf->l2_len;
363 
364 		ena_tx_ctx->meta_valid = true;
365 	} else {
366 		ena_tx_ctx->meta_valid = false;
367 	}
368 }
369 
370 static inline int validate_rx_req_id(struct ena_ring *rx_ring, uint16_t req_id)
371 {
372 	if (likely(req_id < rx_ring->ring_size))
373 		return 0;
374 
375 	PMD_DRV_LOG(ERR, "Invalid rx req_id: %hu\n", req_id);
376 
377 	rx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID;
378 	rx_ring->adapter->trigger_reset = true;
379 	++rx_ring->rx_stats.bad_req_id;
380 
381 	return -EFAULT;
382 }
383 
384 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
385 {
386 	struct ena_tx_buffer *tx_info = NULL;
387 
388 	if (likely(req_id < tx_ring->ring_size)) {
389 		tx_info = &tx_ring->tx_buffer_info[req_id];
390 		if (likely(tx_info->mbuf))
391 			return 0;
392 	}
393 
394 	if (tx_info)
395 		PMD_DRV_LOG(ERR, "tx_info doesn't have valid mbuf\n");
396 	else
397 		PMD_DRV_LOG(ERR, "Invalid req_id: %hu\n", req_id);
398 
399 	/* Trigger device reset */
400 	++tx_ring->tx_stats.bad_req_id;
401 	tx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID;
402 	tx_ring->adapter->trigger_reset	= true;
403 	return -EFAULT;
404 }
405 
406 static void ena_config_host_info(struct ena_com_dev *ena_dev)
407 {
408 	struct ena_admin_host_info *host_info;
409 	int rc;
410 
411 	/* Allocate only the host info */
412 	rc = ena_com_allocate_host_info(ena_dev);
413 	if (rc) {
414 		PMD_DRV_LOG(ERR, "Cannot allocate host info\n");
415 		return;
416 	}
417 
418 	host_info = ena_dev->host_attr.host_info;
419 
420 	host_info->os_type = ENA_ADMIN_OS_DPDK;
421 	host_info->kernel_ver = RTE_VERSION;
422 	strlcpy((char *)host_info->kernel_ver_str, rte_version(),
423 		sizeof(host_info->kernel_ver_str));
424 	host_info->os_dist = RTE_VERSION;
425 	strlcpy((char *)host_info->os_dist_str, rte_version(),
426 		sizeof(host_info->os_dist_str));
427 	host_info->driver_version =
428 		(DRV_MODULE_VER_MAJOR) |
429 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
430 		(DRV_MODULE_VER_SUBMINOR <<
431 			ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
432 	host_info->num_cpus = rte_lcore_count();
433 
434 	rc = ena_com_set_host_attributes(ena_dev);
435 	if (rc) {
436 		if (rc == -ENA_COM_UNSUPPORTED)
437 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
438 		else
439 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
440 
441 		goto err;
442 	}
443 
444 	return;
445 
446 err:
447 	ena_com_delete_host_info(ena_dev);
448 }
449 
450 /* This function calculates the number of xstats based on the current config */
451 static unsigned int ena_xstats_calc_num(struct rte_eth_dev *dev)
452 {
453 	return ENA_STATS_ARRAY_GLOBAL +
454 		(dev->data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
455 		(dev->data->nb_rx_queues * ENA_STATS_ARRAY_RX);
456 }
457 
458 static void ena_config_debug_area(struct ena_adapter *adapter)
459 {
460 	u32 debug_area_size;
461 	int rc, ss_count;
462 
463 	ss_count = ena_xstats_calc_num(adapter->rte_dev);
464 
465 	/* allocate 32 bytes for each string and 64bit for the value */
466 	debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
467 
468 	rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
469 	if (rc) {
470 		PMD_DRV_LOG(ERR, "Cannot allocate debug area\n");
471 		return;
472 	}
473 
474 	rc = ena_com_set_host_attributes(&adapter->ena_dev);
475 	if (rc) {
476 		if (rc == -ENA_COM_UNSUPPORTED)
477 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
478 		else
479 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
480 
481 		goto err;
482 	}
483 
484 	return;
485 err:
486 	ena_com_delete_debug_area(&adapter->ena_dev);
487 }
488 
489 static void ena_close(struct rte_eth_dev *dev)
490 {
491 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
492 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
493 	struct ena_adapter *adapter = dev->data->dev_private;
494 
495 	if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
496 		ena_stop(dev);
497 	adapter->state = ENA_ADAPTER_STATE_CLOSED;
498 
499 	ena_rx_queue_release_all(dev);
500 	ena_tx_queue_release_all(dev);
501 
502 	rte_free(adapter->drv_stats);
503 	adapter->drv_stats = NULL;
504 
505 	rte_intr_disable(intr_handle);
506 	rte_intr_callback_unregister(intr_handle,
507 				     ena_interrupt_handler_rte,
508 				     adapter);
509 
510 	/*
511 	 * MAC is not allocated dynamically. Setting NULL should prevent from
512 	 * release of the resource in the rte_eth_dev_release_port().
513 	 */
514 	dev->data->mac_addrs = NULL;
515 }
516 
517 static int
518 ena_dev_reset(struct rte_eth_dev *dev)
519 {
520 	int rc = 0;
521 
522 	ena_destroy_device(dev);
523 	rc = eth_ena_dev_init(dev);
524 	if (rc)
525 		PMD_INIT_LOG(CRIT, "Cannot initialize device");
526 
527 	return rc;
528 }
529 
530 static int ena_rss_reta_update(struct rte_eth_dev *dev,
531 			       struct rte_eth_rss_reta_entry64 *reta_conf,
532 			       uint16_t reta_size)
533 {
534 	struct ena_adapter *adapter = dev->data->dev_private;
535 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
536 	int rc, i;
537 	u16 entry_value;
538 	int conf_idx;
539 	int idx;
540 
541 	if ((reta_size == 0) || (reta_conf == NULL))
542 		return -EINVAL;
543 
544 	if (reta_size > ENA_RX_RSS_TABLE_SIZE) {
545 		PMD_DRV_LOG(WARNING,
546 			"indirection table %d is bigger than supported (%d)\n",
547 			reta_size, ENA_RX_RSS_TABLE_SIZE);
548 		return -EINVAL;
549 	}
550 
551 	for (i = 0 ; i < reta_size ; i++) {
552 		/* each reta_conf is for 64 entries.
553 		 * to support 128 we use 2 conf of 64
554 		 */
555 		conf_idx = i / RTE_RETA_GROUP_SIZE;
556 		idx = i % RTE_RETA_GROUP_SIZE;
557 		if (TEST_BIT(reta_conf[conf_idx].mask, idx)) {
558 			entry_value =
559 				ENA_IO_RXQ_IDX(reta_conf[conf_idx].reta[idx]);
560 
561 			rc = ena_com_indirect_table_fill_entry(ena_dev,
562 							       i,
563 							       entry_value);
564 			if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
565 				PMD_DRV_LOG(ERR,
566 					"Cannot fill indirect table\n");
567 				return rc;
568 			}
569 		}
570 	}
571 
572 	rc = ena_com_indirect_table_set(ena_dev);
573 	if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
574 		PMD_DRV_LOG(ERR, "Cannot flush the indirect table\n");
575 		return rc;
576 	}
577 
578 	PMD_DRV_LOG(DEBUG, "%s(): RSS configured %d entries  for port %d\n",
579 		__func__, reta_size, adapter->rte_dev->data->port_id);
580 
581 	return 0;
582 }
583 
584 /* Query redirection table. */
585 static int ena_rss_reta_query(struct rte_eth_dev *dev,
586 			      struct rte_eth_rss_reta_entry64 *reta_conf,
587 			      uint16_t reta_size)
588 {
589 	struct ena_adapter *adapter = dev->data->dev_private;
590 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
591 	int rc;
592 	int i;
593 	u32 indirect_table[ENA_RX_RSS_TABLE_SIZE] = {0};
594 	int reta_conf_idx;
595 	int reta_idx;
596 
597 	if (reta_size == 0 || reta_conf == NULL ||
598 	    (reta_size > RTE_RETA_GROUP_SIZE && ((reta_conf + 1) == NULL)))
599 		return -EINVAL;
600 
601 	rc = ena_com_indirect_table_get(ena_dev, indirect_table);
602 	if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
603 		PMD_DRV_LOG(ERR, "cannot get indirect table\n");
604 		return -ENOTSUP;
605 	}
606 
607 	for (i = 0 ; i < reta_size ; i++) {
608 		reta_conf_idx = i / RTE_RETA_GROUP_SIZE;
609 		reta_idx = i % RTE_RETA_GROUP_SIZE;
610 		if (TEST_BIT(reta_conf[reta_conf_idx].mask, reta_idx))
611 			reta_conf[reta_conf_idx].reta[reta_idx] =
612 				ENA_IO_RXQ_IDX_REV(indirect_table[i]);
613 	}
614 
615 	return 0;
616 }
617 
618 static int ena_rss_init_default(struct ena_adapter *adapter)
619 {
620 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
621 	uint16_t nb_rx_queues = adapter->rte_dev->data->nb_rx_queues;
622 	int rc, i;
623 	u32 val;
624 
625 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
626 	if (unlikely(rc)) {
627 		PMD_DRV_LOG(ERR, "Cannot init indirect table\n");
628 		goto err_rss_init;
629 	}
630 
631 	for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
632 		val = i % nb_rx_queues;
633 		rc = ena_com_indirect_table_fill_entry(ena_dev, i,
634 						       ENA_IO_RXQ_IDX(val));
635 		if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
636 			PMD_DRV_LOG(ERR, "Cannot fill indirect table\n");
637 			goto err_fill_indir;
638 		}
639 	}
640 
641 	rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL,
642 					ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
643 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
644 		PMD_DRV_LOG(INFO, "Cannot fill hash function\n");
645 		goto err_fill_indir;
646 	}
647 
648 	rc = ena_com_set_default_hash_ctrl(ena_dev);
649 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
650 		PMD_DRV_LOG(INFO, "Cannot fill hash control\n");
