xref: /dpdk/drivers/net/ena/ena_ethdev.c (revision 14ad4f01845331a0ae98c681efa3086eeed3343a)
1 /*-
2 * BSD LICENSE
3 *
4 * Copyright (c) 2015-2016 Amazon.com, Inc. or its affiliates.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * * Neither the name of copyright holder nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33 
34 #include <rte_string_fns.h>
35 #include <rte_ether.h>
36 #include <rte_ethdev_driver.h>
37 #include <rte_ethdev_pci.h>
38 #include <rte_tcp.h>
39 #include <rte_atomic.h>
40 #include <rte_dev.h>
41 #include <rte_errno.h>
42 #include <rte_version.h>
43 #include <rte_net.h>
44 
45 #include "ena_ethdev.h"
46 #include "ena_logs.h"
47 #include "ena_platform.h"
48 #include "ena_com.h"
49 #include "ena_eth_com.h"
50 
51 #include <ena_common_defs.h>
52 #include <ena_regs_defs.h>
53 #include <ena_admin_defs.h>
54 #include <ena_eth_io_defs.h>
55 
56 #define DRV_MODULE_VER_MAJOR	2
57 #define DRV_MODULE_VER_MINOR	0
58 #define DRV_MODULE_VER_SUBMINOR	0
59 
60 #define ENA_IO_TXQ_IDX(q)	(2 * (q))
61 #define ENA_IO_RXQ_IDX(q)	(2 * (q) + 1)
62 /*reverse version of ENA_IO_RXQ_IDX*/
63 #define ENA_IO_RXQ_IDX_REV(q)	((q - 1) / 2)
64 
65 /* While processing submitted and completed descriptors (rx and tx path
66  * respectively) in a loop it is desired to:
67  *  - perform batch submissions while populating sumbissmion queue
68  *  - avoid blocking transmission of other packets during cleanup phase
69  * Hence the utilization ratio of 1/8 of a queue size.
70  */
71 #define ENA_RING_DESCS_RATIO(ring_size)	(ring_size / 8)
72 
73 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
74 #define TEST_BIT(val, bit_shift) (val & (1UL << bit_shift))
75 
76 #define GET_L4_HDR_LEN(mbuf)					\
77 	((rte_pktmbuf_mtod_offset(mbuf,	struct rte_tcp_hdr *,	\
78 		mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
79 
80 #define ENA_RX_RSS_TABLE_LOG_SIZE  7
81 #define ENA_RX_RSS_TABLE_SIZE	(1 << ENA_RX_RSS_TABLE_LOG_SIZE)
82 #define ENA_HASH_KEY_SIZE	40
83 #define ETH_GSTRING_LEN	32
84 
85 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
86 
87 #define ENA_MIN_RING_DESC	128
88 
89 enum ethtool_stringset {
90 	ETH_SS_TEST             = 0,
91 	ETH_SS_STATS,
92 };
93 
94 struct ena_stats {
95 	char name[ETH_GSTRING_LEN];
96 	int stat_offset;
97 };
98 
99 #define ENA_STAT_ENTRY(stat, stat_type) { \
100 	.name = #stat, \
101 	.stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
102 }
103 
104 #define ENA_STAT_RX_ENTRY(stat) \
105 	ENA_STAT_ENTRY(stat, rx)
106 
107 #define ENA_STAT_TX_ENTRY(stat) \
108 	ENA_STAT_ENTRY(stat, tx)
109 
110 #define ENA_STAT_GLOBAL_ENTRY(stat) \
111 	ENA_STAT_ENTRY(stat, dev)
112 
113 #define ENA_MAX_RING_SIZE_RX 8192
114 #define ENA_MAX_RING_SIZE_TX 1024
115 
116 /*
117  * Each rte_memzone should have unique name.
118  * To satisfy it, count number of allocation and add it to name.
119  */
120 uint32_t ena_alloc_cnt;
121 
122 static const struct ena_stats ena_stats_global_strings[] = {
123 	ENA_STAT_GLOBAL_ENTRY(wd_expired),
124 	ENA_STAT_GLOBAL_ENTRY(dev_start),
125 	ENA_STAT_GLOBAL_ENTRY(dev_stop),
126 };
127 
128 static const struct ena_stats ena_stats_tx_strings[] = {
129 	ENA_STAT_TX_ENTRY(cnt),
130 	ENA_STAT_TX_ENTRY(bytes),
131 	ENA_STAT_TX_ENTRY(prepare_ctx_err),
132 	ENA_STAT_TX_ENTRY(linearize),
133 	ENA_STAT_TX_ENTRY(linearize_failed),
134 	ENA_STAT_TX_ENTRY(tx_poll),
135 	ENA_STAT_TX_ENTRY(doorbells),
136 	ENA_STAT_TX_ENTRY(bad_req_id),
137 	ENA_STAT_TX_ENTRY(available_desc),
138 };
139 
140 static const struct ena_stats ena_stats_rx_strings[] = {
141 	ENA_STAT_RX_ENTRY(cnt),
142 	ENA_STAT_RX_ENTRY(bytes),
143 	ENA_STAT_RX_ENTRY(refill_partial),
144 	ENA_STAT_RX_ENTRY(bad_csum),
145 	ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
146 	ENA_STAT_RX_ENTRY(bad_desc_num),
147 	ENA_STAT_RX_ENTRY(bad_req_id),
148 };
149 
150 #define ENA_STATS_ARRAY_GLOBAL	ARRAY_SIZE(ena_stats_global_strings)
151 #define ENA_STATS_ARRAY_TX	ARRAY_SIZE(ena_stats_tx_strings)
152 #define ENA_STATS_ARRAY_RX	ARRAY_SIZE(ena_stats_rx_strings)
153 
154 #define QUEUE_OFFLOADS (DEV_TX_OFFLOAD_TCP_CKSUM |\
155 			DEV_TX_OFFLOAD_UDP_CKSUM |\
156 			DEV_TX_OFFLOAD_IPV4_CKSUM |\
157 			DEV_TX_OFFLOAD_TCP_TSO)
158 #define MBUF_OFFLOADS (PKT_TX_L4_MASK |\
159 		       PKT_TX_IP_CKSUM |\
160 		       PKT_TX_TCP_SEG)
161 
162 /** Vendor ID used by Amazon devices */
163 #define PCI_VENDOR_ID_AMAZON 0x1D0F
164 /** Amazon devices */
165 #define PCI_DEVICE_ID_ENA_VF	0xEC20
166 #define PCI_DEVICE_ID_ENA_LLQ_VF	0xEC21
167 
168 #define	ENA_TX_OFFLOAD_MASK	(\
169 	PKT_TX_L4_MASK |         \
170 	PKT_TX_IPV6 |            \
171 	PKT_TX_IPV4 |            \
172 	PKT_TX_IP_CKSUM |        \
173 	PKT_TX_TCP_SEG)
174 
175 #define	ENA_TX_OFFLOAD_NOTSUP_MASK	\
176 	(PKT_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
177 
178 int ena_logtype_init;
179 int ena_logtype_driver;
180 
181 static const struct rte_pci_id pci_id_ena_map[] = {
182 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
183 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_LLQ_VF) },
184 	{ .device_id = 0 },
185 };
186 
187 static struct ena_aenq_handlers aenq_handlers;
188 
189 static int ena_device_init(struct ena_com_dev *ena_dev,
190 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
191 			   bool *wd_state);
192 static int ena_dev_configure(struct rte_eth_dev *dev);
193 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
194 				  uint16_t nb_pkts);
195 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
196 		uint16_t nb_pkts);
197 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
198 			      uint16_t nb_desc, unsigned int socket_id,
199 			      const struct rte_eth_txconf *tx_conf);
200 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
201 			      uint16_t nb_desc, unsigned int socket_id,
202 			      const struct rte_eth_rxconf *rx_conf,
203 			      struct rte_mempool *mp);
204 static uint16_t eth_ena_recv_pkts(void *rx_queue,
205 				  struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
206 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
207 static void ena_init_rings(struct ena_adapter *adapter);
208 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
209 static int ena_start(struct rte_eth_dev *dev);
210 static void ena_stop(struct rte_eth_dev *dev);
211 static void ena_close(struct rte_eth_dev *dev);
212 static int ena_dev_reset(struct rte_eth_dev *dev);
213 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
214 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
215 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
216 static void ena_rx_queue_release(void *queue);
217 static void ena_tx_queue_release(void *queue);
218 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
219 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
220 static int ena_link_update(struct rte_eth_dev *dev,
221 			   int wait_to_complete);
222 static int ena_create_io_queue(struct ena_ring *ring);
223 static void ena_queue_stop(struct ena_ring *ring);
224 static void ena_queue_stop_all(struct rte_eth_dev *dev,
225 			      enum ena_ring_type ring_type);
226 static int ena_queue_start(struct ena_ring *ring);
227 static int ena_queue_start_all(struct rte_eth_dev *dev,
228 			       enum ena_ring_type ring_type);
229 static void ena_stats_restart(struct rte_eth_dev *dev);
230 static void ena_infos_get(struct rte_eth_dev *dev,
231 			  struct rte_eth_dev_info *dev_info);
232 static int ena_rss_reta_update(struct rte_eth_dev *dev,
233 			       struct rte_eth_rss_reta_entry64 *reta_conf,
234 			       uint16_t reta_size);
235 static int ena_rss_reta_query(struct rte_eth_dev *dev,
236 			      struct rte_eth_rss_reta_entry64 *reta_conf,
237 			      uint16_t reta_size);
238 static void ena_interrupt_handler_rte(void *cb_arg);
239 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
240 static void ena_destroy_device(struct rte_eth_dev *eth_dev);
241 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
242 static int ena_xstats_get_names(struct rte_eth_dev *dev,
243 				struct rte_eth_xstat_name *xstats_names,
244 				unsigned int n);
245 static int ena_xstats_get(struct rte_eth_dev *dev,
246 			  struct rte_eth_xstat *stats,
247 			  unsigned int n);
248 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
249 				const uint64_t *ids,
250 				uint64_t *values,
251 				unsigned int n);
252 
253 static const struct eth_dev_ops ena_dev_ops = {
254 	.dev_configure        = ena_dev_configure,
255 	.dev_infos_get        = ena_infos_get,
256 	.rx_queue_setup       = ena_rx_queue_setup,
257 	.tx_queue_setup       = ena_tx_queue_setup,
258 	.dev_start            = ena_start,
259 	.dev_stop             = ena_stop,
260 	.link_update          = ena_link_update,
261 	.stats_get            = ena_stats_get,
262 	.xstats_get_names     = ena_xstats_get_names,
263 	.xstats_get	      = ena_xstats_get,
264 	.xstats_get_by_id     = ena_xstats_get_by_id,
265 	.mtu_set              = ena_mtu_set,
266 	.rx_queue_release     = ena_rx_queue_release,
267 	.tx_queue_release     = ena_tx_queue_release,
268 	.dev_close            = ena_close,
269 	.dev_reset            = ena_dev_reset,
270 	.reta_update          = ena_rss_reta_update,
271 	.reta_query           = ena_rss_reta_query,
272 };
273 
274 static inline void ena_rx_mbuf_prepare(struct rte_mbuf *mbuf,
275 				       struct ena_com_rx_ctx *ena_rx_ctx)
276 {
277 	uint64_t ol_flags = 0;
278 	uint32_t packet_type = 0;
279 
280 	if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
281 		packet_type |= RTE_PTYPE_L4_TCP;
282 	else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
283 		packet_type |= RTE_PTYPE_L4_UDP;
284 
285 	if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4)
286 		packet_type |= RTE_PTYPE_L3_IPV4;
287 	else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6)
288 		packet_type |= RTE_PTYPE_L3_IPV6;
289 
290 	if (unlikely(ena_rx_ctx->l4_csum_err))
291 		ol_flags |= PKT_RX_L4_CKSUM_BAD;
292 	if (unlikely(ena_rx_ctx->l3_csum_err))
293 		ol_flags |= PKT_RX_IP_CKSUM_BAD;
294 
295 	mbuf->ol_flags = ol_flags;
296 	mbuf->packet_type = packet_type;
297 }
298 
299 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
300 				       struct ena_com_tx_ctx *ena_tx_ctx,
301 				       uint64_t queue_offloads)
302 {
303 	struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
304 
305 	if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
306 	    (queue_offloads & QUEUE_OFFLOADS)) {
307 		/* check if TSO is required */
308 		if ((mbuf->ol_flags & PKT_TX_TCP_SEG) &&
