xref: /dpdk/drivers/net/ena/ena_ethdev.c (revision 0a001d69bca086c5a6e62b10552192380efee1f0)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
3  * All rights reserved.
4  */
5 
6 #include <rte_string_fns.h>
7 #include <rte_ether.h>
8 #include <ethdev_driver.h>
9 #include <ethdev_pci.h>
10 #include <rte_tcp.h>
11 #include <rte_atomic.h>
12 #include <rte_dev.h>
13 #include <rte_errno.h>
14 #include <rte_version.h>
15 #include <rte_net.h>
16 #include <rte_kvargs.h>
17 
18 #include "ena_ethdev.h"
19 #include "ena_logs.h"
20 #include "ena_platform.h"
21 #include "ena_com.h"
22 #include "ena_eth_com.h"
23 
24 #include <ena_common_defs.h>
25 #include <ena_regs_defs.h>
26 #include <ena_admin_defs.h>
27 #include <ena_eth_io_defs.h>
28 
29 #define DRV_MODULE_VER_MAJOR	2
30 #define DRV_MODULE_VER_MINOR	3
31 #define DRV_MODULE_VER_SUBMINOR	0
32 
33 #define ENA_IO_TXQ_IDX(q)	(2 * (q))
34 #define ENA_IO_RXQ_IDX(q)	(2 * (q) + 1)
35 /*reverse version of ENA_IO_RXQ_IDX*/
36 #define ENA_IO_RXQ_IDX_REV(q)	((q - 1) / 2)
37 
38 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
39 #define TEST_BIT(val, bit_shift) (val & (1UL << bit_shift))
40 
41 #define GET_L4_HDR_LEN(mbuf)					\
42 	((rte_pktmbuf_mtod_offset(mbuf,	struct rte_tcp_hdr *,	\
43 		mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
44 
45 #define ENA_RX_RSS_TABLE_LOG_SIZE  7
46 #define ENA_RX_RSS_TABLE_SIZE	(1 << ENA_RX_RSS_TABLE_LOG_SIZE)
47 #define ENA_HASH_KEY_SIZE	40
48 #define ETH_GSTRING_LEN	32
49 
50 #define ARRAY_SIZE(x) RTE_DIM(x)
51 
52 #define ENA_MIN_RING_DESC	128
53 
54 #define ENA_PTYPE_HAS_HASH	(RTE_PTYPE_L4_TCP | RTE_PTYPE_L4_UDP)
55 
56 enum ethtool_stringset {
57 	ETH_SS_TEST             = 0,
58 	ETH_SS_STATS,
59 };
60 
61 struct ena_stats {
62 	char name[ETH_GSTRING_LEN];
63 	int stat_offset;
64 };
65 
66 #define ENA_STAT_ENTRY(stat, stat_type) { \
67 	.name = #stat, \
68 	.stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
69 }
70 
71 #define ENA_STAT_RX_ENTRY(stat) \
72 	ENA_STAT_ENTRY(stat, rx)
73 
74 #define ENA_STAT_TX_ENTRY(stat) \
75 	ENA_STAT_ENTRY(stat, tx)
76 
77 #define ENA_STAT_ENI_ENTRY(stat) \
78 	ENA_STAT_ENTRY(stat, eni)
79 
80 #define ENA_STAT_GLOBAL_ENTRY(stat) \
81 	ENA_STAT_ENTRY(stat, dev)
82 
83 /* Device arguments */
84 #define ENA_DEVARG_LARGE_LLQ_HDR "large_llq_hdr"
85 
86 /*
87  * Each rte_memzone should have unique name.
88  * To satisfy it, count number of allocation and add it to name.
89  */
90 rte_atomic64_t ena_alloc_cnt;
91 
92 static const struct ena_stats ena_stats_global_strings[] = {
93 	ENA_STAT_GLOBAL_ENTRY(wd_expired),
94 	ENA_STAT_GLOBAL_ENTRY(dev_start),
95 	ENA_STAT_GLOBAL_ENTRY(dev_stop),
96 	ENA_STAT_GLOBAL_ENTRY(tx_drops),
97 };
98 
99 static const struct ena_stats ena_stats_eni_strings[] = {
100 	ENA_STAT_ENI_ENTRY(bw_in_allowance_exceeded),
101 	ENA_STAT_ENI_ENTRY(bw_out_allowance_exceeded),
102 	ENA_STAT_ENI_ENTRY(pps_allowance_exceeded),
103 	ENA_STAT_ENI_ENTRY(conntrack_allowance_exceeded),
104 	ENA_STAT_ENI_ENTRY(linklocal_allowance_exceeded),
105 };
106 
107 static const struct ena_stats ena_stats_tx_strings[] = {
108 	ENA_STAT_TX_ENTRY(cnt),
109 	ENA_STAT_TX_ENTRY(bytes),
110 	ENA_STAT_TX_ENTRY(prepare_ctx_err),
111 	ENA_STAT_TX_ENTRY(linearize),
112 	ENA_STAT_TX_ENTRY(linearize_failed),
113 	ENA_STAT_TX_ENTRY(tx_poll),
114 	ENA_STAT_TX_ENTRY(doorbells),
115 	ENA_STAT_TX_ENTRY(bad_req_id),
116 	ENA_STAT_TX_ENTRY(available_desc),
117 };
118 
119 static const struct ena_stats ena_stats_rx_strings[] = {
120 	ENA_STAT_RX_ENTRY(cnt),
121 	ENA_STAT_RX_ENTRY(bytes),
122 	ENA_STAT_RX_ENTRY(refill_partial),
123 	ENA_STAT_RX_ENTRY(bad_csum),
124 	ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
125 	ENA_STAT_RX_ENTRY(bad_desc_num),
126 	ENA_STAT_RX_ENTRY(bad_req_id),
127 };
128 
129 #define ENA_STATS_ARRAY_GLOBAL	ARRAY_SIZE(ena_stats_global_strings)
130 #define ENA_STATS_ARRAY_ENI	ARRAY_SIZE(ena_stats_eni_strings)
131 #define ENA_STATS_ARRAY_TX	ARRAY_SIZE(ena_stats_tx_strings)
132 #define ENA_STATS_ARRAY_RX	ARRAY_SIZE(ena_stats_rx_strings)
133 
134 #define QUEUE_OFFLOADS (DEV_TX_OFFLOAD_TCP_CKSUM |\
135 			DEV_TX_OFFLOAD_UDP_CKSUM |\
136 			DEV_TX_OFFLOAD_IPV4_CKSUM |\
137 			DEV_TX_OFFLOAD_TCP_TSO)
138 #define MBUF_OFFLOADS (PKT_TX_L4_MASK |\
139 		       PKT_TX_IP_CKSUM |\
140 		       PKT_TX_TCP_SEG)
141 
142 /** Vendor ID used by Amazon devices */
143 #define PCI_VENDOR_ID_AMAZON 0x1D0F
144 /** Amazon devices */
145 #define PCI_DEVICE_ID_ENA_VF		0xEC20
146 #define PCI_DEVICE_ID_ENA_VF_RSERV0	0xEC21
147 
148 #define	ENA_TX_OFFLOAD_MASK	(\
149 	PKT_TX_L4_MASK |         \
150 	PKT_TX_IPV6 |            \
151 	PKT_TX_IPV4 |            \
152 	PKT_TX_IP_CKSUM |        \
153 	PKT_TX_TCP_SEG)
154 
155 #define	ENA_TX_OFFLOAD_NOTSUP_MASK	\
156 	(PKT_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
157 
158 static const struct rte_pci_id pci_id_ena_map[] = {
159 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
160 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF_RSERV0) },
161 	{ .device_id = 0 },
162 };
163 
164 static struct ena_aenq_handlers aenq_handlers;
165 
166 static int ena_device_init(struct ena_com_dev *ena_dev,
167 			   struct rte_pci_device *pdev,
168 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
169 			   bool *wd_state);
170 static int ena_dev_configure(struct rte_eth_dev *dev);
171 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
172 	struct ena_tx_buffer *tx_info,
173 	struct rte_mbuf *mbuf,
174 	void **push_header,
175 	uint16_t *header_len);
176 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf);
177 static void ena_tx_cleanup(struct ena_ring *tx_ring);
178 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
179 				  uint16_t nb_pkts);
180 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
181 		uint16_t nb_pkts);
182 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
183 			      uint16_t nb_desc, unsigned int socket_id,
184 			      const struct rte_eth_txconf *tx_conf);
185 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
186 			      uint16_t nb_desc, unsigned int socket_id,
187 			      const struct rte_eth_rxconf *rx_conf,
188 			      struct rte_mempool *mp);
189 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len);
190 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
191 				    struct ena_com_rx_buf_info *ena_bufs,
192 				    uint32_t descs,
193 				    uint16_t *next_to_clean,
194 				    uint8_t offset);
195 static uint16_t eth_ena_recv_pkts(void *rx_queue,
196 				  struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
197 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
198 				  struct rte_mbuf *mbuf, uint16_t id);
199 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
200 static void ena_init_rings(struct ena_adapter *adapter,
201 			   bool disable_meta_caching);
202 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
203 static int ena_start(struct rte_eth_dev *dev);
204 static int ena_stop(struct rte_eth_dev *dev);
205 static int ena_close(struct rte_eth_dev *dev);
206 static int ena_dev_reset(struct rte_eth_dev *dev);
207 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
208 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
209 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
210 static void ena_rx_queue_release(void *queue);
211 static void ena_tx_queue_release(void *queue);
212 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
213 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
214 static int ena_link_update(struct rte_eth_dev *dev,
215 			   int wait_to_complete);
216 static int ena_create_io_queue(struct ena_ring *ring);
217 static void ena_queue_stop(struct ena_ring *ring);
218 static void ena_queue_stop_all(struct rte_eth_dev *dev,
219 			      enum ena_ring_type ring_type);
220 static int ena_queue_start(struct ena_ring *ring);
221 static int ena_queue_start_all(struct rte_eth_dev *dev,
222 			       enum ena_ring_type ring_type);
223 static void ena_stats_restart(struct rte_eth_dev *dev);
224 static int ena_infos_get(struct rte_eth_dev *dev,
225 			 struct rte_eth_dev_info *dev_info);
226 static int ena_rss_reta_update(struct rte_eth_dev *dev,
227 			       struct rte_eth_rss_reta_entry64 *reta_conf,
228 			       uint16_t reta_size);
229 static int ena_rss_reta_query(struct rte_eth_dev *dev,
230 			      struct rte_eth_rss_reta_entry64 *reta_conf,
231 			      uint16_t reta_size);
232 static void ena_interrupt_handler_rte(void *cb_arg);
233 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
234 static void ena_destroy_device(struct rte_eth_dev *eth_dev);
235 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
236 static int ena_xstats_get_names(struct rte_eth_dev *dev,
237 				struct rte_eth_xstat_name *xstats_names,
238 				unsigned int n);
239 static int ena_xstats_get(struct rte_eth_dev *dev,
240 			  struct rte_eth_xstat *stats,
241 			  unsigned int n);
242 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
243 				const uint64_t *ids,
244 				uint64_t *values,
245 				unsigned int n);
246 static int ena_process_bool_devarg(const char *key,
247 				   const char *value,
248 				   void *opaque);
249 static int ena_parse_devargs(struct ena_adapter *adapter,
250 			     struct rte_devargs *devargs);
251 static int ena_copy_eni_stats(struct ena_adapter *adapter);
252 
253 static const struct eth_dev_ops ena_dev_ops = {
254 	.dev_configure        = ena_dev_configure,
255 	.dev_infos_get        = ena_infos_get,
256 	.rx_queue_setup       = ena_rx_queue_setup,
257 	.tx_queue_setup       = ena_tx_queue_setup,
258 	.dev_start            = ena_start,
259 	.dev_stop             = ena_stop,
260 	.link_update          = ena_link_update,
261 	.stats_get            = ena_stats_get,
262 	.xstats_get_names     = ena_xstats_get_names,
263 	.xstats_get	      = ena_xstats_get,
264 	.xstats_get_by_id     = ena_xstats_get_by_id,
265 	.mtu_set              = ena_mtu_set,
266 	.rx_queue_release     = ena_rx_queue_release,
267 	.tx_queue_release     = ena_tx_queue_release,
268 	.dev_close            = ena_close,
269 	.dev_reset            = ena_dev_reset,
270 	.reta_update          = ena_rss_reta_update,
271 	.reta_query           = ena_rss_reta_query,
272 };
273 
274 void ena_rss_key_fill(void *key, size_t size)
275 {
276 	static bool key_generated;
277 	static uint8_t default_key[ENA_HASH_KEY_SIZE];
278 	size_t i;
279 
280 	RTE_ASSERT(size <= ENA_HASH_KEY_SIZE);
281 
282 	if (!key_generated) {
283 		for (i = 0; i < ENA_HASH_KEY_SIZE; ++i)
284 			default_key[i] = rte_rand() & 0xff;
285 		key_generated = true;
286 	}
287 
288 	rte_memcpy(key, default_key, size);
289 }
290 
291 static inline void ena_rx_mbuf_prepare(struct rte_mbuf *mbuf,
292 				       struct ena_com_rx_ctx *ena_rx_ctx)
293 {
294 	uint64_t ol_flags = 0;
295 	uint32_t packet_type = 0;
296 
297 	if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
298 		packet_type |= RTE_PTYPE_L4_TCP;
299 	else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
300 		packet_type |= RTE_PTYPE_L4_UDP;
301 
302 	if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
303 		packet_type |= RTE_PTYPE_L3_IPV4;
304 		if (unlikely(ena_rx_ctx->l3_csum_err))
305 			ol_flags |= PKT_RX_IP_CKSUM_BAD;
306 		else
307 			ol_flags |= PKT_RX_IP_CKSUM_GOOD;
308 	} else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
309 		packet_type |= RTE_PTYPE_L3_IPV6;
310 	}
311 
312 	if (!ena_rx_ctx->l4_csum_checked || ena_rx_ctx->frag)
313 		ol_flags |= PKT_RX_L4_CKSUM_UNKNOWN;
314 	else
315 		if (unlikely(ena_rx_ctx->l4_csum_err))
316 			ol_flags |= PKT_RX_L4_CKSUM_BAD;
317 		else
318 			ol_flags |= PKT_RX_L4_CKSUM_GOOD;
319 
320 	if (likely((packet_type & ENA_PTYPE_HAS_HASH) && !ena_rx_ctx->frag)) {
321 		ol_flags |= PKT_RX_RSS_HASH;
322 		mbuf->hash.rss = ena_rx_ctx->hash;
323 	}
324 
325 	mbuf->ol_flags = ol_flags;
326 	mbuf->packet_type = packet_type;
327 }
328 
329 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
330 				       struct ena_com_tx_ctx *ena_tx_ctx,
331 				       uint64_t queue_offloads,
332 				       bool disable_meta_caching)
333 {
334 	struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
335 
336 	if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
337 	    (queue_offloads & QUEUE_OFFLOADS)) {
338 		/* check if TSO is required */
339 		if ((mbuf->ol_flags & PKT_TX_TCP_SEG) &&
340 		    (queue_offloads & DEV_TX_OFFLOAD_TCP_TSO)) {
341 			ena_tx_ctx->tso_enable = true;
342 
343 			ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
344 		}
345 
346 		/* check if L3 checksum is needed */
347 		if ((mbuf->ol_flags & PKT_TX_IP_CKSUM) &&
348 		    (queue_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM))
349 			ena_tx_ctx->l3_csum_enable = true;
350 
351 		if (mbuf->ol_flags & PKT_TX_IPV6) {
352 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
353 		} else {
354 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
355 
356 			/* set don't fragment (DF) flag */
357 			if (mbuf->packet_type &
358 				(RTE_PTYPE_L4_NONFRAG
359 				 | RTE_PTYPE_INNER_L4_NONFRAG))
360 				ena_tx_ctx->df = true;
361 		}
362 
363 		/* check if L4 checksum is needed */
364 		if (((mbuf->ol_flags & PKT_TX_L4_MASK) == PKT_TX_TCP_CKSUM) &&
365 		    (queue_offloads & DEV_TX_OFFLOAD_TCP_CKSUM)) {
366 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
367 			ena_tx_ctx->l4_csum_enable = true;
368 		} else if (((mbuf->ol_flags & PKT_TX_L4_MASK) ==
369 				PKT_TX_UDP_CKSUM) &&
370 				(queue_offloads & DEV_TX_OFFLOAD_UDP_CKSUM)) {
371 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
372 			ena_tx_ctx->l4_csum_enable = true;
373 		} else {
374 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