651 		goto err_fill_indir;
652 	}
653 
654 	rc = ena_com_indirect_table_set(ena_dev);
655 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
656 		PMD_DRV_LOG(ERR, "Cannot flush the indirect table\n");
657 		goto err_fill_indir;
658 	}
659 	PMD_DRV_LOG(DEBUG, "RSS configured for port %d\n",
660 		adapter->rte_dev->data->port_id);
661 
662 	return 0;
663 
664 err_fill_indir:
665 	ena_com_rss_destroy(ena_dev);
666 err_rss_init:
667 
668 	return rc;
669 }
670 
671 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
672 {
673 	struct ena_ring **queues = (struct ena_ring **)dev->data->rx_queues;
674 	int nb_queues = dev->data->nb_rx_queues;
675 	int i;
676 
677 	for (i = 0; i < nb_queues; i++)
678 		ena_rx_queue_release(queues[i]);
679 }
680 
681 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
682 {
683 	struct ena_ring **queues = (struct ena_ring **)dev->data->tx_queues;
684 	int nb_queues = dev->data->nb_tx_queues;
685 	int i;
686 
687 	for (i = 0; i < nb_queues; i++)
688 		ena_tx_queue_release(queues[i]);
689 }
690 
691 static void ena_rx_queue_release(void *queue)
692 {
693 	struct ena_ring *ring = (struct ena_ring *)queue;
694 
695 	/* Free ring resources */
696 	if (ring->rx_buffer_info)
697 		rte_free(ring->rx_buffer_info);
698 	ring->rx_buffer_info = NULL;
699 
700 	if (ring->rx_refill_buffer)
701 		rte_free(ring->rx_refill_buffer);
702 	ring->rx_refill_buffer = NULL;
703 
704 	if (ring->empty_rx_reqs)
705 		rte_free(ring->empty_rx_reqs);
706 	ring->empty_rx_reqs = NULL;
707 
708 	ring->configured = 0;
709 
710 	PMD_DRV_LOG(NOTICE, "RX Queue %d:%d released\n",
711 		ring->port_id, ring->id);
712 }
713 
714 static void ena_tx_queue_release(void *queue)
715 {
716 	struct ena_ring *ring = (struct ena_ring *)queue;
717 
718 	/* Free ring resources */
719 	if (ring->push_buf_intermediate_buf)
720 		rte_free(ring->push_buf_intermediate_buf);
721 
722 	if (ring->tx_buffer_info)
723 		rte_free(ring->tx_buffer_info);
724 
725 	if (ring->empty_tx_reqs)
726 		rte_free(ring->empty_tx_reqs);
727 
728 	ring->empty_tx_reqs = NULL;
729 	ring->tx_buffer_info = NULL;
730 	ring->push_buf_intermediate_buf = NULL;
731 
732 	ring->configured = 0;
733 
734 	PMD_DRV_LOG(NOTICE, "TX Queue %d:%d released\n",
735 		ring->port_id, ring->id);
736 }
737 
738 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
739 {
740 	unsigned int i;
741 
742 	for (i = 0; i < ring->ring_size; ++i)
743 		if (ring->rx_buffer_info[i]) {
744 			rte_mbuf_raw_free(ring->rx_buffer_info[i]);
745 			ring->rx_buffer_info[i] = NULL;
746 		}
747 }
748 
749 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
750 {
751 	unsigned int i;
752 
753 	for (i = 0; i < ring->ring_size; ++i) {
754 		struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
755 
756 		if (tx_buf->mbuf)
757 			rte_pktmbuf_free(tx_buf->mbuf);
758 	}
759 }
760 
761 static int ena_link_update(struct rte_eth_dev *dev,
762 			   __rte_unused int wait_to_complete)
763 {
764 	struct rte_eth_link *link = &dev->data->dev_link;
765 	struct ena_adapter *adapter = dev->data->dev_private;
766 
767 	link->link_status = adapter->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
768 	link->link_speed = ETH_SPEED_NUM_NONE;
769 	link->link_duplex = ETH_LINK_FULL_DUPLEX;
770 
771 	return 0;
772 }
773 
774 static int ena_queue_start_all(struct rte_eth_dev *dev,
775 			       enum ena_ring_type ring_type)
776 {
777 	struct ena_adapter *adapter = dev->data->dev_private;
778 	struct ena_ring *queues = NULL;
779 	int nb_queues;
780 	int i = 0;
781 	int rc = 0;
782 
783 	if (ring_type == ENA_RING_TYPE_RX) {
784 		queues = adapter->rx_ring;
785 		nb_queues = dev->data->nb_rx_queues;
786 	} else {
787 		queues = adapter->tx_ring;
788 		nb_queues = dev->data->nb_tx_queues;
789 	}
790 	for (i = 0; i < nb_queues; i++) {
791 		if (queues[i].configured) {
792 			if (ring_type == ENA_RING_TYPE_RX) {
793 				ena_assert_msg(
794 					dev->data->rx_queues[i] == &queues[i],
795 					"Inconsistent state of rx queues\n");
796 			} else {
797 				ena_assert_msg(
798 					dev->data->tx_queues[i] == &queues[i],
799 					"Inconsistent state of tx queues\n");
800 			}
801 
802 			rc = ena_queue_start(&queues[i]);
803 
804 			if (rc) {
805 				PMD_INIT_LOG(ERR,
806 					     "failed to start queue %d type(%d)",
807 					     i, ring_type);
808 				goto err;
809 			}
810 		}
811 	}
812 
813 	return 0;
814 
815 err:
816 	while (i--)
817 		if (queues[i].configured)
818 			ena_queue_stop(&queues[i]);
819 
820 	return rc;
821 }
822 
823 static uint32_t ena_get_mtu_conf(struct ena_adapter *adapter)
824 {
825 	uint32_t max_frame_len = adapter->max_mtu;
826 
827 	if (adapter->rte_eth_dev_data->dev_conf.rxmode.offloads &
828 	    DEV_RX_OFFLOAD_JUMBO_FRAME)
829 		max_frame_len =
830 			adapter->rte_eth_dev_data->dev_conf.rxmode.max_rx_pkt_len;
831 
832 	return max_frame_len;
833 }
834 
835 static int ena_check_valid_conf(struct ena_adapter *adapter)
836 {
837 	uint32_t max_frame_len = ena_get_mtu_conf(adapter);
838 
839 	if (max_frame_len > adapter->max_mtu || max_frame_len < ENA_MIN_MTU) {
840 		PMD_INIT_LOG(ERR, "Unsupported MTU of %d. "
841 				  "max mtu: %d, min mtu: %d",
842 			     max_frame_len, adapter->max_mtu, ENA_MIN_MTU);
843 		return ENA_COM_UNSUPPORTED;
844 	}
845 
846 	return 0;
847 }
848 
849 static int
850 ena_calc_queue_size(struct ena_calc_queue_size_ctx *ctx)
851 {
852 	struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
853 	struct ena_com_dev *ena_dev = ctx->ena_dev;
854 	uint32_t tx_queue_size = ENA_MAX_RING_SIZE_TX;
855 	uint32_t rx_queue_size = ENA_MAX_RING_SIZE_RX;
856 
857 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
858 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
859 			&ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
860 		rx_queue_size = RTE_MIN(rx_queue_size,
861 			max_queue_ext->max_rx_cq_depth);
862 		rx_queue_size = RTE_MIN(rx_queue_size,
863 			max_queue_ext->max_rx_sq_depth);
864 		tx_queue_size = RTE_MIN(tx_queue_size,
865 			max_queue_ext->max_tx_cq_depth);
866 
867 		if (ena_dev->tx_mem_queue_type ==
868 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
869 			tx_queue_size = RTE_MIN(tx_queue_size,
870 				llq->max_llq_depth);
871 		} else {
872 			tx_queue_size = RTE_MIN(tx_queue_size,
873 				max_queue_ext->max_tx_sq_depth);
874 		}
875 
876 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
877 			max_queue_ext->max_per_packet_rx_descs);
878 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
879 			max_queue_ext->max_per_packet_tx_descs);
880 	} else {
881 		struct ena_admin_queue_feature_desc *max_queues =
882 			&ctx->get_feat_ctx->max_queues;
883 		rx_queue_size = RTE_MIN(rx_queue_size,
884 			max_queues->max_cq_depth);
885 		rx_queue_size = RTE_MIN(rx_queue_size,
886 			max_queues->max_sq_depth);
887 		tx_queue_size = RTE_MIN(tx_queue_size,
888 			max_queues->max_cq_depth);
889 
890 		if (ena_dev->tx_mem_queue_type ==
891 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
892 			tx_queue_size = RTE_MIN(tx_queue_size,
893 				llq->max_llq_depth);
894 		} else {
895 			tx_queue_size = RTE_MIN(tx_queue_size,
896 				max_queues->max_sq_depth);
897 		}
898 
899 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
900 			max_queues->max_packet_tx_descs);
901 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
902 			max_queues->max_packet_rx_descs);
903 	}
904 
905 	/* Round down to the nearest power of 2 */
906 	rx_queue_size = rte_align32prevpow2(rx_queue_size);
907 	tx_queue_size = rte_align32prevpow2(tx_queue_size);
908 
909 	if (unlikely(rx_queue_size == 0 || tx_queue_size == 0)) {
910 		PMD_INIT_LOG(ERR, "Invalid queue size");
911 		return -EFAULT;
912 	}
913 
914 	ctx->rx_queue_size = rx_queue_size;
915 	ctx->tx_queue_size = tx_queue_size;
916 
917 	return 0;
918 }
919 
920 static void ena_stats_restart(struct rte_eth_dev *dev)
921 {
922 	struct ena_adapter *adapter = dev->data->dev_private;
923 
924 	rte_atomic64_init(&adapter->drv_stats->ierrors);
925 	rte_atomic64_init(&adapter->drv_stats->oerrors);
926 	rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
927 	rte_atomic64_init(&adapter->drv_stats->rx_drops);
928 }
929 
930 static int ena_stats_get(struct rte_eth_dev *dev,
931 			  struct rte_eth_stats *stats)
932 {
933 	struct ena_admin_basic_stats ena_stats;
934 	struct ena_adapter *adapter = dev->data->dev_private;
935 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
936 	int rc;
937 	int i;
938 	int max_rings_stats;
939 
940 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
941 		return -ENOTSUP;
942 
943 	memset(&ena_stats, 0, sizeof(ena_stats));
944 	rc = ena_com_get_dev_basic_stats(ena_dev, &ena_stats);
945 	if (unlikely(rc)) {
946 		PMD_DRV_LOG(ERR, "Could not retrieve statistics from ENA\n");