309 		    (queue_offloads & DEV_TX_OFFLOAD_TCP_TSO)) {
310 			ena_tx_ctx->tso_enable = true;
311 
312 			ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
313 		}
314 
315 		/* check if L3 checksum is needed */
316 		if ((mbuf->ol_flags & PKT_TX_IP_CKSUM) &&
317 		    (queue_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM))
318 			ena_tx_ctx->l3_csum_enable = true;
319 
320 		if (mbuf->ol_flags & PKT_TX_IPV6) {
321 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
322 		} else {
323 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
324 
325 			/* set don't fragment (DF) flag */
326 			if (mbuf->packet_type &
327 				(RTE_PTYPE_L4_NONFRAG
328 				 | RTE_PTYPE_INNER_L4_NONFRAG))
329 				ena_tx_ctx->df = true;
330 		}
331 
332 		/* check if L4 checksum is needed */
333 		if ((mbuf->ol_flags & PKT_TX_TCP_CKSUM) &&
334 		    (queue_offloads & DEV_TX_OFFLOAD_TCP_CKSUM)) {
335 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
336 			ena_tx_ctx->l4_csum_enable = true;
337 		} else if ((mbuf->ol_flags & PKT_TX_UDP_CKSUM) &&
338 			   (queue_offloads & DEV_TX_OFFLOAD_UDP_CKSUM)) {
339 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
340 			ena_tx_ctx->l4_csum_enable = true;
341 		} else {
342 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
343 			ena_tx_ctx->l4_csum_enable = false;
344 		}
345 
346 		ena_meta->mss = mbuf->tso_segsz;
347 		ena_meta->l3_hdr_len = mbuf->l3_len;
348 		ena_meta->l3_hdr_offset = mbuf->l2_len;
349 
350 		ena_tx_ctx->meta_valid = true;
351 	} else {
352 		ena_tx_ctx->meta_valid = false;
353 	}
354 }
355 
356 static inline int validate_rx_req_id(struct ena_ring *rx_ring, uint16_t req_id)
357 {
358 	if (likely(req_id < rx_ring->ring_size))
359 		return 0;
360 
361 	RTE_LOG(ERR, PMD, "Invalid rx req_id: %hu\n", req_id);
362 
363 	rx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID;
364 	rx_ring->adapter->trigger_reset = true;
365 	++rx_ring->rx_stats.bad_req_id;
366 
367 	return -EFAULT;
368 }
369 
370 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
371 {
372 	struct ena_tx_buffer *tx_info = NULL;
373 
374 	if (likely(req_id < tx_ring->ring_size)) {
375 		tx_info = &tx_ring->tx_buffer_info[req_id];
376 		if (likely(tx_info->mbuf))
377 			return 0;
378 	}
379 
380 	if (tx_info)
381 		RTE_LOG(ERR, PMD, "tx_info doesn't have valid mbuf\n");
382 	else
383 		RTE_LOG(ERR, PMD, "Invalid req_id: %hu\n", req_id);
384 
385 	/* Trigger device reset */
386 	++tx_ring->tx_stats.bad_req_id;
387 	tx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID;
388 	tx_ring->adapter->trigger_reset	= true;
389 	return -EFAULT;
390 }
391 
392 static void ena_config_host_info(struct ena_com_dev *ena_dev)
393 {
394 	struct ena_admin_host_info *host_info;
395 	int rc;
396 
397 	/* Allocate only the host info */
398 	rc = ena_com_allocate_host_info(ena_dev);
399 	if (rc) {
400 		RTE_LOG(ERR, PMD, "Cannot allocate host info\n");
401 		return;
402 	}
403 
404 	host_info = ena_dev->host_attr.host_info;
405 
406 	host_info->os_type = ENA_ADMIN_OS_DPDK;
407 	host_info->kernel_ver = RTE_VERSION;
408 	strlcpy((char *)host_info->kernel_ver_str, rte_version(),
409 		sizeof(host_info->kernel_ver_str));
410 	host_info->os_dist = RTE_VERSION;
411 	strlcpy((char *)host_info->os_dist_str, rte_version(),
412 		sizeof(host_info->os_dist_str));
413 	host_info->driver_version =
414 		(DRV_MODULE_VER_MAJOR) |
415 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
416 		(DRV_MODULE_VER_SUBMINOR <<
417 			ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
418 	host_info->num_cpus = rte_lcore_count();
419 
420 	rc = ena_com_set_host_attributes(ena_dev);
421 	if (rc) {
422 		if (rc == -ENA_COM_UNSUPPORTED)
423 			RTE_LOG(WARNING, PMD, "Cannot set host attributes\n");
424 		else
425 			RTE_LOG(ERR, PMD, "Cannot set host attributes\n");
426 
427 		goto err;
428 	}
429 
430 	return;
431 
432 err:
433 	ena_com_delete_host_info(ena_dev);
434 }
435 
436 /* This function calculates the number of xstats based on the current config */
437 static unsigned int ena_xstats_calc_num(struct rte_eth_dev *dev)
438 {
439 	return ENA_STATS_ARRAY_GLOBAL +
440 		(dev->data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
441 		(dev->data->nb_rx_queues * ENA_STATS_ARRAY_RX);
442 }
443 
444 static void ena_config_debug_area(struct ena_adapter *adapter)
445 {
446 	u32 debug_area_size;
447 	int rc, ss_count;
448 
449 	ss_count = ena_xstats_calc_num(adapter->rte_dev);
450 
451 	/* allocate 32 bytes for each string and 64bit for the value */
452 	debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
453 
454 	rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
455 	if (rc) {
456 		RTE_LOG(ERR, PMD, "Cannot allocate debug area\n");
457 		return;
458 	}
459 
460 	rc = ena_com_set_host_attributes(&adapter->ena_dev);
461 	if (rc) {
462 		if (rc == -ENA_COM_UNSUPPORTED)
463 			RTE_LOG(WARNING, PMD, "Cannot set host attributes\n");
464 		else
465 			RTE_LOG(ERR, PMD, "Cannot set host attributes\n");
466 
467 		goto err;
468 	}
469 
470 	return;
471 err:
472 	ena_com_delete_debug_area(&adapter->ena_dev);
473 }
474 
475 static void ena_close(struct rte_eth_dev *dev)
476 {
477 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
478 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
479 	struct ena_adapter *adapter = dev->data->dev_private;
480 
481 	if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
482 		ena_stop(dev);
483 	adapter->state = ENA_ADAPTER_STATE_CLOSED;
484 
485 	ena_rx_queue_release_all(dev);
486 	ena_tx_queue_release_all(dev);
487 
488 	rte_free(adapter->drv_stats);
489 	adapter->drv_stats = NULL;
490 
491 	rte_intr_disable(intr_handle);
492 	rte_intr_callback_unregister(intr_handle,
493 				     ena_interrupt_handler_rte,
494 				     adapter);
495 
496 	/*
497 	 * MAC is not allocated dynamically. Setting NULL should prevent from
498 	 * release of the resource in the rte_eth_dev_release_port().
499 	 */
500 	dev->data->mac_addrs = NULL;
501 }
502 
503 static int
504 ena_dev_reset(struct rte_eth_dev *dev)
505 {
506 	int rc = 0;
507 
508 	ena_destroy_device(dev);
509 	rc = eth_ena_dev_init(dev);
510 	if (rc)
511 		PMD_INIT_LOG(CRIT, "Cannot initialize device");
512 
513 	return rc;
514 }
515 
516 static int ena_rss_reta_update(struct rte_eth_dev *dev,
517 			       struct rte_eth_rss_reta_entry64 *reta_conf,
518 			       uint16_t reta_size)
519 {
520 	struct ena_adapter *adapter = dev->data->dev_private;
521 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
522 	int rc, i;
523 	u16 entry_value;
524 	int conf_idx;
525 	int idx;
526 
527 	if ((reta_size == 0) || (reta_conf == NULL))
528 		return -EINVAL;
529 
530 	if (reta_size > ENA_RX_RSS_TABLE_SIZE) {
531 		RTE_LOG(WARNING, PMD,
532 			"indirection table %d is bigger than supported (%d)\n",
533 			reta_size, ENA_RX_RSS_TABLE_SIZE);
534 		return -EINVAL;
535 	}
536 
537 	for (i = 0 ; i < reta_size ; i++) {
538 		/* each reta_conf is for 64 entries.
539 		 * to support 128 we use 2 conf of 64
540 		 */
541 		conf_idx = i / RTE_RETA_GROUP_SIZE;
542 		idx = i % RTE_RETA_GROUP_SIZE;
543 		if (TEST_BIT(reta_conf[conf_idx].mask, idx)) {
544 			entry_value =
545 				ENA_IO_RXQ_IDX(reta_conf[conf_idx].reta[idx]);
546 
547 			rc = ena_com_indirect_table_fill_entry(ena_dev,
548 							       i,
549 							       entry_value);
550 			if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
551 				RTE_LOG(ERR, PMD,
552 					"Cannot fill indirect table\n");
553 				return rc;
554 			}
555 		}
556 	}
557 
558 	rc = ena_com_indirect_table_set(ena_dev);
559 	if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
560 		RTE_LOG(ERR, PMD, "Cannot flush the indirect table\n");
561 		return rc;
562 	}
563 
564 	RTE_LOG(DEBUG, PMD, "%s(): RSS configured %d entries  for port %d\n",
565 		__func__, reta_size, adapter->rte_dev->data->port_id);
566 
567 	return 0;
568 }
569 
570 /* Query redirection table. */
571 static int ena_rss_reta_query(struct rte_eth_dev *dev,
572 			      struct rte_eth_rss_reta_entry64 *reta_conf,
573 			      uint16_t reta_size)
574 {
575 	struct ena_adapter *adapter = dev->data->dev_private;
576 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
577 	int rc;
578 	int i;
579 	u32 indirect_table[ENA_RX_RSS_TABLE_SIZE] = {0};
580 	int reta_conf_idx;
581 	int reta_idx;
582 
583 	if (reta_size == 0 || reta_conf == NULL ||
584 	    (reta_size > RTE_RETA_GROUP_SIZE && ((reta_conf + 1) == NULL)))
585 		return -EINVAL;
586 
587 	rc = ena_com_indirect_table_get(ena_dev, indirect_table);
588 	if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
589 		RTE_LOG(ERR, PMD, "cannot get indirect table\n");
590 		return -ENOTSUP;
591 	}
592 
593 	for (i = 0 ; i < reta_size ; i++) {
594 		reta_conf_idx = i / RTE_RETA_GROUP_SIZE;
595 		reta_idx = i % RTE_RETA_GROUP_SIZE;
596 		if (TEST_BIT(reta_conf[reta_conf_idx].mask, reta_idx))
597 			reta_conf[reta_conf_idx].reta[reta_idx] =
598 				ENA_IO_RXQ_IDX_REV(indirect_table[i]);
599 	}
600 
601 	return 0;
602 }
603 
604 static int ena_rss_init_default(struct ena_adapter *adapter)
605 {
606 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
607 	uint16_t nb_rx_queues = adapter->rte_dev->data->nb_rx_queues;
608 	int rc, i;
609 	u32 val;
610 
611 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
612 	if (unlikely(rc)) {
613 		RTE_LOG(ERR, PMD, "Cannot init indirect table\n");
614 		goto err_rss_init;
615 	}
616 
617 	for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
618 		val = i % nb_rx_queues;
619 		rc = ena_com_indirect_table_fill_entry(ena_dev, i,
620 						       ENA_IO_RXQ_IDX(val));
621 		if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
622 			RTE_LOG(ERR, PMD, "Cannot fill indirect table\n");
623 			goto err_fill_indir;
624 		}
625 	}
626 
627 	rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL,
628 					ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
629 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
630 		RTE_LOG(INFO, PMD, "Cannot fill hash function\n");
631 		goto err_fill_indir;
632 	}
633 
634 	rc = ena_com_set_default_hash_ctrl(ena_dev);
635 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
636 		RTE_LOG(INFO, PMD, "Cannot fill hash control\n");
637 		goto err_fill_indir;
638 	}
639 
640 	rc = ena_com_indirect_table_set(ena_dev);
641 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
642 		RTE_LOG(ERR, PMD, "Cannot flush the indirect table\n");
643 		goto err_fill_indir;
644 	}
645 	RTE_LOG(DEBUG, PMD, "RSS configured for port %d\n",
