xref: /dpdk/drivers/net/ena/ena_ethdev.c (revision 022fb61b62623868db2ec9dbe5b1ee43a4d6cbfb)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
3  * All rights reserved.
4  */
5 
6 #include <rte_string_fns.h>
7 #include <rte_errno.h>
8 #include <rte_version.h>
9 #include <rte_net.h>
10 #include <rte_kvargs.h>
11 
12 #include "ena_ethdev.h"
13 #include "ena_logs.h"
14 #include "ena_platform.h"
15 #include "ena_com.h"
16 #include "ena_eth_com.h"
17 
18 #include <ena_common_defs.h>
19 #include <ena_regs_defs.h>
20 #include <ena_admin_defs.h>
21 #include <ena_eth_io_defs.h>
22 
23 #define DRV_MODULE_VER_MAJOR	2
24 #define DRV_MODULE_VER_MINOR	5
25 #define DRV_MODULE_VER_SUBMINOR	0
26 
27 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
28 
29 #define GET_L4_HDR_LEN(mbuf)					\
30 	((rte_pktmbuf_mtod_offset(mbuf,	struct rte_tcp_hdr *,	\
31 		mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
32 
33 #define ETH_GSTRING_LEN	32
34 
35 #define ARRAY_SIZE(x) RTE_DIM(x)
36 
37 #define ENA_MIN_RING_DESC	128
38 
39 #define ENA_PTYPE_HAS_HASH	(RTE_PTYPE_L4_TCP | RTE_PTYPE_L4_UDP)
40 
41 struct ena_stats {
42 	char name[ETH_GSTRING_LEN];
43 	int stat_offset;
44 };
45 
46 #define ENA_STAT_ENTRY(stat, stat_type) { \
47 	.name = #stat, \
48 	.stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
49 }
50 
51 #define ENA_STAT_RX_ENTRY(stat) \
52 	ENA_STAT_ENTRY(stat, rx)
53 
54 #define ENA_STAT_TX_ENTRY(stat) \
55 	ENA_STAT_ENTRY(stat, tx)
56 
57 #define ENA_STAT_ENI_ENTRY(stat) \
58 	ENA_STAT_ENTRY(stat, eni)
59 
60 #define ENA_STAT_GLOBAL_ENTRY(stat) \
61 	ENA_STAT_ENTRY(stat, dev)
62 
63 /* Device arguments */
64 #define ENA_DEVARG_LARGE_LLQ_HDR "large_llq_hdr"
65 /* Timeout in seconds after which a single uncompleted Tx packet should be
66  * considered as a missing.
67  */
68 #define ENA_DEVARG_MISS_TXC_TO "miss_txc_to"
69 
70 /*
71  * Each rte_memzone should have unique name.
72  * To satisfy it, count number of allocation and add it to name.
73  */
74 rte_atomic64_t ena_alloc_cnt;
75 
76 static const struct ena_stats ena_stats_global_strings[] = {
77 	ENA_STAT_GLOBAL_ENTRY(wd_expired),
78 	ENA_STAT_GLOBAL_ENTRY(dev_start),
79 	ENA_STAT_GLOBAL_ENTRY(dev_stop),
80 	ENA_STAT_GLOBAL_ENTRY(tx_drops),
81 };
82 
83 static const struct ena_stats ena_stats_eni_strings[] = {
84 	ENA_STAT_ENI_ENTRY(bw_in_allowance_exceeded),
85 	ENA_STAT_ENI_ENTRY(bw_out_allowance_exceeded),
86 	ENA_STAT_ENI_ENTRY(pps_allowance_exceeded),
87 	ENA_STAT_ENI_ENTRY(conntrack_allowance_exceeded),
88 	ENA_STAT_ENI_ENTRY(linklocal_allowance_exceeded),
89 };
90 
91 static const struct ena_stats ena_stats_tx_strings[] = {
92 	ENA_STAT_TX_ENTRY(cnt),
93 	ENA_STAT_TX_ENTRY(bytes),
94 	ENA_STAT_TX_ENTRY(prepare_ctx_err),
95 	ENA_STAT_TX_ENTRY(tx_poll),
96 	ENA_STAT_TX_ENTRY(doorbells),
97 	ENA_STAT_TX_ENTRY(bad_req_id),
98 	ENA_STAT_TX_ENTRY(available_desc),
99 	ENA_STAT_TX_ENTRY(missed_tx),
100 };
101 
102 static const struct ena_stats ena_stats_rx_strings[] = {
103 	ENA_STAT_RX_ENTRY(cnt),
104 	ENA_STAT_RX_ENTRY(bytes),
105 	ENA_STAT_RX_ENTRY(refill_partial),
106 	ENA_STAT_RX_ENTRY(l3_csum_bad),
107 	ENA_STAT_RX_ENTRY(l4_csum_bad),
108 	ENA_STAT_RX_ENTRY(l4_csum_good),
109 	ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
110 	ENA_STAT_RX_ENTRY(bad_desc_num),
111 	ENA_STAT_RX_ENTRY(bad_req_id),
112 };
113 
114 #define ENA_STATS_ARRAY_GLOBAL	ARRAY_SIZE(ena_stats_global_strings)
115 #define ENA_STATS_ARRAY_ENI	ARRAY_SIZE(ena_stats_eni_strings)
116 #define ENA_STATS_ARRAY_TX	ARRAY_SIZE(ena_stats_tx_strings)
117 #define ENA_STATS_ARRAY_RX	ARRAY_SIZE(ena_stats_rx_strings)
118 
119 #define QUEUE_OFFLOADS (RTE_ETH_TX_OFFLOAD_TCP_CKSUM |\
120 			RTE_ETH_TX_OFFLOAD_UDP_CKSUM |\
121 			RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |\
122 			RTE_ETH_TX_OFFLOAD_TCP_TSO)
123 #define MBUF_OFFLOADS (RTE_MBUF_F_TX_L4_MASK |\
124 		       RTE_MBUF_F_TX_IP_CKSUM |\
125 		       RTE_MBUF_F_TX_TCP_SEG)
126 
127 /** Vendor ID used by Amazon devices */
128 #define PCI_VENDOR_ID_AMAZON 0x1D0F
129 /** Amazon devices */
130 #define PCI_DEVICE_ID_ENA_VF		0xEC20
131 #define PCI_DEVICE_ID_ENA_VF_RSERV0	0xEC21
132 
133 #define	ENA_TX_OFFLOAD_MASK	(RTE_MBUF_F_TX_L4_MASK |         \
134 	RTE_MBUF_F_TX_IPV6 |            \
135 	RTE_MBUF_F_TX_IPV4 |            \
136 	RTE_MBUF_F_TX_IP_CKSUM |        \
137 	RTE_MBUF_F_TX_TCP_SEG)
138 
139 #define	ENA_TX_OFFLOAD_NOTSUP_MASK	\
140 	(RTE_MBUF_F_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
141 
142 /** HW specific offloads capabilities. */
143 /* IPv4 checksum offload. */
144 #define ENA_L3_IPV4_CSUM		0x0001
145 /* TCP/UDP checksum offload for IPv4 packets. */
146 #define ENA_L4_IPV4_CSUM		0x0002
147 /* TCP/UDP checksum offload for IPv4 packets with pseudo header checksum. */
148 #define ENA_L4_IPV4_CSUM_PARTIAL	0x0004
149 /* TCP/UDP checksum offload for IPv6 packets. */
150 #define ENA_L4_IPV6_CSUM		0x0008
151 /* TCP/UDP checksum offload for IPv6 packets with pseudo header checksum. */
152 #define ENA_L4_IPV6_CSUM_PARTIAL	0x0010
153 /* TSO support for IPv4 packets. */
154 #define ENA_IPV4_TSO			0x0020
155 
156 /* Device supports setting RSS hash. */
157 #define ENA_RX_RSS_HASH			0x0040
158 
159 static const struct rte_pci_id pci_id_ena_map[] = {
160 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
161 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF_RSERV0) },
162 	{ .device_id = 0 },
163 };
164 
165 static struct ena_aenq_handlers aenq_handlers;
166 
167 static int ena_device_init(struct ena_adapter *adapter,
168 			   struct rte_pci_device *pdev,
169 			   struct ena_com_dev_get_features_ctx *get_feat_ctx);
170 static int ena_dev_configure(struct rte_eth_dev *dev);
171 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
172 	struct ena_tx_buffer *tx_info,
173 	struct rte_mbuf *mbuf,
174 	void **push_header,
175 	uint16_t *header_len);
176 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf);
177 static int ena_tx_cleanup(void *txp, uint32_t free_pkt_cnt);
178 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
179 				  uint16_t nb_pkts);
180 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
181 		uint16_t nb_pkts);
182 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
183 			      uint16_t nb_desc, unsigned int socket_id,
184 			      const struct rte_eth_txconf *tx_conf);
185 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
186 			      uint16_t nb_desc, unsigned int socket_id,
187 			      const struct rte_eth_rxconf *rx_conf,
188 			      struct rte_mempool *mp);
189 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len);
190 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
191 				    struct ena_com_rx_buf_info *ena_bufs,
192 				    uint32_t descs,
193 				    uint16_t *next_to_clean,
194 				    uint8_t offset);
195 static uint16_t eth_ena_recv_pkts(void *rx_queue,
196 				  struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
197 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
198 				  struct rte_mbuf *mbuf, uint16_t id);
199 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
200 static void ena_init_rings(struct ena_adapter *adapter,
201 			   bool disable_meta_caching);
202 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
203 static int ena_start(struct rte_eth_dev *dev);
204 static int ena_stop(struct rte_eth_dev *dev);
205 static int ena_close(struct rte_eth_dev *dev);
206 static int ena_dev_reset(struct rte_eth_dev *dev);
207 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
208 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
209 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
210 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
211 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
212 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
213 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
214 static int ena_link_update(struct rte_eth_dev *dev,
215 			   int wait_to_complete);
216 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring);
217 static void ena_queue_stop(struct ena_ring *ring);
218 static void ena_queue_stop_all(struct rte_eth_dev *dev,
219 			      enum ena_ring_type ring_type);
220 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring);
221 static int ena_queue_start_all(struct rte_eth_dev *dev,
222 			       enum ena_ring_type ring_type);
223 static void ena_stats_restart(struct rte_eth_dev *dev);
224 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter);
225 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter);
226 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter);
227 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter);
228 static int ena_infos_get(struct rte_eth_dev *dev,
229 			 struct rte_eth_dev_info *dev_info);
230 static void ena_interrupt_handler_rte(void *cb_arg);
231 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
232 static void ena_destroy_device(struct rte_eth_dev *eth_dev);
233 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
234 static int ena_xstats_get_names(struct rte_eth_dev *dev,
235 				struct rte_eth_xstat_name *xstats_names,
236 				unsigned int n);
237 static int ena_xstats_get_names_by_id(struct rte_eth_dev *dev,
238 				      const uint64_t *ids,
239 				      struct rte_eth_xstat_name *xstats_names,
240 				      unsigned int size);
241 static int ena_xstats_get(struct rte_eth_dev *dev,
242 			  struct rte_eth_xstat *stats,
243 			  unsigned int n);
244 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
245 				const uint64_t *ids,
246 				uint64_t *values,
247 				unsigned int n);
248 static int ena_process_bool_devarg(const char *key,
249 				   const char *value,
250 				   void *opaque);
251 static int ena_parse_devargs(struct ena_adapter *adapter,
252 			     struct rte_devargs *devargs);
253 static int ena_copy_eni_stats(struct ena_adapter *adapter,
254 			      struct ena_stats_eni *stats);
255 static int ena_setup_rx_intr(struct rte_eth_dev *dev);
256 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
257 				    uint16_t queue_id);
258 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
259 				     uint16_t queue_id);
260 static int ena_configure_aenq(struct ena_adapter *adapter);
261 static int ena_mp_primary_handle(const struct rte_mp_msg *mp_msg,
262 				 const void *peer);
263 
264 static const struct eth_dev_ops ena_dev_ops = {
265 	.dev_configure          = ena_dev_configure,
266 	.dev_infos_get          = ena_infos_get,
267 	.rx_queue_setup         = ena_rx_queue_setup,
268 	.tx_queue_setup         = ena_tx_queue_setup,
269 	.dev_start              = ena_start,
270 	.dev_stop               = ena_stop,
271 	.link_update            = ena_link_update,
272 	.stats_get              = ena_stats_get,
273 	.xstats_get_names       = ena_xstats_get_names,
274 	.xstats_get_names_by_id = ena_xstats_get_names_by_id,
275 	.xstats_get             = ena_xstats_get,
276 	.xstats_get_by_id       = ena_xstats_get_by_id,
277 	.mtu_set                = ena_mtu_set,
278 	.rx_queue_release       = ena_rx_queue_release,
279 	.tx_queue_release       = ena_tx_queue_release,
280 	.dev_close              = ena_close,
281 	.dev_reset              = ena_dev_reset,
282 	.reta_update            = ena_rss_reta_update,
283 	.reta_query             = ena_rss_reta_query,
284 	.rx_queue_intr_enable   = ena_rx_queue_intr_enable,
285 	.rx_queue_intr_disable  = ena_rx_queue_intr_disable,
286 	.rss_hash_update        = ena_rss_hash_update,
287 	.rss_hash_conf_get      = ena_rss_hash_conf_get,
288 	.tx_done_cleanup        = ena_tx_cleanup,
289 };
290 
291 /*********************************************************************
292  *  Multi-Process communication bits
293  *********************************************************************/
294 /* rte_mp IPC message name */
295 #define ENA_MP_NAME	"net_ena_mp"
296 /* Request timeout in seconds */
297 #define ENA_MP_REQ_TMO	5
298 
299 /** Proxy request type */
300 enum ena_mp_req {
301 	ENA_MP_DEV_STATS_GET,
302 	ENA_MP_ENI_STATS_GET,
303 	ENA_MP_MTU_SET,
304 	ENA_MP_IND_TBL_GET,
305 	ENA_MP_IND_TBL_SET
306 };
307 
308 /** Proxy message body. Shared between requests and responses. */
309 struct ena_mp_body {
310 	/* Message type */
311 	enum ena_mp_req type;
312 	int port_id;
313 	/* Processing result. Set in replies. 0 if message succeeded, negative
314 	 * error code otherwise.
315 	 */
316 	int result;
317 	union {
318 		int mtu; /* For ENA_MP_MTU_SET */
319 	} args;
320 };
321 
322 /**
323  * Initialize IPC message.
324  *
325  * @param[out] msg
326  *   Pointer to the message to initialize.
327  * @param[in] type
328  *   Message type.
329  * @param[in] port_id
330  *   Port ID of target device.
331  *
332  */
333 static void
334 mp_msg_init(struct rte_mp_msg *msg, enum ena_mp_req type, int port_id)
335 {
336 	struct ena_mp_body *body = (struct ena_mp_body *)&msg->param;
337 
338 	memset(msg, 0, sizeof(*msg));
339 	strlcpy(msg->name, ENA_MP_NAME, sizeof(msg->name));
340 	msg->len_param = sizeof(*body);
341 	body->type = type;
342 	body->port_id = port_id;
343 }
344 
345 /*********************************************************************
346  *  Multi-Process communication PMD API
347  *********************************************************************/
348 /**
349  * Define proxy request descriptor
350  *
351  * Used to define all structures and functions required for proxying a given
352  * function to the primary process including the code to perform to prepare the
353  * request and process the response.
354  *
355  * @param[in] f
356  *   Name of the function to proxy
357  * @param[in] t
358  *   Message type to use
359  * @param[in] prep
360  *   Body of a function to prepare the request in form of a statement
361  *   expression. It is passed all the original function arguments along with two
362  *   extra ones:
363  *   - struct ena_adapter *adapter - PMD data of the device calling the proxy.
364  *   - struct ena_mp_body *req - body of a request to prepare.
365  * @param[in] proc
366  *   Body of a function to process the response in form of a statement
367  *   expression. It is passed all the original function arguments along with two
368  *   extra ones:
369  *   - struct ena_adapter *adapter - PMD data of the device calling the proxy.
370  *   - struct ena_mp_body *rsp - body of a response to process.
371  * @param ...
372  *   Proxied function's arguments
373  *
374  * @note Inside prep and proc any parameters which aren't used should be marked
375  *       as such (with ENA_TOUCH or __rte_unused).
376  */
377 #define ENA_PROXY_DESC(f, t, prep, proc, ...)			\
378 	static const enum ena_mp_req mp_type_ ## f =  t;	\
379 	static const char *mp_name_ ## f = #t;			\
380 	static void mp_prep_ ## f(struct ena_adapter *adapter,	\
381 				  struct ena_mp_body *req,	\
382 				  __VA_ARGS__)			\
383 	{							\
384 		prep;						\
385 	}							\
386 	static void mp_proc_ ## f(struct ena_adapter *adapter,	\
387 				  struct ena_mp_body *rsp,	\
388 				  __VA_ARGS__)			\
389 	{							\
390 		proc;						\
391 	}
392 
393 /**
394  * Proxy wrapper for calling primary functions in a secondary process.
395  *
396  * Depending on whether called in primary or secondary process, calls the
397  * @p func directly or proxies the call to the primary process via rte_mp IPC.
398  * This macro requires a proxy request descriptor to be defined for @p func
399  * using ENA_PROXY_DESC() macro.
400  *
401  * @param[in/out] a
402  *   Device PMD data. Used for sending the message and sharing message results
403  *   between primary and secondary.
404  * @param[in] f
405  *   Function to proxy.
406  * @param ...
407  *   Arguments of @p func.
408  *
409  * @return
410  *   - 0: Processing succeeded and response handler was called.
411  *   - -EPERM: IPC is unavailable on this platform. This means only primary
412  *             process may call the proxied function.
413  *   - -EIO:   IPC returned error on request send. Inspect rte_errno detailed
414  *             error code.
415  *   - Negative error code from the proxied function.
416  *
417  * @note This mechanism is geared towards control-path tasks. Avoid calling it
418  *       in fast-path unless unbound delays are allowed. This is due to the IPC
419  *       mechanism itself (socket based).
420  * @note Due to IPC parameter size limitations the proxy logic shares call
421  *       results through the struct ena_adapter shared memory. This makes the
422  *       proxy mechanism strictly single-threaded. Therefore be sure to make all
423  *       calls to the same proxied function under the same lock.
