xref: /dpdk/drivers/net/cxgbe/cxgbe_main.c (revision 993541b2fa4ffe4b532e22fae58fd9aa6638e441)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2018 Chelsio Communications.
3  * All rights reserved.
4  */
5 
6 #include <sys/queue.h>
7 #include <stdio.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <string.h>
11 #include <unistd.h>
12 #include <stdarg.h>
13 #include <inttypes.h>
14 #include <netinet/in.h>
15 
16 #include <rte_byteorder.h>
17 #include <rte_common.h>
18 #include <rte_cycles.h>
19 #include <rte_interrupts.h>
20 #include <rte_log.h>
21 #include <rte_debug.h>
22 #include <rte_pci.h>
23 #include <rte_atomic.h>
24 #include <rte_branch_prediction.h>
25 #include <rte_memory.h>
26 #include <rte_tailq.h>
27 #include <rte_eal.h>
28 #include <rte_alarm.h>
29 #include <rte_ether.h>
30 #include <rte_ethdev_driver.h>
31 #include <rte_ethdev_pci.h>
32 #include <rte_random.h>
33 #include <rte_dev.h>
34 #include <rte_kvargs.h>
35 
36 #include "base/common.h"
37 #include "base/t4_regs.h"
38 #include "base/t4_msg.h"
39 #include "cxgbe.h"
40 #include "cxgbe_pfvf.h"
41 #include "clip_tbl.h"
42 #include "l2t.h"
43 #include "smt.h"
44 #include "mps_tcam.h"
45 
46 /**
47  * Allocate a chunk of memory. The allocated memory is cleared.
48  */
49 void *t4_alloc_mem(size_t size)
50 {
51 	return rte_zmalloc(NULL, size, 0);
52 }
53 
54 /**
55  * Free memory allocated through t4_alloc_mem().
56  */
57 void t4_free_mem(void *addr)
58 {
59 	rte_free(addr);
60 }
61 
62 /*
63  * Response queue handler for the FW event queue.
64  */
65 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
66 			  __rte_unused const struct pkt_gl *gl)
67 {
68 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
69 
70 	rsp++;                                          /* skip RSS header */
71 
72 	/*
73 	 * FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
74 	 */
75 	if (unlikely(opcode == CPL_FW4_MSG &&
76 		     ((const struct cpl_fw4_msg *)rsp)->type ==
77 		      FW_TYPE_RSSCPL)) {
78 		rsp++;
79 		opcode = ((const struct rss_header *)rsp)->opcode;
80 		rsp++;
81 		if (opcode != CPL_SGE_EGR_UPDATE) {
82 			dev_err(q->adapter, "unexpected FW4/CPL %#x on FW event queue\n",
83 				opcode);
84 			goto out;
85 		}
86 	}
87 
88 	if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
89 		/* do nothing */
90 	} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
91 		const struct cpl_fw6_msg *msg = (const void *)rsp;
92 
93 		t4_handle_fw_rpl(q->adapter, msg->data);
94 	} else if (opcode == CPL_ABORT_RPL_RSS) {
95 		const struct cpl_abort_rpl_rss *p = (const void *)rsp;
96 
97 		cxgbe_hash_del_filter_rpl(q->adapter, p);
98 	} else if (opcode == CPL_SET_TCB_RPL) {
99 		const struct cpl_set_tcb_rpl *p = (const void *)rsp;
100 
101 		cxgbe_filter_rpl(q->adapter, p);
102 	} else if (opcode == CPL_ACT_OPEN_RPL) {
103 		const struct cpl_act_open_rpl *p = (const void *)rsp;
104 
105 		cxgbe_hash_filter_rpl(q->adapter, p);
106 	} else if (opcode == CPL_L2T_WRITE_RPL) {
107 		const struct cpl_l2t_write_rpl *p = (const void *)rsp;
108 
109 		cxgbe_do_l2t_write_rpl(q->adapter, p);
110 	} else if (opcode == CPL_SMT_WRITE_RPL) {
111 		const struct cpl_smt_write_rpl *p = (const void *)rsp;
112 
113 		cxgbe_do_smt_write_rpl(q->adapter, p);
114 	} else {
115 		dev_err(adapter, "unexpected CPL %#x on FW event queue\n",
116 			opcode);
117 	}
118 out:
119 	return 0;
120 }
121 
122 /**
123  * Setup sge control queues to pass control information.
124  */
125 int cxgbe_setup_sge_ctrl_txq(struct adapter *adapter)
126 {
127 	struct sge *s = &adapter->sge;
128 	int err = 0, i = 0;
129 
130 	for_each_port(adapter, i) {
131 		struct port_info *pi = adap2pinfo(adapter, i);
132 		char name[RTE_ETH_NAME_MAX_LEN];
133 		struct sge_ctrl_txq *q = &s->ctrlq[i];
134 
135 		q->q.size = 1024;
136 		err = t4_sge_alloc_ctrl_txq(adapter, q,
137 					    adapter->eth_dev,  i,
138 					    s->fw_evtq.cntxt_id,
139 					    rte_socket_id());
140 		if (err) {
141 			dev_err(adapter, "Failed to alloc ctrl txq. Err: %d",
142 				err);
143 			goto out;
144 		}
145 		snprintf(name, sizeof(name), "%s_ctrl_pool_%d",
146 			 pi->eth_dev->device->driver->name,
147 			 pi->eth_dev->data->port_id);
148 		q->mb_pool = rte_pktmbuf_pool_create(name, s->ctrlq[i].q.size,
149 						     RTE_CACHE_LINE_SIZE,
150 						     RTE_MBUF_PRIV_ALIGN,
151 						     RTE_MBUF_DEFAULT_BUF_SIZE,
152 						     SOCKET_ID_ANY);
153 		if (!q->mb_pool) {
154 			err = -rte_errno;
155 			dev_err(adapter,
156 				"Can't create ctrl pool for port %d. Err: %d\n",
157 				pi->eth_dev->data->port_id, err);
158 			goto out;
159 		}
160 	}
161 	return 0;
162 out:
163 	t4_free_sge_resources(adapter);
164 	return err;
165 }
166 
167 /**
168  * cxgbe_poll_for_completion: Poll rxq for completion
169  * @q: rxq to poll
170  * @ms: milliseconds to delay
171  * @cnt: number of times to poll
172  * @c: completion to check for 'done' status
173  *
174  * Polls the rxq for reples until completion is done or the count
175  * expires.
176  */
177 int cxgbe_poll_for_completion(struct sge_rspq *q, unsigned int ms,
178 			      unsigned int cnt, struct t4_completion *c)
179 {
180 	unsigned int i;
181 	unsigned int work_done, budget = 32;
182 
183 	if (!c)
184 		return -EINVAL;
185 
186 	for (i = 0; i < cnt; i++) {
187 		cxgbe_poll(q, NULL, budget, &work_done);
188 		t4_os_lock(&c->lock);
189 		if (c->done) {
190 			t4_os_unlock(&c->lock);
191 			return 0;
192 		}
193 		t4_os_unlock(&c->lock);
194 		rte_delay_ms(ms);
195 	}
196 	return -ETIMEDOUT;
197 }
198 
199 int cxgbe_setup_sge_fwevtq(struct adapter *adapter)
200 {
201 	struct sge *s = &adapter->sge;
202 	int err = 0;
203 	int msi_idx = 0;
204 
205 	err = t4_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->eth_dev,
206 			       msi_idx, NULL, fwevtq_handler, -1, NULL, 0,
207 			       rte_socket_id());
208 	return err;
209 }
210 
211 static int closest_timer(const struct sge *s, int time)
212 {
213 	unsigned int i, match = 0;
214 	int delta, min_delta = INT_MAX;
215 
216 	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
217 		delta = time - s->timer_val[i];
218 		if (delta < 0)
219 			delta = -delta;
220 		if (delta < min_delta) {
221 			min_delta = delta;
222 			match = i;
223 		}
224 	}
225 	return match;
226 }
227 
228 static int closest_thres(const struct sge *s, int thres)
229 {
230 	unsigned int i, match = 0;
231 	int delta, min_delta = INT_MAX;
232 
233 	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
234 		delta = thres - s->counter_val[i];
235 		if (delta < 0)
236 			delta = -delta;
237 		if (delta < min_delta) {
238 			min_delta = delta;
239 			match = i;
240 		}
241 	}
242 	return match;
243 }
244 
245 /**
246  * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
247  * @q: the Rx queue
248  * @us: the hold-off time in us, or 0 to disable timer
249  * @cnt: the hold-off packet count, or 0 to disable counter
250  *
251  * Sets an Rx queue's interrupt hold-off time and packet count.  At least
252  * one of the two needs to be enabled for the queue to generate interrupts.
