xref: /dpdk/drivers/net/cxgbe/cxgbe_main.c (revision f5057be340e44f3edc0fe90fa875eb89a4c49b4f)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2018 Chelsio Communications.
3  * All rights reserved.
4  */
5 
6 #include <sys/queue.h>
7 #include <stdio.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <string.h>
11 #include <unistd.h>
12 #include <stdarg.h>
13 #include <inttypes.h>
14 #include <netinet/in.h>
15 
16 #include <rte_byteorder.h>
17 #include <rte_common.h>
18 #include <rte_cycles.h>
19 #include <rte_interrupts.h>
20 #include <rte_log.h>
21 #include <rte_debug.h>
22 #include <rte_pci.h>
23 #include <rte_atomic.h>
24 #include <rte_branch_prediction.h>
25 #include <rte_memory.h>
26 #include <rte_tailq.h>
27 #include <rte_eal.h>
28 #include <rte_alarm.h>
29 #include <rte_ether.h>
30 #include <rte_ethdev_driver.h>
31 #include <rte_ethdev_pci.h>
32 #include <rte_random.h>
33 #include <rte_dev.h>
34 #include <rte_kvargs.h>
35 
36 #include "base/common.h"
37 #include "base/t4_regs.h"
38 #include "base/t4_msg.h"
39 #include "cxgbe.h"
40 #include "cxgbe_pfvf.h"
41 #include "clip_tbl.h"
42 #include "l2t.h"
43 #include "smt.h"
44 #include "mps_tcam.h"
45 
46 static const u16 cxgbe_filter_mode_features[] = {
47 	(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE |
48 	 F_PROTOCOL | F_PORT),
49 	(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE |
50 	 F_PROTOCOL | F_FCOE),
51 	(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE | F_TOS |
52 	 F_PORT),
53 	(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE | F_TOS |
54 	 F_FCOE),
55 	(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE | F_PORT |
56 	 F_FCOE),
57 	(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_PROTOCOL | F_TOS |
58 	 F_PORT | F_FCOE),
59 	(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_PROTOCOL | F_VLAN |
60 	 F_FCOE),
61 	(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_PROTOCOL | F_VNIC_ID |
62 	 F_FCOE),
63 	(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_TOS | F_VLAN |
64 	 F_FCOE),
65 	(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_TOS | F_VNIC_ID |
66 	 F_FCOE),
67 	(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_VLAN | F_PORT |
68 	 F_FCOE),
69 	(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_VNIC_ID | F_PORT |
70 	 F_FCOE),
71 	(F_FRAGMENTATION | F_MPSHITTYPE | F_ETHERTYPE | F_PROTOCOL | F_TOS |
72 	 F_PORT | F_FCOE),
73 	(F_FRAGMENTATION | F_MPSHITTYPE | F_ETHERTYPE | F_VLAN | F_PORT),
74 	(F_FRAGMENTATION | F_MPSHITTYPE | F_ETHERTYPE | F_VLAN | F_FCOE),
75 	(F_FRAGMENTATION | F_MPSHITTYPE | F_ETHERTYPE | F_VNIC_ID | F_PORT),
76 	(F_FRAGMENTATION | F_MPSHITTYPE | F_ETHERTYPE | F_VNIC_ID | F_FCOE),
77 	(F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VLAN | F_PORT),
78 	(F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VLAN | F_FCOE),
79 	(F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VNIC_ID |
80 	 F_PORT),
81 	(F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VNIC_ID |
82 	 F_FCOE),
83 	(F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_VLAN | F_PORT |
84 	 F_FCOE),
85 	(F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_VNIC_ID | F_PORT |
86 	 F_FCOE),
87 	(F_FRAGMENTATION | F_MPSHITTYPE | F_TOS | F_VLAN | F_PORT | F_FCOE),
88 	(F_FRAGMENTATION | F_MPSHITTYPE | F_TOS | F_VNIC_ID | F_PORT | F_FCOE),
89 	(F_FRAGMENTATION | F_MPSHITTYPE | F_VLAN | F_VNIC_ID | F_FCOE),
90 	(F_FRAGMENTATION | F_MACMATCH | F_ETHERTYPE | F_PROTOCOL | F_PORT |
91 	 F_FCOE),
92 	(F_FRAGMENTATION | F_MACMATCH | F_ETHERTYPE | F_TOS | F_PORT | F_FCOE),
93 	(F_FRAGMENTATION | F_MACMATCH | F_PROTOCOL | F_VLAN | F_PORT | F_FCOE),
94 	(F_FRAGMENTATION | F_MACMATCH | F_PROTOCOL | F_VNIC_ID | F_PORT |
95 	 F_FCOE),
96 	(F_FRAGMENTATION | F_MACMATCH | F_TOS | F_VLAN | F_PORT | F_FCOE),
97 	(F_FRAGMENTATION | F_MACMATCH | F_TOS | F_VNIC_ID | F_PORT | F_FCOE),
98 	(F_FRAGMENTATION | F_ETHERTYPE | F_VLAN | F_PORT | F_FCOE),
99 	(F_FRAGMENTATION | F_ETHERTYPE | F_VNIC_ID | F_PORT | F_FCOE),
100 	(F_FRAGMENTATION | F_PROTOCOL | F_TOS | F_VLAN | F_FCOE),
101 	(F_FRAGMENTATION | F_PROTOCOL | F_TOS | F_VNIC_ID | F_FCOE),
102 	(F_FRAGMENTATION | F_VLAN | F_VNIC_ID | F_PORT | F_FCOE),
103 	(F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE | F_PROTOCOL | F_PORT |
104 	 F_FCOE),
105 	(F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE | F_TOS | F_PORT | F_FCOE),
106 	(F_MPSHITTYPE | F_MACMATCH | F_PROTOCOL | F_VLAN | F_PORT),
107 	(F_MPSHITTYPE | F_MACMATCH | F_PROTOCOL | F_VNIC_ID | F_PORT),
108 	(F_MPSHITTYPE | F_MACMATCH | F_TOS | F_VLAN | F_PORT),
109 	(F_MPSHITTYPE | F_MACMATCH | F_TOS | F_VNIC_ID | F_PORT),
110 	(F_MPSHITTYPE | F_ETHERTYPE | F_VLAN | F_PORT | F_FCOE),
111 	(F_MPSHITTYPE | F_ETHERTYPE | F_VNIC_ID | F_PORT | F_FCOE),
112 	(F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VLAN | F_PORT | F_FCOE),
113 	(F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VNIC_ID | F_PORT | F_FCOE),
114 	(F_MPSHITTYPE | F_VLAN | F_VNIC_ID | F_PORT),
115 };
116 
117 /**
118  * Allocate a chunk of memory. The allocated memory is cleared.
119  */
120 void *t4_alloc_mem(size_t size)
121 {
122 	return rte_zmalloc(NULL, size, 0);
123 }
124 
125 /**
126  * Free memory allocated through t4_alloc_mem().
127  */
128 void t4_free_mem(void *addr)
129 {
130 	rte_free(addr);
131 }
132 
133 /*
134  * Response queue handler for the FW event queue.
135  */
136 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
137 			  __rte_unused const struct pkt_gl *gl)
138 {
139 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
140 
141 	rsp++;                                          /* skip RSS header */
142 
143 	/*
144 	 * FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
145 	 */
146 	if (unlikely(opcode == CPL_FW4_MSG &&
147 		     ((const struct cpl_fw4_msg *)rsp)->type ==
148 		      FW_TYPE_RSSCPL)) {
149 		rsp++;
150 		opcode = ((const struct rss_header *)rsp)->opcode;
151 		rsp++;
152 		if (opcode != CPL_SGE_EGR_UPDATE) {
153 			dev_err(q->adapter, "unexpected FW4/CPL %#x on FW event queue\n",
154 				opcode);
155 			goto out;
156 		}
157 	}
158 
159 	if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
160 		/* do nothing */
161 	} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
162 		const struct cpl_fw6_msg *msg = (const void *)rsp;
163 
164 		t4_handle_fw_rpl(q->adapter, msg->data);
165 	} else if (opcode == CPL_ABORT_RPL_RSS) {
166 		const struct cpl_abort_rpl_rss *p = (const void *)rsp;
167 
168 		cxgbe_hash_del_filter_rpl(q->adapter, p);
169 	} else if (opcode == CPL_SET_TCB_RPL) {
170 		const struct cpl_set_tcb_rpl *p = (const void *)rsp;
171 
172 		cxgbe_filter_rpl(q->adapter, p);
173 	} else if (opcode == CPL_ACT_OPEN_RPL) {
174 		const struct cpl_act_open_rpl *p = (const void *)rsp;
175 
176 		cxgbe_hash_filter_rpl(q->adapter, p);
177 	} else if (opcode == CPL_L2T_WRITE_RPL) {
178 		const struct cpl_l2t_write_rpl *p = (const void *)rsp;
179 
180 		cxgbe_do_l2t_write_rpl(q->adapter, p);
181 	} else if (opcode == CPL_SMT_WRITE_RPL) {
182 		const struct cpl_smt_write_rpl *p = (const void *)rsp;
183 
184 		cxgbe_do_smt_write_rpl(q->adapter, p);
185 	} else {
186 		dev_err(adapter, "unexpected CPL %#x on FW event queue\n",
187 			opcode);
188 	}
189 out:
190 	return 0;
191 }
192 
193 /**
194  * Setup sge control queues to pass control information.
195  */
196 int cxgbe_setup_sge_ctrl_txq(struct adapter *adapter)
197 {
198 	struct sge *s = &adapter->sge;
199 	int err = 0, i = 0;
200 
201 	for_each_port(adapter, i) {
202 		struct port_info *pi = adap2pinfo(adapter, i);
203 		char name[RTE_ETH_NAME_MAX_LEN];
204 		struct sge_ctrl_txq *q = &s->ctrlq[i];
205 
206 		q->q.size = 1024;
207 		err = t4_sge_alloc_ctrl_txq(adapter, q,
208 					    adapter->eth_dev,  i,
209 					    s->fw_evtq.cntxt_id,
210 					    rte_socket_id());
211 		if (err) {
212 			dev_err(adapter, "Failed to alloc ctrl txq. Err: %d",
213 				err);
214 			goto out;
215 		}
216 		snprintf(name, sizeof(name), "%s_ctrl_pool_%d",
217 			 pi->eth_dev->device->driver->name,
218 			 pi->eth_dev->data->port_id);
219 		q->mb_pool = rte_pktmbuf_pool_create(name, s->ctrlq[i].q.size,
220 						     RTE_CACHE_LINE_SIZE,
221 						     RTE_MBUF_PRIV_ALIGN,
222 						     RTE_MBUF_DEFAULT_BUF_SIZE,
223 						     SOCKET_ID_ANY);
224 		if (!q->mb_pool) {
225 			err = -rte_errno;
226 			dev_err(adapter,
227 				"Can't create ctrl pool for port %d. Err: %d\n",
228 				pi->eth_dev->data->port_id, err);
229 			goto out;
230 		}
231 	}
232 	return 0;
233 out:
234 	t4_free_sge_resources(adapter);
235 	return err;
236 }
237 
238 /**
239  * cxgbe_poll_for_completion: Poll rxq for completion
240  * @q: rxq to poll
241  * @ms: milliseconds to delay
242  * @cnt: number of times to poll
243  * @c: completion to check for 'done' status
244  *
245  * Polls the rxq for reples until completion is done or the count
246  * expires.
