xref: /dpdk/drivers/net/ena/ena_ethdev.c (revision 03ab51eafda992874a48c392ca66ffb577fe2b71)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
3  * All rights reserved.
4  */
5 
6 #include <rte_string_fns.h>
7 #include <rte_errno.h>
8 #include <rte_version.h>
9 #include <rte_net.h>
10 #include <rte_kvargs.h>
11 
12 #include "ena_ethdev.h"
13 #include "ena_logs.h"
14 #include "ena_platform.h"
15 #include "ena_com.h"
16 #include "ena_eth_com.h"
17 
18 #include <ena_common_defs.h>
19 #include <ena_regs_defs.h>
20 #include <ena_admin_defs.h>
21 #include <ena_eth_io_defs.h>
22 
23 #define DRV_MODULE_VER_MAJOR	2
24 #define DRV_MODULE_VER_MINOR	4
25 #define DRV_MODULE_VER_SUBMINOR	0
26 
27 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
28 
29 #define GET_L4_HDR_LEN(mbuf)					\
30 	((rte_pktmbuf_mtod_offset(mbuf,	struct rte_tcp_hdr *,	\
31 		mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
32 
33 #define ETH_GSTRING_LEN	32
34 
35 #define ARRAY_SIZE(x) RTE_DIM(x)
36 
37 #define ENA_MIN_RING_DESC	128
38 
39 #define ENA_PTYPE_HAS_HASH	(RTE_PTYPE_L4_TCP | RTE_PTYPE_L4_UDP)
40 
41 enum ethtool_stringset {
42 	ETH_SS_TEST             = 0,
43 	ETH_SS_STATS,
44 };
45 
46 struct ena_stats {
47 	char name[ETH_GSTRING_LEN];
48 	int stat_offset;
49 };
50 
51 #define ENA_STAT_ENTRY(stat, stat_type) { \
52 	.name = #stat, \
53 	.stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
54 }
55 
56 #define ENA_STAT_RX_ENTRY(stat) \
57 	ENA_STAT_ENTRY(stat, rx)
58 
59 #define ENA_STAT_TX_ENTRY(stat) \
60 	ENA_STAT_ENTRY(stat, tx)
61 
62 #define ENA_STAT_ENI_ENTRY(stat) \
63 	ENA_STAT_ENTRY(stat, eni)
64 
65 #define ENA_STAT_GLOBAL_ENTRY(stat) \
66 	ENA_STAT_ENTRY(stat, dev)
67 
68 /* Device arguments */
69 #define ENA_DEVARG_LARGE_LLQ_HDR "large_llq_hdr"
70 
71 /*
72  * Each rte_memzone should have unique name.
73  * To satisfy it, count number of allocation and add it to name.
74  */
75 rte_atomic64_t ena_alloc_cnt;
76 
77 static const struct ena_stats ena_stats_global_strings[] = {
78 	ENA_STAT_GLOBAL_ENTRY(wd_expired),
79 	ENA_STAT_GLOBAL_ENTRY(dev_start),
80 	ENA_STAT_GLOBAL_ENTRY(dev_stop),
81 	ENA_STAT_GLOBAL_ENTRY(tx_drops),
82 };
83 
84 static const struct ena_stats ena_stats_eni_strings[] = {
85 	ENA_STAT_ENI_ENTRY(bw_in_allowance_exceeded),
86 	ENA_STAT_ENI_ENTRY(bw_out_allowance_exceeded),
87 	ENA_STAT_ENI_ENTRY(pps_allowance_exceeded),
88 	ENA_STAT_ENI_ENTRY(conntrack_allowance_exceeded),
89 	ENA_STAT_ENI_ENTRY(linklocal_allowance_exceeded),
90 };
91 
92 static const struct ena_stats ena_stats_tx_strings[] = {
93 	ENA_STAT_TX_ENTRY(cnt),
94 	ENA_STAT_TX_ENTRY(bytes),
95 	ENA_STAT_TX_ENTRY(prepare_ctx_err),
96 	ENA_STAT_TX_ENTRY(linearize),
97 	ENA_STAT_TX_ENTRY(linearize_failed),
98 	ENA_STAT_TX_ENTRY(tx_poll),
99 	ENA_STAT_TX_ENTRY(doorbells),
100 	ENA_STAT_TX_ENTRY(bad_req_id),
101 	ENA_STAT_TX_ENTRY(available_desc),
102 };
103 
104 static const struct ena_stats ena_stats_rx_strings[] = {
105 	ENA_STAT_RX_ENTRY(cnt),
106 	ENA_STAT_RX_ENTRY(bytes),
107 	ENA_STAT_RX_ENTRY(refill_partial),
108 	ENA_STAT_RX_ENTRY(bad_csum),
109 	ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
110 	ENA_STAT_RX_ENTRY(bad_desc_num),
111 	ENA_STAT_RX_ENTRY(bad_req_id),
112 };
113 
114 #define ENA_STATS_ARRAY_GLOBAL	ARRAY_SIZE(ena_stats_global_strings)
115 #define ENA_STATS_ARRAY_ENI	ARRAY_SIZE(ena_stats_eni_strings)
116 #define ENA_STATS_ARRAY_TX	ARRAY_SIZE(ena_stats_tx_strings)
117 #define ENA_STATS_ARRAY_RX	ARRAY_SIZE(ena_stats_rx_strings)
118 
119 #define QUEUE_OFFLOADS (DEV_TX_OFFLOAD_TCP_CKSUM |\
120 			DEV_TX_OFFLOAD_UDP_CKSUM |\
121 			DEV_TX_OFFLOAD_IPV4_CKSUM |\
122 			DEV_TX_OFFLOAD_TCP_TSO)
123 #define MBUF_OFFLOADS (PKT_TX_L4_MASK |\
124 		       PKT_TX_IP_CKSUM |\
125 		       PKT_TX_TCP_SEG)
126 
127 /** Vendor ID used by Amazon devices */
128 #define PCI_VENDOR_ID_AMAZON 0x1D0F
129 /** Amazon devices */
130 #define PCI_DEVICE_ID_ENA_VF		0xEC20
131 #define PCI_DEVICE_ID_ENA_VF_RSERV0	0xEC21
132 
133 #define	ENA_TX_OFFLOAD_MASK	(\
134 	PKT_TX_L4_MASK |         \
135 	PKT_TX_IPV6 |            \
136 	PKT_TX_IPV4 |            \
137 	PKT_TX_IP_CKSUM |        \
138 	PKT_TX_TCP_SEG)
139 
140 #define	ENA_TX_OFFLOAD_NOTSUP_MASK	\
141 	(PKT_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
142 
143 static const struct rte_pci_id pci_id_ena_map[] = {
144 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
145 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF_RSERV0) },
146 	{ .device_id = 0 },
147 };
148 
149 static struct ena_aenq_handlers aenq_handlers;
150 
151 static int ena_device_init(struct ena_com_dev *ena_dev,
152 			   struct rte_pci_device *pdev,
153 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
154 			   bool *wd_state);
155 static int ena_dev_configure(struct rte_eth_dev *dev);
156 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
157 	struct ena_tx_buffer *tx_info,
158 	struct rte_mbuf *mbuf,
159 	void **push_header,
160 	uint16_t *header_len);
161 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf);
162 static void ena_tx_cleanup(struct ena_ring *tx_ring);
163 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
164 				  uint16_t nb_pkts);
165 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
166 		uint16_t nb_pkts);
167 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
168 			      uint16_t nb_desc, unsigned int socket_id,
169 			      const struct rte_eth_txconf *tx_conf);
170 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
171 			      uint16_t nb_desc, unsigned int socket_id,
172 			      const struct rte_eth_rxconf *rx_conf,
173 			      struct rte_mempool *mp);
174 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len);
175 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
176 				    struct ena_com_rx_buf_info *ena_bufs,
177 				    uint32_t descs,
178 				    uint16_t *next_to_clean,
179 				    uint8_t offset);
180 static uint16_t eth_ena_recv_pkts(void *rx_queue,
181 				  struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
182 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
183 				  struct rte_mbuf *mbuf, uint16_t id);
184 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
185 static void ena_init_rings(struct ena_adapter *adapter,
186 			   bool disable_meta_caching);
187 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
188 static int ena_start(struct rte_eth_dev *dev);
189 static int ena_stop(struct rte_eth_dev *dev);
190 static int ena_close(struct rte_eth_dev *dev);
191 static int ena_dev_reset(struct rte_eth_dev *dev);
192 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
193 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
194 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
195 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
196 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
197 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
198 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
199 static int ena_link_update(struct rte_eth_dev *dev,
200 			   int wait_to_complete);
201 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring);
202 static void ena_queue_stop(struct ena_ring *ring);
203 static void ena_queue_stop_all(struct rte_eth_dev *dev,
204 			      enum ena_ring_type ring_type);
205 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring);
206 static int ena_queue_start_all(struct rte_eth_dev *dev,
207 			       enum ena_ring_type ring_type);
208 static void ena_stats_restart(struct rte_eth_dev *dev);
209 static int ena_infos_get(struct rte_eth_dev *dev,
210 			 struct rte_eth_dev_info *dev_info);
211 static void ena_interrupt_handler_rte(void *cb_arg);
212 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
213 static void ena_destroy_device(struct rte_eth_dev *eth_dev);
214 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
215 static int ena_xstats_get_names(struct rte_eth_dev *dev,
216 				struct rte_eth_xstat_name *xstats_names,
217 				unsigned int n);
218 static int ena_xstats_get(struct rte_eth_dev *dev,
219 			  struct rte_eth_xstat *stats,
220 			  unsigned int n);
221 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
222 				const uint64_t *ids,
223 				uint64_t *values,
224 				unsigned int n);
225 static int ena_process_bool_devarg(const char *key,
226 				   const char *value,
227 				   void *opaque);
228 static int ena_parse_devargs(struct ena_adapter *adapter,
229 			     struct rte_devargs *devargs);
230 static int ena_copy_eni_stats(struct ena_adapter *adapter);
231 static int ena_setup_rx_intr(struct rte_eth_dev *dev);
232 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
233 				    uint16_t queue_id);
234 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
235 				     uint16_t queue_id);
236 
237 static const struct eth_dev_ops ena_dev_ops = {
238 	.dev_configure        = ena_dev_configure,
239 	.dev_infos_get        = ena_infos_get,
240 	.rx_queue_setup       = ena_rx_queue_setup,
241 	.tx_queue_setup       = ena_tx_queue_setup,
242 	.dev_start            = ena_start,
243 	.dev_stop             = ena_stop,
244 	.link_update          = ena_link_update,
245 	.stats_get            = ena_stats_get,
246 	.xstats_get_names     = ena_xstats_get_names,
247 	.xstats_get	      = ena_xstats_get,
248 	.xstats_get_by_id     = ena_xstats_get_by_id,
249 	.mtu_set              = ena_mtu_set,
250 	.rx_queue_release     = ena_rx_queue_release,
251 	.tx_queue_release     = ena_tx_queue_release,
252 	.dev_close            = ena_close,
253 	.dev_reset            = ena_dev_reset,
254 	.reta_update          = ena_rss_reta_update,
255 	.reta_query           = ena_rss_reta_query,
256 	.rx_queue_intr_enable = ena_rx_queue_intr_enable,
257 	.rx_queue_intr_disable = ena_rx_queue_intr_disable,
258 	.rss_hash_update      = ena_rss_hash_update,
259 	.rss_hash_conf_get    = ena_rss_hash_conf_get,
260 };
261 
262 static inline void ena_rx_mbuf_prepare(struct rte_mbuf *mbuf,
263 				       struct ena_com_rx_ctx *ena_rx_ctx,
264 				       bool fill_hash)
265 {
266 	uint64_t ol_flags = 0;
267 	uint32_t packet_type = 0;
268 
269 	if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
270 		packet_type |= RTE_PTYPE_L4_TCP;
271 	else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
272 		packet_type |= RTE_PTYPE_L4_UDP;
273 
274 	if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
275 		packet_type |= RTE_PTYPE_L3_IPV4;
276 		if (unlikely(ena_rx_ctx->l3_csum_err))
277 			ol_flags |= PKT_RX_IP_CKSUM_BAD;
278 		else
279 			ol_flags |= PKT_RX_IP_CKSUM_GOOD;
280 	} else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
281 		packet_type |= RTE_PTYPE_L3_IPV6;
282 	}
283 
284 	if (!ena_rx_ctx->l4_csum_checked || ena_rx_ctx->frag)
285 		ol_flags |= PKT_RX_L4_CKSUM_UNKNOWN;
286 	else
287 		if (unlikely(ena_rx_ctx->l4_csum_err))
288 			ol_flags |= PKT_RX_L4_CKSUM_BAD;
289 		else
290 			ol_flags |= PKT_RX_L4_CKSUM_GOOD;
291 
292 	if (fill_hash &&
293 	    likely((packet_type & ENA_PTYPE_HAS_HASH) && !ena_rx_ctx->frag)) {
294 		ol_flags |= PKT_RX_RSS_HASH;
295 		mbuf->hash.rss = ena_rx_ctx->hash;
296 	}
297 
298 	mbuf->ol_flags = ol_flags;
299 	mbuf->packet_type = packet_type;
300 }
301 
302 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
303 				       struct ena_com_tx_ctx *ena_tx_ctx,
304 				       uint64_t queue_offloads,
305 				       bool disable_meta_caching)
306 {
307 	struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
308 
309 	if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
310 	    (queue_offloads & QUEUE_OFFLOADS)) {
311 		/* check if TSO is required */
312 		if ((mbuf->ol_flags & PKT_TX_TCP_SEG) &&
313 		    (queue_offloads & DEV_TX_OFFLOAD_TCP_TSO)) {
314 			ena_tx_ctx->tso_enable = true;
315 
316 			ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
317 		}
318 
319 		/* check if L3 checksum is needed */
320 		if ((mbuf->ol_flags & PKT_TX_IP_CKSUM) &&
321 		    (queue_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM))
322 			ena_tx_ctx->l3_csum_enable = true;
323 
324 		if (mbuf->ol_flags & PKT_TX_IPV6) {