947 		return rc;
948 	}
949 
950 	/* Set of basic statistics from ENA */
951 	stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
952 					  ena_stats.rx_pkts_low);
953 	stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
954 					  ena_stats.tx_pkts_low);
955 	stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
956 					ena_stats.rx_bytes_low);
957 	stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
958 					ena_stats.tx_bytes_low);
959 
960 	/* Driver related stats */
961 	stats->imissed = rte_atomic64_read(&adapter->drv_stats->rx_drops);
962 	stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
963 	stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
964 	stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
965 
966 	max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
967 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
968 	for (i = 0; i < max_rings_stats; ++i) {
969 		struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
970 
971 		stats->q_ibytes[i] = rx_stats->bytes;
972 		stats->q_ipackets[i] = rx_stats->cnt;
973 		stats->q_errors[i] = rx_stats->bad_desc_num +
974 			rx_stats->bad_req_id;
975 	}
976 
977 	max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
978 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
979 	for (i = 0; i < max_rings_stats; ++i) {
980 		struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
981 
982 		stats->q_obytes[i] = tx_stats->bytes;
983 		stats->q_opackets[i] = tx_stats->cnt;
984 	}
985 
986 	return 0;
987 }
988 
989 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
990 {
991 	struct ena_adapter *adapter;
992 	struct ena_com_dev *ena_dev;
993 	int rc = 0;
994 
995 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
996 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
997 	adapter = dev->data->dev_private;
998 
999 	ena_dev = &adapter->ena_dev;
1000 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
1001 
1002 	if (mtu > ena_get_mtu_conf(adapter) || mtu < ENA_MIN_MTU) {
1003 		PMD_DRV_LOG(ERR,
1004 			"Invalid MTU setting. new_mtu: %d "
1005 			"max mtu: %d min mtu: %d\n",
1006 			mtu, ena_get_mtu_conf(adapter), ENA_MIN_MTU);
1007 		return -EINVAL;
1008 	}
1009 
1010 	rc = ena_com_set_dev_mtu(ena_dev, mtu);
1011 	if (rc)
1012 		PMD_DRV_LOG(ERR, "Could not set MTU: %d\n", mtu);
1013 	else
1014 		PMD_DRV_LOG(NOTICE, "Set MTU: %d\n", mtu);
1015 
1016 	return rc;
1017 }
1018 
1019 static int ena_start(struct rte_eth_dev *dev)
1020 {
1021 	struct ena_adapter *adapter = dev->data->dev_private;
1022 	uint64_t ticks;
1023 	int rc = 0;
1024 
1025 	rc = ena_check_valid_conf(adapter);
1026 	if (rc)
1027 		return rc;
1028 
1029 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
1030 	if (rc)
1031 		return rc;
1032 
1033 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
1034 	if (rc)
1035 		goto err_start_tx;
1036 
1037 	if (adapter->rte_dev->data->dev_conf.rxmode.mq_mode &
1038 	    ETH_MQ_RX_RSS_FLAG && adapter->rte_dev->data->nb_rx_queues > 0) {
1039 		rc = ena_rss_init_default(adapter);
1040 		if (rc)
1041 			goto err_rss_init;
1042 	}
1043 
1044 	ena_stats_restart(dev);
1045 
1046 	adapter->timestamp_wd = rte_get_timer_cycles();
1047 	adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
1048 
1049 	ticks = rte_get_timer_hz();
1050 	rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
1051 			ena_timer_wd_callback, adapter);
1052 
1053 	++adapter->dev_stats.dev_start;
1054 	adapter->state = ENA_ADAPTER_STATE_RUNNING;
1055 
1056 	return 0;
1057 
1058 err_rss_init:
1059 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1060 err_start_tx:
1061 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1062 	return rc;
1063 }
1064 
1065 static void ena_stop(struct rte_eth_dev *dev)
1066 {
1067 	struct ena_adapter *adapter = dev->data->dev_private;
1068 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1069 	int rc;
1070 
1071 	rte_timer_stop_sync(&adapter->timer_wd);
1072 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1073 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1074 
1075 	if (adapter->trigger_reset) {
1076 		rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
1077 		if (rc)
1078 			PMD_DRV_LOG(ERR, "Device reset failed rc=%d\n", rc);
1079 	}
1080 
1081 	++adapter->dev_stats.dev_stop;
1082 	adapter->state = ENA_ADAPTER_STATE_STOPPED;
1083 }
1084 
1085 static int ena_create_io_queue(struct ena_ring *ring)
1086 {
1087 	struct ena_adapter *adapter;
1088 	struct ena_com_dev *ena_dev;
1089 	struct ena_com_create_io_ctx ctx =
1090 		/* policy set to _HOST just to satisfy icc compiler */
1091 		{ ENA_ADMIN_PLACEMENT_POLICY_HOST,
1092 		  0, 0, 0, 0, 0 };
1093 	uint16_t ena_qid;
1094 	unsigned int i;
1095 	int rc;
1096 
1097 	adapter = ring->adapter;
1098 	ena_dev = &adapter->ena_dev;
1099 
1100 	if (ring->type == ENA_RING_TYPE_TX) {
1101 		ena_qid = ENA_IO_TXQ_IDX(ring->id);
1102 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1103 		ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1104 		ctx.queue_size = adapter->tx_ring_size;
1105 		for (i = 0; i < ring->ring_size; i++)
1106 			ring->empty_tx_reqs[i] = i;
1107 	} else {
1108 		ena_qid = ENA_IO_RXQ_IDX(ring->id);
1109 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1110 		ctx.queue_size = adapter->rx_ring_size;
1111 		for (i = 0; i < ring->ring_size; i++)
1112 			ring->empty_rx_reqs[i] = i;
1113 	}
1114 	ctx.qid = ena_qid;
1115 	ctx.msix_vector = -1; /* interrupts not used */
1116 	ctx.numa_node = ring->numa_socket_id;
1117 
1118 	rc = ena_com_create_io_queue(ena_dev, &ctx);
1119 	if (rc) {
1120 		PMD_DRV_LOG(ERR,
1121 			"failed to create io queue #%d (qid:%d) rc: %d\n",
1122 			ring->id, ena_qid, rc);
1123 		return rc;
1124 	}
1125 
1126 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1127 				     &ring->ena_com_io_sq,
1128 				     &ring->ena_com_io_cq);
1129 	if (rc) {
1130 		PMD_DRV_LOG(ERR,
1131 			"Failed to get io queue handlers. queue num %d rc: %d\n",
1132 			ring->id, rc);
1133 		ena_com_destroy_io_queue(ena_dev, ena_qid);
1134 		return rc;
1135 	}
1136 
1137 	if (ring->type == ENA_RING_TYPE_TX)
1138 		ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1139 
1140 	return 0;
1141 }
1142 
1143 static void ena_queue_stop(struct ena_ring *ring)
1144 {
1145 	struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
1146 
1147 	if (ring->type == ENA_RING_TYPE_RX) {
1148 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
1149 		ena_rx_queue_release_bufs(ring);
1150 	} else {
1151 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
1152 		ena_tx_queue_release_bufs(ring);
1153 	}
1154 }
1155 
1156 static void ena_queue_stop_all(struct rte_eth_dev *dev,
1157 			      enum ena_ring_type ring_type)
1158 {
1159 	struct ena_adapter *adapter = dev->data->dev_private;
1160 	struct ena_ring *queues = NULL;
1161 	uint16_t nb_queues, i;
1162 
1163 	if (ring_type == ENA_RING_TYPE_RX) {
1164 		queues = adapter->rx_ring;
1165 		nb_queues = dev->data->nb_rx_queues;
1166 	} else {
1167 		queues = adapter->tx_ring;
1168 		nb_queues = dev->data->nb_tx_queues;
1169 	}
1170 
1171 	for (i = 0; i < nb_queues; ++i)
1172 		if (queues[i].configured)
1173 			ena_queue_stop(&queues[i]);
1174 }
1175 
1176 static int ena_queue_start(struct ena_ring *ring)
1177 {
1178 	int rc, bufs_num;
1179 
1180 	ena_assert_msg(ring->configured == 1,
1181 		       "Trying to start unconfigured queue\n");
1182 
1183 	rc = ena_create_io_queue(ring);
1184 	if (rc) {
1185 		PMD_INIT_LOG(ERR, "Failed to create IO queue!");
1186 		return rc;
1187 	}
1188 
1189 	ring->next_to_clean = 0;
1190 	ring->next_to_use = 0;
1191 
1192 	if (ring->type == ENA_RING_TYPE_TX) {
1193 		ring->tx_stats.available_desc =
1194 			ena_com_free_desc(ring->ena_com_io_sq);
1195 		return 0;
1196 	}
1197 
1198 	bufs_num = ring->ring_size - 1;
1199 	rc = ena_populate_rx_queue(ring, bufs_num);
1200 	if (rc != bufs_num) {
1201 		ena_com_destroy_io_queue(&ring->adapter->ena_dev,
1202 					 ENA_IO_RXQ_IDX(ring->id));
1203 		PMD_INIT_LOG(ERR, "Failed to populate rx ring !");
1204 		return ENA_COM_FAULT;
1205 	}
1206 
1207 	return 0;
1208 }
1209 
1210 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1211 			      uint16_t queue_idx,
1212 			      uint16_t nb_desc,
1213 			      unsigned int socket_id,
1214 			      const struct rte_eth_txconf *tx_conf)
1215 {
1216 	struct ena_ring *txq = NULL;
1217 	struct ena_adapter *adapter = dev->data->dev_private;
1218 	unsigned int i;
1219 
1220 	txq = &adapter->tx_ring[queue_idx];
1221 
1222 	if (txq->configured) {
1223 		PMD_DRV_LOG(CRIT,
1224 			"API violation. Queue %d is already configured\n",
1225 			queue_idx);
1226 		return ENA_COM_FAULT;
1227 	}
1228 
1229 	if (!rte_is_power_of_2(nb_desc)) {