247  */
248 int cxgbe_poll_for_completion(struct sge_rspq *q, unsigned int ms,
249 			      unsigned int cnt, struct t4_completion *c)
250 {
251 	unsigned int i;
252 	unsigned int work_done, budget = 32;
253 
254 	if (!c)
255 		return -EINVAL;
256 
257 	for (i = 0; i < cnt; i++) {
258 		cxgbe_poll(q, NULL, budget, &work_done);
259 		t4_os_lock(&c->lock);
260 		if (c->done) {
261 			t4_os_unlock(&c->lock);
262 			return 0;
263 		}
264 		t4_os_unlock(&c->lock);
265 		rte_delay_ms(ms);
266 	}
267 	return -ETIMEDOUT;
268 }
269 
270 int cxgbe_setup_sge_fwevtq(struct adapter *adapter)
271 {
272 	struct sge *s = &adapter->sge;
273 	int err = 0;
274 	int msi_idx = 0;
275 
276 	err = t4_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->eth_dev,
277 			       msi_idx, NULL, fwevtq_handler, -1, NULL, 0,
278 			       rte_socket_id());
279 	return err;
280 }
281 
282 static int closest_timer(const struct sge *s, int time)
283 {
284 	unsigned int i, match = 0;
285 	int delta, min_delta = INT_MAX;
286 
287 	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
288 		delta = time - s->timer_val[i];
289 		if (delta < 0)
290 			delta = -delta;
291 		if (delta < min_delta) {
292 			min_delta = delta;
293 			match = i;
294 		}
295 	}
296 	return match;
297 }
298 
299 static int closest_thres(const struct sge *s, int thres)
300 {
301 	unsigned int i, match = 0;
302 	int delta, min_delta = INT_MAX;
303 
304 	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
305 		delta = thres - s->counter_val[i];
306 		if (delta < 0)
307 			delta = -delta;
308 		if (delta < min_delta) {
309 			min_delta = delta;
310 			match = i;
311 		}
312 	}
313 	return match;
314 }
315 
316 /**
317  * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
318  * @q: the Rx queue
319  * @us: the hold-off time in us, or 0 to disable timer
320  * @cnt: the hold-off packet count, or 0 to disable counter
321  *
322  * Sets an Rx queue's interrupt hold-off time and packet count.  At least
323  * one of the two needs to be enabled for the queue to generate interrupts.
324  */
325 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, unsigned int us,
326 			       unsigned int cnt)
327 {
328 	struct adapter *adap = q->adapter;
329 	unsigned int timer_val;
330 
331 	if (cnt) {
332 		int err;
333 		u32 v, new_idx;
334 
335 		new_idx = closest_thres(&adap->sge, cnt);
336 		if (q->desc && q->pktcnt_idx != new_idx) {
337 			/* the queue has already been created, update it */
338 			v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
339 			    V_FW_PARAMS_PARAM_X(
340 			    FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
341 			    V_FW_PARAMS_PARAM_YZ(q->cntxt_id);
342 			err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
343 					    &v, &new_idx);
344 			if (err)
345 				return err;
346 		}
347 		q->pktcnt_idx = new_idx;
348 	}
349 
350 	timer_val = (us == 0) ? X_TIMERREG_RESTART_COUNTER :
351 				closest_timer(&adap->sge, us);
352 
353 	if ((us | cnt) == 0)
354 		q->intr_params = V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX);
355 	else
356 		q->intr_params = V_QINTR_TIMER_IDX(timer_val) |
357 				 V_QINTR_CNT_EN(cnt > 0);
358 	return 0;
359 }
360 
361 /**
362  * Allocate an active-open TID and set it to the supplied value.
363  */
364 int cxgbe_alloc_atid(struct tid_info *t, void *data)
365 {
366 	int atid = -1;
367 
368 	t4_os_lock(&t->atid_lock);
369 	if (t->afree) {
370 		union aopen_entry *p = t->afree;
371 
372 		atid = p - t->atid_tab;
373 		t->afree = p->next;
374 		p->data = data;
375 		t->atids_in_use++;
376 	}
377 	t4_os_unlock(&t->atid_lock);
378 	return atid;
379 }
380 
381 /**
382  * Release an active-open TID.
383  */
384 void cxgbe_free_atid(struct tid_info *t, unsigned int atid)
385 {
386 	union aopen_entry *p = &t->atid_tab[atid];
387 
388 	t4_os_lock(&t->atid_lock);
389 	p->next = t->afree;
390 	t->afree = p;
391 	t->atids_in_use--;
392 	t4_os_unlock(&t->atid_lock);
393 }
394 
395 /**
396  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
397  */
398 static void mk_tid_release(struct rte_mbuf *mbuf, unsigned int tid)
399 {
400 	struct cpl_tid_release *req;
401 
402 	req = rte_pktmbuf_mtod(mbuf, struct cpl_tid_release *);
403 	INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid);
404 }
405 
406 /**
407  * Release a TID and inform HW.  If we are unable to allocate the release
408  * message we defer to a work queue.
409  */
410 void cxgbe_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
411 		      unsigned short family)
412 {
413 	struct rte_mbuf *mbuf;
414 	struct adapter *adap = container_of(t, struct adapter, tids);
415 
416 	WARN_ON(tid >= t->ntids);
417 
418 	if (t->tid_tab[tid]) {
419 		t->tid_tab[tid] = NULL;
420 		rte_atomic32_dec(&t->conns_in_use);
421 		if (t->hash_base && tid >= t->hash_base) {
422 			if (family == FILTER_TYPE_IPV4)
423 				rte_atomic32_dec(&t->hash_tids_in_use);
424 		} else {
425 			if (family == FILTER_TYPE_IPV4)
426 				rte_atomic32_dec(&t->tids_in_use);
427 		}
428 	}
429 
430 	mbuf = rte_pktmbuf_alloc((&adap->sge.ctrlq[chan])->mb_pool);
431 	if (mbuf) {
432 		mbuf->data_len = sizeof(struct cpl_tid_release);
433 		mbuf->pkt_len = mbuf->data_len;
434 		mk_tid_release(mbuf, tid);
435 		t4_mgmt_tx(&adap->sge.ctrlq[chan], mbuf);
436 	}
437 }
438 
439 /**
440  * Insert a TID.
441  */
442 void cxgbe_insert_tid(struct tid_info *t, void *data, unsigned int tid,
443 		      unsigned short family)
444 {
445 	t->tid_tab[tid] = data;
446 	if (t->hash_base && tid >= t->hash_base) {
447 		if (family == FILTER_TYPE_IPV4)
448 			rte_atomic32_inc(&t->hash_tids_in_use);
449 	} else {
450 		if (family == FILTER_TYPE_IPV4)
451 			rte_atomic32_inc(&t->tids_in_use);
452 	}
453 
454 	rte_atomic32_inc(&t->conns_in_use);
455 }
456 
457 /**
458  * Free TID tables.
459  */
460 static void tid_free(struct tid_info *t)
461 {
462 	if (t->tid_tab) {
463 		if (t->ftid_bmap)
464 			rte_bitmap_free(t->ftid_bmap);
465 
466 		if (t->ftid_bmap_array)
467 			t4_os_free(t->ftid_bmap_array);
468 
469 		t4_os_free(t->tid_tab);
470 	}
471 
472 	memset(t, 0, sizeof(struct tid_info));
473 }
474 
475 /**
476  * Allocate and initialize the TID tables.  Returns 0 on success.
477  */
478 static int tid_init(struct tid_info *t)
479 {
480 	size_t size;
481 	unsigned int ftid_bmap_size;
482 	unsigned int natids = t->natids;
483 	unsigned int max_ftids = t->nftids;
484 
485 	ftid_bmap_size = rte_bitmap_get_memory_footprint(t->nftids);
486 	size = t->ntids * sizeof(*t->tid_tab) +
487 		max_ftids * sizeof(*t->ftid_tab) +
488 		natids * sizeof(*t->atid_tab);
489 
490 	t->tid_tab = t4_os_alloc(size);
491 	if (!t->tid_tab)
492 		return -ENOMEM;
493 
494 	t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
495 	t->ftid_tab = (struct filter_entry *)&t->atid_tab[t->natids];
496 	t->ftid_bmap_array = t4_os_alloc(ftid_bmap_size);
497 	if (!t->ftid_bmap_array) {
498 		tid_free(t);
499 		return -ENOMEM;
500 	}
501 
502 	t4_os_lock_init(&t->atid_lock);
503 	t4_os_lock_init(&t->ftid_lock);
504 
505 	t->afree = NULL;
506 	t->atids_in_use = 0;
507 	rte_atomic32_init(&t->tids_in_use);
508 	rte_atomic32_set(&t->tids_in_use, 0);
509 	rte_atomic32_init(&t->conns_in_use);
510 	rte_atomic32_set(&t->conns_in_use, 0);
511 
512 	/* Setup the free list for atid_tab and clear the stid bitmap. */
513 	if (natids) {
514 		while (--natids)
515 			t->atid_tab[natids - 1].next = &t->atid_tab[natids];
516 		t->afree = t->atid_tab;
517 	}
518 
519 	t->ftid_bmap = rte_bitmap_init(t->nftids, t->ftid_bmap_array,
520 				       ftid_bmap_size);
521 	if (!t->ftid_bmap) {
522 		tid_free(t);
523 		return -ENOMEM;
524 	}
525 
526 	return 0;
527 }
528 
529 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
530 		      unsigned int us, unsigned int cnt,
531 		      unsigned int size, unsigned int iqe_size)
532 {
533 	q->adapter = adap;
534 	cxgb4_set_rspq_intr_params(q, us, cnt);
535 	q->iqe_len = iqe_size;
536 	q->size = size;
537 }
538 
539 int cxgbe_cfg_queue_count(struct rte_eth_dev *eth_dev)
540 {
541 	struct port_info *temp_pi, *pi = eth_dev->data->dev_private;
542 	struct adapter *adap = pi->adapter;
543 	u16 first_txq = 0, first_rxq = 0;
544 	struct sge *s = &adap->sge;
545 	u16 i, max_rxqs, max_txqs;
546 
547 	max_rxqs = s->max_ethqsets;
548 	max_txqs = s->max_ethqsets;
549 	for_each_port(adap, i) {
550 		temp_pi = adap2pinfo(adap, i);
551 		if (i == pi->port_id)
552 			break;
553 
554 		if (max_rxqs <= temp_pi->n_rx_qsets ||
