xref: /dpdk/drivers/net/cxgbe/cxgbe_main.c (revision e4373bf1b3f51715bf66e87c0134e2c217e4612c)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2018 Chelsio Communications.
3  * All rights reserved.
4  */
5 
6 #include <sys/queue.h>
7 #include <stdio.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <string.h>
11 #include <unistd.h>
12 #include <stdarg.h>
13 #include <inttypes.h>
14 #include <netinet/in.h>
15 
16 #include <rte_byteorder.h>
17 #include <rte_common.h>
18 #include <rte_cycles.h>
19 #include <rte_interrupts.h>
20 #include <rte_log.h>
21 #include <rte_debug.h>
22 #include <rte_pci.h>
23 #include <rte_atomic.h>
24 #include <rte_branch_prediction.h>
25 #include <rte_memory.h>
26 #include <rte_tailq.h>
27 #include <rte_eal.h>
28 #include <rte_alarm.h>
29 #include <rte_ether.h>
30 #include <rte_ethdev_driver.h>
31 #include <rte_ethdev_pci.h>
32 #include <rte_random.h>
33 #include <rte_dev.h>
34 #include <rte_kvargs.h>
35 
36 #include "base/common.h"
37 #include "base/t4_regs.h"
38 #include "base/t4_msg.h"
39 #include "cxgbe.h"
40 #include "cxgbe_pfvf.h"
41 #include "clip_tbl.h"
42 #include "l2t.h"
43 #include "mps_tcam.h"
44 
45 /**
46  * Allocate a chunk of memory. The allocated memory is cleared.
47  */
48 void *t4_alloc_mem(size_t size)
49 {
50 	return rte_zmalloc(NULL, size, 0);
51 }
52 
53 /**
54  * Free memory allocated through t4_alloc_mem().
55  */
56 void t4_free_mem(void *addr)
57 {
58 	rte_free(addr);
59 }
60 
61 /*
62  * Response queue handler for the FW event queue.
63  */
64 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
65 			  __rte_unused const struct pkt_gl *gl)
66 {
67 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
68 
69 	rsp++;                                          /* skip RSS header */
70 
71 	/*
72 	 * FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
73 	 */
74 	if (unlikely(opcode == CPL_FW4_MSG &&
75 		     ((const struct cpl_fw4_msg *)rsp)->type ==
76 		      FW_TYPE_RSSCPL)) {
77 		rsp++;
78 		opcode = ((const struct rss_header *)rsp)->opcode;
79 		rsp++;
80 		if (opcode != CPL_SGE_EGR_UPDATE) {
81 			dev_err(q->adapter, "unexpected FW4/CPL %#x on FW event queue\n",
82 				opcode);
83 			goto out;
84 		}
85 	}
86 
87 	if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
88 		/* do nothing */
89 	} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
90 		const struct cpl_fw6_msg *msg = (const void *)rsp;
91 
92 		t4_handle_fw_rpl(q->adapter, msg->data);
93 	} else if (opcode == CPL_ABORT_RPL_RSS) {
94 		const struct cpl_abort_rpl_rss *p = (const void *)rsp;
95 
96 		cxgbe_hash_del_filter_rpl(q->adapter, p);
97 	} else if (opcode == CPL_SET_TCB_RPL) {
98 		const struct cpl_set_tcb_rpl *p = (const void *)rsp;
99 
100 		cxgbe_filter_rpl(q->adapter, p);
101 	} else if (opcode == CPL_ACT_OPEN_RPL) {
102 		const struct cpl_act_open_rpl *p = (const void *)rsp;
103 
104 		cxgbe_hash_filter_rpl(q->adapter, p);
105 	} else if (opcode == CPL_L2T_WRITE_RPL) {
106 		const struct cpl_l2t_write_rpl *p = (const void *)rsp;
107 
108 		cxgbe_do_l2t_write_rpl(q->adapter, p);
109 	} else {
110 		dev_err(adapter, "unexpected CPL %#x on FW event queue\n",
111 			opcode);
112 	}
113 out:
114 	return 0;
115 }
116 
117 /**
118  * Setup sge control queues to pass control information.
119  */
120 int cxgbe_setup_sge_ctrl_txq(struct adapter *adapter)
121 {
122 	struct sge *s = &adapter->sge;
123 	int err = 0, i = 0;
124 
125 	for_each_port(adapter, i) {
126 		struct port_info *pi = adap2pinfo(adapter, i);
127 		char name[RTE_ETH_NAME_MAX_LEN];
128 		struct sge_ctrl_txq *q = &s->ctrlq[i];
129 
130 		q->q.size = 1024;
131 		err = t4_sge_alloc_ctrl_txq(adapter, q,
132 					    adapter->eth_dev,  i,
133 					    s->fw_evtq.cntxt_id,
134 					    rte_socket_id());
135 		if (err) {
136 			dev_err(adapter, "Failed to alloc ctrl txq. Err: %d",
137 				err);
138 			goto out;
139 		}
140 		snprintf(name, sizeof(name), "%s_ctrl_pool_%d",
141 			 pi->eth_dev->device->driver->name,
142 			 pi->eth_dev->data->port_id);
143 		q->mb_pool = rte_pktmbuf_pool_create(name, s->ctrlq[i].q.size,
144 						     RTE_CACHE_LINE_SIZE,
145 						     RTE_MBUF_PRIV_ALIGN,
146 						     RTE_MBUF_DEFAULT_BUF_SIZE,
147 						     SOCKET_ID_ANY);
148 		if (!q->mb_pool) {
149 			err = -rte_errno;
150 			dev_err(adapter,
151 				"Can't create ctrl pool for port %d. Err: %d\n",
152 				pi->eth_dev->data->port_id, err);
153 			goto out;
154 		}
155 	}
156 	return 0;
157 out:
158 	t4_free_sge_resources(adapter);
159 	return err;
160 }
161 
162 /**
163  * cxgbe_poll_for_completion: Poll rxq for completion
164  * @q: rxq to poll
165  * @ms: milliseconds to delay
166  * @cnt: number of times to poll
167  * @c: completion to check for 'done' status
168  *
169  * Polls the rxq for reples until completion is done or the count
170  * expires.
171  */
172 int cxgbe_poll_for_completion(struct sge_rspq *q, unsigned int ms,
173 			      unsigned int cnt, struct t4_completion *c)
174 {
175 	unsigned int i;
176 	unsigned int work_done, budget = 32;
177 
178 	if (!c)
179 		return -EINVAL;
180 
181 	for (i = 0; i < cnt; i++) {
182 		cxgbe_poll(q, NULL, budget, &work_done);
183 		t4_os_lock(&c->lock);
184 		if (c->done) {
185 			t4_os_unlock(&c->lock);
186 			return 0;
187 		}
188 		t4_os_unlock(&c->lock);
189 		rte_delay_ms(ms);
190 	}
191 	return -ETIMEDOUT;
192 }
193 
194 int cxgbe_setup_sge_fwevtq(struct adapter *adapter)
195 {
196 	struct sge *s = &adapter->sge;
197 	int err = 0;
198 	int msi_idx = 0;
199 
200 	err = t4_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->eth_dev,
201 			       msi_idx, NULL, fwevtq_handler, -1, NULL, 0,
202 			       rte_socket_id());
203 	return err;
204 }
205 
206 static int closest_timer(const struct sge *s, int time)
207 {
208 	unsigned int i, match = 0;
209 	int delta, min_delta = INT_MAX;
210 
211 	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
212 		delta = time - s->timer_val[i];
213 		if (delta < 0)
214 			delta = -delta;
215 		if (delta < min_delta) {
216 			min_delta = delta;
217 			match = i;
218 		}
219 	}
220 	return match;
221 }
222 
223 static int closest_thres(const struct sge *s, int thres)
224 {
225 	unsigned int i, match = 0;
226 	int delta, min_delta = INT_MAX;
227 
228 	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
229 		delta = thres - s->counter_val[i];
230 		if (delta < 0)
231 			delta = -delta;
232 		if (delta < min_delta) {
233 			min_delta = delta;
234 			match = i;
235 		}
236 	}
237 	return match;
238 }
239 
240 /**
241  * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
242  * @q: the Rx queue
243  * @us: the hold-off time in us, or 0 to disable timer
244  * @cnt: the hold-off packet count, or 0 to disable counter
245  *
246  * Sets an Rx queue's interrupt hold-off time and packet count.  At least
247  * one of the two needs to be enabled for the queue to generate interrupts.
248  */
249 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, unsigned int us,
250 			       unsigned int cnt)
251 {
252 	struct adapter *adap = q->adapter;
253 	unsigned int timer_val;
254 
255 	if (cnt) {
256 		int err;
257 		u32 v, new_idx;
258 
259 		new_idx = closest_thres(&adap->sge, cnt);
260 		if (q->desc && q->pktcnt_idx != new_idx) {
261 			/* the queue has already been created, update it */
262 			v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
263 			    V_FW_PARAMS_PARAM_X(
264 			    FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
265 			    V_FW_PARAMS_PARAM_YZ(q->cntxt_id);
266 			err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
267 					    &v, &new_idx);
268 			if (err)
269 				return err;
270 		}
271 		q->pktcnt_idx = new_idx;
272 	}
273 
274 	timer_val = (us == 0) ? X_TIMERREG_RESTART_COUNTER :
275 				closest_timer(&adap->sge, us);
276 
277 	if ((us | cnt) == 0)
278 		q->intr_params = V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX);
279 	else
280 		q->intr_params = V_QINTR_TIMER_IDX(timer_val) |
281 				 V_QINTR_CNT_EN(cnt > 0);
282 	return 0;
283 }
284 
285 /**
286  * Allocate an active-open TID and set it to the supplied value.