325 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
326 		} else {
327 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
328 
329 			/* set don't fragment (DF) flag */
330 			if (mbuf->packet_type &
331 				(RTE_PTYPE_L4_NONFRAG
332 				 | RTE_PTYPE_INNER_L4_NONFRAG))
333 				ena_tx_ctx->df = true;
334 		}
335 
336 		/* check if L4 checksum is needed */
337 		if (((mbuf->ol_flags & PKT_TX_L4_MASK) == PKT_TX_TCP_CKSUM) &&
338 		    (queue_offloads & DEV_TX_OFFLOAD_TCP_CKSUM)) {
339 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
340 			ena_tx_ctx->l4_csum_enable = true;
341 		} else if (((mbuf->ol_flags & PKT_TX_L4_MASK) ==
342 				PKT_TX_UDP_CKSUM) &&
343 				(queue_offloads & DEV_TX_OFFLOAD_UDP_CKSUM)) {
344 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
345 			ena_tx_ctx->l4_csum_enable = true;
346 		} else {
347 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
348 			ena_tx_ctx->l4_csum_enable = false;
349 		}
350 
351 		ena_meta->mss = mbuf->tso_segsz;
352 		ena_meta->l3_hdr_len = mbuf->l3_len;
353 		ena_meta->l3_hdr_offset = mbuf->l2_len;
354 
355 		ena_tx_ctx->meta_valid = true;
356 	} else if (disable_meta_caching) {
357 		memset(ena_meta, 0, sizeof(*ena_meta));
358 		ena_tx_ctx->meta_valid = true;
359 	} else {
360 		ena_tx_ctx->meta_valid = false;
361 	}
362 }
363 
364 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
365 {
366 	struct ena_tx_buffer *tx_info = NULL;
367 
368 	if (likely(req_id < tx_ring->ring_size)) {
369 		tx_info = &tx_ring->tx_buffer_info[req_id];
370 		if (likely(tx_info->mbuf))
371 			return 0;
372 	}
373 
374 	if (tx_info)
375 		PMD_TX_LOG(ERR, "tx_info doesn't have valid mbuf\n");
376 	else
377 		PMD_TX_LOG(ERR, "Invalid req_id: %hu\n", req_id);
378 
379 	/* Trigger device reset */
380 	++tx_ring->tx_stats.bad_req_id;
381 	tx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID;
382 	tx_ring->adapter->trigger_reset	= true;
383 	return -EFAULT;
384 }
385 
386 static void ena_config_host_info(struct ena_com_dev *ena_dev)
387 {
388 	struct ena_admin_host_info *host_info;
389 	int rc;
390 
391 	/* Allocate only the host info */
392 	rc = ena_com_allocate_host_info(ena_dev);
393 	if (rc) {
394 		PMD_DRV_LOG(ERR, "Cannot allocate host info\n");
395 		return;
396 	}
397 
398 	host_info = ena_dev->host_attr.host_info;
399 
400 	host_info->os_type = ENA_ADMIN_OS_DPDK;
401 	host_info->kernel_ver = RTE_VERSION;
402 	strlcpy((char *)host_info->kernel_ver_str, rte_version(),
403 		sizeof(host_info->kernel_ver_str));
404 	host_info->os_dist = RTE_VERSION;
405 	strlcpy((char *)host_info->os_dist_str, rte_version(),
406 		sizeof(host_info->os_dist_str));
407 	host_info->driver_version =
408 		(DRV_MODULE_VER_MAJOR) |
409 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
410 		(DRV_MODULE_VER_SUBMINOR <<
411 			ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
412 	host_info->num_cpus = rte_lcore_count();
413 
414 	host_info->driver_supported_features =
415 		ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK |
416 		ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK;
417 
418 	rc = ena_com_set_host_attributes(ena_dev);
419 	if (rc) {
420 		if (rc == -ENA_COM_UNSUPPORTED)
421 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
422 		else
423 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
424 
425 		goto err;
426 	}
427 
428 	return;
429 
430 err:
431 	ena_com_delete_host_info(ena_dev);
432 }
433 
434 /* This function calculates the number of xstats based on the current config */
435 static unsigned int ena_xstats_calc_num(struct rte_eth_dev_data *data)
436 {
437 	return ENA_STATS_ARRAY_GLOBAL + ENA_STATS_ARRAY_ENI +
438 		(data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
439 		(data->nb_rx_queues * ENA_STATS_ARRAY_RX);
440 }
441 
442 static void ena_config_debug_area(struct ena_adapter *adapter)
443 {
444 	u32 debug_area_size;
445 	int rc, ss_count;
446 
447 	ss_count = ena_xstats_calc_num(adapter->edev_data);
448 
449 	/* allocate 32 bytes for each string and 64bit for the value */
450 	debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
451 
452 	rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
453 	if (rc) {
454 		PMD_DRV_LOG(ERR, "Cannot allocate debug area\n");
455 		return;
456 	}
457 
458 	rc = ena_com_set_host_attributes(&adapter->ena_dev);
459 	if (rc) {
460 		if (rc == -ENA_COM_UNSUPPORTED)
461 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
462 		else
463 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
464 
465 		goto err;
466 	}
467 
468 	return;
469 err:
470 	ena_com_delete_debug_area(&adapter->ena_dev);
471 }
472 
473 static int ena_close(struct rte_eth_dev *dev)
474 {
475 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
476 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
477 	struct ena_adapter *adapter = dev->data->dev_private;
478 	int ret = 0;
479 
480 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
481 		return 0;
482 
483 	if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
484 		ret = ena_stop(dev);
485 	adapter->state = ENA_ADAPTER_STATE_CLOSED;
486 
487 	ena_rx_queue_release_all(dev);
488 	ena_tx_queue_release_all(dev);
489 
490 	rte_free(adapter->drv_stats);
491 	adapter->drv_stats = NULL;
492 
493 	rte_intr_disable(intr_handle);
494 	rte_intr_callback_unregister(intr_handle,
495 				     ena_interrupt_handler_rte,
496 				     dev);
497 
498 	/*
499 	 * MAC is not allocated dynamically. Setting NULL should prevent from
500 	 * release of the resource in the rte_eth_dev_release_port().
501 	 */
502 	dev->data->mac_addrs = NULL;
503 
504 	return ret;
505 }
506 
507 static int
508 ena_dev_reset(struct rte_eth_dev *dev)
509 {
510 	int rc = 0;
511 
512 	/* Cannot release memory in secondary process */
513 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
514 		PMD_DRV_LOG(WARNING, "dev_reset not supported in secondary.\n");
515 		return -EPERM;
516 	}
517 
518 	ena_destroy_device(dev);
519 	rc = eth_ena_dev_init(dev);
520 	if (rc)
521 		PMD_INIT_LOG(CRIT, "Cannot initialize device\n");
522 
523 	return rc;
524 }
525 
526 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
527 {
528 	int nb_queues = dev->data->nb_rx_queues;
529 	int i;
530 
531 	for (i = 0; i < nb_queues; i++)
532 		ena_rx_queue_release(dev, i);
533 }
534 
535 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
536 {
537 	int nb_queues = dev->data->nb_tx_queues;
538 	int i;
539 
540 	for (i = 0; i < nb_queues; i++)
541 		ena_tx_queue_release(dev, i);
542 }
543 
544 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
545 {
546 	struct ena_ring *ring = dev->data->rx_queues[qid];
547 
548 	/* Free ring resources */
549 	if (ring->rx_buffer_info)
550 		rte_free(ring->rx_buffer_info);
551 	ring->rx_buffer_info = NULL;
552 
553 	if (ring->rx_refill_buffer)
554 		rte_free(ring->rx_refill_buffer);
555 	ring->rx_refill_buffer = NULL;
556 
557 	if (ring->empty_rx_reqs)
558 		rte_free(ring->empty_rx_reqs);
559 	ring->empty_rx_reqs = NULL;
560 
561 	ring->configured = 0;
562 
563 	PMD_DRV_LOG(NOTICE, "Rx queue %d:%d released\n",
564 		ring->port_id, ring->id);
565 }
566 
567 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
568 {
569 	struct ena_ring *ring = dev->data->tx_queues[qid];
570 
571 	/* Free ring resources */
572 	if (ring->push_buf_intermediate_buf)
573 		rte_free(ring->push_buf_intermediate_buf);
574 
575 	if (ring->tx_buffer_info)
576 		rte_free(ring->tx_buffer_info);
577 
578 	if (ring->empty_tx_reqs)
579 		rte_free(ring->empty_tx_reqs);
580 
581 	ring->empty_tx_reqs = NULL;
582 	ring->tx_buffer_info = NULL;
583 	ring->push_buf_intermediate_buf = NULL;
584 
585 	ring->configured = 0;
586 
587 	PMD_DRV_LOG(NOTICE, "Tx queue %d:%d released\n",
588 		ring->port_id, ring->id);
589 }
590 
591 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
592 {
593 	unsigned int i;
594 
595 	for (i = 0; i < ring->ring_size; ++i) {
596 		struct ena_rx_buffer *rx_info = &ring->rx_buffer_info[i];
597 		if (rx_info->mbuf) {
598 			rte_mbuf_raw_free(rx_info->mbuf);
599 			rx_info->mbuf = NULL;
600 		}
601 	}
602 }
603 
604 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
605 {
606 	unsigned int i;
607 
608 	for (i = 0; i < ring->ring_size; ++i) {
609 		struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
610 
611 		if (tx_buf->mbuf) {
612 			rte_pktmbuf_free(tx_buf->mbuf);
613 			tx_buf->mbuf = NULL;
614 		}
615 	}
616 }
617 
618 static int ena_link_update(struct rte_eth_dev *dev,
619 			   __rte_unused int wait_to_complete)
620 {
621 	struct rte_eth_link *link = &dev->data->dev_link;
622 	struct ena_adapter *adapter = dev->data->dev_private;
623 
624 	link->link_status = adapter->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
625 	link->link_speed = ETH_SPEED_NUM_NONE;
626 	link->link_duplex = ETH_LINK_FULL_DUPLEX;
627 
628 	return 0;
629 }
630 
631 static int ena_queue_start_all(struct rte_eth_dev *dev,
632 			       enum ena_ring_type ring_type)
633 {
634 	struct ena_adapter *adapter = dev->data->dev_private;
635 	struct ena_ring *queues = NULL;
636 	int nb_queues;
637 	int i = 0;
638 	int rc = 0;
639 
640 	if (ring_type == ENA_RING_TYPE_RX) {
641 		queues = adapter->rx_ring;
642 		nb_queues = dev->data->nb_rx_queues;
643 	} else {
644 		queues = adapter->tx_ring;
645 		nb_queues = dev->data->nb_tx_queues;
646 	}
647 	for (i = 0; i < nb_queues; i++) {
648 		if (queues[i].configured) {
649 			if (ring_type == ENA_RING_TYPE_RX) {
650 				ena_assert_msg(
651 					dev->data->rx_queues[i] == &queues[i],
652 					"Inconsistent state of Rx queues\n");
653 			} else {
654 				ena_assert_msg(
655 					dev->data->tx_queues[i] == &queues[i],
656 					"Inconsistent state of Tx queues\n");
657 			}
658 
659 			rc = ena_queue_start(dev, &queues[i]);
660 
661 			if (rc) {
662 				PMD_INIT_LOG(ERR,
663 					"Failed to start queue[%d] of type(%d)\n",
664 					i, ring_type);
665 				goto err;
666 			}
667 		}
668 	}
669 
670 	return 0;
671 
672 err:
673 	while (i--)
674 		if (queues[i].configured)
675 			ena_queue_stop(&queues[i]);
676 
677 	return rc;
678 }
679 
680 static uint32_t ena_get_mtu_conf(struct ena_adapter *adapter)
681 {
682 	uint32_t max_frame_len = adapter->max_mtu;
683 
684 	if (adapter->edev_data->dev_conf.rxmode.offloads &
685 	    DEV_RX_OFFLOAD_JUMBO_FRAME)
686 		max_frame_len =
687 			adapter->edev_data->dev_conf.rxmode.max_rx_pkt_len;
688 
689 	return max_frame_len;
690 }
691 
692 static int ena_check_valid_conf(struct ena_adapter *adapter)
693 {
694 	uint32_t max_frame_len = ena_get_mtu_conf(adapter);
695 
696 	if (max_frame_len > adapter->max_mtu || max_frame_len < ENA_MIN_MTU) {
697 		PMD_INIT_LOG(ERR,
698 			"Unsupported MTU of %d. Max MTU: %d, min MTU: %d\n",
699 			max_frame_len, adapter->max_mtu, ENA_MIN_MTU);
700 		return ENA_COM_UNSUPPORTED;
701 	}
702 
703 	return 0;
704 }
705 
706 static int
707 ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx,
708 		       bool use_large_llq_hdr)
709 {
710 	struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
711 	struct ena_com_dev *ena_dev = ctx->ena_dev;
712 	uint32_t max_tx_queue_size;
713 	uint32_t max_rx_queue_size;
714 
715 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
716 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
717 			&ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
718 		max_rx_queue_size = RTE_MIN(max_queue_ext->max_rx_cq_depth,
719 			max_queue_ext->max_rx_sq_depth);
720 		max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
721 
722 		if (ena_dev->tx_mem_queue_type ==
723 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
724 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
725 				llq->max_llq_depth);
726 		} else {
727 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
728 				max_queue_ext->max_tx_sq_depth);
729 		}
730 
731 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
732 			max_queue_ext->max_per_packet_rx_descs);
733 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
734 			max_queue_ext->max_per_packet_tx_descs);
735 	} else {