424  */
425 #define ENA_PROXY(a, f, ...)						\
426 ({									\
427 	struct ena_adapter *_a = (a);					\
428 	struct timespec ts = { .tv_sec = ENA_MP_REQ_TMO };		\
429 	struct ena_mp_body *req, *rsp;					\
430 	struct rte_mp_reply mp_rep;					\
431 	struct rte_mp_msg mp_req;					\
432 	int ret;							\
433 									\
434 	if (rte_eal_process_type() == RTE_PROC_PRIMARY) {		\
435 		ret = f(__VA_ARGS__);					\
436 	} else {							\
437 		/* Prepare and send request */				\
438 		req = (struct ena_mp_body *)&mp_req.param;		\
439 		mp_msg_init(&mp_req, mp_type_ ## f, _a->edev_data->port_id); \
440 		mp_prep_ ## f(_a, req, ## __VA_ARGS__);			\
441 									\
442 		ret = rte_mp_request_sync(&mp_req, &mp_rep, &ts);	\
443 		if (likely(!ret)) {					\
444 			RTE_ASSERT(mp_rep.nb_received == 1);		\
445 			rsp = (struct ena_mp_body *)&mp_rep.msgs[0].param; \
446 			ret = rsp->result;				\
447 			if (ret == 0) {					\
448 				mp_proc_##f(_a, rsp, ## __VA_ARGS__);	\
449 			} else {					\
450 				PMD_DRV_LOG(ERR,			\
451 					    "%s returned error: %d\n",	\
452 					    mp_name_ ## f, rsp->result);\
453 			}						\
454 			free(mp_rep.msgs);				\
455 		} else if (rte_errno == ENOTSUP) {			\
456 			PMD_DRV_LOG(ERR,				\
457 				    "No IPC, can't proxy to primary\n");\
458 			ret = -rte_errno;				\
459 		} else {						\
460 			PMD_DRV_LOG(ERR, "Request %s failed: %s\n",	\
461 				    mp_name_ ## f,			\
462 				    rte_strerror(rte_errno));		\
463 			ret = -EIO;					\
464 		}							\
465 	}								\
466 	ret;								\
467 })
468 
469 /*********************************************************************
470  *  Multi-Process communication request descriptors
471  *********************************************************************/
472 
473 ENA_PROXY_DESC(ena_com_get_dev_basic_stats, ENA_MP_DEV_STATS_GET,
474 ({
475 	ENA_TOUCH(adapter);
476 	ENA_TOUCH(req);
477 	ENA_TOUCH(ena_dev);
478 	ENA_TOUCH(stats);
479 }),
480 ({
481 	ENA_TOUCH(rsp);
482 	ENA_TOUCH(ena_dev);
483 	if (stats != &adapter->basic_stats)
484 		rte_memcpy(stats, &adapter->basic_stats, sizeof(*stats));
485 }),
486 	struct ena_com_dev *ena_dev, struct ena_admin_basic_stats *stats);
487 
488 ENA_PROXY_DESC(ena_com_get_eni_stats, ENA_MP_ENI_STATS_GET,
489 ({
490 	ENA_TOUCH(adapter);
491 	ENA_TOUCH(req);
492 	ENA_TOUCH(ena_dev);
493 	ENA_TOUCH(stats);
494 }),
495 ({
496 	ENA_TOUCH(rsp);
497 	ENA_TOUCH(ena_dev);
498 	if (stats != (struct ena_admin_eni_stats *)&adapter->eni_stats)
499 		rte_memcpy(stats, &adapter->eni_stats, sizeof(*stats));
500 }),
501 	struct ena_com_dev *ena_dev, struct ena_admin_eni_stats *stats);
502 
503 ENA_PROXY_DESC(ena_com_set_dev_mtu, ENA_MP_MTU_SET,
504 ({
505 	ENA_TOUCH(adapter);
506 	ENA_TOUCH(ena_dev);
507 	req->args.mtu = mtu;
508 }),
509 ({
510 	ENA_TOUCH(adapter);
511 	ENA_TOUCH(rsp);
512 	ENA_TOUCH(ena_dev);
513 	ENA_TOUCH(mtu);
514 }),
515 	struct ena_com_dev *ena_dev, int mtu);
516 
517 ENA_PROXY_DESC(ena_com_indirect_table_set, ENA_MP_IND_TBL_SET,
518 ({
519 	ENA_TOUCH(adapter);
520 	ENA_TOUCH(req);
521 	ENA_TOUCH(ena_dev);
522 }),
523 ({
524 	ENA_TOUCH(adapter);
525 	ENA_TOUCH(rsp);
526 	ENA_TOUCH(ena_dev);
527 }),
528 	struct ena_com_dev *ena_dev);
529 
530 ENA_PROXY_DESC(ena_com_indirect_table_get, ENA_MP_IND_TBL_GET,
531 ({
532 	ENA_TOUCH(adapter);
533 	ENA_TOUCH(req);
534 	ENA_TOUCH(ena_dev);
535 	ENA_TOUCH(ind_tbl);
536 }),
537 ({
538 	ENA_TOUCH(rsp);
539 	ENA_TOUCH(ena_dev);
540 	if (ind_tbl != adapter->indirect_table)
541 		rte_memcpy(ind_tbl, adapter->indirect_table,
542 			   sizeof(adapter->indirect_table));
543 }),
544 	struct ena_com_dev *ena_dev, u32 *ind_tbl);
545 
546 static inline void ena_trigger_reset(struct ena_adapter *adapter,
547 				     enum ena_regs_reset_reason_types reason)
548 {
549 	if (likely(!adapter->trigger_reset)) {
550 		adapter->reset_reason = reason;
551 		adapter->trigger_reset = true;
552 	}
553 }
554 
555 static inline void ena_rx_mbuf_prepare(struct ena_ring *rx_ring,
556 				       struct rte_mbuf *mbuf,
557 				       struct ena_com_rx_ctx *ena_rx_ctx,
558 				       bool fill_hash)
559 {
560 	struct ena_stats_rx *rx_stats = &rx_ring->rx_stats;
561 	uint64_t ol_flags = 0;
562 	uint32_t packet_type = 0;
563 
564 	if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
565 		packet_type |= RTE_PTYPE_L4_TCP;
566 	else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
567 		packet_type |= RTE_PTYPE_L4_UDP;
568 
569 	if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
570 		packet_type |= RTE_PTYPE_L3_IPV4;
571 		if (unlikely(ena_rx_ctx->l3_csum_err)) {
572 			++rx_stats->l3_csum_bad;
573 			ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
574 		} else {
575 			ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
576 		}
577 	} else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
578 		packet_type |= RTE_PTYPE_L3_IPV6;
579 	}
580 
581 	if (!ena_rx_ctx->l4_csum_checked || ena_rx_ctx->frag) {
582 		ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN;
583 	} else {
584 		if (unlikely(ena_rx_ctx->l4_csum_err)) {
585 			++rx_stats->l4_csum_bad;
586 			ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
587 		} else {
588 			++rx_stats->l4_csum_good;
589 			ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
590 		}
591 	}
592 
593 	if (fill_hash &&
594 	    likely((packet_type & ENA_PTYPE_HAS_HASH) && !ena_rx_ctx->frag)) {
595 		ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
596 		mbuf->hash.rss = ena_rx_ctx->hash;
597 	}
598 
599 	mbuf->ol_flags = ol_flags;
600 	mbuf->packet_type = packet_type;
601 }
602 
603 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
604 				       struct ena_com_tx_ctx *ena_tx_ctx,
605 				       uint64_t queue_offloads,
606 				       bool disable_meta_caching)
607 {
608 	struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
609 
610 	if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
611 	    (queue_offloads & QUEUE_OFFLOADS)) {
612 		/* check if TSO is required */
613 		if ((mbuf->ol_flags & RTE_MBUF_F_TX_TCP_SEG) &&
614 		    (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_TSO)) {
615 			ena_tx_ctx->tso_enable = true;
616 
617 			ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
618 		}
619 
620 		/* check if L3 checksum is needed */
621 		if ((mbuf->ol_flags & RTE_MBUF_F_TX_IP_CKSUM) &&
622 		    (queue_offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM))
623 			ena_tx_ctx->l3_csum_enable = true;
624 
625 		if (mbuf->ol_flags & RTE_MBUF_F_TX_IPV6) {
626 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
627 			/* For the IPv6 packets, DF always needs to be true. */
628 			ena_tx_ctx->df = 1;
629 		} else {
630 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
631 
632 			/* set don't fragment (DF) flag */
633 			if (mbuf->packet_type &
634 				(RTE_PTYPE_L4_NONFRAG
635 				 | RTE_PTYPE_INNER_L4_NONFRAG))
636 				ena_tx_ctx->df = 1;
637 		}
638 
639 		/* check if L4 checksum is needed */
640 		if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) == RTE_MBUF_F_TX_TCP_CKSUM) &&
641 		    (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) {
642 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
643 			ena_tx_ctx->l4_csum_enable = true;
644 		} else if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) ==
645 				RTE_MBUF_F_TX_UDP_CKSUM) &&
646 				(queue_offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM)) {
647 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
648 			ena_tx_ctx->l4_csum_enable = true;
649 		} else {
650 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
651 			ena_tx_ctx->l4_csum_enable = false;
652 		}
653 
654 		ena_meta->mss = mbuf->tso_segsz;
655 		ena_meta->l3_hdr_len = mbuf->l3_len;
656 		ena_meta->l3_hdr_offset = mbuf->l2_len;
657 
658 		ena_tx_ctx->meta_valid = true;
659 	} else if (disable_meta_caching) {
660 		memset(ena_meta, 0, sizeof(*ena_meta));
661 		ena_tx_ctx->meta_valid = true;
662 	} else {
663 		ena_tx_ctx->meta_valid = false;
664 	}
665 }
666 
667 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
668 {
669 	struct ena_tx_buffer *tx_info = NULL;
670 
671 	if (likely(req_id < tx_ring->ring_size)) {
672 		tx_info = &tx_ring->tx_buffer_info[req_id];
673 		if (likely(tx_info->mbuf))
674 			return 0;
675 	}
676 
677 	if (tx_info)
678 		PMD_TX_LOG(ERR, "tx_info doesn't have valid mbuf\n");
679 	else
680 		PMD_TX_LOG(ERR, "Invalid req_id: %hu\n", req_id);
681 
682 	/* Trigger device reset */
683 	++tx_ring->tx_stats.bad_req_id;
684 	ena_trigger_reset(tx_ring->adapter, ENA_REGS_RESET_INV_TX_REQ_ID);
685 	return -EFAULT;
686 }
687 
688 static void ena_config_host_info(struct ena_com_dev *ena_dev)
689 {
690 	struct ena_admin_host_info *host_info;
691 	int rc;
692 
693 	/* Allocate only the host info */
694 	rc = ena_com_allocate_host_info(ena_dev);
695 	if (rc) {
696 		PMD_DRV_LOG(ERR, "Cannot allocate host info\n");
697 		return;
698 	}
699 
700 	host_info = ena_dev->host_attr.host_info;
701 
702 	host_info->os_type = ENA_ADMIN_OS_DPDK;
703 	host_info->kernel_ver = RTE_VERSION;
704 	strlcpy((char *)host_info->kernel_ver_str, rte_version(),
705 		sizeof(host_info->kernel_ver_str));
706 	host_info->os_dist = RTE_VERSION;
707 	strlcpy((char *)host_info->os_dist_str, rte_version(),
708 		sizeof(host_info->os_dist_str));
709 	host_info->driver_version =
710 		(DRV_MODULE_VER_MAJOR) |
711 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
712 		(DRV_MODULE_VER_SUBMINOR <<
713 			ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
714 	host_info->num_cpus = rte_lcore_count();
715 
716 	host_info->driver_supported_features =
717 		ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK |
718 		ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK;
719 
720 	rc = ena_com_set_host_attributes(ena_dev);
721 	if (rc) {
722 		if (rc == -ENA_COM_UNSUPPORTED)
723 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
724 		else
725 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
726 
727 		goto err;
728 	}
729 
730 	return;
731 
732 err:
733 	ena_com_delete_host_info(ena_dev);
734 }
735 
736 /* This function calculates the number of xstats based on the current config */
737 static unsigned int ena_xstats_calc_num(struct rte_eth_dev_data *data)
738 {
739 	return ENA_STATS_ARRAY_GLOBAL + ENA_STATS_ARRAY_ENI +
740 		(data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
741 		(data->nb_rx_queues * ENA_STATS_ARRAY_RX);
742 }
743 
744 static void ena_config_debug_area(struct ena_adapter *adapter)
745 {
746 	u32 debug_area_size;
747 	int rc, ss_count;
748 
749 	ss_count = ena_xstats_calc_num(adapter->edev_data);
750 
751 	/* allocate 32 bytes for each string and 64bit for the value */
752 	debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
753 
754 	rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
755 	if (rc) {
756 		PMD_DRV_LOG(ERR, "Cannot allocate debug area\n");
757 		return;
758 	}
759 
760 	rc = ena_com_set_host_attributes(&adapter->ena_dev);
761 	if (rc) {
762 		if (rc == -ENA_COM_UNSUPPORTED)
763 			PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
764 		else
765 			PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
766 
767 		goto err;
768 	}
769 
770 	return;
771 err:
772 	ena_com_delete_debug_area(&adapter->ena_dev);
773 }
774 
775 static int ena_close(struct rte_eth_dev *dev)
776 {
777 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
778 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
779 	struct ena_adapter *adapter = dev->data->dev_private;
780 	int ret = 0;
781 
782 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
783 		return 0;
784 
785 	if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
786 		ret = ena_stop(dev);
787 	adapter->state = ENA_ADAPTER_STATE_CLOSED;
788 
789 	ena_rx_queue_release_all(dev);
790 	ena_tx_queue_release_all(dev);
791 
792 	rte_free(adapter->drv_stats);
793 	adapter->drv_stats = NULL;
794 
795 	rte_intr_disable(intr_handle);
796 	rte_intr_callback_unregister(intr_handle,
797 				     ena_interrupt_handler_rte,
798 				     dev);
799 
800 	/*
801 	 * MAC is not allocated dynamically. Setting NULL should prevent from
802 	 * release of the resource in the rte_eth_dev_release_port().
