xref: /dpdk/drivers/net/cxgbe/cxgbe_main.c (revision daa02b5cddbb8e11b31d41e2bf7bb1ae64dcae2f)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2018 Chelsio Communications.
3  * All rights reserved.
4  */
5 
6 #include <sys/queue.h>
7 #include <stdio.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <string.h>
11 #include <unistd.h>
12 #include <stdarg.h>
13 #include <inttypes.h>
14 #include <netinet/in.h>
15 
16 #include <rte_byteorder.h>
17 #include <rte_common.h>
18 #include <rte_cycles.h>
19 #include <rte_interrupts.h>
20 #include <rte_log.h>
21 #include <rte_debug.h>
22 #include <rte_pci.h>
23 #include <rte_branch_prediction.h>
24 #include <rte_memory.h>
25 #include <rte_tailq.h>
26 #include <rte_eal.h>
27 #include <rte_alarm.h>
28 #include <rte_ether.h>
29 #include <ethdev_driver.h>
30 #include <ethdev_pci.h>
31 #include <rte_random.h>
32 #include <rte_dev.h>
33 #include <rte_kvargs.h>
34 
35 #include "base/common.h"
36 #include "base/t4_regs.h"
37 #include "base/t4_msg.h"
38 #include "cxgbe.h"
39 #include "cxgbe_pfvf.h"
40 #include "clip_tbl.h"
41 #include "l2t.h"
42 #include "smt.h"
43 #include "mps_tcam.h"
44 
45 static const u16 cxgbe_filter_mode_features[] = {
46 	(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE |
47 	 F_PROTOCOL | F_PORT),
48 	(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE |
49 	 F_PROTOCOL | F_FCOE),
50 	(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE | F_TOS |
51 	 F_PORT),
52 	(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE | F_TOS |
53 	 F_FCOE),
54 	(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE | F_PORT |
55 	 F_FCOE),
56 	(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_PROTOCOL | F_TOS |
57 	 F_PORT | F_FCOE),
58 	(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_PROTOCOL | F_VLAN |
59 	 F_FCOE),
60 	(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_PROTOCOL | F_VNIC_ID |
61 	 F_FCOE),
62 	(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_TOS | F_VLAN |
63 	 F_FCOE),
64 	(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_TOS | F_VNIC_ID |
65 	 F_FCOE),
66 	(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_VLAN | F_PORT |
67 	 F_FCOE),
68 	(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_VNIC_ID | F_PORT |
69 	 F_FCOE),
70 	(F_FRAGMENTATION | F_MPSHITTYPE | F_ETHERTYPE | F_PROTOCOL | F_TOS |
71 	 F_PORT | F_FCOE),
72 	(F_FRAGMENTATION | F_MPSHITTYPE | F_ETHERTYPE | F_VLAN | F_PORT),
73 	(F_FRAGMENTATION | F_MPSHITTYPE | F_ETHERTYPE | F_VLAN | F_FCOE),
74 	(F_FRAGMENTATION | F_MPSHITTYPE | F_ETHERTYPE | F_VNIC_ID | F_PORT),
75 	(F_FRAGMENTATION | F_MPSHITTYPE | F_ETHERTYPE | F_VNIC_ID | F_FCOE),
76 	(F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VLAN | F_PORT),
77 	(F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VLAN | F_FCOE),
78 	(F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VNIC_ID |
79 	 F_PORT),
80 	(F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VNIC_ID |
81 	 F_FCOE),
82 	(F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_VLAN | F_PORT |
83 	 F_FCOE),
84 	(F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_VNIC_ID | F_PORT |
85 	 F_FCOE),
86 	(F_FRAGMENTATION | F_MPSHITTYPE | F_TOS | F_VLAN | F_PORT | F_FCOE),
87 	(F_FRAGMENTATION | F_MPSHITTYPE | F_TOS | F_VNIC_ID | F_PORT | F_FCOE),
88 	(F_FRAGMENTATION | F_MPSHITTYPE | F_VLAN | F_VNIC_ID | F_FCOE),
89 	(F_FRAGMENTATION | F_MACMATCH | F_ETHERTYPE | F_PROTOCOL | F_PORT |
90 	 F_FCOE),
91 	(F_FRAGMENTATION | F_MACMATCH | F_ETHERTYPE | F_TOS | F_PORT | F_FCOE),
92 	(F_FRAGMENTATION | F_MACMATCH | F_PROTOCOL | F_VLAN | F_PORT | F_FCOE),
93 	(F_FRAGMENTATION | F_MACMATCH | F_PROTOCOL | F_VNIC_ID | F_PORT |
94 	 F_FCOE),
95 	(F_FRAGMENTATION | F_MACMATCH | F_TOS | F_VLAN | F_PORT | F_FCOE),
96 	(F_FRAGMENTATION | F_MACMATCH | F_TOS | F_VNIC_ID | F_PORT | F_FCOE),
97 	(F_FRAGMENTATION | F_ETHERTYPE | F_VLAN | F_PORT | F_FCOE),
98 	(F_FRAGMENTATION | F_ETHERTYPE | F_VNIC_ID | F_PORT | F_FCOE),
99 	(F_FRAGMENTATION | F_PROTOCOL | F_TOS | F_VLAN | F_FCOE),
100 	(F_FRAGMENTATION | F_PROTOCOL | F_TOS | F_VNIC_ID | F_FCOE),
101 	(F_FRAGMENTATION | F_VLAN | F_VNIC_ID | F_PORT | F_FCOE),
102 	(F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE | F_PROTOCOL | F_PORT |
103 	 F_FCOE),
104 	(F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE | F_TOS | F_PORT | F_FCOE),
105 	(F_MPSHITTYPE | F_MACMATCH | F_PROTOCOL | F_VLAN | F_PORT),
106 	(F_MPSHITTYPE | F_MACMATCH | F_PROTOCOL | F_VNIC_ID | F_PORT),
107 	(F_MPSHITTYPE | F_MACMATCH | F_TOS | F_VLAN | F_PORT),
108 	(F_MPSHITTYPE | F_MACMATCH | F_TOS | F_VNIC_ID | F_PORT),
109 	(F_MPSHITTYPE | F_ETHERTYPE | F_VLAN | F_PORT | F_FCOE),
110 	(F_MPSHITTYPE | F_ETHERTYPE | F_VNIC_ID | F_PORT | F_FCOE),
111 	(F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VLAN | F_PORT | F_FCOE),
112 	(F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VNIC_ID | F_PORT | F_FCOE),
113 	(F_MPSHITTYPE | F_VLAN | F_VNIC_ID | F_PORT),
114 };
115 
116 /**
117  * Allocate a chunk of memory. The allocated memory is cleared.
118  */
119 void *t4_alloc_mem(size_t size)
120 {
121 	return rte_zmalloc(NULL, size, 0);
122 }
123 
124 /**
125  * Free memory allocated through t4_alloc_mem().
126  */
127 void t4_free_mem(void *addr)
128 {
129 	rte_free(addr);
130 }
131 
132 /*
133  * Response queue handler for the FW event queue.
134  */
135 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
136 			  __rte_unused const struct pkt_gl *gl)
137 {
138 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
139 
140 	rsp++;                                          /* skip RSS header */
141 
142 	/*
143 	 * FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
144 	 */
145 	if (unlikely(opcode == CPL_FW4_MSG &&
146 		     ((const struct cpl_fw4_msg *)rsp)->type ==
147 		      FW_TYPE_RSSCPL)) {
148 		rsp++;
149 		opcode = ((const struct rss_header *)rsp)->opcode;
150 		rsp++;
151 		if (opcode != CPL_SGE_EGR_UPDATE) {
152 			dev_err(q->adapter, "unexpected FW4/CPL %#x on FW event queue\n",
153 				opcode);
154 			goto out;
155 		}
156 	}
157 
158 	if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
159 		/* do nothing */
160 	} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
161 		const struct cpl_fw6_msg *msg = (const void *)rsp;
162 
163 		t4_handle_fw_rpl(q->adapter, msg->data);
164 	} else if (opcode == CPL_ABORT_RPL_RSS) {
165 		const struct cpl_abort_rpl_rss *p = (const void *)rsp;
166 
167 		cxgbe_hash_del_filter_rpl(q->adapter, p);
168 	} else if (opcode == CPL_SET_TCB_RPL) {
169 		const struct cpl_set_tcb_rpl *p = (const void *)rsp;
170 
171 		cxgbe_filter_rpl(q->adapter, p);
172 	} else if (opcode == CPL_ACT_OPEN_RPL) {
173 		const struct cpl_act_open_rpl *p = (const void *)rsp;
174 
175 		cxgbe_hash_filter_rpl(q->adapter, p);
176 	} else if (opcode == CPL_L2T_WRITE_RPL) {
177 		const struct cpl_l2t_write_rpl *p = (const void *)rsp;
178 
179 		cxgbe_do_l2t_write_rpl(q->adapter, p);
180 	} else if (opcode == CPL_SMT_WRITE_RPL) {
181 		const struct cpl_smt_write_rpl *p = (const void *)rsp;
182 
183 		cxgbe_do_smt_write_rpl(q->adapter, p);
184 	} else {
185 		dev_err(adapter, "unexpected CPL %#x on FW event queue\n",
186 			opcode);
187 	}
188 out:
189 	return 0;
190 }
191 
192 /**
193  * Setup sge control queues to pass control information.
194  */
195 int cxgbe_setup_sge_ctrl_txq(struct adapter *adapter)
196 {
197 	struct sge *s = &adapter->sge;
198 	int err = 0, i = 0;
199 
200 	for_each_port(adapter, i) {
201 		struct port_info *pi = adap2pinfo(adapter, i);
202 		char name[RTE_ETH_NAME_MAX_LEN];
203 		struct sge_ctrl_txq *q = &s->ctrlq[i];
204 
205 		q->q.size = 1024;
206 		err = t4_sge_alloc_ctrl_txq(adapter, q,
207 					    adapter->eth_dev,  i,
208 					    s->fw_evtq.cntxt_id,
209 					    rte_socket_id());
210 		if (err) {
211 			dev_err(adapter, "Failed to alloc ctrl txq. Err: %d",
212 				err);
213 			goto out;
214 		}
215 		snprintf(name, sizeof(name), "%s_ctrl_pool_%d",
216 			 pi->eth_dev->device->driver->name,
217 			 pi->eth_dev->data->port_id);
218 		q->mb_pool = rte_pktmbuf_pool_create(name, s->ctrlq[i].q.size,
219 						     RTE_CACHE_LINE_SIZE,
220 						     RTE_MBUF_PRIV_ALIGN,
221 						     RTE_MBUF_DEFAULT_BUF_SIZE,
222 						     SOCKET_ID_ANY);
223 		if (!q->mb_pool) {
224 			err = -rte_errno;
225 			dev_err(adapter,
226 				"Can't create ctrl pool for port %d. Err: %d\n",
227 				pi->eth_dev->data->port_id, err);
228 			goto out;
229 		}
230 	}
231 	return 0;
232 out:
233 	t4_free_sge_resources(adapter);
234 	return err;
235 }
236 
237 /**
238  * cxgbe_poll_for_completion: Poll rxq for completion
239  * @q: rxq to poll
240  * @ms: milliseconds to delay
241  * @cnt: number of times to poll
242  * @c: completion to check for 'done' status
243  *
244  * Polls the rxq for reples until completion is done or the count
245  * expires.