736 		struct ena_admin_queue_feature_desc *max_queues =
737 			&ctx->get_feat_ctx->max_queues;
738 		max_rx_queue_size = RTE_MIN(max_queues->max_cq_depth,
739 			max_queues->max_sq_depth);
740 		max_tx_queue_size = max_queues->max_cq_depth;
741 
742 		if (ena_dev->tx_mem_queue_type ==
743 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
744 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
745 				llq->max_llq_depth);
746 		} else {
747 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
748 				max_queues->max_sq_depth);
749 		}
750 
751 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
752 			max_queues->max_packet_rx_descs);
753 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
754 			max_queues->max_packet_tx_descs);
755 	}
756 
757 	/* Round down to the nearest power of 2 */
758 	max_rx_queue_size = rte_align32prevpow2(max_rx_queue_size);
759 	max_tx_queue_size = rte_align32prevpow2(max_tx_queue_size);
760 
761 	if (use_large_llq_hdr) {
762 		if ((llq->entry_size_ctrl_supported &
763 		     ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
764 		    (ena_dev->tx_mem_queue_type ==
765 		     ENA_ADMIN_PLACEMENT_POLICY_DEV)) {
766 			max_tx_queue_size /= 2;
767 			PMD_INIT_LOG(INFO,
768 				"Forcing large headers and decreasing maximum Tx queue size to %d\n",
769 				max_tx_queue_size);
770 		} else {
771 			PMD_INIT_LOG(ERR,
772 				"Forcing large headers failed: LLQ is disabled or device does not support large headers\n");
773 		}
774 	}
775 
776 	if (unlikely(max_rx_queue_size == 0 || max_tx_queue_size == 0)) {
777 		PMD_INIT_LOG(ERR, "Invalid queue size\n");
778 		return -EFAULT;
779 	}
780 
781 	ctx->max_tx_queue_size = max_tx_queue_size;
782 	ctx->max_rx_queue_size = max_rx_queue_size;
783 
784 	return 0;
785 }
786 
787 static void ena_stats_restart(struct rte_eth_dev *dev)
788 {
789 	struct ena_adapter *adapter = dev->data->dev_private;
790 
791 	rte_atomic64_init(&adapter->drv_stats->ierrors);
792 	rte_atomic64_init(&adapter->drv_stats->oerrors);
793 	rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
794 	adapter->drv_stats->rx_drops = 0;
795 }
796 
797 static int ena_stats_get(struct rte_eth_dev *dev,
798 			  struct rte_eth_stats *stats)
799 {
800 	struct ena_admin_basic_stats ena_stats;
801 	struct ena_adapter *adapter = dev->data->dev_private;
802 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
803 	int rc;
804 	int i;
805 	int max_rings_stats;
806 
807 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
808 		return -ENOTSUP;
809 
810 	memset(&ena_stats, 0, sizeof(ena_stats));
811 
812 	rte_spinlock_lock(&adapter->admin_lock);
813 	rc = ena_com_get_dev_basic_stats(ena_dev, &ena_stats);
814 	rte_spinlock_unlock(&adapter->admin_lock);
815 	if (unlikely(rc)) {
816 		PMD_DRV_LOG(ERR, "Could not retrieve statistics from ENA\n");
817 		return rc;
818 	}
819 
820 	/* Set of basic statistics from ENA */
821 	stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
822 					  ena_stats.rx_pkts_low);
823 	stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
824 					  ena_stats.tx_pkts_low);
825 	stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
826 					ena_stats.rx_bytes_low);
827 	stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
828 					ena_stats.tx_bytes_low);
829 
830 	/* Driver related stats */
831 	stats->imissed = adapter->drv_stats->rx_drops;
832 	stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
833 	stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
834 	stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
835 
836 	max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
837 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
838 	for (i = 0; i < max_rings_stats; ++i) {
839 		struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
840 
841 		stats->q_ibytes[i] = rx_stats->bytes;
842 		stats->q_ipackets[i] = rx_stats->cnt;
843 		stats->q_errors[i] = rx_stats->bad_desc_num +
844 			rx_stats->bad_req_id;
845 	}
846 
847 	max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
848 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
849 	for (i = 0; i < max_rings_stats; ++i) {
850 		struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
851 
852 		stats->q_obytes[i] = tx_stats->bytes;
853 		stats->q_opackets[i] = tx_stats->cnt;
854 	}
855 
856 	return 0;
857 }
858 
859 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
860 {
861 	struct ena_adapter *adapter;
862 	struct ena_com_dev *ena_dev;
863 	int rc = 0;
864 
865 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
866 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
867 	adapter = dev->data->dev_private;
868 
869 	ena_dev = &adapter->ena_dev;
870 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
871 
872 	if (mtu > ena_get_mtu_conf(adapter) || mtu < ENA_MIN_MTU) {
873 		PMD_DRV_LOG(ERR,
874 			"Invalid MTU setting. New MTU: %d, max MTU: %d, min MTU: %d\n",
875 			mtu, ena_get_mtu_conf(adapter), ENA_MIN_MTU);
876 		return -EINVAL;
877 	}
878 
879 	rc = ena_com_set_dev_mtu(ena_dev, mtu);
880 	if (rc)
881 		PMD_DRV_LOG(ERR, "Could not set MTU: %d\n", mtu);
882 	else
883 		PMD_DRV_LOG(NOTICE, "MTU set to: %d\n", mtu);
884 
885 	return rc;
886 }
887 
888 static int ena_start(struct rte_eth_dev *dev)
889 {
890 	struct ena_adapter *adapter = dev->data->dev_private;
891 	uint64_t ticks;
892 	int rc = 0;
893 
894 	/* Cannot allocate memory in secondary process */
895 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
896 		PMD_DRV_LOG(WARNING, "dev_start not supported in secondary.\n");
897 		return -EPERM;
898 	}
899 
900 	rc = ena_check_valid_conf(adapter);
901 	if (rc)
902 		return rc;
903 
904 	rc = ena_setup_rx_intr(dev);
905 	if (rc)
906 		return rc;
907 
908 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
909 	if (rc)
910 		return rc;
911 
912 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
913 	if (rc)
914 		goto err_start_tx;
915 
916 	if (adapter->edev_data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG) {
917 		rc = ena_rss_configure(adapter);
918 		if (rc)
919 			goto err_rss_init;
920 	}
921 
922 	ena_stats_restart(dev);
923 
924 	adapter->timestamp_wd = rte_get_timer_cycles();
925 	adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
926 
927 	ticks = rte_get_timer_hz();
928 	rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
929 			ena_timer_wd_callback, dev);
930 
931 	++adapter->dev_stats.dev_start;
932 	adapter->state = ENA_ADAPTER_STATE_RUNNING;
933 
934 	return 0;
935 
936 err_rss_init:
937 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
938 err_start_tx:
939 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
940 	return rc;
941 }
942 
943 static int ena_stop(struct rte_eth_dev *dev)
944 {
945 	struct ena_adapter *adapter = dev->data->dev_private;
946 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
947 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
948 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
949 	int rc;
950 
951 	/* Cannot free memory in secondary process */
952 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
953 		PMD_DRV_LOG(WARNING, "dev_stop not supported in secondary.\n");
954 		return -EPERM;
955 	}
956 
957 	rte_timer_stop_sync(&adapter->timer_wd);
958 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
959 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
960 
961 	if (adapter->trigger_reset) {
962 		rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
963 		if (rc)
964 			PMD_DRV_LOG(ERR, "Device reset failed, rc: %d\n", rc);
965 	}
966 
967 	rte_intr_disable(intr_handle);
968 
969 	rte_intr_efd_disable(intr_handle);
970 	if (intr_handle->intr_vec != NULL) {
971 		rte_free(intr_handle->intr_vec);
972 		intr_handle->intr_vec = NULL;
973 	}
974 
975 	rte_intr_enable(intr_handle);
976 
977 	++adapter->dev_stats.dev_stop;
978 	adapter->state = ENA_ADAPTER_STATE_STOPPED;
979 	dev->data->dev_started = 0;
980 
981 	return 0;
982 }
983 
984 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring)
985 {
986 	struct ena_adapter *adapter = ring->adapter;
987 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
988 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
989 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
990 	struct ena_com_create_io_ctx ctx =
991 		/* policy set to _HOST just to satisfy icc compiler */
992 		{ ENA_ADMIN_PLACEMENT_POLICY_HOST,
993 		  0, 0, 0, 0, 0 };
994 	uint16_t ena_qid;
995 	unsigned int i;
996 	int rc;
997 
998 	ctx.msix_vector = -1;
999 	if (ring->type == ENA_RING_TYPE_TX) {
1000 		ena_qid = ENA_IO_TXQ_IDX(ring->id);
1001 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1002 		ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1003 		for (i = 0; i < ring->ring_size; i++)
1004 			ring->empty_tx_reqs[i] = i;
1005 	} else {
1006 		ena_qid = ENA_IO_RXQ_IDX(ring->id);
1007 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1008 		if (rte_intr_dp_is_en(intr_handle))
1009 			ctx.msix_vector = intr_handle->intr_vec[ring->id];
1010 		for (i = 0; i < ring->ring_size; i++)
1011 			ring->empty_rx_reqs[i] = i;
1012 	}
1013 	ctx.queue_size = ring->ring_size;
1014 	ctx.qid = ena_qid;
1015 	ctx.numa_node = ring->numa_socket_id;
1016 
1017 	rc = ena_com_create_io_queue(ena_dev, &ctx);
1018 	if (rc) {
1019 		PMD_DRV_LOG(ERR,
1020 			"Failed to create IO queue[%d] (qid:%d), rc: %d\n",
1021 			ring->id, ena_qid, rc);
1022 		return rc;
1023 	}
1024 
1025 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1026 				     &ring->ena_com_io_sq,
1027 				     &ring->ena_com_io_cq);
1028 	if (rc) {
1029 		PMD_DRV_LOG(ERR,
1030 			"Failed to get IO queue[%d] handlers, rc: %d\n",
1031 			ring->id, rc);
1032 		ena_com_destroy_io_queue(ena_dev, ena_qid);
1033 		return rc;
1034 	}
1035 
1036 	if (ring->type == ENA_RING_TYPE_TX)
1037 		ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1038 
1039 	/* Start with Rx interrupts being masked. */
1040 	if (ring->type == ENA_RING_TYPE_RX && rte_intr_dp_is_en(intr_handle))
1041 		ena_rx_queue_intr_disable(dev, ring->id);
1042 
1043 	return 0;
1044 }
1045 
1046 static void ena_queue_stop(struct ena_ring *ring)
1047 {
1048 	struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
1049 
1050 	if (ring->type == ENA_RING_TYPE_RX) {
1051 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
1052 		ena_rx_queue_release_bufs(ring);
1053 	} else {
1054 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
1055 		ena_tx_queue_release_bufs(ring);
1056 	}
1057 }
1058 
1059 static void ena_queue_stop_all(struct rte_eth_dev *dev,
1060 			      enum ena_ring_type ring_type)
1061 {
1062 	struct ena_adapter *adapter = dev->data->dev_private;
1063 	struct ena_ring *queues = NULL;
1064 	uint16_t nb_queues, i;
1065 
1066 	if (ring_type == ENA_RING_TYPE_RX) {
1067 		queues = adapter->rx_ring;
1068 		nb_queues = dev->data->nb_rx_queues;
1069 	} else {
1070 		queues = adapter->tx_ring;
1071 		nb_queues = dev->data->nb_tx_queues;
1072 	}
1073 
1074 	for (i = 0; i < nb_queues; ++i)
1075 		if (queues[i].configured)
1076 			ena_queue_stop(&queues[i]);
1077 }
1078 
1079 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring)
1080 {
1081 	int rc, bufs_num;
1082 
1083 	ena_assert_msg(ring->configured == 1,
1084 		       "Trying to start unconfigured queue\n");
1085 
1086 	rc = ena_create_io_queue(dev, ring);
1087 	if (rc) {
1088 		PMD_INIT_LOG(ERR, "Failed to create IO queue\n");
1089 		return rc;
1090 	}
1091 
1092 	ring->next_to_clean = 0;
1093 	ring->next_to_use = 0;
1094 
1095 	if (ring->type == ENA_RING_TYPE_TX) {
1096 		ring->tx_stats.available_desc =
1097 			ena_com_free_q_entries(ring->ena_com_io_sq);
1098 		return 0;
1099 	}
1100 
1101 	bufs_num = ring->ring_size - 1;
1102 	rc = ena_populate_rx_queue(ring, bufs_num);
1103 	if (rc != bufs_num) {
1104 		ena_com_destroy_io_queue(&ring->adapter->ena_dev,
1105 					 ENA_IO_RXQ_IDX(ring->id));
1106 		PMD_INIT_LOG(ERR, "Failed to populate Rx ring\n");
1107 		return ENA_COM_FAULT;
1108 	}
1109 	/* Flush per-core RX buffers pools cache as they can be used on other
1110 	 * cores as well.