253  */
254 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, unsigned int us,
255 			       unsigned int cnt)
256 {
257 	struct adapter *adap = q->adapter;
258 	unsigned int timer_val;
259 
260 	if (cnt) {
261 		int err;
262 		u32 v, new_idx;
263 
264 		new_idx = closest_thres(&adap->sge, cnt);
265 		if (q->desc && q->pktcnt_idx != new_idx) {
266 			/* the queue has already been created, update it */
267 			v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
268 			    V_FW_PARAMS_PARAM_X(
269 			    FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
270 			    V_FW_PARAMS_PARAM_YZ(q->cntxt_id);
271 			err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
272 					    &v, &new_idx);
273 			if (err)
274 				return err;
275 		}
276 		q->pktcnt_idx = new_idx;
277 	}
278 
279 	timer_val = (us == 0) ? X_TIMERREG_RESTART_COUNTER :
280 				closest_timer(&adap->sge, us);
281 
282 	if ((us | cnt) == 0)
283 		q->intr_params = V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX);
284 	else
285 		q->intr_params = V_QINTR_TIMER_IDX(timer_val) |
286 				 V_QINTR_CNT_EN(cnt > 0);
287 	return 0;
288 }
289 
290 /**
291  * Allocate an active-open TID and set it to the supplied value.
292  */
293 int cxgbe_alloc_atid(struct tid_info *t, void *data)
294 {
295 	int atid = -1;
296 
297 	t4_os_lock(&t->atid_lock);
298 	if (t->afree) {
299 		union aopen_entry *p = t->afree;
300 
301 		atid = p - t->atid_tab;
302 		t->afree = p->next;
303 		p->data = data;
304 		t->atids_in_use++;
305 	}
306 	t4_os_unlock(&t->atid_lock);
307 	return atid;
308 }
309 
310 /**
311  * Release an active-open TID.
312  */
313 void cxgbe_free_atid(struct tid_info *t, unsigned int atid)
314 {
315 	union aopen_entry *p = &t->atid_tab[atid];
316 
317 	t4_os_lock(&t->atid_lock);
318 	p->next = t->afree;
319 	t->afree = p;
320 	t->atids_in_use--;
321 	t4_os_unlock(&t->atid_lock);
322 }
323 
324 /**
325  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
326  */
327 static void mk_tid_release(struct rte_mbuf *mbuf, unsigned int tid)
328 {
329 	struct cpl_tid_release *req;
330 
331 	req = rte_pktmbuf_mtod(mbuf, struct cpl_tid_release *);
332 	INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid);
333 }
334 
335 /**
336  * Release a TID and inform HW.  If we are unable to allocate the release
337  * message we defer to a work queue.
338  */
339 void cxgbe_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
340 		      unsigned short family)
341 {
342 	struct rte_mbuf *mbuf;
343 	struct adapter *adap = container_of(t, struct adapter, tids);
344 
345 	WARN_ON(tid >= t->ntids);
346 
347 	if (t->tid_tab[tid]) {
348 		t->tid_tab[tid] = NULL;
349 		rte_atomic32_dec(&t->conns_in_use);
350 		if (t->hash_base && tid >= t->hash_base) {
351 			if (family == FILTER_TYPE_IPV4)
352 				rte_atomic32_dec(&t->hash_tids_in_use);
353 		} else {
354 			if (family == FILTER_TYPE_IPV4)
355 				rte_atomic32_dec(&t->tids_in_use);
356 		}
357 	}
358 
359 	mbuf = rte_pktmbuf_alloc((&adap->sge.ctrlq[chan])->mb_pool);
360 	if (mbuf) {
361 		mbuf->data_len = sizeof(struct cpl_tid_release);
362 		mbuf->pkt_len = mbuf->data_len;
363 		mk_tid_release(mbuf, tid);
364 		t4_mgmt_tx(&adap->sge.ctrlq[chan], mbuf);
365 	}
366 }
367 
368 /**
369  * Insert a TID.
370  */
371 void cxgbe_insert_tid(struct tid_info *t, void *data, unsigned int tid,
372 		      unsigned short family)
373 {
374 	t->tid_tab[tid] = data;
375 	if (t->hash_base && tid >= t->hash_base) {
376 		if (family == FILTER_TYPE_IPV4)
377 			rte_atomic32_inc(&t->hash_tids_in_use);
378 	} else {
379 		if (family == FILTER_TYPE_IPV4)
380 			rte_atomic32_inc(&t->tids_in_use);
381 	}
382 
383 	rte_atomic32_inc(&t->conns_in_use);
384 }
385 
386 /**
387  * Free TID tables.
388  */
389 static void tid_free(struct tid_info *t)
390 {
391 	if (t->tid_tab) {
392 		if (t->ftid_bmap)
393 			rte_bitmap_free(t->ftid_bmap);
394 
395 		if (t->ftid_bmap_array)
396 			t4_os_free(t->ftid_bmap_array);
397 
398 		t4_os_free(t->tid_tab);
399 	}
400 
401 	memset(t, 0, sizeof(struct tid_info));
402 }
403 
404 /**
405  * Allocate and initialize the TID tables.  Returns 0 on success.
406  */
407 static int tid_init(struct tid_info *t)
408 {
409 	size_t size;
410 	unsigned int ftid_bmap_size;
411 	unsigned int natids = t->natids;
412 	unsigned int max_ftids = t->nftids;
413 
414 	ftid_bmap_size = rte_bitmap_get_memory_footprint(t->nftids);
415 	size = t->ntids * sizeof(*t->tid_tab) +
416 		max_ftids * sizeof(*t->ftid_tab) +
417 		natids * sizeof(*t->atid_tab);
418 
419 	t->tid_tab = t4_os_alloc(size);
420 	if (!t->tid_tab)
421 		return -ENOMEM;
422 
423 	t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
424 	t->ftid_tab = (struct filter_entry *)&t->atid_tab[t->natids];
425 	t->ftid_bmap_array = t4_os_alloc(ftid_bmap_size);
426 	if (!t->ftid_bmap_array) {
427 		tid_free(t);
428 		return -ENOMEM;
429 	}
430 
431 	t4_os_lock_init(&t->atid_lock);
432 	t4_os_lock_init(&t->ftid_lock);
433 
434 	t->afree = NULL;
435 	t->atids_in_use = 0;
436 	rte_atomic32_init(&t->tids_in_use);
437 	rte_atomic32_set(&t->tids_in_use, 0);
438 	rte_atomic32_init(&t->conns_in_use);
439 	rte_atomic32_set(&t->conns_in_use, 0);
440 
441 	/* Setup the free list for atid_tab and clear the stid bitmap. */
442 	if (natids) {
443 		while (--natids)
444 			t->atid_tab[natids - 1].next = &t->atid_tab[natids];
445 		t->afree = t->atid_tab;
446 	}
447 
448 	t->ftid_bmap = rte_bitmap_init(t->nftids, t->ftid_bmap_array,
449 				       ftid_bmap_size);
450 	if (!t->ftid_bmap) {
451 		tid_free(t);
452 		return -ENOMEM;
453 	}
454 
455 	return 0;
456 }
457 
458 static inline bool is_x_1g_port(const struct link_config *lc)
459 {
460 	return (lc->pcaps & FW_PORT_CAP32_SPEED_1G) != 0;
461 }
462 
463 static inline bool is_x_10g_port(const struct link_config *lc)
464 {
465 	unsigned int speeds, high_speeds;
466 
467 	speeds = V_FW_PORT_CAP32_SPEED(G_FW_PORT_CAP32_SPEED(lc->pcaps));
468 	high_speeds = speeds &
469 		      ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
470 
471 	return high_speeds != 0;
472 }
473 
474 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
475 		      unsigned int us, unsigned int cnt,
476 		      unsigned int size, unsigned int iqe_size)
477 {
478 	q->adapter = adap;
479 	cxgb4_set_rspq_intr_params(q, us, cnt);
480 	q->iqe_len = iqe_size;
481 	q->size = size;
482 }
483 
484 int cxgbe_cfg_queue_count(struct rte_eth_dev *eth_dev)
485 {
486 	struct port_info *pi = eth_dev->data->dev_private;
487 	struct adapter *adap = pi->adapter;
488 	struct sge *s = &adap->sge;
489 	unsigned int max_queues = s->max_ethqsets / adap->params.nports;
490 
491 	if ((eth_dev->data->nb_rx_queues < 1) ||
492 	    (eth_dev->data->nb_tx_queues < 1))
493 		return -EINVAL;
494 
495 	if ((eth_dev->data->nb_rx_queues > max_queues) ||
496 	    (eth_dev->data->nb_tx_queues > max_queues))
497 		return -EINVAL;
498 
499 	if (eth_dev->data->nb_rx_queues > pi->rss_size)
500 		return -EINVAL;
501 
502 	/* We must configure RSS, since config has changed*/
503 	pi->flags &= ~PORT_RSS_DONE;
504 
505 	pi->n_rx_qsets = eth_dev->data->nb_rx_queues;
506 	pi->n_tx_qsets = eth_dev->data->nb_tx_queues;
507 
508 	return 0;
509 }
510 
511 void cxgbe_cfg_queues(struct rte_eth_dev *eth_dev)
512 {
513 	struct port_info *pi = eth_dev->data->dev_private;
514 	struct adapter *adap = pi->adapter;
515 	struct sge *s = &adap->sge;
516 	unsigned int i, nb_ports = 0, qidx = 0;
517 	unsigned int q_per_port = 0;
518 
519 	if (!(adap->flags & CFG_QUEUES)) {
520 		for_each_port(adap, i) {
521 			struct port_info *tpi = adap2pinfo(adap, i);
522 
523 			nb_ports += (is_x_10g_port(&tpi->link_cfg)) ||
524 				     is_x_1g_port(&tpi->link_cfg) ? 1 : 0;
525 		}
526 
527 		/*
528 		 * We default up to # of cores queues per 1G/10G port.