555 		    max_txqs <= temp_pi->n_tx_qsets)
556 			return -ENOMEM;
557 
558 		first_rxq += temp_pi->n_rx_qsets;
559 		first_txq += temp_pi->n_tx_qsets;
560 		max_rxqs -= temp_pi->n_rx_qsets;
561 		max_txqs -= temp_pi->n_tx_qsets;
562 	}
563 
564 	if ((eth_dev->data->nb_rx_queues < 1) ||
565 	    (eth_dev->data->nb_tx_queues < 1))
566 		return -EINVAL;
567 
568 	if (eth_dev->data->nb_rx_queues > max_rxqs ||
569 	    eth_dev->data->nb_tx_queues > max_txqs)
570 		return -EINVAL;
571 
572 	/* We must configure RSS, since config has changed*/
573 	pi->flags &= ~PORT_RSS_DONE;
574 
575 	pi->n_rx_qsets = eth_dev->data->nb_rx_queues;
576 	pi->n_tx_qsets = eth_dev->data->nb_tx_queues;
577 	pi->first_rxqset = first_rxq;
578 	pi->first_txqset = first_txq;
579 
580 	return 0;
581 }
582 
583 void cxgbe_cfg_queues_free(struct adapter *adap)
584 {
585 	if (adap->sge.ethtxq) {
586 		rte_free(adap->sge.ethtxq);
587 		adap->sge.ethtxq = NULL;
588 	}
589 
590 	if (adap->sge.ethrxq) {
591 		rte_free(adap->sge.ethrxq);
592 		adap->sge.ethrxq = NULL;
593 	}
594 
595 	adap->flags &= ~CFG_QUEUES;
596 }
597 
598 int cxgbe_cfg_queues(struct rte_eth_dev *eth_dev)
599 {
600 	struct port_info *pi = eth_dev->data->dev_private;
601 	struct adapter *adap = pi->adapter;
602 	struct sge *s = &adap->sge;
603 	u16 i;
604 
605 	if (!(adap->flags & CFG_QUEUES)) {
606 		s->ethrxq = rte_calloc_socket(NULL, s->max_ethqsets,
607 					      sizeof(struct sge_eth_rxq), 0,
608 					      rte_socket_id());
609 		if (!s->ethrxq)
610 			return -ENOMEM;
611 
612 		s->ethtxq = rte_calloc_socket(NULL, s->max_ethqsets,
613 					      sizeof(struct sge_eth_txq), 0,
614 					      rte_socket_id());
615 		if (!s->ethtxq) {
616 			rte_free(s->ethrxq);
617 			s->ethrxq = NULL;
618 			return -ENOMEM;
619 		}
620 
621 		for (i = 0; i < s->max_ethqsets; i++) {
622 			struct sge_eth_rxq *r = &s->ethrxq[i];
623 			struct sge_eth_txq *t = &s->ethtxq[i];
624 
625 			init_rspq(adap, &r->rspq, 5, 32, 1024, 64);
626 			r->usembufs = 1;
627 			r->fl.size = (r->usembufs ? 1024 : 72);
628 
629 			t->q.size = 1024;
630 		}
631 
632 		init_rspq(adap, &adap->sge.fw_evtq, 0, 0, 1024, 64);
633 		adap->flags |= CFG_QUEUES;
634 	}
635 
636 	return 0;
637 }
638 
639 void cxgbe_stats_get(struct port_info *pi, struct port_stats *stats)
640 {
641 	t4_get_port_stats_offset(pi->adapter, pi->tx_chan, stats,
642 				 &pi->stats_base);
643 }
644 
645 void cxgbe_stats_reset(struct port_info *pi)
646 {
647 	t4_clr_port_stats(pi->adapter, pi->tx_chan);
648 }
649 
650 static void setup_memwin(struct adapter *adap)
651 {
652 	u32 mem_win0_base;
653 
654 	/* For T5, only relative offset inside the PCIe BAR is passed */
655 	mem_win0_base = MEMWIN0_BASE;
656 
657 	/*
658 	 * Set up memory window for accessing adapter memory ranges.  (Read
659 	 * back MA register to ensure that changes propagate before we attempt
660 	 * to use the new values.)
661 	 */
662 	t4_write_reg(adap,
663 		     PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
664 					 MEMWIN_NIC),
665 		     mem_win0_base | V_BIR(0) |
666 		     V_WINDOW(ilog2(MEMWIN0_APERTURE) - X_WINDOW_SHIFT));
667 	t4_read_reg(adap,
668 		    PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
669 					MEMWIN_NIC));
670 }
671 
672 int cxgbe_init_rss(struct adapter *adap)
673 {
674 	unsigned int i;
675 
676 	if (is_pf4(adap)) {
677 		int err;
678 
679 		err = t4_init_rss_mode(adap, adap->mbox);
680 		if (err)
681 			return err;
682 	}
683 
684 	for_each_port(adap, i) {
685 		struct port_info *pi = adap2pinfo(adap, i);
686 
687 		pi->rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0);
688 		if (!pi->rss)
689 			return -ENOMEM;
690 
691 		pi->rss_hf = CXGBE_RSS_HF_ALL;
692 	}
693 	return 0;
694 }
695 
696 /**
697  * Dump basic information about the adapter.
698  */
699 void cxgbe_print_adapter_info(struct adapter *adap)
700 {
701 	/**
702 	 * Hardware/Firmware/etc. Version/Revision IDs.
703 	 */
704 	t4_dump_version_info(adap);
705 }
706 
707 void cxgbe_print_port_info(struct adapter *adap)
708 {
709 	int i;
710 	char buf[80];
711 	struct rte_pci_addr *loc = &adap->pdev->addr;
712 
713 	for_each_port(adap, i) {
714 		const struct port_info *pi = adap2pinfo(adap, i);
715 		char *bufp = buf;
716 
717 		if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
718 			bufp += sprintf(bufp, "100M/");
719 		if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
720 			bufp += sprintf(bufp, "1G/");
721 		if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
722 			bufp += sprintf(bufp, "10G/");
723 		if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
724 			bufp += sprintf(bufp, "25G/");
725 		if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
726 			bufp += sprintf(bufp, "40G/");
727 		if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
728 			bufp += sprintf(bufp, "50G/");
729 		if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
730 			bufp += sprintf(bufp, "100G/");
731 		if (bufp != buf)
732 			--bufp;
733 		sprintf(bufp, "BASE-%s",
734 			t4_get_port_type_description(
735 					(enum fw_port_type)pi->port_type));
736 
737 		dev_info(adap,
738 			 " " PCI_PRI_FMT " Chelsio rev %d %s %s\n",
739 			 loc->domain, loc->bus, loc->devid, loc->function,
740 			 CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
741 			 (adap->flags & USING_MSIX) ? " MSI-X" :
742 			 (adap->flags & USING_MSI) ? " MSI" : "");
743 	}
744 }
745 
746 static int check_devargs_handler(const char *key, const char *value, void *p)
747 {
748 	if (!strncmp(key, CXGBE_DEVARG_CMN_KEEP_OVLAN, strlen(key)) ||
749 	    !strncmp(key, CXGBE_DEVARG_CMN_TX_MODE_LATENCY, strlen(key)) ||
750 	    !strncmp(key, CXGBE_DEVARG_VF_FORCE_LINK_UP, strlen(key))) {
751 		if (!strncmp(value, "1", 1)) {
752 			bool *dst_val = (bool *)p;
753 
754 			*dst_val = true;
755 		}
756 	}
757 
758 	if (!strncmp(key, CXGBE_DEVARG_PF_FILTER_MODE, strlen(key)) ||
759 	    !strncmp(key, CXGBE_DEVARG_PF_FILTER_MASK, strlen(key))) {
760 		u32 *dst_val = (u32 *)p;
761 		char *endptr = NULL;
762 		u32 arg_val;
763 
764 		arg_val = strtoul(value, &endptr, 16);
765 		if (errno || endptr == value)
766 			return -EINVAL;
767 
768 		*dst_val = arg_val;
769 	}
770 
771 	return 0;
772 }
773 
774 static int cxgbe_get_devargs(struct rte_devargs *devargs, const char *key,
775 			     void *p)
776 {
777 	struct rte_kvargs *kvlist;
778 	int ret = 0;
779 
780 	if (!devargs)
781 		return 0;
782 
783 	kvlist = rte_kvargs_parse(devargs->args, NULL);
784 	if (!kvlist)
785 		return 0;
786 
787 	if (!rte_kvargs_count(kvlist, key))
788 		goto out;
789 
790 	ret = rte_kvargs_process(kvlist, key, check_devargs_handler, p);
791 
792 out:
793 	rte_kvargs_free(kvlist);
794 
795 	return ret;
796 }
797 
798 static void cxgbe_get_devargs_int(struct adapter *adap, bool *dst,
799 				  const char *key, bool default_value)
800 {
801 	struct rte_pci_device *pdev = adap->pdev;
802 	int ret;
803 	bool devarg_value = default_value;
804 
805 	*dst = default_value;
806 	if (!pdev)
807 		return;
808 
809 	ret = cxgbe_get_devargs(pdev->device.devargs, key, &devarg_value);
810 	if (ret)
811 		return;
812 
813 	*dst = devarg_value;
814 }
815 
816 static void cxgbe_get_devargs_u32(struct adapter *adap, u32 *dst,
817 				  const char *key, u32 default_value)
818 {
819 	struct rte_pci_device *pdev = adap->pdev;
820 	u32 devarg_value = default_value;
821 	int ret;
822 
823 	*dst = default_value;
824 	if (!pdev)
825 		return;
826 
827 	ret = cxgbe_get_devargs(pdev->device.devargs, key, &devarg_value);
828 	if (ret)
829 		return;
830 
831 	*dst = devarg_value;
832 }
833 
834 void cxgbe_process_devargs(struct adapter *adap)
835 {
836 	cxgbe_get_devargs_int(adap, &adap->devargs.keep_ovlan,
837 			      CXGBE_DEVARG_CMN_KEEP_OVLAN, false);
838 	cxgbe_get_devargs_int(adap, &adap->devargs.tx_mode_latency,
839 			      CXGBE_DEVARG_CMN_TX_MODE_LATENCY, false);
840 	cxgbe_get_devargs_int(adap, &adap->devargs.force_link_up,
841 			      CXGBE_DEVARG_VF_FORCE_LINK_UP, false);
842 	cxgbe_get_devargs_u32(adap, &adap->devargs.filtermode,
843 			      CXGBE_DEVARG_PF_FILTER_MODE, 0);
844 	cxgbe_get_devargs_u32(adap, &adap->devargs.filtermask,
845 			      CXGBE_DEVARG_PF_FILTER_MASK, 0);
846 }
847 
848 static void configure_vlan_types(struct adapter *adapter)
849 {
850 	int i;
851 
852 	for_each_port(adapter, i) {
853 		/* OVLAN Type 0x88a8 */
854 		t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN0),