287  */
288 int cxgbe_alloc_atid(struct tid_info *t, void *data)
289 {
290 	int atid = -1;
291 
292 	t4_os_lock(&t->atid_lock);
293 	if (t->afree) {
294 		union aopen_entry *p = t->afree;
295 
296 		atid = p - t->atid_tab;
297 		t->afree = p->next;
298 		p->data = data;
299 		t->atids_in_use++;
300 	}
301 	t4_os_unlock(&t->atid_lock);
302 	return atid;
303 }
304 
305 /**
306  * Release an active-open TID.
307  */
308 void cxgbe_free_atid(struct tid_info *t, unsigned int atid)
309 {
310 	union aopen_entry *p = &t->atid_tab[atid];
311 
312 	t4_os_lock(&t->atid_lock);
313 	p->next = t->afree;
314 	t->afree = p;
315 	t->atids_in_use--;
316 	t4_os_unlock(&t->atid_lock);
317 }
318 
319 /**
320  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
321  */
322 static void mk_tid_release(struct rte_mbuf *mbuf, unsigned int tid)
323 {
324 	struct cpl_tid_release *req;
325 
326 	req = rte_pktmbuf_mtod(mbuf, struct cpl_tid_release *);
327 	INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid);
328 }
329 
330 /**
331  * Release a TID and inform HW.  If we are unable to allocate the release
332  * message we defer to a work queue.
333  */
334 void cxgbe_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
335 		      unsigned short family)
336 {
337 	struct rte_mbuf *mbuf;
338 	struct adapter *adap = container_of(t, struct adapter, tids);
339 
340 	WARN_ON(tid >= t->ntids);
341 
342 	if (t->tid_tab[tid]) {
343 		t->tid_tab[tid] = NULL;
344 		rte_atomic32_dec(&t->conns_in_use);
345 		if (t->hash_base && tid >= t->hash_base) {
346 			if (family == FILTER_TYPE_IPV4)
347 				rte_atomic32_dec(&t->hash_tids_in_use);
348 		} else {
349 			if (family == FILTER_TYPE_IPV4)
350 				rte_atomic32_dec(&t->tids_in_use);
351 		}
352 	}
353 
354 	mbuf = rte_pktmbuf_alloc((&adap->sge.ctrlq[chan])->mb_pool);
355 	if (mbuf) {
356 		mbuf->data_len = sizeof(struct cpl_tid_release);
357 		mbuf->pkt_len = mbuf->data_len;
358 		mk_tid_release(mbuf, tid);
359 		t4_mgmt_tx(&adap->sge.ctrlq[chan], mbuf);
360 	}
361 }
362 
363 /**
364  * Insert a TID.
365  */
366 void cxgbe_insert_tid(struct tid_info *t, void *data, unsigned int tid,
367 		      unsigned short family)
368 {
369 	t->tid_tab[tid] = data;
370 	if (t->hash_base && tid >= t->hash_base) {
371 		if (family == FILTER_TYPE_IPV4)
372 			rte_atomic32_inc(&t->hash_tids_in_use);
373 	} else {
374 		if (family == FILTER_TYPE_IPV4)
375 			rte_atomic32_inc(&t->tids_in_use);
376 	}
377 
378 	rte_atomic32_inc(&t->conns_in_use);
379 }
380 
381 /**
382  * Free TID tables.
383  */
384 static void tid_free(struct tid_info *t)
385 {
386 	if (t->tid_tab) {
387 		if (t->ftid_bmap)
388 			rte_bitmap_free(t->ftid_bmap);
389 
390 		if (t->ftid_bmap_array)
391 			t4_os_free(t->ftid_bmap_array);
392 
393 		t4_os_free(t->tid_tab);
394 	}
395 
396 	memset(t, 0, sizeof(struct tid_info));
397 }
398 
399 /**
400  * Allocate and initialize the TID tables.  Returns 0 on success.
401  */
402 static int tid_init(struct tid_info *t)
403 {
404 	size_t size;
405 	unsigned int ftid_bmap_size;
406 	unsigned int natids = t->natids;
407 	unsigned int max_ftids = t->nftids;
408 
409 	ftid_bmap_size = rte_bitmap_get_memory_footprint(t->nftids);
410 	size = t->ntids * sizeof(*t->tid_tab) +
411 		max_ftids * sizeof(*t->ftid_tab) +
412 		natids * sizeof(*t->atid_tab);
413 
414 	t->tid_tab = t4_os_alloc(size);
415 	if (!t->tid_tab)
416 		return -ENOMEM;
417 
418 	t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
419 	t->ftid_tab = (struct filter_entry *)&t->atid_tab[t->natids];
420 	t->ftid_bmap_array = t4_os_alloc(ftid_bmap_size);
421 	if (!t->ftid_bmap_array) {
422 		tid_free(t);
423 		return -ENOMEM;
424 	}
425 
426 	t4_os_lock_init(&t->atid_lock);
427 	t4_os_lock_init(&t->ftid_lock);
428 
429 	t->afree = NULL;
430 	t->atids_in_use = 0;
431 	rte_atomic32_init(&t->tids_in_use);
432 	rte_atomic32_set(&t->tids_in_use, 0);
433 	rte_atomic32_init(&t->conns_in_use);
434 	rte_atomic32_set(&t->conns_in_use, 0);
435 
436 	/* Setup the free list for atid_tab and clear the stid bitmap. */
437 	if (natids) {
438 		while (--natids)
439 			t->atid_tab[natids - 1].next = &t->atid_tab[natids];
440 		t->afree = t->atid_tab;
441 	}
442 
443 	t->ftid_bmap = rte_bitmap_init(t->nftids, t->ftid_bmap_array,
444 				       ftid_bmap_size);
445 	if (!t->ftid_bmap) {
446 		tid_free(t);
447 		return -ENOMEM;
448 	}
449 
450 	return 0;
451 }
452 
453 static inline bool is_x_1g_port(const struct link_config *lc)
454 {
455 	return (lc->pcaps & FW_PORT_CAP32_SPEED_1G) != 0;
456 }
457 
458 static inline bool is_x_10g_port(const struct link_config *lc)
459 {
460 	unsigned int speeds, high_speeds;
461 
462 	speeds = V_FW_PORT_CAP32_SPEED(G_FW_PORT_CAP32_SPEED(lc->pcaps));
463 	high_speeds = speeds &
464 		      ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
465 
466 	return high_speeds != 0;
467 }
468 
469 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
470 		      unsigned int us, unsigned int cnt,
471 		      unsigned int size, unsigned int iqe_size)
472 {
473 	q->adapter = adap;
474 	cxgb4_set_rspq_intr_params(q, us, cnt);
475 	q->iqe_len = iqe_size;
476 	q->size = size;
477 }
478 
479 int cxgbe_cfg_queue_count(struct rte_eth_dev *eth_dev)
480 {
481 	struct port_info *pi = eth_dev->data->dev_private;
482 	struct adapter *adap = pi->adapter;
483 	struct sge *s = &adap->sge;
484 	unsigned int max_queues = s->max_ethqsets / adap->params.nports;
485 
486 	if ((eth_dev->data->nb_rx_queues < 1) ||
487 	    (eth_dev->data->nb_tx_queues < 1))
488 		return -EINVAL;
489 
490 	if ((eth_dev->data->nb_rx_queues > max_queues) ||
491 	    (eth_dev->data->nb_tx_queues > max_queues))
492 		return -EINVAL;
493 
494 	if (eth_dev->data->nb_rx_queues > pi->rss_size)
495 		return -EINVAL;
496 
497 	/* We must configure RSS, since config has changed*/
498 	pi->flags &= ~PORT_RSS_DONE;
499 
500 	pi->n_rx_qsets = eth_dev->data->nb_rx_queues;
501 	pi->n_tx_qsets = eth_dev->data->nb_tx_queues;
502 
503 	return 0;
504 }
505 
506 void cxgbe_cfg_queues(struct rte_eth_dev *eth_dev)
507 {
508 	struct port_info *pi = eth_dev->data->dev_private;
509 	struct adapter *adap = pi->adapter;
510 	struct sge *s = &adap->sge;
511 	unsigned int i, nb_ports = 0, qidx = 0;
512 	unsigned int q_per_port = 0;
513 
514 	if (!(adap->flags & CFG_QUEUES)) {
515 		for_each_port(adap, i) {
516 			struct port_info *tpi = adap2pinfo(adap, i);
517 
518 			nb_ports += (is_x_10g_port(&tpi->link_cfg)) ||
519 				     is_x_1g_port(&tpi->link_cfg) ? 1 : 0;
520 		}
521 
522 		/*
523 		 * We default up to # of cores queues per 1G/10G port.
524 		 */
525 		if (nb_ports)
526 			q_per_port = (s->max_ethqsets -
527 				     (adap->params.nports - nb_ports)) /
528 				     nb_ports;
529 
530 		if (q_per_port > rte_lcore_count())
531 			q_per_port = rte_lcore_count();
532 
533 		for_each_port(adap, i) {
534 			struct port_info *pi = adap2pinfo(adap, i);
535 
536 			pi->first_qset = qidx;
537 
538 			/* Initially n_rx_qsets == n_tx_qsets */
539 			pi->n_rx_qsets = (is_x_10g_port(&pi->link_cfg) ||
540 					  is_x_1g_port(&pi->link_cfg)) ?