1230 		PMD_DRV_LOG(ERR,
1231 			"Unsupported size of TX queue: %d is not a power of 2.\n",
1232 			nb_desc);
1233 		return -EINVAL;
1234 	}
1235 
1236 	if (nb_desc > adapter->tx_ring_size) {
1237 		PMD_DRV_LOG(ERR,
1238 			"Unsupported size of TX queue (max size: %d)\n",
1239 			adapter->tx_ring_size);
1240 		return -EINVAL;
1241 	}
1242 
1243 	if (nb_desc == RTE_ETH_DEV_FALLBACK_TX_RINGSIZE)
1244 		nb_desc = adapter->tx_ring_size;
1245 
1246 	txq->port_id = dev->data->port_id;
1247 	txq->next_to_clean = 0;
1248 	txq->next_to_use = 0;
1249 	txq->ring_size = nb_desc;
1250 	txq->numa_socket_id = socket_id;
1251 
1252 	txq->tx_buffer_info = rte_zmalloc("txq->tx_buffer_info",
1253 					  sizeof(struct ena_tx_buffer) *
1254 					  txq->ring_size,
1255 					  RTE_CACHE_LINE_SIZE);
1256 	if (!txq->tx_buffer_info) {
1257 		PMD_DRV_LOG(ERR, "failed to alloc mem for tx buffer info\n");
1258 		return -ENOMEM;
1259 	}
1260 
1261 	txq->empty_tx_reqs = rte_zmalloc("txq->empty_tx_reqs",
1262 					 sizeof(u16) * txq->ring_size,
1263 					 RTE_CACHE_LINE_SIZE);
1264 	if (!txq->empty_tx_reqs) {
1265 		PMD_DRV_LOG(ERR, "failed to alloc mem for tx reqs\n");
1266 		rte_free(txq->tx_buffer_info);
1267 		return -ENOMEM;
1268 	}
1269 
1270 	txq->push_buf_intermediate_buf =
1271 		rte_zmalloc("txq->push_buf_intermediate_buf",
1272 			    txq->tx_max_header_size,
1273 			    RTE_CACHE_LINE_SIZE);
1274 	if (!txq->push_buf_intermediate_buf) {
1275 		PMD_DRV_LOG(ERR, "failed to alloc push buff for LLQ\n");
1276 		rte_free(txq->tx_buffer_info);
1277 		rte_free(txq->empty_tx_reqs);
1278 		return -ENOMEM;
1279 	}
1280 
1281 	for (i = 0; i < txq->ring_size; i++)
1282 		txq->empty_tx_reqs[i] = i;
1283 
1284 	if (tx_conf != NULL) {
1285 		txq->offloads =
1286 			tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1287 	}
1288 	/* Store pointer to this queue in upper layer */
1289 	txq->configured = 1;
1290 	dev->data->tx_queues[queue_idx] = txq;
1291 
1292 	return 0;
1293 }
1294 
1295 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1296 			      uint16_t queue_idx,
1297 			      uint16_t nb_desc,
1298 			      unsigned int socket_id,
1299 			      __rte_unused const struct rte_eth_rxconf *rx_conf,
1300 			      struct rte_mempool *mp)
1301 {
1302 	struct ena_adapter *adapter = dev->data->dev_private;
1303 	struct ena_ring *rxq = NULL;
1304 	int i;
1305 
1306 	rxq = &adapter->rx_ring[queue_idx];
1307 	if (rxq->configured) {
1308 		PMD_DRV_LOG(CRIT,
1309 			"API violation. Queue %d is already configured\n",
1310 			queue_idx);
1311 		return ENA_COM_FAULT;
1312 	}
1313 
1314 	if (nb_desc == RTE_ETH_DEV_FALLBACK_RX_RINGSIZE)
1315 		nb_desc = adapter->rx_ring_size;
1316 
1317 	if (!rte_is_power_of_2(nb_desc)) {
1318 		PMD_DRV_LOG(ERR,
1319 			"Unsupported size of RX queue: %d is not a power of 2.\n",
1320 			nb_desc);
1321 		return -EINVAL;
1322 	}
1323 
1324 	if (nb_desc > adapter->rx_ring_size) {
1325 		PMD_DRV_LOG(ERR,
1326 			"Unsupported size of RX queue (max size: %d)\n",
1327 			adapter->rx_ring_size);
1328 		return -EINVAL;
1329 	}
1330 
1331 	rxq->port_id = dev->data->port_id;
1332 	rxq->next_to_clean = 0;
1333 	rxq->next_to_use = 0;
1334 	rxq->ring_size = nb_desc;
1335 	rxq->numa_socket_id = socket_id;
1336 	rxq->mb_pool = mp;
1337 
1338 	rxq->rx_buffer_info = rte_zmalloc("rxq->buffer_info",
1339 					  sizeof(struct rte_mbuf *) * nb_desc,
1340 					  RTE_CACHE_LINE_SIZE);
1341 	if (!rxq->rx_buffer_info) {
1342 		PMD_DRV_LOG(ERR, "failed to alloc mem for rx buffer info\n");
1343 		return -ENOMEM;
1344 	}
1345 
1346 	rxq->rx_refill_buffer = rte_zmalloc("rxq->rx_refill_buffer",
1347 					    sizeof(struct rte_mbuf *) * nb_desc,
1348 					    RTE_CACHE_LINE_SIZE);
1349 
1350 	if (!rxq->rx_refill_buffer) {
1351 		PMD_DRV_LOG(ERR, "failed to alloc mem for rx refill buffer\n");
1352 		rte_free(rxq->rx_buffer_info);
1353 		rxq->rx_buffer_info = NULL;
1354 		return -ENOMEM;
1355 	}
1356 
1357 	rxq->empty_rx_reqs = rte_zmalloc("rxq->empty_rx_reqs",
1358 					 sizeof(uint16_t) * nb_desc,
1359 					 RTE_CACHE_LINE_SIZE);
1360 	if (!rxq->empty_rx_reqs) {
1361 		PMD_DRV_LOG(ERR, "failed to alloc mem for empty rx reqs\n");
1362 		rte_free(rxq->rx_buffer_info);
1363 		rxq->rx_buffer_info = NULL;
1364 		rte_free(rxq->rx_refill_buffer);
1365 		rxq->rx_refill_buffer = NULL;
1366 		return -ENOMEM;
1367 	}
1368 
1369 	for (i = 0; i < nb_desc; i++)
1370 		rxq->empty_rx_reqs[i] = i;
1371 
1372 	/* Store pointer to this queue in upper layer */
1373 	rxq->configured = 1;
1374 	dev->data->rx_queues[queue_idx] = rxq;
1375 
1376 	return 0;
1377 }
1378 
1379 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1380 {
1381 	unsigned int i;
1382 	int rc;
1383 	uint16_t ring_size = rxq->ring_size;
1384 	uint16_t ring_mask = ring_size - 1;
1385 	uint16_t next_to_use = rxq->next_to_use;
1386 	uint16_t in_use, req_id;
1387 	struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1388 
1389 	if (unlikely(!count))
1390 		return 0;
1391 
1392 	in_use = rxq->next_to_use - rxq->next_to_clean;
1393 	ena_assert_msg(((in_use + count) < ring_size), "bad ring state\n");
1394 
1395 	/* get resources for incoming packets */
1396 	rc = rte_mempool_get_bulk(rxq->mb_pool, (void **)mbufs, count);
1397 	if (unlikely(rc < 0)) {
1398 		rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1399 		++rxq->rx_stats.mbuf_alloc_fail;
1400 		PMD_RX_LOG(DEBUG, "there are no enough free buffers");
1401 		return 0;
1402 	}
1403 
1404 	for (i = 0; i < count; i++) {
1405 		uint16_t next_to_use_masked = next_to_use & ring_mask;
1406 		struct rte_mbuf *mbuf = mbufs[i];
1407 		struct ena_com_buf ebuf;
1408 
1409 		if (likely((i + 4) < count))
1410 			rte_prefetch0(mbufs[i + 4]);
1411 
1412 		req_id = rxq->empty_rx_reqs[next_to_use_masked];
1413 		rc = validate_rx_req_id(rxq, req_id);
1414 		if (unlikely(rc < 0))
1415 			break;
1416 		rxq->rx_buffer_info[req_id] = mbuf;
1417 
1418 		/* prepare physical address for DMA transaction */
1419 		ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1420 		ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1421 		/* pass resource to device */
1422 		rc = ena_com_add_single_rx_desc(rxq->ena_com_io_sq,
1423 						&ebuf, req_id);
1424 		if (unlikely(rc)) {
1425 			PMD_DRV_LOG(WARNING, "failed adding rx desc\n");
1426 			rxq->rx_buffer_info[req_id] = NULL;
1427 			break;
1428 		}
1429 		next_to_use++;
1430 	}
1431 
1432 	if (unlikely(i < count)) {
1433 		PMD_DRV_LOG(WARNING, "refilled rx qid %d with only %d "
1434 			"buffers (from %d)\n", rxq->id, i, count);
1435 		rte_mempool_put_bulk(rxq->mb_pool, (void **)(&mbufs[i]),
1436 				     count - i);
1437 		++rxq->rx_stats.refill_partial;
1438 	}
1439 
1440 	/* When we submitted free recources to device... */
1441 	if (likely(i > 0)) {
1442 		/* ...let HW know that it can fill buffers with data
1443 		 *
1444 		 * Add memory barrier to make sure the desc were written before
1445 		 * issue a doorbell
1446 		 */
1447 		rte_wmb();
1448 		ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1449 
1450 		rxq->next_to_use = next_to_use;
1451 	}
1452 
1453 	return i;
1454 }
1455 
1456 static int ena_device_init(struct ena_com_dev *ena_dev,
1457 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
1458 			   bool *wd_state)
1459 {
1460 	uint32_t aenq_groups;
1461 	int rc;
1462 	bool readless_supported;
1463 
1464 	/* Initialize mmio registers */
1465 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
1466 	if (rc) {
1467 		PMD_DRV_LOG(ERR, "failed to init mmio read less\n");
1468 		return rc;
1469 	}
1470 
1471 	/* The PCIe configuration space revision id indicate if mmio reg
1472 	 * read is disabled.
1473 	 */
1474 	readless_supported =
1475 		!(((struct rte_pci_device *)ena_dev->dmadev)->id.class_id
1476 			       & ENA_MMIO_DISABLE_REG_READ);
1477 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1478 
1479 	/* reset device */
1480 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1481 	if (rc) {
1482 		PMD_DRV_LOG(ERR, "cannot reset device\n");
1483 		goto err_mmio_read_less;
1484 	}
1485 
1486 	/* check FW version */
1487 	rc = ena_com_validate_version(ena_dev);
1488 	if (rc) {
1489 		PMD_DRV_LOG(ERR, "device version is too low\n");
1490 		goto err_mmio_read_less;
1491 	}
1492 
1493 	ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1494 
1495 	/* ENA device administration layer init */
1496 	rc = ena_com_admin_init(ena_dev, &aenq_handlers);
1497 	if (rc) {
1498 		PMD_DRV_LOG(ERR,
1499 			"cannot initialize ena admin queue with device\n");
1500 		goto err_mmio_read_less;
1501 	}
1502 
1503 	/* To enable the msix interrupts the driver needs to know the number
1504 	 * of queues. So the driver uses polling mode to retrieve this
1505 	 * information.