529 		 */
530 		if (nb_ports)
531 			q_per_port = (s->max_ethqsets -
532 				     (adap->params.nports - nb_ports)) /
533 				     nb_ports;
534 
535 		if (q_per_port > rte_lcore_count())
536 			q_per_port = rte_lcore_count();
537 
538 		for_each_port(adap, i) {
539 			struct port_info *pi = adap2pinfo(adap, i);
540 
541 			pi->first_qset = qidx;
542 
543 			/* Initially n_rx_qsets == n_tx_qsets */
544 			pi->n_rx_qsets = (is_x_10g_port(&pi->link_cfg) ||
545 					  is_x_1g_port(&pi->link_cfg)) ?
546 					  q_per_port : 1;
547 			pi->n_tx_qsets = pi->n_rx_qsets;
548 
549 			if (pi->n_rx_qsets > pi->rss_size)
550 				pi->n_rx_qsets = pi->rss_size;
551 
552 			qidx += pi->n_rx_qsets;
553 		}
554 
555 		for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
556 			struct sge_eth_rxq *r = &s->ethrxq[i];
557 
558 			init_rspq(adap, &r->rspq, 5, 32, 1024, 64);
559 			r->usembufs = 1;
560 			r->fl.size = (r->usembufs ? 1024 : 72);
561 		}
562 
563 		for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
564 			s->ethtxq[i].q.size = 1024;
565 
566 		init_rspq(adap, &adap->sge.fw_evtq, 0, 0, 1024, 64);
567 		adap->flags |= CFG_QUEUES;
568 	}
569 }
570 
571 void cxgbe_stats_get(struct port_info *pi, struct port_stats *stats)
572 {
573 	t4_get_port_stats_offset(pi->adapter, pi->tx_chan, stats,
574 				 &pi->stats_base);
575 }
576 
577 void cxgbe_stats_reset(struct port_info *pi)
578 {
579 	t4_clr_port_stats(pi->adapter, pi->tx_chan);
580 }
581 
582 static void setup_memwin(struct adapter *adap)
583 {
584 	u32 mem_win0_base;
585 
586 	/* For T5, only relative offset inside the PCIe BAR is passed */
587 	mem_win0_base = MEMWIN0_BASE;
588 
589 	/*
590 	 * Set up memory window for accessing adapter memory ranges.  (Read
591 	 * back MA register to ensure that changes propagate before we attempt
592 	 * to use the new values.)
593 	 */
594 	t4_write_reg(adap,
595 		     PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
596 					 MEMWIN_NIC),
597 		     mem_win0_base | V_BIR(0) |
598 		     V_WINDOW(ilog2(MEMWIN0_APERTURE) - X_WINDOW_SHIFT));
599 	t4_read_reg(adap,
600 		    PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
601 					MEMWIN_NIC));
602 }
603 
604 int cxgbe_init_rss(struct adapter *adap)
605 {
606 	unsigned int i;
607 
608 	if (is_pf4(adap)) {
609 		int err;
610 
611 		err = t4_init_rss_mode(adap, adap->mbox);
612 		if (err)
613 			return err;
614 	}
615 
616 	for_each_port(adap, i) {
617 		struct port_info *pi = adap2pinfo(adap, i);
618 
619 		pi->rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0);
620 		if (!pi->rss)
621 			return -ENOMEM;
622 
623 		pi->rss_hf = CXGBE_RSS_HF_ALL;
624 	}
625 	return 0;
626 }
627 
628 /**
629  * Dump basic information about the adapter.
630  */
631 void cxgbe_print_adapter_info(struct adapter *adap)
632 {
633 	/**
634 	 * Hardware/Firmware/etc. Version/Revision IDs.
635 	 */
636 	t4_dump_version_info(adap);
637 }
638 
639 void cxgbe_print_port_info(struct adapter *adap)
640 {
641 	int i;
642 	char buf[80];
643 	struct rte_pci_addr *loc = &adap->pdev->addr;
644 
645 	for_each_port(adap, i) {
646 		const struct port_info *pi = adap2pinfo(adap, i);
647 		char *bufp = buf;
648 
649 		if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
650 			bufp += sprintf(bufp, "100M/");
651 		if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
652 			bufp += sprintf(bufp, "1G/");
653 		if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
654 			bufp += sprintf(bufp, "10G/");
655 		if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
656 			bufp += sprintf(bufp, "25G/");
657 		if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
658 			bufp += sprintf(bufp, "40G/");
659 		if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
660 			bufp += sprintf(bufp, "50G/");
661 		if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
662 			bufp += sprintf(bufp, "100G/");
663 		if (bufp != buf)
664 			--bufp;
665 		sprintf(bufp, "BASE-%s",
666 			t4_get_port_type_description(
667 					(enum fw_port_type)pi->port_type));
668 
669 		dev_info(adap,
670 			 " " PCI_PRI_FMT " Chelsio rev %d %s %s\n",
671 			 loc->domain, loc->bus, loc->devid, loc->function,
672 			 CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
673 			 (adap->flags & USING_MSIX) ? " MSI-X" :
674 			 (adap->flags & USING_MSI) ? " MSI" : "");
675 	}
676 }
677 
678 static int check_devargs_handler(const char *key, const char *value, void *p)
679 {
680 	if (!strncmp(key, CXGBE_DEVARG_CMN_KEEP_OVLAN, strlen(key)) ||
681 	    !strncmp(key, CXGBE_DEVARG_CMN_TX_MODE_LATENCY, strlen(key)) ||
682 	    !strncmp(key, CXGBE_DEVARG_VF_FORCE_LINK_UP, strlen(key))) {
683 		if (!strncmp(value, "1", 1)) {
684 			bool *dst_val = (bool *)p;
685 
686 			*dst_val = true;
687 		}
688 	}
689 
690 	return 0;
691 }
692 
693 static int cxgbe_get_devargs(struct rte_devargs *devargs, const char *key,
694 			     void *p)
695 {
696 	struct rte_kvargs *kvlist;
697 	int ret = 0;
698 
699 	if (!devargs)
700 		return 0;
701 
702 	kvlist = rte_kvargs_parse(devargs->args, NULL);
703 	if (!kvlist)
704 		return 0;
705 
706 	if (!rte_kvargs_count(kvlist, key))
707 		goto out;
708 
709 	ret = rte_kvargs_process(kvlist, key, check_devargs_handler, p);
710 
711 out:
712 	rte_kvargs_free(kvlist);
713 
714 	return ret;
715 }
716 
717 static void cxgbe_get_devargs_int(struct adapter *adap, bool *dst,
718 				  const char *key, bool default_value)
719 {
720 	struct rte_pci_device *pdev = adap->pdev;
721 	int ret;
722 	bool devarg_value = default_value;
723 
724 	*dst = default_value;
725 	if (!pdev)
726 		return;
727 
728 	ret = cxgbe_get_devargs(pdev->device.devargs, key, &devarg_value);