246  */
247 int cxgbe_poll_for_completion(struct sge_rspq *q, unsigned int ms,
248 			      unsigned int cnt, struct t4_completion *c)
249 {
250 	unsigned int i;
251 	unsigned int work_done, budget = 32;
252 
253 	if (!c)
254 		return -EINVAL;
255 
256 	for (i = 0; i < cnt; i++) {
257 		cxgbe_poll(q, NULL, budget, &work_done);
258 		t4_os_lock(&c->lock);
259 		if (c->done) {
260 			t4_os_unlock(&c->lock);
261 			return 0;
262 		}
263 		t4_os_unlock(&c->lock);
264 		rte_delay_ms(ms);
265 	}
266 	return -ETIMEDOUT;
267 }
268 
269 int cxgbe_setup_sge_fwevtq(struct adapter *adapter)
270 {
271 	struct sge *s = &adapter->sge;
272 	int err = 0;
273 	int msi_idx = 0;
274 
275 	err = t4_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->eth_dev,
276 			       msi_idx, NULL, fwevtq_handler, -1, NULL, 0,
277 			       rte_socket_id());
278 	return err;
279 }
280 
281 static int closest_timer(const struct sge *s, int time)
282 {
283 	unsigned int i, match = 0;
284 	int delta, min_delta = INT_MAX;
285 
286 	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
287 		delta = time - s->timer_val[i];
288 		if (delta < 0)
289 			delta = -delta;
290 		if (delta < min_delta) {
291 			min_delta = delta;
292 			match = i;
293 		}
294 	}
295 	return match;
296 }
297 
298 static int closest_thres(const struct sge *s, int thres)
299 {
300 	unsigned int i, match = 0;
301 	int delta, min_delta = INT_MAX;
302 
303 	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
304 		delta = thres - s->counter_val[i];
305 		if (delta < 0)
306 			delta = -delta;
307 		if (delta < min_delta) {
308 			min_delta = delta;
309 			match = i;
310 		}
311 	}
312 	return match;
313 }
314 
315 /**
316  * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
317  * @q: the Rx queue
318  * @us: the hold-off time in us, or 0 to disable timer
319  * @cnt: the hold-off packet count, or 0 to disable counter
320  *
321  * Sets an Rx queue's interrupt hold-off time and packet count.  At least
322  * one of the two needs to be enabled for the queue to generate interrupts.
323  */
324 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, unsigned int us,
325 			       unsigned int cnt)
326 {
327 	struct adapter *adap = q->adapter;
328 	unsigned int timer_val;
329 
330 	if (cnt) {
331 		int err;
332 		u32 v, new_idx;
333 
334 		new_idx = closest_thres(&adap->sge, cnt);
335 		if (q->desc && q->pktcnt_idx != new_idx) {
336 			/* the queue has already been created, update it */
337 			v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
338 			    V_FW_PARAMS_PARAM_X(
339 			    FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
340 			    V_FW_PARAMS_PARAM_YZ(q->cntxt_id);
341 			err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
342 					    &v, &new_idx);
343 			if (err)
344 				return err;
345 		}
346 		q->pktcnt_idx = new_idx;
347 	}
348 
349 	timer_val = (us == 0) ? X_TIMERREG_RESTART_COUNTER :
350 				closest_timer(&adap->sge, us);
351 
352 	if ((us | cnt) == 0)
353 		q->intr_params = V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX);
354 	else
355 		q->intr_params = V_QINTR_TIMER_IDX(timer_val) |
356 				 V_QINTR_CNT_EN(cnt > 0);
357 	return 0;
358 }
359 
360 /**
361  * Allocate an active-open TID and set it to the supplied value.
362  */
363 int cxgbe_alloc_atid(struct tid_info *t, void *data)
364 {
365 	int atid = -1;
366 
367 	t4_os_lock(&t->atid_lock);
368 	if (t->afree) {
369 		union aopen_entry *p = t->afree;
370 
371 		atid = p - t->atid_tab;
372 		t->afree = p->next;
373 		p->data = data;
374 		t->atids_in_use++;
375 	}
376 	t4_os_unlock(&t->atid_lock);
377 	return atid;
378 }
379 
380 /**
381  * Release an active-open TID.
382  */
383 void cxgbe_free_atid(struct tid_info *t, unsigned int atid)
384 {
385 	union aopen_entry *p = &t->atid_tab[atid];
386 
387 	t4_os_lock(&t->atid_lock);
388 	p->next = t->afree;
389 	t->afree = p;
390 	t->atids_in_use--;
391 	t4_os_unlock(&t->atid_lock);
392 }
393 
394 /**
395  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
396  */
397 static void mk_tid_release(struct rte_mbuf *mbuf, unsigned int tid)
398 {
399 	struct cpl_tid_release *req;
400 
401 	req = rte_pktmbuf_mtod(mbuf, struct cpl_tid_release *);
402 	INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid);
403 }
404 
405 /**
406  * Release a TID and inform HW.  If we are unable to allocate the release
407  * message we defer to a work queue.
408  */
409 void cxgbe_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
410 		      unsigned short family)
411 {
412 	struct rte_mbuf *mbuf;
413 	struct adapter *adap = container_of(t, struct adapter, tids);
414 
415 	WARN_ON(tid >= t->ntids);
416 
417 	if (t->tid_tab[tid]) {
418 		t->tid_tab[tid] = NULL;
419 		__atomic_sub_fetch(&t->conns_in_use, 1, __ATOMIC_RELAXED);
420 		if (t->hash_base && tid >= t->hash_base) {
421 			if (family == FILTER_TYPE_IPV4)
422 				__atomic_sub_fetch(&t->hash_tids_in_use, 1,
423 						   __ATOMIC_RELAXED);
424 		} else {
425 			if (family == FILTER_TYPE_IPV4)
426 				__atomic_sub_fetch(&t->tids_in_use, 1,
427 						   __ATOMIC_RELAXED);
428 		}
429 	}
430 
431 	mbuf = rte_pktmbuf_alloc((&adap->sge.ctrlq[chan])->mb_pool);
432 	if (mbuf) {
433 		mbuf->data_len = sizeof(struct cpl_tid_release);
434 		mbuf->pkt_len = mbuf->data_len;
435 		mk_tid_release(mbuf, tid);
436 		t4_mgmt_tx(&adap->sge.ctrlq[chan], mbuf);
437 	}
438 }
439 
440 /**
441  * Insert a TID.
442  */
443 void cxgbe_insert_tid(struct tid_info *t, void *data, unsigned int tid,
444 		      unsigned short family)
445 {
446 	t->tid_tab[tid] = data;
447 	if (t->hash_base && tid >= t->hash_base) {
448 		if (family == FILTER_TYPE_IPV4)
449 			__atomic_add_fetch(&t->hash_tids_in_use, 1,
450 					   __ATOMIC_RELAXED);
451 	} else {
452 		if (family == FILTER_TYPE_IPV4)
453 			__atomic_add_fetch(&t->tids_in_use, 1,
454 					   __ATOMIC_RELAXED);
455 	}
456 
457 	__atomic_add_fetch(&t->conns_in_use, 1, __ATOMIC_RELAXED);
458 }
459 
460 /**
461  * Free TID tables.
462  */
463 static void tid_free(struct tid_info *t)
464 {
465 	if (t->tid_tab) {
466 		if (t->ftid_bmap)
467 			rte_bitmap_free(t->ftid_bmap);
468 
469 		if (t->ftid_bmap_array)
470 			t4_os_free(t->ftid_bmap_array);
471 
472 		t4_os_free(t->tid_tab);
473 	}
474 
475 	memset(t, 0, sizeof(struct tid_info));
476 }
477 
478 /**
479  * Allocate and initialize the TID tables.  Returns 0 on success.
480  */
481 static int tid_init(struct tid_info *t)
482 {
483 	size_t size;
484 	unsigned int ftid_bmap_size;
485 	unsigned int natids = t->natids;
486 	unsigned int max_ftids = t->nftids;
487 
488 	ftid_bmap_size = rte_bitmap_get_memory_footprint(t->nftids);
489 	size = t->ntids * sizeof(*t->tid_tab) +
490 		max_ftids * sizeof(*t->ftid_tab) +
491 		natids * sizeof(*t->atid_tab);
492 
493 	t->tid_tab = t4_os_alloc(size);
494 	if (!t->tid_tab)
495 		return -ENOMEM;
496 
497 	t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
498 	t->ftid_tab = (struct filter_entry *)&t->atid_tab[t->natids];
499 	t->ftid_bmap_array = t4_os_alloc(ftid_bmap_size);
500 	if (!t->ftid_bmap_array) {
501 		tid_free(t);
502 		return -ENOMEM;
503 	}
504 
505 	t4_os_lock_init(&t->atid_lock);
506 	t4_os_lock_init(&t->ftid_lock);
507 
508 	t->afree = NULL;
509 	t->atids_in_use = 0;
510 	t->tids_in_use = 0;
511 	t->conns_in_use = 0;
512 
513 	/* Setup the free list for atid_tab and clear the stid bitmap. */
514 	if (natids) {
515 		while (--natids)
516 			t->atid_tab[natids - 1].next = &t->atid_tab[natids];
517 		t->afree = t->atid_tab;
518 	}
519 
520 	t->ftid_bmap = rte_bitmap_init(t->nftids, t->ftid_bmap_array,
521 				       ftid_bmap_size);
522 	if (!t->ftid_bmap) {
523 		tid_free(t);
524 		return -ENOMEM;
525 	}
526 
527 	return 0;
528 }
529 
530 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
531 		      unsigned int us, unsigned int cnt,
532 		      unsigned int size, unsigned int iqe_size)
533 {
534 	q->adapter = adap;
535 	cxgb4_set_rspq_intr_params(q, us, cnt);
536 	q->iqe_len = iqe_size;
537 	q->size = size;
538 }
539 
540 int cxgbe_cfg_queue_count(struct rte_eth_dev *eth_dev)
541 {
542 	struct port_info *temp_pi, *pi = eth_dev->data->dev_private;
543 	struct adapter *adap = pi->adapter;
544 	u16 first_txq = 0, first_rxq = 0;
545 	struct sge *s = &adap->sge;
546 	u16 i, max_rxqs, max_txqs;
547 
548 	max_rxqs = s->max_ethqsets;
549 	max_txqs = s->max_ethqsets;
550 	for_each_port(adap, i) {
551 		temp_pi = adap2pinfo(adap, i);
552 		if (i == pi->port_id)
553 			break;
554 
555 		if (max_rxqs <= temp_pi->n_rx_qsets ||
556 		    max_txqs <= temp_pi->n_tx_qsets)
557 			return -ENOMEM;
558 
559 		first_rxq += temp_pi->n_rx_qsets;
560 		first_txq += temp_pi->n_tx_qsets;
561 		max_rxqs -= temp_pi->n_rx_qsets;
562 		max_txqs -= temp_pi->n_tx_qsets;
563 	}
564 
565 	if ((eth_dev->data->nb_rx_queues < 1) ||
566 	    (eth_dev->data->nb_tx_queues < 1))
567 		return -EINVAL;
568 
569 	if (eth_dev->data->nb_rx_queues > max_rxqs ||
570 	    eth_dev->data->nb_tx_queues > max_txqs)
571 		return -EINVAL;
572 
573 	/* We must configure RSS, since config has changed*/
574 	pi->flags &= ~PORT_RSS_DONE;
575 
576 	pi->n_rx_qsets = eth_dev->data->nb_rx_queues;
577 	pi->n_tx_qsets = eth_dev->data->nb_tx_queues;
578 	pi->first_rxqset = first_rxq;
579 	pi->first_txqset = first_txq;
580 
581 	return 0;
582 }
583 
584 void cxgbe_cfg_queues_free(struct adapter *adap)
585 {
586 	if (adap->sge.ethtxq) {
587 		rte_free(adap->sge.ethtxq);
588 		adap->sge.ethtxq = NULL;
589 	}
590 
591 	if (adap->sge.ethrxq) {
592 		rte_free(adap->sge.ethrxq);
593 		adap->sge.ethrxq = NULL;
594 	}
595 
596 	adap->flags &= ~CFG_QUEUES;
597 }
598 
599 int cxgbe_cfg_queues(struct rte_eth_dev *eth_dev)
600 {
601 	struct port_info *pi = eth_dev->data->dev_private;
602 	struct adapter *adap = pi->adapter;
603 	struct sge *s = &adap->sge;
604 	u16 i;
605 
606 	if (!(adap->flags & CFG_QUEUES)) {
607 		s->ethrxq = rte_calloc_socket(NULL, s->max_ethqsets,
608 					      sizeof(struct sge_eth_rxq), 0,
609 					      rte_socket_id());
610 		if (!s->ethrxq)
611 			return -ENOMEM;
612 
613 		s->ethtxq = rte_calloc_socket(NULL, s->max_ethqsets,
614 					      sizeof(struct sge_eth_txq), 0,
615 					      rte_socket_id());
616 		if (!s->ethtxq) {
617 			rte_free(s->ethrxq);
618 			s->ethrxq = NULL;
619 			return -ENOMEM;
620 		}
621 
622 		for (i = 0; i < s->max_ethqsets; i++) {
623 			struct sge_eth_rxq *r = &s->ethrxq[i];
624 			struct sge_eth_txq *t = &s->ethtxq[i];
625 
626 			init_rspq(adap, &r->rspq, 5, 32, 1024, 64);
627 			r->usembufs = 1;
628 			r->fl.size = (r->usembufs ? 1024 : 72);
629 
630 			t->q.size = 1024;
631 		}
632 
633 		init_rspq(adap, &adap->sge.fw_evtq, 0, 0, 1024, 64);
634 		adap->flags |= CFG_QUEUES;
635 	}
636 
637 	return 0;
638 }
639 
640 void cxgbe_stats_get(struct port_info *pi, struct port_stats *stats)
641 {
642 	t4_get_port_stats_offset(pi->adapter, pi->tx_chan, stats,
643 				 &pi->stats_base);
644 }
645 
646 void cxgbe_stats_reset(struct port_info *pi)
647 {
648 	t4_clr_port_stats(pi->adapter, pi->tx_chan);
649 }
650 
651 static void setup_memwin(struct adapter *adap)
652 {
653 	u32 mem_win0_base;
654 
655 	/* For T5, only relative offset inside the PCIe BAR is passed */
656 	mem_win0_base = MEMWIN0_BASE;
657 
658 	/*
659 	 * Set up memory window for accessing adapter memory ranges.  (Read
660 	 * back MA register to ensure that changes propagate before we attempt
661 	 * to use the new values.)