646 		adapter->rte_dev->data->port_id);
647 
648 	return 0;
649 
650 err_fill_indir:
651 	ena_com_rss_destroy(ena_dev);
652 err_rss_init:
653 
654 	return rc;
655 }
656 
657 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
658 {
659 	struct ena_ring **queues = (struct ena_ring **)dev->data->rx_queues;
660 	int nb_queues = dev->data->nb_rx_queues;
661 	int i;
662 
663 	for (i = 0; i < nb_queues; i++)
664 		ena_rx_queue_release(queues[i]);
665 }
666 
667 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
668 {
669 	struct ena_ring **queues = (struct ena_ring **)dev->data->tx_queues;
670 	int nb_queues = dev->data->nb_tx_queues;
671 	int i;
672 
673 	for (i = 0; i < nb_queues; i++)
674 		ena_tx_queue_release(queues[i]);
675 }
676 
677 static void ena_rx_queue_release(void *queue)
678 {
679 	struct ena_ring *ring = (struct ena_ring *)queue;
680 
681 	/* Free ring resources */
682 	if (ring->rx_buffer_info)
683 		rte_free(ring->rx_buffer_info);
684 	ring->rx_buffer_info = NULL;
685 
686 	if (ring->rx_refill_buffer)
687 		rte_free(ring->rx_refill_buffer);
688 	ring->rx_refill_buffer = NULL;
689 
690 	if (ring->empty_rx_reqs)
691 		rte_free(ring->empty_rx_reqs);
692 	ring->empty_rx_reqs = NULL;
693 
694 	ring->configured = 0;
695 
696 	RTE_LOG(NOTICE, PMD, "RX Queue %d:%d released\n",
697 		ring->port_id, ring->id);
698 }
699 
700 static void ena_tx_queue_release(void *queue)
701 {
702 	struct ena_ring *ring = (struct ena_ring *)queue;
703 
704 	/* Free ring resources */
705 	if (ring->push_buf_intermediate_buf)
706 		rte_free(ring->push_buf_intermediate_buf);
707 
708 	if (ring->tx_buffer_info)
709 		rte_free(ring->tx_buffer_info);
710 
711 	if (ring->empty_tx_reqs)
712 		rte_free(ring->empty_tx_reqs);
713 
714 	ring->empty_tx_reqs = NULL;
715 	ring->tx_buffer_info = NULL;
716 	ring->push_buf_intermediate_buf = NULL;
717 
718 	ring->configured = 0;
719 
720 	RTE_LOG(NOTICE, PMD, "TX Queue %d:%d released\n",
721 		ring->port_id, ring->id);
722 }
723 
724 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
725 {
726 	unsigned int i;
727 
728 	for (i = 0; i < ring->ring_size; ++i)
729 		if (ring->rx_buffer_info[i]) {
730 			rte_mbuf_raw_free(ring->rx_buffer_info[i]);
731 			ring->rx_buffer_info[i] = NULL;
732 		}
733 }
734 
735 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
736 {
737 	unsigned int i;
738 
739 	for (i = 0; i < ring->ring_size; ++i) {
740 		struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
741 
742 		if (tx_buf->mbuf)
743 			rte_pktmbuf_free(tx_buf->mbuf);
744 	}
745 }
746 
747 static int ena_link_update(struct rte_eth_dev *dev,
748 			   __rte_unused int wait_to_complete)
749 {
750 	struct rte_eth_link *link = &dev->data->dev_link;
751 	struct ena_adapter *adapter = dev->data->dev_private;
752 
753 	link->link_status = adapter->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
754 	link->link_speed = ETH_SPEED_NUM_NONE;
755 	link->link_duplex = ETH_LINK_FULL_DUPLEX;
756 
757 	return 0;
758 }
759 
760 static int ena_queue_start_all(struct rte_eth_dev *dev,
761 			       enum ena_ring_type ring_type)
762 {
763 	struct ena_adapter *adapter = dev->data->dev_private;
764 	struct ena_ring *queues = NULL;
765 	int nb_queues;
766 	int i = 0;
767 	int rc = 0;
768 
769 	if (ring_type == ENA_RING_TYPE_RX) {
770 		queues = adapter->rx_ring;
771 		nb_queues = dev->data->nb_rx_queues;
772 	} else {
773 		queues = adapter->tx_ring;
774 		nb_queues = dev->data->nb_tx_queues;
775 	}
776 	for (i = 0; i < nb_queues; i++) {
777 		if (queues[i].configured) {
778 			if (ring_type == ENA_RING_TYPE_RX) {
779 				ena_assert_msg(
780 					dev->data->rx_queues[i] == &queues[i],
781 					"Inconsistent state of rx queues\n");
782 			} else {
783 				ena_assert_msg(
784 					dev->data->tx_queues[i] == &queues[i],
785 					"Inconsistent state of tx queues\n");
786 			}
787 
788 			rc = ena_queue_start(&queues[i]);
789 
790 			if (rc) {
791 				PMD_INIT_LOG(ERR,
792 					     "failed to start queue %d type(%d)",
793 					     i, ring_type);
794 				goto err;
795 			}
796 		}
797 	}
798 
799 	return 0;
800 
801 err:
802 	while (i--)
803 		if (queues[i].configured)
804 			ena_queue_stop(&queues[i]);
805 
806 	return rc;
807 }
808 
809 static uint32_t ena_get_mtu_conf(struct ena_adapter *adapter)
810 {
811 	uint32_t max_frame_len = adapter->max_mtu;
812 
813 	if (adapter->rte_eth_dev_data->dev_conf.rxmode.offloads &
814 	    DEV_RX_OFFLOAD_JUMBO_FRAME)
815 		max_frame_len =
816 			adapter->rte_eth_dev_data->dev_conf.rxmode.max_rx_pkt_len;
817 
818 	return max_frame_len;
819 }
820 
821 static int ena_check_valid_conf(struct ena_adapter *adapter)
822 {
823 	uint32_t max_frame_len = ena_get_mtu_conf(adapter);
824 
825 	if (max_frame_len > adapter->max_mtu || max_frame_len < ENA_MIN_MTU) {
826 		PMD_INIT_LOG(ERR, "Unsupported MTU of %d. "
827 				  "max mtu: %d, min mtu: %d",
828 			     max_frame_len, adapter->max_mtu, ENA_MIN_MTU);
829 		return ENA_COM_UNSUPPORTED;
830 	}
831 
832 	return 0;
833 }
834 
835 static int
836 ena_calc_queue_size(struct ena_calc_queue_size_ctx *ctx)
837 {
838 	struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
839 	struct ena_com_dev *ena_dev = ctx->ena_dev;
840 	uint32_t tx_queue_size = ENA_MAX_RING_SIZE_TX;
841 	uint32_t rx_queue_size = ENA_MAX_RING_SIZE_RX;
842 
843 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
844 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
845 			&ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
846 		rx_queue_size = RTE_MIN(rx_queue_size,
847 			max_queue_ext->max_rx_cq_depth);
848 		rx_queue_size = RTE_MIN(rx_queue_size,
849 			max_queue_ext->max_rx_sq_depth);
850 		tx_queue_size = RTE_MIN(tx_queue_size,
851 			max_queue_ext->max_tx_cq_depth);
852 
853 		if (ena_dev->tx_mem_queue_type ==
854 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
855 			tx_queue_size = RTE_MIN(tx_queue_size,
856 				llq->max_llq_depth);
857 		} else {
858 			tx_queue_size = RTE_MIN(tx_queue_size,
859 				max_queue_ext->max_tx_sq_depth);
860 		}
861 
862 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
863 			max_queue_ext->max_per_packet_rx_descs);
864 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
865 			max_queue_ext->max_per_packet_tx_descs);
866 	} else {
867 		struct ena_admin_queue_feature_desc *max_queues =
868 			&ctx->get_feat_ctx->max_queues;
869 		rx_queue_size = RTE_MIN(rx_queue_size,
870 			max_queues->max_cq_depth);
871 		rx_queue_size = RTE_MIN(rx_queue_size,
872 			max_queues->max_sq_depth);
873 		tx_queue_size = RTE_MIN(tx_queue_size,
874 			max_queues->max_cq_depth);
875 
876 		if (ena_dev->tx_mem_queue_type ==
877 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
878 			tx_queue_size = RTE_MIN(tx_queue_size,
879 				llq->max_llq_depth);
880 		} else {
881 			tx_queue_size = RTE_MIN(tx_queue_size,
882 				max_queues->max_sq_depth);
883 		}
884 
885 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
886 			max_queues->max_packet_tx_descs);
887 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
888 			max_queues->max_packet_rx_descs);
889 	}
890 
891 	/* Round down to the nearest power of 2 */
892 	rx_queue_size = rte_align32prevpow2(rx_queue_size);
893 	tx_queue_size = rte_align32prevpow2(tx_queue_size);
894 
895 	if (unlikely(rx_queue_size == 0 || tx_queue_size == 0)) {
896 		PMD_INIT_LOG(ERR, "Invalid queue size");
897 		return -EFAULT;
898 	}
899 
900 	ctx->rx_queue_size = rx_queue_size;
901 	ctx->tx_queue_size = tx_queue_size;
902 
903 	return 0;
904 }
905 
906 static void ena_stats_restart(struct rte_eth_dev *dev)
907 {
908 	struct ena_adapter *adapter = dev->data->dev_private;
909 
910 	rte_atomic64_init(&adapter->drv_stats->ierrors);
911 	rte_atomic64_init(&adapter->drv_stats->oerrors);
912 	rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
913 	rte_atomic64_init(&adapter->drv_stats->rx_drops);
914 }
915 
916 static int ena_stats_get(struct rte_eth_dev *dev,
917 			  struct rte_eth_stats *stats)
918 {
919 	struct ena_admin_basic_stats ena_stats;
920 	struct ena_adapter *adapter = dev->data->dev_private;
921 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
922 	int rc;
923 	int i;
924 	int max_rings_stats;
925 
926 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
927 		return -ENOTSUP;
928 
929 	memset(&ena_stats, 0, sizeof(ena_stats));
930 	rc = ena_com_get_dev_basic_stats(ena_dev, &ena_stats);
931 	if (unlikely(rc)) {
932 		RTE_LOG(ERR, PMD, "Could not retrieve statistics from ENA\n");
933 		return rc;
934 	}
935 
936 	/* Set of basic statistics from ENA */
937 	stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
938 					  ena_stats.rx_pkts_low);
939 	stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
940 					  ena_stats.tx_pkts_low);
941 	stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
942 					ena_stats.rx_bytes_low);
943 	stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
944 					ena_stats.tx_bytes_low);
945 
946 	/* Driver related stats */
947 	stats->imissed = rte_atomic64_read(&adapter->drv_stats->rx_drops);
948 	stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
949 	stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
950 	stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
951 
952 	max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
953 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
954 	for (i = 0; i < max_rings_stats; ++i) {
955 		struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
956 
957 		stats->q_ibytes[i] = rx_stats->bytes;
958 		stats->q_ipackets[i] = rx_stats->cnt;
959 		stats->q_errors[i] = rx_stats->bad_desc_num +
960 			rx_stats->bad_req_id;
961 	}
962 
963 	max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
964 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
965 	for (i = 0; i < max_rings_stats; ++i) {
966 		struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
967 
968 		stats->q_obytes[i] = tx_stats->bytes;
969 		stats->q_opackets[i] = tx_stats->cnt;
970 	}
971 
972 	return 0;
973 }
974 
975 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
976 {
977 	struct ena_adapter *adapter;
978 	struct ena_com_dev *ena_dev;
979 	int rc = 0;
980 
981 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
982 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
983 	adapter = dev->data->dev_private;
984 
985 	ena_dev = &adapter->ena_dev;
986 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
987 
988 	if (mtu > ena_get_mtu_conf(adapter) || mtu < ENA_MIN_MTU) {
989 		RTE_LOG(ERR, PMD,