729 	if (ret)
730 		return;
731 
732 	*dst = devarg_value;
733 }
734 
735 void cxgbe_process_devargs(struct adapter *adap)
736 {
737 	cxgbe_get_devargs_int(adap, &adap->devargs.keep_ovlan,
738 			      CXGBE_DEVARG_CMN_KEEP_OVLAN, false);
739 	cxgbe_get_devargs_int(adap, &adap->devargs.tx_mode_latency,
740 			      CXGBE_DEVARG_CMN_TX_MODE_LATENCY, false);
741 	cxgbe_get_devargs_int(adap, &adap->devargs.force_link_up,
742 			      CXGBE_DEVARG_VF_FORCE_LINK_UP, false);
743 }
744 
745 static void configure_vlan_types(struct adapter *adapter)
746 {
747 	int i;
748 
749 	for_each_port(adapter, i) {
750 		/* OVLAN Type 0x88a8 */
751 		t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN0),
752 				 V_OVLAN_MASK(M_OVLAN_MASK) |
753 				 V_OVLAN_ETYPE(M_OVLAN_ETYPE),
754 				 V_OVLAN_MASK(M_OVLAN_MASK) |
755 				 V_OVLAN_ETYPE(0x88a8));
756 		/* OVLAN Type 0x9100 */
757 		t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN1),
758 				 V_OVLAN_MASK(M_OVLAN_MASK) |
759 				 V_OVLAN_ETYPE(M_OVLAN_ETYPE),
760 				 V_OVLAN_MASK(M_OVLAN_MASK) |
761 				 V_OVLAN_ETYPE(0x9100));
762 
763 		/* IVLAN 0X8100 */
764 		t4_set_reg_field(adapter, MPS_PORT_RX_IVLAN(i),
765 				 V_IVLAN_ETYPE(M_IVLAN_ETYPE),
766 				 V_IVLAN_ETYPE(0x8100));
767 
768 		t4_set_reg_field(adapter, MPS_PORT_RX_CTL(i),
769 				 F_OVLAN_EN0 | F_OVLAN_EN1 |
770 				 F_IVLAN_EN,
771 				 F_OVLAN_EN0 | F_OVLAN_EN1 |
772 				 F_IVLAN_EN);
773 	}
774 
775 	t4_tp_wr_bits_indirect(adapter, A_TP_INGRESS_CONFIG, V_RM_OVLAN(1),
776 			       V_RM_OVLAN(!adapter->devargs.keep_ovlan));
777 }
778 
779 static void configure_pcie_ext_tag(struct adapter *adapter)
780 {
781 	u16 v;
782 	int pos = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
783 
784 	if (!pos)
785 		return;
786 
787 	if (pos > 0) {
788 		t4_os_pci_read_cfg2(adapter, pos + PCI_EXP_DEVCTL, &v);
789 		v |= PCI_EXP_DEVCTL_EXT_TAG;
790 		t4_os_pci_write_cfg2(adapter, pos + PCI_EXP_DEVCTL, v);
791 		if (is_t6(adapter->params.chip)) {
792 			t4_set_reg_field(adapter, A_PCIE_CFG2,
793 					 V_T6_TOTMAXTAG(M_T6_TOTMAXTAG),
794 					 V_T6_TOTMAXTAG(7));
795 			t4_set_reg_field(adapter, A_PCIE_CMD_CFG,
796 					 V_T6_MINTAG(M_T6_MINTAG),
797 					 V_T6_MINTAG(8));
798 		} else {
799 			t4_set_reg_field(adapter, A_PCIE_CFG2,
800 					 V_TOTMAXTAG(M_TOTMAXTAG),
801 					 V_TOTMAXTAG(3));
802 			t4_set_reg_field(adapter, A_PCIE_CMD_CFG,
803 					 V_MINTAG(M_MINTAG),
804 					 V_MINTAG(8));
805 		}
806 	}
807 }
808 
809 /* Figure out how many Queue Sets we can support */
810 void cxgbe_configure_max_ethqsets(struct adapter *adapter)
811 {
812 	unsigned int ethqsets;
813 
814 	/*
815 	 * We need to reserve an Ingress Queue for the Asynchronous Firmware
816 	 * Event Queue.
817 	 *
818 	 * For each Queue Set, we'll need the ability to allocate two Egress
819 	 * Contexts -- one for the Ingress Queue Free List and one for the TX
820 	 * Ethernet Queue.
821 	 */
822 	if (is_pf4(adapter)) {
823 		struct pf_resources *pfres = &adapter->params.pfres;
824 
825 		ethqsets = pfres->niqflint - 1;
826 		if (pfres->neq < ethqsets * 2)
827 			ethqsets = pfres->neq / 2;
828 	} else {
829 		struct vf_resources *vfres = &adapter->params.vfres;
830 
831 		ethqsets = vfres->niqflint - 1;
832 		if (vfres->nethctrl != ethqsets)
833 			ethqsets = min(vfres->nethctrl, ethqsets);
834 		if (vfres->neq < ethqsets * 2)
835 			ethqsets = vfres->neq / 2;
836 	}
837 
838 	if (ethqsets > MAX_ETH_QSETS)
839 		ethqsets = MAX_ETH_QSETS;
840 	adapter->sge.max_ethqsets = ethqsets;
841 }
842 
843 /*
844  * Tweak configuration based on system architecture, etc.  Most of these have
845  * defaults assigned to them by Firmware Configuration Files (if we're using
846  * them) but need to be explicitly set if we're using hard-coded
847  * initialization. So these are essentially common tweaks/settings for
848  * Configuration Files and hard-coded initialization ...
849  */
850 static int adap_init0_tweaks(struct adapter *adapter)
851 {
852 	u8 rx_dma_offset;
853 
854 	/*
855 	 * Fix up various Host-Dependent Parameters like Page Size, Cache
856 	 * Line Size, etc.  The firmware default is for a 4KB Page Size and
857 	 * 64B Cache Line Size ...
858 	 */
859 	t4_fixup_host_params_compat(adapter, CXGBE_PAGE_SIZE, L1_CACHE_BYTES,
860 				    T5_LAST_REV);
861 
862 	/*
863 	 * Keep the chip default offset to deliver Ingress packets into our
864 	 * DMA buffers to zero
865 	 */
866 	rx_dma_offset = 0;
867 	t4_set_reg_field(adapter, A_SGE_CONTROL, V_PKTSHIFT(M_PKTSHIFT),
868 			 V_PKTSHIFT(rx_dma_offset));
869 
870 	t4_set_reg_field(adapter, A_SGE_FLM_CFG,
871 			 V_CREDITCNT(M_CREDITCNT) | M_CREDITCNTPACKING,
872 			 V_CREDITCNT(3) | V_CREDITCNTPACKING(1));
873 
874 	t4_set_reg_field(adapter, A_SGE_INGRESS_RX_THRESHOLD,
875 			 V_THRESHOLD_3(M_THRESHOLD_3), V_THRESHOLD_3(32U));
876 
877 	t4_set_reg_field(adapter, A_SGE_CONTROL2, V_IDMAARBROUNDROBIN(1U),
878 			 V_IDMAARBROUNDROBIN(1U));
879 
880 	/*
881 	 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
882 	 * adds the pseudo header itself.
883 	 */
884 	t4_tp_wr_bits_indirect(adapter, A_TP_INGRESS_CONFIG,
885 			       F_CSUM_HAS_PSEUDO_HDR, 0);
886 
887 	return 0;
888 }
889 
890 /*
891  * Attempt to initialize the adapter via a Firmware Configuration File.
892  */
893 static int adap_init0_config(struct adapter *adapter, int reset)
894 {
895 	struct fw_caps_config_cmd caps_cmd;
896 	unsigned long mtype = 0, maddr = 0;
897 	u32 finiver, finicsum, cfcsum;
898 	int ret;
899 	int config_issued = 0;
900 	int cfg_addr;
901 	char config_name[20];
902 
903 	/*
904 	 * Reset device if necessary.