541 					  q_per_port : 1;
542 			pi->n_tx_qsets = pi->n_rx_qsets;
543 
544 			if (pi->n_rx_qsets > pi->rss_size)
545 				pi->n_rx_qsets = pi->rss_size;
546 
547 			qidx += pi->n_rx_qsets;
548 		}
549 
550 		for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
551 			struct sge_eth_rxq *r = &s->ethrxq[i];
552 
553 			init_rspq(adap, &r->rspq, 5, 32, 1024, 64);
554 			r->usembufs = 1;
555 			r->fl.size = (r->usembufs ? 1024 : 72);
556 		}
557 
558 		for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
559 			s->ethtxq[i].q.size = 1024;
560 
561 		init_rspq(adap, &adap->sge.fw_evtq, 0, 0, 1024, 64);
562 		adap->flags |= CFG_QUEUES;
563 	}
564 }
565 
566 void cxgbe_stats_get(struct port_info *pi, struct port_stats *stats)
567 {
568 	t4_get_port_stats_offset(pi->adapter, pi->tx_chan, stats,
569 				 &pi->stats_base);
570 }
571 
572 void cxgbe_stats_reset(struct port_info *pi)
573 {
574 	t4_clr_port_stats(pi->adapter, pi->tx_chan);
575 }
576 
577 static void setup_memwin(struct adapter *adap)
578 {
579 	u32 mem_win0_base;
580 
581 	/* For T5, only relative offset inside the PCIe BAR is passed */
582 	mem_win0_base = MEMWIN0_BASE;
583 
584 	/*
585 	 * Set up memory window for accessing adapter memory ranges.  (Read
586 	 * back MA register to ensure that changes propagate before we attempt
587 	 * to use the new values.)
588 	 */
589 	t4_write_reg(adap,
590 		     PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
591 					 MEMWIN_NIC),
592 		     mem_win0_base | V_BIR(0) |
593 		     V_WINDOW(ilog2(MEMWIN0_APERTURE) - X_WINDOW_SHIFT));
594 	t4_read_reg(adap,
595 		    PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
596 					MEMWIN_NIC));
597 }
598 
599 int cxgbe_init_rss(struct adapter *adap)
600 {
601 	unsigned int i;
602 
603 	if (is_pf4(adap)) {
604 		int err;
605 
606 		err = t4_init_rss_mode(adap, adap->mbox);
607 		if (err)
608 			return err;
609 	}
610 
611 	for_each_port(adap, i) {
612 		struct port_info *pi = adap2pinfo(adap, i);
613 
614 		pi->rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0);
615 		if (!pi->rss)
616 			return -ENOMEM;
617 
618 		pi->rss_hf = CXGBE_RSS_HF_ALL;
619 	}
620 	return 0;
621 }
622 
623 /**
624  * Dump basic information about the adapter.
625  */
626 void cxgbe_print_adapter_info(struct adapter *adap)
627 {
628 	/**
629 	 * Hardware/Firmware/etc. Version/Revision IDs.
630 	 */
631 	t4_dump_version_info(adap);
632 }
633 
634 void cxgbe_print_port_info(struct adapter *adap)
635 {
636 	int i;
637 	char buf[80];
638 	struct rte_pci_addr *loc = &adap->pdev->addr;
639 
640 	for_each_port(adap, i) {
641 		const struct port_info *pi = adap2pinfo(adap, i);
642 		char *bufp = buf;
643 
644 		if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
645 			bufp += sprintf(bufp, "100M/");
646 		if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
647 			bufp += sprintf(bufp, "1G/");
648 		if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
649 			bufp += sprintf(bufp, "10G/");
650 		if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
651 			bufp += sprintf(bufp, "25G/");
652 		if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
653 			bufp += sprintf(bufp, "40G/");
654 		if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
655 			bufp += sprintf(bufp, "50G/");
656 		if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
657 			bufp += sprintf(bufp, "100G/");
658 		if (bufp != buf)
659 			--bufp;
660 		sprintf(bufp, "BASE-%s",
661 			t4_get_port_type_description(
662 					(enum fw_port_type)pi->port_type));
663 
664 		dev_info(adap,
665 			 " " PCI_PRI_FMT " Chelsio rev %d %s %s\n",
666 			 loc->domain, loc->bus, loc->devid, loc->function,
667 			 CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
668 			 (adap->flags & USING_MSIX) ? " MSI-X" :
669 			 (adap->flags & USING_MSI) ? " MSI" : "");
670 	}
671 }
672 
673 static int check_devargs_handler(const char *key, const char *value, void *p)
674 {
675 	if (!strncmp(key, CXGBE_DEVARG_CMN_KEEP_OVLAN, strlen(key)) ||
676 	    !strncmp(key, CXGBE_DEVARG_CMN_TX_MODE_LATENCY, strlen(key)) ||
677 	    !strncmp(key, CXGBE_DEVARG_VF_FORCE_LINK_UP, strlen(key))) {
678 		if (!strncmp(value, "1", 1)) {
679 			bool *dst_val = (bool *)p;
680 
681 			*dst_val = true;
682 		}
683 	}
684 
685 	return 0;
686 }
687 
688 static int cxgbe_get_devargs(struct rte_devargs *devargs, const char *key,
689 			     void *p)
690 {
691 	struct rte_kvargs *kvlist;
692 	int ret = 0;
693 
694 	if (!devargs)
695 		return 0;
696 
697 	kvlist = rte_kvargs_parse(devargs->args, NULL);
698 	if (!kvlist)
699 		return 0;
700 
701 	if (!rte_kvargs_count(kvlist, key))
702 		goto out;
703 
704 	ret = rte_kvargs_process(kvlist, key, check_devargs_handler, p);
705 
706 out:
707 	rte_kvargs_free(kvlist);
708 
709 	return ret;
710 }
711 
712 static void cxgbe_get_devargs_int(struct adapter *adap, bool *dst,
713 				  const char *key, bool default_value)
714 {
715 	struct rte_pci_device *pdev = adap->pdev;
716 	int ret;
717 	bool devarg_value = default_value;
718 
719 	*dst = default_value;
720 	if (!pdev)
721 		return;
722 
723 	ret = cxgbe_get_devargs(pdev->device.devargs, key, &devarg_value);
724 	if (ret)
725 		return;
726 
727 	*dst = devarg_value;
728 }
729 
730 void cxgbe_process_devargs(struct adapter *adap)
731 {
732 	cxgbe_get_devargs_int(adap, &adap->devargs.keep_ovlan,
733 			      CXGBE_DEVARG_CMN_KEEP_OVLAN, false);
734 	cxgbe_get_devargs_int(adap, &adap->devargs.tx_mode_latency,
735 			      CXGBE_DEVARG_CMN_TX_MODE_LATENCY, false);
736 	cxgbe_get_devargs_int(adap, &adap->devargs.force_link_up,
737 			      CXGBE_DEVARG_VF_FORCE_LINK_UP, false);
738 }
739 
740 static void configure_vlan_types(struct adapter *adapter)
741 {
742 	int i;
743 
744 	for_each_port(adapter, i) {
745 		/* OVLAN Type 0x88a8 */
746 		t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN0),
747 				 V_OVLAN_MASK(M_OVLAN_MASK) |
748 				 V_OVLAN_ETYPE(M_OVLAN_ETYPE),
749 				 V_OVLAN_MASK(M_OVLAN_MASK) |
750 				 V_OVLAN_ETYPE(0x88a8));
751 		/* OVLAN Type 0x9100 */
752 		t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN1),
753 				 V_OVLAN_MASK(M_OVLAN_MASK) |
754 				 V_OVLAN_ETYPE(M_OVLAN_ETYPE),
755 				 V_OVLAN_MASK(M_OVLAN_MASK) |
756 				 V_OVLAN_ETYPE(0x9100));
757 
758 		/* IVLAN 0X8100 */
759 		t4_set_reg_field(adapter, MPS_PORT_RX_IVLAN(i),
760 				 V_IVLAN_ETYPE(M_IVLAN_ETYPE),
761 				 V_IVLAN_ETYPE(0x8100));
762 
763 		t4_set_reg_field(adapter, MPS_PORT_RX_CTL(i),
764 				 F_OVLAN_EN0 | F_OVLAN_EN1 |
765 				 F_IVLAN_EN,
766 				 F_OVLAN_EN0 | F_OVLAN_EN1 |
767 				 F_IVLAN_EN);
768 	}
769 
770 	t4_tp_wr_bits_indirect(adapter, A_TP_INGRESS_CONFIG, V_RM_OVLAN(1),
771 			       V_RM_OVLAN(!adapter->devargs.keep_ovlan));
772 }
773 
774 static void configure_pcie_ext_tag(struct adapter *adapter)
775 {
776 	u16 v;
777 	int pos = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
778 
779 	if (!pos)
780 		return;
781 
782 	if (pos > 0) {
783 		t4_os_pci_read_cfg2(adapter, pos + PCI_EXP_DEVCTL, &v);
784 		v |= PCI_EXP_DEVCTL_EXT_TAG;
785 		t4_os_pci_write_cfg2(adapter, pos + PCI_EXP_DEVCTL, v);
786 		if (is_t6(adapter->params.chip)) {
787 			t4_set_reg_field(adapter, A_PCIE_CFG2,
788 					 V_T6_TOTMAXTAG(M_T6_TOTMAXTAG),
789 					 V_T6_TOTMAXTAG(7));
790 			t4_set_reg_field(adapter, A_PCIE_CMD_CFG,
791 					 V_T6_MINTAG(M_T6_MINTAG),
792 					 V_T6_MINTAG(8));
793 		} else {
794 			t4_set_reg_field(adapter, A_PCIE_CFG2,
795 					 V_TOTMAXTAG(M_TOTMAXTAG),
796 					 V_TOTMAXTAG(3));
797 			t4_set_reg_field(adapter, A_PCIE_CMD_CFG,
798 					 V_MINTAG(M_MINTAG),
799 					 V_MINTAG(8));
800 		}
801 	}
802 }
803 
804 /* Figure out how many Queue Sets we can support */
805 void cxgbe_configure_max_ethqsets(struct adapter *adapter)
806 {
807 	unsigned int ethqsets;
808 
809 	/*
810 	 * We need to reserve an Ingress Queue for the Asynchronous Firmware
811 	 * Event Queue.