1506 	 */
1507 	ena_com_set_admin_polling_mode(ena_dev, true);
1508 
1509 	ena_config_host_info(ena_dev);
1510 
1511 	/* Get Device Attributes and features */
1512 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1513 	if (rc) {
1514 		PMD_DRV_LOG(ERR,
1515 			"cannot get attribute for ena device rc= %d\n", rc);
1516 		goto err_admin_init;
1517 	}
1518 
1519 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1520 		      BIT(ENA_ADMIN_NOTIFICATION) |
1521 		      BIT(ENA_ADMIN_KEEP_ALIVE) |
1522 		      BIT(ENA_ADMIN_FATAL_ERROR) |
1523 		      BIT(ENA_ADMIN_WARNING);
1524 
1525 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
1526 	rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
1527 	if (rc) {
1528 		PMD_DRV_LOG(ERR, "Cannot configure aenq groups rc: %d\n", rc);
1529 		goto err_admin_init;
1530 	}
1531 
1532 	*wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
1533 
1534 	return 0;
1535 
1536 err_admin_init:
1537 	ena_com_admin_destroy(ena_dev);
1538 
1539 err_mmio_read_less:
1540 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1541 
1542 	return rc;
1543 }
1544 
1545 static void ena_interrupt_handler_rte(void *cb_arg)
1546 {
1547 	struct ena_adapter *adapter = cb_arg;
1548 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1549 
1550 	ena_com_admin_q_comp_intr_handler(ena_dev);
1551 	if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED))
1552 		ena_com_aenq_intr_handler(ena_dev, adapter);
1553 }
1554 
1555 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1556 {
1557 	if (!adapter->wd_state)
1558 		return;
1559 
1560 	if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1561 		return;
1562 
1563 	if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1564 	    adapter->keep_alive_timeout)) {
1565 		PMD_DRV_LOG(ERR, "Keep alive timeout\n");
1566 		adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
1567 		adapter->trigger_reset = true;
1568 		++adapter->dev_stats.wd_expired;
1569 	}
1570 }
1571 
1572 /* Check if admin queue is enabled */
1573 static void check_for_admin_com_state(struct ena_adapter *adapter)
1574 {
1575 	if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1576 		PMD_DRV_LOG(ERR, "ENA admin queue is not in running state!\n");
1577 		adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
1578 		adapter->trigger_reset = true;
1579 	}
1580 }
1581 
1582 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
1583 				  void *arg)
1584 {
1585 	struct ena_adapter *adapter = arg;
1586 	struct rte_eth_dev *dev = adapter->rte_dev;
1587 
1588 	check_for_missing_keep_alive(adapter);
1589 	check_for_admin_com_state(adapter);
1590 
1591 	if (unlikely(adapter->trigger_reset)) {
1592 		PMD_DRV_LOG(ERR, "Trigger reset is on\n");
1593 		_rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
1594 			NULL);
1595 	}
1596 }
1597 
1598 static inline void
1599 set_default_llq_configurations(struct ena_llq_configurations *llq_config)
1600 {
1601 	llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
1602 	llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_128B;
1603 	llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
1604 	llq_config->llq_num_decs_before_header =
1605 		ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
1606 	llq_config->llq_ring_entry_size_value = 128;
1607 }
1608 
1609 static int
1610 ena_set_queues_placement_policy(struct ena_adapter *adapter,
1611 				struct ena_com_dev *ena_dev,
1612 				struct ena_admin_feature_llq_desc *llq,
1613 				struct ena_llq_configurations *llq_default_configurations)
1614 {
1615 	int rc;
1616 	u32 llq_feature_mask;
1617 
1618 	llq_feature_mask = 1 << ENA_ADMIN_LLQ;
1619 	if (!(ena_dev->supported_features & llq_feature_mask)) {
1620 		PMD_DRV_LOG(INFO,
1621 			"LLQ is not supported. Fallback to host mode policy.\n");
1622 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1623 		return 0;
1624 	}
1625 
1626 	rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
1627 	if (unlikely(rc)) {
1628 		PMD_INIT_LOG(WARNING, "Failed to config dev mode. "
1629 			"Fallback to host mode policy.");
1630 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1631 		return 0;
1632 	}
1633 
1634 	/* Nothing to config, exit */
1635 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1636 		return 0;
1637 
1638 	if (!adapter->dev_mem_base) {
1639 		PMD_DRV_LOG(ERR, "Unable to access LLQ bar resource. "
1640 			"Fallback to host mode policy.\n.");
1641 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1642 		return 0;
1643 	}
1644 
1645 	ena_dev->mem_bar = adapter->dev_mem_base;
1646 
1647 	return 0;
1648 }
1649 
1650 static int ena_calc_io_queue_num(struct ena_com_dev *ena_dev,
1651 				 struct ena_com_dev_get_features_ctx *get_feat_ctx)
1652 {
1653 	uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, io_queue_num;
1654 
1655 	/* Regular queues capabilities */
1656 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1657 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1658 			&get_feat_ctx->max_queue_ext.max_queue_ext;
1659 		io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
1660 				    max_queue_ext->max_rx_cq_num);
1661 		io_tx_sq_num = max_queue_ext->max_tx_sq_num;
1662 		io_tx_cq_num = max_queue_ext->max_tx_cq_num;
1663 	} else {
1664 		struct ena_admin_queue_feature_desc *max_queues =
1665 			&get_feat_ctx->max_queues;
1666 		io_tx_sq_num = max_queues->max_sq_num;
1667 		io_tx_cq_num = max_queues->max_cq_num;
1668 		io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
1669 	}
1670 
1671 	/* In case of LLQ use the llq number in the get feature cmd */
1672 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
1673 		io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
1674 
1675 	io_queue_num = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
1676 	io_queue_num = RTE_MIN(io_queue_num, io_tx_sq_num);
1677 	io_queue_num = RTE_MIN(io_queue_num, io_tx_cq_num);
1678 
1679 	if (unlikely(io_queue_num == 0)) {
1680 		PMD_DRV_LOG(ERR, "Number of IO queues should not be 0\n");
1681 		return -EFAULT;
1682 	}
1683 
1684 	return io_queue_num;
1685 }
1686 
1687 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
1688 {
1689 	struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
1690 	struct rte_pci_device *pci_dev;
1691 	struct rte_intr_handle *intr_handle;
1692 	struct ena_adapter *adapter = eth_dev->data->dev_private;
1693 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1694 	struct ena_com_dev_get_features_ctx get_feat_ctx;
1695 	struct ena_llq_configurations llq_config;
1696 	const char *queue_type_str;
1697 	int rc;
1698 
1699 	static int adapters_found;
1700 	bool wd_state;
1701 
1702 	eth_dev->dev_ops = &ena_dev_ops;
1703 	eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
1704 	eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
1705 	eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
1706 
1707 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1708 		return 0;
1709 
1710 	memset(adapter, 0, sizeof(struct ena_adapter));
1711 	ena_dev = &adapter->ena_dev;
1712 
1713 	adapter->rte_eth_dev_data = eth_dev->data;
1714 	adapter->rte_dev = eth_dev;
1715 
1716 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1717 	adapter->pdev = pci_dev;
1718 
1719 	PMD_INIT_LOG(INFO, "Initializing %x:%x:%x.%d",
1720 		     pci_dev->addr.domain,
1721 		     pci_dev->addr.bus,
1722 		     pci_dev->addr.devid,
1723 		     pci_dev->addr.function);
1724 
1725 	intr_handle = &pci_dev->intr_handle;
1726 
1727 	adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
1728 	adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
1729 
1730 	if (!adapter->regs) {
1731 		PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)",
1732 			     ENA_REGS_BAR);
1733 		return -ENXIO;
1734 	}
1735 
1736 	ena_dev->reg_bar = adapter->regs;
1737 	ena_dev->dmadev = adapter->pdev;
1738 
1739 	adapter->id_number = adapters_found;
1740 
1741 	snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
1742 		 adapter->id_number);
1743 
1744 	/* device specific initialization routine */
1745 	rc = ena_device_init(ena_dev, &get_feat_ctx, &wd_state);
1746 	if (rc) {
1747 		PMD_INIT_LOG(CRIT, "Failed to init ENA device");
1748 		goto err;
1749 	}
1750 	adapter->wd_state = wd_state;
1751 
1752 	set_default_llq_configurations(&llq_config);
1753 	rc = ena_set_queues_placement_policy(adapter, ena_dev,
1754 					     &get_feat_ctx.llq, &llq_config);
1755 	if (unlikely(rc)) {
1756 		PMD_INIT_LOG(CRIT, "Failed to set placement policy");
1757 		return rc;
1758 	}
1759 
1760 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1761 		queue_type_str = "Regular";
1762 	else
1763 		queue_type_str = "Low latency";
1764 	PMD_DRV_LOG(INFO, "Placement policy: %s\n", queue_type_str);
1765 
1766 	calc_queue_ctx.ena_dev = ena_dev;
1767 	calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
1768 	adapter->num_queues = ena_calc_io_queue_num(ena_dev,
1769 						    &get_feat_ctx);
1770 
1771 	rc = ena_calc_queue_size(&calc_queue_ctx);
1772 	if (unlikely((rc != 0) || (adapter->num_queues <= 0))) {
1773 		rc = -EFAULT;
1774 		goto err_device_destroy;
1775 	}
1776 
1777 	adapter->tx_ring_size = calc_queue_ctx.tx_queue_size;
1778 	adapter->rx_ring_size = calc_queue_ctx.rx_queue_size;
1779 
1780 	adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
1781 	adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
1782 
1783 	/* prepare ring structures */
1784 	ena_init_rings(adapter);
1785 
1786 	ena_config_debug_area(adapter);
1787 
1788 	/* Set max MTU for this device */
1789 	adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
1790 
1791 	/* set device support for offloads */
1792 	adapter->offloads.tso4_supported = (get_feat_ctx.offload.tx &
1793 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) != 0;
1794 	adapter->offloads.tx_csum_supported = (get_feat_ctx.offload.tx &
1795 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK) != 0;
1796 	adapter->offloads.rx_csum_supported =
1797 		(get_feat_ctx.offload.rx_supported &
1798 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK) != 0;
1799 
1800 	/* Copy MAC address and point DPDK to it */
1801 	eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr;
1802 	rte_ether_addr_copy((struct rte_ether_addr *)
1803 			get_feat_ctx.dev_attr.mac_addr,
1804 			(struct rte_ether_addr *)adapter->mac_addr);
1805 
1806 	/*
1807 	 * Pass the information to the rte_eth_dev_close() that it should also
1808 	 * release the private port resources.