1111 	 */
1112 	rte_mempool_cache_flush(NULL, ring->mb_pool);
1113 
1114 	return 0;
1115 }
1116 
1117 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1118 			      uint16_t queue_idx,
1119 			      uint16_t nb_desc,
1120 			      unsigned int socket_id,
1121 			      const struct rte_eth_txconf *tx_conf)
1122 {
1123 	struct ena_ring *txq = NULL;
1124 	struct ena_adapter *adapter = dev->data->dev_private;
1125 	unsigned int i;
1126 
1127 	txq = &adapter->tx_ring[queue_idx];
1128 
1129 	if (txq->configured) {
1130 		PMD_DRV_LOG(CRIT,
1131 			"API violation. Queue[%d] is already configured\n",
1132 			queue_idx);
1133 		return ENA_COM_FAULT;
1134 	}
1135 
1136 	if (!rte_is_power_of_2(nb_desc)) {
1137 		PMD_DRV_LOG(ERR,
1138 			"Unsupported size of Tx queue: %d is not a power of 2.\n",
1139 			nb_desc);
1140 		return -EINVAL;
1141 	}
1142 
1143 	if (nb_desc > adapter->max_tx_ring_size) {
1144 		PMD_DRV_LOG(ERR,
1145 			"Unsupported size of Tx queue (max size: %d)\n",
1146 			adapter->max_tx_ring_size);
1147 		return -EINVAL;
1148 	}
1149 
1150 	txq->port_id = dev->data->port_id;
1151 	txq->next_to_clean = 0;
1152 	txq->next_to_use = 0;
1153 	txq->ring_size = nb_desc;
1154 	txq->size_mask = nb_desc - 1;
1155 	txq->numa_socket_id = socket_id;
1156 	txq->pkts_without_db = false;
1157 
1158 	txq->tx_buffer_info = rte_zmalloc("txq->tx_buffer_info",
1159 					  sizeof(struct ena_tx_buffer) *
1160 					  txq->ring_size,
1161 					  RTE_CACHE_LINE_SIZE);
1162 	if (!txq->tx_buffer_info) {
1163 		PMD_DRV_LOG(ERR,
1164 			"Failed to allocate memory for Tx buffer info\n");
1165 		return -ENOMEM;
1166 	}
1167 
1168 	txq->empty_tx_reqs = rte_zmalloc("txq->empty_tx_reqs",
1169 					 sizeof(u16) * txq->ring_size,
1170 					 RTE_CACHE_LINE_SIZE);
1171 	if (!txq->empty_tx_reqs) {
1172 		PMD_DRV_LOG(ERR,
1173 			"Failed to allocate memory for empty Tx requests\n");
1174 		rte_free(txq->tx_buffer_info);
1175 		return -ENOMEM;
1176 	}
1177 
1178 	txq->push_buf_intermediate_buf =
1179 		rte_zmalloc("txq->push_buf_intermediate_buf",
1180 			    txq->tx_max_header_size,
1181 			    RTE_CACHE_LINE_SIZE);
1182 	if (!txq->push_buf_intermediate_buf) {
1183 		PMD_DRV_LOG(ERR, "Failed to alloc push buffer for LLQ\n");
1184 		rte_free(txq->tx_buffer_info);
1185 		rte_free(txq->empty_tx_reqs);
1186 		return -ENOMEM;
1187 	}
1188 
1189 	for (i = 0; i < txq->ring_size; i++)
1190 		txq->empty_tx_reqs[i] = i;
1191 
1192 	if (tx_conf != NULL) {
1193 		txq->offloads =
1194 			tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1195 	}
1196 	/* Store pointer to this queue in upper layer */
1197 	txq->configured = 1;
1198 	dev->data->tx_queues[queue_idx] = txq;
1199 
1200 	return 0;
1201 }
1202 
1203 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1204 			      uint16_t queue_idx,
1205 			      uint16_t nb_desc,
1206 			      unsigned int socket_id,
1207 			      const struct rte_eth_rxconf *rx_conf,
1208 			      struct rte_mempool *mp)
1209 {
1210 	struct ena_adapter *adapter = dev->data->dev_private;
1211 	struct ena_ring *rxq = NULL;
1212 	size_t buffer_size;
1213 	int i;
1214 
1215 	rxq = &adapter->rx_ring[queue_idx];
1216 	if (rxq->configured) {
1217 		PMD_DRV_LOG(CRIT,
1218 			"API violation. Queue[%d] is already configured\n",
1219 			queue_idx);
1220 		return ENA_COM_FAULT;
1221 	}
1222 
1223 	if (!rte_is_power_of_2(nb_desc)) {
1224 		PMD_DRV_LOG(ERR,
1225 			"Unsupported size of Rx queue: %d is not a power of 2.\n",
1226 			nb_desc);
1227 		return -EINVAL;
1228 	}
1229 
1230 	if (nb_desc > adapter->max_rx_ring_size) {
1231 		PMD_DRV_LOG(ERR,
1232 			"Unsupported size of Rx queue (max size: %d)\n",
1233 			adapter->max_rx_ring_size);
1234 		return -EINVAL;
1235 	}
1236 
1237 	/* ENA isn't supporting buffers smaller than 1400 bytes */
1238 	buffer_size = rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
1239 	if (buffer_size < ENA_RX_BUF_MIN_SIZE) {
1240 		PMD_DRV_LOG(ERR,
1241 			"Unsupported size of Rx buffer: %zu (min size: %d)\n",
1242 			buffer_size, ENA_RX_BUF_MIN_SIZE);
1243 		return -EINVAL;
1244 	}
1245 
1246 	rxq->port_id = dev->data->port_id;
1247 	rxq->next_to_clean = 0;
1248 	rxq->next_to_use = 0;
1249 	rxq->ring_size = nb_desc;
1250 	rxq->size_mask = nb_desc - 1;
1251 	rxq->numa_socket_id = socket_id;
1252 	rxq->mb_pool = mp;
1253 
1254 	rxq->rx_buffer_info = rte_zmalloc("rxq->buffer_info",
1255 		sizeof(struct ena_rx_buffer) * nb_desc,
1256 		RTE_CACHE_LINE_SIZE);
1257 	if (!rxq->rx_buffer_info) {
1258 		PMD_DRV_LOG(ERR,
1259 			"Failed to allocate memory for Rx buffer info\n");
1260 		return -ENOMEM;
1261 	}
1262 
1263 	rxq->rx_refill_buffer = rte_zmalloc("rxq->rx_refill_buffer",
1264 					    sizeof(struct rte_mbuf *) * nb_desc,
1265 					    RTE_CACHE_LINE_SIZE);
1266 
1267 	if (!rxq->rx_refill_buffer) {
1268 		PMD_DRV_LOG(ERR,
1269 			"Failed to allocate memory for Rx refill buffer\n");
1270 		rte_free(rxq->rx_buffer_info);
1271 		rxq->rx_buffer_info = NULL;
1272 		return -ENOMEM;
1273 	}
1274 
1275 	rxq->empty_rx_reqs = rte_zmalloc("rxq->empty_rx_reqs",
1276 					 sizeof(uint16_t) * nb_desc,
1277 					 RTE_CACHE_LINE_SIZE);
1278 	if (!rxq->empty_rx_reqs) {
1279 		PMD_DRV_LOG(ERR,
1280 			"Failed to allocate memory for empty Rx requests\n");
1281 		rte_free(rxq->rx_buffer_info);
1282 		rxq->rx_buffer_info = NULL;
1283 		rte_free(rxq->rx_refill_buffer);
1284 		rxq->rx_refill_buffer = NULL;
1285 		return -ENOMEM;
1286 	}
1287 
1288 	for (i = 0; i < nb_desc; i++)
1289 		rxq->empty_rx_reqs[i] = i;
1290 
1291 	rxq->offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1292 
1293 	/* Store pointer to this queue in upper layer */
1294 	rxq->configured = 1;
1295 	dev->data->rx_queues[queue_idx] = rxq;
1296 
1297 	return 0;
1298 }
1299 
1300 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
1301 				  struct rte_mbuf *mbuf, uint16_t id)
1302 {
1303 	struct ena_com_buf ebuf;
1304 	int rc;
1305 
1306 	/* prepare physical address for DMA transaction */
1307 	ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1308 	ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1309 
1310 	/* pass resource to device */
1311 	rc = ena_com_add_single_rx_desc(io_sq, &ebuf, id);
1312 	if (unlikely(rc != 0))
1313 		PMD_RX_LOG(WARNING, "Failed adding Rx desc\n");
1314 
1315 	return rc;
1316 }
1317 
1318 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1319 {
1320 	unsigned int i;
1321 	int rc;
1322 	uint16_t next_to_use = rxq->next_to_use;
1323 	uint16_t req_id;
1324 #ifdef RTE_ETHDEV_DEBUG_RX
1325 	uint16_t in_use;
1326 #endif
1327 	struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1328 
1329 	if (unlikely(!count))
1330 		return 0;
1331 
1332 #ifdef RTE_ETHDEV_DEBUG_RX
1333 	in_use = rxq->ring_size - 1 -
1334 		ena_com_free_q_entries(rxq->ena_com_io_sq);
1335 	if (unlikely((in_use + count) >= rxq->ring_size))
1336 		PMD_RX_LOG(ERR, "Bad Rx ring state\n");
1337 #endif
1338 
1339 	/* get resources for incoming packets */
1340 	rc = rte_pktmbuf_alloc_bulk(rxq->mb_pool, mbufs, count);
1341 	if (unlikely(rc < 0)) {
1342 		rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1343 		++rxq->rx_stats.mbuf_alloc_fail;
1344 		PMD_RX_LOG(DEBUG, "There are not enough free buffers\n");
1345 		return 0;
1346 	}
1347 
1348 	for (i = 0; i < count; i++) {
1349 		struct rte_mbuf *mbuf = mbufs[i];
1350 		struct ena_rx_buffer *rx_info;
1351 
1352 		if (likely((i + 4) < count))
1353 			rte_prefetch0(mbufs[i + 4]);
1354 
1355 		req_id = rxq->empty_rx_reqs[next_to_use];
1356 		rx_info = &rxq->rx_buffer_info[req_id];
1357 
1358 		rc = ena_add_single_rx_desc(rxq->ena_com_io_sq, mbuf, req_id);
1359 		if (unlikely(rc != 0))
1360 			break;
1361 
1362 		rx_info->mbuf = mbuf;
1363 		next_to_use = ENA_IDX_NEXT_MASKED(next_to_use, rxq->size_mask);
1364 	}
1365 
1366 	if (unlikely(i < count)) {
1367 		PMD_RX_LOG(WARNING,
1368 			"Refilled Rx queue[%d] with only %d/%d buffers\n",
1369 			rxq->id, i, count);
1370 		rte_pktmbuf_free_bulk(&mbufs[i], count - i);
1371 		++rxq->rx_stats.refill_partial;
1372 	}
1373 
1374 	/* When we submitted free recources to device... */
1375 	if (likely(i > 0)) {
1376 		/* ...let HW know that it can fill buffers with data. */
1377 		ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1378 
1379 		rxq->next_to_use = next_to_use;
1380 	}
1381 
1382 	return i;
1383 }
1384 
1385 static int ena_device_init(struct ena_com_dev *ena_dev,
1386 			   struct rte_pci_device *pdev,
1387 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
1388 			   bool *wd_state)
1389 {
1390 	uint32_t aenq_groups;
1391 	int rc;
1392 	bool readless_supported;
1393 
1394 	/* Initialize mmio registers */
1395 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
1396 	if (rc) {
1397 		PMD_DRV_LOG(ERR, "Failed to init MMIO read less\n");
1398 		return rc;
1399 	}
1400 
1401 	/* The PCIe configuration space revision id indicate if mmio reg
1402 	 * read is disabled.
1403 	 */
1404 	readless_supported = !(pdev->id.class_id & ENA_MMIO_DISABLE_REG_READ);
1405 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1406 
1407 	/* reset device */
1408 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1409 	if (rc) {
1410 		PMD_DRV_LOG(ERR, "Cannot reset device\n");
1411 		goto err_mmio_read_less;
1412 	}
1413 
1414 	/* check FW version */
1415 	rc = ena_com_validate_version(ena_dev);
1416 	if (rc) {
1417 		PMD_DRV_LOG(ERR, "Device version is too low\n");
1418 		goto err_mmio_read_less;
1419 	}
1420 
1421 	ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1422 
1423 	/* ENA device administration layer init */
1424 	rc = ena_com_admin_init(ena_dev, &aenq_handlers);
1425 	if (rc) {
1426 		PMD_DRV_LOG(ERR,
1427 			"Cannot initialize ENA admin queue\n");
1428 		goto err_mmio_read_less;
1429 	}
1430 
1431 	/* To enable the msix interrupts the driver needs to know the number
1432 	 * of queues. So the driver uses polling mode to retrieve this
1433 	 * information.