662 	 */
663 	t4_write_reg(adap,
664 		     PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
665 					 MEMWIN_NIC),
666 		     mem_win0_base | V_BIR(0) |
667 		     V_WINDOW(ilog2(MEMWIN0_APERTURE) - X_WINDOW_SHIFT));
668 	t4_read_reg(adap,
669 		    PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
670 					MEMWIN_NIC));
671 }
672 
673 int cxgbe_init_rss(struct adapter *adap)
674 {
675 	unsigned int i;
676 
677 	if (is_pf4(adap)) {
678 		int err;
679 
680 		err = t4_init_rss_mode(adap, adap->mbox);
681 		if (err)
682 			return err;
683 	}
684 
685 	for_each_port(adap, i) {
686 		struct port_info *pi = adap2pinfo(adap, i);
687 
688 		pi->rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0);
689 		if (!pi->rss)
690 			return -ENOMEM;
691 
692 		pi->rss_hf = CXGBE_RSS_HF_ALL;
693 	}
694 	return 0;
695 }
696 
697 /**
698  * Dump basic information about the adapter.
699  */
700 void cxgbe_print_adapter_info(struct adapter *adap)
701 {
702 	/**
703 	 * Hardware/Firmware/etc. Version/Revision IDs.
704 	 */
705 	t4_dump_version_info(adap);
706 }
707 
708 void cxgbe_print_port_info(struct adapter *adap)
709 {
710 	int i;
711 	char buf[80];
712 	struct rte_pci_addr *loc = &adap->pdev->addr;
713 
714 	for_each_port(adap, i) {
715 		const struct port_info *pi = adap2pinfo(adap, i);
716 		char *bufp = buf;
717 
718 		if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
719 			bufp += sprintf(bufp, "100M/");
720 		if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
721 			bufp += sprintf(bufp, "1G/");
722 		if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
723 			bufp += sprintf(bufp, "10G/");
724 		if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
725 			bufp += sprintf(bufp, "25G/");
726 		if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
727 			bufp += sprintf(bufp, "40G/");
728 		if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
729 			bufp += sprintf(bufp, "50G/");
730 		if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
731 			bufp += sprintf(bufp, "100G/");
732 		if (bufp != buf)
733 			--bufp;
734 		sprintf(bufp, "BASE-%s",
735 			t4_get_port_type_description(
736 				(enum fw_port_type)pi->link_cfg.port_type));
737 
738 		dev_info(adap,
739 			 " " PCI_PRI_FMT " Chelsio rev %d %s %s\n",
740 			 loc->domain, loc->bus, loc->devid, loc->function,
741 			 CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
742 			 (adap->flags & USING_MSIX) ? " MSI-X" :
743 			 (adap->flags & USING_MSI) ? " MSI" : "");
744 	}
745 }
746 
747 static int check_devargs_handler(const char *key, const char *value, void *p)
748 {
749 	if (!strncmp(key, CXGBE_DEVARG_CMN_KEEP_OVLAN, strlen(key)) ||
750 	    !strncmp(key, CXGBE_DEVARG_CMN_TX_MODE_LATENCY, strlen(key)) ||
751 	    !strncmp(key, CXGBE_DEVARG_VF_FORCE_LINK_UP, strlen(key))) {
752 		if (!strncmp(value, "1", 1)) {
753 			bool *dst_val = (bool *)p;
754 
755 			*dst_val = true;
756 		}
757 	}
758 
759 	if (!strncmp(key, CXGBE_DEVARG_PF_FILTER_MODE, strlen(key)) ||
760 	    !strncmp(key, CXGBE_DEVARG_PF_FILTER_MASK, strlen(key))) {
761 		u32 *dst_val = (u32 *)p;
762 		char *endptr = NULL;
763 		u32 arg_val;
764 
765 		arg_val = strtoul(value, &endptr, 16);
766 		if (errno || endptr == value)
767 			return -EINVAL;
768 
769 		*dst_val = arg_val;
770 	}
771 
772 	return 0;
773 }
774 
775 static int cxgbe_get_devargs(struct rte_devargs *devargs, const char *key,
776 			     void *p)
777 {
778 	struct rte_kvargs *kvlist;
779 	int ret = 0;
780 
781 	if (!devargs)
782 		return 0;
783 
784 	kvlist = rte_kvargs_parse(devargs->args, NULL);
785 	if (!kvlist)
786 		return 0;
787 
788 	if (!rte_kvargs_count(kvlist, key))
789 		goto out;
790 
791 	ret = rte_kvargs_process(kvlist, key, check_devargs_handler, p);
792 
793 out:
794 	rte_kvargs_free(kvlist);
795 
796 	return ret;
797 }
798 
799 static void cxgbe_get_devargs_int(struct adapter *adap, bool *dst,
800 				  const char *key, bool default_value)
801 {
802 	struct rte_pci_device *pdev = adap->pdev;
803 	int ret;
804 	bool devarg_value = default_value;
805 
806 	*dst = default_value;
807 	if (!pdev)
808 		return;
809 
810 	ret = cxgbe_get_devargs(pdev->device.devargs, key, &devarg_value);
811 	if (ret)
812 		return;
813 
814 	*dst = devarg_value;
815 }
816 
817 static void cxgbe_get_devargs_u32(struct adapter *adap, u32 *dst,
818 				  const char *key, u32 default_value)
819 {
820 	struct rte_pci_device *pdev = adap->pdev;
821 	u32 devarg_value = default_value;
822 	int ret;
823 
824 	*dst = default_value;
825 	if (!pdev)
826 		return;
827 
828 	ret = cxgbe_get_devargs(pdev->device.devargs, key, &devarg_value);
829 	if (ret)
830 		return;
831 
832 	*dst = devarg_value;
833 }
834 
835 void cxgbe_process_devargs(struct adapter *adap)
836 {
837 	cxgbe_get_devargs_int(adap, &adap->devargs.keep_ovlan,
838 			      CXGBE_DEVARG_CMN_KEEP_OVLAN, false);
839 	cxgbe_get_devargs_int(adap, &adap->devargs.tx_mode_latency,
840 			      CXGBE_DEVARG_CMN_TX_MODE_LATENCY, false);
841 	cxgbe_get_devargs_int(adap, &adap->devargs.force_link_up,
842 			      CXGBE_DEVARG_VF_FORCE_LINK_UP, false);
843 	cxgbe_get_devargs_u32(adap, &adap->devargs.filtermode,
844 			      CXGBE_DEVARG_PF_FILTER_MODE, 0);
845 	cxgbe_get_devargs_u32(adap, &adap->devargs.filtermask,
846 			      CXGBE_DEVARG_PF_FILTER_MASK, 0);
847 }
848 
849 static void configure_vlan_types(struct adapter *adapter)
850 {
851 	int i;
852 
853 	for_each_port(adapter, i) {
854 		/* OVLAN Type 0x88a8 */
855 		t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN0),
856 				 V_OVLAN_MASK(M_OVLAN_MASK) |
857 				 V_OVLAN_ETYPE(M_OVLAN_ETYPE),
858 				 V_OVLAN_MASK(M_OVLAN_MASK) |
859 				 V_OVLAN_ETYPE(0x88a8));
860 		/* OVLAN Type 0x9100 */
861 		t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN1),
862 				 V_OVLAN_MASK(M_OVLAN_MASK) |
863 				 V_OVLAN_ETYPE(M_OVLAN_ETYPE),
864 				 V_OVLAN_MASK(M_OVLAN_MASK) |
865 				 V_OVLAN_ETYPE(0x9100));
866 
867 		/* IVLAN 0X8100 */
868 		t4_set_reg_field(adapter, MPS_PORT_RX_IVLAN(i),
869 				 V_IVLAN_ETYPE(M_IVLAN_ETYPE),
870 				 V_IVLAN_ETYPE(0x8100));
871 
872 		t4_set_reg_field(adapter, MPS_PORT_RX_CTL(i),
873 				 F_OVLAN_EN0 | F_OVLAN_EN1 |
874 				 F_IVLAN_EN,
875 				 F_OVLAN_EN0 | F_OVLAN_EN1 |
876 				 F_IVLAN_EN);
877 	}
878 
879 	t4_tp_wr_bits_indirect(adapter, A_TP_INGRESS_CONFIG, V_RM_OVLAN(1),
880 			       V_RM_OVLAN(!adapter->devargs.keep_ovlan));
881 }
882 
883 static int cxgbe_get_filter_vnic_mode_from_devargs(u32 val)
884 {
885 	u32 vnic_mode;
886 
887 	vnic_mode = val & (CXGBE_DEVARGS_FILTER_MODE_PF_VF |
888 			   CXGBE_DEVARGS_FILTER_MODE_VLAN_OUTER);
889 	if (vnic_mode) {
890 		switch (vnic_mode) {
891 		case CXGBE_DEVARGS_FILTER_MODE_VLAN_OUTER:
892 			return CXGBE_FILTER_VNIC_MODE_OVLAN;
893 		case CXGBE_DEVARGS_FILTER_MODE_PF_VF:
894 			return CXGBE_FILTER_VNIC_MODE_PFVF;
895 		default:
896 			return -EINVAL;
897 		}
898 	}
899 
900 	return CXGBE_FILTER_VNIC_MODE_NONE;
901 }
902 
903 static int cxgbe_get_filter_mode_from_devargs(u32 val, bool closest_match)
904 {
905 	int vnic_mode, fmode = 0;
906 	bool found = false;
907 	u8 i;
908 
909 	if (val >= CXGBE_DEVARGS_FILTER_MODE_MAX) {
910 		pr_err("Unsupported flags set in filter mode. Must be < 0x%x\n",
911 		       CXGBE_DEVARGS_FILTER_MODE_MAX);
912 		return -ERANGE;
913 	}
914 
915 	vnic_mode = cxgbe_get_filter_vnic_mode_from_devargs(val);
916 	if (vnic_mode < 0) {
917 		pr_err("Unsupported Vnic-mode, more than 1 Vnic-mode selected\n");
918 		return vnic_mode;
919 	}
920 
921 	if (vnic_mode)
922 		fmode |= F_VNIC_ID;
923 	if (val & CXGBE_DEVARGS_FILTER_MODE_PHYSICAL_PORT)
924 		fmode |= F_PORT;
925 	if (val & CXGBE_DEVARGS_FILTER_MODE_ETHERNET_DSTMAC)
926 		fmode |= F_MACMATCH;