855 				 V_OVLAN_MASK(M_OVLAN_MASK) |
856 				 V_OVLAN_ETYPE(M_OVLAN_ETYPE),
857 				 V_OVLAN_MASK(M_OVLAN_MASK) |
858 				 V_OVLAN_ETYPE(0x88a8));
859 		/* OVLAN Type 0x9100 */
860 		t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN1),
861 				 V_OVLAN_MASK(M_OVLAN_MASK) |
862 				 V_OVLAN_ETYPE(M_OVLAN_ETYPE),
863 				 V_OVLAN_MASK(M_OVLAN_MASK) |
864 				 V_OVLAN_ETYPE(0x9100));
865 
866 		/* IVLAN 0X8100 */
867 		t4_set_reg_field(adapter, MPS_PORT_RX_IVLAN(i),
868 				 V_IVLAN_ETYPE(M_IVLAN_ETYPE),
869 				 V_IVLAN_ETYPE(0x8100));
870 
871 		t4_set_reg_field(adapter, MPS_PORT_RX_CTL(i),
872 				 F_OVLAN_EN0 | F_OVLAN_EN1 |
873 				 F_IVLAN_EN,
874 				 F_OVLAN_EN0 | F_OVLAN_EN1 |
875 				 F_IVLAN_EN);
876 	}
877 
878 	t4_tp_wr_bits_indirect(adapter, A_TP_INGRESS_CONFIG, V_RM_OVLAN(1),
879 			       V_RM_OVLAN(!adapter->devargs.keep_ovlan));
880 }
881 
882 static int cxgbe_get_filter_vnic_mode_from_devargs(u32 val)
883 {
884 	u32 vnic_mode;
885 
886 	vnic_mode = val & (CXGBE_DEVARGS_FILTER_MODE_PF_VF |
887 			   CXGBE_DEVARGS_FILTER_MODE_VLAN_OUTER);
888 	if (vnic_mode) {
889 		switch (vnic_mode) {
890 		case CXGBE_DEVARGS_FILTER_MODE_VLAN_OUTER:
891 			return CXGBE_FILTER_VNIC_MODE_OVLAN;
892 		case CXGBE_DEVARGS_FILTER_MODE_PF_VF:
893 			return CXGBE_FILTER_VNIC_MODE_PFVF;
894 		default:
895 			return -EINVAL;
896 		}
897 	}
898 
899 	return CXGBE_FILTER_VNIC_MODE_NONE;
900 }
901 
902 static int cxgbe_get_filter_mode_from_devargs(u32 val, bool closest_match)
903 {
904 	int vnic_mode, fmode = 0;
905 	bool found = false;
906 	u8 i;
907 
908 	if (val >= CXGBE_DEVARGS_FILTER_MODE_MAX) {
909 		pr_err("Unsupported flags set in filter mode. Must be < 0x%x\n",
910 		       CXGBE_DEVARGS_FILTER_MODE_MAX);
911 		return -ERANGE;
912 	}
913 
914 	vnic_mode = cxgbe_get_filter_vnic_mode_from_devargs(val);
915 	if (vnic_mode < 0) {
916 		pr_err("Unsupported Vnic-mode, more than 1 Vnic-mode selected\n");
917 		return vnic_mode;
918 	}
919 
920 	if (vnic_mode)
921 		fmode |= F_VNIC_ID;
922 	if (val & CXGBE_DEVARGS_FILTER_MODE_PHYSICAL_PORT)
923 		fmode |= F_PORT;
924 	if (val & CXGBE_DEVARGS_FILTER_MODE_ETHERNET_DSTMAC)
925 		fmode |= F_MACMATCH;
926 	if (val & CXGBE_DEVARGS_FILTER_MODE_ETHERNET_ETHTYPE)
927 		fmode |= F_ETHERTYPE;
928 	if (val & CXGBE_DEVARGS_FILTER_MODE_VLAN_INNER)
929 		fmode |= F_VLAN;
930 	if (val & CXGBE_DEVARGS_FILTER_MODE_IP_TOS)
931 		fmode |= F_TOS;
932 	if (val & CXGBE_DEVARGS_FILTER_MODE_IP_PROTOCOL)
933 		fmode |= F_PROTOCOL;
934 
935 	for (i = 0; i < ARRAY_SIZE(cxgbe_filter_mode_features); i++) {
936 		if ((cxgbe_filter_mode_features[i] & fmode) == fmode) {
937 			found = true;
938 			break;
939 		}
940 	}
941 
942 	if (!found)
943 		return -EINVAL;
944 
945 	return closest_match ? cxgbe_filter_mode_features[i] : fmode;
946 }
947 
948 static int configure_filter_mode_mask(struct adapter *adap)
949 {
950 	u32 params[2], val[2], nparams = 0;
951 	int ret;
952 
953 	if (!adap->devargs.filtermode && !adap->devargs.filtermask)
954 		return 0;
955 
956 	if (!adap->devargs.filtermode || !adap->devargs.filtermask) {
957 		pr_err("Unsupported, Provide both filtermode and filtermask devargs\n");
958 		return -EINVAL;
959 	}
960 
961 	if (adap->devargs.filtermask & ~adap->devargs.filtermode) {
962 		pr_err("Unsupported, filtermask (0x%x) must be subset of filtermode (0x%x)\n",
963 		       adap->devargs.filtermask, adap->devargs.filtermode);
964 
965 		return -EINVAL;
966 	}
967 
968 	params[0] = CXGBE_FW_PARAM_DEV(FILTER) |
969 		    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_MODE_MASK);
970 
971 	ret = cxgbe_get_filter_mode_from_devargs(adap->devargs.filtermode,
972 						 true);
973 	if (ret < 0) {
974 		pr_err("Unsupported filtermode devargs combination:0x%x\n",
975 		       adap->devargs.filtermode);
976 		return ret;
977 	}
978 
979 	val[0] = V_FW_PARAMS_PARAM_FILTER_MODE(ret);
980 
981 	ret = cxgbe_get_filter_mode_from_devargs(adap->devargs.filtermask,
982 						 false);
983 	if (ret < 0) {
984 		pr_err("Unsupported filtermask devargs combination:0x%x\n",
985 		       adap->devargs.filtermask);
986 		return ret;
987 	}
988 
989 	val[0] |= V_FW_PARAMS_PARAM_FILTER_MASK(ret);
990 
991 	nparams++;
992 
993 	ret = cxgbe_get_filter_vnic_mode_from_devargs(adap->devargs.filtermode);
994 	if (ret < 0)
995 		return ret;
996 
997 	if (ret) {
998 		params[1] = CXGBE_FW_PARAM_DEV(FILTER) |
999 			    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_VNIC_MODE);
1000 
1001 		val[1] = ret - 1;
1002 
1003 		nparams++;
1004 	}
1005 
1006 	return t4_set_params(adap, adap->mbox, adap->pf, 0, nparams,
1007 			     params, val);
1008 }
1009 
1010 static void configure_pcie_ext_tag(struct adapter *adapter)
1011 {
1012 	u16 v;
1013 	int pos = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
1014 
1015 	if (!pos)
1016 		return;
1017 
1018 	if (pos > 0) {
1019 		t4_os_pci_read_cfg2(adapter, pos + PCI_EXP_DEVCTL, &v);
1020 		v |= PCI_EXP_DEVCTL_EXT_TAG;
1021 		t4_os_pci_write_cfg2(adapter, pos + PCI_EXP_DEVCTL, v);
1022 		if (is_t6(adapter->params.chip)) {
1023 			t4_set_reg_field(adapter, A_PCIE_CFG2,
1024 					 V_T6_TOTMAXTAG(M_T6_TOTMAXTAG),
1025 					 V_T6_TOTMAXTAG(7));
1026 			t4_set_reg_field(adapter, A_PCIE_CMD_CFG,
1027 					 V_T6_MINTAG(M_T6_MINTAG),
1028 					 V_T6_MINTAG(8));
1029 		} else {
1030 			t4_set_reg_field(adapter, A_PCIE_CFG2,
1031 					 V_TOTMAXTAG(M_TOTMAXTAG),
1032 					 V_TOTMAXTAG(3));
1033 			t4_set_reg_field(adapter, A_PCIE_CMD_CFG,
1034 					 V_MINTAG(M_MINTAG),
1035 					 V_MINTAG(8));
1036 		}
1037 	}
1038 }
1039 
1040 /* Figure out how many Queue Sets we can support */
1041 void cxgbe_configure_max_ethqsets(struct adapter *adapter)
1042 {
1043 	unsigned int ethqsets, reserved;
1044 
1045 	/* We need to reserve an Ingress Queue for the Asynchronous Firmware
1046 	 * Event Queue and 1 Control Queue per port.
1047 	 *
1048 	 * For each Queue Set, we'll need the ability to allocate two Egress
1049 	 * Contexts -- one for the Ingress Queue Free List and one for the TX
1050 	 * Ethernet Queue.
1051 	 */
1052 	reserved = max(adapter->params.nports, 1);
1053 	if (is_pf4(adapter)) {
1054 		struct pf_resources *pfres = &adapter->params.pfres;
1055 
1056 		ethqsets = min(pfres->niqflint, pfres->nethctrl);
1057 		if (ethqsets > (pfres->neq / 2))
1058 			ethqsets = pfres->neq / 2;
1059 	} else {
1060 		struct vf_resources *vfres = &adapter->params.vfres;
1061 
1062 		ethqsets = min(vfres->niqflint, vfres->nethctrl);
1063 		if (ethqsets > (vfres->neq / 2))
1064 			ethqsets = vfres->neq / 2;
1065 	}
1066 
1067 	ethqsets -= reserved;
1068 	adapter->sge.max_ethqsets = ethqsets;
1069 }
1070 
1071 /*
1072  * Tweak configuration based on system architecture, etc.  Most of these have
1073  * defaults assigned to them by Firmware Configuration Files (if we're using
1074  * them) but need to be explicitly set if we're using hard-coded
1075  * initialization. So these are essentially common tweaks/settings for
1076  * Configuration Files and hard-coded initialization ...
1077  */
1078 static int adap_init0_tweaks(struct adapter *adapter)
1079 {
1080 	u8 rx_dma_offset;
1081 
1082 	/*
1083 	 * Fix up various Host-Dependent Parameters like Page Size, Cache
1084 	 * Line Size, etc.  The firmware default is for a 4KB Page Size and
1085 	 * 64B Cache Line Size ...
1086 	 */
1087 	t4_fixup_host_params_compat(adapter, CXGBE_PAGE_SIZE, L1_CACHE_BYTES,
1088 				    T5_LAST_REV);
1089 
1090 	/*
1091 	 * Keep the chip default offset to deliver Ingress packets into our
1092 	 * DMA buffers to zero
1093 	 */
1094 	rx_dma_offset = 0;
1095 	t4_set_reg_field(adapter, A_SGE_CONTROL, V_PKTSHIFT(M_PKTSHIFT),
1096 			 V_PKTSHIFT(rx_dma_offset));
1097 
1098 	t4_set_reg_field(adapter, A_SGE_FLM_CFG,
1099 			 V_CREDITCNT(M_CREDITCNT) | M_CREDITCNTPACKING,
1100 			 V_CREDITCNT(3) | V_CREDITCNTPACKING(1));
1101 
1102 	t4_set_reg_field(adapter, A_SGE_INGRESS_RX_THRESHOLD,
1103 			 V_THRESHOLD_3(M_THRESHOLD_3), V_THRESHOLD_3(32U));
1104 
1105 	t4_set_reg_field(adapter, A_SGE_CONTROL2, V_IDMAARBROUNDROBIN(1U),
1106 			 V_IDMAARBROUNDROBIN(1U));
1107 
1108 	/*
1109 	 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
1110 	 * adds the pseudo header itself.
1111 	 */
1112 	t4_tp_wr_bits_indirect(adapter, A_TP_INGRESS_CONFIG,
1113 			       F_CSUM_HAS_PSEUDO_HDR, 0);
1114 
1115 	return 0;
1116 }
1117 
1118 /*
1119  * Attempt to initialize the adapter via a Firmware Configuration File.