803 	 */
804 	dev->data->mac_addrs = NULL;
805 
806 	return ret;
807 }
808 
809 static int
810 ena_dev_reset(struct rte_eth_dev *dev)
811 {
812 	int rc = 0;
813 
814 	/* Cannot release memory in secondary process */
815 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
816 		PMD_DRV_LOG(WARNING, "dev_reset not supported in secondary.\n");
817 		return -EPERM;
818 	}
819 
820 	ena_destroy_device(dev);
821 	rc = eth_ena_dev_init(dev);
822 	if (rc)
823 		PMD_INIT_LOG(CRIT, "Cannot initialize device\n");
824 
825 	return rc;
826 }
827 
828 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
829 {
830 	int nb_queues = dev->data->nb_rx_queues;
831 	int i;
832 
833 	for (i = 0; i < nb_queues; i++)
834 		ena_rx_queue_release(dev, i);
835 }
836 
837 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
838 {
839 	int nb_queues = dev->data->nb_tx_queues;
840 	int i;
841 
842 	for (i = 0; i < nb_queues; i++)
843 		ena_tx_queue_release(dev, i);
844 }
845 
846 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
847 {
848 	struct ena_ring *ring = dev->data->rx_queues[qid];
849 
850 	/* Free ring resources */
851 	rte_free(ring->rx_buffer_info);
852 	ring->rx_buffer_info = NULL;
853 
854 	rte_free(ring->rx_refill_buffer);
855 	ring->rx_refill_buffer = NULL;
856 
857 	rte_free(ring->empty_rx_reqs);
858 	ring->empty_rx_reqs = NULL;
859 
860 	ring->configured = 0;
861 
862 	PMD_DRV_LOG(NOTICE, "Rx queue %d:%d released\n",
863 		ring->port_id, ring->id);
864 }
865 
866 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
867 {
868 	struct ena_ring *ring = dev->data->tx_queues[qid];
869 
870 	/* Free ring resources */
871 	rte_free(ring->push_buf_intermediate_buf);
872 
873 	rte_free(ring->tx_buffer_info);
874 
875 	rte_free(ring->empty_tx_reqs);
876 
877 	ring->empty_tx_reqs = NULL;
878 	ring->tx_buffer_info = NULL;
879 	ring->push_buf_intermediate_buf = NULL;
880 
881 	ring->configured = 0;
882 
883 	PMD_DRV_LOG(NOTICE, "Tx queue %d:%d released\n",
884 		ring->port_id, ring->id);
885 }
886 
887 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
888 {
889 	unsigned int i;
890 
891 	for (i = 0; i < ring->ring_size; ++i) {
892 		struct ena_rx_buffer *rx_info = &ring->rx_buffer_info[i];
893 		if (rx_info->mbuf) {
894 			rte_mbuf_raw_free(rx_info->mbuf);
895 			rx_info->mbuf = NULL;
896 		}
897 	}
898 }
899 
900 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
901 {
902 	unsigned int i;
903 
904 	for (i = 0; i < ring->ring_size; ++i) {
905 		struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
906 
907 		if (tx_buf->mbuf) {
908 			rte_pktmbuf_free(tx_buf->mbuf);
909 			tx_buf->mbuf = NULL;
910 		}
911 	}
912 }
913 
914 static int ena_link_update(struct rte_eth_dev *dev,
915 			   __rte_unused int wait_to_complete)
916 {
917 	struct rte_eth_link *link = &dev->data->dev_link;
918 	struct ena_adapter *adapter = dev->data->dev_private;
919 
920 	link->link_status = adapter->link_status ? RTE_ETH_LINK_UP : RTE_ETH_LINK_DOWN;
921 	link->link_speed = RTE_ETH_SPEED_NUM_NONE;
922 	link->link_duplex = RTE_ETH_LINK_FULL_DUPLEX;
923 
924 	return 0;
925 }
926 
927 static int ena_queue_start_all(struct rte_eth_dev *dev,
928 			       enum ena_ring_type ring_type)
929 {
930 	struct ena_adapter *adapter = dev->data->dev_private;
931 	struct ena_ring *queues = NULL;
932 	int nb_queues;
933 	int i = 0;
934 	int rc = 0;
935 
936 	if (ring_type == ENA_RING_TYPE_RX) {
937 		queues = adapter->rx_ring;
938 		nb_queues = dev->data->nb_rx_queues;
939 	} else {
940 		queues = adapter->tx_ring;
941 		nb_queues = dev->data->nb_tx_queues;
942 	}
943 	for (i = 0; i < nb_queues; i++) {
944 		if (queues[i].configured) {
945 			if (ring_type == ENA_RING_TYPE_RX) {
946 				ena_assert_msg(
947 					dev->data->rx_queues[i] == &queues[i],
948 					"Inconsistent state of Rx queues\n");
949 			} else {
950 				ena_assert_msg(
951 					dev->data->tx_queues[i] == &queues[i],
952 					"Inconsistent state of Tx queues\n");
953 			}
954 
955 			rc = ena_queue_start(dev, &queues[i]);
956 
957 			if (rc) {
958 				PMD_INIT_LOG(ERR,
959 					"Failed to start queue[%d] of type(%d)\n",
960 					i, ring_type);
961 				goto err;
962 			}
963 		}
964 	}
965 
966 	return 0;
967 
968 err:
969 	while (i--)
970 		if (queues[i].configured)
971 			ena_queue_stop(&queues[i]);
972 
973 	return rc;
974 }
975 
976 static int ena_check_valid_conf(struct ena_adapter *adapter)
977 {
978 	uint32_t mtu = adapter->edev_data->mtu;
979 
980 	if (mtu > adapter->max_mtu || mtu < ENA_MIN_MTU) {
981 		PMD_INIT_LOG(ERR,
982 			"Unsupported MTU of %d. Max MTU: %d, min MTU: %d\n",
983 			mtu, adapter->max_mtu, ENA_MIN_MTU);
984 		return ENA_COM_UNSUPPORTED;
985 	}
986 
987 	return 0;
988 }
989 
990 static int
991 ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx,
992 		       bool use_large_llq_hdr)
993 {
994 	struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
995 	struct ena_com_dev *ena_dev = ctx->ena_dev;
996 	uint32_t max_tx_queue_size;
997 	uint32_t max_rx_queue_size;
998 
999 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1000 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1001 			&ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
1002 		max_rx_queue_size = RTE_MIN(max_queue_ext->max_rx_cq_depth,
1003 			max_queue_ext->max_rx_sq_depth);
1004 		max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
1005 
1006 		if (ena_dev->tx_mem_queue_type ==
1007 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1008 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1009 				llq->max_llq_depth);
1010 		} else {
1011 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1012 				max_queue_ext->max_tx_sq_depth);
1013 		}
1014 
1015 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1016 			max_queue_ext->max_per_packet_rx_descs);
1017 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1018 			max_queue_ext->max_per_packet_tx_descs);
1019 	} else {
1020 		struct ena_admin_queue_feature_desc *max_queues =
1021 			&ctx->get_feat_ctx->max_queues;
1022 		max_rx_queue_size = RTE_MIN(max_queues->max_cq_depth,
1023 			max_queues->max_sq_depth);
1024 		max_tx_queue_size = max_queues->max_cq_depth;
1025 
1026 		if (ena_dev->tx_mem_queue_type ==
1027 		    ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1028 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1029 				llq->max_llq_depth);
1030 		} else {
1031 			max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1032 				max_queues->max_sq_depth);
1033 		}
1034 
1035 		ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1036 			max_queues->max_packet_rx_descs);
1037 		ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1038 			max_queues->max_packet_tx_descs);
1039 	}
1040 
1041 	/* Round down to the nearest power of 2 */
1042 	max_rx_queue_size = rte_align32prevpow2(max_rx_queue_size);
1043 	max_tx_queue_size = rte_align32prevpow2(max_tx_queue_size);
1044 
1045 	if (use_large_llq_hdr) {
1046 		if ((llq->entry_size_ctrl_supported &
1047 		     ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
1048 		    (ena_dev->tx_mem_queue_type ==
1049 		     ENA_ADMIN_PLACEMENT_POLICY_DEV)) {
1050 			max_tx_queue_size /= 2;
1051 			PMD_INIT_LOG(INFO,
1052 				"Forcing large headers and decreasing maximum Tx queue size to %d\n",
1053 				max_tx_queue_size);
1054 		} else {
1055 			PMD_INIT_LOG(ERR,
1056 				"Forcing large headers failed: LLQ is disabled or device does not support large headers\n");
1057 		}
1058 	}
1059 
1060 	if (unlikely(max_rx_queue_size == 0 || max_tx_queue_size == 0)) {
1061 		PMD_INIT_LOG(ERR, "Invalid queue size\n");
1062 		return -EFAULT;
1063 	}
1064 
1065 	ctx->max_tx_queue_size = max_tx_queue_size;
1066 	ctx->max_rx_queue_size = max_rx_queue_size;
1067 
1068 	return 0;
1069 }
1070 
1071 static void ena_stats_restart(struct rte_eth_dev *dev)
1072 {
1073 	struct ena_adapter *adapter = dev->data->dev_private;
1074 
1075 	rte_atomic64_init(&adapter->drv_stats->ierrors);
1076 	rte_atomic64_init(&adapter->drv_stats->oerrors);
1077 	rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
1078 	adapter->drv_stats->rx_drops = 0;
1079 }
1080 
1081 static int ena_stats_get(struct rte_eth_dev *dev,
1082 			  struct rte_eth_stats *stats)
1083 {
1084 	struct ena_admin_basic_stats ena_stats;
1085 	struct ena_adapter *adapter = dev->data->dev_private;
1086 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1087 	int rc;
1088 	int i;
1089 	int max_rings_stats;
1090 
1091 	memset(&ena_stats, 0, sizeof(ena_stats));
1092 
1093 	rte_spinlock_lock(&adapter->admin_lock);
1094 	rc = ENA_PROXY(adapter, ena_com_get_dev_basic_stats, ena_dev,
1095 		       &ena_stats);
1096 	rte_spinlock_unlock(&adapter->admin_lock);
1097 	if (unlikely(rc)) {
1098 		PMD_DRV_LOG(ERR, "Could not retrieve statistics from ENA\n");
1099 		return rc;
1100 	}
1101 
1102 	/* Set of basic statistics from ENA */
1103 	stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
1104 					  ena_stats.rx_pkts_low);
1105 	stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
1106 					  ena_stats.tx_pkts_low);
1107 	stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
1108 					ena_stats.rx_bytes_low);
1109 	stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
1110 					ena_stats.tx_bytes_low);
1111 
1112 	/* Driver related stats */
1113 	stats->imissed = adapter->drv_stats->rx_drops;
1114 	stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
1115 	stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
1116 	stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
1117 
1118 	max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
1119 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
1120 	for (i = 0; i < max_rings_stats; ++i) {
1121 		struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
1122 
1123 		stats->q_ibytes[i] = rx_stats->bytes;
1124 		stats->q_ipackets[i] = rx_stats->cnt;
1125 		stats->q_errors[i] = rx_stats->bad_desc_num +
1126 			rx_stats->bad_req_id;
1127 	}
1128 
1129 	max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
1130 		RTE_ETHDEV_QUEUE_STAT_CNTRS);
1131 	for (i = 0; i < max_rings_stats; ++i) {
1132 		struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
1133 
1134 		stats->q_obytes[i] = tx_stats->bytes;
1135 		stats->q_opackets[i] = tx_stats->cnt;
1136 	}
1137 
1138 	return 0;
1139 }
1140 
1141 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1142 {
1143 	struct ena_adapter *adapter;
1144 	struct ena_com_dev *ena_dev;
1145 	int rc = 0;
1146 
1147 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
1148 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
1149 	adapter = dev->data->dev_private;
1150 
1151 	ena_dev = &adapter->ena_dev;
1152 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
1153 
1154 	if (mtu > adapter->max_mtu || mtu < ENA_MIN_MTU) {
1155 		PMD_DRV_LOG(ERR,
1156 			"Invalid MTU setting. New MTU: %d, max MTU: %d, min MTU: %d\n",
1157 			mtu, adapter->max_mtu, ENA_MIN_MTU);
1158 		return -EINVAL;
1159 	}
1160 
1161 	rc = ENA_PROXY(adapter, ena_com_set_dev_mtu, ena_dev, mtu);
1162 	if (rc)
1163 		PMD_DRV_LOG(ERR, "Could not set MTU: %d\n", mtu);
1164 	else
1165 		PMD_DRV_LOG(NOTICE, "MTU set to: %d\n", mtu);
1166 
1167 	return rc;
1168 }
1169 
1170 static int ena_start(struct rte_eth_dev *dev)
1171 {
1172 	struct ena_adapter *adapter = dev->data->dev_private;
1173 	uint64_t ticks;
1174 	int rc = 0;
1175 
1176 	/* Cannot allocate memory in secondary process */
1177 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1178 		PMD_DRV_LOG(WARNING, "dev_start not supported in secondary.\n");
1179 		return -EPERM;
1180 	}
1181 
1182 	rc = ena_check_valid_conf(adapter);
1183 	if (rc)
1184 		return rc;
1185 
1186 	rc = ena_setup_rx_intr(dev);
1187 	if (rc)
1188 		return rc;
1189 
1190 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
1191 	if (rc)
1192 		return rc;
1193 
1194 	rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
1195 	if (rc)
1196 		goto err_start_tx;
1197 
1198 	if (adapter->edev_data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG) {
1199 		rc = ena_rss_configure(adapter);
1200 		if (rc)
1201 			goto err_rss_init;
1202 	}
1203 
1204 	ena_stats_restart(dev);
1205 
1206 	adapter->timestamp_wd = rte_get_timer_cycles();
1207 	adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
1208 
1209 	ticks = rte_get_timer_hz();
1210 	rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
1211 			ena_timer_wd_callback, dev);
1212 
1213 	++adapter->dev_stats.dev_start;
1214 	adapter->state = ENA_ADAPTER_STATE_RUNNING;
1215 
1216 	return 0;
1217 
1218 err_rss_init:
1219 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1220 err_start_tx:
1221 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1222 	return rc;
1223 }
1224 
1225 static int ena_stop(struct rte_eth_dev *dev)
1226 {
1227 	struct ena_adapter *adapter = dev->data->dev_private;
1228 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1229 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1230 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
1231 	int rc;
1232 
1233 	/* Cannot free memory in secondary process */
1234 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1235 		PMD_DRV_LOG(WARNING, "dev_stop not supported in secondary.\n");
1236 		return -EPERM;
1237 	}
1238 
1239 	rte_timer_stop_sync(&adapter->timer_wd);
1240 	ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1241 	ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1242 
1243 	if (adapter->trigger_reset) {
1244 		rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
1245 		if (rc)
1246 			PMD_DRV_LOG(ERR, "Device reset failed, rc: %d\n", rc);
1247 	}
1248 
1249 	rte_intr_disable(intr_handle);
1250 
1251 	rte_intr_efd_disable(intr_handle);
1252 
1253 	/* Cleanup vector list */
1254 	rte_intr_vec_list_free(intr_handle);
1255 
1256 	rte_intr_enable(intr_handle);
1257 
1258 	++adapter->dev_stats.dev_stop;
1259 	adapter->state = ENA_ADAPTER_STATE_STOPPED;
1260 	dev->data->dev_started = 0;
1261 
1262 	return 0;
1263 }
1264 
1265 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring)
1266 {
1267 	struct ena_adapter *adapter = ring->adapter;
1268 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1269 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1270 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
1271 	struct ena_com_create_io_ctx ctx =
1272 		/* policy set to _HOST just to satisfy icc compiler */
1273 		{ ENA_ADMIN_PLACEMENT_POLICY_HOST,
1274 		  0, 0, 0, 0, 0 };
1275 	uint16_t ena_qid;
1276 	unsigned int i;
1277 	int rc;
1278 
1279 	ctx.msix_vector = -1;
1280 	if (ring->type == ENA_RING_TYPE_TX) {
1281 		ena_qid = ENA_IO_TXQ_IDX(ring->id);
1282 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1283 		ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1284 		for (i = 0; i < ring->ring_size; i++)
1285 			ring->empty_tx_reqs[i] = i;
1286 	} else {
1287 		ena_qid = ENA_IO_RXQ_IDX(ring->id);
1288 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1289 		if (rte_intr_dp_is_en(intr_handle))
1290 			ctx.msix_vector =
1291 				rte_intr_vec_list_index_get(intr_handle,
1292 								   ring->id);
1293 
1294 		for (i = 0; i < ring->ring_size; i++)
1295 			ring->empty_rx_reqs[i] = i;
1296 	}
1297 	ctx.queue_size = ring->ring_size;
1298 	ctx.qid = ena_qid;
1299 	ctx.numa_node = ring->numa_socket_id;
1300 
1301 	rc = ena_com_create_io_queue(ena_dev, &ctx);
1302 	if (rc) {
1303 		PMD_DRV_LOG(ERR,
1304 			"Failed to create IO queue[%d] (qid:%d), rc: %d\n",
1305 			ring->id, ena_qid, rc);
1306 		return rc;
1307 	}
1308 
1309 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1310 				     &ring->ena_com_io_sq,
1311 				     &ring->ena_com_io_cq);
1312 	if (rc) {
1313 		PMD_DRV_LOG(ERR,
1314 			"Failed to get IO queue[%d] handlers, rc: %d\n",
1315 			ring->id, rc);
1316 		ena_com_destroy_io_queue(ena_dev, ena_qid);
1317 		return rc;
1318 	}
1319 
1320 	if (ring->type == ENA_RING_TYPE_TX)
1321 		ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1322 
1323 	/* Start with Rx interrupts being masked. */
1324 	if (ring->type == ENA_RING_TYPE_RX && rte_intr_dp_is_en(intr_handle))
1325 		ena_rx_queue_intr_disable(dev, ring->id);
1326 
1327 	return 0;
1328 }
1329 
1330 static void ena_queue_stop(struct ena_ring *ring)
1331 {
1332 	struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
1333 
1334 	if (ring->type == ENA_RING_TYPE_RX) {
1335 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
1336 		ena_rx_queue_release_bufs(ring);
1337 	} else {
1338 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
1339 		ena_tx_queue_release_bufs(ring);
1340 	}
1341 }
1342 
1343 static void ena_queue_stop_all(struct rte_eth_dev *dev,
1344 			      enum ena_ring_type ring_type)
1345 {
1346 	struct ena_adapter *adapter = dev->data->dev_private;
1347 	struct ena_ring *queues = NULL;
1348 	uint16_t nb_queues, i;
1349 
1350 	if (ring_type == ENA_RING_TYPE_RX) {
1351 		queues = adapter->rx_ring;
1352 		nb_queues = dev->data->nb_rx_queues;
1353 	} else {
1354 		queues = adapter->tx_ring;
1355 		nb_queues = dev->data->nb_tx_queues;
1356 	}
1357 
1358 	for (i = 0; i < nb_queues; ++i)
1359 		if (queues[i].configured)
1360 			ena_queue_stop(&queues[i]);
1361 }
1362 
1363 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring)
1364 {
1365 	int rc, bufs_num;
1366 
1367 	ena_assert_msg(ring->configured == 1,
1368 		       "Trying to start unconfigured queue\n");
1369 
1370 	rc = ena_create_io_queue(dev, ring);
1371 	if (rc) {
1372 		PMD_INIT_LOG(ERR, "Failed to create IO queue\n");
1373 		return rc;
1374 	}
1375 
1376 	ring->next_to_clean = 0;
1377 	ring->next_to_use = 0;
1378 
1379 	if (ring->type == ENA_RING_TYPE_TX) {
1380 		ring->tx_stats.available_desc =
1381 			ena_com_free_q_entries(ring->ena_com_io_sq);
1382 		return 0;
1383 	}
1384 
1385 	bufs_num = ring->ring_size - 1;
1386 	rc = ena_populate_rx_queue(ring, bufs_num);
1387 	if (rc != bufs_num) {
1388 		ena_com_destroy_io_queue(&ring->adapter->ena_dev,
1389 					 ENA_IO_RXQ_IDX(ring->id));
1390 		PMD_INIT_LOG(ERR, "Failed to populate Rx ring\n");
1391 		return ENA_COM_FAULT;
1392 	}
1393 	/* Flush per-core RX buffers pools cache as they can be used on other
1394 	 * cores as well.