927 	if (val & CXGBE_DEVARGS_FILTER_MODE_ETHERNET_ETHTYPE)
928 		fmode |= F_ETHERTYPE;
929 	if (val & CXGBE_DEVARGS_FILTER_MODE_VLAN_INNER)
930 		fmode |= F_VLAN;
931 	if (val & CXGBE_DEVARGS_FILTER_MODE_IP_TOS)
932 		fmode |= F_TOS;
933 	if (val & CXGBE_DEVARGS_FILTER_MODE_IP_PROTOCOL)
934 		fmode |= F_PROTOCOL;
935 
936 	for (i = 0; i < ARRAY_SIZE(cxgbe_filter_mode_features); i++) {
937 		if ((cxgbe_filter_mode_features[i] & fmode) == fmode) {
938 			found = true;
939 			break;
940 		}
941 	}
942 
943 	if (!found)
944 		return -EINVAL;
945 
946 	return closest_match ? cxgbe_filter_mode_features[i] : fmode;
947 }
948 
949 static int configure_filter_mode_mask(struct adapter *adap)
950 {
951 	u32 params[2], val[2], nparams = 0;
952 	int ret;
953 
954 	if (!adap->devargs.filtermode && !adap->devargs.filtermask)
955 		return 0;
956 
957 	if (!adap->devargs.filtermode || !adap->devargs.filtermask) {
958 		pr_err("Unsupported, Provide both filtermode and filtermask devargs\n");
959 		return -EINVAL;
960 	}
961 
962 	if (adap->devargs.filtermask & ~adap->devargs.filtermode) {
963 		pr_err("Unsupported, filtermask (0x%x) must be subset of filtermode (0x%x)\n",
964 		       adap->devargs.filtermask, adap->devargs.filtermode);
965 
966 		return -EINVAL;
967 	}
968 
969 	params[0] = CXGBE_FW_PARAM_DEV(FILTER) |
970 		    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_MODE_MASK);
971 
972 	ret = cxgbe_get_filter_mode_from_devargs(adap->devargs.filtermode,
973 						 true);
974 	if (ret < 0) {
975 		pr_err("Unsupported filtermode devargs combination:0x%x\n",
976 		       adap->devargs.filtermode);
977 		return ret;
978 	}
979 
980 	val[0] = V_FW_PARAMS_PARAM_FILTER_MODE(ret);
981 
982 	ret = cxgbe_get_filter_mode_from_devargs(adap->devargs.filtermask,
983 						 false);
984 	if (ret < 0) {
985 		pr_err("Unsupported filtermask devargs combination:0x%x\n",
986 		       adap->devargs.filtermask);
987 		return ret;
988 	}
989 
990 	val[0] |= V_FW_PARAMS_PARAM_FILTER_MASK(ret);
991 
992 	nparams++;
993 
994 	ret = cxgbe_get_filter_vnic_mode_from_devargs(adap->devargs.filtermode);
995 	if (ret < 0)
996 		return ret;
997 
998 	if (ret) {
999 		params[1] = CXGBE_FW_PARAM_DEV(FILTER) |
1000 			    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_VNIC_MODE);
1001 
1002 		val[1] = ret - 1;
1003 
1004 		nparams++;
1005 	}
1006 
1007 	return t4_set_params(adap, adap->mbox, adap->pf, 0, nparams,
1008 			     params, val);
1009 }
1010 
1011 static void configure_pcie_ext_tag(struct adapter *adapter)
1012 {
1013 	u16 v;
1014 	int pos = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
1015 
1016 	if (!pos)
1017 		return;
1018 
1019 	if (pos > 0) {
1020 		t4_os_pci_read_cfg2(adapter, pos + PCI_EXP_DEVCTL, &v);
1021 		v |= PCI_EXP_DEVCTL_EXT_TAG;
1022 		t4_os_pci_write_cfg2(adapter, pos + PCI_EXP_DEVCTL, v);
1023 		if (is_t6(adapter->params.chip)) {
1024 			t4_set_reg_field(adapter, A_PCIE_CFG2,
1025 					 V_T6_TOTMAXTAG(M_T6_TOTMAXTAG),
1026 					 V_T6_TOTMAXTAG(7));
1027 			t4_set_reg_field(adapter, A_PCIE_CMD_CFG,
1028 					 V_T6_MINTAG(M_T6_MINTAG),
1029 					 V_T6_MINTAG(8));
1030 		} else {
1031 			t4_set_reg_field(adapter, A_PCIE_CFG2,
1032 					 V_TOTMAXTAG(M_TOTMAXTAG),
1033 					 V_TOTMAXTAG(3));
1034 			t4_set_reg_field(adapter, A_PCIE_CMD_CFG,
1035 					 V_MINTAG(M_MINTAG),
1036 					 V_MINTAG(8));
1037 		}
1038 	}
1039 }
1040 
1041 /* Figure out how many Queue Sets we can support */
1042 void cxgbe_configure_max_ethqsets(struct adapter *adapter)
1043 {
1044 	unsigned int ethqsets, reserved;
1045 
1046 	/* We need to reserve an Ingress Queue for the Asynchronous Firmware
1047 	 * Event Queue and 1 Control Queue per port.
1048 	 *
1049 	 * For each Queue Set, we'll need the ability to allocate two Egress
1050 	 * Contexts -- one for the Ingress Queue Free List and one for the TX
1051 	 * Ethernet Queue.
1052 	 */
1053 	reserved = max(adapter->params.nports, 1);
1054 	if (is_pf4(adapter)) {
1055 		struct pf_resources *pfres = &adapter->params.pfres;
1056 
1057 		ethqsets = min(pfres->niqflint, pfres->nethctrl);
1058 		if (ethqsets > (pfres->neq / 2))
1059 			ethqsets = pfres->neq / 2;
1060 	} else {
1061 		struct vf_resources *vfres = &adapter->params.vfres;
1062 
1063 		ethqsets = min(vfres->niqflint, vfres->nethctrl);
1064 		if (ethqsets > (vfres->neq / 2))
1065 			ethqsets = vfres->neq / 2;
1066 	}
1067 
1068 	ethqsets -= reserved;
1069 	adapter->sge.max_ethqsets = ethqsets;
1070 }
1071 
1072 /*
1073  * Tweak configuration based on system architecture, etc.  Most of these have
1074  * defaults assigned to them by Firmware Configuration Files (if we're using
1075  * them) but need to be explicitly set if we're using hard-coded
1076  * initialization. So these are essentially common tweaks/settings for
1077  * Configuration Files and hard-coded initialization ...
1078  */
1079 static int adap_init0_tweaks(struct adapter *adapter)
1080 {
1081 	u8 rx_dma_offset;
1082 
1083 	/*
1084 	 * Fix up various Host-Dependent Parameters like Page Size, Cache
1085 	 * Line Size, etc.  The firmware default is for a 4KB Page Size and
1086 	 * 64B Cache Line Size ...
1087 	 */
1088 	t4_fixup_host_params_compat(adapter, CXGBE_PAGE_SIZE, L1_CACHE_BYTES,
1089 				    T5_LAST_REV);
1090 
1091 	/*
1092 	 * Keep the chip default offset to deliver Ingress packets into our
1093 	 * DMA buffers to zero
1094 	 */
1095 	rx_dma_offset = 0;
1096 	t4_set_reg_field(adapter, A_SGE_CONTROL, V_PKTSHIFT(M_PKTSHIFT),
1097 			 V_PKTSHIFT(rx_dma_offset));
1098 
1099 	t4_set_reg_field(adapter, A_SGE_FLM_CFG,
1100 			 V_CREDITCNT(M_CREDITCNT) | M_CREDITCNTPACKING,
1101 			 V_CREDITCNT(3) | V_CREDITCNTPACKING(1));
1102 
1103 	t4_set_reg_field(adapter, A_SGE_INGRESS_RX_THRESHOLD,
1104 			 V_THRESHOLD_3(M_THRESHOLD_3), V_THRESHOLD_3(32U));
1105 
1106 	t4_set_reg_field(adapter, A_SGE_CONTROL2, V_IDMAARBROUNDROBIN(1U),
1107 			 V_IDMAARBROUNDROBIN(1U));
1108 
1109 	/*
1110 	 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
1111 	 * adds the pseudo header itself.
1112 	 */
1113 	t4_tp_wr_bits_indirect(adapter, A_TP_INGRESS_CONFIG,
1114 			       F_CSUM_HAS_PSEUDO_HDR, 0);
1115 
1116 	return 0;
1117 }
1118 
1119 /*
1120  * Attempt to initialize the adapter via a Firmware Configuration File.
1121  */
1122 static int adap_init0_config(struct adapter *adapter, int reset)
1123 {
1124 	u32 finiver, finicsum, cfcsum, param, val;
1125 	struct fw_caps_config_cmd caps_cmd;
1126 	unsigned long mtype = 0, maddr = 0;
1127 	u8 config_issued = 0;
1128 	char config_name[20];
1129 	int cfg_addr, ret;
1130 
1131 	/*
1132 	 * Reset device if necessary.
1133 	 */
1134 	if (reset) {
1135 		ret = t4_fw_reset(adapter, adapter->mbox,
1136 				  F_PIORSTMODE | F_PIORST);
1137 		if (ret < 0) {
1138 			dev_warn(adapter, "Firmware reset failed, error %d\n",
1139 				 -ret);
1140 			goto bye;
1141 		}
1142 	}
1143 
1144 	cfg_addr = t4_flash_cfg_addr(adapter);
1145 	if (cfg_addr < 0) {
1146 		ret = cfg_addr;
1147 		dev_warn(adapter, "Finding address for firmware config file in flash failed, error %d\n",
1148 			 -ret);
1149 		goto bye;
1150 	}
1151 
1152 	strcpy(config_name, "On Flash");
1153 	mtype = FW_MEMTYPE_CF_FLASH;
1154 	maddr = cfg_addr;
1155 
1156 	/* Enable HASH filter region when support is available. */
1157 	val = 1;
1158 	param = CXGBE_FW_PARAM_DEV(HASHFILTER_WITH_OFLD);
1159 	t4_set_params(adapter, adapter->mbox, adapter->pf, 0, 1,
1160 		      &param, &val);
1161 
1162 	/*
1163 	 * Issue a Capability Configuration command to the firmware to get it
1164 	 * to parse the Configuration File.  We don't use t4_fw_config_file()
1165 	 * because we want the ability to modify various features after we've
1166 	 * processed the configuration file ...