990 			"Invalid MTU setting. new_mtu: %d "
991 			"max mtu: %d min mtu: %d\n",
992 			mtu, ena_get_mtu_conf(adapter), ENA_MIN_MTU);
993 		return -EINVAL;
994 	}
995 
996 	rc = ena_com_set_dev_mtu(ena_dev, mtu);
997 	if (rc)
998 		RTE_LOG(ERR, PMD, "Could not set MTU: %d\n", mtu);
999 	else
1000 		RTE_LOG(NOTICE, PMD, "Set MTU: %d\n", mtu);
1001 
1002 	return rc;
1003 }
1004 
1005 static int ena_start(struct rte_eth_dev *dev)
1006 {
1007 	struct ena_adapter *adapter = dev->data->dev_private;
1008 	uint64_t ticks;
1009 	int rc = 0;
1010 
1011 	rc = ena_check_valid_conf(adapter);
1012 	if (rc)
1013 		return rc;
1014 
1015 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
1016 	if (rc)
1017 		return rc;
1018 
1019 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
1020 	if (rc)
1021 		goto err_start_tx;
1022 
1023 	if (adapter->rte_dev->data->dev_conf.rxmode.mq_mode &
1024 	    ETH_MQ_RX_RSS_FLAG && adapter->rte_dev->data->nb_rx_queues > 0) {
1025 		rc = ena_rss_init_default(adapter);
1026 		if (rc)
1027 			goto err_rss_init;
1028 	}
1029 
1030 	ena_stats_restart(dev);
1031 
1032 	adapter->timestamp_wd = rte_get_timer_cycles();
1033 	adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
1034 
1035 	ticks = rte_get_timer_hz();
1036 	rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
1037 			ena_timer_wd_callback, adapter);
1038 
1039 	++adapter->dev_stats.dev_start;
1040 	adapter->state = ENA_ADAPTER_STATE_RUNNING;
1041 
1042 	return 0;
1043 
1044 err_rss_init:
1045 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1046 err_start_tx:
1047 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1048 	return rc;
1049 }
1050 
1051 static void ena_stop(struct rte_eth_dev *dev)
1052 {
1053 	struct ena_adapter *adapter = dev->data->dev_private;
1054 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1055 	int rc;
1056 
1057 	rte_timer_stop_sync(&adapter->timer_wd);
1058 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1059 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1060 
1061 	if (adapter->trigger_reset) {
1062 		rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
1063 		if (rc)
1064 			RTE_LOG(ERR, PMD, "Device reset failed rc=%d\n", rc);
1065 	}
1066 
1067 	++adapter->dev_stats.dev_stop;
1068 	adapter->state = ENA_ADAPTER_STATE_STOPPED;
1069 }
1070 
1071 static int ena_create_io_queue(struct ena_ring *ring)
1072 {
1073 	struct ena_adapter *adapter;
1074 	struct ena_com_dev *ena_dev;
1075 	struct ena_com_create_io_ctx ctx =
1076 		/* policy set to _HOST just to satisfy icc compiler */
1077 		{ ENA_ADMIN_PLACEMENT_POLICY_HOST,
1078 		  0, 0, 0, 0, 0 };
1079 	uint16_t ena_qid;
1080 	unsigned int i;
1081 	int rc;
1082 
1083 	adapter = ring->adapter;
1084 	ena_dev = &adapter->ena_dev;
1085 
1086 	if (ring->type == ENA_RING_TYPE_TX) {
1087 		ena_qid = ENA_IO_TXQ_IDX(ring->id);
1088 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1089 		ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1090 		ctx.queue_size = adapter->tx_ring_size;
1091 		for (i = 0; i < ring->ring_size; i++)
1092 			ring->empty_tx_reqs[i] = i;
1093 	} else {
1094 		ena_qid = ENA_IO_RXQ_IDX(ring->id);
1095 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1096 		ctx.queue_size = adapter->rx_ring_size;
1097 		for (i = 0; i < ring->ring_size; i++)
1098 			ring->empty_rx_reqs[i] = i;
1099 	}
1100 	ctx.qid = ena_qid;
1101 	ctx.msix_vector = -1; /* interrupts not used */
1102 	ctx.numa_node = ring->numa_socket_id;
1103 
1104 	rc = ena_com_create_io_queue(ena_dev, &ctx);
1105 	if (rc) {
1106 		RTE_LOG(ERR, PMD,
1107 			"failed to create io queue #%d (qid:%d) rc: %d\n",
1108 			ring->id, ena_qid, rc);
1109 		return rc;
1110 	}
1111 
1112 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1113 				     &ring->ena_com_io_sq,
1114 				     &ring->ena_com_io_cq);
1115 	if (rc) {
1116 		RTE_LOG(ERR, PMD,
1117 			"Failed to get io queue handlers. queue num %d rc: %d\n",
1118 			ring->id, rc);
1119 		ena_com_destroy_io_queue(ena_dev, ena_qid);
1120 		return rc;
1121 	}
1122 
1123 	if (ring->type == ENA_RING_TYPE_TX)
1124 		ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1125 
1126 	return 0;
1127 }
1128 
1129 static void ena_queue_stop(struct ena_ring *ring)
1130 {
1131 	struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
1132 
1133 	if (ring->type == ENA_RING_TYPE_RX) {
1134 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
1135 		ena_rx_queue_release_bufs(ring);
1136 	} else {
1137 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
1138 		ena_tx_queue_release_bufs(ring);
1139 	}
1140 }
1141 
1142 static void ena_queue_stop_all(struct rte_eth_dev *dev,
1143 			      enum ena_ring_type ring_type)
1144 {
1145 	struct ena_adapter *adapter = dev->data->dev_private;
1146 	struct ena_ring *queues = NULL;
1147 	uint16_t nb_queues, i;
1148 
1149 	if (ring_type == ENA_RING_TYPE_RX) {
1150 		queues = adapter->rx_ring;
1151 		nb_queues = dev->data->nb_rx_queues;
1152 	} else {
1153 		queues = adapter->tx_ring;
1154 		nb_queues = dev->data->nb_tx_queues;
1155 	}
1156 
1157 	for (i = 0; i < nb_queues; ++i)
1158 		if (queues[i].configured)
1159 			ena_queue_stop(&queues[i]);
1160 }
1161 
1162 static int ena_queue_start(struct ena_ring *ring)
1163 {
1164 	int rc, bufs_num;
1165 
1166 	ena_assert_msg(ring->configured == 1,
1167 		       "Trying to start unconfigured queue\n");
1168 
1169 	rc = ena_create_io_queue(ring);
1170 	if (rc) {
1171 		PMD_INIT_LOG(ERR, "Failed to create IO queue!");
1172 		return rc;
1173 	}
1174 
1175 	ring->next_to_clean = 0;
1176 	ring->next_to_use = 0;
1177 
1178 	if (ring->type == ENA_RING_TYPE_TX) {
1179 		ring->tx_stats.available_desc =
1180 			ena_com_free_desc(ring->ena_com_io_sq);
1181 		return 0;
1182 	}
1183 
1184 	bufs_num = ring->ring_size - 1;
1185 	rc = ena_populate_rx_queue(ring, bufs_num);
1186 	if (rc != bufs_num) {
1187 		ena_com_destroy_io_queue(&ring->adapter->ena_dev,
1188 					 ENA_IO_RXQ_IDX(ring->id));
1189 		PMD_INIT_LOG(ERR, "Failed to populate rx ring !");
1190 		return ENA_COM_FAULT;
1191 	}
1192 
1193 	return 0;
1194 }
1195 
1196 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1197 			      uint16_t queue_idx,
1198 			      uint16_t nb_desc,
1199 			      unsigned int socket_id,
1200 			      const struct rte_eth_txconf *tx_conf)
1201 {
1202 	struct ena_ring *txq = NULL;
1203 	struct ena_adapter *adapter = dev->data->dev_private;
1204 	unsigned int i;
1205 
1206 	txq = &adapter->tx_ring[queue_idx];
1207 
1208 	if (txq->configured) {
1209 		RTE_LOG(CRIT, PMD,
1210 			"API violation. Queue %d is already configured\n",
1211 			queue_idx);
1212 		return ENA_COM_FAULT;
1213 	}
1214 
1215 	if (!rte_is_power_of_2(nb_desc)) {
1216 		RTE_LOG(ERR, PMD,
1217 			"Unsupported size of TX queue: %d is not a power of 2.\n",
1218 			nb_desc);
1219 		return -EINVAL;
1220 	}
1221 
1222 	if (nb_desc > adapter->tx_ring_size) {
1223 		RTE_LOG(ERR, PMD,
1224 			"Unsupported size of TX queue (max size: %d)\n",
1225 			adapter->tx_ring_size);
1226 		return -EINVAL;
1227 	}
1228 
1229 	if (nb_desc == RTE_ETH_DEV_FALLBACK_TX_RINGSIZE)
1230 		nb_desc = adapter->tx_ring_size;
1231 
1232 	txq->port_id = dev->data->port_id;
1233 	txq->next_to_clean = 0;
1234 	txq->next_to_use = 0;
1235 	txq->ring_size = nb_desc;
1236 	txq->numa_socket_id = socket_id;
1237 
1238 	txq->tx_buffer_info = rte_zmalloc("txq->tx_buffer_info",
1239 					  sizeof(struct ena_tx_buffer) *
1240 					  txq->ring_size,
1241 					  RTE_CACHE_LINE_SIZE);
1242 	if (!txq->tx_buffer_info) {
1243 		RTE_LOG(ERR, PMD, "failed to alloc mem for tx buffer info\n");
1244 		return -ENOMEM;
1245 	}
1246 
1247 	txq->empty_tx_reqs = rte_zmalloc("txq->empty_tx_reqs",
1248 					 sizeof(u16) * txq->ring_size,
1249 					 RTE_CACHE_LINE_SIZE);
1250 	if (!txq->empty_tx_reqs) {
1251 		RTE_LOG(ERR, PMD, "failed to alloc mem for tx reqs\n");
1252 		rte_free(txq->tx_buffer_info);
1253 		return -ENOMEM;
1254 	}
1255 
1256 	txq->push_buf_intermediate_buf =
1257 		rte_zmalloc("txq->push_buf_intermediate_buf",
1258 			    txq->tx_max_header_size,
1259 			    RTE_CACHE_LINE_SIZE);
1260 	if (!txq->push_buf_intermediate_buf) {
1261 		RTE_LOG(ERR, PMD, "failed to alloc push buff for LLQ\n");
1262 		rte_free(txq->tx_buffer_info);
1263 		rte_free(txq->empty_tx_reqs);
1264 		return -ENOMEM;
1265 	}
1266 
1267 	for (i = 0; i < txq->ring_size; i++)
1268 		txq->empty_tx_reqs[i] = i;
1269 
1270 	if (tx_conf != NULL) {
1271 		txq->offloads =
1272 			tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1273 	}
1274 	/* Store pointer to this queue in upper layer */
1275 	txq->configured = 1;
1276 	dev->data->tx_queues[queue_idx] = txq;
1277 
1278 	return 0;
1279 }
1280 
1281 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1282 			      uint16_t queue_idx,
1283 			      uint16_t nb_desc,
1284 			      unsigned int socket_id,
1285 			      __rte_unused const struct rte_eth_rxconf *rx_conf,
1286 			      struct rte_mempool *mp)
1287 {
1288 	struct ena_adapter *adapter = dev->data->dev_private;
1289 	struct ena_ring *rxq = NULL;
1290 	int i;
1291 
1292 	rxq = &adapter->rx_ring[queue_idx];
1293 	if (rxq->configured) {
1294 		RTE_LOG(CRIT, PMD,
1295 			"API violation. Queue %d is already configured\n",
1296 			queue_idx);
1297 		return ENA_COM_FAULT;
1298 	}
1299 
1300 	if (nb_desc == RTE_ETH_DEV_FALLBACK_RX_RINGSIZE)
1301 		nb_desc = adapter->rx_ring_size;
1302 
1303 	if (!rte_is_power_of_2(nb_desc)) {
1304 		RTE_LOG(ERR, PMD,
1305 			"Unsupported size of RX queue: %d is not a power of 2.\n",
1306 			nb_desc);
1307 		return -EINVAL;
1308 	}
1309 
1310 	if (nb_desc > adapter->rx_ring_size) {
1311 		RTE_LOG(ERR, PMD,
1312 			"Unsupported size of RX queue (max size: %d)\n",
1313 			adapter->rx_ring_size);
1314 		return -EINVAL;
1315 	}
1316 
1317 	rxq->port_id = dev->data->port_id;
1318 	rxq->next_to_clean = 0;
1319 	rxq->next_to_use = 0;
1320 	rxq->ring_size = nb_desc;
1321 	rxq->numa_socket_id = socket_id;
1322 	rxq->mb_pool = mp;
1323 
1324 	rxq->rx_buffer_info = rte_zmalloc("rxq->buffer_info",
1325 					  sizeof(struct rte_mbuf *) * nb_desc,
1326 					  RTE_CACHE_LINE_SIZE);
1327 	if (!rxq->rx_buffer_info) {
1328 		RTE_LOG(ERR, PMD, "failed to alloc mem for rx buffer info\n");
1329 		return -ENOMEM;
1330 	}
1331 
1332 	rxq->rx_refill_buffer = rte_zmalloc("rxq->rx_refill_buffer",
1333 					    sizeof(struct rte_mbuf *) * nb_desc,
1334 					    RTE_CACHE_LINE_SIZE);
1335 
1336 	if (!rxq->rx_refill_buffer) {
1337 		RTE_LOG(ERR, PMD, "failed to alloc mem for rx refill buffer\n");