1809 	 */
1810 	eth_dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE;
1811 
1812 	adapter->drv_stats = rte_zmalloc("adapter stats",
1813 					 sizeof(*adapter->drv_stats),
1814 					 RTE_CACHE_LINE_SIZE);
1815 	if (!adapter->drv_stats) {
1816 		PMD_DRV_LOG(ERR, "failed to alloc mem for adapter stats\n");
1817 		rc = -ENOMEM;
1818 		goto err_delete_debug_area;
1819 	}
1820 
1821 	rte_intr_callback_register(intr_handle,
1822 				   ena_interrupt_handler_rte,
1823 				   adapter);
1824 	rte_intr_enable(intr_handle);
1825 	ena_com_set_admin_polling_mode(ena_dev, false);
1826 	ena_com_admin_aenq_enable(ena_dev);
1827 
1828 	if (adapters_found == 0)
1829 		rte_timer_subsystem_init();
1830 	rte_timer_init(&adapter->timer_wd);
1831 
1832 	adapters_found++;
1833 	adapter->state = ENA_ADAPTER_STATE_INIT;
1834 
1835 	return 0;
1836 
1837 err_delete_debug_area:
1838 	ena_com_delete_debug_area(ena_dev);
1839 
1840 err_device_destroy:
1841 	ena_com_delete_host_info(ena_dev);
1842 	ena_com_admin_destroy(ena_dev);
1843 
1844 err:
1845 	return rc;
1846 }
1847 
1848 static void ena_destroy_device(struct rte_eth_dev *eth_dev)
1849 {
1850 	struct ena_adapter *adapter = eth_dev->data->dev_private;
1851 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1852 
1853 	if (adapter->state == ENA_ADAPTER_STATE_FREE)
1854 		return;
1855 
1856 	ena_com_set_admin_running_state(ena_dev, false);
1857 
1858 	if (adapter->state != ENA_ADAPTER_STATE_CLOSED)
1859 		ena_close(eth_dev);
1860 
1861 	ena_com_delete_debug_area(ena_dev);
1862 	ena_com_delete_host_info(ena_dev);
1863 
1864 	ena_com_abort_admin_commands(ena_dev);
1865 	ena_com_wait_for_abort_completion(ena_dev);
1866 	ena_com_admin_destroy(ena_dev);
1867 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1868 
1869 	adapter->state = ENA_ADAPTER_STATE_FREE;
1870 }
1871 
1872 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
1873 {
1874 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1875 		return 0;
1876 
1877 	ena_destroy_device(eth_dev);
1878 
1879 	eth_dev->dev_ops = NULL;
1880 	eth_dev->rx_pkt_burst = NULL;
1881 	eth_dev->tx_pkt_burst = NULL;
1882 	eth_dev->tx_pkt_prepare = NULL;
1883 
1884 	return 0;
1885 }
1886 
1887 static int ena_dev_configure(struct rte_eth_dev *dev)
1888 {
1889 	struct ena_adapter *adapter = dev->data->dev_private;
1890 
1891 	adapter->state = ENA_ADAPTER_STATE_CONFIG;
1892 
1893 	adapter->tx_selected_offloads = dev->data->dev_conf.txmode.offloads;
1894 	adapter->rx_selected_offloads = dev->data->dev_conf.rxmode.offloads;
1895 	return 0;
1896 }
1897 
1898 static void ena_init_rings(struct ena_adapter *adapter)
1899 {
1900 	int i;
1901 
1902 	for (i = 0; i < adapter->num_queues; i++) {
1903 		struct ena_ring *ring = &adapter->tx_ring[i];
1904 
1905 		ring->configured = 0;
1906 		ring->type = ENA_RING_TYPE_TX;
1907 		ring->adapter = adapter;
1908 		ring->id = i;
1909 		ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
1910 		ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
1911 		ring->sgl_size = adapter->max_tx_sgl_size;
1912 	}
1913 
1914 	for (i = 0; i < adapter->num_queues; i++) {
1915 		struct ena_ring *ring = &adapter->rx_ring[i];
1916 
1917 		ring->configured = 0;
1918 		ring->type = ENA_RING_TYPE_RX;
1919 		ring->adapter = adapter;
1920 		ring->id = i;
1921 		ring->sgl_size = adapter->max_rx_sgl_size;
1922 	}
1923 }
1924 
1925 static int ena_infos_get(struct rte_eth_dev *dev,
1926 			  struct rte_eth_dev_info *dev_info)
1927 {
1928 	struct ena_adapter *adapter;
1929 	struct ena_com_dev *ena_dev;
1930 	uint64_t rx_feat = 0, tx_feat = 0;
1931 
1932 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
1933 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
1934 	adapter = dev->data->dev_private;
1935 
1936 	ena_dev = &adapter->ena_dev;
1937 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
1938 
1939 	dev_info->speed_capa =
1940 			ETH_LINK_SPEED_1G   |
1941 			ETH_LINK_SPEED_2_5G |
1942 			ETH_LINK_SPEED_5G   |
1943 			ETH_LINK_SPEED_10G  |
1944 			ETH_LINK_SPEED_25G  |
1945 			ETH_LINK_SPEED_40G  |
1946 			ETH_LINK_SPEED_50G  |
1947 			ETH_LINK_SPEED_100G;
1948 
1949 	/* Set Tx & Rx features available for device */
1950 	if (adapter->offloads.tso4_supported)
1951 		tx_feat	|= DEV_TX_OFFLOAD_TCP_TSO;
1952 
1953 	if (adapter->offloads.tx_csum_supported)
1954 		tx_feat |= DEV_TX_OFFLOAD_IPV4_CKSUM |
1955 			DEV_TX_OFFLOAD_UDP_CKSUM |
1956 			DEV_TX_OFFLOAD_TCP_CKSUM;
1957 
1958 	if (adapter->offloads.rx_csum_supported)
1959 		rx_feat |= DEV_RX_OFFLOAD_IPV4_CKSUM |
1960 			DEV_RX_OFFLOAD_UDP_CKSUM  |
1961 			DEV_RX_OFFLOAD_TCP_CKSUM;
1962 
1963 	rx_feat |= DEV_RX_OFFLOAD_JUMBO_FRAME;
1964 
1965 	/* Inform framework about available features */
1966 	dev_info->rx_offload_capa = rx_feat;
1967 	dev_info->rx_queue_offload_capa = rx_feat;
1968 	dev_info->tx_offload_capa = tx_feat;
1969 	dev_info->tx_queue_offload_capa = tx_feat;
1970 
1971 	dev_info->flow_type_rss_offloads = ETH_RSS_IP | ETH_RSS_TCP |
1972 					   ETH_RSS_UDP;
1973 
1974 	dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
1975 	dev_info->max_rx_pktlen  = adapter->max_mtu;
1976 	dev_info->max_mac_addrs = 1;
1977 
1978 	dev_info->max_rx_queues = adapter->num_queues;
1979 	dev_info->max_tx_queues = adapter->num_queues;
1980 	dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
1981 
1982 	adapter->tx_supported_offloads = tx_feat;
1983 	adapter->rx_supported_offloads = rx_feat;
1984 
1985 	dev_info->rx_desc_lim.nb_max = adapter->rx_ring_size;
1986 	dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
1987 	dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
1988 					adapter->max_rx_sgl_size);
1989 	dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
1990 					adapter->max_rx_sgl_size);
1991 
1992 	dev_info->tx_desc_lim.nb_max = adapter->tx_ring_size;
1993 	dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
1994 	dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
1995 					adapter->max_tx_sgl_size);
1996 	dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
1997 					adapter->max_tx_sgl_size);
1998 
1999 	return 0;
2000 }
2001 
2002 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
2003 				  uint16_t nb_pkts)
2004 {
2005 	struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
2006 	unsigned int ring_size = rx_ring->ring_size;
2007 	unsigned int ring_mask = ring_size - 1;
2008 	uint16_t next_to_clean = rx_ring->next_to_clean;
2009 	uint16_t desc_in_use = 0;
2010 	uint16_t req_id;
2011 	unsigned int recv_idx = 0;
2012 	struct rte_mbuf *mbuf = NULL;
2013 	struct rte_mbuf *mbuf_head = NULL;
2014 	struct rte_mbuf *mbuf_prev = NULL;
2015 	struct rte_mbuf **rx_buff_info = rx_ring->rx_buffer_info;
2016 	unsigned int completed;
2017 
2018 	struct ena_com_rx_ctx ena_rx_ctx;
2019 	int rc = 0;
2020 
2021 	/* Check adapter state */
2022 	if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2023 		PMD_DRV_LOG(ALERT,
2024 			"Trying to receive pkts while device is NOT running\n");
2025 		return 0;
2026 	}
2027 
2028 	desc_in_use = rx_ring->next_to_use - next_to_clean;
2029 	if (unlikely(nb_pkts > desc_in_use))
2030 		nb_pkts = desc_in_use;
2031 
2032 	for (completed = 0; completed < nb_pkts; completed++) {
2033 		int segments = 0;
2034 
2035 		ena_rx_ctx.max_bufs = rx_ring->sgl_size;
2036 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
2037 		ena_rx_ctx.descs = 0;
2038 		/* receive packet context */
2039 		rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
2040 				    rx_ring->ena_com_io_sq,
2041 				    &ena_rx_ctx);
2042 		if (unlikely(rc)) {
2043 			PMD_DRV_LOG(ERR, "ena_com_rx_pkt error %d\n", rc);
2044 			rx_ring->adapter->reset_reason =
2045 				ENA_REGS_RESET_TOO_MANY_RX_DESCS;
2046 			rx_ring->adapter->trigger_reset = true;
2047 			++rx_ring->rx_stats.bad_desc_num;
2048 			return 0;
2049 		}
2050 
2051 		if (unlikely(ena_rx_ctx.descs == 0))
2052 			break;
2053 
2054 		while (segments < ena_rx_ctx.descs) {
2055 			req_id = ena_rx_ctx.ena_bufs[segments].req_id;
2056 			rc = validate_rx_req_id(rx_ring, req_id);
2057 			if (unlikely(rc)) {
2058 				if (segments != 0)
2059 					rte_mbuf_raw_free(mbuf_head);
2060 				break;
2061 			}
2062 
2063 			mbuf = rx_buff_info[req_id];
2064 			rx_buff_info[req_id] = NULL;
2065 			mbuf->data_len = ena_rx_ctx.ena_bufs[segments].len;
2066 			mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2067 			mbuf->refcnt = 1;
2068 			mbuf->next = NULL;
2069 			if (unlikely(segments == 0)) {
2070 				mbuf->nb_segs = ena_rx_ctx.descs;
2071 				mbuf->port = rx_ring->port_id;
2072 				mbuf->pkt_len = 0;
2073 				mbuf_head = mbuf;
2074 			} else {
2075 				/* for multi-segment pkts create mbuf chain */
2076 				mbuf_prev->next = mbuf;
2077 			}
2078 			mbuf_head->pkt_len += mbuf->data_len;
2079 
2080 			mbuf_prev = mbuf;
2081 			rx_ring->empty_rx_reqs[next_to_clean & ring_mask] =
2082 				req_id;
2083 			segments++;
2084 			next_to_clean++;
2085 		}
2086 		if (unlikely(rc))
2087 			break;
2088 
2089 		/* fill mbuf attributes if any */
2090 		ena_rx_mbuf_prepare(mbuf_head, &ena_rx_ctx);
2091 
2092 		if (unlikely(mbuf_head->ol_flags &
2093 				(PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD))) {
2094 			rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors);
2095 			++rx_ring->rx_stats.bad_csum;
2096 		}
2097 
2098 		mbuf_head->hash.rss = ena_rx_ctx.hash;
2099 
2100 		/* pass to DPDK application head mbuf */
2101 		rx_pkts[recv_idx] = mbuf_head;
2102 		recv_idx++;
2103 		rx_ring->rx_stats.bytes += mbuf_head->pkt_len;
2104 	}
2105 
2106 	rx_ring->rx_stats.cnt += recv_idx;
2107 	rx_ring->next_to_clean = next_to_clean;
2108 
2109 	desc_in_use = desc_in_use - completed + 1;
2110 	/* Burst refill to save doorbells, memory barriers, const interval */
2111 	if (ring_size - desc_in_use > ENA_RING_DESCS_RATIO(ring_size)) {
2112 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
2113 		ena_populate_rx_queue(rx_ring, ring_size - desc_in_use);
2114 	}
2115 
2116 	return recv_idx;
2117 }
2118 
2119 static uint16_t
2120 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2121 		uint16_t nb_pkts)
2122 {
2123 	int32_t ret;
2124 	uint32_t i;
2125 	struct rte_mbuf *m;
2126 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2127 	struct rte_ipv4_hdr *ip_hdr;
2128 	uint64_t ol_flags;
2129 	uint16_t frag_field;
2130 
2131 	for (i = 0; i != nb_pkts; i++) {
2132 		m = tx_pkts[i];
2133 		ol_flags = m->ol_flags;
2134 
2135 		if (!(ol_flags & PKT_TX_IPV4))
2136 			continue;
2137 
2138 		/* If there was not L2 header length specified, assume it is
2139 		 * length of the ethernet header.