375 			ena_tx_ctx->l4_csum_enable = false;
376 		}
377 
378 		ena_meta->mss = mbuf->tso_segsz;
379 		ena_meta->l3_hdr_len = mbuf->l3_len;
380 		ena_meta->l3_hdr_offset = mbuf->l2_len;
381 
382 		ena_tx_ctx->meta_valid = true;
383 	} else if (disable_meta_caching) {
384 		memset(ena_meta, 0, sizeof(*ena_meta));
385 		ena_tx_ctx->meta_valid = true;
386 	} else {
387 		ena_tx_ctx->meta_valid = false;
388 	}
389 }
390 
391 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
392 {
393 	struct ena_tx_buffer *tx_info = NULL;
394 
395 	if (likely(req_id < tx_ring->ring_size)) {
396 		tx_info = &tx_ring->tx_buffer_info[req_id];
397 		if (likely(tx_info->mbuf))
398 			return 0;
399 	}
400 
401 	if (tx_info)
402 		PMD_TX_LOG(ERR, "tx_info doesn't have valid mbuf\n");
403 	else
404 		PMD_TX_LOG(ERR, "Invalid req_id: %hu\n", req_id);
405 
406 	/* Trigger device reset */
407 	++tx_ring->tx_stats.bad_req_id;
408 	tx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID;
409 	tx_ring->adapter->trigger_reset	= true;
410 	return -EFAULT;
411 }
412 
413 static void ena_config_host_info(struct ena_com_dev *ena_dev)
414 {
415 	struct ena_admin_host_info *host_info;
416 	int rc;
417 
418 	/* Allocate only the host info */
419 	rc = ena_com_allocate_host_info(ena_dev);
420 	if (rc) {
421 		PMD_DRV_LOG(ERR, "Cannot allocate host info\n");
422 		return;
423 	}
424 
425 	host_info = ena_dev->host_attr.host_info;
426 
427 	host_info->os_type = ENA_ADMIN_OS_DPDK;
428 	host_info->kernel_ver = RTE_VERSION;
429 	strlcpy((char *)host_info->kernel_ver_str, rte_version(),
430 		sizeof(host_info->kernel_ver_str));
431 	host_info->os_dist = RTE_VERSION;
432 	strlcpy((char *)host_info->os_dist_str, rte_version(),
433 		sizeof(host_info->os_dist_str));
434 	host_info->driver_version =
435 		(DRV_MODULE_VER_MAJOR) |
436 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
437 		(DRV_MODULE_VER_SUBMINOR <<
438 			ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
439 	host_info->num_cpus = rte_lcore_count();
440 
441 	host_info->driver_supported_features =
442 		ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK;
443 
444 	rc = ena_com_set_host_attributes(ena_dev);
445 	if (rc) {
446 		if (rc == -ENA_COM_UNSUPPORTED)
447 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
448 		else
449 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
450 
451 		goto err;
452 	}
453 
454 	return;
455 
456 err:
457 	ena_com_delete_host_info(ena_dev);
458 }
459 
460 /* This function calculates the number of xstats based on the current config */
461 static unsigned int ena_xstats_calc_num(struct rte_eth_dev_data *data)
462 {
463 	return ENA_STATS_ARRAY_GLOBAL + ENA_STATS_ARRAY_ENI +
464 		(data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
465 		(data->nb_rx_queues * ENA_STATS_ARRAY_RX);
466 }
467 
468 static void ena_config_debug_area(struct ena_adapter *adapter)
469 {
470 	u32 debug_area_size;
471 	int rc, ss_count;
472 
473 	ss_count = ena_xstats_calc_num(adapter->edev_data);
474 
475 	/* allocate 32 bytes for each string and 64bit for the value */
476 	debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
477 
478 	rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
479 	if (rc) {
480 		PMD_DRV_LOG(ERR, "Cannot allocate debug area\n");
481 		return;
482 	}
483 
484 	rc = ena_com_set_host_attributes(&adapter->ena_dev);
485 	if (rc) {
486 		if (rc == -ENA_COM_UNSUPPORTED)
487 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
488 		else
489 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
490 
491 		goto err;
492 	}
493 
494 	return;
495 err:
496 	ena_com_delete_debug_area(&adapter->ena_dev);
497 }
498 
499 static int ena_close(struct rte_eth_dev *dev)
500 {
501 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
502 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
503 	struct ena_adapter *adapter = dev->data->dev_private;
504 	int ret = 0;
505 
506 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
507 		return 0;
508 
509 	if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
510 		ret = ena_stop(dev);
511 	adapter->state = ENA_ADAPTER_STATE_CLOSED;
512 
513 	ena_rx_queue_release_all(dev);
514 	ena_tx_queue_release_all(dev);
515 
516 	rte_free(adapter->drv_stats);
517 	adapter->drv_stats = NULL;
518 
519 	rte_intr_disable(intr_handle);
520 	rte_intr_callback_unregister(intr_handle,
521 				     ena_interrupt_handler_rte,
522 				     dev);
523 
524 	/*
525 	 * MAC is not allocated dynamically. Setting NULL should prevent from
526 	 * release of the resource in the rte_eth_dev_release_port().
527 	 */
528 	dev->data->mac_addrs = NULL;
529 
530 	return ret;
531 }
532 
533 static int
534 ena_dev_reset(struct rte_eth_dev *dev)
535 {
536 	int rc = 0;
537 
538 	/* Cannot release memory in secondary process */
539 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
540 		PMD_DRV_LOG(WARNING, "dev_reset not supported in secondary.\n");
541 		return -EPERM;
542 	}
543 
544 	ena_destroy_device(dev);
545 	rc = eth_ena_dev_init(dev);
546 	if (rc)
547 		PMD_INIT_LOG(CRIT, "Cannot initialize device\n");
548 
549 	return rc;
550 }
551 
552 static int ena_rss_reta_update(struct rte_eth_dev *dev,
553 			       struct rte_eth_rss_reta_entry64 *reta_conf,
554 			       uint16_t reta_size)
555 {
556 	struct ena_adapter *adapter = dev->data->dev_private;
557 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
558 	int rc, i;
559 	u16 entry_value;
560 	int conf_idx;
561 	int idx;
562 
563 	if ((reta_size == 0) || (reta_conf == NULL))
564 		return -EINVAL;
565 
566 	if (reta_size > ENA_RX_RSS_TABLE_SIZE) {
567 		PMD_DRV_LOG(WARNING,
568 			"Requested indirection table size (%d) is bigger than supported: %d\n",
569 			reta_size, ENA_RX_RSS_TABLE_SIZE);
570 		return -EINVAL;
571 	}
572 
573 	for (i = 0 ; i < reta_size ; i++) {
574 		/* each reta_conf is for 64 entries.
575 		 * to support 128 we use 2 conf of 64
576 		 */
577 		conf_idx = i / RTE_RETA_GROUP_SIZE;
578 		idx = i % RTE_RETA_GROUP_SIZE;
579 		if (TEST_BIT(reta_conf[conf_idx].mask, idx)) {
580 			entry_value =
581 				ENA_IO_RXQ_IDX(reta_conf[conf_idx].reta[idx]);
582 
583 			rc = ena_com_indirect_table_fill_entry(ena_dev,
584 							       i,
585 							       entry_value);
586 			if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
587 				PMD_DRV_LOG(ERR,
588 					"Cannot fill indirect table\n");
589 				return rc;
590 			}
591 		}
592 	}
593 
594 	rte_spinlock_lock(&adapter->admin_lock);
595 	rc = ena_com_indirect_table_set(ena_dev);
596 	rte_spinlock_unlock(&adapter->admin_lock);
597 	if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
598 		PMD_DRV_LOG(ERR, "Cannot flush the indirect table\n");
599 		return rc;
600 	}
601 
602 	PMD_DRV_LOG(DEBUG, "RSS configured %d entries for port %d\n",
603 		reta_size, dev->data->port_id);
604 
605 	return 0;
606 }
607 
608 /* Query redirection table. */
609 static int ena_rss_reta_query(struct rte_eth_dev *dev,
610 			      struct rte_eth_rss_reta_entry64 *reta_conf,
611 			      uint16_t reta_size)
612 {
613 	struct ena_adapter *adapter = dev->data->dev_private;
614 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
615 	int rc;
616 	int i;
617 	u32 indirect_table[ENA_RX_RSS_TABLE_SIZE] = {0};
618 	int reta_conf_idx;
619 	int reta_idx;
620 
621 	if (reta_size == 0 || reta_conf == NULL ||
622 	    (reta_size > RTE_RETA_GROUP_SIZE && ((reta_conf + 1) == NULL)))
623 		return -EINVAL;
624 
625 	rte_spinlock_lock(&adapter->admin_lock);
626 	rc = ena_com_indirect_table_get(ena_dev, indirect_table);
627 	rte_spinlock_unlock(&adapter->admin_lock);
628 	if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
629 		PMD_DRV_LOG(ERR, "Cannot get indirection table\n");
630 		return -ENOTSUP;
631 	}
632 
633 	for (i = 0 ; i < reta_size ; i++) {
634 		reta_conf_idx = i / RTE_RETA_GROUP_SIZE;
635 		reta_idx = i % RTE_RETA_GROUP_SIZE;
636 		if (TEST_BIT(reta_conf[reta_conf_idx].mask, reta_idx))
637 			reta_conf[reta_conf_idx].reta[reta_idx] =
638 				ENA_IO_RXQ_IDX_REV(indirect_table[i]);
639 	}
640 
641 	return 0;
642 }
643 
644 static int ena_rss_init_default(struct ena_adapter *adapter)
645 {
646 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
647 	uint16_t nb_rx_queues = adapter->edev_data->nb_rx_queues;
648 	int rc, i;
649 	u32 val;
650 
651 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
652 	if (unlikely(rc)) {
653 		PMD_DRV_LOG(ERR, "Cannot init indirection table\n");
654 		goto err_rss_init;
655 	}
656 
657 	for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
658 		val = i % nb_rx_queues;
659 		rc = ena_com_indirect_table_fill_entry(ena_dev, i,
660 						       ENA_IO_RXQ_IDX(val));
661 		if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
662 			PMD_DRV_LOG(ERR, "Cannot fill indirection table\n");
663 			goto err_fill_indir;
664 		}
665 	}
666 
667 	rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL,
668 					ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
669 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
670 		PMD_DRV_LOG(INFO, "Cannot fill hash function\n");
671 		goto err_fill_indir;
672 	}
673 
674 	rc = ena_com_set_default_hash_ctrl(ena_dev);
675 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
676 		PMD_DRV_LOG(INFO, "Cannot fill hash control\n");
677 		goto err_fill_indir;
678 	}
679 
680 	rc = ena_com_indirect_table_set(ena_dev);
681 	if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
682 		PMD_DRV_LOG(ERR, "Cannot flush indirection table\n");
683 		goto err_fill_indir;
684 	}
685 	PMD_DRV_LOG(DEBUG, "RSS configured for port %d\n",
686 		adapter->edev_data->port_id);
687 
688 	return 0;
689 
690 err_fill_indir:
691 	ena_com_rss_destroy(ena_dev);
692 err_rss_init:
693 
694 	return rc;
695 }
696 
697 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
698 {
699 	struct ena_ring **queues = (struct ena_ring **)dev->data->rx_queues;
700 	int nb_queues = dev->data->nb_rx_queues;
701 	int i;
702 
703 	for (i = 0; i < nb_queues; i++)
704 		ena_rx_queue_release(queues[i]);
705 }
706 
707 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
708 {
709 	struct ena_ring **queues = (struct ena_ring **)dev->data->tx_queues;
710 	int nb_queues = dev->data->nb_tx_queues;
711 	int i;
712 
713 	for (i = 0; i < nb_queues; i++)
714 		ena_tx_queue_release(queues[i]);
715 }
716 
717 static void ena_rx_queue_release(void *queue)
718 {
719 	struct ena_ring *ring = (struct ena_ring *)queue;
720 
721 	/* Free ring resources */
722 	if (ring->rx_buffer_info)
723 		rte_free(ring->rx_buffer_info);
724 	ring->rx_buffer_info = NULL;
725 
726 	if (ring->rx_refill_buffer)
727 		rte_free(ring->rx_refill_buffer);
728 	ring->rx_refill_buffer = NULL;
729 
730 	if (ring->empty_rx_reqs)
731 		rte_free(ring->empty_rx_reqs);
732 	ring->empty_rx_reqs = NULL;
733 
734 	ring->configured = 0;
735 
736 	PMD_DRV_LOG(NOTICE, "Rx queue %d:%d released\n",
737 		ring->port_id, ring->id);
738 }
739 
740 static void ena_tx_queue_release(void *queue)
741 {
742 	struct ena_ring *ring = (struct ena_ring *)queue;
743 
744 	/* Free ring resources */
745 	if (ring->push_buf_intermediate_buf)
746 		rte_free(ring->push_buf_intermediate_buf);
747 
748 	if (ring->tx_buffer_info)
749 		rte_free(ring->tx_buffer_info);
750 
751 	if (ring->empty_tx_reqs)
752 		rte_free(ring->empty_tx_reqs);
753 
754 	ring->empty_tx_reqs = NULL;
755 	ring->tx_buffer_info = NULL;
756 	ring->push_buf_intermediate_buf = NULL;
757 
758 	ring->configured = 0;
759 
760 	PMD_DRV_LOG(NOTICE, "Tx queue %d:%d released\n",
761 		ring->port_id, ring->id);
762 }
763 
764 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
765 {
766 	unsigned int i;
767 
768 	for (i = 0; i < ring->ring_size; ++i) {
769 		struct ena_rx_buffer *rx_info = &ring->rx_buffer_info[i];
770 		if (rx_info->mbuf) {
771 			rte_mbuf_raw_free(rx_info->mbuf);
772 			rx_info->mbuf = NULL;
773 		}
774 	}
775 }
776 
777 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
778 {
779 	unsigned int i;
780 
781 	for (i = 0; i < ring->ring_size; ++i) {
782 		struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
783 
784 		if (tx_buf->mbuf) {
785 			rte_pktmbuf_free(tx_buf->mbuf);
786 			tx_buf->mbuf = NULL;
787 		}
788 	}
789 }
790 
791 static int ena_link_update(struct rte_eth_dev *dev,
792 			   __rte_unused int wait_to_complete)
793 {
794 	struct rte_eth_link *link = &dev->data->dev_link;
795 	struct ena_adapter *adapter = dev->data->dev_private;
796 
797 	link->link_status = adapter->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
798 	link->link_speed = ETH_SPEED_NUM_NONE;
799 	link->link_duplex = ETH_LINK_FULL_DUPLEX;
800 
801 	return 0;
802 }
803 
804 static int ena_queue_start_all(struct rte_eth_dev *dev,
805 			       enum ena_ring_type ring_type)
806 {
807 	struct ena_adapter *adapter = dev->data->dev_private;
808 	struct ena_ring *queues = NULL;
809 	int nb_queues;
810 	int i = 0;
811 	int rc = 0;
812 
813 	if (ring_type == ENA_RING_TYPE_RX) {
814 		queues = adapter->rx_ring;
815 		nb_queues = dev->data->nb_rx_queues;
816 	} else {
817 		queues = adapter->tx_ring;
818 		nb_queues = dev->data->nb_tx_queues;
819 	}
820 	for (i = 0; i < nb_queues; i++) {
821 		if (queues[i].configured) {
822 			if (ring_type == ENA_RING_TYPE_RX) {
823 				ena_assert_msg(
824 					dev->data->rx_queues[i] == &queues[i],
825 					"Inconsistent state of Rx queues\n");
826 			} else {
827 				ena_assert_msg(
828 					dev->data->tx_queues[i] == &queues[i],
829 					"Inconsistent state of Tx queues\n");
830 			}
831 
832 			rc = ena_queue_start(&queues[i]);
833 
834 			if (rc) {
835 				PMD_INIT_LOG(ERR,
836 					"Failed to start queue[%d] of type(%d)\n",