812 	 *
813 	 * For each Queue Set, we'll need the ability to allocate two Egress
814 	 * Contexts -- one for the Ingress Queue Free List and one for the TX
815 	 * Ethernet Queue.
816 	 */
817 	if (is_pf4(adapter)) {
818 		struct pf_resources *pfres = &adapter->params.pfres;
819 
820 		ethqsets = pfres->niqflint - 1;
821 		if (pfres->neq < ethqsets * 2)
822 			ethqsets = pfres->neq / 2;
823 	} else {
824 		struct vf_resources *vfres = &adapter->params.vfres;
825 
826 		ethqsets = vfres->niqflint - 1;
827 		if (vfres->nethctrl != ethqsets)
828 			ethqsets = min(vfres->nethctrl, ethqsets);
829 		if (vfres->neq < ethqsets * 2)
830 			ethqsets = vfres->neq / 2;
831 	}
832 
833 	if (ethqsets > MAX_ETH_QSETS)
834 		ethqsets = MAX_ETH_QSETS;
835 	adapter->sge.max_ethqsets = ethqsets;
836 }
837 
838 /*
839  * Tweak configuration based on system architecture, etc.  Most of these have
840  * defaults assigned to them by Firmware Configuration Files (if we're using
841  * them) but need to be explicitly set if we're using hard-coded
842  * initialization. So these are essentially common tweaks/settings for
843  * Configuration Files and hard-coded initialization ...
844  */
845 static int adap_init0_tweaks(struct adapter *adapter)
846 {
847 	u8 rx_dma_offset;
848 
849 	/*
850 	 * Fix up various Host-Dependent Parameters like Page Size, Cache
851 	 * Line Size, etc.  The firmware default is for a 4KB Page Size and
852 	 * 64B Cache Line Size ...
853 	 */
854 	t4_fixup_host_params_compat(adapter, CXGBE_PAGE_SIZE, L1_CACHE_BYTES,
855 				    T5_LAST_REV);
856 
857 	/*
858 	 * Keep the chip default offset to deliver Ingress packets into our
859 	 * DMA buffers to zero
860 	 */
861 	rx_dma_offset = 0;
862 	t4_set_reg_field(adapter, A_SGE_CONTROL, V_PKTSHIFT(M_PKTSHIFT),
863 			 V_PKTSHIFT(rx_dma_offset));
864 
865 	t4_set_reg_field(adapter, A_SGE_FLM_CFG,
866 			 V_CREDITCNT(M_CREDITCNT) | M_CREDITCNTPACKING,
867 			 V_CREDITCNT(3) | V_CREDITCNTPACKING(1));
868 
869 	t4_set_reg_field(adapter, A_SGE_INGRESS_RX_THRESHOLD,
870 			 V_THRESHOLD_3(M_THRESHOLD_3), V_THRESHOLD_3(32U));
871 
872 	t4_set_reg_field(adapter, A_SGE_CONTROL2, V_IDMAARBROUNDROBIN(1U),
873 			 V_IDMAARBROUNDROBIN(1U));
874 
875 	/*
876 	 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
877 	 * adds the pseudo header itself.
878 	 */
879 	t4_tp_wr_bits_indirect(adapter, A_TP_INGRESS_CONFIG,
880 			       F_CSUM_HAS_PSEUDO_HDR, 0);
881 
882 	return 0;
883 }
884 
885 /*
886  * Attempt to initialize the adapter via a Firmware Configuration File.
887  */
888 static int adap_init0_config(struct adapter *adapter, int reset)
889 {
890 	struct fw_caps_config_cmd caps_cmd;
891 	unsigned long mtype = 0, maddr = 0;
892 	u32 finiver, finicsum, cfcsum;
893 	int ret;
894 	int config_issued = 0;
895 	int cfg_addr;
896 	char config_name[20];
897 
898 	/*
899 	 * Reset device if necessary.
900 	 */
901 	if (reset) {
902 		ret = t4_fw_reset(adapter, adapter->mbox,
903 				  F_PIORSTMODE | F_PIORST);
904 		if (ret < 0) {
905 			dev_warn(adapter, "Firmware reset failed, error %d\n",
906 				 -ret);
907 			goto bye;
908 		}
909 	}
910 
911 	cfg_addr = t4_flash_cfg_addr(adapter);
912 	if (cfg_addr < 0) {
913 		ret = cfg_addr;
914 		dev_warn(adapter, "Finding address for firmware config file in flash failed, error %d\n",
915 			 -ret);
916 		goto bye;
917 	}
918 
919 	strcpy(config_name, "On Flash");
920 	mtype = FW_MEMTYPE_CF_FLASH;
921 	maddr = cfg_addr;
922 
923 	/*
924 	 * Issue a Capability Configuration command to the firmware to get it
925 	 * to parse the Configuration File.  We don't use t4_fw_config_file()
926 	 * because we want the ability to modify various features after we've
927 	 * processed the configuration file ...
928 	 */
929 	memset(&caps_cmd, 0, sizeof(caps_cmd));
930 	caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
931 					   F_FW_CMD_REQUEST | F_FW_CMD_READ);
932 	caps_cmd.cfvalid_to_len16 =
933 		cpu_to_be32(F_FW_CAPS_CONFIG_CMD_CFVALID |
934 			    V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
935 			    V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
936 			    FW_LEN16(caps_cmd));
937 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
938 			 &caps_cmd);
939 	/*
940 	 * If the CAPS_CONFIG failed with an ENOENT (for a Firmware
941 	 * Configuration File in FLASH), our last gasp effort is to use the
942 	 * Firmware Configuration File which is embedded in the firmware.  A
943 	 * very few early versions of the firmware didn't have one embedded
944 	 * but we can ignore those.
945 	 */
946 	if (ret == -ENOENT) {
947 		dev_info(adapter, "%s: Going for embedded config in firmware..\n",
948 			 __func__);
949 
950 		memset(&caps_cmd, 0, sizeof(caps_cmd));
951 		caps_cmd.op_to_write =
952 			cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
953 				    F_FW_CMD_REQUEST | F_FW_CMD_READ);
954 		caps_cmd.cfvalid_to_len16 = cpu_to_be32(FW_LEN16(caps_cmd));
955 		ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
956 				 sizeof(caps_cmd), &caps_cmd);
957 		strcpy(config_name, "Firmware Default");
958 	}
959 
960 	config_issued = 1;
961 	if (ret < 0)
962 		goto bye;
963 
964 	finiver = be32_to_cpu(caps_cmd.finiver);
965 	finicsum = be32_to_cpu(caps_cmd.finicsum);
966 	cfcsum = be32_to_cpu(caps_cmd.cfcsum);
967 	if (finicsum != cfcsum)
968 		dev_warn(adapter, "Configuration File checksum mismatch: [fini] csum=%#x, computed csum=%#x\n",
969 			 finicsum, cfcsum);
970 
971 	/*
972 	 * If we're a pure NIC driver then disable all offloading facilities.
973 	 * This will allow the firmware to optimize aspects of the hardware
974 	 * configuration which will result in improved performance.
975 	 */
976 	caps_cmd.niccaps &= cpu_to_be16(~FW_CAPS_CONFIG_NIC_ETHOFLD);
977 	caps_cmd.toecaps = 0;
978 	caps_cmd.iscsicaps = 0;
979 	caps_cmd.rdmacaps = 0;
980 	caps_cmd.fcoecaps = 0;
981 
982 	/*
983 	 * And now tell the firmware to use the configuration we just loaded.
984 	 */
985 	caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
986 					   F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
987 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
988 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
989 			 NULL);
990 	if (ret < 0) {
991 		dev_warn(adapter, "Unable to finalize Firmware Capabilities %d\n",
992 			 -ret);
993 		goto bye;
994 	}
995 
996 	/*
997 	 * Tweak configuration based on system architecture, etc.
998 	 */
999 	ret = adap_init0_tweaks(adapter);
1000 	if (ret < 0) {
1001 		dev_warn(adapter, "Unable to do init0-tweaks %d\n", -ret);
1002 		goto bye;
1003 	}
1004 
1005 	/*
1006 	 * And finally tell the firmware to initialize itself using the
1007 	 * parameters from the Configuration File.