1395 	 */
1396 	rte_mempool_cache_flush(NULL, ring->mb_pool);
1397 
1398 	return 0;
1399 }
1400 
1401 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1402 			      uint16_t queue_idx,
1403 			      uint16_t nb_desc,
1404 			      unsigned int socket_id,
1405 			      const struct rte_eth_txconf *tx_conf)
1406 {
1407 	struct ena_ring *txq = NULL;
1408 	struct ena_adapter *adapter = dev->data->dev_private;
1409 	unsigned int i;
1410 	uint16_t dyn_thresh;
1411 
1412 	txq = &adapter->tx_ring[queue_idx];
1413 
1414 	if (txq->configured) {
1415 		PMD_DRV_LOG(CRIT,
1416 			"API violation. Queue[%d] is already configured\n",
1417 			queue_idx);
1418 		return ENA_COM_FAULT;
1419 	}
1420 
1421 	if (!rte_is_power_of_2(nb_desc)) {
1422 		PMD_DRV_LOG(ERR,
1423 			"Unsupported size of Tx queue: %d is not a power of 2.\n",
1424 			nb_desc);
1425 		return -EINVAL;
1426 	}
1427 
1428 	if (nb_desc > adapter->max_tx_ring_size) {
1429 		PMD_DRV_LOG(ERR,
1430 			"Unsupported size of Tx queue (max size: %d)\n",
1431 			adapter->max_tx_ring_size);
1432 		return -EINVAL;
1433 	}
1434 
1435 	txq->port_id = dev->data->port_id;
1436 	txq->next_to_clean = 0;
1437 	txq->next_to_use = 0;
1438 	txq->ring_size = nb_desc;
1439 	txq->size_mask = nb_desc - 1;
1440 	txq->numa_socket_id = socket_id;
1441 	txq->pkts_without_db = false;
1442 	txq->last_cleanup_ticks = 0;
1443 
1444 	txq->tx_buffer_info = rte_zmalloc_socket("txq->tx_buffer_info",
1445 		sizeof(struct ena_tx_buffer) * txq->ring_size,
1446 		RTE_CACHE_LINE_SIZE,
1447 		socket_id);
1448 	if (!txq->tx_buffer_info) {
1449 		PMD_DRV_LOG(ERR,
1450 			"Failed to allocate memory for Tx buffer info\n");
1451 		return -ENOMEM;
1452 	}
1453 
1454 	txq->empty_tx_reqs = rte_zmalloc_socket("txq->empty_tx_reqs",
1455 		sizeof(uint16_t) * txq->ring_size,
1456 		RTE_CACHE_LINE_SIZE,
1457 		socket_id);
1458 	if (!txq->empty_tx_reqs) {
1459 		PMD_DRV_LOG(ERR,
1460 			"Failed to allocate memory for empty Tx requests\n");
1461 		rte_free(txq->tx_buffer_info);
1462 		return -ENOMEM;
1463 	}
1464 
1465 	txq->push_buf_intermediate_buf =
1466 		rte_zmalloc_socket("txq->push_buf_intermediate_buf",
1467 			txq->tx_max_header_size,
1468 			RTE_CACHE_LINE_SIZE,
1469 			socket_id);
1470 	if (!txq->push_buf_intermediate_buf) {
1471 		PMD_DRV_LOG(ERR, "Failed to alloc push buffer for LLQ\n");
1472 		rte_free(txq->tx_buffer_info);
1473 		rte_free(txq->empty_tx_reqs);
1474 		return -ENOMEM;
1475 	}
1476 
1477 	for (i = 0; i < txq->ring_size; i++)
1478 		txq->empty_tx_reqs[i] = i;
1479 
1480 	txq->offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1481 
1482 	/* Check if caller provided the Tx cleanup threshold value. */
1483 	if (tx_conf->tx_free_thresh != 0) {
1484 		txq->tx_free_thresh = tx_conf->tx_free_thresh;
1485 	} else {
1486 		dyn_thresh = txq->ring_size -
1487 			txq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1488 		txq->tx_free_thresh = RTE_MAX(dyn_thresh,
1489 			txq->ring_size - ENA_REFILL_THRESH_PACKET);
1490 	}
1491 
1492 	txq->missing_tx_completion_threshold =
1493 		RTE_MIN(txq->ring_size / 2, ENA_DEFAULT_MISSING_COMP);
1494 
1495 	/* Store pointer to this queue in upper layer */
1496 	txq->configured = 1;
1497 	dev->data->tx_queues[queue_idx] = txq;
1498 
1499 	return 0;
1500 }
1501 
1502 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1503 			      uint16_t queue_idx,
1504 			      uint16_t nb_desc,
1505 			      unsigned int socket_id,
1506 			      const struct rte_eth_rxconf *rx_conf,
1507 			      struct rte_mempool *mp)
1508 {
1509 	struct ena_adapter *adapter = dev->data->dev_private;
1510 	struct ena_ring *rxq = NULL;
1511 	size_t buffer_size;
1512 	int i;
1513 	uint16_t dyn_thresh;
1514 
1515 	rxq = &adapter->rx_ring[queue_idx];
1516 	if (rxq->configured) {
1517 		PMD_DRV_LOG(CRIT,
1518 			"API violation. Queue[%d] is already configured\n",
1519 			queue_idx);
1520 		return ENA_COM_FAULT;
1521 	}
1522 
1523 	if (!rte_is_power_of_2(nb_desc)) {
1524 		PMD_DRV_LOG(ERR,
1525 			"Unsupported size of Rx queue: %d is not a power of 2.\n",
1526 			nb_desc);
1527 		return -EINVAL;
1528 	}
1529 
1530 	if (nb_desc > adapter->max_rx_ring_size) {
1531 		PMD_DRV_LOG(ERR,
1532 			"Unsupported size of Rx queue (max size: %d)\n",
1533 			adapter->max_rx_ring_size);
1534 		return -EINVAL;
1535 	}
1536 
1537 	/* ENA isn't supporting buffers smaller than 1400 bytes */
1538 	buffer_size = rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
1539 	if (buffer_size < ENA_RX_BUF_MIN_SIZE) {
1540 		PMD_DRV_LOG(ERR,
1541 			"Unsupported size of Rx buffer: %zu (min size: %d)\n",
1542 			buffer_size, ENA_RX_BUF_MIN_SIZE);
1543 		return -EINVAL;
1544 	}
1545 
1546 	rxq->port_id = dev->data->port_id;
1547 	rxq->next_to_clean = 0;
1548 	rxq->next_to_use = 0;
1549 	rxq->ring_size = nb_desc;
1550 	rxq->size_mask = nb_desc - 1;
1551 	rxq->numa_socket_id = socket_id;
1552 	rxq->mb_pool = mp;
1553 
1554 	rxq->rx_buffer_info = rte_zmalloc_socket("rxq->buffer_info",
1555 		sizeof(struct ena_rx_buffer) * nb_desc,
1556 		RTE_CACHE_LINE_SIZE,
1557 		socket_id);
1558 	if (!rxq->rx_buffer_info) {
1559 		PMD_DRV_LOG(ERR,
1560 			"Failed to allocate memory for Rx buffer info\n");
1561 		return -ENOMEM;
1562 	}
1563 
1564 	rxq->rx_refill_buffer = rte_zmalloc_socket("rxq->rx_refill_buffer",
1565 		sizeof(struct rte_mbuf *) * nb_desc,
1566 		RTE_CACHE_LINE_SIZE,
1567 		socket_id);
1568 	if (!rxq->rx_refill_buffer) {
1569 		PMD_DRV_LOG(ERR,
1570 			"Failed to allocate memory for Rx refill buffer\n");
1571 		rte_free(rxq->rx_buffer_info);
1572 		rxq->rx_buffer_info = NULL;
1573 		return -ENOMEM;
1574 	}
1575 
1576 	rxq->empty_rx_reqs = rte_zmalloc_socket("rxq->empty_rx_reqs",
1577 		sizeof(uint16_t) * nb_desc,
1578 		RTE_CACHE_LINE_SIZE,
1579 		socket_id);
1580 	if (!rxq->empty_rx_reqs) {
1581 		PMD_DRV_LOG(ERR,
1582 			"Failed to allocate memory for empty Rx requests\n");
1583 		rte_free(rxq->rx_buffer_info);
1584 		rxq->rx_buffer_info = NULL;
1585 		rte_free(rxq->rx_refill_buffer);
1586 		rxq->rx_refill_buffer = NULL;
1587 		return -ENOMEM;
1588 	}
1589 
1590 	for (i = 0; i < nb_desc; i++)
1591 		rxq->empty_rx_reqs[i] = i;
1592 
1593 	rxq->offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1594 
1595 	if (rx_conf->rx_free_thresh != 0) {
1596 		rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1597 	} else {
1598 		dyn_thresh = rxq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1599 		rxq->rx_free_thresh = RTE_MIN(dyn_thresh,
1600 			(uint16_t)(ENA_REFILL_THRESH_PACKET));
1601 	}
1602 
1603 	/* Store pointer to this queue in upper layer */
1604 	rxq->configured = 1;
1605 	dev->data->rx_queues[queue_idx] = rxq;
1606 
1607 	return 0;
1608 }
1609 
1610 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
1611 				  struct rte_mbuf *mbuf, uint16_t id)
1612 {
1613 	struct ena_com_buf ebuf;
1614 	int rc;
1615 
1616 	/* prepare physical address for DMA transaction */
1617 	ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1618 	ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1619 
1620 	/* pass resource to device */
1621 	rc = ena_com_add_single_rx_desc(io_sq, &ebuf, id);
1622 	if (unlikely(rc != 0))
1623 		PMD_RX_LOG(WARNING, "Failed adding Rx desc\n");
1624 
1625 	return rc;
1626 }
1627 
1628 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1629 {
1630 	unsigned int i;
1631 	int rc;
1632 	uint16_t next_to_use = rxq->next_to_use;
1633 	uint16_t req_id;
1634 #ifdef RTE_ETHDEV_DEBUG_RX
1635 	uint16_t in_use;
1636 #endif
1637 	struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1638 
1639 	if (unlikely(!count))
1640 		return 0;
1641 
1642 #ifdef RTE_ETHDEV_DEBUG_RX
1643 	in_use = rxq->ring_size - 1 -
1644 		ena_com_free_q_entries(rxq->ena_com_io_sq);
1645 	if (unlikely((in_use + count) >= rxq->ring_size))
1646 		PMD_RX_LOG(ERR, "Bad Rx ring state\n");
1647 #endif
1648 
1649 	/* get resources for incoming packets */
1650 	rc = rte_pktmbuf_alloc_bulk(rxq->mb_pool, mbufs, count);
1651 	if (unlikely(rc < 0)) {
1652 		rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1653 		++rxq->rx_stats.mbuf_alloc_fail;
1654 		PMD_RX_LOG(DEBUG, "There are not enough free buffers\n");
1655 		return 0;
1656 	}
1657 
1658 	for (i = 0; i < count; i++) {
1659 		struct rte_mbuf *mbuf = mbufs[i];
1660 		struct ena_rx_buffer *rx_info;
1661 
1662 		if (likely((i + 4) < count))
1663 			rte_prefetch0(mbufs[i + 4]);
1664 
1665 		req_id = rxq->empty_rx_reqs[next_to_use];
1666 		rx_info = &rxq->rx_buffer_info[req_id];
1667 
1668 		rc = ena_add_single_rx_desc(rxq->ena_com_io_sq, mbuf, req_id);
1669 		if (unlikely(rc != 0))
1670 			break;
1671 
1672 		rx_info->mbuf = mbuf;
1673 		next_to_use = ENA_IDX_NEXT_MASKED(next_to_use, rxq->size_mask);
1674 	}
1675 
1676 	if (unlikely(i < count)) {
1677 		PMD_RX_LOG(WARNING,
1678 			"Refilled Rx queue[%d] with only %d/%d buffers\n",
1679 			rxq->id, i, count);
1680 		rte_pktmbuf_free_bulk(&mbufs[i], count - i);
1681 		++rxq->rx_stats.refill_partial;
1682 	}
1683 
1684 	/* When we submitted free resources to device... */
1685 	if (likely(i > 0)) {
1686 		/* ...let HW know that it can fill buffers with data. */
1687 		ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1688 
1689 		rxq->next_to_use = next_to_use;
1690 	}
1691 
1692 	return i;
1693 }
1694 
1695 static int ena_device_init(struct ena_adapter *adapter,
1696 			   struct rte_pci_device *pdev,
1697 			   struct ena_com_dev_get_features_ctx *get_feat_ctx)
1698 {
1699 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1700 	uint32_t aenq_groups;
1701 	int rc;
1702 	bool readless_supported;
1703 
1704 	/* Initialize mmio registers */
1705 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
1706 	if (rc) {
1707 		PMD_DRV_LOG(ERR, "Failed to init MMIO read less\n");
1708 		return rc;
1709 	}
1710 
1711 	/* The PCIe configuration space revision id indicate if mmio reg
1712 	 * read is disabled.
1713 	 */
1714 	readless_supported = !(pdev->id.class_id & ENA_MMIO_DISABLE_REG_READ);
1715 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1716 
1717 	/* reset device */
1718 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1719 	if (rc) {
1720 		PMD_DRV_LOG(ERR, "Cannot reset device\n");
1721 		goto err_mmio_read_less;
1722 	}
1723 
1724 	/* check FW version */
1725 	rc = ena_com_validate_version(ena_dev);
1726 	if (rc) {
1727 		PMD_DRV_LOG(ERR, "Device version is too low\n");
1728 		goto err_mmio_read_less;
1729 	}
1730 
1731 	ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1732 
1733 	/* ENA device administration layer init */
1734 	rc = ena_com_admin_init(ena_dev, &aenq_handlers);
1735 	if (rc) {
1736 		PMD_DRV_LOG(ERR,
1737 			"Cannot initialize ENA admin queue\n");
1738 		goto err_mmio_read_less;
1739 	}
1740 
1741 	/* To enable the msix interrupts the driver needs to know the number
1742 	 * of queues. So the driver uses polling mode to retrieve this
1743 	 * information.
1744 	 */
1745 	ena_com_set_admin_polling_mode(ena_dev, true);
1746 
1747 	ena_config_host_info(ena_dev);
1748 
1749 	/* Get Device Attributes and features */
1750 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1751 	if (rc) {
1752 		PMD_DRV_LOG(ERR,
1753 			"Cannot get attribute for ENA device, rc: %d\n", rc);
1754 		goto err_admin_init;
1755 	}
1756 
1757 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1758 		      BIT(ENA_ADMIN_NOTIFICATION) |
1759 		      BIT(ENA_ADMIN_KEEP_ALIVE) |
1760 		      BIT(ENA_ADMIN_FATAL_ERROR) |
1761 		      BIT(ENA_ADMIN_WARNING);
1762 
1763 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
1764 
1765 	adapter->all_aenq_groups = aenq_groups;
1766 
1767 	return 0;
1768 
1769 err_admin_init:
1770 	ena_com_admin_destroy(ena_dev);
1771 
1772 err_mmio_read_less:
1773 	ena_com_mmio_reg_read_request_destroy(ena_dev);
1774 
1775 	return rc;
1776 }
1777 
1778 static void ena_interrupt_handler_rte(void *cb_arg)
1779 {
1780 	struct rte_eth_dev *dev = cb_arg;
1781 	struct ena_adapter *adapter = dev->data->dev_private;
1782 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
1783 
1784 	ena_com_admin_q_comp_intr_handler(ena_dev);
1785 	if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED))
1786 		ena_com_aenq_intr_handler(ena_dev, dev);
1787 }
1788 
1789 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1790 {
1791 	if (!(adapter->active_aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE)))
1792 		return;
1793 
1794 	if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1795 		return;
1796 
1797 	if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1798 	    adapter->keep_alive_timeout)) {
1799 		PMD_DRV_LOG(ERR, "Keep alive timeout\n");
1800 		ena_trigger_reset(adapter, ENA_REGS_RESET_KEEP_ALIVE_TO);
1801 		++adapter->dev_stats.wd_expired;
1802 	}
1803 }
1804 
1805 /* Check if admin queue is enabled */
1806 static void check_for_admin_com_state(struct ena_adapter *adapter)
1807 {
1808 	if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1809 		PMD_DRV_LOG(ERR, "ENA admin queue is not in running state\n");
1810 		ena_trigger_reset(adapter, ENA_REGS_RESET_ADMIN_TO);
1811 	}
1812 }
1813 
1814 static int check_for_tx_completion_in_queue(struct ena_adapter *adapter,
1815 					    struct ena_ring *tx_ring)
1816 {
1817 	struct ena_tx_buffer *tx_buf;
1818 	uint64_t timestamp;
1819 	uint64_t completion_delay;
1820 	uint32_t missed_tx = 0;
1821 	unsigned int i;
1822 	int rc = 0;
1823 
1824 	for (i = 0; i < tx_ring->ring_size; ++i) {
1825 		tx_buf = &tx_ring->tx_buffer_info[i];
1826 		timestamp = tx_buf->timestamp;
1827 
1828 		if (timestamp == 0)
1829 			continue;
1830 
1831 		completion_delay = rte_get_timer_cycles() - timestamp;
1832 		if (completion_delay > adapter->missing_tx_completion_to) {
1833 			if (unlikely(!tx_buf->print_once)) {
1834 				PMD_TX_LOG(WARNING,
1835 					"Found a Tx that wasn't completed on time, qid %d, index %d. "
1836 					"Missing Tx outstanding for %" PRIu64 " msecs.\n",
1837 					tx_ring->id, i,	completion_delay /
1838 					rte_get_timer_hz() * 1000);
1839 				tx_buf->print_once = true;
1840 			}
1841 			++missed_tx;
1842 		}
1843 	}
1844 
1845 	if (unlikely(missed_tx > tx_ring->missing_tx_completion_threshold)) {
1846 		PMD_DRV_LOG(ERR,
1847 			"The number of lost Tx completions is above the threshold (%d > %d). "
1848 			"Trigger the device reset.\n",
1849 			missed_tx,
1850 			tx_ring->missing_tx_completion_threshold);
1851 		adapter->reset_reason = ENA_REGS_RESET_MISS_TX_CMPL;
1852 		adapter->trigger_reset = true;
1853 		rc = -EIO;
1854 	}
1855 
1856 	tx_ring->tx_stats.missed_tx += missed_tx;
1857 
1858 	return rc;
1859 }
1860 
1861 static void check_for_tx_completions(struct ena_adapter *adapter)
1862 {
1863 	struct ena_ring *tx_ring;
1864 	uint64_t tx_cleanup_delay;
1865 	size_t qid;
1866 	int budget;
1867 	uint16_t nb_tx_queues = adapter->edev_data->nb_tx_queues;
1868 
1869 	if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT)
1870 		return;
1871 
1872 	nb_tx_queues = adapter->edev_data->nb_tx_queues;
1873 	budget = adapter->missing_tx_completion_budget;
1874 
1875 	qid = adapter->last_tx_comp_qid;
1876 	while (budget-- > 0) {
1877 		tx_ring = &adapter->tx_ring[qid];
1878 
1879 		/* Tx cleanup is called only by the burst function and can be
1880 		 * called dynamically by the application. Also cleanup is
1881 		 * limited by the threshold. To avoid false detection of the
1882 		 * missing HW Tx completion, get the delay since last cleanup
1883 		 * function was called.