2140 		 */
2141 		if (unlikely(m->l2_len == 0))
2142 			m->l2_len = sizeof(struct rte_ether_hdr);
2143 
2144 		ip_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *,
2145 						 m->l2_len);
2146 		frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
2147 
2148 		if ((frag_field & RTE_IPV4_HDR_DF_FLAG) != 0) {
2149 			m->packet_type |= RTE_PTYPE_L4_NONFRAG;
2150 
2151 			/* If IPv4 header has DF flag enabled and TSO support is
2152 			 * disabled, partial chcecksum should not be calculated.
2153 			 */
2154 			if (!tx_ring->adapter->offloads.tso4_supported)
2155 				continue;
2156 		}
2157 
2158 		if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) != 0 ||
2159 				(ol_flags & PKT_TX_L4_MASK) ==
2160 				PKT_TX_SCTP_CKSUM) {
2161 			rte_errno = ENOTSUP;
2162 			return i;
2163 		}
2164 
2165 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2166 		ret = rte_validate_tx_offload(m);
2167 		if (ret != 0) {
2168 			rte_errno = -ret;
2169 			return i;
2170 		}
2171 #endif
2172 
2173 		/* In case we are supposed to TSO and have DF not set (DF=0)
2174 		 * hardware must be provided with partial checksum, otherwise
2175 		 * it will take care of necessary calculations.
2176 		 */
2177 
2178 		ret = rte_net_intel_cksum_flags_prepare(m,
2179 			ol_flags & ~PKT_TX_TCP_SEG);
2180 		if (ret != 0) {
2181 			rte_errno = -ret;
2182 			return i;
2183 		}
2184 	}
2185 
2186 	return i;
2187 }
2188 
2189 static void ena_update_hints(struct ena_adapter *adapter,
2190 			     struct ena_admin_ena_hw_hints *hints)
2191 {
2192 	if (hints->admin_completion_tx_timeout)
2193 		adapter->ena_dev.admin_queue.completion_timeout =
2194 			hints->admin_completion_tx_timeout * 1000;
2195 
2196 	if (hints->mmio_read_timeout)
2197 		/* convert to usec */
2198 		adapter->ena_dev.mmio_read.reg_read_to =
2199 			hints->mmio_read_timeout * 1000;
2200 
2201 	if (hints->driver_watchdog_timeout) {
2202 		if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
2203 			adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
2204 		else
2205 			// Convert msecs to ticks
2206 			adapter->keep_alive_timeout =
2207 				(hints->driver_watchdog_timeout *
2208 				rte_get_timer_hz()) / 1000;
2209 	}
2210 }
2211 
2212 static int ena_check_and_linearize_mbuf(struct ena_ring *tx_ring,
2213 					struct rte_mbuf *mbuf)
2214 {
2215 	struct ena_com_dev *ena_dev;
2216 	int num_segments, header_len, rc;
2217 
2218 	ena_dev = &tx_ring->adapter->ena_dev;
2219 	num_segments = mbuf->nb_segs;
2220 	header_len = mbuf->data_len;
2221 
2222 	if (likely(num_segments < tx_ring->sgl_size))
2223 		return 0;
2224 
2225 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
2226 	    (num_segments == tx_ring->sgl_size) &&
2227 	    (header_len < tx_ring->tx_max_header_size))
2228 		return 0;
2229 
2230 	++tx_ring->tx_stats.linearize;
2231 	rc = rte_pktmbuf_linearize(mbuf);
2232 	if (unlikely(rc)) {
2233 		PMD_DRV_LOG(WARNING, "Mbuf linearize failed\n");
2234 		rte_atomic64_inc(&tx_ring->adapter->drv_stats->ierrors);
2235 		++tx_ring->tx_stats.linearize_failed;
2236 		return rc;
2237 	}
2238 
2239 	return rc;
2240 }
2241 
2242 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2243 				  uint16_t nb_pkts)
2244 {
2245 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2246 	uint16_t next_to_use = tx_ring->next_to_use;
2247 	uint16_t next_to_clean = tx_ring->next_to_clean;
2248 	struct rte_mbuf *mbuf;
2249 	uint16_t seg_len;
2250 	unsigned int ring_size = tx_ring->ring_size;
2251 	unsigned int ring_mask = ring_size - 1;
2252 	struct ena_com_tx_ctx ena_tx_ctx;
2253 	struct ena_tx_buffer *tx_info;
2254 	struct ena_com_buf *ebuf;
2255 	uint16_t rc, req_id, total_tx_descs = 0;
2256 	uint16_t sent_idx = 0, empty_tx_reqs;
2257 	uint16_t push_len = 0;
2258 	uint16_t delta = 0;
2259 	int nb_hw_desc;
2260 	uint32_t total_length;
2261 
2262 	/* Check adapter state */
2263 	if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2264 		PMD_DRV_LOG(ALERT,
2265 			"Trying to xmit pkts while device is NOT running\n");
2266 		return 0;
2267 	}
2268 
2269 	empty_tx_reqs = ring_size - (next_to_use - next_to_clean);
2270 	if (nb_pkts > empty_tx_reqs)
2271 		nb_pkts = empty_tx_reqs;
2272 
2273 	for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
2274 		mbuf = tx_pkts[sent_idx];
2275 		total_length = 0;
2276 
2277 		rc = ena_check_and_linearize_mbuf(tx_ring, mbuf);
2278 		if (unlikely(rc))
2279 			break;
2280 
2281 		req_id = tx_ring->empty_tx_reqs[next_to_use & ring_mask];
2282 		tx_info = &tx_ring->tx_buffer_info[req_id];
2283 		tx_info->mbuf = mbuf;
2284 		tx_info->num_of_bufs = 0;
2285 		ebuf = tx_info->bufs;
2286 
2287 		/* Prepare TX context */
2288 		memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
2289 		memset(&ena_tx_ctx.ena_meta, 0x0,
2290 		       sizeof(struct ena_com_tx_meta));
2291 		ena_tx_ctx.ena_bufs = ebuf;
2292 		ena_tx_ctx.req_id = req_id;
2293 
2294 		delta = 0;
2295 		seg_len = mbuf->data_len;
2296 
2297 		if (tx_ring->tx_mem_queue_type ==
2298 				ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2299 			push_len = RTE_MIN(mbuf->pkt_len,
2300 					   tx_ring->tx_max_header_size);
2301 			ena_tx_ctx.header_len = push_len;
2302 
2303 			if (likely(push_len <= seg_len)) {
2304 				/* If the push header is in the single segment,
2305 				 * then just point it to the 1st mbuf data.
2306 				 */
2307 				ena_tx_ctx.push_header =
2308 					rte_pktmbuf_mtod(mbuf, uint8_t *);
2309 			} else {
2310 				/* If the push header lays in the several
2311 				 * segments, copy it to the intermediate buffer.
2312 				 */
2313 				rte_pktmbuf_read(mbuf, 0, push_len,
2314 					tx_ring->push_buf_intermediate_buf);
2315 				ena_tx_ctx.push_header =
2316 					tx_ring->push_buf_intermediate_buf;
2317 				delta = push_len - seg_len;
2318 			}
2319 		} /* there's no else as we take advantage of memset zeroing */
2320 
2321 		/* Set TX offloads flags, if applicable */
2322 		ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads);
2323 
2324 		rte_prefetch0(tx_pkts[(sent_idx + 4) & ring_mask]);
2325 
2326 		/* Process first segment taking into
2327 		 * consideration pushed header
2328 		 */
2329 		if (seg_len > push_len) {
2330 			ebuf->paddr = mbuf->buf_iova +
2331 				      mbuf->data_off +
2332 				      push_len;
2333 			ebuf->len = seg_len - push_len;
2334 			ebuf++;
2335 			tx_info->num_of_bufs++;
2336 		}
2337 		total_length += mbuf->data_len;
2338 
2339 		while ((mbuf = mbuf->next) != NULL) {
2340 			seg_len = mbuf->data_len;
2341 
2342 			/* Skip mbufs if whole data is pushed as a header */
2343 			if (unlikely(delta > seg_len)) {
2344 				delta -= seg_len;
2345 				continue;
2346 			}
2347 
2348 			ebuf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
2349 			ebuf->len = seg_len - delta;
2350 			total_length += ebuf->len;
2351 			ebuf++;
2352 			tx_info->num_of_bufs++;
2353 
2354 			delta = 0;
2355 		}
2356 
2357 		ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2358 
2359 		if (ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
2360 					       &ena_tx_ctx)) {
2361 			PMD_DRV_LOG(DEBUG, "llq tx max burst size of queue %d"
2362 				" achieved, writing doorbell to send burst\n",
2363 				tx_ring->id);
2364 			rte_wmb();
2365 			ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2366 		}
2367 
2368 		/* prepare the packet's descriptors to dma engine */
2369 		rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq,
2370 					&ena_tx_ctx, &nb_hw_desc);
2371 		if (unlikely(rc)) {
2372 			++tx_ring->tx_stats.prepare_ctx_err;
2373 			break;
2374 		}
2375 		tx_info->tx_descs = nb_hw_desc;
2376 
2377 		next_to_use++;
2378 		tx_ring->tx_stats.cnt++;
2379 		tx_ring->tx_stats.bytes += total_length;
2380 	}
2381 	tx_ring->tx_stats.available_desc =
2382 		ena_com_free_desc(tx_ring->ena_com_io_sq);
2383 
2384 	/* If there are ready packets to be xmitted... */
2385 	if (sent_idx > 0) {
2386 		/* ...let HW do its best :-) */
2387 		rte_wmb();
2388 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2389 		tx_ring->tx_stats.doorbells++;
2390 		tx_ring->next_to_use = next_to_use;
2391 	}
2392 
2393 	/* Clear complete packets  */
2394 	while (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) >= 0) {
2395 		rc = validate_tx_req_id(tx_ring, req_id);
2396 		if (rc)
2397 			break;
2398 
2399 		/* Get Tx info & store how many descs were processed  */
2400 		tx_info = &tx_ring->tx_buffer_info[req_id];
2401 		total_tx_descs += tx_info->tx_descs;
2402 
2403 		/* Free whole mbuf chain  */
2404 		mbuf = tx_info->mbuf;
2405 		rte_pktmbuf_free(mbuf);
2406 		tx_info->mbuf = NULL;
2407 
2408 		/* Put back descriptor to the ring for reuse */
2409 		tx_ring->empty_tx_reqs[next_to_clean & ring_mask] = req_id;
2410 		next_to_clean++;
2411 
2412 		/* If too many descs to clean, leave it for another run */
2413 		if (unlikely(total_tx_descs > ENA_RING_DESCS_RATIO(ring_size)))
2414 			break;
2415 	}
2416 	tx_ring->tx_stats.available_desc =
2417 		ena_com_free_desc(tx_ring->ena_com_io_sq);
2418 
2419 	if (total_tx_descs > 0) {
2420 		/* acknowledge completion of sent packets */
2421 		tx_ring->next_to_clean = next_to_clean;
2422 		ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
2423 		ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
2424 	}
2425 
2426 	tx_ring->tx_stats.tx_poll++;
2427 
2428 	return sent_idx;
2429 }
2430 
2431 /**
2432  * DPDK callback to retrieve names of extended device statistics
2433  *
2434  * @param dev
2435  *   Pointer to Ethernet device structure.