1434 	 */
1435 	ena_com_set_admin_polling_mode(ena_dev, true);
1436 
1437 	ena_config_host_info(ena_dev);
1438 
1439 	/* Get Device Attributes and features */
1440 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1441 	if (rc) {
1442 		PMD_DRV_LOG(ERR,
1443 			"Cannot get attribute for ENA device, rc: %d\n", rc);
1444 		goto err_admin_init;
1445 	}
1446 
1447 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1448 		      BIT(ENA_ADMIN_NOTIFICATION) |
1449 		      BIT(ENA_ADMIN_KEEP_ALIVE) |
1450 		      BIT(ENA_ADMIN_FATAL_ERROR) |
1451 		      BIT(ENA_ADMIN_WARNING);
1452 
1453 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
1454 	rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
1455 	if (rc) {
1456 		PMD_DRV_LOG(ERR, "Cannot configure AENQ groups, rc: %d\n", rc);
1457 		goto err_admin_init;
1458 	}
1459 
1460 	*wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
1461 
1462 	return 0;
1463 
1464 err_admin_init:
1465 	ena_com_admin_destroy(ena_dev);
1466 
1467 err_mmio_read_less:
1468 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1469 
1470 	return rc;
1471 }
1472 
1473 static void ena_interrupt_handler_rte(void *cb_arg)
1474 {
1475 	struct rte_eth_dev *dev = cb_arg;
1476 	struct ena_adapter *adapter = dev->data->dev_private;
1477 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1478 
1479 	ena_com_admin_q_comp_intr_handler(ena_dev);
1480 	if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED))
1481 		ena_com_aenq_intr_handler(ena_dev, dev);
1482 }
1483 
1484 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1485 {
1486 	if (!adapter->wd_state)
1487 		return;
1488 
1489 	if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1490 		return;
1491 
1492 	if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1493 	    adapter->keep_alive_timeout)) {
1494 		PMD_DRV_LOG(ERR, "Keep alive timeout\n");
1495 		adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
1496 		adapter->trigger_reset = true;
1497 		++adapter->dev_stats.wd_expired;
1498 	}
1499 }
1500 
1501 /* Check if admin queue is enabled */
1502 static void check_for_admin_com_state(struct ena_adapter *adapter)
1503 {
1504 	if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1505 		PMD_DRV_LOG(ERR, "ENA admin queue is not in running state\n");
1506 		adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
1507 		adapter->trigger_reset = true;
1508 	}
1509 }
1510 
1511 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
1512 				  void *arg)
1513 {
1514 	struct rte_eth_dev *dev = arg;
1515 	struct ena_adapter *adapter = dev->data->dev_private;
1516 
1517 	check_for_missing_keep_alive(adapter);
1518 	check_for_admin_com_state(adapter);
1519 
1520 	if (unlikely(adapter->trigger_reset)) {
1521 		PMD_DRV_LOG(ERR, "Trigger reset is on\n");
1522 		rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
1523 			NULL);
1524 	}
1525 }
1526 
1527 static inline void
1528 set_default_llq_configurations(struct ena_llq_configurations *llq_config,
1529 			       struct ena_admin_feature_llq_desc *llq,
1530 			       bool use_large_llq_hdr)
1531 {
1532 	llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
1533 	llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
1534 	llq_config->llq_num_decs_before_header =
1535 		ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
1536 
1537 	if (use_large_llq_hdr &&
1538 	    (llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B)) {
1539 		llq_config->llq_ring_entry_size =
1540 			ENA_ADMIN_LIST_ENTRY_SIZE_256B;
1541 		llq_config->llq_ring_entry_size_value = 256;
1542 	} else {
1543 		llq_config->llq_ring_entry_size =
1544 			ENA_ADMIN_LIST_ENTRY_SIZE_128B;
1545 		llq_config->llq_ring_entry_size_value = 128;
1546 	}
1547 }
1548 
1549 static int
1550 ena_set_queues_placement_policy(struct ena_adapter *adapter,
1551 				struct ena_com_dev *ena_dev,
1552 				struct ena_admin_feature_llq_desc *llq,
1553 				struct ena_llq_configurations *llq_default_configurations)
1554 {
1555 	int rc;
1556 	u32 llq_feature_mask;
1557 
1558 	llq_feature_mask = 1 << ENA_ADMIN_LLQ;
1559 	if (!(ena_dev->supported_features & llq_feature_mask)) {
1560 		PMD_DRV_LOG(INFO,
1561 			"LLQ is not supported. Fallback to host mode policy.\n");
1562 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1563 		return 0;
1564 	}
1565 
1566 	rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
1567 	if (unlikely(rc)) {
1568 		PMD_INIT_LOG(WARNING,
1569 			"Failed to config dev mode. Fallback to host mode policy.\n");
1570 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1571 		return 0;
1572 	}
1573 
1574 	/* Nothing to config, exit */
1575 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1576 		return 0;
1577 
1578 	if (!adapter->dev_mem_base) {
1579 		PMD_DRV_LOG(ERR,
1580 			"Unable to access LLQ BAR resource. Fallback to host mode policy.\n");
1581 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1582 		return 0;
1583 	}
1584 
1585 	ena_dev->mem_bar = adapter->dev_mem_base;
1586 
1587 	return 0;
1588 }
1589 
1590 static uint32_t ena_calc_max_io_queue_num(struct ena_com_dev *ena_dev,
1591 	struct ena_com_dev_get_features_ctx *get_feat_ctx)
1592 {
1593 	uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
1594 
1595 	/* Regular queues capabilities */
1596 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1597 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1598 			&get_feat_ctx->max_queue_ext.max_queue_ext;
1599 		io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
1600 				    max_queue_ext->max_rx_cq_num);
1601 		io_tx_sq_num = max_queue_ext->max_tx_sq_num;
1602 		io_tx_cq_num = max_queue_ext->max_tx_cq_num;
1603 	} else {
1604 		struct ena_admin_queue_feature_desc *max_queues =
1605 			&get_feat_ctx->max_queues;
1606 		io_tx_sq_num = max_queues->max_sq_num;
1607 		io_tx_cq_num = max_queues->max_cq_num;
1608 		io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
1609 	}
1610 
1611 	/* In case of LLQ use the llq number in the get feature cmd */
1612 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
1613 		io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
1614 
1615 	max_num_io_queues = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
1616 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_sq_num);
1617 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_cq_num);
1618 
1619 	if (unlikely(max_num_io_queues == 0)) {
1620 		PMD_DRV_LOG(ERR, "Number of IO queues cannot not be 0\n");
1621 		return -EFAULT;
1622 	}
1623 
1624 	return max_num_io_queues;
1625 }
1626 
1627 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
1628 {
1629 	struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
1630 	struct rte_pci_device *pci_dev;
1631 	struct rte_intr_handle *intr_handle;
1632 	struct ena_adapter *adapter = eth_dev->data->dev_private;
1633 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1634 	struct ena_com_dev_get_features_ctx get_feat_ctx;
1635 	struct ena_llq_configurations llq_config;
1636 	const char *queue_type_str;
1637 	uint32_t max_num_io_queues;
1638 	int rc;
1639 	static int adapters_found;
1640 	bool disable_meta_caching;
1641 	bool wd_state = false;
1642 
1643 	eth_dev->dev_ops = &ena_dev_ops;
1644 	eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
1645 	eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
1646 	eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
1647 
1648 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1649 		return 0;
1650 
1651 	eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
1652 
1653 	memset(adapter, 0, sizeof(struct ena_adapter));
1654 	ena_dev = &adapter->ena_dev;
1655 
1656 	adapter->edev_data = eth_dev->data;
1657 
1658 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1659 
1660 	PMD_INIT_LOG(INFO, "Initializing %x:%x:%x.%d\n",
1661 		     pci_dev->addr.domain,
1662 		     pci_dev->addr.bus,
1663 		     pci_dev->addr.devid,
1664 		     pci_dev->addr.function);
1665 
1666 	intr_handle = &pci_dev->intr_handle;
1667 
1668 	adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
1669 	adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
1670 
1671 	if (!adapter->regs) {
1672 		PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)\n",
1673 			     ENA_REGS_BAR);
1674 		return -ENXIO;
1675 	}
1676 
1677 	ena_dev->reg_bar = adapter->regs;
1678 	/* This is a dummy pointer for ena_com functions. */
1679 	ena_dev->dmadev = adapter;
1680 
1681 	adapter->id_number = adapters_found;
1682 
1683 	snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
1684 		 adapter->id_number);
1685 
1686 	rc = ena_parse_devargs(adapter, pci_dev->device.devargs);
1687 	if (rc != 0) {
1688 		PMD_INIT_LOG(CRIT, "Failed to parse devargs\n");
1689 		goto err;
1690 	}
1691 
1692 	/* device specific initialization routine */
1693 	rc = ena_device_init(ena_dev, pci_dev, &get_feat_ctx, &wd_state);
1694 	if (rc) {
1695 		PMD_INIT_LOG(CRIT, "Failed to init ENA device\n");
1696 		goto err;
1697 	}
1698 	adapter->wd_state = wd_state;
1699 
1700 	set_default_llq_configurations(&llq_config, &get_feat_ctx.llq,
1701 		adapter->use_large_llq_hdr);
1702 	rc = ena_set_queues_placement_policy(adapter, ena_dev,
1703 					     &get_feat_ctx.llq, &llq_config);
1704 	if (unlikely(rc)) {
1705 		PMD_INIT_LOG(CRIT, "Failed to set placement policy\n");
1706 		return rc;
1707 	}
1708 
1709 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1710 		queue_type_str = "Regular";
1711 	else
1712 		queue_type_str = "Low latency";
1713 	PMD_DRV_LOG(INFO, "Placement policy: %s\n", queue_type_str);
1714 
1715 	calc_queue_ctx.ena_dev = ena_dev;
1716 	calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
1717 
1718 	max_num_io_queues = ena_calc_max_io_queue_num(ena_dev, &get_feat_ctx);
1719 	rc = ena_calc_io_queue_size(&calc_queue_ctx,
1720 		adapter->use_large_llq_hdr);
1721 	if (unlikely((rc != 0) || (max_num_io_queues == 0))) {
1722 		rc = -EFAULT;
1723 		goto err_device_destroy;
1724 	}
1725 
1726 	adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
1727 	adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
1728 	adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
1729 	adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
1730 	adapter->max_num_io_queues = max_num_io_queues;
1731 
1732 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1733 		disable_meta_caching =
1734 			!!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
1735 			BIT(ENA_ADMIN_DISABLE_META_CACHING));
1736 	} else {
1737 		disable_meta_caching = false;
1738 	}
1739 
1740 	/* prepare ring structures */
1741 	ena_init_rings(adapter, disable_meta_caching);
1742 
1743 	ena_config_debug_area(adapter);
1744 
1745 	/* Set max MTU for this device */
1746 	adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
1747 
1748 	/* set device support for offloads */
1749 	adapter->offloads.tso4_supported = (get_feat_ctx.offload.tx &
1750 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) != 0;
1751 	adapter->offloads.tx_csum_supported = (get_feat_ctx.offload.tx &
1752 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK) != 0;
1753 	adapter->offloads.rx_csum_supported =
1754 		(get_feat_ctx.offload.rx_supported &
1755 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK) != 0;
1756 	adapter->offloads.rss_hash_supported =
1757 		(get_feat_ctx.offload.rx_supported &
1758 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_HASH_MASK) != 0;
1759 
1760 	/* Copy MAC address and point DPDK to it */
1761 	eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr;
1762 	rte_ether_addr_copy((struct rte_ether_addr *)
1763 			get_feat_ctx.dev_attr.mac_addr,
1764 			(struct rte_ether_addr *)adapter->mac_addr);
1765 
1766 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
1767 	if (unlikely(rc != 0)) {
1768 		PMD_DRV_LOG(ERR, "Failed to initialize RSS in ENA device\n");
1769 		goto err_delete_debug_area;
1770 	}
1771 
1772 	adapter->drv_stats = rte_zmalloc("adapter stats",
1773 					 sizeof(*adapter->drv_stats),
1774 					 RTE_CACHE_LINE_SIZE);
1775 	if (!adapter->drv_stats) {
1776 		PMD_DRV_LOG(ERR,
1777 			"Failed to allocate memory for adapter statistics\n");
1778 		rc = -ENOMEM;
1779 		goto err_rss_destroy;
1780 	}
1781 
1782 	rte_spinlock_init(&adapter->admin_lock);
1783 
1784 	rte_intr_callback_register(intr_handle,
1785 				   ena_interrupt_handler_rte,
1786 				   eth_dev);
1787 	rte_intr_enable(intr_handle);
1788 	ena_com_set_admin_polling_mode(ena_dev, false);
1789 	ena_com_admin_aenq_enable(ena_dev);
1790 
1791 	if (adapters_found == 0)
1792 		rte_timer_subsystem_init();
1793 	rte_timer_init(&adapter->timer_wd);
1794 
1795 	adapters_found++;
1796 	adapter->state = ENA_ADAPTER_STATE_INIT;
1797 
1798 	return 0;
1799 
1800 err_rss_destroy:
1801 	ena_com_rss_destroy(ena_dev);
1802 err_delete_debug_area:
1803 	ena_com_delete_debug_area(ena_dev);
1804 
1805 err_device_destroy:
1806 	ena_com_delete_host_info(ena_dev);
1807 	ena_com_admin_destroy(ena_dev);
1808 
1809 err:
1810 	return rc;
1811 }
1812 
1813 static void ena_destroy_device(struct rte_eth_dev *eth_dev)
1814 {
1815 	struct ena_adapter *adapter = eth_dev->data->dev_private;
1816 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1817 
1818 	if (adapter->state == ENA_ADAPTER_STATE_FREE)
1819 		return;
1820 
1821 	ena_com_set_admin_running_state(ena_dev, false);
1822 
1823 	if (adapter->state != ENA_ADAPTER_STATE_CLOSED)
1824 		ena_close(eth_dev);
1825 