1884 		 */
1885 		tx_cleanup_delay = rte_get_timer_cycles() -
1886 			tx_ring->last_cleanup_ticks;
1887 		if (tx_cleanup_delay < adapter->tx_cleanup_stall_delay)
1888 			check_for_tx_completion_in_queue(adapter, tx_ring);
1889 		qid = (qid + 1) % nb_tx_queues;
1890 	}
1891 
1892 	adapter->last_tx_comp_qid = qid;
1893 }
1894 
1895 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
1896 				  void *arg)
1897 {
1898 	struct rte_eth_dev *dev = arg;
1899 	struct ena_adapter *adapter = dev->data->dev_private;
1900 
1901 	if (unlikely(adapter->trigger_reset))
1902 		return;
1903 
1904 	check_for_missing_keep_alive(adapter);
1905 	check_for_admin_com_state(adapter);
1906 	check_for_tx_completions(adapter);
1907 
1908 	if (unlikely(adapter->trigger_reset)) {
1909 		PMD_DRV_LOG(ERR, "Trigger reset is on\n");
1910 		rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
1911 			NULL);
1912 	}
1913 }
1914 
1915 static inline void
1916 set_default_llq_configurations(struct ena_llq_configurations *llq_config,
1917 			       struct ena_admin_feature_llq_desc *llq,
1918 			       bool use_large_llq_hdr)
1919 {
1920 	llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
1921 	llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
1922 	llq_config->llq_num_decs_before_header =
1923 		ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
1924 
1925 	if (use_large_llq_hdr &&
1926 	    (llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B)) {
1927 		llq_config->llq_ring_entry_size =
1928 			ENA_ADMIN_LIST_ENTRY_SIZE_256B;
1929 		llq_config->llq_ring_entry_size_value = 256;
1930 	} else {
1931 		llq_config->llq_ring_entry_size =
1932 			ENA_ADMIN_LIST_ENTRY_SIZE_128B;
1933 		llq_config->llq_ring_entry_size_value = 128;
1934 	}
1935 }
1936 
1937 static int
1938 ena_set_queues_placement_policy(struct ena_adapter *adapter,
1939 				struct ena_com_dev *ena_dev,
1940 				struct ena_admin_feature_llq_desc *llq,
1941 				struct ena_llq_configurations *llq_default_configurations)
1942 {
1943 	int rc;
1944 	u32 llq_feature_mask;
1945 
1946 	llq_feature_mask = 1 << ENA_ADMIN_LLQ;
1947 	if (!(ena_dev->supported_features & llq_feature_mask)) {
1948 		PMD_DRV_LOG(INFO,
1949 			"LLQ is not supported. Fallback to host mode policy.\n");
1950 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1951 		return 0;
1952 	}
1953 
1954 	rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
1955 	if (unlikely(rc)) {
1956 		PMD_INIT_LOG(WARNING,
1957 			"Failed to config dev mode. Fallback to host mode policy.\n");
1958 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1959 		return 0;
1960 	}
1961 
1962 	/* Nothing to config, exit */
1963 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1964 		return 0;
1965 
1966 	if (!adapter->dev_mem_base) {
1967 		PMD_DRV_LOG(ERR,
1968 			"Unable to access LLQ BAR resource. Fallback to host mode policy.\n");
1969 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1970 		return 0;
1971 	}
1972 
1973 	ena_dev->mem_bar = adapter->dev_mem_base;
1974 
1975 	return 0;
1976 }
1977 
1978 static uint32_t ena_calc_max_io_queue_num(struct ena_com_dev *ena_dev,
1979 	struct ena_com_dev_get_features_ctx *get_feat_ctx)
1980 {
1981 	uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
1982 
1983 	/* Regular queues capabilities */
1984 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1985 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1986 			&get_feat_ctx->max_queue_ext.max_queue_ext;
1987 		io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
1988 				    max_queue_ext->max_rx_cq_num);
1989 		io_tx_sq_num = max_queue_ext->max_tx_sq_num;
1990 		io_tx_cq_num = max_queue_ext->max_tx_cq_num;
1991 	} else {
1992 		struct ena_admin_queue_feature_desc *max_queues =
1993 			&get_feat_ctx->max_queues;
1994 		io_tx_sq_num = max_queues->max_sq_num;
1995 		io_tx_cq_num = max_queues->max_cq_num;
1996 		io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
1997 	}
1998 
1999 	/* In case of LLQ use the llq number in the get feature cmd */
2000 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
2001 		io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
2002 
2003 	max_num_io_queues = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
2004 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_sq_num);
2005 	max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_cq_num);
2006 
2007 	if (unlikely(max_num_io_queues == 0)) {
2008 		PMD_DRV_LOG(ERR, "Number of IO queues cannot not be 0\n");
2009 		return -EFAULT;
2010 	}
2011 
2012 	return max_num_io_queues;
2013 }
2014 
2015 static void
2016 ena_set_offloads(struct ena_offloads *offloads,
2017 		 struct ena_admin_feature_offload_desc *offload_desc)
2018 {
2019 	if (offload_desc->tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK)
2020 		offloads->tx_offloads |= ENA_IPV4_TSO;
2021 
2022 	/* Tx IPv4 checksum offloads */
2023 	if (offload_desc->tx &
2024 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)
2025 		offloads->tx_offloads |= ENA_L3_IPV4_CSUM;
2026 	if (offload_desc->tx &
2027 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK)
2028 		offloads->tx_offloads |= ENA_L4_IPV4_CSUM;
2029 	if (offload_desc->tx &
2030 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)
2031 		offloads->tx_offloads |= ENA_L4_IPV4_CSUM_PARTIAL;
2032 
2033 	/* Tx IPv6 checksum offloads */
2034 	if (offload_desc->tx &
2035 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK)
2036 		offloads->tx_offloads |= ENA_L4_IPV6_CSUM;
2037 	if (offload_desc->tx &
2038 	     ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)
2039 		offloads->tx_offloads |= ENA_L4_IPV6_CSUM_PARTIAL;
2040 
2041 	/* Rx IPv4 checksum offloads */
2042 	if (offload_desc->rx_supported &
2043 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)
2044 		offloads->rx_offloads |= ENA_L3_IPV4_CSUM;
2045 	if (offload_desc->rx_supported &
2046 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK)
2047 		offloads->rx_offloads |= ENA_L4_IPV4_CSUM;
2048 
2049 	/* Rx IPv6 checksum offloads */
2050 	if (offload_desc->rx_supported &
2051 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK)
2052 		offloads->rx_offloads |= ENA_L4_IPV6_CSUM;
2053 
2054 	if (offload_desc->rx_supported &
2055 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_HASH_MASK)
2056 		offloads->rx_offloads |= ENA_RX_RSS_HASH;
2057 }
2058 
2059 static int ena_init_once(void)
2060 {
2061 	static bool init_done;
2062 
2063 	if (init_done)
2064 		return 0;
2065 
2066 	if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
2067 		/* Init timer subsystem for the ENA timer service. */
2068 		rte_timer_subsystem_init();
2069 		/* Register handler for requests from secondary processes. */
2070 		rte_mp_action_register(ENA_MP_NAME, ena_mp_primary_handle);
2071 	}
2072 
2073 	init_done = true;
2074 	return 0;
2075 }
2076 
2077 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
2078 {
2079 	struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
2080 	struct rte_pci_device *pci_dev;
2081 	struct rte_intr_handle *intr_handle;
2082 	struct ena_adapter *adapter = eth_dev->data->dev_private;
2083 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
2084 	struct ena_com_dev_get_features_ctx get_feat_ctx;
2085 	struct ena_llq_configurations llq_config;
2086 	const char *queue_type_str;
2087 	uint32_t max_num_io_queues;
2088 	int rc;
2089 	static int adapters_found;
2090 	bool disable_meta_caching;
2091 
2092 	eth_dev->dev_ops = &ena_dev_ops;
2093 	eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
2094 	eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
2095 	eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
2096 
2097 	rc = ena_init_once();
2098 	if (rc != 0)
2099 		return rc;
2100 
2101 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2102 		return 0;
2103 
2104 	eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
2105 
2106 	memset(adapter, 0, sizeof(struct ena_adapter));
2107 	ena_dev = &adapter->ena_dev;
2108 
2109 	adapter->edev_data = eth_dev->data;
2110 
2111 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2112 
2113 	PMD_INIT_LOG(INFO, "Initializing %x:%x:%x.%d\n",
2114 		     pci_dev->addr.domain,
2115 		     pci_dev->addr.bus,
2116 		     pci_dev->addr.devid,
2117 		     pci_dev->addr.function);
2118 
2119 	intr_handle = pci_dev->intr_handle;
2120 
2121 	adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
2122 	adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
2123 
2124 	if (!adapter->regs) {
2125 		PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)\n",
2126 			     ENA_REGS_BAR);
2127 		return -ENXIO;
2128 	}
2129 
2130 	ena_dev->reg_bar = adapter->regs;
2131 	/* Pass device data as a pointer which can be passed to the IO functions
2132 	 * by the ena_com (for example - the memory allocation).
2133 	 */
2134 	ena_dev->dmadev = eth_dev->data;
2135 
2136 	adapter->id_number = adapters_found;
2137 
2138 	snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
2139 		 adapter->id_number);
2140 
2141 	adapter->missing_tx_completion_to = ENA_TX_TIMEOUT;
2142 
2143 	rc = ena_parse_devargs(adapter, pci_dev->device.devargs);
2144 	if (rc != 0) {
2145 		PMD_INIT_LOG(CRIT, "Failed to parse devargs\n");
2146 		goto err;
2147 	}
2148 
2149 	/* device specific initialization routine */
2150 	rc = ena_device_init(adapter, pci_dev, &get_feat_ctx);
2151 	if (rc) {
2152 		PMD_INIT_LOG(CRIT, "Failed to init ENA device\n");
2153 		goto err;
2154 	}
2155 
2156 	/* Check if device supports LSC */
2157 	if (!(adapter->all_aenq_groups & BIT(ENA_ADMIN_LINK_CHANGE)))
2158 		adapter->edev_data->dev_flags &= ~RTE_ETH_DEV_INTR_LSC;
2159 
2160 	set_default_llq_configurations(&llq_config, &get_feat_ctx.llq,
2161 		adapter->use_large_llq_hdr);
2162 	rc = ena_set_queues_placement_policy(adapter, ena_dev,
2163 					     &get_feat_ctx.llq, &llq_config);
2164 	if (unlikely(rc)) {
2165 		PMD_INIT_LOG(CRIT, "Failed to set placement policy\n");
2166 		return rc;
2167 	}
2168 
2169 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
2170 		queue_type_str = "Regular";
2171 	else
2172 		queue_type_str = "Low latency";
2173 	PMD_DRV_LOG(INFO, "Placement policy: %s\n", queue_type_str);
2174 
2175 	calc_queue_ctx.ena_dev = ena_dev;
2176 	calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
2177 
2178 	max_num_io_queues = ena_calc_max_io_queue_num(ena_dev, &get_feat_ctx);
2179 	rc = ena_calc_io_queue_size(&calc_queue_ctx,
2180 		adapter->use_large_llq_hdr);
2181 	if (unlikely((rc != 0) || (max_num_io_queues == 0))) {
2182 		rc = -EFAULT;
2183 		goto err_device_destroy;
2184 	}
2185 
2186 	adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
2187 	adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
2188 	adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
2189 	adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
2190 	adapter->max_num_io_queues = max_num_io_queues;
2191 
2192 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2193 		disable_meta_caching =
2194 			!!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
2195 			BIT(ENA_ADMIN_DISABLE_META_CACHING));
2196 	} else {
2197 		disable_meta_caching = false;
2198 	}
2199 
2200 	/* prepare ring structures */
2201 	ena_init_rings(adapter, disable_meta_caching);
2202 
2203 	ena_config_debug_area(adapter);
2204 
2205 	/* Set max MTU for this device */
2206 	adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
2207 
2208 	ena_set_offloads(&adapter->offloads, &get_feat_ctx.offload);
2209 
2210 	/* Copy MAC address and point DPDK to it */
2211 	eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr;
2212 	rte_ether_addr_copy((struct rte_ether_addr *)
2213 			get_feat_ctx.dev_attr.mac_addr,
2214 			(struct rte_ether_addr *)adapter->mac_addr);
2215 
2216 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
2217 	if (unlikely(rc != 0)) {
2218 		PMD_DRV_LOG(ERR, "Failed to initialize RSS in ENA device\n");
2219 		goto err_delete_debug_area;
2220 	}
2221 
2222 	adapter->drv_stats = rte_zmalloc("adapter stats",
2223 					 sizeof(*adapter->drv_stats),
2224 					 RTE_CACHE_LINE_SIZE);
2225 	if (!adapter->drv_stats) {
2226 		PMD_DRV_LOG(ERR,
2227 			"Failed to allocate memory for adapter statistics\n");
2228 		rc = -ENOMEM;
2229 		goto err_rss_destroy;
2230 	}
2231 
2232 	rte_spinlock_init(&adapter->admin_lock);
2233 
2234 	rte_intr_callback_register(intr_handle,
2235 				   ena_interrupt_handler_rte,
2236 				   eth_dev);
2237 	rte_intr_enable(intr_handle);
2238 	ena_com_set_admin_polling_mode(ena_dev, false);
2239 	ena_com_admin_aenq_enable(ena_dev);
2240 
2241 	rte_timer_init(&adapter->timer_wd);
2242 
2243 	adapters_found++;
2244 	adapter->state = ENA_ADAPTER_STATE_INIT;
2245 
2246 	return 0;
2247 
2248 err_rss_destroy:
2249 	ena_com_rss_destroy(ena_dev);
2250 err_delete_debug_area:
2251 	ena_com_delete_debug_area(ena_dev);
2252 
2253 err_device_destroy:
2254 	ena_com_delete_host_info(ena_dev);
2255 	ena_com_admin_destroy(ena_dev);
2256 
2257 err:
2258 	return rc;
2259 }
2260 
2261 static void ena_destroy_device(struct rte_eth_dev *eth_dev)
2262 {
2263 	struct ena_adapter *adapter = eth_dev->data->dev_private;
2264 	struct ena_com_dev *ena_dev = &adapter->ena_dev;
2265 
2266 	if (adapter->state == ENA_ADAPTER_STATE_FREE)
2267 		return;
2268 
2269 	ena_com_set_admin_running_state(ena_dev, false);
2270 
2271 	if (adapter->state != ENA_ADAPTER_STATE_CLOSED)
2272 		ena_close(eth_dev);
2273 
2274 	ena_com_rss_destroy(ena_dev);
2275 
2276 	ena_com_delete_debug_area(ena_dev);
2277 	ena_com_delete_host_info(ena_dev);
2278 
2279 	ena_com_abort_admin_commands(ena_dev);
2280 	ena_com_wait_for_abort_completion(ena_dev);
2281 	ena_com_admin_destroy(ena_dev);
2282 	ena_com_mmio_reg_read_request_destroy(ena_dev);
2283 
2284 	adapter->state = ENA_ADAPTER_STATE_FREE;
2285 }
2286 
2287 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
2288 {
2289 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2290 		return 0;
2291 
2292 	ena_destroy_device(eth_dev);
2293 
2294 	return 0;
2295 }
2296 
2297 static int ena_dev_configure(struct rte_eth_dev *dev)
2298 {
2299 	struct ena_adapter *adapter = dev->data->dev_private;
2300 	int rc;
2301 
2302 	adapter->state = ENA_ADAPTER_STATE_CONFIG;
2303 
2304 	if (dev->data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG)
2305 		dev->data->dev_conf.rxmode.offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2306 	dev->data->dev_conf.txmode.offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2307 
2308 	/* Scattered Rx cannot be turned off in the HW, so this capability must
2309 	 * be forced.
2310 	 */
2311 	dev->data->scattered_rx = 1;
2312 
2313 	adapter->last_tx_comp_qid = 0;
2314 
2315 	adapter->missing_tx_completion_budget =
2316 		RTE_MIN(ENA_MONITORED_TX_QUEUES, dev->data->nb_tx_queues);
2317 
2318 	/* To avoid detection of the spurious Tx completion timeout due to
2319 	 * application not calling the Tx cleanup function, set timeout for the
2320 	 * Tx queue which should be half of the missing completion timeout for a
2321 	 * safety. If there will be a lot of missing Tx completions in the
2322 	 * queue, they will be detected sooner or later.
2323 	 */
2324 	adapter->tx_cleanup_stall_delay = adapter->missing_tx_completion_to / 2;
2325 
2326 	rc = ena_configure_aenq(adapter);
2327 
2328 	return rc;
2329 }
2330 
2331 static void ena_init_rings(struct ena_adapter *adapter,
2332 			   bool disable_meta_caching)
2333 {
2334 	size_t i;
2335 
2336 	for (i = 0; i < adapter->max_num_io_queues; i++) {
2337 		struct ena_ring *ring = &adapter->tx_ring[i];
2338 
2339 		ring->configured = 0;
2340 		ring->type = ENA_RING_TYPE_TX;
2341 		ring->adapter = adapter;
2342 		ring->id = i;
2343 		ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
2344 		ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
2345 		ring->sgl_size = adapter->max_tx_sgl_size;
2346 		ring->disable_meta_caching = disable_meta_caching;
2347 	}
2348 
2349 	for (i = 0; i < adapter->max_num_io_queues; i++) {
2350 		struct ena_ring *ring = &adapter->rx_ring[i];
2351 
2352 		ring->configured = 0;
2353 		ring->type = ENA_RING_TYPE_RX;
2354 		ring->adapter = adapter;
2355 		ring->id = i;
2356 		ring->sgl_size = adapter->max_rx_sgl_size;
2357 	}
2358 }
2359 
2360 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter)
2361 {
2362 	uint64_t port_offloads = 0;
2363 
2364 	if (adapter->offloads.rx_offloads & ENA_L3_IPV4_CSUM)
2365 		port_offloads |= RTE_ETH_RX_OFFLOAD_IPV4_CKSUM;
2366 
2367 	if (adapter->offloads.rx_offloads &
2368 	    (ENA_L4_IPV4_CSUM | ENA_L4_IPV6_CSUM))
2369 		port_offloads |=
2370 			RTE_ETH_RX_OFFLOAD_UDP_CKSUM | RTE_ETH_RX_OFFLOAD_TCP_CKSUM;
2371 
2372 	if (adapter->offloads.rx_offloads & ENA_RX_RSS_HASH)
2373 		port_offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2374 
2375 	port_offloads |= RTE_ETH_RX_OFFLOAD_SCATTER;
2376 
2377 	return port_offloads;
2378 }
2379 
2380 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter)
2381 {
2382 	uint64_t port_offloads = 0;
2383 
2384 	if (adapter->offloads.tx_offloads & ENA_IPV4_TSO)
2385 		port_offloads |= RTE_ETH_TX_OFFLOAD_TCP_TSO;
2386 
2387 	if (adapter->offloads.tx_offloads & ENA_L3_IPV4_CSUM)
2388 		port_offloads |= RTE_ETH_TX_OFFLOAD_IPV4_CKSUM;
2389 	if (adapter->offloads.tx_offloads &
2390 	    (ENA_L4_IPV4_CSUM_PARTIAL | ENA_L4_IPV4_CSUM |
2391 	     ENA_L4_IPV6_CSUM | ENA_L4_IPV6_CSUM_PARTIAL))
2392 		port_offloads |=
2393 			RTE_ETH_TX_OFFLOAD_UDP_CKSUM | RTE_ETH_TX_OFFLOAD_TCP_CKSUM;
2394 
2395 	port_offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2396 
2397 	return port_offloads;
2398 }
2399 
2400 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter)
2401 {
2402 	RTE_SET_USED(adapter);
2403 
2404 	return 0;
2405 }
2406 
2407 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter)
2408 {
2409 	RTE_SET_USED(adapter);
2410 
2411 	return 0;
2412 }
2413 
2414 static int ena_infos_get(struct rte_eth_dev *dev,
2415 			  struct rte_eth_dev_info *dev_info)
2416 {
2417 	struct ena_adapter *adapter;
2418 	struct ena_com_dev *ena_dev;
2419 
2420 	ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
2421 	ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
2422 	adapter = dev->data->dev_private;
2423 
2424 	ena_dev = &adapter->ena_dev;
2425 	ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
2426 
2427 	dev_info->speed_capa =
2428 			RTE_ETH_LINK_SPEED_1G   |
2429 			RTE_ETH_LINK_SPEED_2_5G |
2430 			RTE_ETH_LINK_SPEED_5G   |
2431 			RTE_ETH_LINK_SPEED_10G  |
2432 			RTE_ETH_LINK_SPEED_25G  |
2433 			RTE_ETH_LINK_SPEED_40G  |
2434 			RTE_ETH_LINK_SPEED_50G  |
2435 			RTE_ETH_LINK_SPEED_100G;
2436 
2437 	/* Inform framework about available features */
2438 	dev_info->rx_offload_capa = ena_get_rx_port_offloads(adapter);
2439 	dev_info->tx_offload_capa = ena_get_tx_port_offloads(adapter);
2440 	dev_info->rx_queue_offload_capa = ena_get_rx_queue_offloads(adapter);
2441 	dev_info->tx_queue_offload_capa = ena_get_tx_queue_offloads(adapter);
2442 
2443 	dev_info->flow_type_rss_offloads = ENA_ALL_RSS_HF;
2444 	dev_info->hash_key_size = ENA_HASH_KEY_SIZE;
2445 
2446 	dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
2447 	dev_info->max_rx_pktlen  = adapter->max_mtu + RTE_ETHER_HDR_LEN +
2448 		RTE_ETHER_CRC_LEN;
2449 	dev_info->min_mtu = ENA_MIN_MTU;
2450 	dev_info->max_mtu = adapter->max_mtu;
2451 	dev_info->max_mac_addrs = 1;
2452 
2453 	dev_info->max_rx_queues = adapter->max_num_io_queues;
2454 	dev_info->max_tx_queues = adapter->max_num_io_queues;
2455 	dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
2456 
2457 	dev_info->rx_desc_lim.nb_max = adapter->max_rx_ring_size;
2458 	dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2459 	dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2460 					adapter->max_rx_sgl_size);
2461 	dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2462 					adapter->max_rx_sgl_size);
2463 
2464 	dev_info->tx_desc_lim.nb_max = adapter->max_tx_ring_size;
2465 	dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2466 	dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2467 					adapter->max_tx_sgl_size);
2468 	dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2469 					adapter->max_tx_sgl_size);
2470 
2471 	dev_info->default_rxportconf.ring_size = ENA_DEFAULT_RING_SIZE;
2472 	dev_info->default_txportconf.ring_size = ENA_DEFAULT_RING_SIZE;
2473 
2474 	return 0;
2475 }
2476 
2477 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len)
2478 {
2479 	mbuf->data_len = len;
2480 	mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2481 	mbuf->refcnt = 1;
2482 	mbuf->next = NULL;
2483 }
2484 
2485 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
2486 				    struct ena_com_rx_buf_info *ena_bufs,
2487 				    uint32_t descs,
2488 				    uint16_t *next_to_clean,
2489 				    uint8_t offset)
2490 {
2491 	struct rte_mbuf *mbuf;
2492 	struct rte_mbuf *mbuf_head;
2493 	struct ena_rx_buffer *rx_info;
2494 	int rc;
2495 	uint16_t ntc, len, req_id, buf = 0;
2496 
2497 	if (unlikely(descs == 0))
2498 		return NULL;
2499 
2500 	ntc = *next_to_clean;
2501 
2502 	len = ena_bufs[buf].len;
2503 	req_id = ena_bufs[buf].req_id;
2504 
2505 	rx_info = &rx_ring->rx_buffer_info[req_id];
2506 
2507 	mbuf = rx_info->mbuf;
2508 	RTE_ASSERT(mbuf != NULL);
2509 
2510 	ena_init_rx_mbuf(mbuf, len);
2511 
2512 	/* Fill the mbuf head with the data specific for 1st segment. */
2513 	mbuf_head = mbuf;
2514 	mbuf_head->nb_segs = descs;
2515 	mbuf_head->port = rx_ring->port_id;
2516 	mbuf_head->pkt_len = len;
2517 	mbuf_head->data_off += offset;
2518 
2519 	rx_info->mbuf = NULL;
2520 	rx_ring->empty_rx_reqs[ntc] = req_id;
2521 	ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2522 
2523 	while (--descs) {
2524 		++buf;
2525 		len = ena_bufs[buf].len;
2526 		req_id = ena_bufs[buf].req_id;
2527 
2528 		rx_info = &rx_ring->rx_buffer_info[req_id];
2529 		RTE_ASSERT(rx_info->mbuf != NULL);
2530 
2531 		if (unlikely(len == 0)) {
2532 			/*
2533 			 * Some devices can pass descriptor with the length 0.