837 					i, ring_type);
838 				goto err;
839 			}
840 		}
841 	}
842 
843 	return 0;
844 
845 err:
846 	while (i--)
847 		if (queues[i].configured)
848 			ena_queue_stop(&queues[i]);
849 
850 	return rc;
851 }
852 
853 static uint32_t ena_get_mtu_conf(struct ena_adapter *adapter)
854 {
855 	uint32_t max_frame_len = adapter->max_mtu;
856 
857 	if (adapter->edev_data->dev_conf.rxmode.offloads &
858 	    DEV_RX_OFFLOAD_JUMBO_FRAME)
859 		max_frame_len =
860 			adapter->edev_data->dev_conf.rxmode.max_rx_pkt_len;
861 
862 	return max_frame_len;
863 }
864 
865 static int ena_check_valid_conf(struct ena_adapter *adapter)
866 {
867 	uint32_t max_frame_len = ena_get_mtu_conf(adapter);
868 
869 	if (max_frame_len > adapter->max_mtu || max_frame_len < ENA_MIN_MTU) {
870 		PMD_INIT_LOG(ERR,
871 			"Unsupported MTU of %d. Max MTU: %d, min MTU: %d\n",
872 			max_frame_len, adapter->max_mtu, ENA_MIN_MTU);
873 		return ENA_COM_UNSUPPORTED;
874 	}
875 
876 	return 0;
877 }
878 
879 static int
880 ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx,
881 		       bool use_large_llq_hdr)
882 {
883 	struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
884 	struct ena_com_dev *ena_dev = ctx->ena_dev;
885 	uint32_t max_tx_queue_size;
886 	uint32_t max_rx_queue_size;
887 
888 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
889 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
890 			&ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
891 		max_rx_queue_size = RTE_MIN(max_queue_ext->max_rx_cq_depth,
892 			max_queue_ext->max_rx_sq_depth);
893 		max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
894 
895 		if (ena_dev->tx_mem_queue_type ==
896 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
897 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
898 				llq->max_llq_depth);
899 		} else {
900 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
901 				max_queue_ext->max_tx_sq_depth);
902 		}
903 
904 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
905 			max_queue_ext->max_per_packet_rx_descs);
906 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
907 			max_queue_ext->max_per_packet_tx_descs);
908 	} else {
909 		struct ena_admin_queue_feature_desc *max_queues =
910 			&ctx->get_feat_ctx->max_queues;
911 		max_rx_queue_size = RTE_MIN(max_queues->max_cq_depth,
912 			max_queues->max_sq_depth);
913 		max_tx_queue_size = max_queues->max_cq_depth;
914 
915 		if (ena_dev->tx_mem_queue_type ==
916 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
917 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
918 				llq->max_llq_depth);
919 		} else {
920 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
921 				max_queues->max_sq_depth);
922 		}
923 
924 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
925 			max_queues->max_packet_rx_descs);
926 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
927 			max_queues->max_packet_tx_descs);
928 	}
929 
930 	/* Round down to the nearest power of 2 */
931 	max_rx_queue_size = rte_align32prevpow2(max_rx_queue_size);
932 	max_tx_queue_size = rte_align32prevpow2(max_tx_queue_size);
933 
934 	if (use_large_llq_hdr) {
935 		if ((llq->entry_size_ctrl_supported &
936 		     ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
937 		    (ena_dev->tx_mem_queue_type ==
938 		     ENA_ADMIN_PLACEMENT_POLICY_DEV)) {
939 			max_tx_queue_size /= 2;
940 			PMD_INIT_LOG(INFO,
941 				"Forcing large headers and decreasing maximum Tx queue size to %d\n",
942 				max_tx_queue_size);
943 		} else {
944 			PMD_INIT_LOG(ERR,
945 				"Forcing large headers failed: LLQ is disabled or device does not support large headers\n");
946 		}
947 	}
948 
949 	if (unlikely(max_rx_queue_size == 0 || max_tx_queue_size == 0)) {
950 		PMD_INIT_LOG(ERR, "Invalid queue size\n");
951 		return -EFAULT;
952 	}
953 
954 	ctx->max_tx_queue_size = max_tx_queue_size;
955 	ctx->max_rx_queue_size = max_rx_queue_size;
956 
957 	return 0;
958 }
959 
960 static void ena_stats_restart(struct rte_eth_dev *dev)
961 {
962 	struct ena_adapter *adapter = dev->data->dev_private;
963 
964 	rte_atomic64_init(&adapter->drv_stats->ierrors);
965 	rte_atomic64_init(&adapter->drv_stats->oerrors);
966 	rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
967 	adapter->drv_stats->rx_drops = 0;
968 }
969 
970 static int ena_stats_get(struct rte_eth_dev *dev,
971 			  struct rte_eth_stats *stats)
972 {
973 	struct ena_admin_basic_stats ena_stats;
974 	struct ena_adapter *adapter = dev->data->dev_private;
975 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
976 	int rc;
977 	int i;
978 	int max_rings_stats;
979 
980 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
981 		return -ENOTSUP;
982 
983 	memset(&ena_stats, 0, sizeof(ena_stats));
984 
985 	rte_spinlock_lock(&adapter->admin_lock);
986 	rc = ena_com_get_dev_basic_stats(ena_dev, &ena_stats);
987 	rte_spinlock_unlock(&adapter->admin_lock);
988 	if (unlikely(rc)) {
989 		PMD_DRV_LOG(ERR, "Could not retrieve statistics from ENA\n");
990 		return rc;
991 	}
992 
993 	/* Set of basic statistics from ENA */
994 	stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
995 					  ena_stats.rx_pkts_low);
996 	stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
997 					  ena_stats.tx_pkts_low);
998 	stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
999 					ena_stats.rx_bytes_low);
1000 	stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
1001 					ena_stats.tx_bytes_low);
1002 
1003 	/* Driver related stats */
1004 	stats->imissed = adapter->drv_stats->rx_drops;
1005 	stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
1006 	stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
1007 	stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
1008 
1009 	max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
1010 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
1011 	for (i = 0; i < max_rings_stats; ++i) {
1012 		struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
1013 
1014 		stats->q_ibytes[i] = rx_stats->bytes;
1015 		stats->q_ipackets[i] = rx_stats->cnt;
1016 		stats->q_errors[i] = rx_stats->bad_desc_num +
1017 			rx_stats->bad_req_id;
1018 	}
1019 
1020 	max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
1021 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
1022 	for (i = 0; i < max_rings_stats; ++i) {
1023 		struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
1024 
1025 		stats->q_obytes[i] = tx_stats->bytes;
1026 		stats->q_opackets[i] = tx_stats->cnt;
1027 	}
1028 
1029 	return 0;
1030 }
1031 
1032 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1033 {
1034 	struct ena_adapter *adapter;
1035 	struct ena_com_dev *ena_dev;
1036 	int rc = 0;
1037 
1038 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
1039 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
1040 	adapter = dev->data->dev_private;
1041 
1042 	ena_dev = &adapter->ena_dev;
1043 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
1044 
1045 	if (mtu > ena_get_mtu_conf(adapter) || mtu < ENA_MIN_MTU) {
1046 		PMD_DRV_LOG(ERR,
1047 			"Invalid MTU setting. New MTU: %d, max MTU: %d, min MTU: %d\n",
1048 			mtu, ena_get_mtu_conf(adapter), ENA_MIN_MTU);
1049 		return -EINVAL;
1050 	}
1051 
1052 	rc = ena_com_set_dev_mtu(ena_dev, mtu);
1053 	if (rc)
1054 		PMD_DRV_LOG(ERR, "Could not set MTU: %d\n", mtu);
1055 	else
1056 		PMD_DRV_LOG(NOTICE, "MTU set to: %d\n", mtu);
1057 
1058 	return rc;
1059 }
1060 
1061 static int ena_start(struct rte_eth_dev *dev)
1062 {
1063 	struct ena_adapter *adapter = dev->data->dev_private;
1064 	uint64_t ticks;
1065 	int rc = 0;
1066 
1067 	/* Cannot allocate memory in secondary process */
1068 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1069 		PMD_DRV_LOG(WARNING, "dev_start not supported in secondary.\n");
1070 		return -EPERM;
1071 	}
1072 
1073 	rc = ena_check_valid_conf(adapter);
1074 	if (rc)
1075 		return rc;
1076 
1077 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
1078 	if (rc)
1079 		return rc;
1080 
1081 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
1082 	if (rc)
1083 		goto err_start_tx;
1084 
1085 	if (adapter->edev_data->dev_conf.rxmode.mq_mode &
1086 	    ETH_MQ_RX_RSS_FLAG && adapter->edev_data->nb_rx_queues > 0) {
1087 		rc = ena_rss_init_default(adapter);
1088 		if (rc)
1089 			goto err_rss_init;
1090 	}
1091 
1092 	ena_stats_restart(dev);
1093 
1094 	adapter->timestamp_wd = rte_get_timer_cycles();
1095 	adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
1096 
1097 	ticks = rte_get_timer_hz();
1098 	rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
1099 			ena_timer_wd_callback, dev);
1100 
1101 	++adapter->dev_stats.dev_start;
1102 	adapter->state = ENA_ADAPTER_STATE_RUNNING;
1103 
1104 	return 0;
1105 
1106 err_rss_init:
1107 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1108 err_start_tx:
1109 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1110 	return rc;
1111 }
1112 
1113 static int ena_stop(struct rte_eth_dev *dev)
1114 {
1115 	struct ena_adapter *adapter = dev->data->dev_private;
1116 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1117 	int rc;
1118 
1119 	/* Cannot free memory in secondary process */
1120 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1121 		PMD_DRV_LOG(WARNING, "dev_stop not supported in secondary.\n");
1122 		return -EPERM;
1123 	}
1124 
1125 	rte_timer_stop_sync(&adapter->timer_wd);
1126 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1127 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1128 
1129 	if (adapter->trigger_reset) {
1130 		rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
1131 		if (rc)
1132 			PMD_DRV_LOG(ERR, "Device reset failed, rc: %d\n", rc);
1133 	}
1134 
1135 	++adapter->dev_stats.dev_stop;
1136 	adapter->state = ENA_ADAPTER_STATE_STOPPED;
1137 	dev->data->dev_started = 0;
1138 
1139 	return 0;
1140 }
1141 
1142 static int ena_create_io_queue(struct ena_ring *ring)
1143 {
1144 	struct ena_adapter *adapter;
1145 	struct ena_com_dev *ena_dev;
1146 	struct ena_com_create_io_ctx ctx =
1147 		/* policy set to _HOST just to satisfy icc compiler */
1148 		{ ENA_ADMIN_PLACEMENT_POLICY_HOST,
1149 		  0, 0, 0, 0, 0 };
1150 	uint16_t ena_qid;
1151 	unsigned int i;
1152 	int rc;
1153 
1154 	adapter = ring->adapter;
1155 	ena_dev = &adapter->ena_dev;
1156 
1157 	if (ring->type == ENA_RING_TYPE_TX) {
1158 		ena_qid = ENA_IO_TXQ_IDX(ring->id);
1159 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1160 		ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1161 		for (i = 0; i < ring->ring_size; i++)
1162 			ring->empty_tx_reqs[i] = i;
1163 	} else {
1164 		ena_qid = ENA_IO_RXQ_IDX(ring->id);
1165 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1166 		for (i = 0; i < ring->ring_size; i++)
1167 			ring->empty_rx_reqs[i] = i;
1168 	}
1169 	ctx.queue_size = ring->ring_size;
1170 	ctx.qid = ena_qid;
1171 	ctx.msix_vector = -1; /* interrupts not used */
1172 	ctx.numa_node = ring->numa_socket_id;
1173 
1174 	rc = ena_com_create_io_queue(ena_dev, &ctx);
1175 	if (rc) {
1176 		PMD_DRV_LOG(ERR,
1177 			"Failed to create IO queue[%d] (qid:%d), rc: %d\n",
1178 			ring->id, ena_qid, rc);
1179 		return rc;
1180 	}
1181 
1182 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1183 				     &ring->ena_com_io_sq,
1184 				     &ring->ena_com_io_cq);
1185 	if (rc) {
1186 		PMD_DRV_LOG(ERR,
1187 			"Failed to get IO queue[%d] handlers, rc: %d\n",
1188 			ring->id, rc);
1189 		ena_com_destroy_io_queue(ena_dev, ena_qid);
1190 		return rc;
1191 	}
1192 
1193 	if (ring->type == ENA_RING_TYPE_TX)
1194 		ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1195 
1196 	return 0;
1197 }
1198 
1199 static void ena_queue_stop(struct ena_ring *ring)
1200 {
1201 	struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
1202 
1203 	if (ring->type == ENA_RING_TYPE_RX) {
1204 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
1205 		ena_rx_queue_release_bufs(ring);
1206 	} else {
1207 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
1208 		ena_tx_queue_release_bufs(ring);
1209 	}
1210 }
1211 
1212 static void ena_queue_stop_all(struct rte_eth_dev *dev,
1213 			      enum ena_ring_type ring_type)
1214 {
1215 	struct ena_adapter *adapter = dev->data->dev_private;
1216 	struct ena_ring *queues = NULL;
1217 	uint16_t nb_queues, i;
1218 
1219 	if (ring_type == ENA_RING_TYPE_RX) {
1220 		queues = adapter->rx_ring;
1221 		nb_queues = dev->data->nb_rx_queues;
1222 	} else {
1223 		queues = adapter->tx_ring;
1224 		nb_queues = dev->data->nb_tx_queues;
1225 	}
1226 
1227 	for (i = 0; i < nb_queues; ++i)
1228 		if (queues[i].configured)
1229 			ena_queue_stop(&queues[i]);
1230 }
1231 
1232 static int ena_queue_start(struct ena_ring *ring)
1233 {
1234 	int rc, bufs_num;
1235 
1236 	ena_assert_msg(ring->configured == 1,
1237 		       "Trying to start unconfigured queue\n");
1238 
1239 	rc = ena_create_io_queue(ring);
1240 	if (rc) {
1241 		PMD_INIT_LOG(ERR, "Failed to create IO queue\n");
1242 		return rc;
1243 	}
1244 
1245 	ring->next_to_clean = 0;
1246 	ring->next_to_use = 0;
1247 
1248 	if (ring->type == ENA_RING_TYPE_TX) {
1249 		ring->tx_stats.available_desc =
1250 			ena_com_free_q_entries(ring->ena_com_io_sq);
1251 		return 0;
1252 	}
1253 
1254 	bufs_num = ring->ring_size - 1;
1255 	rc = ena_populate_rx_queue(ring, bufs_num);
1256 	if (rc != bufs_num) {
1257 		ena_com_destroy_io_queue(&ring->adapter->ena_dev,
1258 					 ENA_IO_RXQ_IDX(ring->id));
1259 		PMD_INIT_LOG(ERR, "Failed to populate Rx ring\n");
1260 		return ENA_COM_FAULT;
1261 	}
1262 	/* Flush per-core RX buffers pools cache as they can be used on other
1263 	 * cores as well.