1826 	ena_com_rss_destroy(ena_dev);
1827 
1828 	ena_com_delete_debug_area(ena_dev);
1829 	ena_com_delete_host_info(ena_dev);
1830 
1831 	ena_com_abort_admin_commands(ena_dev);
1832 	ena_com_wait_for_abort_completion(ena_dev);
1833 	ena_com_admin_destroy(ena_dev);
1834 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1835 
1836 	adapter->state = ENA_ADAPTER_STATE_FREE;
1837 }
1838 
1839 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
1840 {
1841 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1842 		return 0;
1843 
1844 	ena_destroy_device(eth_dev);
1845 
1846 	return 0;
1847 }
1848 
1849 static int ena_dev_configure(struct rte_eth_dev *dev)
1850 {
1851 	struct ena_adapter *adapter = dev->data->dev_private;
1852 
1853 	adapter->state = ENA_ADAPTER_STATE_CONFIG;
1854 
1855 	if (dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG)
1856 		dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
1857 	dev->data->dev_conf.txmode.offloads |= DEV_TX_OFFLOAD_MULTI_SEGS;
1858 
1859 	adapter->tx_selected_offloads = dev->data->dev_conf.txmode.offloads;
1860 	adapter->rx_selected_offloads = dev->data->dev_conf.rxmode.offloads;
1861 	return 0;
1862 }
1863 
1864 static void ena_init_rings(struct ena_adapter *adapter,
1865 			   bool disable_meta_caching)
1866 {
1867 	size_t i;
1868 
1869 	for (i = 0; i < adapter->max_num_io_queues; i++) {
1870 		struct ena_ring *ring = &adapter->tx_ring[i];
1871 
1872 		ring->configured = 0;
1873 		ring->type = ENA_RING_TYPE_TX;
1874 		ring->adapter = adapter;
1875 		ring->id = i;
1876 		ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
1877 		ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
1878 		ring->sgl_size = adapter->max_tx_sgl_size;
1879 		ring->disable_meta_caching = disable_meta_caching;
1880 	}
1881 
1882 	for (i = 0; i < adapter->max_num_io_queues; i++) {
1883 		struct ena_ring *ring = &adapter->rx_ring[i];
1884 
1885 		ring->configured = 0;
1886 		ring->type = ENA_RING_TYPE_RX;
1887 		ring->adapter = adapter;
1888 		ring->id = i;
1889 		ring->sgl_size = adapter->max_rx_sgl_size;
1890 	}
1891 }
1892 
1893 static int ena_infos_get(struct rte_eth_dev *dev,
1894 			  struct rte_eth_dev_info *dev_info)
1895 {
1896 	struct ena_adapter *adapter;
1897 	struct ena_com_dev *ena_dev;
1898 	uint64_t rx_feat = 0, tx_feat = 0;
1899 
1900 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
1901 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
1902 	adapter = dev->data->dev_private;
1903 
1904 	ena_dev = &adapter->ena_dev;
1905 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
1906 
1907 	dev_info->speed_capa =
1908 			ETH_LINK_SPEED_1G   |
1909 			ETH_LINK_SPEED_2_5G |
1910 			ETH_LINK_SPEED_5G   |
1911 			ETH_LINK_SPEED_10G  |
1912 			ETH_LINK_SPEED_25G  |
1913 			ETH_LINK_SPEED_40G  |
1914 			ETH_LINK_SPEED_50G  |
1915 			ETH_LINK_SPEED_100G;
1916 
1917 	/* Set Tx & Rx features available for device */
1918 	if (adapter->offloads.tso4_supported)
1919 		tx_feat	|= DEV_TX_OFFLOAD_TCP_TSO;
1920 
1921 	if (adapter->offloads.tx_csum_supported)
1922 		tx_feat |= DEV_TX_OFFLOAD_IPV4_CKSUM |
1923 			DEV_TX_OFFLOAD_UDP_CKSUM |
1924 			DEV_TX_OFFLOAD_TCP_CKSUM;
1925 
1926 	if (adapter->offloads.rx_csum_supported)
1927 		rx_feat |= DEV_RX_OFFLOAD_IPV4_CKSUM |
1928 			DEV_RX_OFFLOAD_UDP_CKSUM  |
1929 			DEV_RX_OFFLOAD_TCP_CKSUM;
1930 
1931 	rx_feat |= DEV_RX_OFFLOAD_JUMBO_FRAME;
1932 	tx_feat |= DEV_TX_OFFLOAD_MULTI_SEGS;
1933 
1934 	/* Inform framework about available features */
1935 	dev_info->rx_offload_capa = rx_feat;
1936 	if (adapter->offloads.rss_hash_supported)
1937 		dev_info->rx_offload_capa |= DEV_RX_OFFLOAD_RSS_HASH;
1938 	dev_info->rx_queue_offload_capa = rx_feat;
1939 	dev_info->tx_offload_capa = tx_feat;
1940 	dev_info->tx_queue_offload_capa = tx_feat;
1941 
1942 	dev_info->flow_type_rss_offloads = ENA_ALL_RSS_HF;
1943 	dev_info->hash_key_size = ENA_HASH_KEY_SIZE;
1944 
1945 	dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
1946 	dev_info->max_rx_pktlen  = adapter->max_mtu;
1947 	dev_info->max_mac_addrs = 1;
1948 
1949 	dev_info->max_rx_queues = adapter->max_num_io_queues;
1950 	dev_info->max_tx_queues = adapter->max_num_io_queues;
1951 	dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
1952 
1953 	adapter->tx_supported_offloads = tx_feat;
1954 	adapter->rx_supported_offloads = rx_feat;
1955 
1956 	dev_info->rx_desc_lim.nb_max = adapter->max_rx_ring_size;
1957 	dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
1958 	dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
1959 					adapter->max_rx_sgl_size);
1960 	dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
1961 					adapter->max_rx_sgl_size);
1962 
1963 	dev_info->tx_desc_lim.nb_max = adapter->max_tx_ring_size;
1964 	dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
1965 	dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
1966 					adapter->max_tx_sgl_size);
1967 	dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
1968 					adapter->max_tx_sgl_size);
1969 
1970 	dev_info->default_rxportconf.ring_size = ENA_DEFAULT_RING_SIZE;
1971 	dev_info->default_txportconf.ring_size = ENA_DEFAULT_RING_SIZE;
1972 
1973 	return 0;
1974 }
1975 
1976 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len)
1977 {
1978 	mbuf->data_len = len;
1979 	mbuf->data_off = RTE_PKTMBUF_HEADROOM;
1980 	mbuf->refcnt = 1;
1981 	mbuf->next = NULL;
1982 }
1983 
1984 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
1985 				    struct ena_com_rx_buf_info *ena_bufs,
1986 				    uint32_t descs,
1987 				    uint16_t *next_to_clean,
1988 				    uint8_t offset)
1989 {
1990 	struct rte_mbuf *mbuf;
1991 	struct rte_mbuf *mbuf_head;
1992 	struct ena_rx_buffer *rx_info;
1993 	int rc;
1994 	uint16_t ntc, len, req_id, buf = 0;
1995 
1996 	if (unlikely(descs == 0))
1997 		return NULL;
1998 
1999 	ntc = *next_to_clean;
2000 
2001 	len = ena_bufs[buf].len;
2002 	req_id = ena_bufs[buf].req_id;
2003 
2004 	rx_info = &rx_ring->rx_buffer_info[req_id];
2005 
2006 	mbuf = rx_info->mbuf;
2007 	RTE_ASSERT(mbuf != NULL);
2008 
2009 	ena_init_rx_mbuf(mbuf, len);
2010 
2011 	/* Fill the mbuf head with the data specific for 1st segment. */
2012 	mbuf_head = mbuf;
2013 	mbuf_head->nb_segs = descs;
2014 	mbuf_head->port = rx_ring->port_id;
2015 	mbuf_head->pkt_len = len;
2016 	mbuf_head->data_off += offset;
2017 
2018 	rx_info->mbuf = NULL;
2019 	rx_ring->empty_rx_reqs[ntc] = req_id;
2020 	ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2021 
2022 	while (--descs) {
2023 		++buf;
2024 		len = ena_bufs[buf].len;
2025 		req_id = ena_bufs[buf].req_id;
2026 
2027 		rx_info = &rx_ring->rx_buffer_info[req_id];
2028 		RTE_ASSERT(rx_info->mbuf != NULL);
2029 
2030 		if (unlikely(len == 0)) {
2031 			/*
2032 			 * Some devices can pass descriptor with the length 0.
2033 			 * To avoid confusion, the PMD is simply putting the
2034 			 * descriptor back, as it was never used. We'll avoid
2035 			 * mbuf allocation that way.
2036 			 */
2037 			rc = ena_add_single_rx_desc(rx_ring->ena_com_io_sq,
2038 				rx_info->mbuf, req_id);
2039 			if (unlikely(rc != 0)) {
2040 				/* Free the mbuf in case of an error. */
2041 				rte_mbuf_raw_free(rx_info->mbuf);
2042 			} else {
2043 				/*
2044 				 * If there was no error, just exit the loop as
2045 				 * 0 length descriptor is always the last one.
2046 				 */
2047 				break;
2048 			}
2049 		} else {
2050 			/* Create an mbuf chain. */
2051 			mbuf->next = rx_info->mbuf;
2052 			mbuf = mbuf->next;
2053 
2054 			ena_init_rx_mbuf(mbuf, len);
2055 			mbuf_head->pkt_len += len;
2056 		}
2057 
2058 		/*
2059 		 * Mark the descriptor as depleted and perform necessary
2060 		 * cleanup.
2061 		 * This code will execute in two cases:
2062 		 *  1. Descriptor len was greater than 0 - normal situation.
2063 		 *  2. Descriptor len was 0 and we failed to add the descriptor
2064 		 *     to the device. In that situation, we should try to add
2065 		 *     the mbuf again in the populate routine and mark the
2066 		 *     descriptor as used up by the device.
2067 		 */
2068 		rx_info->mbuf = NULL;
2069 		rx_ring->empty_rx_reqs[ntc] = req_id;
2070 		ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2071 	}
2072 
2073 	*next_to_clean = ntc;
2074 
2075 	return mbuf_head;
2076 }
2077 
2078 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
2079 				  uint16_t nb_pkts)
2080 {
2081 	struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
2082 	unsigned int free_queue_entries;
2083 	unsigned int refill_threshold;
2084 	uint16_t next_to_clean = rx_ring->next_to_clean;
2085 	uint16_t descs_in_use;
2086 	struct rte_mbuf *mbuf;
2087 	uint16_t completed;
2088 	struct ena_com_rx_ctx ena_rx_ctx;
2089 	int i, rc = 0;
2090 	bool fill_hash;
2091 
2092 #ifdef RTE_ETHDEV_DEBUG_RX
2093 	/* Check adapter state */
2094 	if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2095 		PMD_RX_LOG(ALERT,
2096 			"Trying to receive pkts while device is NOT running\n");
2097 		return 0;
2098 	}
2099 #endif
2100 
2101 	fill_hash = rx_ring->offloads & DEV_RX_OFFLOAD_RSS_HASH;
2102 
2103 	descs_in_use = rx_ring->ring_size -
2104 		ena_com_free_q_entries(rx_ring->ena_com_io_sq) - 1;
2105 	nb_pkts = RTE_MIN(descs_in_use, nb_pkts);
2106 
2107 	for (completed = 0; completed < nb_pkts; completed++) {
2108 		ena_rx_ctx.max_bufs = rx_ring->sgl_size;
2109 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
2110 		ena_rx_ctx.descs = 0;
2111 		ena_rx_ctx.pkt_offset = 0;
2112 		/* receive packet context */
2113 		rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
2114 				    rx_ring->ena_com_io_sq,
2115 				    &ena_rx_ctx);
2116 		if (unlikely(rc)) {
2117 			PMD_RX_LOG(ERR,
2118 				"Failed to get the packet from the device, rc: %d\n",
2119 				rc);
2120 			if (rc == ENA_COM_NO_SPACE) {
2121 				++rx_ring->rx_stats.bad_desc_num;
2122 				rx_ring->adapter->reset_reason =
2123 					ENA_REGS_RESET_TOO_MANY_RX_DESCS;
2124 			} else {
2125 				++rx_ring->rx_stats.bad_req_id;
2126 				rx_ring->adapter->reset_reason =
2127 					ENA_REGS_RESET_INV_RX_REQ_ID;
2128 			}
2129 			rx_ring->adapter->trigger_reset = true;
2130 			return 0;
2131 		}
2132 
2133 		mbuf = ena_rx_mbuf(rx_ring,
2134 			ena_rx_ctx.ena_bufs,
2135 			ena_rx_ctx.descs,
2136 			&next_to_clean,
2137 			ena_rx_ctx.pkt_offset);
2138 		if (unlikely(mbuf == NULL)) {
2139 			for (i = 0; i < ena_rx_ctx.descs; ++i) {
2140 				rx_ring->empty_rx_reqs[next_to_clean] =
2141 					rx_ring->ena_bufs[i].req_id;
2142 				next_to_clean = ENA_IDX_NEXT_MASKED(
2143 					next_to_clean, rx_ring->size_mask);
2144 			}
2145 			break;
2146 		}
2147 
2148 		/* fill mbuf attributes if any */
2149 		ena_rx_mbuf_prepare(mbuf, &ena_rx_ctx, fill_hash);
2150 
2151 		if (unlikely(mbuf->ol_flags &
2152 				(PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD))) {
2153 			rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors);
2154 			++rx_ring->rx_stats.bad_csum;
2155 		}
2156 
2157 		rx_pkts[completed] = mbuf;
2158 		rx_ring->rx_stats.bytes += mbuf->pkt_len;
2159 	}
2160 
2161 	rx_ring->rx_stats.cnt += completed;
2162 	rx_ring->next_to_clean = next_to_clean;
2163 
2164 	free_queue_entries = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
2165 	refill_threshold =
2166 		RTE_MIN(rx_ring->ring_size / ENA_REFILL_THRESH_DIVIDER,
2167 		(unsigned int)ENA_REFILL_THRESH_PACKET);
2168 
2169 	/* Burst refill to save doorbells, memory barriers, const interval */
2170 	if (free_queue_entries > refill_threshold) {
2171 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
2172 		ena_populate_rx_queue(rx_ring, free_queue_entries);
2173 	}
2174 
2175 	return completed;
2176 }
2177 
2178 static uint16_t
2179 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2180 		uint16_t nb_pkts)
2181 {
2182 	int32_t ret;
2183 	uint32_t i;
2184 	struct rte_mbuf *m;
2185 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2186 	struct rte_ipv4_hdr *ip_hdr;
2187 	uint64_t ol_flags;
2188 	uint16_t frag_field;
2189 
2190 	for (i = 0; i != nb_pkts; i++) {
2191 		m = tx_pkts[i];
2192 		ol_flags = m->ol_flags;
2193 
2194 		if (!(ol_flags & PKT_TX_IPV4))
2195 			continue;
2196 
2197 		/* If there was not L2 header length specified, assume it is
2198 		 * length of the ethernet header.
2199 		 */
2200 		if (unlikely(m->l2_len == 0))
2201 			m->l2_len = sizeof(struct rte_ether_hdr);
2202 
2203 		ip_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *,
2204 						 m->l2_len);
2205 		frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
2206 
2207 		if ((frag_field & RTE_IPV4_HDR_DF_FLAG) != 0) {
2208 			m->packet_type |= RTE_PTYPE_L4_NONFRAG;
2209 
2210 			/* If IPv4 header has DF flag enabled and TSO support is
2211 			 * disabled, partial chcecksum should not be calculated.
2212 			 */
2213 			if (!tx_ring->adapter->offloads.tso4_supported)
2214 				continue;
2215 		}
2216 
2217 		if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) != 0 ||
2218 				(ol_flags & PKT_TX_L4_MASK) ==
2219 				PKT_TX_SCTP_CKSUM) {
2220 			rte_errno = ENOTSUP;
2221 			return i;
2222 		}
2223 
2224 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2225 		ret = rte_validate_tx_offload(m);
2226 		if (ret != 0) {
2227 			rte_errno = -ret;
2228 			return i;
2229 		}
2230 #endif
2231 
2232 		/* In case we are supposed to TSO and have DF not set (DF=0)
2233 		 * hardware must be provided with partial checksum, otherwise
2234 		 * it will take care of necessary calculations.