2534 			 * To avoid confusion, the PMD is simply putting the
2535 			 * descriptor back, as it was never used. We'll avoid
2536 			 * mbuf allocation that way.
2537 			 */
2538 			rc = ena_add_single_rx_desc(rx_ring->ena_com_io_sq,
2539 				rx_info->mbuf, req_id);
2540 			if (unlikely(rc != 0)) {
2541 				/* Free the mbuf in case of an error. */
2542 				rte_mbuf_raw_free(rx_info->mbuf);
2543 			} else {
2544 				/*
2545 				 * If there was no error, just exit the loop as
2546 				 * 0 length descriptor is always the last one.
2547 				 */
2548 				break;
2549 			}
2550 		} else {
2551 			/* Create an mbuf chain. */
2552 			mbuf->next = rx_info->mbuf;
2553 			mbuf = mbuf->next;
2554 
2555 			ena_init_rx_mbuf(mbuf, len);
2556 			mbuf_head->pkt_len += len;
2557 		}
2558 
2559 		/*
2560 		 * Mark the descriptor as depleted and perform necessary
2561 		 * cleanup.
2562 		 * This code will execute in two cases:
2563 		 *  1. Descriptor len was greater than 0 - normal situation.
2564 		 *  2. Descriptor len was 0 and we failed to add the descriptor
2565 		 *     to the device. In that situation, we should try to add
2566 		 *     the mbuf again in the populate routine and mark the
2567 		 *     descriptor as used up by the device.
2568 		 */
2569 		rx_info->mbuf = NULL;
2570 		rx_ring->empty_rx_reqs[ntc] = req_id;
2571 		ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2572 	}
2573 
2574 	*next_to_clean = ntc;
2575 
2576 	return mbuf_head;
2577 }
2578 
2579 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
2580 				  uint16_t nb_pkts)
2581 {
2582 	struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
2583 	unsigned int free_queue_entries;
2584 	uint16_t next_to_clean = rx_ring->next_to_clean;
2585 	uint16_t descs_in_use;
2586 	struct rte_mbuf *mbuf;
2587 	uint16_t completed;
2588 	struct ena_com_rx_ctx ena_rx_ctx;
2589 	int i, rc = 0;
2590 	bool fill_hash;
2591 
2592 #ifdef RTE_ETHDEV_DEBUG_RX
2593 	/* Check adapter state */
2594 	if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2595 		PMD_RX_LOG(ALERT,
2596 			"Trying to receive pkts while device is NOT running\n");
2597 		return 0;
2598 	}
2599 #endif
2600 
2601 	fill_hash = rx_ring->offloads & RTE_ETH_RX_OFFLOAD_RSS_HASH;
2602 
2603 	descs_in_use = rx_ring->ring_size -
2604 		ena_com_free_q_entries(rx_ring->ena_com_io_sq) - 1;
2605 	nb_pkts = RTE_MIN(descs_in_use, nb_pkts);
2606 
2607 	for (completed = 0; completed < nb_pkts; completed++) {
2608 		ena_rx_ctx.max_bufs = rx_ring->sgl_size;
2609 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
2610 		ena_rx_ctx.descs = 0;
2611 		ena_rx_ctx.pkt_offset = 0;
2612 		/* receive packet context */
2613 		rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
2614 				    rx_ring->ena_com_io_sq,
2615 				    &ena_rx_ctx);
2616 		if (unlikely(rc)) {
2617 			PMD_RX_LOG(ERR,
2618 				"Failed to get the packet from the device, rc: %d\n",
2619 				rc);
2620 			if (rc == ENA_COM_NO_SPACE) {
2621 				++rx_ring->rx_stats.bad_desc_num;
2622 				ena_trigger_reset(rx_ring->adapter,
2623 					ENA_REGS_RESET_TOO_MANY_RX_DESCS);
2624 			} else {
2625 				++rx_ring->rx_stats.bad_req_id;
2626 				ena_trigger_reset(rx_ring->adapter,
2627 					ENA_REGS_RESET_INV_RX_REQ_ID);
2628 			}
2629 			return 0;
2630 		}
2631 
2632 		mbuf = ena_rx_mbuf(rx_ring,
2633 			ena_rx_ctx.ena_bufs,
2634 			ena_rx_ctx.descs,
2635 			&next_to_clean,
2636 			ena_rx_ctx.pkt_offset);
2637 		if (unlikely(mbuf == NULL)) {
2638 			for (i = 0; i < ena_rx_ctx.descs; ++i) {
2639 				rx_ring->empty_rx_reqs[next_to_clean] =
2640 					rx_ring->ena_bufs[i].req_id;
2641 				next_to_clean = ENA_IDX_NEXT_MASKED(
2642 					next_to_clean, rx_ring->size_mask);
2643 			}
2644 			break;
2645 		}
2646 
2647 		/* fill mbuf attributes if any */
2648 		ena_rx_mbuf_prepare(rx_ring, mbuf, &ena_rx_ctx, fill_hash);
2649 
2650 		if (unlikely(mbuf->ol_flags &
2651 				(RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD)))
2652 			rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors);
2653 
2654 		rx_pkts[completed] = mbuf;
2655 		rx_ring->rx_stats.bytes += mbuf->pkt_len;
2656 	}
2657 
2658 	rx_ring->rx_stats.cnt += completed;
2659 	rx_ring->next_to_clean = next_to_clean;
2660 
2661 	free_queue_entries = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
2662 
2663 	/* Burst refill to save doorbells, memory barriers, const interval */
2664 	if (free_queue_entries >= rx_ring->rx_free_thresh) {
2665 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
2666 		ena_populate_rx_queue(rx_ring, free_queue_entries);
2667 	}
2668 
2669 	return completed;
2670 }
2671 
2672 static uint16_t
2673 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2674 		uint16_t nb_pkts)
2675 {
2676 	int32_t ret;
2677 	uint32_t i;
2678 	struct rte_mbuf *m;
2679 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2680 	struct ena_adapter *adapter = tx_ring->adapter;
2681 	struct rte_ipv4_hdr *ip_hdr;
2682 	uint64_t ol_flags;
2683 	uint64_t l4_csum_flag;
2684 	uint64_t dev_offload_capa;
2685 	uint16_t frag_field;
2686 	bool need_pseudo_csum;
2687 
2688 	dev_offload_capa = adapter->offloads.tx_offloads;
2689 	for (i = 0; i != nb_pkts; i++) {
2690 		m = tx_pkts[i];
2691 		ol_flags = m->ol_flags;
2692 
2693 		/* Check if any offload flag was set */
2694 		if (ol_flags == 0)
2695 			continue;
2696 
2697 		l4_csum_flag = ol_flags & RTE_MBUF_F_TX_L4_MASK;
2698 		/* SCTP checksum offload is not supported by the ENA. */
2699 		if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) ||
2700 		    l4_csum_flag == RTE_MBUF_F_TX_SCTP_CKSUM) {
2701 			PMD_TX_LOG(DEBUG,
2702 				"mbuf[%" PRIu32 "] has unsupported offloads flags set: 0x%" PRIu64 "\n",
2703 				i, ol_flags);
2704 			rte_errno = ENOTSUP;
2705 			return i;
2706 		}
2707 
2708 		if (unlikely(m->nb_segs >= tx_ring->sgl_size &&
2709 		    !(tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
2710 		      m->nb_segs == tx_ring->sgl_size &&
2711 		      m->data_len < tx_ring->tx_max_header_size))) {
2712 			PMD_TX_LOG(DEBUG,
2713 				"mbuf[%" PRIu32 "] has too many segments: %" PRIu16 "\n",
2714 				i, m->nb_segs);
2715 			rte_errno = EINVAL;
2716 			return i;
2717 		}
2718 
2719 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2720 		/* Check if requested offload is also enabled for the queue */
2721 		if ((ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
2722 		     !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM)) ||
2723 		    (l4_csum_flag == RTE_MBUF_F_TX_TCP_CKSUM &&
2724 		     !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) ||
2725 		    (l4_csum_flag == RTE_MBUF_F_TX_UDP_CKSUM &&
2726 		     !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM))) {
2727 			PMD_TX_LOG(DEBUG,
2728 				"mbuf[%" PRIu32 "]: requested offloads: %" PRIu16 " are not enabled for the queue[%u]\n",
2729 				i, m->nb_segs, tx_ring->id);
2730 			rte_errno = EINVAL;
2731 			return i;
2732 		}
2733 
2734 		/* The caller is obligated to set l2 and l3 len if any cksum
2735 		 * offload is enabled.
2736 		 */
2737 		if (unlikely(ol_flags & (RTE_MBUF_F_TX_IP_CKSUM | RTE_MBUF_F_TX_L4_MASK) &&
2738 		    (m->l2_len == 0 || m->l3_len == 0))) {
2739 			PMD_TX_LOG(DEBUG,
2740 				"mbuf[%" PRIu32 "]: l2_len or l3_len values are 0 while the offload was requested\n",
2741 				i);
2742 			rte_errno = EINVAL;
2743 			return i;
2744 		}
2745 		ret = rte_validate_tx_offload(m);
2746 		if (ret != 0) {
2747 			rte_errno = -ret;
2748 			return i;
2749 		}
2750 #endif
2751 
2752 		/* Verify HW support for requested offloads and determine if
2753 		 * pseudo header checksum is needed.
2754 		 */
2755 		need_pseudo_csum = false;
2756 		if (ol_flags & RTE_MBUF_F_TX_IPV4) {
2757 			if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
2758 			    !(dev_offload_capa & ENA_L3_IPV4_CSUM)) {
2759 				rte_errno = ENOTSUP;
2760 				return i;
2761 			}
2762 
2763 			if (ol_flags & RTE_MBUF_F_TX_TCP_SEG &&
2764 			    !(dev_offload_capa & ENA_IPV4_TSO)) {
2765 				rte_errno = ENOTSUP;
2766 				return i;
2767 			}
2768 
2769 			/* Check HW capabilities and if pseudo csum is needed
2770 			 * for L4 offloads.
2771 			 */
2772 			if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
2773 			    !(dev_offload_capa & ENA_L4_IPV4_CSUM)) {
2774 				if (dev_offload_capa &
2775 				    ENA_L4_IPV4_CSUM_PARTIAL) {
2776 					need_pseudo_csum = true;
2777 				} else {
2778 					rte_errno = ENOTSUP;
2779 					return i;
2780 				}
2781 			}
2782 
2783 			/* Parse the DF flag */
2784 			ip_hdr = rte_pktmbuf_mtod_offset(m,
2785 				struct rte_ipv4_hdr *, m->l2_len);
2786 			frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
2787 			if (frag_field & RTE_IPV4_HDR_DF_FLAG) {
2788 				m->packet_type |= RTE_PTYPE_L4_NONFRAG;
2789 			} else if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2790 				/* In case we are supposed to TSO and have DF
2791 				 * not set (DF=0) hardware must be provided with
2792 				 * partial checksum.
2793 				 */
2794 				need_pseudo_csum = true;
2795 			}
2796 		} else if (ol_flags & RTE_MBUF_F_TX_IPV6) {
2797 			/* There is no support for IPv6 TSO as for now. */
2798 			if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2799 				rte_errno = ENOTSUP;
2800 				return i;
2801 			}
2802 
2803 			/* Check HW capabilities and if pseudo csum is needed */
2804 			if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
2805 			    !(dev_offload_capa & ENA_L4_IPV6_CSUM)) {
2806 				if (dev_offload_capa &
2807 				    ENA_L4_IPV6_CSUM_PARTIAL) {
2808 					need_pseudo_csum = true;
2809 				} else {
2810 					rte_errno = ENOTSUP;
2811 					return i;
2812 				}
2813 			}
2814 		}
2815 
2816 		if (need_pseudo_csum) {
2817 			ret = rte_net_intel_cksum_flags_prepare(m, ol_flags);
2818 			if (ret != 0) {
2819 				rte_errno = -ret;
2820 				return i;
2821 			}
2822 		}
2823 	}
2824 
2825 	return i;
2826 }
2827 
2828 static void ena_update_hints(struct ena_adapter *adapter,
2829 			     struct ena_admin_ena_hw_hints *hints)
2830 {
2831 	if (hints->admin_completion_tx_timeout)
2832 		adapter->ena_dev.admin_queue.completion_timeout =
2833 			hints->admin_completion_tx_timeout * 1000;
2834 
2835 	if (hints->mmio_read_timeout)
2836 		/* convert to usec */
2837 		adapter->ena_dev.mmio_read.reg_read_to =
2838 			hints->mmio_read_timeout * 1000;
2839 
2840 	if (hints->driver_watchdog_timeout) {
2841 		if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
2842 			adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
2843 		else
2844 			// Convert msecs to ticks
2845 			adapter->keep_alive_timeout =
2846 				(hints->driver_watchdog_timeout *
2847 				rte_get_timer_hz()) / 1000;
2848 	}
2849 }
2850 
2851 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
2852 	struct ena_tx_buffer *tx_info,
2853 	struct rte_mbuf *mbuf,
2854 	void **push_header,
2855 	uint16_t *header_len)
2856 {
2857 	struct ena_com_buf *ena_buf;
2858 	uint16_t delta, seg_len, push_len;
2859 
2860 	delta = 0;
2861 	seg_len = mbuf->data_len;
2862 
2863 	tx_info->mbuf = mbuf;
2864 	ena_buf = tx_info->bufs;
2865 
2866 	if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2867 		/*
2868 		 * Tx header might be (and will be in most cases) smaller than
2869 		 * tx_max_header_size. But it's not an issue to send more data
2870 		 * to the device, than actually needed if the mbuf size is
2871 		 * greater than tx_max_header_size.
2872 		 */
2873 		push_len = RTE_MIN(mbuf->pkt_len, tx_ring->tx_max_header_size);
2874 		*header_len = push_len;
2875 
2876 		if (likely(push_len <= seg_len)) {
2877 			/* If the push header is in the single segment, then
2878 			 * just point it to the 1st mbuf data.
2879 			 */
2880 			*push_header = rte_pktmbuf_mtod(mbuf, uint8_t *);
2881 		} else {
2882 			/* If the push header lays in the several segments, copy
2883 			 * it to the intermediate buffer.