1264 	 */
1265 	rte_mempool_cache_flush(NULL, ring->mb_pool);
1266 
1267 	return 0;
1268 }
1269 
1270 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1271 			      uint16_t queue_idx,
1272 			      uint16_t nb_desc,
1273 			      unsigned int socket_id,
1274 			      const struct rte_eth_txconf *tx_conf)
1275 {
1276 	struct ena_ring *txq = NULL;
1277 	struct ena_adapter *adapter = dev->data->dev_private;
1278 	unsigned int i;
1279 
1280 	txq = &adapter->tx_ring[queue_idx];
1281 
1282 	if (txq->configured) {
1283 		PMD_DRV_LOG(CRIT,
1284 			"API violation. Queue[%d] is already configured\n",
1285 			queue_idx);
1286 		return ENA_COM_FAULT;
1287 	}
1288 
1289 	if (!rte_is_power_of_2(nb_desc)) {
1290 		PMD_DRV_LOG(ERR,
1291 			"Unsupported size of Tx queue: %d is not a power of 2.\n",
1292 			nb_desc);
1293 		return -EINVAL;
1294 	}
1295 
1296 	if (nb_desc > adapter->max_tx_ring_size) {
1297 		PMD_DRV_LOG(ERR,
1298 			"Unsupported size of Tx queue (max size: %d)\n",
1299 			adapter->max_tx_ring_size);
1300 		return -EINVAL;
1301 	}
1302 
1303 	txq->port_id = dev->data->port_id;
1304 	txq->next_to_clean = 0;
1305 	txq->next_to_use = 0;
1306 	txq->ring_size = nb_desc;
1307 	txq->size_mask = nb_desc - 1;
1308 	txq->numa_socket_id = socket_id;
1309 	txq->pkts_without_db = false;
1310 
1311 	txq->tx_buffer_info = rte_zmalloc("txq->tx_buffer_info",
1312 					  sizeof(struct ena_tx_buffer) *
1313 					  txq->ring_size,
1314 					  RTE_CACHE_LINE_SIZE);
1315 	if (!txq->tx_buffer_info) {
1316 		PMD_DRV_LOG(ERR,
1317 			"Failed to allocate memory for Tx buffer info\n");
1318 		return -ENOMEM;
1319 	}
1320 
1321 	txq->empty_tx_reqs = rte_zmalloc("txq->empty_tx_reqs",
1322 					 sizeof(u16) * txq->ring_size,
1323 					 RTE_CACHE_LINE_SIZE);
1324 	if (!txq->empty_tx_reqs) {
1325 		PMD_DRV_LOG(ERR,
1326 			"Failed to allocate memory for empty Tx requests\n");
1327 		rte_free(txq->tx_buffer_info);
1328 		return -ENOMEM;
1329 	}
1330 
1331 	txq->push_buf_intermediate_buf =
1332 		rte_zmalloc("txq->push_buf_intermediate_buf",
1333 			    txq->tx_max_header_size,
1334 			    RTE_CACHE_LINE_SIZE);
1335 	if (!txq->push_buf_intermediate_buf) {
1336 		PMD_DRV_LOG(ERR, "Failed to alloc push buffer for LLQ\n");
1337 		rte_free(txq->tx_buffer_info);
1338 		rte_free(txq->empty_tx_reqs);
1339 		return -ENOMEM;
1340 	}
1341 
1342 	for (i = 0; i < txq->ring_size; i++)
1343 		txq->empty_tx_reqs[i] = i;
1344 
1345 	if (tx_conf != NULL) {
1346 		txq->offloads =
1347 			tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1348 	}
1349 	/* Store pointer to this queue in upper layer */
1350 	txq->configured = 1;
1351 	dev->data->tx_queues[queue_idx] = txq;
1352 
1353 	return 0;
1354 }
1355 
1356 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1357 			      uint16_t queue_idx,
1358 			      uint16_t nb_desc,
1359 			      unsigned int socket_id,
1360 			      __rte_unused const struct rte_eth_rxconf *rx_conf,
1361 			      struct rte_mempool *mp)
1362 {
1363 	struct ena_adapter *adapter = dev->data->dev_private;
1364 	struct ena_ring *rxq = NULL;
1365 	size_t buffer_size;
1366 	int i;
1367 
1368 	rxq = &adapter->rx_ring[queue_idx];
1369 	if (rxq->configured) {
1370 		PMD_DRV_LOG(CRIT,
1371 			"API violation. Queue[%d] is already configured\n",
1372 			queue_idx);
1373 		return ENA_COM_FAULT;
1374 	}
1375 
1376 	if (!rte_is_power_of_2(nb_desc)) {
1377 		PMD_DRV_LOG(ERR,
1378 			"Unsupported size of Rx queue: %d is not a power of 2.\n",
1379 			nb_desc);
1380 		return -EINVAL;
1381 	}
1382 
1383 	if (nb_desc > adapter->max_rx_ring_size) {
1384 		PMD_DRV_LOG(ERR,
1385 			"Unsupported size of Rx queue (max size: %d)\n",
1386 			adapter->max_rx_ring_size);
1387 		return -EINVAL;
1388 	}
1389 
1390 	/* ENA isn't supporting buffers smaller than 1400 bytes */
1391 	buffer_size = rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
1392 	if (buffer_size < ENA_RX_BUF_MIN_SIZE) {
1393 		PMD_DRV_LOG(ERR,
1394 			"Unsupported size of Rx buffer: %zu (min size: %d)\n",
1395 			buffer_size, ENA_RX_BUF_MIN_SIZE);
1396 		return -EINVAL;
1397 	}
1398 
1399 	rxq->port_id = dev->data->port_id;
1400 	rxq->next_to_clean = 0;
1401 	rxq->next_to_use = 0;
1402 	rxq->ring_size = nb_desc;
1403 	rxq->size_mask = nb_desc - 1;
1404 	rxq->numa_socket_id = socket_id;
1405 	rxq->mb_pool = mp;
1406 
1407 	rxq->rx_buffer_info = rte_zmalloc("rxq->buffer_info",
1408 		sizeof(struct ena_rx_buffer) * nb_desc,
1409 		RTE_CACHE_LINE_SIZE);
1410 	if (!rxq->rx_buffer_info) {
1411 		PMD_DRV_LOG(ERR,
1412 			"Failed to allocate memory for Rx buffer info\n");
1413 		return -ENOMEM;
1414 	}
1415 
1416 	rxq->rx_refill_buffer = rte_zmalloc("rxq->rx_refill_buffer",
1417 					    sizeof(struct rte_mbuf *) * nb_desc,
1418 					    RTE_CACHE_LINE_SIZE);
1419 
1420 	if (!rxq->rx_refill_buffer) {
1421 		PMD_DRV_LOG(ERR,
1422 			"Failed to allocate memory for Rx refill buffer\n");
1423 		rte_free(rxq->rx_buffer_info);
1424 		rxq->rx_buffer_info = NULL;
1425 		return -ENOMEM;
1426 	}
1427 
1428 	rxq->empty_rx_reqs = rte_zmalloc("rxq->empty_rx_reqs",
1429 					 sizeof(uint16_t) * nb_desc,
1430 					 RTE_CACHE_LINE_SIZE);
1431 	if (!rxq->empty_rx_reqs) {
1432 		PMD_DRV_LOG(ERR,
1433 			"Failed to allocate memory for empty Rx requests\n");
1434 		rte_free(rxq->rx_buffer_info);
1435 		rxq->rx_buffer_info = NULL;
1436 		rte_free(rxq->rx_refill_buffer);
1437 		rxq->rx_refill_buffer = NULL;
1438 		return -ENOMEM;
1439 	}
1440 
1441 	for (i = 0; i < nb_desc; i++)
1442 		rxq->empty_rx_reqs[i] = i;
1443 
1444 	/* Store pointer to this queue in upper layer */
1445 	rxq->configured = 1;
1446 	dev->data->rx_queues[queue_idx] = rxq;
1447 
1448 	return 0;
1449 }
1450 
1451 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
1452 				  struct rte_mbuf *mbuf, uint16_t id)
1453 {
1454 	struct ena_com_buf ebuf;
1455 	int rc;
1456 
1457 	/* prepare physical address for DMA transaction */
1458 	ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1459 	ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1460 
1461 	/* pass resource to device */
1462 	rc = ena_com_add_single_rx_desc(io_sq, &ebuf, id);
1463 	if (unlikely(rc != 0))
1464 		PMD_RX_LOG(WARNING, "Failed adding Rx desc\n");
1465 
1466 	return rc;
1467 }
1468 
1469 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1470 {
1471 	unsigned int i;
1472 	int rc;
1473 	uint16_t next_to_use = rxq->next_to_use;
1474 	uint16_t req_id;
1475 #ifdef RTE_ETHDEV_DEBUG_RX
1476 	uint16_t in_use;
1477 #endif
1478 	struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1479 
1480 	if (unlikely(!count))
1481 		return 0;
1482 
1483 #ifdef RTE_ETHDEV_DEBUG_RX
1484 	in_use = rxq->ring_size - 1 -
1485 		ena_com_free_q_entries(rxq->ena_com_io_sq);
1486 	if (unlikely((in_use + count) >= rxq->ring_size))
1487 		PMD_RX_LOG(ERR, "Bad Rx ring state\n");
1488 #endif
1489 
1490 	/* get resources for incoming packets */
1491 	rc = rte_pktmbuf_alloc_bulk(rxq->mb_pool, mbufs, count);
1492 	if (unlikely(rc < 0)) {
1493 		rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1494 		++rxq->rx_stats.mbuf_alloc_fail;
1495 		PMD_RX_LOG(DEBUG, "There are not enough free buffers\n");
1496 		return 0;
1497 	}
1498 
1499 	for (i = 0; i < count; i++) {
1500 		struct rte_mbuf *mbuf = mbufs[i];
1501 		struct ena_rx_buffer *rx_info;
1502 
1503 		if (likely((i + 4) < count))
1504 			rte_prefetch0(mbufs[i + 4]);
1505 
1506 		req_id = rxq->empty_rx_reqs[next_to_use];
1507 		rx_info = &rxq->rx_buffer_info[req_id];
1508 
1509 		rc = ena_add_single_rx_desc(rxq->ena_com_io_sq, mbuf, req_id);
1510 		if (unlikely(rc != 0))
1511 			break;
1512 
1513 		rx_info->mbuf = mbuf;
1514 		next_to_use = ENA_IDX_NEXT_MASKED(next_to_use, rxq->size_mask);
1515 	}
1516 
1517 	if (unlikely(i < count)) {
1518 		PMD_RX_LOG(WARNING,
1519 			"Refilled Rx queue[%d] with only %d/%d buffers\n",
1520 			rxq->id, i, count);
1521 		rte_pktmbuf_free_bulk(&mbufs[i], count - i);
1522 		++rxq->rx_stats.refill_partial;
1523 	}
1524 
1525 	/* When we submitted free recources to device... */
1526 	if (likely(i > 0)) {
1527 		/* ...let HW know that it can fill buffers with data. */
1528 		ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1529 
1530 		rxq->next_to_use = next_to_use;
1531 	}
1532 
1533 	return i;
1534 }
1535 
1536 static int ena_device_init(struct ena_com_dev *ena_dev,
1537 			   struct rte_pci_device *pdev,
1538 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
1539 			   bool *wd_state)
1540 {
1541 	uint32_t aenq_groups;
1542 	int rc;
1543 	bool readless_supported;
1544 
1545 	/* Initialize mmio registers */
1546 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
1547 	if (rc) {
1548 		PMD_DRV_LOG(ERR, "Failed to init MMIO read less\n");
1549 		return rc;
1550 	}
1551 
1552 	/* The PCIe configuration space revision id indicate if mmio reg
1553 	 * read is disabled.