2235 		 */
2236 
2237 		ret = rte_net_intel_cksum_flags_prepare(m,
2238 			ol_flags & ~PKT_TX_TCP_SEG);
2239 		if (ret != 0) {
2240 			rte_errno = -ret;
2241 			return i;
2242 		}
2243 	}
2244 
2245 	return i;
2246 }
2247 
2248 static void ena_update_hints(struct ena_adapter *adapter,
2249 			     struct ena_admin_ena_hw_hints *hints)
2250 {
2251 	if (hints->admin_completion_tx_timeout)
2252 		adapter->ena_dev.admin_queue.completion_timeout =
2253 			hints->admin_completion_tx_timeout * 1000;
2254 
2255 	if (hints->mmio_read_timeout)
2256 		/* convert to usec */
2257 		adapter->ena_dev.mmio_read.reg_read_to =
2258 			hints->mmio_read_timeout * 1000;
2259 
2260 	if (hints->driver_watchdog_timeout) {
2261 		if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
2262 			adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
2263 		else
2264 			// Convert msecs to ticks
2265 			adapter->keep_alive_timeout =
2266 				(hints->driver_watchdog_timeout *
2267 				rte_get_timer_hz()) / 1000;
2268 	}
2269 }
2270 
2271 static int ena_check_space_and_linearize_mbuf(struct ena_ring *tx_ring,
2272 					      struct rte_mbuf *mbuf)
2273 {
2274 	struct ena_com_dev *ena_dev;
2275 	int num_segments, header_len, rc;
2276 
2277 	ena_dev = &tx_ring->adapter->ena_dev;
2278 	num_segments = mbuf->nb_segs;
2279 	header_len = mbuf->data_len;
2280 
2281 	if (likely(num_segments < tx_ring->sgl_size))
2282 		goto checkspace;
2283 
2284 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
2285 	    (num_segments == tx_ring->sgl_size) &&
2286 	    (header_len < tx_ring->tx_max_header_size))
2287 		goto checkspace;
2288 
2289 	/* Checking for space for 2 additional metadata descriptors due to
2290 	 * possible header split and metadata descriptor. Linearization will
2291 	 * be needed so we reduce the segments number from num_segments to 1
2292 	 */
2293 	if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 3)) {
2294 		PMD_TX_LOG(DEBUG, "Not enough space in the Tx queue\n");
2295 		return ENA_COM_NO_MEM;
2296 	}
2297 	++tx_ring->tx_stats.linearize;
2298 	rc = rte_pktmbuf_linearize(mbuf);
2299 	if (unlikely(rc)) {
2300 		PMD_TX_LOG(WARNING, "Mbuf linearize failed\n");
2301 		rte_atomic64_inc(&tx_ring->adapter->drv_stats->ierrors);
2302 		++tx_ring->tx_stats.linearize_failed;
2303 		return rc;
2304 	}
2305 
2306 	return 0;
2307 
2308 checkspace:
2309 	/* Checking for space for 2 additional metadata descriptors due to
2310 	 * possible header split and metadata descriptor
2311 	 */
2312 	if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
2313 					  num_segments + 2)) {
2314 		PMD_TX_LOG(DEBUG, "Not enough space in the Tx queue\n");
2315 		return ENA_COM_NO_MEM;
2316 	}
2317 
2318 	return 0;
2319 }
2320 
2321 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
2322 	struct ena_tx_buffer *tx_info,
2323 	struct rte_mbuf *mbuf,
2324 	void **push_header,
2325 	uint16_t *header_len)
2326 {
2327 	struct ena_com_buf *ena_buf;
2328 	uint16_t delta, seg_len, push_len;
2329 
2330 	delta = 0;
2331 	seg_len = mbuf->data_len;
2332 
2333 	tx_info->mbuf = mbuf;
2334 	ena_buf = tx_info->bufs;
2335 
2336 	if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2337 		/*
2338 		 * Tx header might be (and will be in most cases) smaller than
2339 		 * tx_max_header_size. But it's not an issue to send more data
2340 		 * to the device, than actually needed if the mbuf size is
2341 		 * greater than tx_max_header_size.
2342 		 */
2343 		push_len = RTE_MIN(mbuf->pkt_len, tx_ring->tx_max_header_size);
2344 		*header_len = push_len;
2345 
2346 		if (likely(push_len <= seg_len)) {
2347 			/* If the push header is in the single segment, then
2348 			 * just point it to the 1st mbuf data.
2349 			 */
2350 			*push_header = rte_pktmbuf_mtod(mbuf, uint8_t *);
2351 		} else {
2352 			/* If the push header lays in the several segments, copy
2353 			 * it to the intermediate buffer.
2354 			 */
2355 			rte_pktmbuf_read(mbuf, 0, push_len,
2356 				tx_ring->push_buf_intermediate_buf);
2357 			*push_header = tx_ring->push_buf_intermediate_buf;
2358 			delta = push_len - seg_len;
2359 		}
2360 	} else {
2361 		*push_header = NULL;
2362 		*header_len = 0;
2363 		push_len = 0;
2364 	}
2365 
2366 	/* Process first segment taking into consideration pushed header */
2367 	if (seg_len > push_len) {
2368 		ena_buf->paddr = mbuf->buf_iova +
2369 				mbuf->data_off +
2370 				push_len;
2371 		ena_buf->len = seg_len - push_len;
2372 		ena_buf++;
2373 		tx_info->num_of_bufs++;
2374 	}
2375 
2376 	while ((mbuf = mbuf->next) != NULL) {
2377 		seg_len = mbuf->data_len;
2378 
2379 		/* Skip mbufs if whole data is pushed as a header */
2380 		if (unlikely(delta > seg_len)) {
2381 			delta -= seg_len;
2382 			continue;
2383 		}
2384 
2385 		ena_buf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
2386 		ena_buf->len = seg_len - delta;
2387 		ena_buf++;
2388 		tx_info->num_of_bufs++;
2389 
2390 		delta = 0;
2391 	}
2392 }
2393 
2394 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf)
2395 {
2396 	struct ena_tx_buffer *tx_info;
2397 	struct ena_com_tx_ctx ena_tx_ctx = { { 0 } };
2398 	uint16_t next_to_use;
2399 	uint16_t header_len;
2400 	uint16_t req_id;
2401 	void *push_header;
2402 	int nb_hw_desc;
2403 	int rc;
2404 
2405 	rc = ena_check_space_and_linearize_mbuf(tx_ring, mbuf);
2406 	if (unlikely(rc))
2407 		return rc;
2408 
2409 	next_to_use = tx_ring->next_to_use;
2410 
2411 	req_id = tx_ring->empty_tx_reqs[next_to_use];
2412 	tx_info = &tx_ring->tx_buffer_info[req_id];
2413 	tx_info->num_of_bufs = 0;
2414 
2415 	ena_tx_map_mbuf(tx_ring, tx_info, mbuf, &push_header, &header_len);
2416 
2417 	ena_tx_ctx.ena_bufs = tx_info->bufs;
2418 	ena_tx_ctx.push_header = push_header;
2419 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2420 	ena_tx_ctx.req_id = req_id;
2421 	ena_tx_ctx.header_len = header_len;
2422 
2423 	/* Set Tx offloads flags, if applicable */
2424 	ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads,
2425 		tx_ring->disable_meta_caching);
2426 
2427 	if (unlikely(ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
2428 			&ena_tx_ctx))) {
2429 		PMD_TX_LOG(DEBUG,
2430 			"LLQ Tx max burst size of queue %d achieved, writing doorbell to send burst\n",
2431 			tx_ring->id);
2432 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2433 		tx_ring->tx_stats.doorbells++;
2434 		tx_ring->pkts_without_db = false;
2435 	}
2436 
2437 	/* prepare the packet's descriptors to dma engine */
2438 	rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq,	&ena_tx_ctx,
2439 		&nb_hw_desc);
2440 	if (unlikely(rc)) {
2441 		PMD_DRV_LOG(ERR, "Failed to prepare Tx buffers, rc: %d\n", rc);
2442 		++tx_ring->tx_stats.prepare_ctx_err;
2443 		tx_ring->adapter->reset_reason =
2444 		    ENA_REGS_RESET_DRIVER_INVALID_STATE;
2445 		tx_ring->adapter->trigger_reset = true;
2446 		return rc;
2447 	}
2448 
2449 	tx_info->tx_descs = nb_hw_desc;
2450 
2451 	tx_ring->tx_stats.cnt++;
2452 	tx_ring->tx_stats.bytes += mbuf->pkt_len;
2453 
2454 	tx_ring->next_to_use = ENA_IDX_NEXT_MASKED(next_to_use,
2455 		tx_ring->size_mask);
2456 
2457 	return 0;
2458 }
2459 
2460 static void ena_tx_cleanup(struct ena_ring *tx_ring)
2461 {
2462 	unsigned int cleanup_budget;
2463 	unsigned int total_tx_descs = 0;
2464 	uint16_t next_to_clean = tx_ring->next_to_clean;
2465 
2466 	cleanup_budget = RTE_MIN(tx_ring->ring_size / ENA_REFILL_THRESH_DIVIDER,
2467 		(unsigned int)ENA_REFILL_THRESH_PACKET);
2468 
2469 	while (likely(total_tx_descs < cleanup_budget)) {
2470 		struct rte_mbuf *mbuf;
2471 		struct ena_tx_buffer *tx_info;
2472 		uint16_t req_id;
2473 
2474 		if (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) != 0)
2475 			break;
2476 
2477 		if (unlikely(validate_tx_req_id(tx_ring, req_id) != 0))
2478 			break;
2479 
2480 		/* Get Tx info & store how many descs were processed  */
2481 		tx_info = &tx_ring->tx_buffer_info[req_id];
2482 
2483 		mbuf = tx_info->mbuf;
2484 		rte_pktmbuf_free(mbuf);
2485 
2486 		tx_info->mbuf = NULL;
2487 		tx_ring->empty_tx_reqs[next_to_clean] = req_id;
2488 
2489 		total_tx_descs += tx_info->tx_descs;
2490 
2491 		/* Put back descriptor to the ring for reuse */
2492 		next_to_clean = ENA_IDX_NEXT_MASKED(next_to_clean,
2493 			tx_ring->size_mask);
2494 	}
2495 
2496 	if (likely(total_tx_descs > 0)) {
2497 		/* acknowledge completion of sent packets */
2498 		tx_ring->next_to_clean = next_to_clean;
2499 		ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
2500 		ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
2501 	}
2502 }
2503 
2504 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2505 				  uint16_t nb_pkts)
2506 {
2507 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2508 	uint16_t sent_idx = 0;
2509 
2510 #ifdef RTE_ETHDEV_DEBUG_TX
2511 	/* Check adapter state */
2512 	if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2513 		PMD_TX_LOG(ALERT,
2514 			"Trying to xmit pkts while device is NOT running\n");
2515 		return 0;
2516 	}
2517 #endif
2518 
2519 	for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
2520 		if (ena_xmit_mbuf(tx_ring, tx_pkts[sent_idx]))
2521 			break;
2522 		tx_ring->pkts_without_db = true;
2523 		rte_prefetch0(tx_pkts[ENA_IDX_ADD_MASKED(sent_idx, 4,
2524 			tx_ring->size_mask)]);
2525 	}
2526 
2527 	tx_ring->tx_stats.available_desc =
2528 		ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2529 
2530 	/* If there are ready packets to be xmitted... */
2531 	if (likely(tx_ring->pkts_without_db)) {
2532 		/* ...let HW do its best :-) */
2533 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2534 		tx_ring->tx_stats.doorbells++;
2535 		tx_ring->pkts_without_db = false;
2536 	}
2537 
2538 	ena_tx_cleanup(tx_ring);
2539 
2540 	tx_ring->tx_stats.available_desc =
2541 		ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2542 	tx_ring->tx_stats.tx_poll++;
2543 
2544 	return sent_idx;
2545 }
2546 
2547 int ena_copy_eni_stats(struct ena_adapter *adapter)
2548 {
2549 	struct ena_admin_eni_stats admin_eni_stats;
2550 	int rc;
2551 
2552 	rte_spinlock_lock(&adapter->admin_lock);
2553 	rc = ena_com_get_eni_stats(&adapter->ena_dev, &admin_eni_stats);
2554 	rte_spinlock_unlock(&adapter->admin_lock);
2555 	if (rc != 0) {
2556 		if (rc == ENA_COM_UNSUPPORTED) {
2557 			PMD_DRV_LOG(DEBUG,
2558 				"Retrieving ENI metrics is not supported\n");
2559 		} else {
2560 			PMD_DRV_LOG(WARNING,
2561 				"Failed to get ENI metrics, rc: %d\n", rc);
2562 		}
2563 		return rc;
2564 	}
2565 
2566 	rte_memcpy(&adapter->eni_stats, &admin_eni_stats,
2567 		sizeof(struct ena_stats_eni));
2568 
2569 	return 0;
2570 }
2571 
2572 /**
2573  * DPDK callback to retrieve names of extended device statistics
2574  *
2575  * @param dev
2576  *   Pointer to Ethernet device structure.
2577  * @param[out] xstats_names
2578  *   Buffer to insert names into.
2579  * @param n
2580  *   Number of names.
2581  *
2582  * @return
2583  *   Number of xstats names.
2584  */
2585 static int ena_xstats_get_names(struct rte_eth_dev *dev,
2586 				struct rte_eth_xstat_name *xstats_names,
2587 				unsigned int n)
2588 {
2589 	unsigned int xstats_count = ena_xstats_calc_num(dev->data);
2590 	unsigned int stat, i, count = 0;
2591 
2592 	if (n < xstats_count || !xstats_names)
2593 		return xstats_count;
2594 
2595 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
2596 		strcpy(xstats_names[count].name,
2597 			ena_stats_global_strings[stat].name);
2598 
2599 	for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++)
2600 		strcpy(xstats_names[count].name,
2601 			ena_stats_eni_strings[stat].name);
2602 
2603 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
2604 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
2605 			snprintf(xstats_names[count].name,
2606 				sizeof(xstats_names[count].name),
2607 				"rx_q%d_%s", i,
2608 				ena_stats_rx_strings[stat].name);
2609 
2610 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
2611 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
2612 			snprintf(xstats_names[count].name,
2613 				sizeof(xstats_names[count].name),
2614 				"tx_q%d_%s", i,
2615 				ena_stats_tx_strings[stat].name);
2616 
2617 	return xstats_count;
2618 }
2619 
2620 /**
2621  * DPDK callback to get extended device statistics.
2622  *
2623  * @param dev
2624  *   Pointer to Ethernet device structure.
2625  * @param[out] stats
2626  *   Stats table output buffer.
2627  * @param n
2628  *   The size of the stats table.
2629  *
2630  * @return
2631  *   Number of xstats on success, negative on failure.
2632  */
2633 static int ena_xstats_get(struct rte_eth_dev *dev,
2634 			  struct rte_eth_xstat *xstats,
2635 			  unsigned int n)
2636 {
2637 	struct ena_adapter *adapter = dev->data->dev_private;
2638 	unsigned int xstats_count = ena_xstats_calc_num(dev->data);
2639 	unsigned int stat, i, count = 0;
2640 	int stat_offset;
2641 	void *stats_begin;
2642 
2643 	if (n < xstats_count)
2644 		return xstats_count;
2645 
2646 	if (!xstats)
2647 		return 0;
2648 
2649 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
2650 		stat_offset = ena_stats_global_strings[stat].stat_offset;
2651 		stats_begin = &adapter->dev_stats;
2652 
2653 		xstats[count].id = count;
2654 		xstats[count].value = *((uint64_t *)
2655 			((char *)stats_begin + stat_offset));
2656 	}
2657 
2658 	/* Even if the function below fails, we should copy previous (or initial
2659 	 * values) to keep structure of rte_eth_xstat consistent.