2884 			 */
2885 			rte_pktmbuf_read(mbuf, 0, push_len,
2886 				tx_ring->push_buf_intermediate_buf);
2887 			*push_header = tx_ring->push_buf_intermediate_buf;
2888 			delta = push_len - seg_len;
2889 		}
2890 	} else {
2891 		*push_header = NULL;
2892 		*header_len = 0;
2893 		push_len = 0;
2894 	}
2895 
2896 	/* Process first segment taking into consideration pushed header */
2897 	if (seg_len > push_len) {
2898 		ena_buf->paddr = mbuf->buf_iova +
2899 				mbuf->data_off +
2900 				push_len;
2901 		ena_buf->len = seg_len - push_len;
2902 		ena_buf++;
2903 		tx_info->num_of_bufs++;
2904 	}
2905 
2906 	while ((mbuf = mbuf->next) != NULL) {
2907 		seg_len = mbuf->data_len;
2908 
2909 		/* Skip mbufs if whole data is pushed as a header */
2910 		if (unlikely(delta > seg_len)) {
2911 			delta -= seg_len;
2912 			continue;
2913 		}
2914 
2915 		ena_buf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
2916 		ena_buf->len = seg_len - delta;
2917 		ena_buf++;
2918 		tx_info->num_of_bufs++;
2919 
2920 		delta = 0;
2921 	}
2922 }
2923 
2924 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf)
2925 {
2926 	struct ena_tx_buffer *tx_info;
2927 	struct ena_com_tx_ctx ena_tx_ctx = { { 0 } };
2928 	uint16_t next_to_use;
2929 	uint16_t header_len;
2930 	uint16_t req_id;
2931 	void *push_header;
2932 	int nb_hw_desc;
2933 	int rc;
2934 
2935 	/* Checking for space for 2 additional metadata descriptors due to
2936 	 * possible header split and metadata descriptor
2937 	 */
2938 	if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
2939 					  mbuf->nb_segs + 2)) {
2940 		PMD_DRV_LOG(DEBUG, "Not enough space in the tx queue\n");
2941 		return ENA_COM_NO_MEM;
2942 	}
2943 
2944 	next_to_use = tx_ring->next_to_use;
2945 
2946 	req_id = tx_ring->empty_tx_reqs[next_to_use];
2947 	tx_info = &tx_ring->tx_buffer_info[req_id];
2948 	tx_info->num_of_bufs = 0;
2949 	RTE_ASSERT(tx_info->mbuf == NULL);
2950 
2951 	ena_tx_map_mbuf(tx_ring, tx_info, mbuf, &push_header, &header_len);
2952 
2953 	ena_tx_ctx.ena_bufs = tx_info->bufs;
2954 	ena_tx_ctx.push_header = push_header;
2955 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2956 	ena_tx_ctx.req_id = req_id;
2957 	ena_tx_ctx.header_len = header_len;
2958 
2959 	/* Set Tx offloads flags, if applicable */
2960 	ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads,
2961 		tx_ring->disable_meta_caching);
2962 
2963 	if (unlikely(ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
2964 			&ena_tx_ctx))) {
2965 		PMD_TX_LOG(DEBUG,
2966 			"LLQ Tx max burst size of queue %d achieved, writing doorbell to send burst\n",
2967 			tx_ring->id);
2968 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2969 		tx_ring->tx_stats.doorbells++;
2970 		tx_ring->pkts_without_db = false;
2971 	}
2972 
2973 	/* prepare the packet's descriptors to dma engine */
2974 	rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq,	&ena_tx_ctx,
2975 		&nb_hw_desc);
2976 	if (unlikely(rc)) {
2977 		PMD_DRV_LOG(ERR, "Failed to prepare Tx buffers, rc: %d\n", rc);
2978 		++tx_ring->tx_stats.prepare_ctx_err;
2979 		ena_trigger_reset(tx_ring->adapter,
2980 			ENA_REGS_RESET_DRIVER_INVALID_STATE);
2981 		return rc;
2982 	}
2983 
2984 	tx_info->tx_descs = nb_hw_desc;
2985 	tx_info->timestamp = rte_get_timer_cycles();
2986 
2987 	tx_ring->tx_stats.cnt++;
2988 	tx_ring->tx_stats.bytes += mbuf->pkt_len;
2989 
2990 	tx_ring->next_to_use = ENA_IDX_NEXT_MASKED(next_to_use,
2991 		tx_ring->size_mask);
2992 
2993 	return 0;
2994 }
2995 
2996 static int ena_tx_cleanup(void *txp, uint32_t free_pkt_cnt)
2997 {
2998 	struct ena_ring *tx_ring = (struct ena_ring *)txp;
2999 	unsigned int total_tx_descs = 0;
3000 	unsigned int total_tx_pkts = 0;
3001 	uint16_t cleanup_budget;
3002 	uint16_t next_to_clean = tx_ring->next_to_clean;
3003 
3004 	/*
3005 	 * If free_pkt_cnt is equal to 0, it means that the user requested
3006 	 * full cleanup, so attempt to release all Tx descriptors
3007 	 * (ring_size - 1 -> size_mask)
3008 	 */
3009 	cleanup_budget = (free_pkt_cnt == 0) ? tx_ring->size_mask : free_pkt_cnt;
3010 
3011 	while (likely(total_tx_pkts < cleanup_budget)) {
3012 		struct rte_mbuf *mbuf;
3013 		struct ena_tx_buffer *tx_info;
3014 		uint16_t req_id;
3015 
3016 		if (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) != 0)
3017 			break;
3018 
3019 		if (unlikely(validate_tx_req_id(tx_ring, req_id) != 0))
3020 			break;
3021 
3022 		/* Get Tx info & store how many descs were processed  */
3023 		tx_info = &tx_ring->tx_buffer_info[req_id];
3024 		tx_info->timestamp = 0;
3025 
3026 		mbuf = tx_info->mbuf;
3027 		rte_pktmbuf_free(mbuf);
3028 
3029 		tx_info->mbuf = NULL;
3030 		tx_ring->empty_tx_reqs[next_to_clean] = req_id;
3031 
3032 		total_tx_descs += tx_info->tx_descs;
3033 		total_tx_pkts++;
3034 
3035 		/* Put back descriptor to the ring for reuse */
3036 		next_to_clean = ENA_IDX_NEXT_MASKED(next_to_clean,
3037 			tx_ring->size_mask);
3038 	}
3039 
3040 	if (likely(total_tx_descs > 0)) {
3041 		/* acknowledge completion of sent packets */
3042 		tx_ring->next_to_clean = next_to_clean;
3043 		ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
3044 		ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
3045 	}
3046 
3047 	/* Notify completion handler that full cleanup was performed */
3048 	if (free_pkt_cnt == 0 || total_tx_pkts < cleanup_budget)
3049 		tx_ring->last_cleanup_ticks = rte_get_timer_cycles();
3050 
3051 	return total_tx_pkts;
3052 }
3053 
3054 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
3055 				  uint16_t nb_pkts)
3056 {
3057 	struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
3058 	int available_desc;
3059 	uint16_t sent_idx = 0;
3060 
3061 #ifdef RTE_ETHDEV_DEBUG_TX
3062 	/* Check adapter state */
3063 	if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
3064 		PMD_TX_LOG(ALERT,
3065 			"Trying to xmit pkts while device is NOT running\n");
3066 		return 0;
3067 	}
3068 #endif
3069 
3070 	available_desc = ena_com_free_q_entries(tx_ring->ena_com_io_sq);
3071 	if (available_desc < tx_ring->tx_free_thresh)
3072 		ena_tx_cleanup((void *)tx_ring, 0);
3073 
3074 	for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
3075 		if (ena_xmit_mbuf(tx_ring, tx_pkts[sent_idx]))
3076 			break;
3077 		tx_ring->pkts_without_db = true;
3078 		rte_prefetch0(tx_pkts[ENA_IDX_ADD_MASKED(sent_idx, 4,
3079 			tx_ring->size_mask)]);
3080 	}
3081 
3082 	/* If there are ready packets to be xmitted... */
3083 	if (likely(tx_ring->pkts_without_db)) {
3084 		/* ...let HW do its best :-) */
3085 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
3086 		tx_ring->tx_stats.doorbells++;
3087 		tx_ring->pkts_without_db = false;
3088 	}
3089 
3090 	tx_ring->tx_stats.available_desc =
3091 		ena_com_free_q_entries(tx_ring->ena_com_io_sq);
3092 	tx_ring->tx_stats.tx_poll++;
3093 
3094 	return sent_idx;
3095 }
3096 
3097 int ena_copy_eni_stats(struct ena_adapter *adapter, struct ena_stats_eni *stats)
3098 {
3099 	int rc;
3100 
3101 	rte_spinlock_lock(&adapter->admin_lock);
3102 	/* Retrieve and store the latest statistics from the AQ. This ensures
3103 	 * that previous value is returned in case of a com error.
3104 	 */
3105 	rc = ENA_PROXY(adapter, ena_com_get_eni_stats, &adapter->ena_dev,
3106 		(struct ena_admin_eni_stats *)stats);
3107 	rte_spinlock_unlock(&adapter->admin_lock);
3108 	if (rc != 0) {
3109 		if (rc == ENA_COM_UNSUPPORTED) {
3110 			PMD_DRV_LOG(DEBUG,
3111 				"Retrieving ENI metrics is not supported\n");
3112 		} else {
3113 			PMD_DRV_LOG(WARNING,
3114 				"Failed to get ENI metrics, rc: %d\n", rc);
3115 		}
3116 		return rc;
3117 	}
3118 
3119 	return 0;
3120 }
3121 
3122 /**
3123  * DPDK callback to retrieve names of extended device statistics
3124  *
3125  * @param dev
3126  *   Pointer to Ethernet device structure.
3127  * @param[out] xstats_names
3128  *   Buffer to insert names into.
3129  * @param n
3130  *   Number of names.
3131  *
3132  * @return
3133  *   Number of xstats names.
3134  */
3135 static int ena_xstats_get_names(struct rte_eth_dev *dev,
3136 				struct rte_eth_xstat_name *xstats_names,
3137 				unsigned int n)
3138 {
3139 	unsigned int xstats_count = ena_xstats_calc_num(dev->data);
3140 	unsigned int stat, i, count = 0;
3141 
3142 	if (n < xstats_count || !xstats_names)
3143 		return xstats_count;
3144 
3145 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
3146 		strcpy(xstats_names[count].name,
3147 			ena_stats_global_strings[stat].name);
3148 
3149 	for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++)
3150 		strcpy(xstats_names[count].name,
3151 			ena_stats_eni_strings[stat].name);
3152 
3153 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
3154 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
3155 			snprintf(xstats_names[count].name,
3156 				sizeof(xstats_names[count].name),
3157 				"rx_q%d_%s", i,
3158 				ena_stats_rx_strings[stat].name);
3159 
3160 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
3161 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
3162 			snprintf(xstats_names[count].name,
3163 				sizeof(xstats_names[count].name),
3164 				"tx_q%d_%s", i,
3165 				ena_stats_tx_strings[stat].name);
3166 
3167 	return xstats_count;
3168 }
3169 
3170 /**
3171  * DPDK callback to retrieve names of extended device statistics for the given
3172  * ids.
3173  *
3174  * @param dev
3175  *   Pointer to Ethernet device structure.
3176  * @param[out] xstats_names
3177  *   Buffer to insert names into.
3178  * @param ids
3179  *   IDs array for which the names should be retrieved.
3180  * @param size
3181  *   Number of ids.
3182  *
3183  * @return
3184  *   Positive value: number of xstats names. Negative value: error code.
3185  */
3186 static int ena_xstats_get_names_by_id(struct rte_eth_dev *dev,
3187 				      const uint64_t *ids,
3188 				      struct rte_eth_xstat_name *xstats_names,
3189 				      unsigned int size)
3190 {
3191 	uint64_t xstats_count = ena_xstats_calc_num(dev->data);
3192 	uint64_t id, qid;
3193 	unsigned int i;
3194 
3195 	if (xstats_names == NULL)
3196 		return xstats_count;
3197 
3198 	for (i = 0; i < size; ++i) {
3199 		id = ids[i];
3200 		if (id > xstats_count) {
3201 			PMD_DRV_LOG(ERR,
3202 				"ID value out of range: id=%" PRIu64 ", xstats_num=%" PRIu64 "\n",
3203 				 id, xstats_count);
3204 			return -EINVAL;
3205 		}
3206 
3207 		if (id < ENA_STATS_ARRAY_GLOBAL) {
3208 			strcpy(xstats_names[i].name,
3209 			       ena_stats_global_strings[id].name);
3210 			continue;
3211 		}
3212 
3213 		id -= ENA_STATS_ARRAY_GLOBAL;
3214 		if (id < ENA_STATS_ARRAY_ENI) {
3215 			strcpy(xstats_names[i].name,
3216 			       ena_stats_eni_strings[id].name);
3217 			continue;
3218 		}
3219 
3220 		id -= ENA_STATS_ARRAY_ENI;
3221 		if (id < ENA_STATS_ARRAY_RX) {
3222 			qid = id / dev->data->nb_rx_queues;
3223 			id %= dev->data->nb_rx_queues;
3224 			snprintf(xstats_names[i].name,
3225 				 sizeof(xstats_names[i].name),
3226 				 "rx_q%" PRIu64 "d_%s",
3227 				 qid, ena_stats_rx_strings[id].name);
3228 			continue;
3229 		}
3230 
3231 		id -= ENA_STATS_ARRAY_RX;
3232 		/* Although this condition is not needed, it was added for
3233 		 * compatibility if new xstat structure would be ever added.
3234 		 */
3235 		if (id < ENA_STATS_ARRAY_TX) {
3236 			qid = id / dev->data->nb_tx_queues;
3237 			id %= dev->data->nb_tx_queues;
3238 			snprintf(xstats_names[i].name,
3239 				 sizeof(xstats_names[i].name),
3240 				 "tx_q%" PRIu64 "_%s",
3241 				 qid, ena_stats_tx_strings[id].name);
3242 			continue;
3243 		}
3244 	}
3245 
3246 	return i;
3247 }
3248 
3249 /**
3250  * DPDK callback to get extended device statistics.
3251  *
3252  * @param dev
3253  *   Pointer to Ethernet device structure.
3254  * @param[out] stats
3255  *   Stats table output buffer.
3256  * @param n
3257  *   The size of the stats table.
3258  *
3259  * @return
3260  *   Number of xstats on success, negative on failure.
3261  */
3262 static int ena_xstats_get(struct rte_eth_dev *dev,
3263 			  struct rte_eth_xstat *xstats,
3264 			  unsigned int n)
3265 {
3266 	struct ena_adapter *adapter = dev->data->dev_private;
3267 	unsigned int xstats_count = ena_xstats_calc_num(dev->data);
3268 	struct ena_stats_eni eni_stats;
3269 	unsigned int stat, i, count = 0;
3270 	int stat_offset;
3271 	void *stats_begin;
3272 
3273 	if (n < xstats_count)
3274 		return xstats_count;
3275 
3276 	if (!xstats)
3277 		return 0;
3278 
3279 	for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
3280 		stat_offset = ena_stats_global_strings[stat].stat_offset;
3281 		stats_begin = &adapter->dev_stats;
3282 
3283 		xstats[count].id = count;
3284 		xstats[count].value = *((uint64_t *)
3285 			((char *)stats_begin + stat_offset));
3286 	}
3287 
3288 	/* Even if the function below fails, we should copy previous (or initial
3289 	 * values) to keep structure of rte_eth_xstat consistent.
3290 	 */
3291 	ena_copy_eni_stats(adapter, &eni_stats);
3292 	for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++) {
3293 		stat_offset = ena_stats_eni_strings[stat].stat_offset;
3294 		stats_begin = &eni_stats;
3295 
3296 		xstats[count].id = count;
3297 		xstats[count].value = *((uint64_t *)
3298 		    ((char *)stats_begin + stat_offset));
3299 	}
3300 
3301 	for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
3302 		for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
3303 			stat_offset = ena_stats_rx_strings[stat].stat_offset;
3304 			stats_begin = &adapter->rx_ring[i].rx_stats;
3305 
3306 			xstats[count].id = count;
3307 			xstats[count].value = *((uint64_t *)
3308 				((char *)stats_begin + stat_offset));
3309 		}
3310 	}
3311 
3312 	for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
3313 		for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
3314 			stat_offset = ena_stats_tx_strings[stat].stat_offset;
3315 			stats_begin = &adapter->tx_ring[i].rx_stats;
3316 
3317 			xstats[count].id = count;
3318 			xstats[count].value = *((uint64_t *)
3319 				((char *)stats_begin + stat_offset));
3320 		}
3321 	}
3322 
3323 	return count;
3324 }
3325 
3326 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
3327 				const uint64_t *ids,
3328 				uint64_t *values,
3329 				unsigned int n)
3330 {
3331 	struct ena_adapter *adapter = dev->data->dev_private;
3332 	struct ena_stats_eni eni_stats;
3333 	uint64_t id;
3334 	uint64_t rx_entries, tx_entries;
3335 	unsigned int i;
3336 	int qid;
3337 	int valid = 0;
3338 	bool was_eni_copied = false;
3339 
3340 	for (i = 0; i < n; ++i) {
3341 		id = ids[i];
3342 		/* Check if id belongs to global statistics */
3343 		if (id < ENA_STATS_ARRAY_GLOBAL) {
3344 			values[i] = *((uint64_t *)&adapter->dev_stats + id);
3345 			++valid;
3346 			continue;
3347 		}
3348 
3349 		/* Check if id belongs to ENI statistics */
3350 		id -= ENA_STATS_ARRAY_GLOBAL;
3351 		if (id < ENA_STATS_ARRAY_ENI) {
3352 			/* Avoid reading ENI stats multiple times in a single
3353 			 * function call, as it requires communication with the
3354 			 * admin queue.