1554 	 */
1555 	readless_supported = !(pdev->id.class_id & ENA_MMIO_DISABLE_REG_READ);
1556 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1557 
1558 	/* reset device */
1559 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1560 	if (rc) {
1561 		PMD_DRV_LOG(ERR, "Cannot reset device\n");
1562 		goto err_mmio_read_less;
1563 	}
1564 
1565 	/* check FW version */
1566 	rc = ena_com_validate_version(ena_dev);
1567 	if (rc) {
1568 		PMD_DRV_LOG(ERR, "Device version is too low\n");
1569 		goto err_mmio_read_less;
1570 	}
1571 
1572 	ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1573 
1574 	/* ENA device administration layer init */
1575 	rc = ena_com_admin_init(ena_dev, &aenq_handlers);
1576 	if (rc) {
1577 		PMD_DRV_LOG(ERR,
1578 			"Cannot initialize ENA admin queue\n");
1579 		goto err_mmio_read_less;
1580 	}
1581 
1582 	/* To enable the msix interrupts the driver needs to know the number
1583 	 * of queues. So the driver uses polling mode to retrieve this
1584 	 * information.
1585 	 */
1586 	ena_com_set_admin_polling_mode(ena_dev, true);
1587 
1588 	ena_config_host_info(ena_dev);
1589 
1590 	/* Get Device Attributes and features */
1591 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1592 	if (rc) {
1593 		PMD_DRV_LOG(ERR,
1594 			"Cannot get attribute for ENA device, rc: %d\n", rc);
1595 		goto err_admin_init;
1596 	}
1597 
1598 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1599 		      BIT(ENA_ADMIN_NOTIFICATION) |
1600 		      BIT(ENA_ADMIN_KEEP_ALIVE) |
1601 		      BIT(ENA_ADMIN_FATAL_ERROR) |
1602 		      BIT(ENA_ADMIN_WARNING);
1603 
1604 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
1605 	rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
1606 	if (rc) {
1607 		PMD_DRV_LOG(ERR, "Cannot configure AENQ groups, rc: %d\n", rc);
1608 		goto err_admin_init;
1609 	}
1610 
1611 	*wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
1612 
1613 	return 0;
1614 
1615 err_admin_init:
1616 	ena_com_admin_destroy(ena_dev);
1617 
1618 err_mmio_read_less:
1619 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1620 
1621 	return rc;
1622 }
1623 
1624 static void ena_interrupt_handler_rte(void *cb_arg)
1625 {
1626 	struct rte_eth_dev *dev = cb_arg;
1627 	struct ena_adapter *adapter = dev->data->dev_private;
1628 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1629 
1630 	ena_com_admin_q_comp_intr_handler(ena_dev);
1631 	if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED))
1632 		ena_com_aenq_intr_handler(ena_dev, dev);
1633 }
1634 
1635 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1636 {
1637 	if (!adapter->wd_state)
1638 		return;
1639 
1640 	if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1641 		return;
1642 
1643 	if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1644 	    adapter->keep_alive_timeout)) {
1645 		PMD_DRV_LOG(ERR, "Keep alive timeout\n");
1646 		adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
1647 		adapter->trigger_reset = true;
1648 		++adapter->dev_stats.wd_expired;
1649 	}
1650 }
1651 
1652 /* Check if admin queue is enabled */
1653 static void check_for_admin_com_state(struct ena_adapter *adapter)
1654 {
1655 	if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1656 		PMD_DRV_LOG(ERR, "ENA admin queue is not in running state\n");
1657 		adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
1658 		adapter->trigger_reset = true;
1659 	}
1660 }
1661 
1662 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
1663 				  void *arg)
1664 {
1665 	struct rte_eth_dev *dev = arg;
1666 	struct ena_adapter *adapter = dev->data->dev_private;
1667 
1668 	check_for_missing_keep_alive(adapter);
1669 	check_for_admin_com_state(adapter);
1670 
1671 	if (unlikely(adapter->trigger_reset)) {
1672 		PMD_DRV_LOG(ERR, "Trigger reset is on\n");
1673 		rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
1674 			NULL);
1675 	}
1676 }
1677 
1678 static inline void
1679 set_default_llq_configurations(struct ena_llq_configurations *llq_config,
1680 			       struct ena_admin_feature_llq_desc *llq,
1681 			       bool use_large_llq_hdr)
1682 {
1683 	llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
1684 	llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
1685 	llq_config->llq_num_decs_before_header =
1686 		ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
1687 
1688 	if (use_large_llq_hdr &&
1689 	    (llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B)) {
1690 		llq_config->llq_ring_entry_size =
1691 			ENA_ADMIN_LIST_ENTRY_SIZE_256B;
1692 		llq_config->llq_ring_entry_size_value = 256;
1693 	} else {
1694 		llq_config->llq_ring_entry_size =
1695 			ENA_ADMIN_LIST_ENTRY_SIZE_128B;
1696 		llq_config->llq_ring_entry_size_value = 128;
1697 	}
1698 }
1699 
1700 static int
1701 ena_set_queues_placement_policy(struct ena_adapter *adapter,
1702 				struct ena_com_dev *ena_dev,
1703 				struct ena_admin_feature_llq_desc *llq,
1704 				struct ena_llq_configurations *llq_default_configurations)
1705 {
1706 	int rc;
1707 	u32 llq_feature_mask;
1708 
1709 	llq_feature_mask = 1 << ENA_ADMIN_LLQ;
1710 	if (!(ena_dev->supported_features & llq_feature_mask)) {
1711 		PMD_DRV_LOG(INFO,
1712 			"LLQ is not supported. Fallback to host mode policy.\n");
1713 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1714 		return 0;
1715 	}
1716 
1717 	rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
1718 	if (unlikely(rc)) {
1719 		PMD_INIT_LOG(WARNING,
1720 			"Failed to config dev mode. Fallback to host mode policy.\n");
1721 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1722 		return 0;
1723 	}
1724 
1725 	/* Nothing to config, exit */
1726 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1727 		return 0;
1728 
1729 	if (!adapter->dev_mem_base) {
1730 		PMD_DRV_LOG(ERR,
1731 			"Unable to access LLQ BAR resource. Fallback to host mode policy.\n");
1732 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1733 		return 0;
1734 	}
1735 
1736 	ena_dev->mem_bar = adapter->dev_mem_base;
1737 
1738 	return 0;
1739 }
1740 
1741 static uint32_t ena_calc_max_io_queue_num(struct ena_com_dev *ena_dev,
1742 	struct ena_com_dev_get_features_ctx *get_feat_ctx)
1743 {
1744 	uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
1745 
1746 	/* Regular queues capabilities */
1747 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1748 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1749 			&get_feat_ctx->max_queue_ext.max_queue_ext;
1750 		io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
1751 				    max_queue_ext->max_rx_cq_num);
1752 		io_tx_sq_num = max_queue_ext->max_tx_sq_num;
1753 		io_tx_cq_num = max_queue_ext->max_tx_cq_num;
1754 	} else {
1755 		struct ena_admin_queue_feature_desc *max_queues =
1756 			&get_feat_ctx->max_queues;
1757 		io_tx_sq_num = max_queues->max_sq_num;
1758 		io_tx_cq_num = max_queues->max_cq_num;
1759 		io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
1760 	}
1761 
1762 	/* In case of LLQ use the llq number in the get feature cmd */
1763 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
1764 		io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
1765 
1766 	max_num_io_queues = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
1767 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_sq_num);
1768 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_cq_num);
1769 
1770 	if (unlikely(max_num_io_queues == 0)) {
1771 		PMD_DRV_LOG(ERR, "Number of IO queues cannot not be 0\n");
1772 		return -EFAULT;
1773 	}
1774 
1775 	return max_num_io_queues;
1776 }
1777 
1778 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
1779 {
1780 	struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
1781 	struct rte_pci_device *pci_dev;
1782 	struct rte_intr_handle *intr_handle;
1783 	struct ena_adapter *adapter = eth_dev->data->dev_private;
1784 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1785 	struct ena_com_dev_get_features_ctx get_feat_ctx;
1786 	struct ena_llq_configurations llq_config;
1787 	const char *queue_type_str;
1788 	uint32_t max_num_io_queues;
1789 	int rc;
1790 	static int adapters_found;
1791 	bool disable_meta_caching;
1792 	bool wd_state = false;
1793 
1794 	eth_dev->dev_ops = &ena_dev_ops;
1795 	eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
1796 	eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
1797 	eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
1798 
1799 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1800 		return 0;
1801 
1802 	eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
1803 
1804 	memset(adapter, 0, sizeof(struct ena_adapter));
1805 	ena_dev = &adapter->ena_dev;
1806 
1807 	adapter->edev_data = eth_dev->data;
1808 
1809 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1810 
1811 	PMD_INIT_LOG(INFO, "Initializing %x:%x:%x.%d\n",
1812 		     pci_dev->addr.domain,
1813 		     pci_dev->addr.bus,
1814 		     pci_dev->addr.devid,
1815 		     pci_dev->addr.function);
1816 
1817 	intr_handle = &pci_dev->intr_handle;
1818 
1819 	adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
1820 	adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
1821 
1822 	if (!adapter->regs) {
1823 		PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)\n",
1824 			     ENA_REGS_BAR);
1825 		return -ENXIO;
1826 	}
1827 
1828 	ena_dev->reg_bar = adapter->regs;
1829 	/* This is a dummy pointer for ena_com functions. */
1830 	ena_dev->dmadev = adapter;
1831 
1832 	adapter->id_number = adapters_found;
1833 
1834 	snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
1835 		 adapter->id_number);
1836 
1837 	rc = ena_parse_devargs(adapter, pci_dev->device.devargs);
1838 	if (rc != 0) {
1839 		PMD_INIT_LOG(CRIT, "Failed to parse devargs\n");
1840 		goto err;
1841 	}
1842 
1843 	/* device specific initialization routine */
1844 	rc = ena_device_init(ena_dev, pci_dev, &get_feat_ctx, &wd_state);
1845 	if (rc) {
1846 		PMD_INIT_LOG(CRIT, "Failed to init ENA device\n");
1847 		goto err;
1848 	}
1849 	adapter->wd_state = wd_state;
1850 
1851 	set_default_llq_configurations(&llq_config, &get_feat_ctx.llq,
1852 		adapter->use_large_llq_hdr);
1853 	rc = ena_set_queues_placement_policy(adapter, ena_dev,
1854 					     &get_feat_ctx.llq, &llq_config);
1855 	if (unlikely(rc)) {
1856 		PMD_INIT_LOG(CRIT, "Failed to set placement policy\n");
1857 		return rc;
1858 	}
1859 
1860 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1861 		queue_type_str = "Regular";
1862 	else
1863 		queue_type_str = "Low latency";
1864 	PMD_DRV_LOG(INFO, "Placement policy: %s\n", queue_type_str);
1865 
1866 	calc_queue_ctx.ena_dev = ena_dev;
1867 	calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
1868 
1869 	max_num_io_queues = ena_calc_max_io_queue_num(ena_dev, &get_feat_ctx);
1870 	rc = ena_calc_io_queue_size(&calc_queue_ctx,
1871 		adapter->use_large_llq_hdr);
1872 	if (unlikely((rc != 0) || (max_num_io_queues == 0))) {
1873 		rc = -EFAULT;
1874 		goto err_device_destroy;
1875 	}
1876 
1877 	adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
1878 	adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
1879 	adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
1880 	adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
1881 	adapter->max_num_io_queues = max_num_io_queues;
1882 
1883 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1884 		disable_meta_caching =
1885 			!!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
1886 			BIT(ENA_ADMIN_DISABLE_META_CACHING));
1887 	} else {
1888 		disable_meta_caching = false;
1889 	}
1890 
1891 	/* prepare ring structures */
1892 	ena_init_rings(adapter, disable_meta_caching);
1893 
1894 	ena_config_debug_area(adapter);
1895 
1896 	/* Set max MTU for this device */
1897 	adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
1898 
1899 	/* set device support for offloads */
1900 	adapter->offloads.tso4_supported = (get_feat_ctx.offload.tx &
1901 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) != 0;
1902 	adapter->offloads.tx_csum_supported = (get_feat_ctx.offload.tx &
1903 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK) != 0;
1904 	adapter->offloads.rx_csum_supported =
1905 		(get_feat_ctx.offload.rx_supported &
1906 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK) != 0;
1907 
1908 	/* Copy MAC address and point DPDK to it */
1909 	eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr;
1910 	rte_ether_addr_copy((struct rte_ether_addr *)
1911 			get_feat_ctx.dev_attr.mac_addr,
1912 			(struct rte_ether_addr *)adapter->mac_addr);
1913 
1914 	adapter->drv_stats = rte_zmalloc("adapter stats",
1915 					 sizeof(*adapter->drv_stats),
1916 					 RTE_CACHE_LINE_SIZE);
1917 	if (!adapter->drv_stats) {
1918 		PMD_DRV_LOG(ERR,
1919 			"Failed to allocate memory for adapter statistics\n");
1920 		rc = -ENOMEM;
1921 		goto err_delete_debug_area;
1922 	}
1923 
1924 	rte_spinlock_init(&adapter->admin_lock);
1925 
1926 	rte_intr_callback_register(intr_handle,