1008 	 */
1009 	ret = t4_fw_initialize(adapter, adapter->mbox);
1010 	if (ret < 0) {
1011 		dev_warn(adapter, "Initializing Firmware failed, error %d\n",
1012 			 -ret);
1013 		goto bye;
1014 	}
1015 
1016 	/*
1017 	 * Return successfully and note that we're operating with parameters
1018 	 * not supplied by the driver, rather than from hard-wired
1019 	 * initialization constants buried in the driver.
1020 	 */
1021 	dev_info(adapter,
1022 		 "Successfully configured using Firmware Configuration File \"%s\", version %#x, computed checksum %#x\n",
1023 		 config_name, finiver, cfcsum);
1024 
1025 	return 0;
1026 
1027 	/*
1028 	 * Something bad happened.  Return the error ...  (If the "error"
1029 	 * is that there's no Configuration File on the adapter we don't
1030 	 * want to issue a warning since this is fairly common.)
1031 	 */
1032 bye:
1033 	if (config_issued && ret != -ENOENT)
1034 		dev_warn(adapter, "\"%s\" configuration file error %d\n",
1035 			 config_name, -ret);
1036 
1037 	dev_debug(adapter, "%s: returning ret = %d ..\n", __func__, ret);
1038 	return ret;
1039 }
1040 
1041 static int adap_init0(struct adapter *adap)
1042 {
1043 	struct fw_caps_config_cmd caps_cmd;
1044 	int ret = 0;
1045 	u32 v, port_vec;
1046 	enum dev_state state;
1047 	u32 params[7], val[7];
1048 	int reset = 1;
1049 	int mbox = adap->mbox;
1050 
1051 	/*
1052 	 * Contact FW, advertising Master capability.
1053 	 */
1054 	ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
1055 	if (ret < 0) {
1056 		dev_err(adap, "%s: could not connect to FW, error %d\n",
1057 			__func__, -ret);
1058 		goto bye;
1059 	}
1060 
1061 	CXGBE_DEBUG_MBOX(adap, "%s: adap->mbox = %d; ret = %d\n", __func__,
1062 			 adap->mbox, ret);
1063 
1064 	if (ret == mbox)
1065 		adap->flags |= MASTER_PF;
1066 
1067 	if (state == DEV_STATE_INIT) {
1068 		/*
1069 		 * Force halt and reset FW because a previous instance may have
1070 		 * exited abnormally without properly shutting down
1071 		 */
1072 		ret = t4_fw_halt(adap, adap->mbox, reset);
1073 		if (ret < 0) {
1074 			dev_err(adap, "Failed to halt. Exit.\n");
1075 			goto bye;
1076 		}
1077 
1078 		ret = t4_fw_restart(adap, adap->mbox, reset);
1079 		if (ret < 0) {
1080 			dev_err(adap, "Failed to restart. Exit.\n");
1081 			goto bye;
1082 		}
1083 		state = (enum dev_state)((unsigned)state & ~DEV_STATE_INIT);
1084 	}
1085 
1086 	t4_get_version_info(adap);
1087 
1088 	ret = t4_get_core_clock(adap, &adap->params.vpd);
1089 	if (ret < 0) {
1090 		dev_err(adap, "%s: could not get core clock, error %d\n",
1091 			__func__, -ret);
1092 		goto bye;
1093 	}
1094 
1095 	/*
1096 	 * If the firmware is initialized already (and we're not forcing a
1097 	 * master initialization), note that we're living with existing
1098 	 * adapter parameters.  Otherwise, it's time to try initializing the
1099 	 * adapter ...
1100 	 */
1101 	if (state == DEV_STATE_INIT) {
1102 		dev_info(adap, "Coming up as %s: Adapter already initialized\n",
1103 			 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
1104 	} else {
1105 		dev_info(adap, "Coming up as MASTER: Initializing adapter\n");
1106 
1107 		ret = adap_init0_config(adap, reset);
1108 		if (ret == -ENOENT) {
1109 			dev_err(adap,
1110 				"No Configuration File present on adapter. Using hard-wired configuration parameters.\n");
1111 			goto bye;
1112 		}
1113 	}
1114 	if (ret < 0) {
1115 		dev_err(adap, "could not initialize adapter, error %d\n", -ret);
1116 		goto bye;
1117 	}
1118 
1119 	/* Now that we've successfully configured and initialized the adapter
1120 	 * (or found it already initialized), we can ask the Firmware what
1121 	 * resources it has provisioned for us.
1122 	 */
1123 	ret = t4_get_pfres(adap);
1124 	if (ret) {
1125 		dev_err(adap->pdev_dev,
1126 			"Unable to retrieve resource provisioning info\n");
1127 		goto bye;
1128 	}
1129 
1130 	/* Find out what ports are available to us. */
1131 	v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
1132 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC);
1133 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
1134 	if (ret < 0) {
1135 		dev_err(adap, "%s: failure in t4_query_params; error = %d\n",
1136 			__func__, ret);
1137 		goto bye;
1138 	}
1139 
1140 	adap->params.nports = hweight32(port_vec);
1141 	adap->params.portvec = port_vec;
1142 
1143 	dev_debug(adap, "%s: adap->params.nports = %u\n", __func__,
1144 		  adap->params.nports);
1145 
1146 	/*
1147 	 * Give the SGE code a chance to pull in anything that it needs ...
1148 	 * Note that this must be called after we retrieve our VPD parameters
1149 	 * in order to know how to convert core ticks to seconds, etc.
1150 	 */
1151 	ret = t4_sge_init(adap);
1152 	if (ret < 0) {
1153 		dev_err(adap, "t4_sge_init failed with error %d\n",
1154 			-ret);
1155 		goto bye;
1156 	}
1157 
1158 	/*
1159 	 * Grab some of our basic fundamental operating parameters.
1160 	 */
1161 	params[0] = CXGBE_FW_PARAM_PFVF(L2T_START);
1162 	params[1] = CXGBE_FW_PARAM_PFVF(L2T_END);
1163 	params[2] = CXGBE_FW_PARAM_PFVF(FILTER_START);
1164 	params[3] = CXGBE_FW_PARAM_PFVF(FILTER_END);
1165 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4, params, val);
1166 	if (ret < 0)
1167 		goto bye;
1168 	adap->l2t_start = val[0];
1169 	adap->l2t_end = val[1];
1170 	adap->tids.ftid_base = val[2];
1171 	adap->tids.nftids = val[3] - val[2] + 1;
1172 
1173 	params[0] = CXGBE_FW_PARAM_PFVF(CLIP_START);
1174 	params[1] = CXGBE_FW_PARAM_PFVF(CLIP_END);
1175 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
1176 	if (ret < 0)
1177 		goto bye;
1178 	adap->clipt_start = val[0];
1179 	adap->clipt_end = val[1];
1180 
1181 	/*
1182 	 * Get device capabilities so we can determine what resources we need
1183 	 * to manage.
1184 	 */
1185 	memset(&caps_cmd, 0, sizeof(caps_cmd));
1186 	caps_cmd.op_to_write = htonl(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1187 				     F_FW_CMD_REQUEST | F_FW_CMD_READ);
1188 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
1189 	ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
1190 			 &caps_cmd);
1191 	if (ret < 0)
1192 		goto bye;
1193 
1194 	if ((caps_cmd.niccaps & cpu_to_be16(FW_CAPS_CONFIG_NIC_HASHFILTER)) &&
1195 	    is_t6(adap->params.chip)) {
1196 		if (cxgbe_init_hash_filter(adap) < 0)
1197 			goto bye;
1198 	}
1199 
1200 	/* See if FW supports FW_FILTER2 work request */
1201 	if (is_t4(adap->params.chip)) {
1202 		adap->params.filter2_wr_support = 0;
1203 	} else {
1204 		params[0] = CXGBE_FW_PARAM_DEV(FILTER2_WR);
1205 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1206 				      1, params, val);
1207 		adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
1208 	}
1209 
1210 	/* query tid-related parameters */
1211 	params[0] = CXGBE_FW_PARAM_DEV(NTID);
1212 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
1213 			      params, val);
1214 	if (ret < 0)
1215 		goto bye;
1216 	adap->tids.ntids = val[0];
1217 	adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
1218 
1219 	/* If we're running on newer firmware, let it know that we're
1220 	 * prepared to deal with encapsulated CPL messages.  Older
1221 	 * firmware won't understand this and we'll just get
1222 	 * unencapsulated messages ...
1223 	 */
1224 	params[0] = CXGBE_FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
1225 	val[0] = 1;
1226 	(void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
1227 
1228 	/*
1229 	 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
1230 	 * capability.  Earlier versions of the firmware didn't have the
1231 	 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
1232 	 * permission to use ULPTX MEMWRITE DSGL.
1233 	 */
1234 	if (is_t4(adap->params.chip)) {
1235 		adap->params.ulptx_memwrite_dsgl = false;
1236 	} else {
1237 		params[0] = CXGBE_FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
1238 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1239 				      1, params, val);
1240 		adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
1241 	}
1242 
1243 	/* Query for max number of packets that can be coalesced for Tx */
1244 	params[0] = CXGBE_FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR);
1245 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
1246 	if (!ret && val[0] > 0)
1247 		adap->params.max_tx_coalesce_num = val[0];
1248 	else
1249 		adap->params.max_tx_coalesce_num = ETH_COALESCE_PKT_NUM;
1250 
1251 	/*
1252 	 * The MTU/MSS Table is initialized by now, so load their values.  If
1253 	 * we're initializing the adapter, then we'll make any modifications
1254 	 * we want to the MTU/MSS Table and also initialize the congestion
1255 	 * parameters.