1167 	 */
1168 	memset(&caps_cmd, 0, sizeof(caps_cmd));
1169 	caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1170 					   F_FW_CMD_REQUEST | F_FW_CMD_READ);
1171 	caps_cmd.cfvalid_to_len16 =
1172 		cpu_to_be32(F_FW_CAPS_CONFIG_CMD_CFVALID |
1173 			    V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
1174 			    V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
1175 			    FW_LEN16(caps_cmd));
1176 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
1177 			 &caps_cmd);
1178 	/*
1179 	 * If the CAPS_CONFIG failed with an ENOENT (for a Firmware
1180 	 * Configuration File in FLASH), our last gasp effort is to use the
1181 	 * Firmware Configuration File which is embedded in the firmware.  A
1182 	 * very few early versions of the firmware didn't have one embedded
1183 	 * but we can ignore those.
1184 	 */
1185 	if (ret == -ENOENT) {
1186 		dev_info(adapter, "%s: Going for embedded config in firmware..\n",
1187 			 __func__);
1188 
1189 		memset(&caps_cmd, 0, sizeof(caps_cmd));
1190 		caps_cmd.op_to_write =
1191 			cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1192 				    F_FW_CMD_REQUEST | F_FW_CMD_READ);
1193 		caps_cmd.cfvalid_to_len16 = cpu_to_be32(FW_LEN16(caps_cmd));
1194 		ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
1195 				 sizeof(caps_cmd), &caps_cmd);
1196 		strcpy(config_name, "Firmware Default");
1197 	}
1198 
1199 	config_issued = 1;
1200 	if (ret < 0)
1201 		goto bye;
1202 
1203 	finiver = be32_to_cpu(caps_cmd.finiver);
1204 	finicsum = be32_to_cpu(caps_cmd.finicsum);
1205 	cfcsum = be32_to_cpu(caps_cmd.cfcsum);
1206 	if (finicsum != cfcsum)
1207 		dev_warn(adapter, "Configuration File checksum mismatch: [fini] csum=%#x, computed csum=%#x\n",
1208 			 finicsum, cfcsum);
1209 
1210 	/*
1211 	 * If we're a pure NIC driver then disable all offloading facilities.
1212 	 * This will allow the firmware to optimize aspects of the hardware
1213 	 * configuration which will result in improved performance.
1214 	 */
1215 	caps_cmd.niccaps &= cpu_to_be16(~FW_CAPS_CONFIG_NIC_ETHOFLD);
1216 	caps_cmd.toecaps = 0;
1217 	caps_cmd.iscsicaps = 0;
1218 	caps_cmd.rdmacaps = 0;
1219 	caps_cmd.fcoecaps = 0;
1220 	caps_cmd.cryptocaps = 0;
1221 
1222 	/*
1223 	 * And now tell the firmware to use the configuration we just loaded.
1224 	 */
1225 	caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1226 					   F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
1227 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
1228 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
1229 			 NULL);
1230 	if (ret < 0) {
1231 		dev_warn(adapter, "Unable to finalize Firmware Capabilities %d\n",
1232 			 -ret);
1233 		goto bye;
1234 	}
1235 
1236 	/*
1237 	 * Tweak configuration based on system architecture, etc.
1238 	 */
1239 	ret = adap_init0_tweaks(adapter);
1240 	if (ret < 0) {
1241 		dev_warn(adapter, "Unable to do init0-tweaks %d\n", -ret);
1242 		goto bye;
1243 	}
1244 
1245 	/*
1246 	 * And finally tell the firmware to initialize itself using the
1247 	 * parameters from the Configuration File.
1248 	 */
1249 	ret = t4_fw_initialize(adapter, adapter->mbox);
1250 	if (ret < 0) {
1251 		dev_warn(adapter, "Initializing Firmware failed, error %d\n",
1252 			 -ret);
1253 		goto bye;
1254 	}
1255 
1256 	/*
1257 	 * Return successfully and note that we're operating with parameters
1258 	 * not supplied by the driver, rather than from hard-wired
1259 	 * initialization constants buried in the driver.
1260 	 */
1261 	dev_info(adapter,
1262 		 "Successfully configured using Firmware Configuration File \"%s\", version %#x, computed checksum %#x\n",
1263 		 config_name, finiver, cfcsum);
1264 
1265 	return 0;
1266 
1267 	/*
1268 	 * Something bad happened.  Return the error ...  (If the "error"
1269 	 * is that there's no Configuration File on the adapter we don't
1270 	 * want to issue a warning since this is fairly common.)
1271 	 */
1272 bye:
1273 	if (config_issued && ret != -ENOENT)
1274 		dev_warn(adapter, "\"%s\" configuration file error %d\n",
1275 			 config_name, -ret);
1276 
1277 	dev_debug(adapter, "%s: returning ret = %d ..\n", __func__, ret);
1278 	return ret;
1279 }
1280 
1281 static int adap_init0(struct adapter *adap)
1282 {
1283 	struct fw_caps_config_cmd caps_cmd;
1284 	int ret = 0;
1285 	u32 v, port_vec;
1286 	enum dev_state state;
1287 	u32 params[7], val[7];
1288 	int reset = 1;
1289 	int mbox = adap->mbox;
1290 
1291 	/*
1292 	 * Contact FW, advertising Master capability.
1293 	 */
1294 	ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
1295 	if (ret < 0) {
1296 		dev_err(adap, "%s: could not connect to FW, error %d\n",
1297 			__func__, -ret);
1298 		goto bye;
1299 	}
1300 
1301 	CXGBE_DEBUG_MBOX(adap, "%s: adap->mbox = %d; ret = %d\n", __func__,
1302 			 adap->mbox, ret);
1303 
1304 	if (ret == mbox)
1305 		adap->flags |= MASTER_PF;
1306 
1307 	if (state == DEV_STATE_INIT) {
1308 		/*
1309 		 * Force halt and reset FW because a previous instance may have
1310 		 * exited abnormally without properly shutting down
1311 		 */
1312 		ret = t4_fw_halt(adap, adap->mbox, reset);
1313 		if (ret < 0) {
1314 			dev_err(adap, "Failed to halt. Exit.\n");
1315 			goto bye;
1316 		}
1317 
1318 		ret = t4_fw_restart(adap, adap->mbox, reset);
1319 		if (ret < 0) {
1320 			dev_err(adap, "Failed to restart. Exit.\n");
1321 			goto bye;
1322 		}
1323 		state = (enum dev_state)((unsigned)state & ~DEV_STATE_INIT);
1324 	}
1325 
1326 	t4_get_version_info(adap);
1327 
1328 	ret = t4_get_core_clock(adap, &adap->params.vpd);
1329 	if (ret < 0) {
1330 		dev_err(adap, "%s: could not get core clock, error %d\n",
1331 			__func__, -ret);
1332 		goto bye;
1333 	}
1334 
1335 	/*
1336 	 * If the firmware is initialized already (and we're not forcing a
1337 	 * master initialization), note that we're living with existing
1338 	 * adapter parameters.  Otherwise, it's time to try initializing the
1339 	 * adapter ...
1340 	 */
1341 	if (state == DEV_STATE_INIT) {
1342 		dev_info(adap, "Coming up as %s: Adapter already initialized\n",
1343 			 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
1344 	} else {
1345 		dev_info(adap, "Coming up as MASTER: Initializing adapter\n");
1346 
1347 		ret = adap_init0_config(adap, reset);
1348 		if (ret == -ENOENT) {
1349 			dev_err(adap,
1350 				"No Configuration File present on adapter. Using hard-wired configuration parameters.\n");
1351 			goto bye;
1352 		}
1353 	}
1354 	if (ret < 0) {
1355 		dev_err(adap, "could not initialize adapter, error %d\n", -ret);
1356 		goto bye;
1357 	}
1358 
1359 	/* Now that we've successfully configured and initialized the adapter
1360 	 * (or found it already initialized), we can ask the Firmware what
1361 	 * resources it has provisioned for us.
1362 	 */
1363 	ret = t4_get_pfres(adap);
1364 	if (ret) {
1365 		dev_err(adap->pdev_dev,
1366 			"Unable to retrieve resource provisioning info\n");
1367 		goto bye;
1368 	}
1369 
1370 	/* Find out what ports are available to us. */
1371 	v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
1372 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC);
1373 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
1374 	if (ret < 0) {
1375 		dev_err(adap, "%s: failure in t4_query_params; error = %d\n",
1376 			__func__, ret);
1377 		goto bye;
1378 	}
1379 
1380 	adap->params.nports = hweight32(port_vec);
1381 	adap->params.portvec = port_vec;
1382 
1383 	dev_debug(adap, "%s: adap->params.nports = %u\n", __func__,
1384 		  adap->params.nports);
1385 
1386 	/*
1387 	 * Give the SGE code a chance to pull in anything that it needs ...
1388 	 * Note that this must be called after we retrieve our VPD parameters
1389 	 * in order to know how to convert core ticks to seconds, etc.
1390 	 */
1391 	ret = t4_sge_init(adap);
1392 	if (ret < 0) {
1393 		dev_err(adap, "t4_sge_init failed with error %d\n",
1394 			-ret);
1395 		goto bye;
1396 	}
1397 
1398 	/*
1399 	 * Grab some of our basic fundamental operating parameters.
1400 	 */
1401 	params[0] = CXGBE_FW_PARAM_PFVF(L2T_START);
1402 	params[1] = CXGBE_FW_PARAM_PFVF(L2T_END);
1403 	params[2] = CXGBE_FW_PARAM_PFVF(FILTER_START);
1404 	params[3] = CXGBE_FW_PARAM_PFVF(FILTER_END);
1405 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4, params, val);
1406 	if (ret < 0)
1407 		goto bye;
1408 	adap->l2t_start = val[0];
1409 	adap->l2t_end = val[1];
1410 	adap->tids.ftid_base = val[2];
1411 	adap->tids.nftids = val[3] - val[2] + 1;
1412 
1413 	params[0] = CXGBE_FW_PARAM_PFVF(CLIP_START);
1414 	params[1] = CXGBE_FW_PARAM_PFVF(CLIP_END);
1415 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
1416 	if (ret < 0)
1417 		goto bye;
1418 	adap->clipt_start = val[0];
1419 	adap->clipt_end = val[1];
1420 
1421 	/*
1422 	 * Get device capabilities so we can determine what resources we need
1423 	 * to manage.