905 	 */
906 	if (reset) {
907 		ret = t4_fw_reset(adapter, adapter->mbox,
908 				  F_PIORSTMODE | F_PIORST);
909 		if (ret < 0) {
910 			dev_warn(adapter, "Firmware reset failed, error %d\n",
911 				 -ret);
912 			goto bye;
913 		}
914 	}
915 
916 	cfg_addr = t4_flash_cfg_addr(adapter);
917 	if (cfg_addr < 0) {
918 		ret = cfg_addr;
919 		dev_warn(adapter, "Finding address for firmware config file in flash failed, error %d\n",
920 			 -ret);
921 		goto bye;
922 	}
923 
924 	strcpy(config_name, "On Flash");
925 	mtype = FW_MEMTYPE_CF_FLASH;
926 	maddr = cfg_addr;
927 
928 	/*
929 	 * Issue a Capability Configuration command to the firmware to get it
930 	 * to parse the Configuration File.  We don't use t4_fw_config_file()
931 	 * because we want the ability to modify various features after we've
932 	 * processed the configuration file ...
933 	 */
934 	memset(&caps_cmd, 0, sizeof(caps_cmd));
935 	caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
936 					   F_FW_CMD_REQUEST | F_FW_CMD_READ);
937 	caps_cmd.cfvalid_to_len16 =
938 		cpu_to_be32(F_FW_CAPS_CONFIG_CMD_CFVALID |
939 			    V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
940 			    V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
941 			    FW_LEN16(caps_cmd));
942 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
943 			 &caps_cmd);
944 	/*
945 	 * If the CAPS_CONFIG failed with an ENOENT (for a Firmware
946 	 * Configuration File in FLASH), our last gasp effort is to use the
947 	 * Firmware Configuration File which is embedded in the firmware.  A
948 	 * very few early versions of the firmware didn't have one embedded
949 	 * but we can ignore those.
950 	 */
951 	if (ret == -ENOENT) {
952 		dev_info(adapter, "%s: Going for embedded config in firmware..\n",
953 			 __func__);
954 
955 		memset(&caps_cmd, 0, sizeof(caps_cmd));
956 		caps_cmd.op_to_write =
957 			cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
958 				    F_FW_CMD_REQUEST | F_FW_CMD_READ);
959 		caps_cmd.cfvalid_to_len16 = cpu_to_be32(FW_LEN16(caps_cmd));
960 		ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
961 				 sizeof(caps_cmd), &caps_cmd);
962 		strcpy(config_name, "Firmware Default");
963 	}
964 
965 	config_issued = 1;
966 	if (ret < 0)
967 		goto bye;
968 
969 	finiver = be32_to_cpu(caps_cmd.finiver);
970 	finicsum = be32_to_cpu(caps_cmd.finicsum);
971 	cfcsum = be32_to_cpu(caps_cmd.cfcsum);
972 	if (finicsum != cfcsum)
973 		dev_warn(adapter, "Configuration File checksum mismatch: [fini] csum=%#x, computed csum=%#x\n",
974 			 finicsum, cfcsum);
975 
976 	/*
977 	 * If we're a pure NIC driver then disable all offloading facilities.
978 	 * This will allow the firmware to optimize aspects of the hardware
979 	 * configuration which will result in improved performance.
980 	 */
981 	caps_cmd.niccaps &= cpu_to_be16(~FW_CAPS_CONFIG_NIC_ETHOFLD);
982 	caps_cmd.toecaps = 0;
983 	caps_cmd.iscsicaps = 0;
984 	caps_cmd.rdmacaps = 0;
985 	caps_cmd.fcoecaps = 0;
986 
987 	/*
988 	 * And now tell the firmware to use the configuration we just loaded.
989 	 */
990 	caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
991 					   F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
992 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
993 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
994 			 NULL);
995 	if (ret < 0) {
996 		dev_warn(adapter, "Unable to finalize Firmware Capabilities %d\n",
997 			 -ret);
998 		goto bye;
999 	}
1000 
1001 	/*
1002 	 * Tweak configuration based on system architecture, etc.
1003 	 */
1004 	ret = adap_init0_tweaks(adapter);
1005 	if (ret < 0) {
1006 		dev_warn(adapter, "Unable to do init0-tweaks %d\n", -ret);
1007 		goto bye;
1008 	}
1009 
1010 	/*
1011 	 * And finally tell the firmware to initialize itself using the
1012 	 * parameters from the Configuration File.
1013 	 */
1014 	ret = t4_fw_initialize(adapter, adapter->mbox);
1015 	if (ret < 0) {
1016 		dev_warn(adapter, "Initializing Firmware failed, error %d\n",
1017 			 -ret);
1018 		goto bye;
1019 	}
1020 
1021 	/*
1022 	 * Return successfully and note that we're operating with parameters
1023 	 * not supplied by the driver, rather than from hard-wired
1024 	 * initialization constants buried in the driver.
1025 	 */
1026 	dev_info(adapter,
1027 		 "Successfully configured using Firmware Configuration File \"%s\", version %#x, computed checksum %#x\n",
1028 		 config_name, finiver, cfcsum);
1029 
1030 	return 0;
1031 
1032 	/*
1033 	 * Something bad happened.  Return the error ...  (If the "error"
1034 	 * is that there's no Configuration File on the adapter we don't
1035 	 * want to issue a warning since this is fairly common.)
1036 	 */
1037 bye:
1038 	if (config_issued && ret != -ENOENT)
1039 		dev_warn(adapter, "\"%s\" configuration file error %d\n",
1040 			 config_name, -ret);
1041 
1042 	dev_debug(adapter, "%s: returning ret = %d ..\n", __func__, ret);
1043 	return ret;
1044 }
1045 
1046 static int adap_init0(struct adapter *adap)
1047 {
1048 	struct fw_caps_config_cmd caps_cmd;
1049 	int ret = 0;
1050 	u32 v, port_vec;
1051 	enum dev_state state;
1052 	u32 params[7], val[7];
1053 	int reset = 1;
1054 	int mbox = adap->mbox;
1055 
1056 	/*
1057 	 * Contact FW, advertising Master capability.
1058 	 */
1059 	ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
1060 	if (ret < 0) {
1061 		dev_err(adap, "%s: could not connect to FW, error %d\n",
1062 			__func__, -ret);
1063 		goto bye;
1064 	}
1065 
1066 	CXGBE_DEBUG_MBOX(adap, "%s: adap->mbox = %d; ret = %d\n", __func__,
1067 			 adap->mbox, ret);
1068 
1069 	if (ret == mbox)
1070 		adap->flags |= MASTER_PF;
1071 
1072 	if (state == DEV_STATE_INIT) {
1073 		/*
1074 		 * Force halt and reset FW because a previous instance may have
1075 		 * exited abnormally without properly shutting down
1076 		 */
1077 		ret = t4_fw_halt(adap, adap->mbox, reset);
1078 		if (ret < 0) {
1079 			dev_err(adap, "Failed to halt. Exit.\n");
1080 			goto bye;
1081 		}
1082 
1083 		ret = t4_fw_restart(adap, adap->mbox, reset);
1084 		if (ret < 0) {
1085 			dev_err(adap, "Failed to restart. Exit.\n");
1086 			goto bye;
1087 		}
1088 		state = (enum dev_state)((unsigned)state & ~DEV_STATE_INIT);
1089 	}
1090 
1091 	t4_get_version_info(adap);
1092 
1093 	ret = t4_get_core_clock(adap, &adap->params.vpd);
1094 	if (ret < 0) {
1095 		dev_err(adap, "%s: could not get core clock, error %d\n",
1096 			__func__, -ret);
1097 		goto bye;
1098 	}
1099 
1100 	/*
1101 	 * If the firmware is initialized already (and we're not forcing a
1102 	 * master initialization), note that we're living with existing
1103 	 * adapter parameters.  Otherwise, it's time to try initializing the
1104 	 * adapter ...
1105 	 */
1106 	if (state == DEV_STATE_INIT) {
1107 		dev_info(adap, "Coming up as %s: Adapter already initialized\n",
1108 			 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
1109 	} else {
1110 		dev_info(adap, "Coming up as MASTER: Initializing adapter\n");
1111 
1112 		ret = adap_init0_config(adap, reset);
1113 		if (ret == -ENOENT) {
1114 			dev_err(adap,
1115 				"No Configuration File present on adapter. Using hard-wired configuration parameters.\n");
1116 			goto bye;
1117 		}
1118 	}
1119 	if (ret < 0) {
1120 		dev_err(adap, "could not initialize adapter, error %d\n", -ret);
1121 		goto bye;
1122 	}
1123 
1124 	/* Now that we've successfully configured and initialized the adapter
1125 	 * (or found it already initialized), we can ask the Firmware what
1126 	 * resources it has provisioned for us.