2660 	 */
2661 	ena_copy_eni_stats(adapter);
2662 	for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++) {
2663 		stat_offset = ena_stats_eni_strings[stat].stat_offset;
2664 		stats_begin = &adapter->eni_stats;
2665 
2666 		xstats[count].id = count;
2667 		xstats[count].value = *((uint64_t *)
2668 		    ((char *)stats_begin + stat_offset));
2669 	}
2670 
2671 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
2672 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
2673 			stat_offset = ena_stats_rx_strings[stat].stat_offset;
2674 			stats_begin = &adapter->rx_ring[i].rx_stats;
2675 
2676 			xstats[count].id = count;
2677 			xstats[count].value = *((uint64_t *)
2678 				((char *)stats_begin + stat_offset));
2679 		}
2680 	}
2681 
2682 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
2683 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
2684 			stat_offset = ena_stats_tx_strings[stat].stat_offset;
2685 			stats_begin = &adapter->tx_ring[i].rx_stats;
2686 
2687 			xstats[count].id = count;
2688 			xstats[count].value = *((uint64_t *)
2689 				((char *)stats_begin + stat_offset));
2690 		}
2691 	}
2692 
2693 	return count;
2694 }
2695 
2696 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
2697 				const uint64_t *ids,
2698 				uint64_t *values,
2699 				unsigned int n)
2700 {
2701 	struct ena_adapter *adapter = dev->data->dev_private;
2702 	uint64_t id;
2703 	uint64_t rx_entries, tx_entries;
2704 	unsigned int i;
2705 	int qid;
2706 	int valid = 0;
2707 	bool was_eni_copied = false;
2708 
2709 	for (i = 0; i < n; ++i) {
2710 		id = ids[i];
2711 		/* Check if id belongs to global statistics */
2712 		if (id < ENA_STATS_ARRAY_GLOBAL) {
2713 			values[i] = *((uint64_t *)&adapter->dev_stats + id);
2714 			++valid;
2715 			continue;
2716 		}
2717 
2718 		/* Check if id belongs to ENI statistics */
2719 		id -= ENA_STATS_ARRAY_GLOBAL;
2720 		if (id < ENA_STATS_ARRAY_ENI) {
2721 			/* Avoid reading ENI stats multiple times in a single
2722 			 * function call, as it requires communication with the
2723 			 * admin queue.
2724 			 */
2725 			if (!was_eni_copied) {
2726 				was_eni_copied = true;
2727 				ena_copy_eni_stats(adapter);
2728 			}
2729 			values[i] = *((uint64_t *)&adapter->eni_stats + id);
2730 			++valid;
2731 			continue;
2732 		}
2733 
2734 		/* Check if id belongs to rx queue statistics */
2735 		id -= ENA_STATS_ARRAY_ENI;
2736 		rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
2737 		if (id < rx_entries) {
2738 			qid = id % dev->data->nb_rx_queues;
2739 			id /= dev->data->nb_rx_queues;
2740 			values[i] = *((uint64_t *)
2741 				&adapter->rx_ring[qid].rx_stats + id);
2742 			++valid;
2743 			continue;
2744 		}
2745 				/* Check if id belongs to rx queue statistics */
2746 		id -= rx_entries;
2747 		tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
2748 		if (id < tx_entries) {
2749 			qid = id % dev->data->nb_tx_queues;
2750 			id /= dev->data->nb_tx_queues;
2751 			values[i] = *((uint64_t *)
2752 				&adapter->tx_ring[qid].tx_stats + id);
2753 			++valid;
2754 			continue;
2755 		}
2756 	}
2757 
2758 	return valid;
2759 }
2760 
2761 static int ena_process_bool_devarg(const char *key,
2762 				   const char *value,
2763 				   void *opaque)
2764 {
2765 	struct ena_adapter *adapter = opaque;
2766 	bool bool_value;
2767 
2768 	/* Parse the value. */
2769 	if (strcmp(value, "1") == 0) {
2770 		bool_value = true;
2771 	} else if (strcmp(value, "0") == 0) {
2772 		bool_value = false;
2773 	} else {
2774 		PMD_INIT_LOG(ERR,
2775 			"Invalid value: '%s' for key '%s'. Accepted: '0' or '1'\n",
2776 			value, key);
2777 		return -EINVAL;
2778 	}
2779 
2780 	/* Now, assign it to the proper adapter field. */
2781 	if (strcmp(key, ENA_DEVARG_LARGE_LLQ_HDR) == 0)
2782 		adapter->use_large_llq_hdr = bool_value;
2783 
2784 	return 0;
2785 }
2786 
2787 static int ena_parse_devargs(struct ena_adapter *adapter,
2788 			     struct rte_devargs *devargs)
2789 {
2790 	static const char * const allowed_args[] = {
2791 		ENA_DEVARG_LARGE_LLQ_HDR,
2792 		NULL,
2793 	};
2794 	struct rte_kvargs *kvlist;
2795 	int rc;
2796 
2797 	if (devargs == NULL)
2798 		return 0;
2799 
2800 	kvlist = rte_kvargs_parse(devargs->args, allowed_args);
2801 	if (kvlist == NULL) {
2802 		PMD_INIT_LOG(ERR, "Invalid device arguments: %s\n",
2803 			devargs->args);
2804 		return -EINVAL;
2805 	}
2806 
2807 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_LARGE_LLQ_HDR,
2808 		ena_process_bool_devarg, adapter);
2809 
2810 	rte_kvargs_free(kvlist);
2811 
2812 	return rc;
2813 }
2814 
2815 static int ena_setup_rx_intr(struct rte_eth_dev *dev)
2816 {
2817 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2818 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2819 	int rc;
2820 	uint16_t vectors_nb, i;
2821 	bool rx_intr_requested = dev->data->dev_conf.intr_conf.rxq;
2822 
2823 	if (!rx_intr_requested)
2824 		return 0;
2825 
2826 	if (!rte_intr_cap_multiple(intr_handle)) {
2827 		PMD_DRV_LOG(ERR,
2828 			"Rx interrupt requested, but it isn't supported by the PCI driver\n");
2829 		return -ENOTSUP;
2830 	}
2831 
2832 	/* Disable interrupt mapping before the configuration starts. */
2833 	rte_intr_disable(intr_handle);
2834 
2835 	/* Verify if there are enough vectors available. */
2836 	vectors_nb = dev->data->nb_rx_queues;
2837 	if (vectors_nb > RTE_MAX_RXTX_INTR_VEC_ID) {
2838 		PMD_DRV_LOG(ERR,
2839 			"Too many Rx interrupts requested, maximum number: %d\n",
2840 			RTE_MAX_RXTX_INTR_VEC_ID);
2841 		rc = -ENOTSUP;
2842 		goto enable_intr;
2843 	}
2844 
2845 	intr_handle->intr_vec =	rte_zmalloc("intr_vec",
2846 		dev->data->nb_rx_queues * sizeof(*intr_handle->intr_vec), 0);
2847 	if (intr_handle->intr_vec == NULL) {
2848 		PMD_DRV_LOG(ERR,
2849 			"Failed to allocate interrupt vector for %d queues\n",
2850 			dev->data->nb_rx_queues);
2851 		rc = -ENOMEM;
2852 		goto enable_intr;
2853 	}
2854 
2855 	rc = rte_intr_efd_enable(intr_handle, vectors_nb);
2856 	if (rc != 0)
2857 		goto free_intr_vec;
2858 
2859 	if (!rte_intr_allow_others(intr_handle)) {
2860 		PMD_DRV_LOG(ERR,
2861 			"Not enough interrupts available to use both ENA Admin and Rx interrupts\n");
2862 		goto disable_intr_efd;
2863 	}
2864 
2865 	for (i = 0; i < vectors_nb; ++i)
2866 		intr_handle->intr_vec[i] = RTE_INTR_VEC_RXTX_OFFSET + i;
2867 
2868 	rte_intr_enable(intr_handle);
2869 	return 0;
2870 
2871 disable_intr_efd:
2872 	rte_intr_efd_disable(intr_handle);
2873 free_intr_vec:
2874 	rte_free(intr_handle->intr_vec);
2875 	intr_handle->intr_vec = NULL;
2876 enable_intr:
2877 	rte_intr_enable(intr_handle);
2878 	return rc;
2879 }
2880 
2881 static void ena_rx_queue_intr_set(struct rte_eth_dev *dev,
2882 				 uint16_t queue_id,
2883 				 bool unmask)
2884 {
2885 	struct ena_adapter *adapter = dev->data->dev_private;
2886 	struct ena_ring *rxq = &adapter->rx_ring[queue_id];
2887 	struct ena_eth_io_intr_reg intr_reg;
2888 
2889 	ena_com_update_intr_reg(&intr_reg, 0, 0, unmask);
2890 	ena_com_unmask_intr(rxq->ena_com_io_cq, &intr_reg);
2891 }
2892 
2893 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
2894 				    uint16_t queue_id)
2895 {
2896 	ena_rx_queue_intr_set(dev, queue_id, true);
2897 
2898 	return 0;
2899 }
2900 
2901 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
2902 				     uint16_t queue_id)
2903 {
2904 	ena_rx_queue_intr_set(dev, queue_id, false);
2905 
2906 	return 0;
2907 }
2908 
2909 /*********************************************************************
2910  *  PMD configuration
2911  *********************************************************************/
2912 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2913 	struct rte_pci_device *pci_dev)
2914 {
2915 	return rte_eth_dev_pci_generic_probe(pci_dev,
2916 		sizeof(struct ena_adapter), eth_ena_dev_init);
2917 }
2918 
2919 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
2920 {
2921 	return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
2922 }
2923 
2924 static struct rte_pci_driver rte_ena_pmd = {
2925 	.id_table = pci_id_ena_map,
2926 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
2927 		     RTE_PCI_DRV_WC_ACTIVATE,
2928 	.probe = eth_ena_pci_probe,
2929 	.remove = eth_ena_pci_remove,
2930 };
2931 
2932 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
2933 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
2934 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
2935 RTE_PMD_REGISTER_PARAM_STRING(net_ena, ENA_DEVARG_LARGE_LLQ_HDR "=<0|1>");
2936 RTE_LOG_REGISTER_SUFFIX(ena_logtype_init, init, NOTICE);
2937 RTE_LOG_REGISTER_SUFFIX(ena_logtype_driver, driver, NOTICE);
2938 #ifdef RTE_ETHDEV_DEBUG_RX
2939 RTE_LOG_REGISTER_SUFFIX(ena_logtype_rx, rx, DEBUG);
2940 #endif
2941 #ifdef RTE_ETHDEV_DEBUG_TX
2942 RTE_LOG_REGISTER_SUFFIX(ena_logtype_tx, tx, DEBUG);
2943 #endif
2944 RTE_LOG_REGISTER_SUFFIX(ena_logtype_com, com, WARNING);
2945 
2946 /******************************************************************************
2947  ******************************** AENQ Handlers *******************************
2948  *****************************************************************************/
2949 static void ena_update_on_link_change(void *adapter_data,
2950 				      struct ena_admin_aenq_entry *aenq_e)
2951 {
2952 	struct rte_eth_dev *eth_dev = adapter_data;
2953 	struct ena_adapter *adapter = eth_dev->data->dev_private;
2954 	struct ena_admin_aenq_link_change_desc *aenq_link_desc;
2955 	uint32_t status;
2956 
2957 	aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
2958 
2959 	status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
2960 	adapter->link_status = status;
2961 
2962 	ena_link_update(eth_dev, 0);
2963 	rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
2964 }
2965 
2966 static void ena_notification(void *adapter_data,
2967 			     struct ena_admin_aenq_entry *aenq_e)
2968 {
2969 	struct rte_eth_dev *eth_dev = adapter_data;
2970 	struct ena_adapter *adapter = eth_dev->data->dev_private;
2971 	struct ena_admin_ena_hw_hints *hints;
2972 
2973 	if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
2974 		PMD_DRV_LOG(WARNING, "Invalid AENQ group: %x. Expected: %x\n",
2975 			aenq_e->aenq_common_desc.group,
2976 			ENA_ADMIN_NOTIFICATION);
2977 
2978 	switch (aenq_e->aenq_common_desc.syndrome) {
2979 	case ENA_ADMIN_UPDATE_HINTS:
2980 		hints = (struct ena_admin_ena_hw_hints *)
2981 			(&aenq_e->inline_data_w4);
2982 		ena_update_hints(adapter, hints);
2983 		break;
2984 	default:
2985 		PMD_DRV_LOG(ERR, "Invalid AENQ notification link state: %d\n",
2986 			aenq_e->aenq_common_desc.syndrome);
2987 	}
2988 }
2989 
2990 static void ena_keep_alive(void *adapter_data,
2991 			   __rte_unused struct ena_admin_aenq_entry *aenq_e)
2992 {
2993 	struct rte_eth_dev *eth_dev = adapter_data;
2994 	struct ena_adapter *adapter = eth_dev->data->dev_private;
2995 	struct ena_admin_aenq_keep_alive_desc *desc;
2996 	uint64_t rx_drops;
2997 	uint64_t tx_drops;
2998 
2999 	adapter->timestamp_wd = rte_get_timer_cycles();
3000 
3001 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
3002 	rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
3003 	tx_drops = ((uint64_t)desc->tx_drops_high << 32) | desc->tx_drops_low;
3004 
3005 	adapter->drv_stats->rx_drops = rx_drops;
3006 	adapter->dev_stats.tx_drops = tx_drops;
3007 }
3008 
3009 /**
3010  * This handler will called for unknown event group or unimplemented handlers
3011  **/
3012 static void unimplemented_aenq_handler(__rte_unused void *data,
3013 				       __rte_unused struct ena_admin_aenq_entry *aenq_e)
3014 {
3015 	PMD_DRV_LOG(ERR,
3016 		"Unknown event was received or event with unimplemented handler\n");
3017 }
3018 
3019 static struct ena_aenq_handlers aenq_handlers = {
3020 	.handlers = {
3021 		[ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
3022 		[ENA_ADMIN_NOTIFICATION] = ena_notification,
3023 		[ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive
3024 	},
3025 	.unimplemented_handler = unimplemented_aenq_handler
3026 };
3027