1120  */
1121 static int adap_init0_config(struct adapter *adapter, int reset)
1122 {
1123 	u32 finiver, finicsum, cfcsum, param, val;
1124 	struct fw_caps_config_cmd caps_cmd;
1125 	unsigned long mtype = 0, maddr = 0;
1126 	u8 config_issued = 0;
1127 	char config_name[20];
1128 	int cfg_addr, ret;
1129 
1130 	/*
1131 	 * Reset device if necessary.
1132 	 */
1133 	if (reset) {
1134 		ret = t4_fw_reset(adapter, adapter->mbox,
1135 				  F_PIORSTMODE | F_PIORST);
1136 		if (ret < 0) {
1137 			dev_warn(adapter, "Firmware reset failed, error %d\n",
1138 				 -ret);
1139 			goto bye;
1140 		}
1141 	}
1142 
1143 	cfg_addr = t4_flash_cfg_addr(adapter);
1144 	if (cfg_addr < 0) {
1145 		ret = cfg_addr;
1146 		dev_warn(adapter, "Finding address for firmware config file in flash failed, error %d\n",
1147 			 -ret);
1148 		goto bye;
1149 	}
1150 
1151 	strcpy(config_name, "On Flash");
1152 	mtype = FW_MEMTYPE_CF_FLASH;
1153 	maddr = cfg_addr;
1154 
1155 	/* Enable HASH filter region when support is available. */
1156 	val = 1;
1157 	param = CXGBE_FW_PARAM_DEV(HASHFILTER_WITH_OFLD);
1158 	t4_set_params(adapter, adapter->mbox, adapter->pf, 0, 1,
1159 		      &param, &val);
1160 
1161 	/*
1162 	 * Issue a Capability Configuration command to the firmware to get it
1163 	 * to parse the Configuration File.  We don't use t4_fw_config_file()
1164 	 * because we want the ability to modify various features after we've
1165 	 * processed the configuration file ...
1166 	 */
1167 	memset(&caps_cmd, 0, sizeof(caps_cmd));
1168 	caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1169 					   F_FW_CMD_REQUEST | F_FW_CMD_READ);
1170 	caps_cmd.cfvalid_to_len16 =
1171 		cpu_to_be32(F_FW_CAPS_CONFIG_CMD_CFVALID |
1172 			    V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
1173 			    V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
1174 			    FW_LEN16(caps_cmd));
1175 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
1176 			 &caps_cmd);
1177 	/*
1178 	 * If the CAPS_CONFIG failed with an ENOENT (for a Firmware
1179 	 * Configuration File in FLASH), our last gasp effort is to use the
1180 	 * Firmware Configuration File which is embedded in the firmware.  A
1181 	 * very few early versions of the firmware didn't have one embedded
1182 	 * but we can ignore those.
1183 	 */
1184 	if (ret == -ENOENT) {
1185 		dev_info(adapter, "%s: Going for embedded config in firmware..\n",
1186 			 __func__);
1187 
1188 		memset(&caps_cmd, 0, sizeof(caps_cmd));
1189 		caps_cmd.op_to_write =
1190 			cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1191 				    F_FW_CMD_REQUEST | F_FW_CMD_READ);
1192 		caps_cmd.cfvalid_to_len16 = cpu_to_be32(FW_LEN16(caps_cmd));
1193 		ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
1194 				 sizeof(caps_cmd), &caps_cmd);
1195 		strcpy(config_name, "Firmware Default");
1196 	}
1197 
1198 	config_issued = 1;
1199 	if (ret < 0)
1200 		goto bye;
1201 
1202 	finiver = be32_to_cpu(caps_cmd.finiver);
1203 	finicsum = be32_to_cpu(caps_cmd.finicsum);
1204 	cfcsum = be32_to_cpu(caps_cmd.cfcsum);
1205 	if (finicsum != cfcsum)
1206 		dev_warn(adapter, "Configuration File checksum mismatch: [fini] csum=%#x, computed csum=%#x\n",
1207 			 finicsum, cfcsum);
1208 
1209 	/*
1210 	 * If we're a pure NIC driver then disable all offloading facilities.
1211 	 * This will allow the firmware to optimize aspects of the hardware
1212 	 * configuration which will result in improved performance.
1213 	 */
1214 	caps_cmd.niccaps &= cpu_to_be16(~FW_CAPS_CONFIG_NIC_ETHOFLD);
1215 	caps_cmd.toecaps = 0;
1216 	caps_cmd.iscsicaps = 0;
1217 	caps_cmd.rdmacaps = 0;
1218 	caps_cmd.fcoecaps = 0;
1219 	caps_cmd.cryptocaps = 0;
1220 
1221 	/*
1222 	 * And now tell the firmware to use the configuration we just loaded.
1223 	 */
1224 	caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1225 					   F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
1226 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
1227 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
1228 			 NULL);
1229 	if (ret < 0) {
1230 		dev_warn(adapter, "Unable to finalize Firmware Capabilities %d\n",
1231 			 -ret);
1232 		goto bye;
1233 	}
1234 
1235 	/*
1236 	 * Tweak configuration based on system architecture, etc.
1237 	 */
1238 	ret = adap_init0_tweaks(adapter);
1239 	if (ret < 0) {
1240 		dev_warn(adapter, "Unable to do init0-tweaks %d\n", -ret);
1241 		goto bye;
1242 	}
1243 
1244 	/*
1245 	 * And finally tell the firmware to initialize itself using the
1246 	 * parameters from the Configuration File.
1247 	 */
1248 	ret = t4_fw_initialize(adapter, adapter->mbox);
1249 	if (ret < 0) {
1250 		dev_warn(adapter, "Initializing Firmware failed, error %d\n",
1251 			 -ret);
1252 		goto bye;
1253 	}
1254 
1255 	/*
1256 	 * Return successfully and note that we're operating with parameters
1257 	 * not supplied by the driver, rather than from hard-wired
1258 	 * initialization constants buried in the driver.
1259 	 */
1260 	dev_info(adapter,
1261 		 "Successfully configured using Firmware Configuration File \"%s\", version %#x, computed checksum %#x\n",
1262 		 config_name, finiver, cfcsum);
1263 
1264 	return 0;
1265 
1266 	/*
1267 	 * Something bad happened.  Return the error ...  (If the "error"
1268 	 * is that there's no Configuration File on the adapter we don't
1269 	 * want to issue a warning since this is fairly common.)
1270 	 */
1271 bye:
1272 	if (config_issued && ret != -ENOENT)
1273 		dev_warn(adapter, "\"%s\" configuration file error %d\n",
1274 			 config_name, -ret);
1275 
1276 	dev_debug(adapter, "%s: returning ret = %d ..\n", __func__, ret);
1277 	return ret;
1278 }
1279 
1280 static int adap_init0(struct adapter *adap)
1281 {
1282 	struct fw_caps_config_cmd caps_cmd;
1283 	int ret = 0;
1284 	u32 v, port_vec;
1285 	enum dev_state state;
1286 	u32 params[7], val[7];
1287 	int reset = 1;
1288 	int mbox = adap->mbox;
1289 
1290 	/*
1291 	 * Contact FW, advertising Master capability.
1292 	 */
1293 	ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
1294 	if (ret < 0) {
1295 		dev_err(adap, "%s: could not connect to FW, error %d\n",
1296 			__func__, -ret);
1297 		goto bye;
1298 	}
1299 
1300 	CXGBE_DEBUG_MBOX(adap, "%s: adap->mbox = %d; ret = %d\n", __func__,
1301 			 adap->mbox, ret);
1302 
1303 	if (ret == mbox)
1304 		adap->flags |= MASTER_PF;
1305 
1306 	if (state == DEV_STATE_INIT) {
1307 		/*
1308 		 * Force halt and reset FW because a previous instance may have
1309 		 * exited abnormally without properly shutting down
1310 		 */
1311 		ret = t4_fw_halt(adap, adap->mbox, reset);
1312 		if (ret < 0) {
1313 			dev_err(adap, "Failed to halt. Exit.\n");
1314 			goto bye;
1315 		}
1316 
1317 		ret = t4_fw_restart(adap, adap->mbox, reset);
1318 		if (ret < 0) {
1319 			dev_err(adap, "Failed to restart. Exit.\n");
1320 			goto bye;
1321 		}
1322 		state = (enum dev_state)((unsigned)state & ~DEV_STATE_INIT);
1323 	}
1324 
1325 	t4_get_version_info(adap);
1326 
1327 	ret = t4_get_core_clock(adap, &adap->params.vpd);
1328 	if (ret < 0) {
1329 		dev_err(adap, "%s: could not get core clock, error %d\n",
1330 			__func__, -ret);
1331 		goto bye;
1332 	}
1333 
1334 	/*
1335 	 * If the firmware is initialized already (and we're not forcing a
1336 	 * master initialization), note that we're living with existing
1337 	 * adapter parameters.  Otherwise, it's time to try initializing the
1338 	 * adapter ...
1339 	 */
1340 	if (state == DEV_STATE_INIT) {
1341 		dev_info(adap, "Coming up as %s: Adapter already initialized\n",
1342 			 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
1343 	} else {
1344 		dev_info(adap, "Coming up as MASTER: Initializing adapter\n");
1345 
1346 		ret = adap_init0_config(adap, reset);
1347 		if (ret == -ENOENT) {
1348 			dev_err(adap,
1349 				"No Configuration File present on adapter. Using hard-wired configuration parameters.\n");
1350 			goto bye;
1351 		}
1352 	}
1353 	if (ret < 0) {
1354 		dev_err(adap, "could not initialize adapter, error %d\n", -ret);
1355 		goto bye;
1356 	}
1357 
1358 	/* Now that we've successfully configured and initialized the adapter
1359 	 * (or found it already initialized), we can ask the Firmware what
1360 	 * resources it has provisioned for us.
1361 	 */
1362 	ret = t4_get_pfres(adap);
1363 	if (ret) {
1364 		dev_err(adap->pdev_dev,
1365 			"Unable to retrieve resource provisioning info\n");
1366 		goto bye;
1367 	}
1368 
1369 	/* Find out what ports are available to us. */
1370 	v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
1371 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC);
1372 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
1373 	if (ret < 0) {
1374 		dev_err(adap, "%s: failure in t4_query_params; error = %d\n",
1375 			__func__, ret);
1376 		goto bye;
1377 	}
1378 
1379 	adap->params.nports = hweight32(port_vec);
1380 	adap->params.portvec = port_vec;
1381 
1382 	dev_debug(adap, "%s: adap->params.nports = %u\n", __func__,
1383 		  adap->params.nports);
1384 
1385 	/*
1386 	 * Give the SGE code a chance to pull in anything that it needs ...
1387 	 * Note that this must be called after we retrieve our VPD parameters
1388 	 * in order to know how to convert core ticks to seconds, etc.
1389 	 */
1390 	ret = t4_sge_init(adap);
1391 	if (ret < 0) {
1392 		dev_err(adap, "t4_sge_init failed with error %d\n",
1393 			-ret);
1394 		goto bye;
1395 	}
1396 
1397 	/*
1398 	 * Grab some of our basic fundamental operating parameters.