1338 		rte_free(rxq->rx_buffer_info);
1339 		rxq->rx_buffer_info = NULL;
1340 		return -ENOMEM;
1341 	}
1342 
1343 	rxq->empty_rx_reqs = rte_zmalloc("rxq->empty_rx_reqs",
1344 					 sizeof(uint16_t) * nb_desc,
1345 					 RTE_CACHE_LINE_SIZE);
1346 	if (!rxq->empty_rx_reqs) {
1347 		RTE_LOG(ERR, PMD, "failed to alloc mem for empty rx reqs\n");
1348 		rte_free(rxq->rx_buffer_info);
1349 		rxq->rx_buffer_info = NULL;
1350 		rte_free(rxq->rx_refill_buffer);
1351 		rxq->rx_refill_buffer = NULL;
1352 		return -ENOMEM;
1353 	}
1354 
1355 	for (i = 0; i < nb_desc; i++)
1356 		rxq->empty_rx_reqs[i] = i;
1357 
1358 	/* Store pointer to this queue in upper layer */
1359 	rxq->configured = 1;
1360 	dev->data->rx_queues[queue_idx] = rxq;
1361 
1362 	return 0;
1363 }
1364 
1365 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1366 {
1367 	unsigned int i;
1368 	int rc;
1369 	uint16_t ring_size = rxq->ring_size;
1370 	uint16_t ring_mask = ring_size - 1;
1371 	uint16_t next_to_use = rxq->next_to_use;
1372 	uint16_t in_use, req_id;
1373 	struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1374 
1375 	if (unlikely(!count))
1376 		return 0;
1377 
1378 	in_use = rxq->next_to_use - rxq->next_to_clean;
1379 	ena_assert_msg(((in_use + count) < ring_size), "bad ring state\n");
1380 
1381 	/* get resources for incoming packets */
1382 	rc = rte_mempool_get_bulk(rxq->mb_pool, (void **)mbufs, count);
1383 	if (unlikely(rc < 0)) {
1384 		rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1385 		++rxq->rx_stats.mbuf_alloc_fail;
1386 		PMD_RX_LOG(DEBUG, "there are no enough free buffers");
1387 		return 0;
1388 	}
1389 
1390 	for (i = 0; i < count; i++) {
1391 		uint16_t next_to_use_masked = next_to_use & ring_mask;
1392 		struct rte_mbuf *mbuf = mbufs[i];
1393 		struct ena_com_buf ebuf;
1394 
1395 		if (likely((i + 4) < count))
1396 			rte_prefetch0(mbufs[i + 4]);
1397 
1398 		req_id = rxq->empty_rx_reqs[next_to_use_masked];
1399 		rc = validate_rx_req_id(rxq, req_id);
1400 		if (unlikely(rc < 0))
1401 			break;
1402 		rxq->rx_buffer_info[req_id] = mbuf;
1403 
1404 		/* prepare physical address for DMA transaction */
1405 		ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1406 		ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1407 		/* pass resource to device */
1408 		rc = ena_com_add_single_rx_desc(rxq->ena_com_io_sq,
1409 						&ebuf, req_id);
1410 		if (unlikely(rc)) {
1411 			RTE_LOG(WARNING, PMD, "failed adding rx desc\n");
1412 			rxq->rx_buffer_info[req_id] = NULL;
1413 			break;
1414 		}
1415 		next_to_use++;
1416 	}
1417 
1418 	if (unlikely(i < count)) {
1419 		RTE_LOG(WARNING, PMD, "refilled rx qid %d with only %d "
1420 			"buffers (from %d)\n", rxq->id, i, count);
1421 		rte_mempool_put_bulk(rxq->mb_pool, (void **)(&mbufs[i]),
1422 				     count - i);
1423 		++rxq->rx_stats.refill_partial;
1424 	}
1425 
1426 	/* When we submitted free recources to device... */
1427 	if (likely(i > 0)) {
1428 		/* ...let HW know that it can fill buffers with data
1429 		 *
1430 		 * Add memory barrier to make sure the desc were written before
1431 		 * issue a doorbell
1432 		 */
1433 		rte_wmb();
1434 		ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1435 
1436 		rxq->next_to_use = next_to_use;
1437 	}
1438 
1439 	return i;
1440 }
1441 
1442 static int ena_device_init(struct ena_com_dev *ena_dev,
1443 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
1444 			   bool *wd_state)
1445 {
1446 	uint32_t aenq_groups;
1447 	int rc;
1448 	bool readless_supported;
1449 
1450 	/* Initialize mmio registers */
1451 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
1452 	if (rc) {
1453 		RTE_LOG(ERR, PMD, "failed to init mmio read less\n");
1454 		return rc;
1455 	}
1456 
1457 	/* The PCIe configuration space revision id indicate if mmio reg
1458 	 * read is disabled.
1459 	 */
1460 	readless_supported =
1461 		!(((struct rte_pci_device *)ena_dev->dmadev)->id.class_id
1462 			       & ENA_MMIO_DISABLE_REG_READ);
1463 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1464 
1465 	/* reset device */
1466 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1467 	if (rc) {
1468 		RTE_LOG(ERR, PMD, "cannot reset device\n");
1469 		goto err_mmio_read_less;
1470 	}
1471 
1472 	/* check FW version */
1473 	rc = ena_com_validate_version(ena_dev);
1474 	if (rc) {
1475 		RTE_LOG(ERR, PMD, "device version is too low\n");
1476 		goto err_mmio_read_less;
1477 	}
1478 
1479 	ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1480 
1481 	/* ENA device administration layer init */
1482 	rc = ena_com_admin_init(ena_dev, &aenq_handlers);
1483 	if (rc) {
1484 		RTE_LOG(ERR, PMD,
1485 			"cannot initialize ena admin queue with device\n");
1486 		goto err_mmio_read_less;
1487 	}
1488 
1489 	/* To enable the msix interrupts the driver needs to know the number
1490 	 * of queues. So the driver uses polling mode to retrieve this
1491 	 * information.
1492 	 */
1493 	ena_com_set_admin_polling_mode(ena_dev, true);
1494 
1495 	ena_config_host_info(ena_dev);
1496 
1497 	/* Get Device Attributes and features */
1498 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1499 	if (rc) {
1500 		RTE_LOG(ERR, PMD,
1501 			"cannot get attribute for ena device rc= %d\n", rc);
1502 		goto err_admin_init;
1503 	}
1504 
1505 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1506 		      BIT(ENA_ADMIN_NOTIFICATION) |
1507 		      BIT(ENA_ADMIN_KEEP_ALIVE) |
1508 		      BIT(ENA_ADMIN_FATAL_ERROR) |
1509 		      BIT(ENA_ADMIN_WARNING);
1510 
1511 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
1512 	rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
1513 	if (rc) {
1514 		RTE_LOG(ERR, PMD, "Cannot configure aenq groups rc: %d\n", rc);
1515 		goto err_admin_init;
1516 	}
1517 
1518 	*wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
1519 
1520 	return 0;
1521 
1522 err_admin_init:
1523 	ena_com_admin_destroy(ena_dev);
1524 
1525 err_mmio_read_less:
1526 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1527 
1528 	return rc;
1529 }
1530 
1531 static void ena_interrupt_handler_rte(void *cb_arg)
1532 {
1533 	struct ena_adapter *adapter = cb_arg;
1534 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1535 
1536 	ena_com_admin_q_comp_intr_handler(ena_dev);
1537 	if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED))
1538 		ena_com_aenq_intr_handler(ena_dev, adapter);
1539 }
1540 
1541 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1542 {
1543 	if (!adapter->wd_state)
1544 		return;
1545 
1546 	if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1547 		return;
1548 
1549 	if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1550 	    adapter->keep_alive_timeout)) {
1551 		RTE_LOG(ERR, PMD, "Keep alive timeout\n");
1552 		adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
1553 		adapter->trigger_reset = true;
1554 		++adapter->dev_stats.wd_expired;
1555 	}
1556 }
1557 
1558 /* Check if admin queue is enabled */
1559 static void check_for_admin_com_state(struct ena_adapter *adapter)
1560 {
1561 	if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1562 		RTE_LOG(ERR, PMD, "ENA admin queue is not in running state!\n");
1563 		adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
1564 		adapter->trigger_reset = true;
1565 	}
1566 }
1567 
1568 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
1569 				  void *arg)
1570 {
1571 	struct ena_adapter *adapter = arg;
1572 	struct rte_eth_dev *dev = adapter->rte_dev;
1573 
1574 	check_for_missing_keep_alive(adapter);
1575 	check_for_admin_com_state(adapter);
1576 
1577 	if (unlikely(adapter->trigger_reset)) {
1578 		RTE_LOG(ERR, PMD, "Trigger reset is on\n");
1579 		_rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
1580 			NULL);
1581 	}
1582 }
1583 
1584 static inline void
1585 set_default_llq_configurations(struct ena_llq_configurations *llq_config)
1586 {
1587 	llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
1588 	llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_128B;
1589 	llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
1590 	llq_config->llq_num_decs_before_header =
1591 		ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
1592 	llq_config->llq_ring_entry_size_value = 128;
1593 }
1594 
1595 static int
1596 ena_set_queues_placement_policy(struct ena_adapter *adapter,
1597 				struct ena_com_dev *ena_dev,
1598 				struct ena_admin_feature_llq_desc *llq,
1599 				struct ena_llq_configurations *llq_default_configurations)
1600 {
1601 	int rc;
1602 	u32 llq_feature_mask;
1603 
1604 	llq_feature_mask = 1 << ENA_ADMIN_LLQ;
1605 	if (!(ena_dev->supported_features & llq_feature_mask)) {
1606 		RTE_LOG(INFO, PMD,
1607 			"LLQ is not supported. Fallback to host mode policy.\n");
1608 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1609 		return 0;
1610 	}
1611 
1612 	rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
1613 	if (unlikely(rc)) {
1614 		PMD_INIT_LOG(WARNING, "Failed to config dev mode. "
1615 			"Fallback to host mode policy.");
1616 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1617 		return 0;
1618 	}
1619 
1620 	/* Nothing to config, exit */
1621 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1622 		return 0;
1623 
1624 	if (!adapter->dev_mem_base) {
1625 		RTE_LOG(ERR, PMD, "Unable to access LLQ bar resource. "
1626 			"Fallback to host mode policy.\n.");
1627 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1628 		return 0;
1629 	}
1630 
1631 	ena_dev->mem_bar = adapter->dev_mem_base;
1632 
1633 	return 0;
1634 }
1635 
1636 static int ena_calc_io_queue_num(struct ena_com_dev *ena_dev,
1637 				 struct ena_com_dev_get_features_ctx *get_feat_ctx)
1638 {
1639 	uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, io_queue_num;
1640 
1641 	/* Regular queues capabilities */
1642 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1643 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1644 			&get_feat_ctx->max_queue_ext.max_queue_ext;
1645 		io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
1646 				    max_queue_ext->max_rx_cq_num);
1647 		io_tx_sq_num = max_queue_ext->max_tx_sq_num;
1648 		io_tx_cq_num = max_queue_ext->max_tx_cq_num;
1649 	} else {
1650 		struct ena_admin_queue_feature_desc *max_queues =
1651 			&get_feat_ctx->max_queues;
1652 		io_tx_sq_num = max_queues->max_sq_num;
1653 		io_tx_cq_num = max_queues->max_cq_num;
1654 		io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
1655 	}
1656 
1657 	/* In case of LLQ use the llq number in the get feature cmd */