1256 	 */
1257 	t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
1258 	if (state != DEV_STATE_INIT) {
1259 		int i;
1260 
1261 		/*
1262 		 * The default MTU Table contains values 1492 and 1500.
1263 		 * However, for TCP, it's better to have two values which are
1264 		 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
1265 		 * This allows us to have a TCP Data Payload which is a
1266 		 * multiple of 8 regardless of what combination of TCP Options
1267 		 * are in use (always a multiple of 4 bytes) which is
1268 		 * important for performance reasons.  For instance, if no
1269 		 * options are in use, then we have a 20-byte IP header and a
1270 		 * 20-byte TCP header.  In this case, a 1500-byte MSS would
1271 		 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
1272 		 * which is not a multiple of 8.  So using an MSS of 1488 in
1273 		 * this case results in a TCP Data Payload of 1448 bytes which
1274 		 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
1275 		 * Stamps have been negotiated, then an MTU of 1500 bytes
1276 		 * results in a TCP Data Payload of 1448 bytes which, as
1277 		 * above, is a multiple of 8 bytes ...
1278 		 */
1279 		for (i = 0; i < NMTUS; i++)
1280 			if (adap->params.mtus[i] == 1492) {
1281 				adap->params.mtus[i] = 1488;
1282 				break;
1283 			}
1284 
1285 		t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
1286 			     adap->params.b_wnd);
1287 	}
1288 	t4_init_sge_params(adap);
1289 	t4_init_tp_params(adap);
1290 	configure_pcie_ext_tag(adap);
1291 	configure_vlan_types(adap);
1292 	cxgbe_configure_max_ethqsets(adap);
1293 
1294 	adap->params.drv_memwin = MEMWIN_NIC;
1295 	adap->flags |= FW_OK;
1296 	dev_debug(adap, "%s: returning zero..\n", __func__);
1297 	return 0;
1298 
1299 	/*
1300 	 * Something bad happened.  If a command timed out or failed with EIO
1301 	 * FW does not operate within its spec or something catastrophic
1302 	 * happened to HW/FW, stop issuing commands.
1303 	 */
1304 bye:
1305 	if (ret != -ETIMEDOUT && ret != -EIO)
1306 		t4_fw_bye(adap, adap->mbox);
1307 	return ret;
1308 }
1309 
1310 /**
1311  * t4_os_portmod_changed - handle port module changes
1312  * @adap: the adapter associated with the module change
1313  * @port_id: the port index whose module status has changed
1314  *
1315  * This is the OS-dependent handler for port module changes.  It is
1316  * invoked when a port module is removed or inserted for any OS-specific
1317  * processing.
1318  */
1319 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
1320 {
1321 	static const char * const mod_str[] = {
1322 		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
1323 	};
1324 
1325 	const struct port_info *pi = adap2pinfo(adap, port_id);
1326 
1327 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
1328 		dev_info(adap, "Port%d: port module unplugged\n", pi->port_id);
1329 	else if (pi->mod_type < ARRAY_SIZE(mod_str))
1330 		dev_info(adap, "Port%d: %s port module inserted\n", pi->port_id,
1331 			 mod_str[pi->mod_type]);
1332 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
1333 		dev_info(adap, "Port%d: unsupported port module inserted\n",
1334 			 pi->port_id);
1335 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
1336 		dev_info(adap, "Port%d: unknown port module inserted\n",
1337 			 pi->port_id);
1338 	else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
1339 		dev_info(adap, "Port%d: transceiver module error\n",
1340 			 pi->port_id);
1341 	else
1342 		dev_info(adap, "Port%d: unknown module type %d inserted\n",
1343 			 pi->port_id, pi->mod_type);
1344 }
1345 
1346 bool cxgbe_force_linkup(struct adapter *adap)
1347 {
1348 	if (is_pf4(adap))
1349 		return false;	/* force_linkup not required for pf driver */
1350 
1351 	return adap->devargs.force_link_up;
1352 }
1353 
1354 /**
1355  * link_start - enable a port
1356  * @dev: the port to enable
1357  *
1358  * Performs the MAC and PHY actions needed to enable a port.
1359  */
1360 int cxgbe_link_start(struct port_info *pi)
1361 {
1362 	struct adapter *adapter = pi->adapter;
1363 	u64 conf_offloads;
1364 	unsigned int mtu;
1365 	int ret;
1366 
1367 	mtu = pi->eth_dev->data->dev_conf.rxmode.max_rx_pkt_len -
1368 	      (RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN);
1369 
1370 	conf_offloads = pi->eth_dev->data->dev_conf.rxmode.offloads;
1371 
1372 	/*
1373 	 * We do not set address filters and promiscuity here, the stack does
1374 	 * that step explicitly.
1375 	 */
1376 	ret = t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, -1, -1, -1,
1377 			    !!(conf_offloads & DEV_RX_OFFLOAD_VLAN_STRIP),
1378 			    true);
1379 	if (ret == 0) {
1380 		ret = cxgbe_mpstcam_modify(pi, (int)pi->xact_addr_filt,
1381 				(u8 *)&pi->eth_dev->data->mac_addrs[0]);
1382 		if (ret >= 0) {
1383 			pi->xact_addr_filt = ret;
1384 			ret = 0;
1385 		}
1386 	}
1387 	if (ret == 0 && is_pf4(adapter))
1388 		ret = t4_link_l1cfg(adapter, adapter->mbox, pi->tx_chan,
1389 				    &pi->link_cfg);
1390 	if (ret == 0) {
1391 		/*
1392 		 * Enabling a Virtual Interface can result in an interrupt
1393 		 * during the processing of the VI Enable command and, in some
1394 		 * paths, result in an attempt to issue another command in the
1395 		 * interrupt context.  Thus, we disable interrupts during the
1396 		 * course of the VI Enable command ...
1397 		 */
1398 		ret = t4_enable_vi_params(adapter, adapter->mbox, pi->viid,
1399 					  true, true, false);
1400 	}
1401 
1402 	if (ret == 0 && cxgbe_force_linkup(adapter))
1403 		pi->eth_dev->data->dev_link.link_status = ETH_LINK_UP;
1404 	return ret;
1405 }
1406 
1407 /**
1408  * cxgbe_write_rss_conf - flash the RSS configuration for a given port
1409  * @pi: the port
1410  * @rss_hf: Hash configuration to apply
1411  */
1412 int cxgbe_write_rss_conf(const struct port_info *pi, uint64_t rss_hf)
1413 {
1414 	struct adapter *adapter = pi->adapter;
1415 	const struct sge_eth_rxq *rxq;
1416 	u64 flags = 0;
1417 	u16 rss;
1418 	int err;
1419 
1420 	/*  Should never be called before setting up sge eth rx queues */
1421 	if (!(adapter->flags & FULL_INIT_DONE)) {
1422 		dev_err(adap, "%s No RXQs available on port %d\n",
1423 			__func__, pi->port_id);
1424 		return -EINVAL;
1425 	}
1426 
1427 	/* Don't allow unsupported hash functions */
1428 	if (rss_hf & ~CXGBE_RSS_HF_ALL)
1429 		return -EINVAL;
1430 
1431 	if (rss_hf & CXGBE_RSS_HF_IPV4_MASK)
1432 		flags |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
1433 
1434 	if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
1435 		flags |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
1436 
1437 	if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
1438 		flags |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
1439 			 F_FW_RSS_VI_CONFIG_CMD_UDPEN;
1440 
1441 	if (rss_hf & CXGBE_RSS_HF_IPV6_MASK)
1442 		flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
1443 
1444 	if (rss_hf & CXGBE_RSS_HF_TCP_IPV6_MASK)
1445 		flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
1446 			 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
1447 
1448 	if (rss_hf & CXGBE_RSS_HF_UDP_IPV6_MASK)
1449 		flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
1450 			 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
1451 			 F_FW_RSS_VI_CONFIG_CMD_UDPEN;
1452 
1453 	rxq = &adapter->sge.ethrxq[pi->first_qset];
1454 	rss = rxq[0].rspq.abs_id;
1455 
1456 	/* If Tunnel All Lookup isn't specified in the global RSS
1457 	 * Configuration, then we need to specify a default Ingress
1458 	 * Queue for any ingress packets which aren't hashed.  We'll
1459 	 * use our first ingress queue ...
1460 	 */
1461 	err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
1462 			       flags, rss);
1463 	return err;
1464 }
1465 
1466 /**
1467  * cxgbe_write_rss - write the RSS table for a given port
1468  * @pi: the port
1469  * @queues: array of queue indices for RSS
1470  *
1471  * Sets up the portion of the HW RSS table for the port's VI to distribute
1472  * packets to the Rx queues in @queues.