1927 				   ena_interrupt_handler_rte,
1928 				   eth_dev);
1929 	rte_intr_enable(intr_handle);
1930 	ena_com_set_admin_polling_mode(ena_dev, false);
1931 	ena_com_admin_aenq_enable(ena_dev);
1932 
1933 	if (adapters_found == 0)
1934 		rte_timer_subsystem_init();
1935 	rte_timer_init(&adapter->timer_wd);
1936 
1937 	adapters_found++;
1938 	adapter->state = ENA_ADAPTER_STATE_INIT;
1939 
1940 	return 0;
1941 
1942 err_delete_debug_area:
1943 	ena_com_delete_debug_area(ena_dev);
1944 
1945 err_device_destroy:
1946 	ena_com_delete_host_info(ena_dev);
1947 	ena_com_admin_destroy(ena_dev);
1948 
1949 err:
1950 	return rc;
1951 }
1952 
1953 static void ena_destroy_device(struct rte_eth_dev *eth_dev)
1954 {
1955 	struct ena_adapter *adapter = eth_dev->data->dev_private;
1956 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1957 
1958 	if (adapter->state == ENA_ADAPTER_STATE_FREE)
1959 		return;
1960 
1961 	ena_com_set_admin_running_state(ena_dev, false);
1962 
1963 	if (adapter->state != ENA_ADAPTER_STATE_CLOSED)
1964 		ena_close(eth_dev);
1965 
1966 	ena_com_delete_debug_area(ena_dev);
1967 	ena_com_delete_host_info(ena_dev);
1968 
1969 	ena_com_abort_admin_commands(ena_dev);
1970 	ena_com_wait_for_abort_completion(ena_dev);
1971 	ena_com_admin_destroy(ena_dev);
1972 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1973 
1974 	adapter->state = ENA_ADAPTER_STATE_FREE;
1975 }
1976 
1977 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
1978 {
1979 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1980 		return 0;
1981 
1982 	ena_destroy_device(eth_dev);
1983 
1984 	return 0;
1985 }
1986 
1987 static int ena_dev_configure(struct rte_eth_dev *dev)
1988 {
1989 	struct ena_adapter *adapter = dev->data->dev_private;
1990 
1991 	adapter->state = ENA_ADAPTER_STATE_CONFIG;
1992 
1993 	if (dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG)
1994 		dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
1995 
1996 	adapter->tx_selected_offloads = dev->data->dev_conf.txmode.offloads;
1997 	adapter->rx_selected_offloads = dev->data->dev_conf.rxmode.offloads;
1998 	return 0;
1999 }
2000 
2001 static void ena_init_rings(struct ena_adapter *adapter,
2002 			   bool disable_meta_caching)
2003 {
2004 	size_t i;
2005 
2006 	for (i = 0; i < adapter->max_num_io_queues; i++) {
2007 		struct ena_ring *ring = &adapter->tx_ring[i];
2008 
2009 		ring->configured = 0;
2010 		ring->type = ENA_RING_TYPE_TX;
2011 		ring->adapter = adapter;
2012 		ring->id = i;
2013 		ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
2014 		ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
2015 		ring->sgl_size = adapter->max_tx_sgl_size;
2016 		ring->disable_meta_caching = disable_meta_caching;
2017 	}
2018 
2019 	for (i = 0; i < adapter->max_num_io_queues; i++) {
2020 		struct ena_ring *ring = &adapter->rx_ring[i];
2021 
2022 		ring->configured = 0;
2023 		ring->type = ENA_RING_TYPE_RX;
2024 		ring->adapter = adapter;
2025 		ring->id = i;
2026 		ring->sgl_size = adapter->max_rx_sgl_size;
2027 	}
2028 }
2029 
2030 static int ena_infos_get(struct rte_eth_dev *dev,
2031 			  struct rte_eth_dev_info *dev_info)
2032 {
2033 	struct ena_adapter *adapter;
2034 	struct ena_com_dev *ena_dev;
2035 	uint64_t rx_feat = 0, tx_feat = 0;
2036 
2037 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
2038 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
2039 	adapter = dev->data->dev_private;
2040 
2041 	ena_dev = &adapter->ena_dev;
2042 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
2043 
2044 	dev_info->speed_capa =
2045 			ETH_LINK_SPEED_1G   |
2046 			ETH_LINK_SPEED_2_5G |
2047 			ETH_LINK_SPEED_5G   |
2048 			ETH_LINK_SPEED_10G  |
2049 			ETH_LINK_SPEED_25G  |
2050 			ETH_LINK_SPEED_40G  |
2051 			ETH_LINK_SPEED_50G  |
2052 			ETH_LINK_SPEED_100G;
2053 
2054 	/* Set Tx & Rx features available for device */
2055 	if (adapter->offloads.tso4_supported)
2056 		tx_feat	|= DEV_TX_OFFLOAD_TCP_TSO;
2057 
2058 	if (adapter->offloads.tx_csum_supported)
2059 		tx_feat |= DEV_TX_OFFLOAD_IPV4_CKSUM |
2060 			DEV_TX_OFFLOAD_UDP_CKSUM |
2061 			DEV_TX_OFFLOAD_TCP_CKSUM;
2062 
2063 	if (adapter->offloads.rx_csum_supported)
2064 		rx_feat |= DEV_RX_OFFLOAD_IPV4_CKSUM |
2065 			DEV_RX_OFFLOAD_UDP_CKSUM  |
2066 			DEV_RX_OFFLOAD_TCP_CKSUM;
2067 
2068 	rx_feat |= DEV_RX_OFFLOAD_JUMBO_FRAME;
2069 
2070 	/* Inform framework about available features */
2071 	dev_info->rx_offload_capa = rx_feat;
2072 	dev_info->rx_offload_capa |= DEV_RX_OFFLOAD_RSS_HASH;
2073 	dev_info->rx_queue_offload_capa = rx_feat;
2074 	dev_info->tx_offload_capa = tx_feat;
2075 	dev_info->tx_queue_offload_capa = tx_feat;
2076 
2077 	dev_info->flow_type_rss_offloads = ETH_RSS_IP | ETH_RSS_TCP |
2078 					   ETH_RSS_UDP;
2079 
2080 	dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
2081 	dev_info->max_rx_pktlen  = adapter->max_mtu;
2082 	dev_info->max_mac_addrs = 1;
2083 
2084 	dev_info->max_rx_queues = adapter->max_num_io_queues;
2085 	dev_info->max_tx_queues = adapter->max_num_io_queues;
2086 	dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
2087 
2088 	adapter->tx_supported_offloads = tx_feat;
2089 	adapter->rx_supported_offloads = rx_feat;
2090 
2091 	dev_info->rx_desc_lim.nb_max = adapter->max_rx_ring_size;
2092 	dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2093 	dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2094 					adapter->max_rx_sgl_size);
2095 	dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2096 					adapter->max_rx_sgl_size);
2097 
2098 	dev_info->tx_desc_lim.nb_max = adapter->max_tx_ring_size;
2099 	dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2100 	dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2101 					adapter->max_tx_sgl_size);
2102 	dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2103 					adapter->max_tx_sgl_size);
2104 
2105 	dev_info->default_rxportconf.ring_size = ENA_DEFAULT_RING_SIZE;
2106 	dev_info->default_txportconf.ring_size = ENA_DEFAULT_RING_SIZE;
2107 
2108 	return 0;
2109 }
2110 
2111 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len)
2112 {
2113 	mbuf->data_len = len;
2114 	mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2115 	mbuf->refcnt = 1;
2116 	mbuf->next = NULL;
2117 }
2118 
2119 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
2120 				    struct ena_com_rx_buf_info *ena_bufs,
2121 				    uint32_t descs,
2122 				    uint16_t *next_to_clean,
2123 				    uint8_t offset)
2124 {
2125 	struct rte_mbuf *mbuf;
2126 	struct rte_mbuf *mbuf_head;
2127 	struct ena_rx_buffer *rx_info;
2128 	int rc;
2129 	uint16_t ntc, len, req_id, buf = 0;
2130 
2131 	if (unlikely(descs == 0))
2132 		return NULL;
2133 
2134 	ntc = *next_to_clean;
2135 
2136 	len = ena_bufs[buf].len;
2137 	req_id = ena_bufs[buf].req_id;
2138 
2139 	rx_info = &rx_ring->rx_buffer_info[req_id];
2140 
2141 	mbuf = rx_info->mbuf;
2142 	RTE_ASSERT(mbuf != NULL);
2143 
2144 	ena_init_rx_mbuf(mbuf, len);
2145 
2146 	/* Fill the mbuf head with the data specific for 1st segment. */
2147 	mbuf_head = mbuf;
2148 	mbuf_head->nb_segs = descs;
2149 	mbuf_head->port = rx_ring->port_id;
2150 	mbuf_head->pkt_len = len;
2151 	mbuf_head->data_off += offset;
2152 
2153 	rx_info->mbuf = NULL;
2154 	rx_ring->empty_rx_reqs[ntc] = req_id;
2155 	ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2156 
2157 	while (--descs) {
2158 		++buf;
2159 		len = ena_bufs[buf].len;
2160 		req_id = ena_bufs[buf].req_id;
2161 
2162 		rx_info = &rx_ring->rx_buffer_info[req_id];
2163 		RTE_ASSERT(rx_info->mbuf != NULL);
2164 
2165 		if (unlikely(len == 0)) {
2166 			/*
2167 			 * Some devices can pass descriptor with the length 0.
2168 			 * To avoid confusion, the PMD is simply putting the
2169 			 * descriptor back, as it was never used. We'll avoid
2170 			 * mbuf allocation that way.
2171 			 */
2172 			rc = ena_add_single_rx_desc(rx_ring->ena_com_io_sq,
2173 				rx_info->mbuf, req_id);
2174 			if (unlikely(rc != 0)) {
2175 				/* Free the mbuf in case of an error. */
2176 				rte_mbuf_raw_free(rx_info->mbuf);
2177 			} else {
2178 				/*
2179 				 * If there was no error, just exit the loop as
2180 				 * 0 length descriptor is always the last one.
2181 				 */
2182 				break;
2183 			}
2184 		} else {
2185 			/* Create an mbuf chain. */
2186 			mbuf->next = rx_info->mbuf;
2187 			mbuf = mbuf->next;
2188 
2189 			ena_init_rx_mbuf(mbuf, len);
2190 			mbuf_head->pkt_len += len;
2191 		}
2192 
2193 		/*
2194 		 * Mark the descriptor as depleted and perform necessary
2195 		 * cleanup.
2196 		 * This code will execute in two cases:
2197 		 *  1. Descriptor len was greater than 0 - normal situation.
2198 		 *  2. Descriptor len was 0 and we failed to add the descriptor
2199 		 *     to the device. In that situation, we should try to add
2200 		 *     the mbuf again in the populate routine and mark the
2201 		 *     descriptor as used up by the device.
2202 		 */
2203 		rx_info->mbuf = NULL;
2204 		rx_ring->empty_rx_reqs[ntc] = req_id;
2205 		ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2206 	}
2207 
2208 	*next_to_clean = ntc;
2209 
2210 	return mbuf_head;
2211 }
2212 
2213 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
2214 				  uint16_t nb_pkts)
2215 {
2216 	struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
2217 	unsigned int free_queue_entries;
2218 	unsigned int refill_threshold;
2219 	uint16_t next_to_clean = rx_ring->next_to_clean;
2220 	uint16_t descs_in_use;
2221 	struct rte_mbuf *mbuf;
2222 	uint16_t completed;
2223 	struct ena_com_rx_ctx ena_rx_ctx;
2224 	int i, rc = 0;
2225 
2226 #ifdef RTE_ETHDEV_DEBUG_RX
2227 	/* Check adapter state */
2228 	if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2229 		PMD_RX_LOG(ALERT,
2230 			"Trying to receive pkts while device is NOT running\n");
2231 		return 0;
2232 	}
2233 #endif
2234 
2235 	descs_in_use = rx_ring->ring_size -
2236 		ena_com_free_q_entries(rx_ring->ena_com_io_sq) - 1;
2237 	nb_pkts = RTE_MIN(descs_in_use, nb_pkts);
2238 
2239 	for (completed = 0; completed < nb_pkts; completed++) {
2240 		ena_rx_ctx.max_bufs = rx_ring->sgl_size;
2241 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
2242 		ena_rx_ctx.descs = 0;
2243 		ena_rx_ctx.pkt_offset = 0;
2244 		/* receive packet context */
2245 		rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
2246 				    rx_ring->ena_com_io_sq,
2247 				    &ena_rx_ctx);
2248 		if (unlikely(rc)) {
2249 			PMD_RX_LOG(ERR,
2250 				"Failed to get the packet from the device, rc: %d\n",
2251 				rc);
2252 			if (rc == ENA_COM_NO_SPACE) {
2253 				++rx_ring->rx_stats.bad_desc_num;
2254 				rx_ring->adapter->reset_reason =
2255 					ENA_REGS_RESET_TOO_MANY_RX_DESCS;
2256 			} else {
2257 				++rx_ring->rx_stats.bad_req_id;
2258 				rx_ring->adapter->reset_reason =
2259 					ENA_REGS_RESET_INV_RX_REQ_ID;
2260 			}
2261 			rx_ring->adapter->trigger_reset = true;
2262 			return 0;
2263 		}
2264 
2265 		mbuf = ena_rx_mbuf(rx_ring,
2266 			ena_rx_ctx.ena_bufs,
2267 			ena_rx_ctx.descs,
2268 			&next_to_clean,
2269 			ena_rx_ctx.pkt_offset);
2270 		if (unlikely(mbuf == NULL)) {
2271 			for (i = 0; i < ena_rx_ctx.descs; ++i) {
2272 				rx_ring->empty_rx_reqs[next_to_clean] =
2273 					rx_ring->ena_bufs[i].req_id;
2274 				next_to_clean = ENA_IDX_NEXT_MASKED(
2275 					next_to_clean, rx_ring->size_mask);
2276 			}
2277 			break;
2278 		}
2279 
2280 		/* fill mbuf attributes if any */
2281 		ena_rx_mbuf_prepare(mbuf, &ena_rx_ctx);
2282 
2283 		if (unlikely(mbuf->ol_flags &
2284 				(PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD))) {
2285 			rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors);
2286 			++rx_ring->rx_stats.bad_csum;
2287 		}
2288 
2289 		rx_pkts[completed] = mbuf;
2290 		rx_ring->rx_stats.bytes += mbuf->pkt_len;
2291 	}
2292 
2293 	rx_ring->rx_stats.cnt += completed;
2294 	rx_ring->next_to_clean = next_to_clean;
2295 
2296 	free_queue_entries = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
2297 	refill_threshold =
2298 		RTE_MIN(rx_ring->ring_size / ENA_REFILL_THRESH_DIVIDER,
2299 		(unsigned int)ENA_REFILL_THRESH_PACKET);
2300 
2301 	/* Burst refill to save doorbells, memory barriers, const interval */
2302 	if (free_queue_entries > refill_threshold) {
2303 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
2304 		ena_populate_rx_queue(rx_ring, free_queue_entries);
2305 	}
2306 
2307 	return completed;
2308 }
2309 
2310 static uint16_t
2311 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2312 		uint16_t nb_pkts)
2313 {
2314 	int32_t ret;
2315 	uint32_t i;
2316 	struct rte_mbuf *m;
2317 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2318 	struct rte_ipv4_hdr *ip_hdr;
2319 	uint64_t ol_flags;
2320 	uint16_t frag_field;
2321 
2322 	for (i = 0; i != nb_pkts; i++) {
2323 		m = tx_pkts[i];
2324 		ol_flags = m->ol_flags;
2325 
2326 		if (!(ol_flags & PKT_TX_IPV4))
2327 			continue;
2328 
2329 		/* If there was not L2 header length specified, assume it is
2330 		 * length of the ethernet header.