1399 	 */
1400 	params[0] = CXGBE_FW_PARAM_PFVF(L2T_START);
1401 	params[1] = CXGBE_FW_PARAM_PFVF(L2T_END);
1402 	params[2] = CXGBE_FW_PARAM_PFVF(FILTER_START);
1403 	params[3] = CXGBE_FW_PARAM_PFVF(FILTER_END);
1404 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4, params, val);
1405 	if (ret < 0)
1406 		goto bye;
1407 	adap->l2t_start = val[0];
1408 	adap->l2t_end = val[1];
1409 	adap->tids.ftid_base = val[2];
1410 	adap->tids.nftids = val[3] - val[2] + 1;
1411 
1412 	params[0] = CXGBE_FW_PARAM_PFVF(CLIP_START);
1413 	params[1] = CXGBE_FW_PARAM_PFVF(CLIP_END);
1414 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
1415 	if (ret < 0)
1416 		goto bye;
1417 	adap->clipt_start = val[0];
1418 	adap->clipt_end = val[1];
1419 
1420 	/*
1421 	 * Get device capabilities so we can determine what resources we need
1422 	 * to manage.
1423 	 */
1424 	memset(&caps_cmd, 0, sizeof(caps_cmd));
1425 	caps_cmd.op_to_write = htonl(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1426 				     F_FW_CMD_REQUEST | F_FW_CMD_READ);
1427 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
1428 	ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
1429 			 &caps_cmd);
1430 	if (ret < 0)
1431 		goto bye;
1432 
1433 	if ((caps_cmd.niccaps & cpu_to_be16(FW_CAPS_CONFIG_NIC_HASHFILTER)) &&
1434 	    is_t6(adap->params.chip)) {
1435 		if (cxgbe_init_hash_filter(adap) < 0)
1436 			goto bye;
1437 	}
1438 
1439 	/* See if FW supports FW_FILTER2 work request */
1440 	if (is_t4(adap->params.chip)) {
1441 		adap->params.filter2_wr_support = 0;
1442 	} else {
1443 		params[0] = CXGBE_FW_PARAM_DEV(FILTER2_WR);
1444 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1445 				      1, params, val);
1446 		adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
1447 	}
1448 
1449 	/* Check if FW supports returning vin.
1450 	 * If this is not supported, driver will interpret
1451 	 * these values from viid.
1452 	 */
1453 	params[0] = CXGBE_FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
1454 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1455 			      1, params, val);
1456 	adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0);
1457 
1458 	/* query tid-related parameters */
1459 	params[0] = CXGBE_FW_PARAM_DEV(NTID);
1460 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
1461 			      params, val);
1462 	if (ret < 0)
1463 		goto bye;
1464 	adap->tids.ntids = val[0];
1465 	adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
1466 
1467 	/* If we're running on newer firmware, let it know that we're
1468 	 * prepared to deal with encapsulated CPL messages.  Older
1469 	 * firmware won't understand this and we'll just get
1470 	 * unencapsulated messages ...
1471 	 */
1472 	params[0] = CXGBE_FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
1473 	val[0] = 1;
1474 	(void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
1475 
1476 	/*
1477 	 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
1478 	 * capability.  Earlier versions of the firmware didn't have the
1479 	 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
1480 	 * permission to use ULPTX MEMWRITE DSGL.
1481 	 */
1482 	if (is_t4(adap->params.chip)) {
1483 		adap->params.ulptx_memwrite_dsgl = false;
1484 	} else {
1485 		params[0] = CXGBE_FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
1486 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1487 				      1, params, val);
1488 		adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
1489 	}
1490 
1491 	/* Query for max number of packets that can be coalesced for Tx */
1492 	params[0] = CXGBE_FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR);
1493 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
1494 	if (!ret && val[0] > 0)
1495 		adap->params.max_tx_coalesce_num = val[0];
1496 	else
1497 		adap->params.max_tx_coalesce_num = ETH_COALESCE_PKT_NUM;
1498 
1499 	/*
1500 	 * The MTU/MSS Table is initialized by now, so load their values.  If
1501 	 * we're initializing the adapter, then we'll make any modifications
1502 	 * we want to the MTU/MSS Table and also initialize the congestion
1503 	 * parameters.
1504 	 */
1505 	t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
1506 	if (state != DEV_STATE_INIT) {
1507 		int i;
1508 
1509 		/*
1510 		 * The default MTU Table contains values 1492 and 1500.
1511 		 * However, for TCP, it's better to have two values which are
1512 		 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
1513 		 * This allows us to have a TCP Data Payload which is a
1514 		 * multiple of 8 regardless of what combination of TCP Options
1515 		 * are in use (always a multiple of 4 bytes) which is
1516 		 * important for performance reasons.  For instance, if no
1517 		 * options are in use, then we have a 20-byte IP header and a
1518 		 * 20-byte TCP header.  In this case, a 1500-byte MSS would
1519 		 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
1520 		 * which is not a multiple of 8.  So using an MSS of 1488 in
1521 		 * this case results in a TCP Data Payload of 1448 bytes which
1522 		 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
1523 		 * Stamps have been negotiated, then an MTU of 1500 bytes
1524 		 * results in a TCP Data Payload of 1448 bytes which, as
1525 		 * above, is a multiple of 8 bytes ...
1526 		 */
1527 		for (i = 0; i < NMTUS; i++)
1528 			if (adap->params.mtus[i] == 1492) {
1529 				adap->params.mtus[i] = 1488;
1530 				break;
1531 			}
1532 
1533 		t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
1534 			     adap->params.b_wnd);
1535 	}
1536 	t4_init_sge_params(adap);
1537 	ret = configure_filter_mode_mask(adap);
1538 	if (ret < 0)
1539 		goto bye;
1540 	t4_init_tp_params(adap);
1541 	configure_pcie_ext_tag(adap);
1542 	configure_vlan_types(adap);
1543 	cxgbe_configure_max_ethqsets(adap);
1544 
1545 	adap->params.drv_memwin = MEMWIN_NIC;
1546 	adap->flags |= FW_OK;
1547 	dev_debug(adap, "%s: returning zero..\n", __func__);
1548 	return 0;
1549 
1550 	/*
1551 	 * Something bad happened.  If a command timed out or failed with EIO
1552 	 * FW does not operate within its spec or something catastrophic
1553 	 * happened to HW/FW, stop issuing commands.
1554 	 */
1555 bye:
1556 	if (ret != -ETIMEDOUT && ret != -EIO)
1557 		t4_fw_bye(adap, adap->mbox);
1558 	return ret;
1559 }
1560 
1561 /**
1562  * t4_os_portmod_changed - handle port module changes
1563  * @adap: the adapter associated with the module change
1564  * @port_id: the port index whose module status has changed
1565  *
1566  * This is the OS-dependent handler for port module changes.  It is
1567  * invoked when a port module is removed or inserted for any OS-specific
1568  * processing.
1569  */
1570 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
1571 {
1572 	static const char * const mod_str[] = {
1573 		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
1574 	};
1575 
1576 	const struct port_info *pi = adap2pinfo(adap, port_id);
1577 
1578 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
1579 		dev_info(adap, "Port%d: port module unplugged\n", pi->port_id);
1580 	else if (pi->mod_type < ARRAY_SIZE(mod_str))
1581 		dev_info(adap, "Port%d: %s port module inserted\n", pi->port_id,
1582 			 mod_str[pi->mod_type]);
1583 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
1584 		dev_info(adap, "Port%d: unsupported port module inserted\n",
1585 			 pi->port_id);
1586 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
1587 		dev_info(adap, "Port%d: unknown port module inserted\n",
1588 			 pi->port_id);
1589 	else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
1590 		dev_info(adap, "Port%d: transceiver module error\n",
1591 			 pi->port_id);
1592 	else
1593 		dev_info(adap, "Port%d: unknown module type %d inserted\n",
1594 			 pi->port_id, pi->mod_type);
1595 }
1596 
1597 bool cxgbe_force_linkup(struct adapter *adap)
1598 {
1599 	if (is_pf4(adap))
1600 		return false;	/* force_linkup not required for pf driver */
1601 
1602 	return adap->devargs.force_link_up;
1603 }
1604 
1605 /**
1606  * link_start - enable a port
1607  * @dev: the port to enable
1608  *
1609  * Performs the MAC and PHY actions needed to enable a port.
1610  */
1611 int cxgbe_link_start(struct port_info *pi)
1612 {
1613 	struct adapter *adapter = pi->adapter;
1614 	u64 conf_offloads;
1615 	unsigned int mtu;
1616 	int ret;
1617 
1618 	mtu = pi->eth_dev->data->dev_conf.rxmode.max_rx_pkt_len -
1619 	      (RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN);
1620 
1621 	conf_offloads = pi->eth_dev->data->dev_conf.rxmode.offloads;
1622 
1623 	/*
1624 	 * We do not set address filters and promiscuity here, the stack does
1625 	 * that step explicitly.
1626 	 */
1627 	ret = t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, -1, -1, -1,
1628 			    !!(conf_offloads & DEV_RX_OFFLOAD_VLAN_STRIP),
1629 			    true);
1630 	if (ret == 0) {
1631 		ret = cxgbe_mpstcam_modify(pi, (int)pi->xact_addr_filt,
1632 				(u8 *)&pi->eth_dev->data->mac_addrs[0]);
1633 		if (ret >= 0) {
1634 			pi->xact_addr_filt = ret;
1635 			ret = 0;
1636 		}
1637 	}
1638 	if (ret == 0 && is_pf4(adapter))
1639 		ret = t4_link_l1cfg(adapter, adapter->mbox, pi->tx_chan,
1640 				    &pi->link_cfg);
1641 	if (ret == 0) {
1642 		/*
1643 		 * Enabling a Virtual Interface can result in an interrupt
1644 		 * during the processing of the VI Enable command and, in some
1645 		 * paths, result in an attempt to issue another command in the
1646 		 * interrupt context.  Thus, we disable interrupts during the
1647 		 * course of the VI Enable command ...