1473  */
1474 int cxgbe_write_rss(const struct port_info *pi, const u16 *queues)
1475 {
1476 	u16 *rss;
1477 	int i, err;
1478 	struct adapter *adapter = pi->adapter;
1479 	const struct sge_eth_rxq *rxq;
1480 
1481 	/*  Should never be called before setting up sge eth rx queues */
1482 	BUG_ON(!(adapter->flags & FULL_INIT_DONE));
1483 
1484 	rxq = &adapter->sge.ethrxq[pi->first_qset];
1485 	rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0);
1486 	if (!rss)
1487 		return -ENOMEM;
1488 
1489 	/* map the queue indices to queue ids */
1490 	for (i = 0; i < pi->rss_size; i++, queues++)
1491 		rss[i] = rxq[*queues].rspq.abs_id;
1492 
1493 	err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
1494 				  pi->rss_size, rss, pi->rss_size);
1495 	rte_free(rss);
1496 	return err;
1497 }
1498 
1499 /**
1500  * setup_rss - configure RSS
1501  * @adapter: the adapter
1502  *
1503  * Sets up RSS to distribute packets to multiple receive queues.  We
1504  * configure the RSS CPU lookup table to distribute to the number of HW
1505  * receive queues, and the response queue lookup table to narrow that
1506  * down to the response queues actually configured for each port.
1507  * We always configure the RSS mapping for all ports since the mapping
1508  * table has plenty of entries.
1509  */
1510 int cxgbe_setup_rss(struct port_info *pi)
1511 {
1512 	int j, err;
1513 	struct adapter *adapter = pi->adapter;
1514 
1515 	dev_debug(adapter, "%s:  pi->rss_size = %u; pi->n_rx_qsets = %u\n",
1516 		  __func__, pi->rss_size, pi->n_rx_qsets);
1517 
1518 	if (!(pi->flags & PORT_RSS_DONE)) {
1519 		if (adapter->flags & FULL_INIT_DONE) {
1520 			/* Fill default values with equal distribution */
1521 			for (j = 0; j < pi->rss_size; j++)
1522 				pi->rss[j] = j % pi->n_rx_qsets;
1523 
1524 			err = cxgbe_write_rss(pi, pi->rss);
1525 			if (err)
1526 				return err;
1527 
1528 			err = cxgbe_write_rss_conf(pi, pi->rss_hf);
1529 			if (err)
1530 				return err;
1531 			pi->flags |= PORT_RSS_DONE;
1532 		}
1533 	}
1534 	return 0;
1535 }
1536 
1537 /*
1538  * Enable NAPI scheduling and interrupt generation for all Rx queues.
1539  */
1540 static void enable_rx(struct adapter *adap, struct sge_rspq *q)
1541 {
1542 	/* 0-increment GTS to start the timer and enable interrupts */
1543 	t4_write_reg(adap, is_pf4(adap) ? MYPF_REG(A_SGE_PF_GTS) :
1544 					  T4VF_SGE_BASE_ADDR + A_SGE_VF_GTS,
1545 		     V_SEINTARM(q->intr_params) |
1546 		     V_INGRESSQID(q->cntxt_id));
1547 }
1548 
1549 void cxgbe_enable_rx_queues(struct port_info *pi)
1550 {
1551 	struct adapter *adap = pi->adapter;
1552 	struct sge *s = &adap->sge;
1553 	unsigned int i;
1554 
1555 	for (i = 0; i < pi->n_rx_qsets; i++)
1556 		enable_rx(adap, &s->ethrxq[pi->first_qset + i].rspq);
1557 }
1558 
1559 /**
1560  * fw_caps_to_speed_caps - translate Firmware Port Caps to Speed Caps.
1561  * @port_type: Firmware Port Type
1562  * @fw_caps: Firmware Port Capabilities
1563  * @speed_caps: Device Info Speed Capabilities
1564  *
1565  * Translate a Firmware Port Capabilities specification to Device Info
1566  * Speed Capabilities.
1567  */
1568 static void fw_caps_to_speed_caps(enum fw_port_type port_type,
1569 				  unsigned int fw_caps,
1570 				  u32 *speed_caps)
1571 {
1572 #define SET_SPEED(__speed_name) \
1573 	do { \
1574 		*speed_caps |= ETH_LINK_ ## __speed_name; \
1575 	} while (0)
1576 
1577 #define FW_CAPS_TO_SPEED(__fw_name) \
1578 	do { \
1579 		if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \
1580 			SET_SPEED(__fw_name); \
1581 	} while (0)
1582 
1583 	switch (port_type) {
1584 	case FW_PORT_TYPE_BT_SGMII:
1585 	case FW_PORT_TYPE_BT_XFI:
1586 	case FW_PORT_TYPE_BT_XAUI:
1587 		FW_CAPS_TO_SPEED(SPEED_100M);
1588 		FW_CAPS_TO_SPEED(SPEED_1G);
1589 		FW_CAPS_TO_SPEED(SPEED_10G);
1590 		break;
1591 
1592 	case FW_PORT_TYPE_KX4:
1593 	case FW_PORT_TYPE_KX:
1594 	case FW_PORT_TYPE_FIBER_XFI:
1595 	case FW_PORT_TYPE_FIBER_XAUI:
1596 	case FW_PORT_TYPE_SFP:
1597 	case FW_PORT_TYPE_QSFP_10G:
1598 	case FW_PORT_TYPE_QSA:
1599 		FW_CAPS_TO_SPEED(SPEED_1G);
1600 		FW_CAPS_TO_SPEED(SPEED_10G);
1601 		break;
1602 
1603 	case FW_PORT_TYPE_KR:
1604 		SET_SPEED(SPEED_10G);
1605 		break;
1606 
1607 	case FW_PORT_TYPE_BP_AP:
1608 	case FW_PORT_TYPE_BP4_AP:
1609 		SET_SPEED(SPEED_1G);
1610 		SET_SPEED(SPEED_10G);
1611 		break;
1612 
1613 	case FW_PORT_TYPE_BP40_BA:
1614 	case FW_PORT_TYPE_QSFP:
1615 		SET_SPEED(SPEED_40G);
1616 		break;
1617 
1618 	case FW_PORT_TYPE_CR_QSFP:
1619 	case FW_PORT_TYPE_SFP28:
1620 	case FW_PORT_TYPE_KR_SFP28:
1621 		FW_CAPS_TO_SPEED(SPEED_1G);
1622 		FW_CAPS_TO_SPEED(SPEED_10G);
1623 		FW_CAPS_TO_SPEED(SPEED_25G);
1624 		break;
1625 
1626 	case FW_PORT_TYPE_CR2_QSFP:
1627 		SET_SPEED(SPEED_50G);
1628 		break;
1629 
1630 	case FW_PORT_TYPE_KR4_100G:
1631 	case FW_PORT_TYPE_CR4_QSFP:
1632 		FW_CAPS_TO_SPEED(SPEED_25G);
1633 		FW_CAPS_TO_SPEED(SPEED_40G);
1634 		FW_CAPS_TO_SPEED(SPEED_50G);
1635 		FW_CAPS_TO_SPEED(SPEED_100G);
1636 		break;
1637 
1638 	default:
1639 		break;
1640 	}
1641 
1642 #undef FW_CAPS_TO_SPEED
1643 #undef SET_SPEED
1644 }
1645 
1646 /**
1647  * cxgbe_get_speed_caps - Fetch supported speed capabilities
1648  * @pi: Underlying port's info
1649  * @speed_caps: Device Info speed capabilities
1650  *
1651  * Fetch supported speed capabilities of the underlying port.
1652  */
1653 void cxgbe_get_speed_caps(struct port_info *pi, u32 *speed_caps)
1654 {
1655 	*speed_caps = 0;
1656 
1657 	fw_caps_to_speed_caps(pi->port_type, pi->link_cfg.pcaps,
1658 			      speed_caps);
1659 
1660 	if (!(pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG))
1661 		*speed_caps |= ETH_LINK_SPEED_FIXED;
1662 }
1663 
1664 /**
1665  * cxgbe_set_link_status - Set device link up or down.
1666  * @pi: Underlying port's info
1667  * @status: 0 - down, 1 - up
1668  *
1669  * Set the device link up or down.
1670  */
1671 int cxgbe_set_link_status(struct port_info *pi, bool status)
1672 {
1673 	struct adapter *adapter = pi->adapter;
1674 	int err = 0;
1675 
1676 	err = t4_enable_vi(adapter, adapter->mbox, pi->viid, status, status);
1677 	if (err) {
1678 		dev_err(adapter, "%s: disable_vi failed: %d\n", __func__, err);
1679 		return err;
1680 	}
1681 
1682 	if (!status)
1683 		t4_reset_link_config(adapter, pi->pidx);
1684 
1685 	return 0;
1686 }
1687 
1688 /**
1689  * cxgb_up - enable the adapter
1690  * @adap: adapter being enabled
1691  *
1692  * Called when the first port is enabled, this function performs the
1693  * actions necessary to make an adapter operational, such as completing
1694  * the initialization of HW modules, and enabling interrupts.
1695  */
1696 int cxgbe_up(struct adapter *adap)
1697 {
1698 	enable_rx(adap, &adap->sge.fw_evtq);
1699 	t4_sge_tx_monitor_start(adap);
1700 	if (is_pf4(adap))
1701 		t4_intr_enable(adap);
1702 	adap->flags |= FULL_INIT_DONE;
1703 
1704 	/* TODO: deadman watchdog ?? */
1705 	return 0;
1706 }
1707 
1708 /*
1709  * Close the port
1710  */
1711 int cxgbe_down(struct port_info *pi)
1712 {
1713 	return cxgbe_set_link_status(pi, false);
1714 }
1715 
1716 /*
1717  * Release resources when all the ports have been stopped.