1424 	 */
1425 	memset(&caps_cmd, 0, sizeof(caps_cmd));
1426 	caps_cmd.op_to_write = htonl(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1427 				     F_FW_CMD_REQUEST | F_FW_CMD_READ);
1428 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
1429 	ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
1430 			 &caps_cmd);
1431 	if (ret < 0)
1432 		goto bye;
1433 
1434 	if ((caps_cmd.niccaps & cpu_to_be16(FW_CAPS_CONFIG_NIC_HASHFILTER)) &&
1435 	    is_t6(adap->params.chip)) {
1436 		if (cxgbe_init_hash_filter(adap) < 0)
1437 			goto bye;
1438 	}
1439 
1440 	/* See if FW supports FW_FILTER2 work request */
1441 	if (is_t4(adap->params.chip)) {
1442 		adap->params.filter2_wr_support = 0;
1443 	} else {
1444 		params[0] = CXGBE_FW_PARAM_DEV(FILTER2_WR);
1445 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1446 				      1, params, val);
1447 		adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
1448 	}
1449 
1450 	/* Check if FW supports returning vin.
1451 	 * If this is not supported, driver will interpret
1452 	 * these values from viid.
1453 	 */
1454 	params[0] = CXGBE_FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
1455 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1456 			      1, params, val);
1457 	adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0);
1458 
1459 	/* query tid-related parameters */
1460 	params[0] = CXGBE_FW_PARAM_DEV(NTID);
1461 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
1462 			      params, val);
1463 	if (ret < 0)
1464 		goto bye;
1465 	adap->tids.ntids = val[0];
1466 	adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
1467 
1468 	/* If we're running on newer firmware, let it know that we're
1469 	 * prepared to deal with encapsulated CPL messages.  Older
1470 	 * firmware won't understand this and we'll just get
1471 	 * unencapsulated messages ...
1472 	 */
1473 	params[0] = CXGBE_FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
1474 	val[0] = 1;
1475 	(void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
1476 
1477 	/*
1478 	 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
1479 	 * capability.  Earlier versions of the firmware didn't have the
1480 	 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
1481 	 * permission to use ULPTX MEMWRITE DSGL.
1482 	 */
1483 	if (is_t4(adap->params.chip)) {
1484 		adap->params.ulptx_memwrite_dsgl = false;
1485 	} else {
1486 		params[0] = CXGBE_FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
1487 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1488 				      1, params, val);
1489 		adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
1490 	}
1491 
1492 	/* Query for max number of packets that can be coalesced for Tx */
1493 	params[0] = CXGBE_FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR);
1494 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
1495 	if (!ret && val[0] > 0)
1496 		adap->params.max_tx_coalesce_num = val[0];
1497 	else
1498 		adap->params.max_tx_coalesce_num = ETH_COALESCE_PKT_NUM;
1499 
1500 	params[0] = CXGBE_FW_PARAM_DEV(VI_ENABLE_INGRESS_AFTER_LINKUP);
1501 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
1502 	adap->params.vi_enable_rx = (ret == 0 && val[0] != 0);
1503 
1504 	/* Read the RAW MPS entries. In T6, the last 2 TCAM entries
1505 	 * are reserved for RAW MAC addresses (rawf = 2, one per port).
1506 	 */
1507 	if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
1508 		params[0] = CXGBE_FW_PARAM_PFVF(RAWF_START);
1509 		params[1] = CXGBE_FW_PARAM_PFVF(RAWF_END);
1510 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
1511 				      params, val);
1512 		if (ret == 0) {
1513 			adap->params.rawf_start = val[0];
1514 			adap->params.rawf_size = val[1] - val[0] + 1;
1515 		}
1516 	}
1517 
1518 	/*
1519 	 * The MTU/MSS Table is initialized by now, so load their values.  If
1520 	 * we're initializing the adapter, then we'll make any modifications
1521 	 * we want to the MTU/MSS Table and also initialize the congestion
1522 	 * parameters.
1523 	 */
1524 	t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
1525 	if (state != DEV_STATE_INIT) {
1526 		int i;
1527 
1528 		/*
1529 		 * The default MTU Table contains values 1492 and 1500.
1530 		 * However, for TCP, it's better to have two values which are
1531 		 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
1532 		 * This allows us to have a TCP Data Payload which is a
1533 		 * multiple of 8 regardless of what combination of TCP Options
1534 		 * are in use (always a multiple of 4 bytes) which is
1535 		 * important for performance reasons.  For instance, if no
1536 		 * options are in use, then we have a 20-byte IP header and a
1537 		 * 20-byte TCP header.  In this case, a 1500-byte MSS would
1538 		 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
1539 		 * which is not a multiple of 8.  So using an MSS of 1488 in
1540 		 * this case results in a TCP Data Payload of 1448 bytes which
1541 		 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
1542 		 * Stamps have been negotiated, then an MTU of 1500 bytes
1543 		 * results in a TCP Data Payload of 1448 bytes which, as
1544 		 * above, is a multiple of 8 bytes ...
1545 		 */
1546 		for (i = 0; i < NMTUS; i++)
1547 			if (adap->params.mtus[i] == 1492) {
1548 				adap->params.mtus[i] = 1488;
1549 				break;
1550 			}
1551 
1552 		t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
1553 			     adap->params.b_wnd);
1554 	}
1555 	t4_init_sge_params(adap);
1556 	ret = configure_filter_mode_mask(adap);
1557 	if (ret < 0)
1558 		goto bye;
1559 	t4_init_tp_params(adap);
1560 	configure_pcie_ext_tag(adap);
1561 	configure_vlan_types(adap);
1562 	cxgbe_configure_max_ethqsets(adap);
1563 
1564 	adap->params.drv_memwin = MEMWIN_NIC;
1565 	adap->flags |= FW_OK;
1566 	dev_debug(adap, "%s: returning zero..\n", __func__);
1567 	return 0;
1568 
1569 	/*
1570 	 * Something bad happened.  If a command timed out or failed with EIO
1571 	 * FW does not operate within its spec or something catastrophic
1572 	 * happened to HW/FW, stop issuing commands.
1573 	 */
1574 bye:
1575 	if (ret != -ETIMEDOUT && ret != -EIO)
1576 		t4_fw_bye(adap, adap->mbox);
1577 	return ret;
1578 }
1579 
1580 /**
1581  * t4_os_portmod_changed - handle port module changes
1582  * @adap: the adapter associated with the module change
1583  * @port_id: the port index whose module status has changed
1584  *
1585  * This is the OS-dependent handler for port module changes.  It is
1586  * invoked when a port module is removed or inserted for any OS-specific
1587  * processing.
1588  */
1589 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
1590 {
1591 	static const char * const mod_str[] = {
1592 		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
1593 	};
1594 
1595 	const struct port_info *pi = adap2pinfo(adap, port_id);
1596 
1597 	if (pi->link_cfg.mod_type == FW_PORT_MOD_TYPE_NONE)
1598 		dev_info(adap, "Port%d: port module unplugged\n", pi->port_id);
1599 	else if (pi->link_cfg.mod_type < ARRAY_SIZE(mod_str))
1600 		dev_info(adap, "Port%d: %s port module inserted\n", pi->port_id,
1601 			 mod_str[pi->link_cfg.mod_type]);
1602 	else if (pi->link_cfg.mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
1603 		dev_info(adap, "Port%d: unsupported port module inserted\n",
1604 			 pi->port_id);
1605 	else if (pi->link_cfg.mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
1606 		dev_info(adap, "Port%d: unknown port module inserted\n",
1607 			 pi->port_id);
1608 	else if (pi->link_cfg.mod_type == FW_PORT_MOD_TYPE_ERROR)
1609 		dev_info(adap, "Port%d: transceiver module error\n",
1610 			 pi->port_id);
1611 	else
1612 		dev_info(adap, "Port%d: unknown module type %d inserted\n",
1613 			 pi->port_id, pi->link_cfg.mod_type);
1614 }
1615 
1616 void t4_os_link_changed(struct adapter *adap, int port_id)
1617 {
1618 	struct port_info *pi = adap2pinfo(adap, port_id);
1619 
1620 	/* If link status has not changed or if firmware doesn't
1621 	 * support enabling/disabling VI's Rx path during runtime,
1622 	 * then return.
1623 	 */
1624 	if (adap->params.vi_enable_rx == 0 ||
1625 	    pi->vi_en_rx == pi->link_cfg.link_ok)
1626 		return;
1627 
1628 	/* Don't enable VI Rx path, if link has been administratively
1629 	 * turned off.
1630 	 */
1631 	if (pi->vi_en_tx == 0 && pi->vi_en_rx == 0)
1632 		return;
1633 
1634 	/* When link goes down, disable the port's Rx path to drop
1635 	 * Rx traffic closer to the wire, instead of processing it
1636 	 * further in the Rx pipeline. The Rx path will be re-enabled
1637 	 * once the link up message comes in firmware event queue.
1638 	 */
1639 	pi->vi_en_rx = pi->link_cfg.link_ok;
1640 	t4_enable_vi(adap, adap->mbox, pi->viid, pi->vi_en_rx, pi->vi_en_tx);
1641 }
1642 
1643 bool cxgbe_force_linkup(struct adapter *adap)
1644 {
1645 	if (is_pf4(adap))
1646 		return false;	/* force_linkup not required for pf driver */
1647 
1648 	return adap->devargs.force_link_up;
1649 }
1650 
1651 /**
1652  * link_start - enable a port
1653  * @dev: the port to enable
1654  *
1655  * Performs the MAC and PHY actions needed to enable a port.
1656  */
1657 int cxgbe_link_start(struct port_info *pi)
1658 {
1659 	struct adapter *adapter = pi->adapter;
1660 	u64 conf_offloads;
1661 	unsigned int mtu;
1662 	int ret;
1663 
1664 	mtu = pi->eth_dev->data->mtu;
1665 
1666 	conf_offloads = pi->eth_dev->data->dev_conf.rxmode.offloads;
1667 
1668 	/*
1669 	 * We do not set address filters and promiscuity here, the stack does
1670 	 * that step explicitly.
1671 	 */
1672 	ret = t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, -1, -1, -1,
1673 			    !!(conf_offloads & RTE_ETH_RX_OFFLOAD_VLAN_STRIP),
1674 			    true);
1675 	if (ret == 0) {
1676 		ret = cxgbe_mpstcam_modify(pi, (int)pi->xact_addr_filt,
1677 				(u8 *)&pi->eth_dev->data->mac_addrs[0]);
1678 		if (ret >= 0) {
1679 			pi->xact_addr_filt = ret;
1680 			ret = 0;
1681 		}
1682 	}
1683 	if (ret == 0 && is_pf4(adapter))
1684 		ret = t4_link_l1cfg(pi, pi->link_cfg.admin_caps);
1685 	if (ret == 0) {
1686 		/* Disable VI Rx until link up message is received in
1687 		 * firmware event queue, if firmware supports enabling/
1688 		 * disabling VI Rx at runtime.