1648 		 */
1649 		ret = t4_enable_vi_params(adapter, adapter->mbox, pi->viid,
1650 					  true, true, false);
1651 	}
1652 
1653 	if (ret == 0 && cxgbe_force_linkup(adapter))
1654 		pi->eth_dev->data->dev_link.link_status = ETH_LINK_UP;
1655 	return ret;
1656 }
1657 
1658 /**
1659  * cxgbe_write_rss_conf - flash the RSS configuration for a given port
1660  * @pi: the port
1661  * @rss_hf: Hash configuration to apply
1662  */
1663 int cxgbe_write_rss_conf(const struct port_info *pi, uint64_t rss_hf)
1664 {
1665 	struct adapter *adapter = pi->adapter;
1666 	const struct sge_eth_rxq *rxq;
1667 	u64 flags = 0;
1668 	u16 rss;
1669 	int err;
1670 
1671 	/*  Should never be called before setting up sge eth rx queues */
1672 	if (!(adapter->flags & FULL_INIT_DONE)) {
1673 		dev_err(adap, "%s No RXQs available on port %d\n",
1674 			__func__, pi->port_id);
1675 		return -EINVAL;
1676 	}
1677 
1678 	/* Don't allow unsupported hash functions */
1679 	if (rss_hf & ~CXGBE_RSS_HF_ALL)
1680 		return -EINVAL;
1681 
1682 	if (rss_hf & CXGBE_RSS_HF_IPV4_MASK)
1683 		flags |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
1684 
1685 	if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
1686 		flags |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
1687 
1688 	if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
1689 		flags |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
1690 			 F_FW_RSS_VI_CONFIG_CMD_UDPEN;
1691 
1692 	if (rss_hf & CXGBE_RSS_HF_IPV6_MASK)
1693 		flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
1694 
1695 	if (rss_hf & CXGBE_RSS_HF_TCP_IPV6_MASK)
1696 		flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
1697 			 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
1698 
1699 	if (rss_hf & CXGBE_RSS_HF_UDP_IPV6_MASK)
1700 		flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
1701 			 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
1702 			 F_FW_RSS_VI_CONFIG_CMD_UDPEN;
1703 
1704 	rxq = &adapter->sge.ethrxq[pi->first_rxqset];
1705 	rss = rxq[0].rspq.abs_id;
1706 
1707 	/* If Tunnel All Lookup isn't specified in the global RSS
1708 	 * Configuration, then we need to specify a default Ingress
1709 	 * Queue for any ingress packets which aren't hashed.  We'll
1710 	 * use our first ingress queue ...
1711 	 */
1712 	err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
1713 			       flags, rss);
1714 	return err;
1715 }
1716 
1717 /**
1718  * cxgbe_write_rss - write the RSS table for a given port
1719  * @pi: the port
1720  * @queues: array of queue indices for RSS
1721  *
1722  * Sets up the portion of the HW RSS table for the port's VI to distribute
1723  * packets to the Rx queues in @queues.
1724  */
1725 int cxgbe_write_rss(const struct port_info *pi, const u16 *queues)
1726 {
1727 	u16 *rss;
1728 	int i, err;
1729 	struct adapter *adapter = pi->adapter;
1730 	const struct sge_eth_rxq *rxq;
1731 
1732 	/*  Should never be called before setting up sge eth rx queues */
1733 	BUG_ON(!(adapter->flags & FULL_INIT_DONE));
1734 
1735 	rxq = &adapter->sge.ethrxq[pi->first_rxqset];
1736 	rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0);
1737 	if (!rss)
1738 		return -ENOMEM;
1739 
1740 	/* map the queue indices to queue ids */
1741 	for (i = 0; i < pi->rss_size; i++, queues++)
1742 		rss[i] = rxq[*queues].rspq.abs_id;
1743 
1744 	err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
1745 				  pi->rss_size, rss, pi->rss_size);
1746 	rte_free(rss);
1747 	return err;
1748 }
1749 
1750 /**
1751  * setup_rss - configure RSS
1752  * @adapter: the adapter
1753  *
1754  * Sets up RSS to distribute packets to multiple receive queues.  We
1755  * configure the RSS CPU lookup table to distribute to the number of HW
1756  * receive queues, and the response queue lookup table to narrow that
1757  * down to the response queues actually configured for each port.
1758  * We always configure the RSS mapping for all ports since the mapping
1759  * table has plenty of entries.
1760  */
1761 int cxgbe_setup_rss(struct port_info *pi)
1762 {
1763 	int j, err;
1764 	struct adapter *adapter = pi->adapter;
1765 
1766 	dev_debug(adapter, "%s:  pi->rss_size = %u; pi->n_rx_qsets = %u\n",
1767 		  __func__, pi->rss_size, pi->n_rx_qsets);
1768 
1769 	if (!(pi->flags & PORT_RSS_DONE)) {
1770 		if (adapter->flags & FULL_INIT_DONE) {
1771 			/* Fill default values with equal distribution */
1772 			for (j = 0; j < pi->rss_size; j++)
1773 				pi->rss[j] = j % pi->n_rx_qsets;
1774 
1775 			err = cxgbe_write_rss(pi, pi->rss);
1776 			if (err)
1777 				return err;
1778 
1779 			err = cxgbe_write_rss_conf(pi, pi->rss_hf);
1780 			if (err)
1781 				return err;
1782 			pi->flags |= PORT_RSS_DONE;
1783 		}
1784 	}
1785 	return 0;
1786 }
1787 
1788 /*
1789  * Enable NAPI scheduling and interrupt generation for all Rx queues.
1790  */
1791 static void enable_rx(struct adapter *adap, struct sge_rspq *q)
1792 {
1793 	/* 0-increment GTS to start the timer and enable interrupts */
1794 	t4_write_reg(adap, is_pf4(adap) ? MYPF_REG(A_SGE_PF_GTS) :
1795 					  T4VF_SGE_BASE_ADDR + A_SGE_VF_GTS,
1796 		     V_SEINTARM(q->intr_params) |
1797 		     V_INGRESSQID(q->cntxt_id));
1798 }
1799 
1800 void cxgbe_enable_rx_queues(struct port_info *pi)
1801 {
1802 	struct adapter *adap = pi->adapter;
1803 	struct sge *s = &adap->sge;
1804 	unsigned int i;
1805 
1806 	for (i = 0; i < pi->n_rx_qsets; i++)
1807 		enable_rx(adap, &s->ethrxq[pi->first_rxqset + i].rspq);
1808 }
1809 
1810 /**
1811  * fw_caps_to_speed_caps - translate Firmware Port Caps to Speed Caps.
1812  * @port_type: Firmware Port Type
1813  * @fw_caps: Firmware Port Capabilities
1814  * @speed_caps: Device Info Speed Capabilities
1815  *
1816  * Translate a Firmware Port Capabilities specification to Device Info
1817  * Speed Capabilities.
1818  */
1819 static void fw_caps_to_speed_caps(enum fw_port_type port_type,
1820 				  unsigned int fw_caps,
1821 				  u32 *speed_caps)
1822 {
1823 #define SET_SPEED(__speed_name) \
1824 	do { \
1825 		*speed_caps |= ETH_LINK_ ## __speed_name; \
1826 	} while (0)
1827 
1828 #define FW_CAPS_TO_SPEED(__fw_name) \
1829 	do { \
1830 		if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \
1831 			SET_SPEED(__fw_name); \
1832 	} while (0)
1833 
1834 	switch (port_type) {
1835 	case FW_PORT_TYPE_BT_SGMII:
1836 	case FW_PORT_TYPE_BT_XFI:
1837 	case FW_PORT_TYPE_BT_XAUI:
1838 		FW_CAPS_TO_SPEED(SPEED_100M);
1839 		FW_CAPS_TO_SPEED(SPEED_1G);
1840 		FW_CAPS_TO_SPEED(SPEED_10G);
1841 		break;
1842 
1843 	case FW_PORT_TYPE_KX4:
1844 	case FW_PORT_TYPE_KX:
1845 	case FW_PORT_TYPE_FIBER_XFI:
1846 	case FW_PORT_TYPE_FIBER_XAUI:
1847 	case FW_PORT_TYPE_SFP:
1848 	case FW_PORT_TYPE_QSFP_10G:
1849 	case FW_PORT_TYPE_QSA:
1850 		FW_CAPS_TO_SPEED(SPEED_1G);
1851 		FW_CAPS_TO_SPEED(SPEED_10G);
1852 		break;
1853 
1854 	case FW_PORT_TYPE_KR:
1855 		SET_SPEED(SPEED_10G);
1856 		break;
1857 
1858 	case FW_PORT_TYPE_BP_AP:
1859 	case FW_PORT_TYPE_BP4_AP:
1860 		SET_SPEED(SPEED_1G);
1861 		SET_SPEED(SPEED_10G);
1862 		break;
1863 
1864 	case FW_PORT_TYPE_BP40_BA:
1865 	case FW_PORT_TYPE_QSFP:
1866 		SET_SPEED(SPEED_40G);
1867 		break;
1868 
1869 	case FW_PORT_TYPE_CR_QSFP:
1870 	case FW_PORT_TYPE_SFP28:
1871 	case FW_PORT_TYPE_KR_SFP28:
1872 		FW_CAPS_TO_SPEED(SPEED_1G);
1873 		FW_CAPS_TO_SPEED(SPEED_10G);
1874 		FW_CAPS_TO_SPEED(SPEED_25G);
1875 		break;
1876 
1877 	case FW_PORT_TYPE_CR2_QSFP:
1878 		SET_SPEED(SPEED_50G);
1879 		break;
1880 
1881 	case FW_PORT_TYPE_KR4_100G:
1882 	case FW_PORT_TYPE_CR4_QSFP:
1883 		FW_CAPS_TO_SPEED(SPEED_25G);
1884 		FW_CAPS_TO_SPEED(SPEED_40G);
1885 		FW_CAPS_TO_SPEED(SPEED_50G);
1886 		FW_CAPS_TO_SPEED(SPEED_100G);
1887 		break;
1888 
1889 	default:
1890 		break;
1891 	}
1892 
1893 #undef FW_CAPS_TO_SPEED
1894 #undef SET_SPEED
1895 }
1896 
1897 /**
1898  * cxgbe_get_speed_caps - Fetch supported speed capabilities
1899  * @pi: Underlying port's info
1900  * @speed_caps: Device Info speed capabilities
1901  *
1902  * Fetch supported speed capabilities of the underlying port.
1903  */
1904 void cxgbe_get_speed_caps(struct port_info *pi, u32 *speed_caps)
1905 {
1906 	*speed_caps = 0;
1907 
1908 	fw_caps_to_speed_caps(pi->port_type, pi->link_cfg.pcaps,
1909 			      speed_caps);
1910 
1911 	if (!(pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG))
1912 		*speed_caps |= ETH_LINK_SPEED_FIXED;
1913 }
1914 
1915 /**
1916  * cxgbe_set_link_status - Set device link up or down.
1917  * @pi: Underlying port's info
1918  * @status: 0 - down, 1 - up
1919  *
1920  * Set the device link up or down.
1921  */
1922 int cxgbe_set_link_status(struct port_info *pi, bool status)
1923 {
1924 	struct adapter *adapter = pi->adapter;
1925 	int err = 0;
1926 
1927 	err = t4_enable_vi(adapter, adapter->mbox, pi->viid, status, status);
1928 	if (err) {
1929 		dev_err(adapter, "%s: disable_vi failed: %d\n", __func__, err);
1930 		return err;
1931 	}
1932 
1933 	if (!status)
1934 		t4_reset_link_config(adapter, pi->pidx);
1935 
1936 	return 0;
1937 }
1938 
1939 /**
1940  * cxgb_up - enable the adapter
1941  * @adap: adapter being enabled
1942  *
1943  * Called when the first port is enabled, this function performs the
1944  * actions necessary to make an adapter operational, such as completing
1945  * the initialization of HW modules, and enabling interrupts.
1946  */
1947 int cxgbe_up(struct adapter *adap)
1948 {
1949 	enable_rx(adap, &adap->sge.fw_evtq);
1950 	t4_sge_tx_monitor_start(adap);
1951 	if (is_pf4(adap))
1952 		t4_intr_enable(adap);
1953 	adap->flags |= FULL_INIT_DONE;
1954 
1955 	/* TODO: deadman watchdog ?? */
1956 	return 0;
1957 }
1958 
1959 /*
1960  * Close the port
1961  */
1962 int cxgbe_down(struct port_info *pi)
1963 {
1964 	return cxgbe_set_link_status(pi, false);
1965 }
1966 
1967 /*
1968  * Release resources when all the ports have been stopped.