1718  */
1719 void cxgbe_close(struct adapter *adapter)
1720 {
1721 	struct port_info *pi;
1722 	int i;
1723 
1724 	if (adapter->flags & FULL_INIT_DONE) {
1725 		tid_free(&adapter->tids);
1726 		t4_cleanup_mpstcam(adapter);
1727 		t4_cleanup_clip_tbl(adapter);
1728 		t4_cleanup_l2t(adapter);
1729 		if (is_pf4(adapter))
1730 			t4_intr_disable(adapter);
1731 		t4_sge_tx_monitor_stop(adapter);
1732 		t4_free_sge_resources(adapter);
1733 		for_each_port(adapter, i) {
1734 			pi = adap2pinfo(adapter, i);
1735 			if (pi->viid != 0)
1736 				t4_free_vi(adapter, adapter->mbox,
1737 					   adapter->pf, 0, pi->viid);
1738 			rte_eth_dev_release_port(pi->eth_dev);
1739 		}
1740 		adapter->flags &= ~FULL_INIT_DONE;
1741 	}
1742 
1743 	if (is_pf4(adapter) && (adapter->flags & FW_OK))
1744 		t4_fw_bye(adapter, adapter->mbox);
1745 }
1746 
1747 int cxgbe_probe(struct adapter *adapter)
1748 {
1749 	struct port_info *pi;
1750 	int chip;
1751 	int func, i;
1752 	int err = 0;
1753 	u32 whoami;
1754 
1755 	whoami = t4_read_reg(adapter, A_PL_WHOAMI);
1756 	chip = t4_get_chip_type(adapter,
1757 			CHELSIO_PCI_ID_VER(adapter->pdev->id.device_id));
1758 	if (chip < 0)
1759 		return chip;
1760 
1761 	func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
1762 	       G_SOURCEPF(whoami) : G_T6_SOURCEPF(whoami);
1763 
1764 	adapter->mbox = func;
1765 	adapter->pf = func;
1766 
1767 	t4_os_lock_init(&adapter->mbox_lock);
1768 	TAILQ_INIT(&adapter->mbox_list);
1769 	t4_os_lock_init(&adapter->win0_lock);
1770 
1771 	err = t4_prep_adapter(adapter);
1772 	if (err)
1773 		return err;
1774 
1775 	setup_memwin(adapter);
1776 	err = adap_init0(adapter);
1777 	if (err) {
1778 		dev_err(adapter, "%s: Adapter initialization failed, error %d\n",
1779 			__func__, err);
1780 		goto out_free;
1781 	}
1782 
1783 	if (!is_t4(adapter->params.chip)) {
1784 		/*
1785 		 * The userspace doorbell BAR is split evenly into doorbell
1786 		 * regions, each associated with an egress queue.  If this
1787 		 * per-queue region is large enough (at least UDBS_SEG_SIZE)
1788 		 * then it can be used to submit a tx work request with an
1789 		 * implied doorbell.  Enable write combining on the BAR if
1790 		 * there is room for such work requests.
1791 		 */
1792 		int s_qpp, qpp, num_seg;
1793 
1794 		s_qpp = (S_QUEUESPERPAGEPF0 +
1795 			(S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) *
1796 			adapter->pf);
1797 		qpp = 1 << ((t4_read_reg(adapter,
1798 				A_SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp)
1799 				& M_QUEUESPERPAGEPF0);
1800 		num_seg = CXGBE_PAGE_SIZE / UDBS_SEG_SIZE;
1801 		if (qpp > num_seg)
1802 			dev_warn(adapter, "Incorrect SGE EGRESS QUEUES_PER_PAGE configuration, continuing in debug mode\n");
1803 
1804 		adapter->bar2 = (void *)adapter->pdev->mem_resource[2].addr;
1805 		if (!adapter->bar2) {
1806 			dev_err(adapter, "cannot map device bar2 region\n");
1807 			err = -ENOMEM;
1808 			goto out_free;
1809 		}
1810 		t4_write_reg(adapter, A_SGE_STAT_CFG, V_STATSOURCE_T5(7) |
1811 			     V_STATMODE(0));
1812 	}
1813 
1814 	for_each_port(adapter, i) {
1815 		const unsigned int numa_node = rte_socket_id();
1816 		char name[RTE_ETH_NAME_MAX_LEN];
1817 		struct rte_eth_dev *eth_dev;
1818 
1819 		snprintf(name, sizeof(name), "%s_%d",
1820 			 adapter->pdev->device.name, i);
1821 
1822 		if (i == 0) {
1823 			/* First port is already allocated by DPDK */
1824 			eth_dev = adapter->eth_dev;
1825 			goto allocate_mac;
1826 		}
1827 
1828 		/*
1829 		 * now do all data allocation - for eth_dev structure,
1830 		 * and internal (private) data for the remaining ports
1831 		 */
1832 
1833 		/* reserve an ethdev entry */
1834 		eth_dev = rte_eth_dev_allocate(name);
1835 		if (!eth_dev)
1836 			goto out_free;
1837 
1838 		eth_dev->data->dev_private =
1839 			rte_zmalloc_socket(name, sizeof(struct port_info),
1840 					   RTE_CACHE_LINE_SIZE, numa_node);
1841 		if (!eth_dev->data->dev_private)
1842 			goto out_free;
1843 
1844 allocate_mac:
1845 		pi = eth_dev->data->dev_private;
1846 		adapter->port[i] = pi;
1847 		pi->eth_dev = eth_dev;
1848 		pi->adapter = adapter;
1849 		pi->xact_addr_filt = -1;
1850 		pi->port_id = i;
1851 		pi->pidx = i;
1852 
1853 		pi->eth_dev->device = &adapter->pdev->device;
1854 		pi->eth_dev->dev_ops = adapter->eth_dev->dev_ops;
1855 		pi->eth_dev->tx_pkt_burst = adapter->eth_dev->tx_pkt_burst;
1856 		pi->eth_dev->rx_pkt_burst = adapter->eth_dev->rx_pkt_burst;
1857 
1858 		rte_eth_copy_pci_info(pi->eth_dev, adapter->pdev);
1859 
1860 		pi->eth_dev->data->mac_addrs = rte_zmalloc(name,
1861 							RTE_ETHER_ADDR_LEN, 0);
1862 		if (!pi->eth_dev->data->mac_addrs) {
1863 			dev_err(adapter, "%s: Mem allocation failed for storing mac addr, aborting\n",
1864 				__func__);
1865 			err = -1;
1866 			goto out_free;
1867 		}
1868 
1869 		if (i > 0) {
1870 			/* First port will be notified by upper layer */
1871 			rte_eth_dev_probing_finish(eth_dev);
1872 		}
1873 	}
1874 
1875 	if (adapter->flags & FW_OK) {
1876 		err = t4_port_init(adapter, adapter->mbox, adapter->pf, 0);
1877 		if (err) {
1878 			dev_err(adapter, "%s: t4_port_init failed with err %d\n",
1879 				__func__, err);
1880 			goto out_free;
1881 		}
1882 	}
1883 
1884 	cxgbe_cfg_queues(adapter->eth_dev);
1885 
1886 	cxgbe_print_adapter_info(adapter);
1887 	cxgbe_print_port_info(adapter);
1888 
1889 	adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
1890 					  adapter->clipt_end);
1891 	if (!adapter->clipt) {
1892 		/* We tolerate a lack of clip_table, giving up some
1893 		 * functionality
1894 		 */
1895 		dev_warn(adapter, "could not allocate CLIP. Continuing\n");
1896 	}
1897 
1898 	adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
1899 	if (!adapter->l2t) {
1900 		/* We tolerate a lack of L2T, giving up some functionality */
1901 		dev_warn(adapter, "could not allocate L2T. Continuing\n");
1902 	}
1903 
1904 	if (tid_init(&adapter->tids) < 0) {
1905 		/* Disable filtering support */
1906 		dev_warn(adapter, "could not allocate TID table, "
1907 			 "filter support disabled. Continuing\n");
1908 	}
1909 
1910 	t4_os_lock_init(&adapter->flow_lock);
1911 
1912 	adapter->mpstcam = t4_init_mpstcam(adapter);
1913 	if (!adapter->mpstcam)
1914 		dev_warn(adapter, "could not allocate mps tcam table."
1915 			 " Continuing\n");
1916 
1917 	if (is_hashfilter(adapter)) {
1918 		if (t4_read_reg(adapter, A_LE_DB_CONFIG) & F_HASHEN) {
1919 			u32 hash_base, hash_reg;
1920 
1921 			hash_reg = A_LE_DB_TID_HASHBASE;
1922 			hash_base = t4_read_reg(adapter, hash_reg);
1923 			adapter->tids.hash_base = hash_base / 4;
1924 		}
1925 	} else {
1926 		/* Disable hash filtering support */
1927 		dev_warn(adapter,
1928 			 "Maskless filter support disabled. Continuing\n");
1929 	}
1930 
1931 	err = cxgbe_init_rss(adapter);
1932 	if (err)
1933 		goto out_free;
1934 
1935 	return 0;
1936 
1937 out_free:
1938 	for_each_port(adapter, i) {
1939 		pi = adap2pinfo(adapter, i);
1940 		if (pi->viid != 0)
1941 			t4_free_vi(adapter, adapter->mbox, adapter->pf,
1942 				   0, pi->viid);
1943 		rte_eth_dev_release_port(pi->eth_dev);
1944 	}
1945 
1946 	if (adapter->flags & FW_OK)
1947 		t4_fw_bye(adapter, adapter->mbox);
1948 	return -err;
1949 }
1950