1127 	 */
1128 	ret = t4_get_pfres(adap);
1129 	if (ret) {
1130 		dev_err(adap->pdev_dev,
1131 			"Unable to retrieve resource provisioning info\n");
1132 		goto bye;
1133 	}
1134 
1135 	/* Find out what ports are available to us. */
1136 	v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
1137 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC);
1138 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
1139 	if (ret < 0) {
1140 		dev_err(adap, "%s: failure in t4_query_params; error = %d\n",
1141 			__func__, ret);
1142 		goto bye;
1143 	}
1144 
1145 	adap->params.nports = hweight32(port_vec);
1146 	adap->params.portvec = port_vec;
1147 
1148 	dev_debug(adap, "%s: adap->params.nports = %u\n", __func__,
1149 		  adap->params.nports);
1150 
1151 	/*
1152 	 * Give the SGE code a chance to pull in anything that it needs ...
1153 	 * Note that this must be called after we retrieve our VPD parameters
1154 	 * in order to know how to convert core ticks to seconds, etc.
1155 	 */
1156 	ret = t4_sge_init(adap);
1157 	if (ret < 0) {
1158 		dev_err(adap, "t4_sge_init failed with error %d\n",
1159 			-ret);
1160 		goto bye;
1161 	}
1162 
1163 	/*
1164 	 * Grab some of our basic fundamental operating parameters.
1165 	 */
1166 	params[0] = CXGBE_FW_PARAM_PFVF(L2T_START);
1167 	params[1] = CXGBE_FW_PARAM_PFVF(L2T_END);
1168 	params[2] = CXGBE_FW_PARAM_PFVF(FILTER_START);
1169 	params[3] = CXGBE_FW_PARAM_PFVF(FILTER_END);
1170 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4, params, val);
1171 	if (ret < 0)
1172 		goto bye;
1173 	adap->l2t_start = val[0];
1174 	adap->l2t_end = val[1];
1175 	adap->tids.ftid_base = val[2];
1176 	adap->tids.nftids = val[3] - val[2] + 1;
1177 
1178 	params[0] = CXGBE_FW_PARAM_PFVF(CLIP_START);
1179 	params[1] = CXGBE_FW_PARAM_PFVF(CLIP_END);
1180 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
1181 	if (ret < 0)
1182 		goto bye;
1183 	adap->clipt_start = val[0];
1184 	adap->clipt_end = val[1];
1185 
1186 	/*
1187 	 * Get device capabilities so we can determine what resources we need
1188 	 * to manage.
1189 	 */
1190 	memset(&caps_cmd, 0, sizeof(caps_cmd));
1191 	caps_cmd.op_to_write = htonl(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1192 				     F_FW_CMD_REQUEST | F_FW_CMD_READ);
1193 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
1194 	ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
1195 			 &caps_cmd);
1196 	if (ret < 0)
1197 		goto bye;
1198 
1199 	if ((caps_cmd.niccaps & cpu_to_be16(FW_CAPS_CONFIG_NIC_HASHFILTER)) &&
1200 	    is_t6(adap->params.chip)) {
1201 		if (cxgbe_init_hash_filter(adap) < 0)
1202 			goto bye;
1203 	}
1204 
1205 	/* See if FW supports FW_FILTER2 work request */
1206 	if (is_t4(adap->params.chip)) {
1207 		adap->params.filter2_wr_support = 0;
1208 	} else {
1209 		params[0] = CXGBE_FW_PARAM_DEV(FILTER2_WR);
1210 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1211 				      1, params, val);
1212 		adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
1213 	}
1214 
1215 	/* Check if FW supports returning vin.
1216 	 * If this is not supported, driver will interpret
1217 	 * these values from viid.
1218 	 */
1219 	params[0] = CXGBE_FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
1220 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1221 			      1, params, val);
1222 	adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0);
1223 
1224 	/* query tid-related parameters */
1225 	params[0] = CXGBE_FW_PARAM_DEV(NTID);
1226 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
1227 			      params, val);
1228 	if (ret < 0)
1229 		goto bye;
1230 	adap->tids.ntids = val[0];
1231 	adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
1232 
1233 	/* If we're running on newer firmware, let it know that we're
1234 	 * prepared to deal with encapsulated CPL messages.  Older
1235 	 * firmware won't understand this and we'll just get
1236 	 * unencapsulated messages ...
1237 	 */
1238 	params[0] = CXGBE_FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
1239 	val[0] = 1;
1240 	(void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
1241 
1242 	/*
1243 	 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
1244 	 * capability.  Earlier versions of the firmware didn't have the
1245 	 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
1246 	 * permission to use ULPTX MEMWRITE DSGL.
1247 	 */
1248 	if (is_t4(adap->params.chip)) {
1249 		adap->params.ulptx_memwrite_dsgl = false;
1250 	} else {
1251 		params[0] = CXGBE_FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
1252 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1253 				      1, params, val);
1254 		adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
1255 	}
1256 
1257 	/* Query for max number of packets that can be coalesced for Tx */
1258 	params[0] = CXGBE_FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR);
1259 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
1260 	if (!ret && val[0] > 0)
1261 		adap->params.max_tx_coalesce_num = val[0];
1262 	else
1263 		adap->params.max_tx_coalesce_num = ETH_COALESCE_PKT_NUM;
1264 
1265 	/*
1266 	 * The MTU/MSS Table is initialized by now, so load their values.  If
1267 	 * we're initializing the adapter, then we'll make any modifications
1268 	 * we want to the MTU/MSS Table and also initialize the congestion
1269 	 * parameters.
1270 	 */
1271 	t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
1272 	if (state != DEV_STATE_INIT) {
1273 		int i;
1274 
1275 		/*
1276 		 * The default MTU Table contains values 1492 and 1500.
1277 		 * However, for TCP, it's better to have two values which are
1278 		 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
1279 		 * This allows us to have a TCP Data Payload which is a
1280 		 * multiple of 8 regardless of what combination of TCP Options
1281 		 * are in use (always a multiple of 4 bytes) which is
1282 		 * important for performance reasons.  For instance, if no
1283 		 * options are in use, then we have a 20-byte IP header and a
1284 		 * 20-byte TCP header.  In this case, a 1500-byte MSS would
1285 		 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
1286 		 * which is not a multiple of 8.  So using an MSS of 1488 in
1287 		 * this case results in a TCP Data Payload of 1448 bytes which
1288 		 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
1289 		 * Stamps have been negotiated, then an MTU of 1500 bytes
1290 		 * results in a TCP Data Payload of 1448 bytes which, as
1291 		 * above, is a multiple of 8 bytes ...
1292 		 */
1293 		for (i = 0; i < NMTUS; i++)
1294 			if (adap->params.mtus[i] == 1492) {
1295 				adap->params.mtus[i] = 1488;
1296 				break;
1297 			}
1298 
1299 		t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
1300 			     adap->params.b_wnd);
1301 	}
1302 	t4_init_sge_params(adap);
1303 	t4_init_tp_params(adap);
1304 	configure_pcie_ext_tag(adap);
1305 	configure_vlan_types(adap);
1306 	cxgbe_configure_max_ethqsets(adap);
1307 
1308 	adap->params.drv_memwin = MEMWIN_NIC;
1309 	adap->flags |= FW_OK;
1310 	dev_debug(adap, "%s: returning zero..\n", __func__);
1311 	return 0;
1312 
1313 	/*
1314 	 * Something bad happened.  If a command timed out or failed with EIO
1315 	 * FW does not operate within its spec or something catastrophic
1316 	 * happened to HW/FW, stop issuing commands.
1317 	 */
1318 bye:
1319 	if (ret != -ETIMEDOUT && ret != -EIO)
1320 		t4_fw_bye(adap, adap->mbox);
1321 	return ret;
1322 }
1323 
1324 /**
1325  * t4_os_portmod_changed - handle port module changes
1326  * @adap: the adapter associated with the module change
1327  * @port_id: the port index whose module status has changed
1328  *
1329  * This is the OS-dependent handler for port module changes.  It is
1330  * invoked when a port module is removed or inserted for any OS-specific
1331  * processing.