1689 		 */
1690 		pi->vi_en_rx = adapter->params.vi_enable_rx ? 0 : 1;
1691 		pi->vi_en_tx = 1;
1692 		ret = t4_enable_vi_params(adapter, adapter->mbox, pi->viid,
1693 					  pi->vi_en_rx, pi->vi_en_tx, false);
1694 	}
1695 
1696 	if (ret == 0 && cxgbe_force_linkup(adapter))
1697 		pi->eth_dev->data->dev_link.link_status = RTE_ETH_LINK_UP;
1698 	return ret;
1699 }
1700 
1701 /**
1702  * cxgbe_write_rss_conf - flash the RSS configuration for a given port
1703  * @pi: the port
1704  * @rss_hf: Hash configuration to apply
1705  */
1706 int cxgbe_write_rss_conf(const struct port_info *pi, uint64_t rss_hf)
1707 {
1708 	struct adapter *adapter = pi->adapter;
1709 	const struct sge_eth_rxq *rxq;
1710 	u64 flags = 0;
1711 	u16 rss;
1712 	int err;
1713 
1714 	/*  Should never be called before setting up sge eth rx queues */
1715 	if (!(adapter->flags & FULL_INIT_DONE)) {
1716 		dev_err(adap, "%s No RXQs available on port %d\n",
1717 			__func__, pi->port_id);
1718 		return -EINVAL;
1719 	}
1720 
1721 	/* Don't allow unsupported hash functions */
1722 	if (rss_hf & ~CXGBE_RSS_HF_ALL)
1723 		return -EINVAL;
1724 
1725 	if (rss_hf & CXGBE_RSS_HF_IPV4_MASK)
1726 		flags |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
1727 
1728 	if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV4_TCP)
1729 		flags |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
1730 
1731 	if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV4_UDP)
1732 		flags |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
1733 			 F_FW_RSS_VI_CONFIG_CMD_UDPEN;
1734 
1735 	if (rss_hf & CXGBE_RSS_HF_IPV6_MASK)
1736 		flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
1737 
1738 	if (rss_hf & CXGBE_RSS_HF_TCP_IPV6_MASK)
1739 		flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
1740 			 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
1741 
1742 	if (rss_hf & CXGBE_RSS_HF_UDP_IPV6_MASK)
1743 		flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
1744 			 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
1745 			 F_FW_RSS_VI_CONFIG_CMD_UDPEN;
1746 
1747 	rxq = &adapter->sge.ethrxq[pi->first_rxqset];
1748 	rss = rxq[0].rspq.abs_id;
1749 
1750 	/* If Tunnel All Lookup isn't specified in the global RSS
1751 	 * Configuration, then we need to specify a default Ingress
1752 	 * Queue for any ingress packets which aren't hashed.  We'll
1753 	 * use our first ingress queue ...
1754 	 */
1755 	err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
1756 			       flags, rss);
1757 	return err;
1758 }
1759 
1760 /**
1761  * cxgbe_write_rss - write the RSS table for a given port
1762  * @pi: the port
1763  * @queues: array of queue indices for RSS
1764  *
1765  * Sets up the portion of the HW RSS table for the port's VI to distribute
1766  * packets to the Rx queues in @queues.
1767  */
1768 int cxgbe_write_rss(const struct port_info *pi, const u16 *queues)
1769 {
1770 	u16 *rss;
1771 	int i, err;
1772 	struct adapter *adapter = pi->adapter;
1773 	const struct sge_eth_rxq *rxq;
1774 
1775 	/*  Should never be called before setting up sge eth rx queues */
1776 	BUG_ON(!(adapter->flags & FULL_INIT_DONE));
1777 
1778 	rxq = &adapter->sge.ethrxq[pi->first_rxqset];
1779 	rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0);
1780 	if (!rss)
1781 		return -ENOMEM;
1782 
1783 	/* map the queue indices to queue ids */
1784 	for (i = 0; i < pi->rss_size; i++, queues++)
1785 		rss[i] = rxq[*queues].rspq.abs_id;
1786 
1787 	err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
1788 				  pi->rss_size, rss, pi->rss_size);
1789 	rte_free(rss);
1790 	return err;
1791 }
1792 
1793 /**
1794  * setup_rss - configure RSS
1795  * @adapter: the adapter
1796  *
1797  * Sets up RSS to distribute packets to multiple receive queues.  We
1798  * configure the RSS CPU lookup table to distribute to the number of HW
1799  * receive queues, and the response queue lookup table to narrow that
1800  * down to the response queues actually configured for each port.
1801  * We always configure the RSS mapping for all ports since the mapping
1802  * table has plenty of entries.
1803  */
1804 int cxgbe_setup_rss(struct port_info *pi)
1805 {
1806 	int j, err;
1807 	struct adapter *adapter = pi->adapter;
1808 
1809 	dev_debug(adapter, "%s:  pi->rss_size = %u; pi->n_rx_qsets = %u\n",
1810 		  __func__, pi->rss_size, pi->n_rx_qsets);
1811 
1812 	if (!(pi->flags & PORT_RSS_DONE)) {
1813 		if (adapter->flags & FULL_INIT_DONE) {
1814 			/* Fill default values with equal distribution */
1815 			for (j = 0; j < pi->rss_size; j++)
1816 				pi->rss[j] = j % pi->n_rx_qsets;
1817 
1818 			err = cxgbe_write_rss(pi, pi->rss);
1819 			if (err)
1820 				return err;
1821 
1822 			err = cxgbe_write_rss_conf(pi, pi->rss_hf);
1823 			if (err)
1824 				return err;
1825 			pi->flags |= PORT_RSS_DONE;
1826 		}
1827 	}
1828 	return 0;
1829 }
1830 
1831 /*
1832  * Enable NAPI scheduling and interrupt generation for all Rx queues.
1833  */
1834 static void enable_rx(struct adapter *adap, struct sge_rspq *q)
1835 {
1836 	/* 0-increment GTS to start the timer and enable interrupts */
1837 	t4_write_reg(adap, is_pf4(adap) ? MYPF_REG(A_SGE_PF_GTS) :
1838 					  T4VF_SGE_BASE_ADDR + A_SGE_VF_GTS,
1839 		     V_SEINTARM(q->intr_params) |
1840 		     V_INGRESSQID(q->cntxt_id));
1841 }
1842 
1843 void cxgbe_enable_rx_queues(struct port_info *pi)
1844 {
1845 	struct adapter *adap = pi->adapter;
1846 	struct sge *s = &adap->sge;
1847 	unsigned int i;
1848 
1849 	for (i = 0; i < pi->n_rx_qsets; i++)
1850 		enable_rx(adap, &s->ethrxq[pi->first_rxqset + i].rspq);
1851 }
1852 
1853 /**
1854  * fw_caps_to_speed_caps - translate Firmware Port Caps to Speed Caps.
1855  * @port_type: Firmware Port Type
1856  * @fw_caps: Firmware Port Capabilities
1857  * @speed_caps: Device Info Speed Capabilities
1858  *
1859  * Translate a Firmware Port Capabilities specification to Device Info
1860  * Speed Capabilities.
1861  */
1862 static void fw_caps_to_speed_caps(enum fw_port_type port_type,
1863 				  unsigned int fw_caps,
1864 				  u32 *speed_caps)
1865 {
1866 #define SET_SPEED(__speed_name) \
1867 	do { \
1868 		*speed_caps |= RTE_ETH_LINK_ ## __speed_name; \
1869 	} while (0)
1870 
1871 #define FW_CAPS_TO_SPEED(__fw_name) \
1872 	do { \
1873 		if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \
1874 			SET_SPEED(__fw_name); \
1875 	} while (0)
1876 
1877 	switch (port_type) {
1878 	case FW_PORT_TYPE_BT_SGMII:
1879 	case FW_PORT_TYPE_BT_XFI:
1880 	case FW_PORT_TYPE_BT_XAUI:
1881 		FW_CAPS_TO_SPEED(SPEED_100M);
1882 		FW_CAPS_TO_SPEED(SPEED_1G);
1883 		FW_CAPS_TO_SPEED(SPEED_10G);
1884 		break;
1885 
1886 	case FW_PORT_TYPE_KX4:
1887 	case FW_PORT_TYPE_KX:
1888 	case FW_PORT_TYPE_FIBER_XFI:
1889 	case FW_PORT_TYPE_FIBER_XAUI:
1890 	case FW_PORT_TYPE_SFP:
1891 	case FW_PORT_TYPE_QSFP_10G:
1892 	case FW_PORT_TYPE_QSA:
1893 		FW_CAPS_TO_SPEED(SPEED_1G);
1894 		FW_CAPS_TO_SPEED(SPEED_10G);
1895 		break;
1896 
1897 	case FW_PORT_TYPE_KR:
1898 		SET_SPEED(SPEED_10G);
1899 		break;
1900 
1901 	case FW_PORT_TYPE_BP_AP:
1902 	case FW_PORT_TYPE_BP4_AP:
1903 		SET_SPEED(SPEED_1G);
1904 		SET_SPEED(SPEED_10G);
1905 		break;
1906 
1907 	case FW_PORT_TYPE_BP40_BA:
1908 	case FW_PORT_TYPE_QSFP:
1909 		SET_SPEED(SPEED_40G);
1910 		break;
1911 
1912 	case FW_PORT_TYPE_CR_QSFP:
1913 	case FW_PORT_TYPE_SFP28:
1914 	case FW_PORT_TYPE_KR_SFP28:
1915 		FW_CAPS_TO_SPEED(SPEED_1G);
1916 		FW_CAPS_TO_SPEED(SPEED_10G);
1917 		FW_CAPS_TO_SPEED(SPEED_25G);
1918 		break;
1919 
1920 	case FW_PORT_TYPE_CR2_QSFP:
1921 		SET_SPEED(SPEED_50G);
1922 		break;
1923 
1924 	case FW_PORT_TYPE_KR4_100G:
1925 	case FW_PORT_TYPE_CR4_QSFP:
1926 		FW_CAPS_TO_SPEED(SPEED_25G);
1927 		FW_CAPS_TO_SPEED(SPEED_40G);
1928 		FW_CAPS_TO_SPEED(SPEED_50G);
1929 		FW_CAPS_TO_SPEED(SPEED_100G);
1930 		break;
1931 
1932 	default:
1933 		break;
1934 	}
1935 
1936 #undef FW_CAPS_TO_SPEED
1937 #undef SET_SPEED
1938 }
1939 
1940 /**
1941  * cxgbe_get_speed_caps - Fetch supported speed capabilities
1942  * @pi: Underlying port's info
1943  * @speed_caps: Device Info speed capabilities
1944  *
1945  * Fetch supported speed capabilities of the underlying port.
1946  */
1947 void cxgbe_get_speed_caps(struct port_info *pi, u32 *speed_caps)
1948 {
1949 	*speed_caps = 0;
1950 
1951 	fw_caps_to_speed_caps(pi->link_cfg.port_type, pi->link_cfg.pcaps,
1952 			      speed_caps);
1953 
1954 	if (!(pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG))
1955 		*speed_caps |= RTE_ETH_LINK_SPEED_FIXED;
1956 }
1957 
1958 /**
1959  * cxgbe_set_link_status - Set device link up or down.
1960  * @pi: Underlying port's info
1961  * @status: 0 - down, 1 - up
1962  *
1963  * Set the device link up or down.
1964  */
1965 int cxgbe_set_link_status(struct port_info *pi, bool status)
1966 {
1967 	struct adapter *adapter = pi->adapter;
1968 	int err = 0;
1969 
1970 	/* Wait for link up message from firmware to enable Rx path,
1971 	 * if firmware supports enabling/disabling VI Rx at runtime.
1972 	 */
1973 	pi->vi_en_rx = adapter->params.vi_enable_rx ? 0 : status;
1974 	pi->vi_en_tx = status;
1975 	err = t4_enable_vi(adapter, adapter->mbox, pi->viid, pi->vi_en_rx,
1976 			   pi->vi_en_tx);
1977 	if (err) {
1978 		dev_err(adapter, "%s: disable_vi failed: %d\n", __func__, err);
1979 		return err;
1980 	}
1981 
1982 	if (!status)
1983 		t4_reset_link_config(adapter, pi->pidx);
1984 
1985 	return 0;
1986 }
1987 
1988 /**
1989  * cxgb_up - enable the adapter
1990  * @adap: adapter being enabled
1991  *
1992  * Called when the first port is enabled, this function performs the
1993  * actions necessary to make an adapter operational, such as completing
1994  * the initialization of HW modules, and enabling interrupts.