2331 		 */
2332 		if (unlikely(m->l2_len == 0))
2333 			m->l2_len = sizeof(struct rte_ether_hdr);
2334 
2335 		ip_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *,
2336 						 m->l2_len);
2337 		frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
2338 
2339 		if ((frag_field & RTE_IPV4_HDR_DF_FLAG) != 0) {
2340 			m->packet_type |= RTE_PTYPE_L4_NONFRAG;
2341 
2342 			/* If IPv4 header has DF flag enabled and TSO support is
2343 			 * disabled, partial chcecksum should not be calculated.
2344 			 */
2345 			if (!tx_ring->adapter->offloads.tso4_supported)
2346 				continue;
2347 		}
2348 
2349 		if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) != 0 ||
2350 				(ol_flags & PKT_TX_L4_MASK) ==
2351 				PKT_TX_SCTP_CKSUM) {
2352 			rte_errno = ENOTSUP;
2353 			return i;
2354 		}
2355 
2356 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2357 		ret = rte_validate_tx_offload(m);
2358 		if (ret != 0) {
2359 			rte_errno = -ret;
2360 			return i;
2361 		}
2362 #endif
2363 
2364 		/* In case we are supposed to TSO and have DF not set (DF=0)
2365 		 * hardware must be provided with partial checksum, otherwise
2366 		 * it will take care of necessary calculations.
2367 		 */
2368 
2369 		ret = rte_net_intel_cksum_flags_prepare(m,
2370 			ol_flags & ~PKT_TX_TCP_SEG);
2371 		if (ret != 0) {
2372 			rte_errno = -ret;
2373 			return i;
2374 		}
2375 	}
2376 
2377 	return i;
2378 }
2379 
2380 static void ena_update_hints(struct ena_adapter *adapter,
2381 			     struct ena_admin_ena_hw_hints *hints)
2382 {
2383 	if (hints->admin_completion_tx_timeout)
2384 		adapter->ena_dev.admin_queue.completion_timeout =
2385 			hints->admin_completion_tx_timeout * 1000;
2386 
2387 	if (hints->mmio_read_timeout)
2388 		/* convert to usec */
2389 		adapter->ena_dev.mmio_read.reg_read_to =
2390 			hints->mmio_read_timeout * 1000;
2391 
2392 	if (hints->driver_watchdog_timeout) {
2393 		if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
2394 			adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
2395 		else
2396 			// Convert msecs to ticks
2397 			adapter->keep_alive_timeout =
2398 				(hints->driver_watchdog_timeout *
2399 				rte_get_timer_hz()) / 1000;
2400 	}
2401 }
2402 
2403 static int ena_check_space_and_linearize_mbuf(struct ena_ring *tx_ring,
2404 					      struct rte_mbuf *mbuf)
2405 {
2406 	struct ena_com_dev *ena_dev;
2407 	int num_segments, header_len, rc;
2408 
2409 	ena_dev = &tx_ring->adapter->ena_dev;
2410 	num_segments = mbuf->nb_segs;
2411 	header_len = mbuf->data_len;
2412 
2413 	if (likely(num_segments < tx_ring->sgl_size))
2414 		goto checkspace;
2415 
2416 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
2417 	    (num_segments == tx_ring->sgl_size) &&
2418 	    (header_len < tx_ring->tx_max_header_size))
2419 		goto checkspace;
2420 
2421 	/* Checking for space for 2 additional metadata descriptors due to
2422 	 * possible header split and metadata descriptor. Linearization will
2423 	 * be needed so we reduce the segments number from num_segments to 1
2424 	 */
2425 	if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 3)) {
2426 		PMD_TX_LOG(DEBUG, "Not enough space in the Tx queue\n");
2427 		return ENA_COM_NO_MEM;
2428 	}
2429 	++tx_ring->tx_stats.linearize;
2430 	rc = rte_pktmbuf_linearize(mbuf);
2431 	if (unlikely(rc)) {
2432 		PMD_TX_LOG(WARNING, "Mbuf linearize failed\n");
2433 		rte_atomic64_inc(&tx_ring->adapter->drv_stats->ierrors);
2434 		++tx_ring->tx_stats.linearize_failed;
2435 		return rc;
2436 	}
2437 
2438 	return 0;
2439 
2440 checkspace:
2441 	/* Checking for space for 2 additional metadata descriptors due to
2442 	 * possible header split and metadata descriptor
2443 	 */
2444 	if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
2445 					  num_segments + 2)) {
2446 		PMD_TX_LOG(DEBUG, "Not enough space in the Tx queue\n");
2447 		return ENA_COM_NO_MEM;
2448 	}
2449 
2450 	return 0;
2451 }
2452 
2453 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
2454 	struct ena_tx_buffer *tx_info,
2455 	struct rte_mbuf *mbuf,
2456 	void **push_header,
2457 	uint16_t *header_len)
2458 {
2459 	struct ena_com_buf *ena_buf;
2460 	uint16_t delta, seg_len, push_len;
2461 
2462 	delta = 0;
2463 	seg_len = mbuf->data_len;
2464 
2465 	tx_info->mbuf = mbuf;
2466 	ena_buf = tx_info->bufs;
2467 
2468 	if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2469 		/*
2470 		 * Tx header might be (and will be in most cases) smaller than
2471 		 * tx_max_header_size. But it's not an issue to send more data
2472 		 * to the device, than actually needed if the mbuf size is
2473 		 * greater than tx_max_header_size.
2474 		 */
2475 		push_len = RTE_MIN(mbuf->pkt_len, tx_ring->tx_max_header_size);
2476 		*header_len = push_len;
2477 
2478 		if (likely(push_len <= seg_len)) {
2479 			/* If the push header is in the single segment, then
2480 			 * just point it to the 1st mbuf data.
2481 			 */
2482 			*push_header = rte_pktmbuf_mtod(mbuf, uint8_t *);
2483 		} else {
2484 			/* If the push header lays in the several segments, copy
2485 			 * it to the intermediate buffer.
2486 			 */
2487 			rte_pktmbuf_read(mbuf, 0, push_len,
2488 				tx_ring->push_buf_intermediate_buf);
2489 			*push_header = tx_ring->push_buf_intermediate_buf;
2490 			delta = push_len - seg_len;
2491 		}
2492 	} else {
2493 		*push_header = NULL;
2494 		*header_len = 0;
2495 		push_len = 0;
2496 	}
2497 
2498 	/* Process first segment taking into consideration pushed header */
2499 	if (seg_len > push_len) {
2500 		ena_buf->paddr = mbuf->buf_iova +
2501 				mbuf->data_off +
2502 				push_len;
2503 		ena_buf->len = seg_len - push_len;
2504 		ena_buf++;
2505 		tx_info->num_of_bufs++;
2506 	}
2507 
2508 	while ((mbuf = mbuf->next) != NULL) {
2509 		seg_len = mbuf->data_len;
2510 
2511 		/* Skip mbufs if whole data is pushed as a header */
2512 		if (unlikely(delta > seg_len)) {
2513 			delta -= seg_len;
2514 			continue;
2515 		}
2516 
2517 		ena_buf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
2518 		ena_buf->len = seg_len - delta;
2519 		ena_buf++;
2520 		tx_info->num_of_bufs++;
2521 
2522 		delta = 0;
2523 	}
2524 }
2525 
2526 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf)
2527 {
2528 	struct ena_tx_buffer *tx_info;
2529 	struct ena_com_tx_ctx ena_tx_ctx = { { 0 } };
2530 	uint16_t next_to_use;
2531 	uint16_t header_len;
2532 	uint16_t req_id;
2533 	void *push_header;
2534 	int nb_hw_desc;
2535 	int rc;
2536 
2537 	rc = ena_check_space_and_linearize_mbuf(tx_ring, mbuf);
2538 	if (unlikely(rc))
2539 		return rc;
2540 
2541 	next_to_use = tx_ring->next_to_use;
2542 
2543 	req_id = tx_ring->empty_tx_reqs[next_to_use];
2544 	tx_info = &tx_ring->tx_buffer_info[req_id];
2545 	tx_info->num_of_bufs = 0;
2546 
2547 	ena_tx_map_mbuf(tx_ring, tx_info, mbuf, &push_header, &header_len);
2548 
2549 	ena_tx_ctx.ena_bufs = tx_info->bufs;
2550 	ena_tx_ctx.push_header = push_header;
2551 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2552 	ena_tx_ctx.req_id = req_id;
2553 	ena_tx_ctx.header_len = header_len;
2554 
2555 	/* Set Tx offloads flags, if applicable */
2556 	ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads,
2557 		tx_ring->disable_meta_caching);
2558 
2559 	if (unlikely(ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
2560 			&ena_tx_ctx))) {
2561 		PMD_TX_LOG(DEBUG,
2562 			"LLQ Tx max burst size of queue %d achieved, writing doorbell to send burst\n",
2563 			tx_ring->id);
2564 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2565 		tx_ring->tx_stats.doorbells++;
2566 		tx_ring->pkts_without_db = false;
2567 	}
2568 
2569 	/* prepare the packet's descriptors to dma engine */
2570 	rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq,	&ena_tx_ctx,
2571 		&nb_hw_desc);
2572 	if (unlikely(rc)) {
2573 		++tx_ring->tx_stats.prepare_ctx_err;
2574 		return rc;
2575 	}
2576 
2577 	tx_info->tx_descs = nb_hw_desc;
2578 
2579 	tx_ring->tx_stats.cnt++;
2580 	tx_ring->tx_stats.bytes += mbuf->pkt_len;
2581 
2582 	tx_ring->next_to_use = ENA_IDX_NEXT_MASKED(next_to_use,
2583 		tx_ring->size_mask);
2584 
2585 	return 0;
2586 }
2587 
2588 static void ena_tx_cleanup(struct ena_ring *tx_ring)
2589 {
2590 	unsigned int cleanup_budget;
2591 	unsigned int total_tx_descs = 0;
2592 	uint16_t next_to_clean = tx_ring->next_to_clean;
2593 
2594 	cleanup_budget = RTE_MIN(tx_ring->ring_size / ENA_REFILL_THRESH_DIVIDER,
2595 		(unsigned int)ENA_REFILL_THRESH_PACKET);
2596 
2597 	while (likely(total_tx_descs < cleanup_budget)) {
2598 		struct rte_mbuf *mbuf;
2599 		struct ena_tx_buffer *tx_info;
2600 		uint16_t req_id;
2601 
2602 		if (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) != 0)
2603 			break;
2604 
2605 		if (unlikely(validate_tx_req_id(tx_ring, req_id) != 0))
2606 			break;
2607 
2608 		/* Get Tx info & store how many descs were processed  */
2609 		tx_info = &tx_ring->tx_buffer_info[req_id];
2610 
2611 		mbuf = tx_info->mbuf;
2612 		rte_pktmbuf_free(mbuf);
2613 
2614 		tx_info->mbuf = NULL;
2615 		tx_ring->empty_tx_reqs[next_to_clean] = req_id;
2616 
2617 		total_tx_descs += tx_info->tx_descs;
2618 
2619 		/* Put back descriptor to the ring for reuse */
2620 		next_to_clean = ENA_IDX_NEXT_MASKED(next_to_clean,
2621 			tx_ring->size_mask);
2622 	}
2623 
2624 	if (likely(total_tx_descs > 0)) {
2625 		/* acknowledge completion of sent packets */
2626 		tx_ring->next_to_clean = next_to_clean;
2627 		ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
2628 		ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
2629 	}
2630 }
2631 
2632 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2633 				  uint16_t nb_pkts)
2634 {
2635 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2636 	uint16_t sent_idx = 0;
2637 
2638 #ifdef RTE_ETHDEV_DEBUG_TX
2639 	/* Check adapter state */
2640 	if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2641 		PMD_TX_LOG(ALERT,
2642 			"Trying to xmit pkts while device is NOT running\n");
2643 		return 0;
2644 	}
2645 #endif
2646 
2647 	for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
2648 		if (ena_xmit_mbuf(tx_ring, tx_pkts[sent_idx]))
2649 			break;
2650 		tx_ring->pkts_without_db = true;
2651 		rte_prefetch0(tx_pkts[ENA_IDX_ADD_MASKED(sent_idx, 4,
2652 			tx_ring->size_mask)]);
2653 	}
2654 
2655 	tx_ring->tx_stats.available_desc =
2656 		ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2657 
2658 	/* If there are ready packets to be xmitted... */
2659 	if (likely(tx_ring->pkts_without_db)) {
2660 		/* ...let HW do its best :-) */
2661 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2662 		tx_ring->tx_stats.doorbells++;
2663 		tx_ring->pkts_without_db = false;
2664 	}
2665 
2666 	ena_tx_cleanup(tx_ring);
2667 
2668 	tx_ring->tx_stats.available_desc =
2669 		ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2670 	tx_ring->tx_stats.tx_poll++;
2671 
2672 	return sent_idx;
2673 }
2674 
2675 int ena_copy_eni_stats(struct ena_adapter *adapter)
2676 {
2677 	struct ena_admin_eni_stats admin_eni_stats;
2678 	int rc;
2679 
2680 	rte_spinlock_lock(&adapter->admin_lock);
2681 	rc = ena_com_get_eni_stats(&adapter->ena_dev, &admin_eni_stats);
2682 	rte_spinlock_unlock(&adapter->admin_lock);
2683 	if (rc != 0) {
2684 		if (rc == ENA_COM_UNSUPPORTED) {
2685 			PMD_DRV_LOG(DEBUG,
2686 				"Retrieving ENI metrics is not supported\n");
2687 		} else {
2688 			PMD_DRV_LOG(WARNING,
2689 				"Failed to get ENI metrics, rc: %d\n", rc);
2690 		}
2691 		return rc;
2692 	}
2693 
2694 	rte_memcpy(&adapter->eni_stats, &admin_eni_stats,
2695 		sizeof(struct ena_stats_eni));
2696 
2697 	return 0;
2698 }
2699 
2700 /**
2701  * DPDK callback to retrieve names of extended device statistics
2702  *
2703  * @param dev
2704  *   Pointer to Ethernet device structure.