1969  */
1970 void cxgbe_close(struct adapter *adapter)
1971 {
1972 	if (adapter->flags & FULL_INIT_DONE) {
1973 		tid_free(&adapter->tids);
1974 		t4_cleanup_mpstcam(adapter);
1975 		t4_cleanup_clip_tbl(adapter);
1976 		t4_cleanup_l2t(adapter);
1977 		t4_cleanup_smt(adapter);
1978 		if (is_pf4(adapter))
1979 			t4_intr_disable(adapter);
1980 		t4_sge_tx_monitor_stop(adapter);
1981 		t4_free_sge_resources(adapter);
1982 		adapter->flags &= ~FULL_INIT_DONE;
1983 	}
1984 
1985 	cxgbe_cfg_queues_free(adapter);
1986 
1987 	if (is_pf4(adapter) && (adapter->flags & FW_OK))
1988 		t4_fw_bye(adapter, adapter->mbox);
1989 }
1990 
1991 static void adap_smt_index(struct adapter *adapter, u32 *smt_start_idx,
1992 			   u32 *smt_size)
1993 {
1994 	u32 params[2], smt_val[2];
1995 	int ret;
1996 
1997 	params[0] = CXGBE_FW_PARAM_PFVF(GET_SMT_START);
1998 	params[1] = CXGBE_FW_PARAM_PFVF(GET_SMT_SIZE);
1999 
2000 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2001 			      2, params, smt_val);
2002 
2003 	/* if FW doesn't recognize this command then set it to default setting
2004 	 * which is start index as 0 and size as 256.
2005 	 */
2006 	if (ret < 0) {
2007 		*smt_start_idx = 0;
2008 		*smt_size = SMT_SIZE;
2009 	} else {
2010 		*smt_start_idx = smt_val[0];
2011 		/* smt size can be zero, if nsmt is not yet configured in
2012 		 * the config file or set as zero, then configure all the
2013 		 * remaining entries to this PF itself.
2014 		 */
2015 		if (!smt_val[1])
2016 			*smt_size = SMT_SIZE - *smt_start_idx;
2017 		else
2018 			*smt_size = smt_val[1];
2019 	}
2020 }
2021 
2022 int cxgbe_probe(struct adapter *adapter)
2023 {
2024 	u32 smt_start_idx, smt_size;
2025 	struct port_info *pi;
2026 	int func, i;
2027 	int err = 0;
2028 	u32 whoami;
2029 	int chip;
2030 
2031 	whoami = t4_read_reg(adapter, A_PL_WHOAMI);
2032 	chip = t4_get_chip_type(adapter,
2033 			CHELSIO_PCI_ID_VER(adapter->pdev->id.device_id));
2034 	if (chip < 0)
2035 		return chip;
2036 
2037 	func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
2038 	       G_SOURCEPF(whoami) : G_T6_SOURCEPF(whoami);
2039 
2040 	adapter->mbox = func;
2041 	adapter->pf = func;
2042 
2043 	t4_os_lock_init(&adapter->mbox_lock);
2044 	TAILQ_INIT(&adapter->mbox_list);
2045 	t4_os_lock_init(&adapter->win0_lock);
2046 
2047 	err = t4_prep_adapter(adapter);
2048 	if (err)
2049 		return err;
2050 
2051 	setup_memwin(adapter);
2052 	err = adap_init0(adapter);
2053 	if (err) {
2054 		dev_err(adapter, "%s: Adapter initialization failed, error %d\n",
2055 			__func__, err);
2056 		goto out_free;
2057 	}
2058 
2059 	if (!is_t4(adapter->params.chip)) {
2060 		/*
2061 		 * The userspace doorbell BAR is split evenly into doorbell
2062 		 * regions, each associated with an egress queue.  If this
2063 		 * per-queue region is large enough (at least UDBS_SEG_SIZE)
2064 		 * then it can be used to submit a tx work request with an
2065 		 * implied doorbell.  Enable write combining on the BAR if
2066 		 * there is room for such work requests.
2067 		 */
2068 		int s_qpp, qpp, num_seg;
2069 
2070 		s_qpp = (S_QUEUESPERPAGEPF0 +
2071 			(S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) *
2072 			adapter->pf);
2073 		qpp = 1 << ((t4_read_reg(adapter,
2074 				A_SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp)
2075 				& M_QUEUESPERPAGEPF0);
2076 		num_seg = CXGBE_PAGE_SIZE / UDBS_SEG_SIZE;
2077 		if (qpp > num_seg)
2078 			dev_warn(adapter, "Incorrect SGE EGRESS QUEUES_PER_PAGE configuration, continuing in debug mode\n");
2079 
2080 		adapter->bar2 = (void *)adapter->pdev->mem_resource[2].addr;
2081 		if (!adapter->bar2) {
2082 			dev_err(adapter, "cannot map device bar2 region\n");
2083 			err = -ENOMEM;
2084 			goto out_free;
2085 		}
2086 		t4_write_reg(adapter, A_SGE_STAT_CFG, V_STATSOURCE_T5(7) |
2087 			     V_STATMODE(0));
2088 	}
2089 
2090 	for_each_port(adapter, i) {
2091 		const unsigned int numa_node = rte_socket_id();
2092 		char name[RTE_ETH_NAME_MAX_LEN];
2093 		struct rte_eth_dev *eth_dev;
2094 
2095 		snprintf(name, sizeof(name), "%s_%d",
2096 			 adapter->pdev->device.name, i);
2097 
2098 		if (i == 0) {
2099 			/* First port is already allocated by DPDK */
2100 			eth_dev = adapter->eth_dev;
2101 			goto allocate_mac;
2102 		}
2103 
2104 		/*
2105 		 * now do all data allocation - for eth_dev structure,
2106 		 * and internal (private) data for the remaining ports
2107 		 */
2108 
2109 		/* reserve an ethdev entry */
2110 		eth_dev = rte_eth_dev_allocate(name);
2111 		if (!eth_dev)
2112 			goto out_free;
2113 
2114 		eth_dev->data->dev_private =
2115 			rte_zmalloc_socket(name, sizeof(struct port_info),
2116 					   RTE_CACHE_LINE_SIZE, numa_node);
2117 		if (!eth_dev->data->dev_private)
2118 			goto out_free;
2119 
2120 allocate_mac:
2121 		pi = eth_dev->data->dev_private;
2122 		adapter->port[i] = pi;
2123 		pi->eth_dev = eth_dev;
2124 		pi->adapter = adapter;
2125 		pi->xact_addr_filt = -1;
2126 		pi->port_id = i;
2127 		pi->pidx = i;
2128 
2129 		pi->eth_dev->device = &adapter->pdev->device;
2130 		pi->eth_dev->dev_ops = adapter->eth_dev->dev_ops;
2131 		pi->eth_dev->tx_pkt_burst = adapter->eth_dev->tx_pkt_burst;
2132 		pi->eth_dev->rx_pkt_burst = adapter->eth_dev->rx_pkt_burst;
2133 
2134 		rte_eth_copy_pci_info(pi->eth_dev, adapter->pdev);
2135 
2136 		pi->eth_dev->data->mac_addrs = rte_zmalloc(name,
2137 							RTE_ETHER_ADDR_LEN, 0);
2138 		if (!pi->eth_dev->data->mac_addrs) {
2139 			dev_err(adapter, "%s: Mem allocation failed for storing mac addr, aborting\n",
2140 				__func__);
2141 			err = -1;
2142 			goto out_free;
2143 		}
2144 
2145 		if (i > 0) {
2146 			/* First port will be notified by upper layer */
2147 			rte_eth_dev_probing_finish(eth_dev);
2148 		}
2149 	}
2150 
2151 	if (adapter->flags & FW_OK) {
2152 		err = t4_port_init(adapter, adapter->mbox, adapter->pf, 0);
2153 		if (err) {
2154 			dev_err(adapter, "%s: t4_port_init failed with err %d\n",
2155 				__func__, err);
2156 			goto out_free;
2157 		}
2158 	}
2159 
2160 	err = cxgbe_cfg_queues(adapter->eth_dev);
2161 	if (err)
2162 		goto out_free;
2163 
2164 	cxgbe_print_adapter_info(adapter);
2165 	cxgbe_print_port_info(adapter);
2166 
2167 	adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
2168 					  adapter->clipt_end);
2169 	if (!adapter->clipt) {
2170 		/* We tolerate a lack of clip_table, giving up some
2171 		 * functionality
2172 		 */
2173 		dev_warn(adapter, "could not allocate CLIP. Continuing\n");
2174 	}
2175 
2176 	adap_smt_index(adapter, &smt_start_idx, &smt_size);
2177 	adapter->smt = t4_init_smt(smt_start_idx, smt_size);
2178 	if (!adapter->smt)
2179 		dev_warn(adapter, "could not allocate SMT, continuing\n");
2180 
2181 	adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
2182 	if (!adapter->l2t) {
2183 		/* We tolerate a lack of L2T, giving up some functionality */
2184 		dev_warn(adapter, "could not allocate L2T. Continuing\n");
2185 	}
2186 
2187 	if (tid_init(&adapter->tids) < 0) {
2188 		/* Disable filtering support */
2189 		dev_warn(adapter, "could not allocate TID table, "
2190 			 "filter support disabled. Continuing\n");
2191 	}
2192 
2193 	t4_os_lock_init(&adapter->flow_lock);
2194 
2195 	adapter->mpstcam = t4_init_mpstcam(adapter);
2196 	if (!adapter->mpstcam)
2197 		dev_warn(adapter, "could not allocate mps tcam table."
2198 			 " Continuing\n");
2199 
2200 	if (is_hashfilter(adapter)) {
2201 		if (t4_read_reg(adapter, A_LE_DB_CONFIG) & F_HASHEN) {
2202 			u32 hash_base, hash_reg;
2203 
2204 			hash_reg = A_LE_DB_TID_HASHBASE;
2205 			hash_base = t4_read_reg(adapter, hash_reg);
2206 			adapter->tids.hash_base = hash_base / 4;
2207 		}
2208 	} else {
2209 		/* Disable hash filtering support */
2210 		dev_warn(adapter,
2211 			 "Maskless filter support disabled. Continuing\n");
2212 	}
2213 
2214 	err = cxgbe_init_rss(adapter);
2215 	if (err)
2216 		goto out_free;
2217 
2218 	return 0;
2219 
2220 out_free:
2221 	cxgbe_cfg_queues_free(adapter);
2222 
2223 	for_each_port(adapter, i) {
2224 		pi = adap2pinfo(adapter, i);
2225 		if (pi->viid != 0)
2226 			t4_free_vi(adapter, adapter->mbox, adapter->pf,
2227 				   0, pi->viid);
2228 		rte_eth_dev_release_port(pi->eth_dev);
2229 	}
2230 
2231 	if (adapter->flags & FW_OK)
2232 		t4_fw_bye(adapter, adapter->mbox);
2233 	return -err;
2234 }
2235