1332  */
1333 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
1334 {
1335 	static const char * const mod_str[] = {
1336 		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
1337 	};
1338 
1339 	const struct port_info *pi = adap2pinfo(adap, port_id);
1340 
1341 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
1342 		dev_info(adap, "Port%d: port module unplugged\n", pi->port_id);
1343 	else if (pi->mod_type < ARRAY_SIZE(mod_str))
1344 		dev_info(adap, "Port%d: %s port module inserted\n", pi->port_id,
1345 			 mod_str[pi->mod_type]);
1346 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
1347 		dev_info(adap, "Port%d: unsupported port module inserted\n",
1348 			 pi->port_id);
1349 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
1350 		dev_info(adap, "Port%d: unknown port module inserted\n",
1351 			 pi->port_id);
1352 	else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
1353 		dev_info(adap, "Port%d: transceiver module error\n",
1354 			 pi->port_id);
1355 	else
1356 		dev_info(adap, "Port%d: unknown module type %d inserted\n",
1357 			 pi->port_id, pi->mod_type);
1358 }
1359 
1360 bool cxgbe_force_linkup(struct adapter *adap)
1361 {
1362 	if (is_pf4(adap))
1363 		return false;	/* force_linkup not required for pf driver */
1364 
1365 	return adap->devargs.force_link_up;
1366 }
1367 
1368 /**
1369  * link_start - enable a port
1370  * @dev: the port to enable
1371  *
1372  * Performs the MAC and PHY actions needed to enable a port.
1373  */
1374 int cxgbe_link_start(struct port_info *pi)
1375 {
1376 	struct adapter *adapter = pi->adapter;
1377 	u64 conf_offloads;
1378 	unsigned int mtu;
1379 	int ret;
1380 
1381 	mtu = pi->eth_dev->data->dev_conf.rxmode.max_rx_pkt_len -
1382 	      (RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN);
1383 
1384 	conf_offloads = pi->eth_dev->data->dev_conf.rxmode.offloads;
1385 
1386 	/*
1387 	 * We do not set address filters and promiscuity here, the stack does
1388 	 * that step explicitly.
1389 	 */
1390 	ret = t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, -1, -1, -1,
1391 			    !!(conf_offloads & DEV_RX_OFFLOAD_VLAN_STRIP),
1392 			    true);
1393 	if (ret == 0) {
1394 		ret = cxgbe_mpstcam_modify(pi, (int)pi->xact_addr_filt,
1395 				(u8 *)&pi->eth_dev->data->mac_addrs[0]);
1396 		if (ret >= 0) {
1397 			pi->xact_addr_filt = ret;
1398 			ret = 0;
1399 		}
1400 	}
1401 	if (ret == 0 && is_pf4(adapter))
1402 		ret = t4_link_l1cfg(adapter, adapter->mbox, pi->tx_chan,
1403 				    &pi->link_cfg);
1404 	if (ret == 0) {
1405 		/*
1406 		 * Enabling a Virtual Interface can result in an interrupt
1407 		 * during the processing of the VI Enable command and, in some
1408 		 * paths, result in an attempt to issue another command in the
1409 		 * interrupt context.  Thus, we disable interrupts during the
1410 		 * course of the VI Enable command ...
1411 		 */
1412 		ret = t4_enable_vi_params(adapter, adapter->mbox, pi->viid,
1413 					  true, true, false);
1414 	}
1415 
1416 	if (ret == 0 && cxgbe_force_linkup(adapter))
1417 		pi->eth_dev->data->dev_link.link_status = ETH_LINK_UP;
1418 	return ret;
1419 }
1420 
1421 /**
1422  * cxgbe_write_rss_conf - flash the RSS configuration for a given port
1423  * @pi: the port
1424  * @rss_hf: Hash configuration to apply
1425  */
1426 int cxgbe_write_rss_conf(const struct port_info *pi, uint64_t rss_hf)
1427 {
1428 	struct adapter *adapter = pi->adapter;
1429 	const struct sge_eth_rxq *rxq;
1430 	u64 flags = 0;
1431 	u16 rss;
1432 	int err;
1433 
1434 	/*  Should never be called before setting up sge eth rx queues */
1435 	if (!(adapter->flags & FULL_INIT_DONE)) {
1436 		dev_err(adap, "%s No RXQs available on port %d\n",
1437 			__func__, pi->port_id);
1438 		return -EINVAL;
1439 	}
1440 
1441 	/* Don't allow unsupported hash functions */
1442 	if (rss_hf & ~CXGBE_RSS_HF_ALL)
1443 		return -EINVAL;
1444 
1445 	if (rss_hf & CXGBE_RSS_HF_IPV4_MASK)
1446 		flags |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
1447 
1448 	if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
1449 		flags |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
1450 
1451 	if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
1452 		flags |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
1453 			 F_FW_RSS_VI_CONFIG_CMD_UDPEN;
1454 
1455 	if (rss_hf & CXGBE_RSS_HF_IPV6_MASK)
1456 		flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
1457 
1458 	if (rss_hf & CXGBE_RSS_HF_TCP_IPV6_MASK)
1459 		flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
1460 			 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
1461 
1462 	if (rss_hf & CXGBE_RSS_HF_UDP_IPV6_MASK)
1463 		flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
1464 			 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
1465 			 F_FW_RSS_VI_CONFIG_CMD_UDPEN;
1466 
1467 	rxq = &adapter->sge.ethrxq[pi->first_qset];
1468 	rss = rxq[0].rspq.abs_id;
1469 
1470 	/* If Tunnel All Lookup isn't specified in the global RSS
1471 	 * Configuration, then we need to specify a default Ingress
1472 	 * Queue for any ingress packets which aren't hashed.  We'll
1473 	 * use our first ingress queue ...
1474 	 */
1475 	err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
1476 			       flags, rss);
1477 	return err;
1478 }
1479 
1480 /**
1481  * cxgbe_write_rss - write the RSS table for a given port
1482  * @pi: the port
1483  * @queues: array of queue indices for RSS
1484  *
1485  * Sets up the portion of the HW RSS table for the port's VI to distribute
1486  * packets to the Rx queues in @queues.
1487  */
1488 int cxgbe_write_rss(const struct port_info *pi, const u16 *queues)
1489 {
1490 	u16 *rss;
1491 	int i, err;
1492 	struct adapter *adapter = pi->adapter;
1493 	const struct sge_eth_rxq *rxq;
1494 
1495 	/*  Should never be called before setting up sge eth rx queues */
1496 	BUG_ON(!(adapter->flags & FULL_INIT_DONE));
1497 
1498 	rxq = &adapter->sge.ethrxq[pi->first_qset];
1499 	rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0);
1500 	if (!rss)
1501 		return -ENOMEM;
1502 
1503 	/* map the queue indices to queue ids */
1504 	for (i = 0; i < pi->rss_size; i++, queues++)
1505 		rss[i] = rxq[*queues].rspq.abs_id;
1506 
1507 	err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
1508 				  pi->rss_size, rss, pi->rss_size);
1509 	rte_free(rss);
1510 	return err;
1511 }
1512 
1513 /**
1514  * setup_rss - configure RSS
1515  * @adapter: the adapter
1516  *
1517  * Sets up RSS to distribute packets to multiple receive queues.  We
1518  * configure the RSS CPU lookup table to distribute to the number of HW
1519  * receive queues, and the response queue lookup table to narrow that
1520  * down to the response queues actually configured for each port.
1521  * We always configure the RSS mapping for all ports since the mapping
1522  * table has plenty of entries.
1523  */
1524 int cxgbe_setup_rss(struct port_info *pi)
1525 {
1526 	int j, err;
1527 	struct adapter *adapter = pi->adapter;
1528 
1529 	dev_debug(adapter, "%s:  pi->rss_size = %u; pi->n_rx_qsets = %u\n",
1530 		  __func__, pi->rss_size, pi->n_rx_qsets);
1531 
1532 	if (!(pi->flags & PORT_RSS_DONE)) {
1533 		if (adapter->flags & FULL_INIT_DONE) {
1534 			/* Fill default values with equal distribution */
1535 			for (j = 0; j < pi->rss_size; j++)
1536 				pi->rss[j] = j % pi->n_rx_qsets;
1537 
1538 			err = cxgbe_write_rss(pi, pi->rss);
1539 			if (err)
1540 				return err;
1541 
1542 			err = cxgbe_write_rss_conf(pi, pi->rss_hf);
1543 			if (err)
1544 				return err;
1545 			pi->flags |= PORT_RSS_DONE;
1546 		}
1547 	}
1548 	return 0;
1549 }
1550 
1551 /*
1552  * Enable NAPI scheduling and interrupt generation for all Rx queues.