3355 			 */
3356 			if (!was_eni_copied) {
3357 				was_eni_copied = true;
3358 				ena_copy_eni_stats(adapter, &eni_stats);
3359 			}
3360 			values[i] = *((uint64_t *)&eni_stats + id);
3361 			++valid;
3362 			continue;
3363 		}
3364 
3365 		/* Check if id belongs to rx queue statistics */
3366 		id -= ENA_STATS_ARRAY_ENI;
3367 		rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
3368 		if (id < rx_entries) {
3369 			qid = id % dev->data->nb_rx_queues;
3370 			id /= dev->data->nb_rx_queues;
3371 			values[i] = *((uint64_t *)
3372 				&adapter->rx_ring[qid].rx_stats + id);
3373 			++valid;
3374 			continue;
3375 		}
3376 				/* Check if id belongs to rx queue statistics */
3377 		id -= rx_entries;
3378 		tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
3379 		if (id < tx_entries) {
3380 			qid = id % dev->data->nb_tx_queues;
3381 			id /= dev->data->nb_tx_queues;
3382 			values[i] = *((uint64_t *)
3383 				&adapter->tx_ring[qid].tx_stats + id);
3384 			++valid;
3385 			continue;
3386 		}
3387 	}
3388 
3389 	return valid;
3390 }
3391 
3392 static int ena_process_uint_devarg(const char *key,
3393 				  const char *value,
3394 				  void *opaque)
3395 {
3396 	struct ena_adapter *adapter = opaque;
3397 	char *str_end;
3398 	uint64_t uint_value;
3399 
3400 	uint_value = strtoull(value, &str_end, 10);
3401 	if (value == str_end) {
3402 		PMD_INIT_LOG(ERR,
3403 			"Invalid value for key '%s'. Only uint values are accepted.\n",
3404 			key);
3405 		return -EINVAL;
3406 	}
3407 
3408 	if (strcmp(key, ENA_DEVARG_MISS_TXC_TO) == 0) {
3409 		if (uint_value > ENA_MAX_TX_TIMEOUT_SECONDS) {
3410 			PMD_INIT_LOG(ERR,
3411 				"Tx timeout too high: %" PRIu64 " sec. Maximum allowed: %d sec.\n",
3412 				uint_value, ENA_MAX_TX_TIMEOUT_SECONDS);
3413 			return -EINVAL;
3414 		} else if (uint_value == 0) {
3415 			PMD_INIT_LOG(INFO,
3416 				"Check for missing Tx completions has been disabled.\n");
3417 			adapter->missing_tx_completion_to =
3418 				ENA_HW_HINTS_NO_TIMEOUT;
3419 		} else {
3420 			PMD_INIT_LOG(INFO,
3421 				"Tx packet completion timeout set to %" PRIu64 " seconds.\n",
3422 				uint_value);
3423 			adapter->missing_tx_completion_to =
3424 				uint_value * rte_get_timer_hz();
3425 		}
3426 	}
3427 
3428 	return 0;
3429 }
3430 
3431 static int ena_process_bool_devarg(const char *key,
3432 				   const char *value,
3433 				   void *opaque)
3434 {
3435 	struct ena_adapter *adapter = opaque;
3436 	bool bool_value;
3437 
3438 	/* Parse the value. */
3439 	if (strcmp(value, "1") == 0) {
3440 		bool_value = true;
3441 	} else if (strcmp(value, "0") == 0) {
3442 		bool_value = false;
3443 	} else {
3444 		PMD_INIT_LOG(ERR,
3445 			"Invalid value: '%s' for key '%s'. Accepted: '0' or '1'\n",
3446 			value, key);
3447 		return -EINVAL;
3448 	}
3449 
3450 	/* Now, assign it to the proper adapter field. */
3451 	if (strcmp(key, ENA_DEVARG_LARGE_LLQ_HDR) == 0)
3452 		adapter->use_large_llq_hdr = bool_value;
3453 
3454 	return 0;
3455 }
3456 
3457 static int ena_parse_devargs(struct ena_adapter *adapter,
3458 			     struct rte_devargs *devargs)
3459 {
3460 	static const char * const allowed_args[] = {
3461 		ENA_DEVARG_LARGE_LLQ_HDR,
3462 		ENA_DEVARG_MISS_TXC_TO,
3463 		NULL,
3464 	};
3465 	struct rte_kvargs *kvlist;
3466 	int rc;
3467 
3468 	if (devargs == NULL)
3469 		return 0;
3470 
3471 	kvlist = rte_kvargs_parse(devargs->args, allowed_args);
3472 	if (kvlist == NULL) {
3473 		PMD_INIT_LOG(ERR, "Invalid device arguments: %s\n",
3474 			devargs->args);
3475 		return -EINVAL;
3476 	}
3477 
3478 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_LARGE_LLQ_HDR,
3479 		ena_process_bool_devarg, adapter);
3480 	if (rc != 0)
3481 		goto exit;
3482 	rc = rte_kvargs_process(kvlist, ENA_DEVARG_MISS_TXC_TO,
3483 		ena_process_uint_devarg, adapter);
3484 
3485 exit:
3486 	rte_kvargs_free(kvlist);
3487 
3488 	return rc;
3489 }
3490 
3491 static int ena_setup_rx_intr(struct rte_eth_dev *dev)
3492 {
3493 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3494 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
3495 	int rc;
3496 	uint16_t vectors_nb, i;
3497 	bool rx_intr_requested = dev->data->dev_conf.intr_conf.rxq;
3498 
3499 	if (!rx_intr_requested)
3500 		return 0;
3501 
3502 	if (!rte_intr_cap_multiple(intr_handle)) {
3503 		PMD_DRV_LOG(ERR,
3504 			"Rx interrupt requested, but it isn't supported by the PCI driver\n");
3505 		return -ENOTSUP;
3506 	}
3507 
3508 	/* Disable interrupt mapping before the configuration starts. */
3509 	rte_intr_disable(intr_handle);
3510 
3511 	/* Verify if there are enough vectors available. */
3512 	vectors_nb = dev->data->nb_rx_queues;
3513 	if (vectors_nb > RTE_MAX_RXTX_INTR_VEC_ID) {
3514 		PMD_DRV_LOG(ERR,
3515 			"Too many Rx interrupts requested, maximum number: %d\n",
3516 			RTE_MAX_RXTX_INTR_VEC_ID);
3517 		rc = -ENOTSUP;
3518 		goto enable_intr;
3519 	}
3520 
3521 	/* Allocate the vector list */
3522 	if (rte_intr_vec_list_alloc(intr_handle, "intr_vec",
3523 					   dev->data->nb_rx_queues)) {
3524 		PMD_DRV_LOG(ERR,
3525 			"Failed to allocate interrupt vector for %d queues\n",
3526 			dev->data->nb_rx_queues);
3527 		rc = -ENOMEM;
3528 		goto enable_intr;
3529 	}
3530 
3531 	rc = rte_intr_efd_enable(intr_handle, vectors_nb);
3532 	if (rc != 0)
3533 		goto free_intr_vec;
3534 
3535 	if (!rte_intr_allow_others(intr_handle)) {
3536 		PMD_DRV_LOG(ERR,
3537 			"Not enough interrupts available to use both ENA Admin and Rx interrupts\n");
3538 		goto disable_intr_efd;
3539 	}
3540 
3541 	for (i = 0; i < vectors_nb; ++i)
3542 		if (rte_intr_vec_list_index_set(intr_handle, i,
3543 					   RTE_INTR_VEC_RXTX_OFFSET + i))
3544 			goto disable_intr_efd;
3545 
3546 	rte_intr_enable(intr_handle);
3547 	return 0;
3548 
3549 disable_intr_efd:
3550 	rte_intr_efd_disable(intr_handle);
3551 free_intr_vec:
3552 	rte_intr_vec_list_free(intr_handle);
3553 enable_intr:
3554 	rte_intr_enable(intr_handle);
3555 	return rc;
3556 }
3557 
3558 static void ena_rx_queue_intr_set(struct rte_eth_dev *dev,
3559 				 uint16_t queue_id,
3560 				 bool unmask)
3561 {
3562 	struct ena_adapter *adapter = dev->data->dev_private;
3563 	struct ena_ring *rxq = &adapter->rx_ring[queue_id];
3564 	struct ena_eth_io_intr_reg intr_reg;
3565 
3566 	ena_com_update_intr_reg(&intr_reg, 0, 0, unmask);
3567 	ena_com_unmask_intr(rxq->ena_com_io_cq, &intr_reg);
3568 }
3569 
3570 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
3571 				    uint16_t queue_id)
3572 {
3573 	ena_rx_queue_intr_set(dev, queue_id, true);
3574 
3575 	return 0;
3576 }
3577 
3578 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
3579 				     uint16_t queue_id)
3580 {
3581 	ena_rx_queue_intr_set(dev, queue_id, false);
3582 
3583 	return 0;
3584 }
3585 
3586 static int ena_configure_aenq(struct ena_adapter *adapter)
3587 {
3588 	uint32_t aenq_groups = adapter->all_aenq_groups;
3589 	int rc;
3590 
3591 	/* All_aenq_groups holds all AENQ functions supported by the device and
3592 	 * the HW, so at first we need to be sure the LSC request is valid.
3593 	 */
3594 	if (adapter->edev_data->dev_conf.intr_conf.lsc != 0) {
3595 		if (!(aenq_groups & BIT(ENA_ADMIN_LINK_CHANGE))) {
3596 			PMD_DRV_LOG(ERR,
3597 				"LSC requested, but it's not supported by the AENQ\n");
3598 			return -EINVAL;
3599 		}
3600 	} else {
3601 		/* If LSC wasn't enabled by the app, let's enable all supported
3602 		 * AENQ procedures except the LSC.
3603 		 */
3604 		aenq_groups &= ~BIT(ENA_ADMIN_LINK_CHANGE);
3605 	}
3606 
3607 	rc = ena_com_set_aenq_config(&adapter->ena_dev, aenq_groups);
3608 	if (rc != 0) {
3609 		PMD_DRV_LOG(ERR, "Cannot configure AENQ groups, rc=%d\n", rc);
3610 		return rc;
3611 	}
3612 
3613 	adapter->active_aenq_groups = aenq_groups;
3614 
3615 	return 0;
3616 }
3617 
3618 int ena_mp_indirect_table_set(struct ena_adapter *adapter)
3619 {
3620 	return ENA_PROXY(adapter, ena_com_indirect_table_set, &adapter->ena_dev);
3621 }
3622 
3623 int ena_mp_indirect_table_get(struct ena_adapter *adapter,
3624 			      uint32_t *indirect_table)
3625 {
3626 	return ENA_PROXY(adapter, ena_com_indirect_table_get, &adapter->ena_dev,
3627 		indirect_table);
3628 }
3629 
3630 /*********************************************************************
3631  *  ena_plat_dpdk.h functions implementations
3632  *********************************************************************/
3633 
3634 const struct rte_memzone *
3635 ena_mem_alloc_coherent(struct rte_eth_dev_data *data, size_t size,
3636 		       int socket_id, unsigned int alignment, void **virt_addr,
3637 		       dma_addr_t *phys_addr)
3638 {
3639 	char z_name[RTE_MEMZONE_NAMESIZE];
3640 	struct ena_adapter *adapter = data->dev_private;
3641 	const struct rte_memzone *memzone;
3642 	int rc;
3643 
3644 	rc = snprintf(z_name, RTE_MEMZONE_NAMESIZE, "ena_p%d_mz%" PRIu64 "",
3645 		data->port_id, adapter->memzone_cnt);
3646 	if (rc >= RTE_MEMZONE_NAMESIZE) {
3647 		PMD_DRV_LOG(ERR,
3648 			"Name for the ena_com memzone is too long. Port: %d, mz_num: %" PRIu64 "\n",
3649 			data->port_id, adapter->memzone_cnt);
3650 		goto error;
3651 	}
3652 	adapter->memzone_cnt++;
3653 
3654 	memzone = rte_memzone_reserve_aligned(z_name, size, socket_id,
3655 		RTE_MEMZONE_IOVA_CONTIG, alignment);
3656 	if (memzone == NULL) {
3657 		PMD_DRV_LOG(ERR, "Failed to allocate ena_com memzone: %s\n",
3658 			z_name);
3659 		goto error;
3660 	}
3661 
3662 	memset(memzone->addr, 0, size);
3663 	*virt_addr = memzone->addr;
3664 	*phys_addr = memzone->iova;
3665 
3666 	return memzone;
3667 
3668 error:
3669 	*virt_addr = NULL;
3670 	*phys_addr = 0;
3671 
3672 	return NULL;
3673 }
3674 
3675 
3676 /*********************************************************************
3677  *  PMD configuration
3678  *********************************************************************/
3679 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
3680 	struct rte_pci_device *pci_dev)
3681 {
3682 	return rte_eth_dev_pci_generic_probe(pci_dev,
3683 		sizeof(struct ena_adapter), eth_ena_dev_init);
3684 }
3685 
3686 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
3687 {
3688 	return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
3689 }
3690 
3691 static struct rte_pci_driver rte_ena_pmd = {
3692 	.id_table = pci_id_ena_map,
3693 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
3694 		     RTE_PCI_DRV_WC_ACTIVATE,
3695 	.probe = eth_ena_pci_probe,
3696 	.remove = eth_ena_pci_remove,
3697 };
3698 
3699 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
3700 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
3701 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
3702 RTE_PMD_REGISTER_PARAM_STRING(net_ena, ENA_DEVARG_LARGE_LLQ_HDR "=<0|1>");
3703 RTE_LOG_REGISTER_SUFFIX(ena_logtype_init, init, NOTICE);
3704 RTE_LOG_REGISTER_SUFFIX(ena_logtype_driver, driver, NOTICE);
3705 #ifdef RTE_ETHDEV_DEBUG_RX
3706 RTE_LOG_REGISTER_SUFFIX(ena_logtype_rx, rx, DEBUG);
3707 #endif
3708 #ifdef RTE_ETHDEV_DEBUG_TX
3709 RTE_LOG_REGISTER_SUFFIX(ena_logtype_tx, tx, DEBUG);
3710 #endif
3711 RTE_LOG_REGISTER_SUFFIX(ena_logtype_com, com, WARNING);
3712 
3713 /******************************************************************************
3714  ******************************** AENQ Handlers *******************************
3715  *****************************************************************************/
3716 static void ena_update_on_link_change(void *adapter_data,
3717 				      struct ena_admin_aenq_entry *aenq_e)
3718 {
3719 	struct rte_eth_dev *eth_dev = adapter_data;
3720 	struct ena_adapter *adapter = eth_dev->data->dev_private;
3721 	struct ena_admin_aenq_link_change_desc *aenq_link_desc;
3722 	uint32_t status;
3723 
3724 	aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
3725 
3726 	status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
3727 	adapter->link_status = status;
3728 
3729 	ena_link_update(eth_dev, 0);
3730 	rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
3731 }
3732 
3733 static void ena_notification(void *adapter_data,
3734 			     struct ena_admin_aenq_entry *aenq_e)
3735 {
3736 	struct rte_eth_dev *eth_dev = adapter_data;
3737 	struct ena_adapter *adapter = eth_dev->data->dev_private;
3738 	struct ena_admin_ena_hw_hints *hints;
3739 
3740 	if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
3741 		PMD_DRV_LOG(WARNING, "Invalid AENQ group: %x. Expected: %x\n",
3742 			aenq_e->aenq_common_desc.group,
3743 			ENA_ADMIN_NOTIFICATION);
3744 
3745 	switch (aenq_e->aenq_common_desc.syndrome) {
3746 	case ENA_ADMIN_UPDATE_HINTS:
3747 		hints = (struct ena_admin_ena_hw_hints *)
3748 			(&aenq_e->inline_data_w4);
3749 		ena_update_hints(adapter, hints);
3750 		break;
3751 	default:
3752 		PMD_DRV_LOG(ERR, "Invalid AENQ notification link state: %d\n",
3753 			aenq_e->aenq_common_desc.syndrome);
3754 	}
3755 }
3756 
3757 static void ena_keep_alive(void *adapter_data,
3758 			   __rte_unused struct ena_admin_aenq_entry *aenq_e)
3759 {
3760 	struct rte_eth_dev *eth_dev = adapter_data;
3761 	struct ena_adapter *adapter = eth_dev->data->dev_private;
3762 	struct ena_admin_aenq_keep_alive_desc *desc;
3763 	uint64_t rx_drops;
3764 	uint64_t tx_drops;
3765 
3766 	adapter->timestamp_wd = rte_get_timer_cycles();
3767 
3768 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
3769 	rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
3770 	tx_drops = ((uint64_t)desc->tx_drops_high << 32) | desc->tx_drops_low;
3771 
3772 	adapter->drv_stats->rx_drops = rx_drops;
3773 	adapter->dev_stats.tx_drops = tx_drops;
3774 }
3775 
3776 /**
3777  * This handler will called for unknown event group or unimplemented handlers
3778  **/
3779 static void unimplemented_aenq_handler(__rte_unused void *data,
3780 				       __rte_unused struct ena_admin_aenq_entry *aenq_e)
3781 {
3782 	PMD_DRV_LOG(ERR,
3783 		"Unknown event was received or event with unimplemented handler\n");
3784 }
3785 
3786 static struct ena_aenq_handlers aenq_handlers = {
3787 	.handlers = {
3788 		[ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
3789 		[ENA_ADMIN_NOTIFICATION] = ena_notification,
3790 		[ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive
3791 	},
3792 	.unimplemented_handler = unimplemented_aenq_handler
3793 };
3794 
3795 /*********************************************************************
3796  *  Multi-Process communication request handling (in primary)
3797  *********************************************************************/
3798 static int
3799 ena_mp_primary_handle(const struct rte_mp_msg *mp_msg, const void *peer)
3800 {
3801 	const struct ena_mp_body *req =
3802 		(const struct ena_mp_body *)mp_msg->param;
3803 	struct ena_adapter *adapter;
3804 	struct ena_com_dev *ena_dev;
3805 	struct ena_mp_body *rsp;
3806 	struct rte_mp_msg mp_rsp;
3807 	struct rte_eth_dev *dev;
3808 	int res = 0;
3809 
3810 	rsp = (struct ena_mp_body *)&mp_rsp.param;
3811 	mp_msg_init(&mp_rsp, req->type, req->port_id);
3812 
3813 	if (!rte_eth_dev_is_valid_port(req->port_id)) {
3814 		rte_errno = ENODEV;
3815 		res = -rte_errno;
3816 		PMD_DRV_LOG(ERR, "Unknown port %d in request %d\n",
3817 			    req->port_id, req->type);
3818 		goto end;
3819 	}
3820 	dev = &rte_eth_devices[req->port_id];
3821 	adapter = dev->data->dev_private;
3822 	ena_dev = &adapter->ena_dev;
3823 
3824 	switch (req->type) {
3825 	case ENA_MP_DEV_STATS_GET:
3826 		res = ena_com_get_dev_basic_stats(ena_dev,
3827 						  &adapter->basic_stats);
3828 		break;
3829 	case ENA_MP_ENI_STATS_GET:
3830 		res = ena_com_get_eni_stats(ena_dev,
3831 			(struct ena_admin_eni_stats *)&adapter->eni_stats);
3832 		break;
3833 	case ENA_MP_MTU_SET:
3834 		res = ena_com_set_dev_mtu(ena_dev, req->args.mtu);
3835 		break;
3836 	case ENA_MP_IND_TBL_GET:
3837 		res = ena_com_indirect_table_get(ena_dev,
3838 						 adapter->indirect_table);
3839 		break;
3840 	case ENA_MP_IND_TBL_SET:
3841 		res = ena_com_indirect_table_set(ena_dev);
3842 		break;
3843 	default:
3844 		PMD_DRV_LOG(ERR, "Unknown request type %d\n", req->type);
3845 		res = -EINVAL;
3846 		break;
3847 	}
3848 
3849 end:
3850 	/* Save processing result in the reply */
3851 	rsp->result = res;
3852 	/* Return just IPC processing status */
3853 	return rte_mp_reply(&mp_rsp, peer);
3854 }
3855