2436  * @param[out] xstats_names
2437  *   Buffer to insert names into.
2438  * @param n
2439  *   Number of names.
2440  *
2441  * @return
2442  *   Number of xstats names.
2443  */
2444 static int ena_xstats_get_names(struct rte_eth_dev *dev,
2445 				struct rte_eth_xstat_name *xstats_names,
2446 				unsigned int n)
2447 {
2448 	unsigned int xstats_count = ena_xstats_calc_num(dev);
2449 	unsigned int stat, i, count = 0;
2450 
2451 	if (n < xstats_count || !xstats_names)
2452 		return xstats_count;
2453 
2454 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
2455 		strcpy(xstats_names[count].name,
2456 			ena_stats_global_strings[stat].name);
2457 
2458 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
2459 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
2460 			snprintf(xstats_names[count].name,
2461 				sizeof(xstats_names[count].name),
2462 				"rx_q%d_%s", i,
2463 				ena_stats_rx_strings[stat].name);
2464 
2465 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
2466 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
2467 			snprintf(xstats_names[count].name,
2468 				sizeof(xstats_names[count].name),
2469 				"tx_q%d_%s", i,
2470 				ena_stats_tx_strings[stat].name);
2471 
2472 	return xstats_count;
2473 }
2474 
2475 /**
2476  * DPDK callback to get extended device statistics.
2477  *
2478  * @param dev
2479  *   Pointer to Ethernet device structure.
2480  * @param[out] stats
2481  *   Stats table output buffer.
2482  * @param n
2483  *   The size of the stats table.
2484  *
2485  * @return
2486  *   Number of xstats on success, negative on failure.
2487  */
2488 static int ena_xstats_get(struct rte_eth_dev *dev,
2489 			  struct rte_eth_xstat *xstats,
2490 			  unsigned int n)
2491 {
2492 	struct ena_adapter *adapter = dev->data->dev_private;
2493 	unsigned int xstats_count = ena_xstats_calc_num(dev);
2494 	unsigned int stat, i, count = 0;
2495 	int stat_offset;
2496 	void *stats_begin;
2497 
2498 	if (n < xstats_count)
2499 		return xstats_count;
2500 
2501 	if (!xstats)
2502 		return 0;
2503 
2504 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
2505 		stat_offset = ena_stats_rx_strings[stat].stat_offset;
2506 		stats_begin = &adapter->dev_stats;
2507 
2508 		xstats[count].id = count;
2509 		xstats[count].value = *((uint64_t *)
2510 			((char *)stats_begin + stat_offset));
2511 	}
2512 
2513 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
2514 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
2515 			stat_offset = ena_stats_rx_strings[stat].stat_offset;
2516 			stats_begin = &adapter->rx_ring[i].rx_stats;
2517 
2518 			xstats[count].id = count;
2519 			xstats[count].value = *((uint64_t *)
2520 				((char *)stats_begin + stat_offset));
2521 		}
2522 	}
2523 
2524 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
2525 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
2526 			stat_offset = ena_stats_tx_strings[stat].stat_offset;
2527 			stats_begin = &adapter->tx_ring[i].rx_stats;
2528 
2529 			xstats[count].id = count;
2530 			xstats[count].value = *((uint64_t *)
2531 				((char *)stats_begin + stat_offset));
2532 		}
2533 	}
2534 
2535 	return count;
2536 }
2537 
2538 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
2539 				const uint64_t *ids,
2540 				uint64_t *values,
2541 				unsigned int n)
2542 {
2543 	struct ena_adapter *adapter = dev->data->dev_private;
2544 	uint64_t id;
2545 	uint64_t rx_entries, tx_entries;
2546 	unsigned int i;
2547 	int qid;
2548 	int valid = 0;
2549 	for (i = 0; i < n; ++i) {
2550 		id = ids[i];
2551 		/* Check if id belongs to global statistics */
2552 		if (id < ENA_STATS_ARRAY_GLOBAL) {
2553 			values[i] = *((uint64_t *)&adapter->dev_stats + id);
2554 			++valid;
2555 			continue;
2556 		}
2557 
2558 		/* Check if id belongs to rx queue statistics */
2559 		id -= ENA_STATS_ARRAY_GLOBAL;
2560 		rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
2561 		if (id < rx_entries) {
2562 			qid = id % dev->data->nb_rx_queues;
2563 			id /= dev->data->nb_rx_queues;
2564 			values[i] = *((uint64_t *)
2565 				&adapter->rx_ring[qid].rx_stats + id);
2566 			++valid;
2567 			continue;
2568 		}
2569 				/* Check if id belongs to rx queue statistics */
2570 		id -= rx_entries;
2571 		tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
2572 		if (id < tx_entries) {
2573 			qid = id % dev->data->nb_tx_queues;
2574 			id /= dev->data->nb_tx_queues;
2575 			values[i] = *((uint64_t *)
2576 				&adapter->tx_ring[qid].tx_stats + id);
2577 			++valid;
2578 			continue;
2579 		}
2580 	}
2581 
2582 	return valid;
2583 }
2584 
2585 /*********************************************************************
2586  *  PMD configuration
2587  *********************************************************************/
2588 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2589 	struct rte_pci_device *pci_dev)
2590 {
2591 	return rte_eth_dev_pci_generic_probe(pci_dev,
2592 		sizeof(struct ena_adapter), eth_ena_dev_init);
2593 }
2594 
2595 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
2596 {
2597 	return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
2598 }
2599 
2600 static struct rte_pci_driver rte_ena_pmd = {
2601 	.id_table = pci_id_ena_map,
2602 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
2603 		     RTE_PCI_DRV_WC_ACTIVATE,
2604 	.probe = eth_ena_pci_probe,
2605 	.remove = eth_ena_pci_remove,
2606 };
2607 
2608 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
2609 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
2610 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
2611 
2612 RTE_INIT(ena_init_log)
2613 {
2614 	ena_logtype_init = rte_log_register("pmd.net.ena.init");
2615 	if (ena_logtype_init >= 0)
2616 		rte_log_set_level(ena_logtype_init, RTE_LOG_NOTICE);
2617 	ena_logtype_driver = rte_log_register("pmd.net.ena.driver");
2618 	if (ena_logtype_driver >= 0)
2619 		rte_log_set_level(ena_logtype_driver, RTE_LOG_NOTICE);
2620 
2621 #ifdef RTE_LIBRTE_ENA_DEBUG_RX
2622 	ena_logtype_rx = rte_log_register("pmd.net.ena.rx");
2623 	if (ena_logtype_rx >= 0)
2624 		rte_log_set_level(ena_logtype_rx, RTE_LOG_NOTICE);
2625 #endif
2626 
2627 #ifdef RTE_LIBRTE_ENA_DEBUG_TX
2628 	ena_logtype_tx = rte_log_register("pmd.net.ena.tx");
2629 	if (ena_logtype_tx >= 0)
2630 		rte_log_set_level(ena_logtype_tx, RTE_LOG_NOTICE);
2631 #endif
2632 
2633 #ifdef RTE_LIBRTE_ENA_DEBUG_TX_FREE
2634 	ena_logtype_tx_free = rte_log_register("pmd.net.ena.tx_free");
2635 	if (ena_logtype_tx_free >= 0)
2636 		rte_log_set_level(ena_logtype_tx_free, RTE_LOG_NOTICE);
2637 #endif
2638 
2639 #ifdef RTE_LIBRTE_ENA_COM_DEBUG
2640 	ena_logtype_com = rte_log_register("pmd.net.ena.com");
2641 	if (ena_logtype_com >= 0)
2642 		rte_log_set_level(ena_logtype_com, RTE_LOG_NOTICE);
2643 #endif
2644 }
2645 
2646 /******************************************************************************
2647  ******************************** AENQ Handlers *******************************
2648  *****************************************************************************/
2649 static void ena_update_on_link_change(void *adapter_data,
2650 				      struct ena_admin_aenq_entry *aenq_e)
2651 {
2652 	struct rte_eth_dev *eth_dev;
2653 	struct ena_adapter *adapter;
2654 	struct ena_admin_aenq_link_change_desc *aenq_link_desc;
2655 	uint32_t status;
2656 
2657 	adapter = adapter_data;
2658 	aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
2659 	eth_dev = adapter->rte_dev;
2660 
2661 	status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
2662 	adapter->link_status = status;
2663 
2664 	ena_link_update(eth_dev, 0);
2665 	_rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
2666 }
2667 
2668 static void ena_notification(void *data,
2669 			     struct ena_admin_aenq_entry *aenq_e)
2670 {
2671 	struct ena_adapter *adapter = data;
2672 	struct ena_admin_ena_hw_hints *hints;
2673 
2674 	if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
2675 		PMD_DRV_LOG(WARNING, "Invalid group(%x) expected %x\n",
2676 			aenq_e->aenq_common_desc.group,
2677 			ENA_ADMIN_NOTIFICATION);
2678 
2679 	switch (aenq_e->aenq_common_desc.syndrom) {
2680 	case ENA_ADMIN_UPDATE_HINTS:
2681 		hints = (struct ena_admin_ena_hw_hints *)
2682 			(&aenq_e->inline_data_w4);
2683 		ena_update_hints(adapter, hints);
2684 		break;
2685 	default:
2686 		PMD_DRV_LOG(ERR, "Invalid aenq notification link state %d\n",
2687 			aenq_e->aenq_common_desc.syndrom);
2688 	}
2689 }
2690 
2691 static void ena_keep_alive(void *adapter_data,
2692 			   __rte_unused struct ena_admin_aenq_entry *aenq_e)
2693 {
2694 	struct ena_adapter *adapter = adapter_data;
2695 	struct ena_admin_aenq_keep_alive_desc *desc;
2696 	uint64_t rx_drops;
2697 
2698 	adapter->timestamp_wd = rte_get_timer_cycles();
2699 
2700 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
2701 	rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
2702 	rte_atomic64_set(&adapter->drv_stats->rx_drops, rx_drops);
2703 }
2704 
2705 /**
2706  * This handler will called for unknown event group or unimplemented handlers
2707  **/
2708 static void unimplemented_aenq_handler(__rte_unused void *data,
2709 				       __rte_unused struct ena_admin_aenq_entry *aenq_e)
2710 {
2711 	PMD_DRV_LOG(ERR, "Unknown event was received or event with "
2712 			  "unimplemented handler\n");
2713 }
2714 
2715 static struct ena_aenq_handlers aenq_handlers = {
2716 	.handlers = {
2717 		[ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
2718 		[ENA_ADMIN_NOTIFICATION] = ena_notification,
2719 		[ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive
2720 	},
2721 	.unimplemented_handler = unimplemented_aenq_handler
2722 };
2723