1658 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
1659 		io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
1660 
1661 	io_queue_num = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
1662 	io_queue_num = RTE_MIN(io_queue_num, io_tx_sq_num);
1663 	io_queue_num = RTE_MIN(io_queue_num, io_tx_cq_num);
1664 
1665 	if (unlikely(io_queue_num == 0)) {
1666 		RTE_LOG(ERR, PMD, "Number of IO queues should not be 0\n");
1667 		return -EFAULT;
1668 	}
1669 
1670 	return io_queue_num;
1671 }
1672 
1673 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
1674 {
1675 	struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
1676 	struct rte_pci_device *pci_dev;
1677 	struct rte_intr_handle *intr_handle;
1678 	struct ena_adapter *adapter = eth_dev->data->dev_private;
1679 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1680 	struct ena_com_dev_get_features_ctx get_feat_ctx;
1681 	struct ena_llq_configurations llq_config;
1682 	const char *queue_type_str;
1683 	int rc;
1684 
1685 	static int adapters_found;
1686 	bool wd_state;
1687 
1688 	eth_dev->dev_ops = &ena_dev_ops;
1689 	eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
1690 	eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
1691 	eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
1692 
1693 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1694 		return 0;
1695 
1696 	memset(adapter, 0, sizeof(struct ena_adapter));
1697 	ena_dev = &adapter->ena_dev;
1698 
1699 	adapter->rte_eth_dev_data = eth_dev->data;
1700 	adapter->rte_dev = eth_dev;
1701 
1702 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1703 	adapter->pdev = pci_dev;
1704 
1705 	PMD_INIT_LOG(INFO, "Initializing %x:%x:%x.%d",
1706 		     pci_dev->addr.domain,
1707 		     pci_dev->addr.bus,
1708 		     pci_dev->addr.devid,
1709 		     pci_dev->addr.function);
1710 
1711 	intr_handle = &pci_dev->intr_handle;
1712 
1713 	adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
1714 	adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
1715 
1716 	if (!adapter->regs) {
1717 		PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)",
1718 			     ENA_REGS_BAR);
1719 		return -ENXIO;
1720 	}
1721 
1722 	ena_dev->reg_bar = adapter->regs;
1723 	ena_dev->dmadev = adapter->pdev;
1724 
1725 	adapter->id_number = adapters_found;
1726 
1727 	snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
1728 		 adapter->id_number);
1729 
1730 	/* device specific initialization routine */
1731 	rc = ena_device_init(ena_dev, &get_feat_ctx, &wd_state);
1732 	if (rc) {
1733 		PMD_INIT_LOG(CRIT, "Failed to init ENA device");
1734 		goto err;
1735 	}
1736 	adapter->wd_state = wd_state;
1737 
1738 	set_default_llq_configurations(&llq_config);
1739 	rc = ena_set_queues_placement_policy(adapter, ena_dev,
1740 					     &get_feat_ctx.llq, &llq_config);
1741 	if (unlikely(rc)) {
1742 		PMD_INIT_LOG(CRIT, "Failed to set placement policy");
1743 		return rc;
1744 	}
1745 
1746 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1747 		queue_type_str = "Regular";
1748 	else
1749 		queue_type_str = "Low latency";
1750 	RTE_LOG(INFO, PMD, "Placement policy: %s\n", queue_type_str);
1751 
1752 	calc_queue_ctx.ena_dev = ena_dev;
1753 	calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
1754 	adapter->num_queues = ena_calc_io_queue_num(ena_dev,
1755 						    &get_feat_ctx);
1756 
1757 	rc = ena_calc_queue_size(&calc_queue_ctx);
1758 	if (unlikely((rc != 0) || (adapter->num_queues <= 0))) {
1759 		rc = -EFAULT;
1760 		goto err_device_destroy;
1761 	}
1762 
1763 	adapter->tx_ring_size = calc_queue_ctx.tx_queue_size;
1764 	adapter->rx_ring_size = calc_queue_ctx.rx_queue_size;
1765 
1766 	adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
1767 	adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
1768 
1769 	/* prepare ring structures */
1770 	ena_init_rings(adapter);
1771 
1772 	ena_config_debug_area(adapter);
1773 
1774 	/* Set max MTU for this device */
1775 	adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
1776 
1777 	/* set device support for offloads */
1778 	adapter->offloads.tso4_supported = (get_feat_ctx.offload.tx &
1779 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) != 0;
1780 	adapter->offloads.tx_csum_supported = (get_feat_ctx.offload.tx &
1781 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK) != 0;
1782 	adapter->offloads.rx_csum_supported =
1783 		(get_feat_ctx.offload.rx_supported &
1784 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK) != 0;
1785 
1786 	/* Copy MAC address and point DPDK to it */
1787 	eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr;
1788 	rte_ether_addr_copy((struct rte_ether_addr *)
1789 			get_feat_ctx.dev_attr.mac_addr,
1790 			(struct rte_ether_addr *)adapter->mac_addr);
1791 
1792 	/*
1793 	 * Pass the information to the rte_eth_dev_close() that it should also
1794 	 * release the private port resources.
1795 	 */
1796 	eth_dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE;
1797 
1798 	adapter->drv_stats = rte_zmalloc("adapter stats",
1799 					 sizeof(*adapter->drv_stats),
1800 					 RTE_CACHE_LINE_SIZE);
1801 	if (!adapter->drv_stats) {
1802 		RTE_LOG(ERR, PMD, "failed to alloc mem for adapter stats\n");
1803 		rc = -ENOMEM;
1804 		goto err_delete_debug_area;
1805 	}
1806 
1807 	rte_intr_callback_register(intr_handle,
1808 				   ena_interrupt_handler_rte,
1809 				   adapter);
1810 	rte_intr_enable(intr_handle);
1811 	ena_com_set_admin_polling_mode(ena_dev, false);
1812 	ena_com_admin_aenq_enable(ena_dev);
1813 
1814 	if (adapters_found == 0)
1815 		rte_timer_subsystem_init();
1816 	rte_timer_init(&adapter->timer_wd);
1817 
1818 	adapters_found++;
1819 	adapter->state = ENA_ADAPTER_STATE_INIT;
1820 
1821 	return 0;
1822 
1823 err_delete_debug_area:
1824 	ena_com_delete_debug_area(ena_dev);
1825 
1826 err_device_destroy:
1827 	ena_com_delete_host_info(ena_dev);
1828 	ena_com_admin_destroy(ena_dev);
1829 
1830 err:
1831 	return rc;
1832 }
1833 
1834 static void ena_destroy_device(struct rte_eth_dev *eth_dev)
1835 {
1836 	struct ena_adapter *adapter = eth_dev->data->dev_private;
1837 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1838 
1839 	if (adapter->state == ENA_ADAPTER_STATE_FREE)
1840 		return;
1841 
1842 	ena_com_set_admin_running_state(ena_dev, false);
1843 
1844 	if (adapter->state != ENA_ADAPTER_STATE_CLOSED)
1845 		ena_close(eth_dev);
1846 
1847 	ena_com_delete_debug_area(ena_dev);
1848 	ena_com_delete_host_info(ena_dev);
1849 
1850 	ena_com_abort_admin_commands(ena_dev);
1851 	ena_com_wait_for_abort_completion(ena_dev);
1852 	ena_com_admin_destroy(ena_dev);
1853 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1854 
1855 	adapter->state = ENA_ADAPTER_STATE_FREE;
1856 }
1857 
1858 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
1859 {
1860 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1861 		return 0;
1862 
1863 	ena_destroy_device(eth_dev);
1864 
1865 	eth_dev->dev_ops = NULL;
1866 	eth_dev->rx_pkt_burst = NULL;
1867 	eth_dev->tx_pkt_burst = NULL;
1868 	eth_dev->tx_pkt_prepare = NULL;
1869 
1870 	return 0;
1871 }
1872 
1873 static int ena_dev_configure(struct rte_eth_dev *dev)
1874 {
1875 	struct ena_adapter *adapter = dev->data->dev_private;
1876 
1877 	adapter->state = ENA_ADAPTER_STATE_CONFIG;
1878 
1879 	adapter->tx_selected_offloads = dev->data->dev_conf.txmode.offloads;
1880 	adapter->rx_selected_offloads = dev->data->dev_conf.rxmode.offloads;
1881 	return 0;
1882 }
1883 
1884 static void ena_init_rings(struct ena_adapter *adapter)
1885 {
1886 	int i;
1887 
1888 	for (i = 0; i < adapter->num_queues; i++) {
1889 		struct ena_ring *ring = &adapter->tx_ring[i];
1890 
1891 		ring->configured = 0;
1892 		ring->type = ENA_RING_TYPE_TX;
1893 		ring->adapter = adapter;
1894 		ring->id = i;
1895 		ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
1896 		ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
1897 		ring->sgl_size = adapter->max_tx_sgl_size;
1898 	}
1899 
1900 	for (i = 0; i < adapter->num_queues; i++) {
1901 		struct ena_ring *ring = &adapter->rx_ring[i];
1902 
1903 		ring->configured = 0;
1904 		ring->type = ENA_RING_TYPE_RX;
1905 		ring->adapter = adapter;
1906 		ring->id = i;
1907 		ring->sgl_size = adapter->max_rx_sgl_size;
1908 	}
1909 }
1910 
1911 static void ena_infos_get(struct rte_eth_dev *dev,
1912 			  struct rte_eth_dev_info *dev_info)
1913 {
1914 	struct ena_adapter *adapter;
1915 	struct ena_com_dev *ena_dev;
1916 	uint64_t rx_feat = 0, tx_feat = 0;
1917 
1918 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
1919 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
1920 	adapter = dev->data->dev_private;
1921 
1922 	ena_dev = &adapter->ena_dev;
1923 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
1924 
1925 	dev_info->speed_capa =
1926 			ETH_LINK_SPEED_1G   |
1927 			ETH_LINK_SPEED_2_5G |
1928 			ETH_LINK_SPEED_5G   |
1929 			ETH_LINK_SPEED_10G  |
1930 			ETH_LINK_SPEED_25G  |
1931 			ETH_LINK_SPEED_40G  |
1932 			ETH_LINK_SPEED_50G  |
1933 			ETH_LINK_SPEED_100G;
1934 
1935 	/* Set Tx & Rx features available for device */
1936 	if (adapter->offloads.tso4_supported)
1937 		tx_feat	|= DEV_TX_OFFLOAD_TCP_TSO;
1938 
1939 	if (adapter->offloads.tx_csum_supported)
1940 		tx_feat |= DEV_TX_OFFLOAD_IPV4_CKSUM |
1941 			DEV_TX_OFFLOAD_UDP_CKSUM |
1942 			DEV_TX_OFFLOAD_TCP_CKSUM;
1943 
1944 	if (adapter->offloads.rx_csum_supported)
1945 		rx_feat |= DEV_RX_OFFLOAD_IPV4_CKSUM |
1946 			DEV_RX_OFFLOAD_UDP_CKSUM  |
1947 			DEV_RX_OFFLOAD_TCP_CKSUM;
1948 
1949 	rx_feat |= DEV_RX_OFFLOAD_JUMBO_FRAME;
1950 
1951 	/* Inform framework about available features */
1952 	dev_info->rx_offload_capa = rx_feat;
1953 	dev_info->rx_queue_offload_capa = rx_feat;
1954 	dev_info->tx_offload_capa = tx_feat;
1955 	dev_info->tx_queue_offload_capa = tx_feat;
1956 
1957 	dev_info->flow_type_rss_offloads = ETH_RSS_IP | ETH_RSS_TCP |
1958 					   ETH_RSS_UDP;
1959 
1960 	dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
1961 	dev_info->max_rx_pktlen  = adapter->max_mtu;
1962 	dev_info->max_mac_addrs = 1;
1963 
1964 	dev_info->max_rx_queues = adapter->num_queues;
1965 	dev_info->max_tx_queues = adapter->num_queues;
1966 	dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
1967 
1968 	adapter->tx_supported_offloads = tx_feat;
1969 	adapter->rx_supported_offloads = rx_feat;
1970 
1971 	dev_info->rx_desc_lim.nb_max = adapter->rx_ring_size;
1972 	dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
1973 	dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