2705  * @param[out] xstats_names
2706  *   Buffer to insert names into.
2707  * @param n
2708  *   Number of names.
2709  *
2710  * @return
2711  *   Number of xstats names.
2712  */
2713 static int ena_xstats_get_names(struct rte_eth_dev *dev,
2714 				struct rte_eth_xstat_name *xstats_names,
2715 				unsigned int n)
2716 {
2717 	unsigned int xstats_count = ena_xstats_calc_num(dev->data);
2718 	unsigned int stat, i, count = 0;
2719 
2720 	if (n < xstats_count || !xstats_names)
2721 		return xstats_count;
2722 
2723 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
2724 		strcpy(xstats_names[count].name,
2725 			ena_stats_global_strings[stat].name);
2726 
2727 	for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++)
2728 		strcpy(xstats_names[count].name,
2729 			ena_stats_eni_strings[stat].name);
2730 
2731 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
2732 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
2733 			snprintf(xstats_names[count].name,
2734 				sizeof(xstats_names[count].name),
2735 				"rx_q%d_%s", i,
2736 				ena_stats_rx_strings[stat].name);
2737 
2738 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
2739 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
2740 			snprintf(xstats_names[count].name,
2741 				sizeof(xstats_names[count].name),
2742 				"tx_q%d_%s", i,
2743 				ena_stats_tx_strings[stat].name);
2744 
2745 	return xstats_count;
2746 }
2747 
2748 /**
2749  * DPDK callback to get extended device statistics.
2750  *
2751  * @param dev
2752  *   Pointer to Ethernet device structure.
2753  * @param[out] stats
2754  *   Stats table output buffer.
2755  * @param n
2756  *   The size of the stats table.
2757  *
2758  * @return
2759  *   Number of xstats on success, negative on failure.
2760  */
2761 static int ena_xstats_get(struct rte_eth_dev *dev,
2762 			  struct rte_eth_xstat *xstats,
2763 			  unsigned int n)
2764 {
2765 	struct ena_adapter *adapter = dev->data->dev_private;
2766 	unsigned int xstats_count = ena_xstats_calc_num(dev->data);
2767 	unsigned int stat, i, count = 0;
2768 	int stat_offset;
2769 	void *stats_begin;
2770 
2771 	if (n < xstats_count)
2772 		return xstats_count;
2773 
2774 	if (!xstats)
2775 		return 0;
2776 
2777 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
2778 		stat_offset = ena_stats_global_strings[stat].stat_offset;
2779 		stats_begin = &adapter->dev_stats;
2780 
2781 		xstats[count].id = count;
2782 		xstats[count].value = *((uint64_t *)
2783 			((char *)stats_begin + stat_offset));
2784 	}
2785 
2786 	/* Even if the function below fails, we should copy previous (or initial
2787 	 * values) to keep structure of rte_eth_xstat consistent.
2788 	 */
2789 	ena_copy_eni_stats(adapter);
2790 	for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++) {
2791 		stat_offset = ena_stats_eni_strings[stat].stat_offset;
2792 		stats_begin = &adapter->eni_stats;
2793 
2794 		xstats[count].id = count;
2795 		xstats[count].value = *((uint64_t *)
2796 		    ((char *)stats_begin + stat_offset));
2797 	}
2798 
2799 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
2800 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
2801 			stat_offset = ena_stats_rx_strings[stat].stat_offset;
2802 			stats_begin = &adapter->rx_ring[i].rx_stats;
2803 
2804 			xstats[count].id = count;
2805 			xstats[count].value = *((uint64_t *)
2806 				((char *)stats_begin + stat_offset));
2807 		}
2808 	}
2809 
2810 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
2811 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
2812 			stat_offset = ena_stats_tx_strings[stat].stat_offset;
2813 			stats_begin = &adapter->tx_ring[i].rx_stats;
2814 
2815 			xstats[count].id = count;
2816 			xstats[count].value = *((uint64_t *)
2817 				((char *)stats_begin + stat_offset));
2818 		}
2819 	}
2820 
2821 	return count;
2822 }
2823 
2824 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
2825 				const uint64_t *ids,
2826 				uint64_t *values,
2827 				unsigned int n)
2828 {
2829 	struct ena_adapter *adapter = dev->data->dev_private;
2830 	uint64_t id;
2831 	uint64_t rx_entries, tx_entries;
2832 	unsigned int i;
2833 	int qid;
2834 	int valid = 0;
2835 	bool was_eni_copied = false;
2836 
2837 	for (i = 0; i < n; ++i) {
2838 		id = ids[i];
2839 		/* Check if id belongs to global statistics */
2840 		if (id < ENA_STATS_ARRAY_GLOBAL) {
2841 			values[i] = *((uint64_t *)&adapter->dev_stats + id);
2842 			++valid;
2843 			continue;
2844 		}
2845 
2846 		/* Check if id belongs to ENI statistics */
2847 		id -= ENA_STATS_ARRAY_GLOBAL;
2848 		if (id < ENA_STATS_ARRAY_ENI) {
2849 			/* Avoid reading ENI stats multiple times in a single
2850 			 * function call, as it requires communication with the
2851 			 * admin queue.
2852 			 */
2853 			if (!was_eni_copied) {
2854 				was_eni_copied = true;
2855 				ena_copy_eni_stats(adapter);
2856 			}
2857 			values[i] = *((uint64_t *)&adapter->eni_stats + id);
2858 			++valid;
2859 			continue;
2860 		}
2861 
2862 		/* Check if id belongs to rx queue statistics */
2863 		id -= ENA_STATS_ARRAY_ENI;
2864 		rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
2865 		if (id < rx_entries) {
2866 			qid = id % dev->data->nb_rx_queues;
2867 			id /= dev->data->nb_rx_queues;
2868 			values[i] = *((uint64_t *)
2869 				&adapter->rx_ring[qid].rx_stats + id);
2870 			++valid;
2871 			continue;
2872 		}
2873 				/* Check if id belongs to rx queue statistics */
2874 		id -= rx_entries;
2875 		tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
2876 		if (id < tx_entries) {
2877 			qid = id % dev->data->nb_tx_queues;
2878 			id /= dev->data->nb_tx_queues;
2879 			values[i] = *((uint64_t *)
2880 				&adapter->tx_ring[qid].tx_stats + id);
2881 			++valid;
2882 			continue;
2883 		}
2884 	}
2885 
2886 	return valid;
2887 }
2888 
2889 static int ena_process_bool_devarg(const char *key,
2890 				   const char *value,
2891 				   void *opaque)
2892 {
2893 	struct ena_adapter *adapter = opaque;
2894 	bool bool_value;
2895 
2896 	/* Parse the value. */
2897 	if (strcmp(value, "1") == 0) {
2898 		bool_value = true;
2899 	} else if (strcmp(value, "0") == 0) {
2900 		bool_value = false;
2901 	} else {
2902 		PMD_INIT_LOG(ERR,
2903 			"Invalid value: '%s' for key '%s'. Accepted: '0' or '1'\n",
2904 			value, key);
2905 		return -EINVAL;
2906 	}
2907 
2908 	/* Now, assign it to the proper adapter field. */
2909 	if (strcmp(key, ENA_DEVARG_LARGE_LLQ_HDR) == 0)
2910 		adapter->use_large_llq_hdr = bool_value;
2911 
2912 	return 0;
2913 }
2914 
2915 static int ena_parse_devargs(struct ena_adapter *adapter,
2916 			     struct rte_devargs *devargs)
2917 {
2918 	static const char * const allowed_args[] = {
2919 		ENA_DEVARG_LARGE_LLQ_HDR,
2920 		NULL,
2921 	};
2922 	struct rte_kvargs *kvlist;
2923 	int rc;
2924 
2925 	if (devargs == NULL)
2926 		return 0;
2927 
2928 	kvlist = rte_kvargs_parse(devargs->args, allowed_args);
2929 	if (kvlist == NULL) {
2930 		PMD_INIT_LOG(ERR, "Invalid device arguments: %s\n",
2931 			devargs->args);
2932 		return -EINVAL;
2933 	}
2934 
2935 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_LARGE_LLQ_HDR,
2936 		ena_process_bool_devarg, adapter);
2937 
2938 	rte_kvargs_free(kvlist);
2939 
2940 	return rc;
2941 }
2942 
2943 /*********************************************************************
2944  *  PMD configuration
2945  *********************************************************************/
2946 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2947 	struct rte_pci_device *pci_dev)
2948 {
2949 	return rte_eth_dev_pci_generic_probe(pci_dev,
2950 		sizeof(struct ena_adapter), eth_ena_dev_init);
2951 }
2952 
2953 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
2954 {
2955 	return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
2956 }
2957 
2958 static struct rte_pci_driver rte_ena_pmd = {
2959 	.id_table = pci_id_ena_map,
2960 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
2961 		     RTE_PCI_DRV_WC_ACTIVATE,
2962 	.probe = eth_ena_pci_probe,
2963 	.remove = eth_ena_pci_remove,
2964 };
2965 
2966 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
2967 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
2968 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
2969 RTE_PMD_REGISTER_PARAM_STRING(net_ena, ENA_DEVARG_LARGE_LLQ_HDR "=<0|1>");
2970 RTE_LOG_REGISTER_SUFFIX(ena_logtype_init, init, NOTICE);
2971 RTE_LOG_REGISTER_SUFFIX(ena_logtype_driver, driver, NOTICE);
2972 #ifdef RTE_ETHDEV_DEBUG_RX
2973 RTE_LOG_REGISTER_SUFFIX(ena_logtype_rx, rx, DEBUG);
2974 #endif
2975 #ifdef RTE_ETHDEV_DEBUG_TX
2976 RTE_LOG_REGISTER_SUFFIX(ena_logtype_tx, tx, DEBUG);
2977 #endif
2978 RTE_LOG_REGISTER_SUFFIX(ena_logtype_com, com, WARNING);
2979 
2980 /******************************************************************************
2981  ******************************** AENQ Handlers *******************************
2982  *****************************************************************************/
2983 static void ena_update_on_link_change(void *adapter_data,
2984 				      struct ena_admin_aenq_entry *aenq_e)
2985 {
2986 	struct rte_eth_dev *eth_dev = adapter_data;
2987 	struct ena_adapter *adapter = eth_dev->data->dev_private;
2988 	struct ena_admin_aenq_link_change_desc *aenq_link_desc;
2989 	uint32_t status;
2990 
2991 	aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
2992 
2993 	status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
2994 	adapter->link_status = status;
2995 
2996 	ena_link_update(eth_dev, 0);
2997 	rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
2998 }
2999 
3000 static void ena_notification(void *adapter_data,
3001 			     struct ena_admin_aenq_entry *aenq_e)
3002 {
3003 	struct rte_eth_dev *eth_dev = adapter_data;
3004 	struct ena_adapter *adapter = eth_dev->data->dev_private;
3005 	struct ena_admin_ena_hw_hints *hints;
3006 
3007 	if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
3008 		PMD_DRV_LOG(WARNING, "Invalid AENQ group: %x. Expected: %x\n",
3009 			aenq_e->aenq_common_desc.group,
3010 			ENA_ADMIN_NOTIFICATION);
3011 
3012 	switch (aenq_e->aenq_common_desc.syndrome) {
3013 	case ENA_ADMIN_UPDATE_HINTS:
3014 		hints = (struct ena_admin_ena_hw_hints *)
3015 			(&aenq_e->inline_data_w4);
3016 		ena_update_hints(adapter, hints);
3017 		break;
3018 	default:
3019 		PMD_DRV_LOG(ERR, "Invalid AENQ notification link state: %d\n",
3020 			aenq_e->aenq_common_desc.syndrome);
3021 	}
3022 }
3023 
3024 static void ena_keep_alive(void *adapter_data,
3025 			   __rte_unused struct ena_admin_aenq_entry *aenq_e)
3026 {
3027 	struct rte_eth_dev *eth_dev = adapter_data;
3028 	struct ena_adapter *adapter = eth_dev->data->dev_private;
3029 	struct ena_admin_aenq_keep_alive_desc *desc;
3030 	uint64_t rx_drops;
3031 	uint64_t tx_drops;
3032 
3033 	adapter->timestamp_wd = rte_get_timer_cycles();
3034 
3035 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
3036 	rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
3037 	tx_drops = ((uint64_t)desc->tx_drops_high << 32) | desc->tx_drops_low;
3038 
3039 	adapter->drv_stats->rx_drops = rx_drops;
3040 	adapter->dev_stats.tx_drops = tx_drops;
3041 }
3042 
3043 /**
3044  * This handler will called for unknown event group or unimplemented handlers
3045  **/
3046 static void unimplemented_aenq_handler(__rte_unused void *data,
3047 				       __rte_unused struct ena_admin_aenq_entry *aenq_e)
3048 {
3049 	PMD_DRV_LOG(ERR,
3050 		"Unknown event was received or event with unimplemented handler\n");
3051 }
3052 
3053 static struct ena_aenq_handlers aenq_handlers = {
3054 	.handlers = {
3055 		[ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
3056 		[ENA_ADMIN_NOTIFICATION] = ena_notification,
3057 		[ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive
3058 	},
3059 	.unimplemented_handler = unimplemented_aenq_handler
3060 };
3061