1995  */
1996 int cxgbe_up(struct adapter *adap)
1997 {
1998 	enable_rx(adap, &adap->sge.fw_evtq);
1999 	t4_sge_tx_monitor_start(adap);
2000 	if (is_pf4(adap))
2001 		t4_intr_enable(adap);
2002 	adap->flags |= FULL_INIT_DONE;
2003 
2004 	/* TODO: deadman watchdog ?? */
2005 	return 0;
2006 }
2007 
2008 /*
2009  * Close the port
2010  */
2011 int cxgbe_down(struct port_info *pi)
2012 {
2013 	return cxgbe_set_link_status(pi, false);
2014 }
2015 
2016 /*
2017  * Release resources when all the ports have been stopped.
2018  */
2019 void cxgbe_close(struct adapter *adapter)
2020 {
2021 	if (adapter->flags & FULL_INIT_DONE) {
2022 		tid_free(&adapter->tids);
2023 		t4_cleanup_mpstcam(adapter);
2024 		t4_cleanup_clip_tbl(adapter);
2025 		t4_cleanup_l2t(adapter);
2026 		t4_cleanup_smt(adapter);
2027 		if (is_pf4(adapter))
2028 			t4_intr_disable(adapter);
2029 		t4_sge_tx_monitor_stop(adapter);
2030 		t4_free_sge_resources(adapter);
2031 		adapter->flags &= ~FULL_INIT_DONE;
2032 	}
2033 
2034 	cxgbe_cfg_queues_free(adapter);
2035 
2036 	if (is_pf4(adapter) && (adapter->flags & FW_OK))
2037 		t4_fw_bye(adapter, adapter->mbox);
2038 }
2039 
2040 static void adap_smt_index(struct adapter *adapter, u32 *smt_start_idx,
2041 			   u32 *smt_size)
2042 {
2043 	u32 params[2], smt_val[2];
2044 	int ret;
2045 
2046 	params[0] = CXGBE_FW_PARAM_PFVF(GET_SMT_START);
2047 	params[1] = CXGBE_FW_PARAM_PFVF(GET_SMT_SIZE);
2048 
2049 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2050 			      2, params, smt_val);
2051 
2052 	/* if FW doesn't recognize this command then set it to default setting
2053 	 * which is start index as 0 and size as 256.
2054 	 */
2055 	if (ret < 0) {
2056 		*smt_start_idx = 0;
2057 		*smt_size = SMT_SIZE;
2058 	} else {
2059 		*smt_start_idx = smt_val[0];
2060 		/* smt size can be zero, if nsmt is not yet configured in
2061 		 * the config file or set as zero, then configure all the
2062 		 * remaining entries to this PF itself.
2063 		 */
2064 		if (!smt_val[1])
2065 			*smt_size = SMT_SIZE - *smt_start_idx;
2066 		else
2067 			*smt_size = smt_val[1];
2068 	}
2069 }
2070 
2071 int cxgbe_probe(struct adapter *adapter)
2072 {
2073 	u32 smt_start_idx, smt_size;
2074 	struct port_info *pi;
2075 	int func, i;
2076 	int err = 0;
2077 	u32 whoami;
2078 	int chip;
2079 
2080 	whoami = t4_read_reg(adapter, A_PL_WHOAMI);
2081 	chip = t4_get_chip_type(adapter,
2082 			CHELSIO_PCI_ID_VER(adapter->pdev->id.device_id));
2083 	if (chip < 0)
2084 		return chip;
2085 
2086 	func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
2087 	       G_SOURCEPF(whoami) : G_T6_SOURCEPF(whoami);
2088 
2089 	adapter->mbox = func;
2090 	adapter->pf = func;
2091 
2092 	t4_os_lock_init(&adapter->mbox_lock);
2093 	TAILQ_INIT(&adapter->mbox_list);
2094 	t4_os_lock_init(&adapter->win0_lock);
2095 
2096 	err = t4_prep_adapter(adapter);
2097 	if (err)
2098 		return err;
2099 
2100 	setup_memwin(adapter);
2101 	err = adap_init0(adapter);
2102 	if (err) {
2103 		dev_err(adapter, "%s: Adapter initialization failed, error %d\n",
2104 			__func__, err);
2105 		goto out_free;
2106 	}
2107 
2108 	if (!is_t4(adapter->params.chip)) {
2109 		/*
2110 		 * The userspace doorbell BAR is split evenly into doorbell
2111 		 * regions, each associated with an egress queue.  If this
2112 		 * per-queue region is large enough (at least UDBS_SEG_SIZE)
2113 		 * then it can be used to submit a tx work request with an
2114 		 * implied doorbell.  Enable write combining on the BAR if
2115 		 * there is room for such work requests.
2116 		 */
2117 		int s_qpp, qpp, num_seg;
2118 
2119 		s_qpp = (S_QUEUESPERPAGEPF0 +
2120 			(S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) *
2121 			adapter->pf);
2122 		qpp = 1 << ((t4_read_reg(adapter,
2123 				A_SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp)
2124 				& M_QUEUESPERPAGEPF0);
2125 		num_seg = CXGBE_PAGE_SIZE / UDBS_SEG_SIZE;
2126 		if (qpp > num_seg)
2127 			dev_warn(adapter, "Incorrect SGE EGRESS QUEUES_PER_PAGE configuration, continuing in debug mode\n");
2128 
2129 		adapter->bar2 = (void *)adapter->pdev->mem_resource[2].addr;
2130 		if (!adapter->bar2) {
2131 			dev_err(adapter, "cannot map device bar2 region\n");
2132 			err = -ENOMEM;
2133 			goto out_free;
2134 		}
2135 		t4_write_reg(adapter, A_SGE_STAT_CFG, V_STATSOURCE_T5(7) |
2136 			     V_STATMODE(0));
2137 	}
2138 
2139 	for_each_port(adapter, i) {
2140 		const unsigned int numa_node = rte_socket_id();
2141 		char name[RTE_ETH_NAME_MAX_LEN];
2142 		struct rte_eth_dev *eth_dev;
2143 
2144 		snprintf(name, sizeof(name), "%s_%d",
2145 			 adapter->pdev->device.name, i);
2146 
2147 		if (i == 0) {
2148 			/* First port is already allocated by DPDK */
2149 			eth_dev = adapter->eth_dev;
2150 			goto allocate_mac;
2151 		}
2152 
2153 		/*
2154 		 * now do all data allocation - for eth_dev structure,
2155 		 * and internal (private) data for the remaining ports
2156 		 */
2157 
2158 		/* reserve an ethdev entry */
2159 		eth_dev = rte_eth_dev_allocate(name);
2160 		if (!eth_dev)
2161 			goto out_free;
2162 
2163 		eth_dev->data->dev_private =
2164 			rte_zmalloc_socket(name, sizeof(struct port_info),
2165 					   RTE_CACHE_LINE_SIZE, numa_node);
2166 		if (!eth_dev->data->dev_private)
2167 			goto out_free;
2168 
2169 allocate_mac:
2170 		pi = eth_dev->data->dev_private;
2171 		adapter->port[i] = pi;
2172 		pi->eth_dev = eth_dev;
2173 		pi->adapter = adapter;
2174 		pi->xact_addr_filt = -1;
2175 		pi->port_id = i;
2176 		pi->pidx = i;
2177 
2178 		pi->eth_dev->device = &adapter->pdev->device;
2179 		pi->eth_dev->dev_ops = adapter->eth_dev->dev_ops;
2180 		pi->eth_dev->tx_pkt_burst = adapter->eth_dev->tx_pkt_burst;
2181 		pi->eth_dev->rx_pkt_burst = adapter->eth_dev->rx_pkt_burst;
2182 
2183 		rte_eth_copy_pci_info(pi->eth_dev, adapter->pdev);
2184 
2185 		pi->eth_dev->data->mac_addrs = rte_zmalloc(name,
2186 							RTE_ETHER_ADDR_LEN, 0);
2187 		if (!pi->eth_dev->data->mac_addrs) {
2188 			dev_err(adapter, "%s: Mem allocation failed for storing mac addr, aborting\n",
2189 				__func__);
2190 			err = -1;
2191 			goto out_free;
2192 		}
2193 
2194 		if (i > 0) {
2195 			/* First port will be notified by upper layer */
2196 			rte_eth_dev_probing_finish(eth_dev);
2197 		}
2198 	}
2199 
2200 	if (adapter->flags & FW_OK) {
2201 		err = t4_port_init(adapter, adapter->mbox, adapter->pf, 0);
2202 		if (err) {
2203 			dev_err(adapter, "%s: t4_port_init failed with err %d\n",
2204 				__func__, err);
2205 			goto out_free;
2206 		}
2207 	}
2208 
2209 	err = cxgbe_cfg_queues(adapter->eth_dev);
2210 	if (err)
2211 		goto out_free;
2212 
2213 	cxgbe_print_adapter_info(adapter);
2214 	cxgbe_print_port_info(adapter);
2215 
2216 	adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
2217 					  adapter->clipt_end);
2218 	if (!adapter->clipt) {
2219 		/* We tolerate a lack of clip_table, giving up some
2220 		 * functionality
2221 		 */
2222 		dev_warn(adapter, "could not allocate CLIP. Continuing\n");
2223 	}
2224 
2225 	adap_smt_index(adapter, &smt_start_idx, &smt_size);
2226 	adapter->smt = t4_init_smt(smt_start_idx, smt_size);
2227 	if (!adapter->smt)
2228 		dev_warn(adapter, "could not allocate SMT, continuing\n");
2229 
2230 	adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
2231 	if (!adapter->l2t) {
2232 		/* We tolerate a lack of L2T, giving up some functionality */
2233 		dev_warn(adapter, "could not allocate L2T. Continuing\n");
2234 	}
2235 
2236 	if (tid_init(&adapter->tids) < 0) {
2237 		/* Disable filtering support */
2238 		dev_warn(adapter, "could not allocate TID table, "
2239 			 "filter support disabled. Continuing\n");
2240 	}
2241 
2242 	t4_os_lock_init(&adapter->flow_lock);
2243 
2244 	adapter->mpstcam = t4_init_mpstcam(adapter);
2245 	if (!adapter->mpstcam)
2246 		dev_warn(adapter, "could not allocate mps tcam table."
2247 			 " Continuing\n");
2248 
2249 	if (is_hashfilter(adapter)) {
2250 		if (t4_read_reg(adapter, A_LE_DB_CONFIG) & F_HASHEN) {
2251 			u32 hash_base, hash_reg;
2252 
2253 			hash_reg = A_LE_DB_TID_HASHBASE;
2254 			hash_base = t4_read_reg(adapter, hash_reg);
2255 			adapter->tids.hash_base = hash_base / 4;
2256 		}
2257 	} else {
2258 		/* Disable hash filtering support */
2259 		dev_warn(adapter,
2260 			 "Maskless filter support disabled. Continuing\n");
2261 	}
2262 
2263 	err = cxgbe_init_rss(adapter);
2264 	if (err)
2265 		goto out_free;
2266 
2267 	return 0;
2268 
2269 out_free:
2270 	cxgbe_cfg_queues_free(adapter);
2271 
2272 	for_each_port(adapter, i) {
2273 		pi = adap2pinfo(adapter, i);
2274 		if (pi->viid != 0)
2275 			t4_free_vi(adapter, adapter->mbox, adapter->pf,
2276 				   0, pi->viid);
2277 		rte_eth_dev_release_port(pi->eth_dev);
2278 	}
2279 
2280 	if (adapter->flags & FW_OK)
2281 		t4_fw_bye(adapter, adapter->mbox);
2282 	return -err;
2283 }
2284