1974 					adapter->max_rx_sgl_size);
1975 	dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
1976 					adapter->max_rx_sgl_size);
1977 
1978 	dev_info->tx_desc_lim.nb_max = adapter->tx_ring_size;
1979 	dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
1980 	dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
1981 					adapter->max_tx_sgl_size);
1982 	dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
1983 					adapter->max_tx_sgl_size);
1984 }
1985 
1986 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
1987 				  uint16_t nb_pkts)
1988 {
1989 	struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
1990 	unsigned int ring_size = rx_ring->ring_size;
1991 	unsigned int ring_mask = ring_size - 1;
1992 	uint16_t next_to_clean = rx_ring->next_to_clean;
1993 	uint16_t desc_in_use = 0;
1994 	uint16_t req_id;
1995 	unsigned int recv_idx = 0;
1996 	struct rte_mbuf *mbuf = NULL;
1997 	struct rte_mbuf *mbuf_head = NULL;
1998 	struct rte_mbuf *mbuf_prev = NULL;
1999 	struct rte_mbuf **rx_buff_info = rx_ring->rx_buffer_info;
2000 	unsigned int completed;
2001 
2002 	struct ena_com_rx_ctx ena_rx_ctx;
2003 	int rc = 0;
2004 
2005 	/* Check adapter state */
2006 	if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2007 		RTE_LOG(ALERT, PMD,
2008 			"Trying to receive pkts while device is NOT running\n");
2009 		return 0;
2010 	}
2011 
2012 	desc_in_use = rx_ring->next_to_use - next_to_clean;
2013 	if (unlikely(nb_pkts > desc_in_use))
2014 		nb_pkts = desc_in_use;
2015 
2016 	for (completed = 0; completed < nb_pkts; completed++) {
2017 		int segments = 0;
2018 
2019 		ena_rx_ctx.max_bufs = rx_ring->sgl_size;
2020 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
2021 		ena_rx_ctx.descs = 0;
2022 		/* receive packet context */
2023 		rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
2024 				    rx_ring->ena_com_io_sq,
2025 				    &ena_rx_ctx);
2026 		if (unlikely(rc)) {
2027 			RTE_LOG(ERR, PMD, "ena_com_rx_pkt error %d\n", rc);
2028 			rx_ring->adapter->reset_reason =
2029 				ENA_REGS_RESET_TOO_MANY_RX_DESCS;
2030 			rx_ring->adapter->trigger_reset = true;
2031 			++rx_ring->rx_stats.bad_desc_num;
2032 			return 0;
2033 		}
2034 
2035 		if (unlikely(ena_rx_ctx.descs == 0))
2036 			break;
2037 
2038 		while (segments < ena_rx_ctx.descs) {
2039 			req_id = ena_rx_ctx.ena_bufs[segments].req_id;
2040 			rc = validate_rx_req_id(rx_ring, req_id);
2041 			if (unlikely(rc)) {
2042 				if (segments != 0)
2043 					rte_mbuf_raw_free(mbuf_head);
2044 				break;
2045 			}
2046 
2047 			mbuf = rx_buff_info[req_id];
2048 			rx_buff_info[req_id] = NULL;
2049 			mbuf->data_len = ena_rx_ctx.ena_bufs[segments].len;
2050 			mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2051 			mbuf->refcnt = 1;
2052 			mbuf->next = NULL;
2053 			if (unlikely(segments == 0)) {
2054 				mbuf->nb_segs = ena_rx_ctx.descs;
2055 				mbuf->port = rx_ring->port_id;
2056 				mbuf->pkt_len = 0;
2057 				mbuf_head = mbuf;
2058 			} else {
2059 				/* for multi-segment pkts create mbuf chain */
2060 				mbuf_prev->next = mbuf;
2061 			}
2062 			mbuf_head->pkt_len += mbuf->data_len;
2063 
2064 			mbuf_prev = mbuf;
2065 			rx_ring->empty_rx_reqs[next_to_clean & ring_mask] =
2066 				req_id;
2067 			segments++;
2068 			next_to_clean++;
2069 		}
2070 		if (unlikely(rc))
2071 			break;
2072 
2073 		/* fill mbuf attributes if any */
2074 		ena_rx_mbuf_prepare(mbuf_head, &ena_rx_ctx);
2075 
2076 		if (unlikely(mbuf_head->ol_flags &
2077 				(PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD))) {
2078 			rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors);
2079 			++rx_ring->rx_stats.bad_csum;
2080 		}
2081 
2082 		mbuf_head->hash.rss = ena_rx_ctx.hash;
2083 
2084 		/* pass to DPDK application head mbuf */
2085 		rx_pkts[recv_idx] = mbuf_head;
2086 		recv_idx++;
2087 		rx_ring->rx_stats.bytes += mbuf_head->pkt_len;
2088 	}
2089 
2090 	rx_ring->rx_stats.cnt += recv_idx;
2091 	rx_ring->next_to_clean = next_to_clean;
2092 
2093 	desc_in_use = desc_in_use - completed + 1;
2094 	/* Burst refill to save doorbells, memory barriers, const interval */
2095 	if (ring_size - desc_in_use > ENA_RING_DESCS_RATIO(ring_size)) {
2096 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
2097 		ena_populate_rx_queue(rx_ring, ring_size - desc_in_use);
2098 	}
2099 
2100 	return recv_idx;
2101 }
2102 
2103 static uint16_t
2104 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2105 		uint16_t nb_pkts)
2106 {
2107 	int32_t ret;
2108 	uint32_t i;
2109 	struct rte_mbuf *m;
2110 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2111 	struct rte_ipv4_hdr *ip_hdr;
2112 	uint64_t ol_flags;
2113 	uint16_t frag_field;
2114 
2115 	for (i = 0; i != nb_pkts; i++) {
2116 		m = tx_pkts[i];
2117 		ol_flags = m->ol_flags;
2118 
2119 		if (!(ol_flags & PKT_TX_IPV4))
2120 			continue;
2121 
2122 		/* If there was not L2 header length specified, assume it is
2123 		 * length of the ethernet header.
2124 		 */
2125 		if (unlikely(m->l2_len == 0))
2126 			m->l2_len = sizeof(struct rte_ether_hdr);
2127 
2128 		ip_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *,
2129 						 m->l2_len);
2130 		frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
2131 
2132 		if ((frag_field & RTE_IPV4_HDR_DF_FLAG) != 0) {
2133 			m->packet_type |= RTE_PTYPE_L4_NONFRAG;
2134 
2135 			/* If IPv4 header has DF flag enabled and TSO support is
2136 			 * disabled, partial chcecksum should not be calculated.
2137 			 */
2138 			if (!tx_ring->adapter->offloads.tso4_supported)
2139 				continue;
2140 		}
2141 
2142 		if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) != 0 ||
2143 				(ol_flags & PKT_TX_L4_MASK) ==
2144 				PKT_TX_SCTP_CKSUM) {
2145 			rte_errno = ENOTSUP;
2146 			return i;
2147 		}
2148 
2149 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2150 		ret = rte_validate_tx_offload(m);
2151 		if (ret != 0) {
2152 			rte_errno = -ret;
2153 			return i;
2154 		}
2155 #endif
2156 
2157 		/* In case we are supposed to TSO and have DF not set (DF=0)
2158 		 * hardware must be provided with partial checksum, otherwise
2159 		 * it will take care of necessary calculations.
2160 		 */
2161 
2162 		ret = rte_net_intel_cksum_flags_prepare(m,
2163 			ol_flags & ~PKT_TX_TCP_SEG);
2164 		if (ret != 0) {
2165 			rte_errno = -ret;
2166 			return i;
2167 		}
2168 	}
2169 
2170 	return i;
2171 }
2172 
2173 static void ena_update_hints(struct ena_adapter *adapter,
2174 			     struct ena_admin_ena_hw_hints *hints)
2175 {
2176 	if (hints->admin_completion_tx_timeout)
2177 		adapter->ena_dev.admin_queue.completion_timeout =
2178 			hints->admin_completion_tx_timeout * 1000;
2179 
2180 	if (hints->mmio_read_timeout)
2181 		/* convert to usec */
2182 		adapter->ena_dev.mmio_read.reg_read_to =
2183 			hints->mmio_read_timeout * 1000;
2184 
2185 	if (hints->driver_watchdog_timeout) {
2186 		if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
2187 			adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
2188 		else
2189 			// Convert msecs to ticks
2190 			adapter->keep_alive_timeout =
2191 				(hints->driver_watchdog_timeout *
2192 				rte_get_timer_hz()) / 1000;
2193 	}
2194 }
2195 
2196 static int ena_check_and_linearize_mbuf(struct ena_ring *tx_ring,
2197 					struct rte_mbuf *mbuf)
2198 {
2199 	struct ena_com_dev *ena_dev;
2200 	int num_segments, header_len, rc;
2201 
2202 	ena_dev = &tx_ring->adapter->ena_dev;
2203 	num_segments = mbuf->nb_segs;
2204 	header_len = mbuf->data_len;
2205 
2206 	if (likely(num_segments < tx_ring->sgl_size))
2207 		return 0;
2208 
2209 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
2210 	    (num_segments == tx_ring->sgl_size) &&
2211 	    (header_len < tx_ring->tx_max_header_size))
2212 		return 0;
2213 
2214 	++tx_ring->tx_stats.linearize;
2215 	rc = rte_pktmbuf_linearize(mbuf);
2216 	if (unlikely(rc)) {
2217 		RTE_LOG(WARNING, PMD, "Mbuf linearize failed\n");
2218 		rte_atomic64_inc(&tx_ring->adapter->drv_stats->ierrors);
2219 		++tx_ring->tx_stats.linearize_failed;
2220 		return rc;
2221 	}
2222 
2223 	return rc;
2224 }
2225 
2226 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2227 				  uint16_t nb_pkts)
2228 {
2229 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2230 	uint16_t next_to_use = tx_ring->next_to_use;
2231 	uint16_t next_to_clean = tx_ring->next_to_clean;
2232 	struct rte_mbuf *mbuf;
2233 	uint16_t seg_len;
2234 	unsigned int ring_size = tx_ring->ring_size;
2235 	unsigned int ring_mask = ring_size - 1;
2236 	struct ena_com_tx_ctx ena_tx_ctx;
2237 	struct ena_tx_buffer *tx_info;
2238 	struct ena_com_buf *ebuf;
2239 	uint16_t rc, req_id, total_tx_descs = 0;
2240 	uint16_t sent_idx = 0, empty_tx_reqs;
2241 	uint16_t push_len = 0;
2242 	uint16_t delta = 0;
2243 	int nb_hw_desc;
2244 	uint32_t total_length;
2245 
2246 	/* Check adapter state */
2247 	if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2248 		RTE_LOG(ALERT, PMD,
2249 			"Trying to xmit pkts while device is NOT running\n");
2250 		return 0;
2251 	}
2252 
2253 	empty_tx_reqs = ring_size - (next_to_use - next_to_clean);
2254 	if (nb_pkts > empty_tx_reqs)
2255 		nb_pkts = empty_tx_reqs;
2256 
2257 	for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
2258 		mbuf = tx_pkts[sent_idx];
2259 		total_length = 0;
2260 
2261 		rc = ena_check_and_linearize_mbuf(tx_ring, mbuf);
2262 		if (unlikely(rc))
2263 			break;
2264 
2265 		req_id = tx_ring->empty_tx_reqs[next_to_use & ring_mask];
2266 		tx_info = &tx_ring->tx_buffer_info[req_id];
2267 		tx_info->mbuf = mbuf;
2268 		tx_info->num_of_bufs = 0;
2269 		ebuf = tx_info->bufs;
2270 
2271 		/* Prepare TX context */
2272 		memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
2273 		memset(&ena_tx_ctx.ena_meta, 0x0,
2274 		       sizeof(struct ena_com_tx_meta));
2275 		ena_tx_ctx.ena_bufs = ebuf;
2276 		ena_tx_ctx.req_id = req_id;
2277 
2278 		delta = 0;
2279 		seg_len = mbuf->data_len;
2280 
2281 		if (tx_ring->tx_mem_queue_type ==
2282 				ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2283 			push_len = RTE_MIN(mbuf->pkt_len,
2284 					   tx_ring->tx_max_header_size);
2285 			ena_tx_ctx.header_len = push_len;
2286 
2287 			if (likely(push_len <= seg_len)) {
2288 				/* If the push header is in the single segment,
2289 				 * then just point it to the 1st mbuf data.
2290 				 */
2291 				ena_tx_ctx.push_header =
2292 					rte_pktmbuf_mtod(mbuf, uint8_t *);
2293 			} else {
2294 				/* If the push header lays in the several
2295 				 * segments, copy it to the intermediate buffer.
2296 				 */
2297 				rte_pktmbuf_read(mbuf, 0, push_len,
2298 					tx_ring->push_buf_intermediate_buf);
2299 				ena_tx_ctx.push_header =
2300 					tx_ring->push_buf_intermediate_buf;
2301 				delta = push_len - seg_len;
2302 			}
2303 		} /* there's no else as we take advantage of memset zeroing */
2304 
2305 		/* Set TX offloads flags, if applicable */
2306 		ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads);
2307 
2308 		rte_prefetch0(tx_pkts[(sent_idx + 4) & ring_mask]);
2309 
2310 		/* Process first segment taking into
2311 		 * consideration pushed header
2312 		 */
2313 		if (seg_len > push_len) {
2314 			ebuf->paddr = mbuf->buf_iova +
2315 				      mbuf->data_off +
2316 				      push_len;
2317 			ebuf->len = seg_len - push_len;
2318 			ebuf++;
2319 			tx_info->num_of_bufs++;
2320 		}
2321 		total_length += mbuf->data_len;
2322 
2323 		while ((mbuf = mbuf->next) != NULL) {
2324 			seg_len = mbuf->data_len;
2325 
2326 			/* Skip mbufs if whole data is pushed as a header */
2327 			if (unlikely(delta > seg_len)) {
2328 				delta -= seg_len;
2329 				continue;
2330 			}
2331 
2332 			ebuf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
2333 			ebuf->len = seg_len - delta;
2334 			total_length += ebuf->len;
2335 			ebuf++;
2336 			tx_info->num_of_bufs++;
2337 
2338 			delta = 0;
2339 		}
2340 
2341 		ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2342 
2343 		if (ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
2344 					       &ena_tx_ctx)) {
2345 			RTE_LOG(DEBUG, PMD, "llq tx max burst size of queue %d"
2346 				" achieved, writing doorbell to send burst\n",
2347 				tx_ring->id);
2348 			rte_wmb();
2349 			ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2350 		}
2351 
2352 		/* prepare the packet's descriptors to dma engine */
2353 		rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq,
2354 					&ena_tx_ctx, &nb_hw_desc);
2355 		if (unlikely(rc)) {
2356 			++tx_ring->tx_stats.prepare_ctx_err;
2357 			break;
2358 		}
2359 		tx_info->tx_descs = nb_hw_desc;
2360 
2361 		next_to_use++;
2362 		tx_ring->tx_stats.cnt++;
2363 		tx_ring->tx_stats.bytes += total_length;
2364 	}
2365 	tx_ring->tx_stats.available_desc =
2366 		ena_com_free_desc(tx_ring->ena_com_io_sq);
2367 
2368 	/* If there are ready packets to be xmitted... */
2369 	if (sent_idx > 0) {
2370 		/* ...let HW do its best :-) */
2371 		rte_wmb();
2372 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2373 		tx_ring->tx_stats.doorbells++;
2374 		tx_ring->next_to_use = next_to_use;
2375 	}
2376 
2377 	/* Clear complete packets  */
2378 	while (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) >= 0) {
2379 		rc = validate_tx_req_id(tx_ring, req_id);
2380 		if (rc)
2381 			break;
2382 
2383 		/* Get Tx info & store how many descs were processed  */
2384 		tx_info = &tx_ring->tx_buffer_info[req_id];
2385 		total_tx_descs += tx_info->tx_descs;
2386 
2387 		/* Free whole mbuf chain  */
2388 		mbuf = tx_info->mbuf;
2389 		rte_pktmbuf_free(mbuf);
2390 		tx_info->mbuf = NULL;
2391 
2392 		/* Put back descriptor to the ring for reuse */
2393 		tx_ring->empty_tx_reqs[next_to_clean & ring_mask] = req_id;
2394 		next_to_clean++;
2395 
2396 		/* If too many descs to clean, leave it for another run */
2397 		if (unlikely(total_tx_descs > ENA_RING_DESCS_RATIO(ring_size)))
2398 			break;
2399 	}
2400 	tx_ring->tx_stats.available_desc =
2401 		ena_com_free_desc(tx_ring->ena_com_io_sq);
2402 
2403 	if (total_tx_descs > 0) {
2404 		/* acknowledge completion of sent packets */
2405 		tx_ring->next_to_clean = next_to_clean;
2406 		ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
2407 		ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
2408 	}
2409 
2410 	tx_ring->tx_stats.tx_poll++;
2411 
2412 	return sent_idx;
2413 }
2414 
2415 /**
2416  * DPDK callback to retrieve names of extended device statistics
2417  *
2418  * @param dev
2419  *   Pointer to Ethernet device structure.
2420  * @param[out] xstats_names
2421  *   Buffer to insert names into.
2422  * @param n
2423  *   Number of names.
2424  *
2425  * @return
2426  *   Number of xstats names.
2427  */
2428 static int ena_xstats_get_names(struct rte_eth_dev *dev,
2429 				struct rte_eth_xstat_name *xstats_names,
2430 				unsigned int n)
2431 {
2432 	unsigned int xstats_count = ena_xstats_calc_num(dev);
2433 	unsigned int stat, i, count = 0;
2434 
2435 	if (n < xstats_count || !xstats_names)
2436 		return xstats_count;
2437 
2438 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
2439 		strcpy(xstats_names[count].name,
2440 			ena_stats_global_strings[stat].name);
2441 
2442 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
2443 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
2444 			snprintf(xstats_names[count].name,
2445 				sizeof(xstats_names[count].name),
2446 				"rx_q%d_%s", i,
2447 				ena_stats_rx_strings[stat].name);
2448 
2449 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
2450 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
2451 			snprintf(xstats_names[count].name,
2452 				sizeof(xstats_names[count].name),
2453 				"tx_q%d_%s", i,
2454 				ena_stats_tx_strings[stat].name);
2455 
2456 	return xstats_count;
2457 }
2458 
2459 /**
2460  * DPDK callback to get extended device statistics.
2461  *
2462  * @param dev
2463  *   Pointer to Ethernet device structure.
2464  * @param[out] stats
2465  *   Stats table output buffer.
2466  * @param n
2467  *   The size of the stats table.
2468  *
2469  * @return
2470  *   Number of xstats on success, negative on failure.
2471  */
2472 static int ena_xstats_get(struct rte_eth_dev *dev,
2473 			  struct rte_eth_xstat *xstats,
2474 			  unsigned int n)
2475 {
2476 	struct ena_adapter *adapter = dev->data->dev_private;
2477 	unsigned int xstats_count = ena_xstats_calc_num(dev);
2478 	unsigned int stat, i, count = 0;
2479 	int stat_offset;
2480 	void *stats_begin;
2481 
2482 	if (n < xstats_count)
2483 		return xstats_count;
2484 
2485 	if (!xstats)
2486 		return 0;
2487 
2488 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
2489 		stat_offset = ena_stats_rx_strings[stat].stat_offset;
2490 		stats_begin = &adapter->dev_stats;
2491 
2492 		xstats[count].id = count;
2493 		xstats[count].value = *((uint64_t *)
2494 			((char *)stats_begin + stat_offset));
2495 	}
2496 
2497 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
2498 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
2499 			stat_offset = ena_stats_rx_strings[stat].stat_offset;
2500 			stats_begin = &adapter->rx_ring[i].rx_stats;
2501 
2502 			xstats[count].id = count;
2503 			xstats[count].value = *((uint64_t *)
2504 				((char *)stats_begin + stat_offset));
2505 		}
2506 	}
2507 
2508 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
2509 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
2510 			stat_offset = ena_stats_tx_strings[stat].stat_offset;
2511 			stats_begin = &adapter->tx_ring[i].rx_stats;
2512 
2513 			xstats[count].id = count;
2514 			xstats[count].value = *((uint64_t *)
2515 				((char *)stats_begin + stat_offset));
2516 		}
2517 	}
2518 
2519 	return count;
2520 }
2521 
2522 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
2523 				const uint64_t *ids,
2524 				uint64_t *values,
2525 				unsigned int n)
2526 {
2527 	struct ena_adapter *adapter = dev->data->dev_private;
2528 	uint64_t id;
2529 	uint64_t rx_entries, tx_entries;
2530 	unsigned int i;
2531 	int qid;
2532 	int valid = 0;
2533 	for (i = 0; i < n; ++i) {
2534 		id = ids[i];
2535 		/* Check if id belongs to global statistics */
2536 		if (id < ENA_STATS_ARRAY_GLOBAL) {
2537 			values[i] = *((uint64_t *)&adapter->dev_stats + id);
2538 			++valid;
2539 			continue;
2540 		}
2541 
2542 		/* Check if id belongs to rx queue statistics */
2543 		id -= ENA_STATS_ARRAY_GLOBAL;
2544 		rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
2545 		if (id < rx_entries) {
2546 			qid = id % dev->data->nb_rx_queues;
2547 			id /= dev->data->nb_rx_queues;
2548 			values[i] = *((uint64_t *)
2549 				&adapter->rx_ring[qid].rx_stats + id);
2550 			++valid;
2551 			continue;
2552 		}
2553 				/* Check if id belongs to rx queue statistics */
2554 		id -= rx_entries;
2555 		tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
2556 		if (id < tx_entries) {
2557 			qid = id % dev->data->nb_tx_queues;
2558 			id /= dev->data->nb_tx_queues;
2559 			values[i] = *((uint64_t *)
2560 				&adapter->tx_ring[qid].tx_stats + id);
2561 			++valid;
2562 			continue;
2563 		}
2564 	}
2565 
2566 	return valid;
2567 }
2568 
2569 /*********************************************************************
2570  *  PMD configuration
2571  *********************************************************************/
2572 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2573 	struct rte_pci_device *pci_dev)
2574 {
2575 	return rte_eth_dev_pci_generic_probe(pci_dev,
2576 		sizeof(struct ena_adapter), eth_ena_dev_init);
2577 }
2578 
2579 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
2580 {
2581 	return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
2582 }
2583 
2584 static struct rte_pci_driver rte_ena_pmd = {
2585 	.id_table = pci_id_ena_map,
2586 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
2587 		     RTE_PCI_DRV_WC_ACTIVATE,
2588 	.probe = eth_ena_pci_probe,
2589 	.remove = eth_ena_pci_remove,
2590 };
2591 
2592 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
2593 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
2594 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
2595 
2596 RTE_INIT(ena_init_log)
2597 {
2598 	ena_logtype_init = rte_log_register("pmd.net.ena.init");
2599 	if (ena_logtype_init >= 0)
2600 		rte_log_set_level(ena_logtype_init, RTE_LOG_NOTICE);
2601 	ena_logtype_driver = rte_log_register("pmd.net.ena.driver");
2602 	if (ena_logtype_driver >= 0)
2603 		rte_log_set_level(ena_logtype_driver, RTE_LOG_NOTICE);
2604 }
2605 
2606 /******************************************************************************
2607  ******************************** AENQ Handlers *******************************
2608  *****************************************************************************/
2609 static void ena_update_on_link_change(void *adapter_data,
2610 				      struct ena_admin_aenq_entry *aenq_e)
2611 {
2612 	struct rte_eth_dev *eth_dev;
2613 	struct ena_adapter *adapter;
2614 	struct ena_admin_aenq_link_change_desc *aenq_link_desc;
2615 	uint32_t status;
2616 
2617 	adapter = adapter_data;
2618 	aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
2619 	eth_dev = adapter->rte_dev;
2620 
2621 	status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
2622 	adapter->link_status = status;
2623 
2624 	ena_link_update(eth_dev, 0);
2625 	_rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
2626 }
2627 
2628 static void ena_notification(void *data,
2629 			     struct ena_admin_aenq_entry *aenq_e)
2630 {
2631 	struct ena_adapter *adapter = data;
2632 	struct ena_admin_ena_hw_hints *hints;
2633 
2634 	if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
2635 		RTE_LOG(WARNING, PMD, "Invalid group(%x) expected %x\n",
2636 			aenq_e->aenq_common_desc.group,
2637 			ENA_ADMIN_NOTIFICATION);
2638 
2639 	switch (aenq_e->aenq_common_desc.syndrom) {
2640 	case ENA_ADMIN_UPDATE_HINTS:
2641 		hints = (struct ena_admin_ena_hw_hints *)
2642 			(&aenq_e->inline_data_w4);
2643 		ena_update_hints(adapter, hints);
2644 		break;
2645 	default:
2646 		RTE_LOG(ERR, PMD, "Invalid aenq notification link state %d\n",
2647 			aenq_e->aenq_common_desc.syndrom);
2648 	}
2649 }
2650 
2651 static void ena_keep_alive(void *adapter_data,
2652 			   __rte_unused struct ena_admin_aenq_entry *aenq_e)
2653 {
2654 	struct ena_adapter *adapter = adapter_data;
2655 	struct ena_admin_aenq_keep_alive_desc *desc;
2656 	uint64_t rx_drops;
2657 
2658 	adapter->timestamp_wd = rte_get_timer_cycles();
2659 
2660 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
2661 	rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
2662 	rte_atomic64_set(&adapter->drv_stats->rx_drops, rx_drops);
2663 }
2664 
2665 /**
2666  * This handler will called for unknown event group or unimplemented handlers
2667  **/
2668 static void unimplemented_aenq_handler(__rte_unused void *data,
2669 				       __rte_unused struct ena_admin_aenq_entry *aenq_e)
2670 {
2671 	RTE_LOG(ERR, PMD, "Unknown event was received or event with "
2672 			  "unimplemented handler\n");
2673 }
2674 
2675 static struct ena_aenq_handlers aenq_handlers = {
2676 	.handlers = {
2677 		[ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
2678 		[ENA_ADMIN_NOTIFICATION] = ena_notification,
2679 		[ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive
2680 	},
2681 	.unimplemented_handler = unimplemented_aenq_handler
2682 };
2683