1553  */
1554 static void enable_rx(struct adapter *adap, struct sge_rspq *q)
1555 {
1556 	/* 0-increment GTS to start the timer and enable interrupts */
1557 	t4_write_reg(adap, is_pf4(adap) ? MYPF_REG(A_SGE_PF_GTS) :
1558 					  T4VF_SGE_BASE_ADDR + A_SGE_VF_GTS,
1559 		     V_SEINTARM(q->intr_params) |
1560 		     V_INGRESSQID(q->cntxt_id));
1561 }
1562 
1563 void cxgbe_enable_rx_queues(struct port_info *pi)
1564 {
1565 	struct adapter *adap = pi->adapter;
1566 	struct sge *s = &adap->sge;
1567 	unsigned int i;
1568 
1569 	for (i = 0; i < pi->n_rx_qsets; i++)
1570 		enable_rx(adap, &s->ethrxq[pi->first_qset + i].rspq);
1571 }
1572 
1573 /**
1574  * fw_caps_to_speed_caps - translate Firmware Port Caps to Speed Caps.
1575  * @port_type: Firmware Port Type
1576  * @fw_caps: Firmware Port Capabilities
1577  * @speed_caps: Device Info Speed Capabilities
1578  *
1579  * Translate a Firmware Port Capabilities specification to Device Info
1580  * Speed Capabilities.
1581  */
1582 static void fw_caps_to_speed_caps(enum fw_port_type port_type,
1583 				  unsigned int fw_caps,
1584 				  u32 *speed_caps)
1585 {
1586 #define SET_SPEED(__speed_name) \
1587 	do { \
1588 		*speed_caps |= ETH_LINK_ ## __speed_name; \
1589 	} while (0)
1590 
1591 #define FW_CAPS_TO_SPEED(__fw_name) \
1592 	do { \
1593 		if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \
1594 			SET_SPEED(__fw_name); \
1595 	} while (0)
1596 
1597 	switch (port_type) {
1598 	case FW_PORT_TYPE_BT_SGMII:
1599 	case FW_PORT_TYPE_BT_XFI:
1600 	case FW_PORT_TYPE_BT_XAUI:
1601 		FW_CAPS_TO_SPEED(SPEED_100M);
1602 		FW_CAPS_TO_SPEED(SPEED_1G);
1603 		FW_CAPS_TO_SPEED(SPEED_10G);
1604 		break;
1605 
1606 	case FW_PORT_TYPE_KX4:
1607 	case FW_PORT_TYPE_KX:
1608 	case FW_PORT_TYPE_FIBER_XFI:
1609 	case FW_PORT_TYPE_FIBER_XAUI:
1610 	case FW_PORT_TYPE_SFP:
1611 	case FW_PORT_TYPE_QSFP_10G:
1612 	case FW_PORT_TYPE_QSA:
1613 		FW_CAPS_TO_SPEED(SPEED_1G);
1614 		FW_CAPS_TO_SPEED(SPEED_10G);
1615 		break;
1616 
1617 	case FW_PORT_TYPE_KR:
1618 		SET_SPEED(SPEED_10G);
1619 		break;
1620 
1621 	case FW_PORT_TYPE_BP_AP:
1622 	case FW_PORT_TYPE_BP4_AP:
1623 		SET_SPEED(SPEED_1G);
1624 		SET_SPEED(SPEED_10G);
1625 		break;
1626 
1627 	case FW_PORT_TYPE_BP40_BA:
1628 	case FW_PORT_TYPE_QSFP:
1629 		SET_SPEED(SPEED_40G);
1630 		break;
1631 
1632 	case FW_PORT_TYPE_CR_QSFP:
1633 	case FW_PORT_TYPE_SFP28:
1634 	case FW_PORT_TYPE_KR_SFP28:
1635 		FW_CAPS_TO_SPEED(SPEED_1G);
1636 		FW_CAPS_TO_SPEED(SPEED_10G);
1637 		FW_CAPS_TO_SPEED(SPEED_25G);
1638 		break;
1639 
1640 	case FW_PORT_TYPE_CR2_QSFP:
1641 		SET_SPEED(SPEED_50G);
1642 		break;
1643 
1644 	case FW_PORT_TYPE_KR4_100G:
1645 	case FW_PORT_TYPE_CR4_QSFP:
1646 		FW_CAPS_TO_SPEED(SPEED_25G);
1647 		FW_CAPS_TO_SPEED(SPEED_40G);
1648 		FW_CAPS_TO_SPEED(SPEED_50G);
1649 		FW_CAPS_TO_SPEED(SPEED_100G);
1650 		break;
1651 
1652 	default:
1653 		break;
1654 	}
1655 
1656 #undef FW_CAPS_TO_SPEED
1657 #undef SET_SPEED
1658 }
1659 
1660 /**
1661  * cxgbe_get_speed_caps - Fetch supported speed capabilities
1662  * @pi: Underlying port's info
1663  * @speed_caps: Device Info speed capabilities
1664  *
1665  * Fetch supported speed capabilities of the underlying port.
1666  */
1667 void cxgbe_get_speed_caps(struct port_info *pi, u32 *speed_caps)
1668 {
1669 	*speed_caps = 0;
1670 
1671 	fw_caps_to_speed_caps(pi->port_type, pi->link_cfg.pcaps,
1672 			      speed_caps);
1673 
1674 	if (!(pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG))
1675 		*speed_caps |= ETH_LINK_SPEED_FIXED;
1676 }
1677 
1678 /**
1679  * cxgbe_set_link_status - Set device link up or down.
1680  * @pi: Underlying port's info
1681  * @status: 0 - down, 1 - up
1682  *
1683  * Set the device link up or down.
1684  */
1685 int cxgbe_set_link_status(struct port_info *pi, bool status)
1686 {
1687 	struct adapter *adapter = pi->adapter;
1688 	int err = 0;
1689 
1690 	err = t4_enable_vi(adapter, adapter->mbox, pi->viid, status, status);
1691 	if (err) {
1692 		dev_err(adapter, "%s: disable_vi failed: %d\n", __func__, err);
1693 		return err;
1694 	}
1695 
1696 	if (!status)
1697 		t4_reset_link_config(adapter, pi->pidx);
1698 
1699 	return 0;
1700 }
1701 
1702 /**
1703  * cxgb_up - enable the adapter
1704  * @adap: adapter being enabled
1705  *
1706  * Called when the first port is enabled, this function performs the
1707  * actions necessary to make an adapter operational, such as completing
1708  * the initialization of HW modules, and enabling interrupts.
1709  */
1710 int cxgbe_up(struct adapter *adap)
1711 {
1712 	enable_rx(adap, &adap->sge.fw_evtq);
1713 	t4_sge_tx_monitor_start(adap);
1714 	if (is_pf4(adap))
1715 		t4_intr_enable(adap);
1716 	adap->flags |= FULL_INIT_DONE;
1717 
1718 	/* TODO: deadman watchdog ?? */
1719 	return 0;
1720 }
1721 
1722 /*
1723  * Close the port
1724  */
1725 int cxgbe_down(struct port_info *pi)
1726 {
1727 	return cxgbe_set_link_status(pi, false);
1728 }
1729 
1730 /*
1731  * Release resources when all the ports have been stopped.
1732  */
1733 void cxgbe_close(struct adapter *adapter)
1734 {
1735 	struct port_info *pi;
1736 	int i;
1737 
1738 	if (adapter->flags & FULL_INIT_DONE) {
1739 		tid_free(&adapter->tids);
1740 		t4_cleanup_mpstcam(adapter);
1741 		t4_cleanup_clip_tbl(adapter);
1742 		t4_cleanup_l2t(adapter);
1743 		t4_cleanup_smt(adapter);
1744 		if (is_pf4(adapter))
1745 			t4_intr_disable(adapter);
1746 		t4_sge_tx_monitor_stop(adapter);
1747 		t4_free_sge_resources(adapter);
1748 		for_each_port(adapter, i) {
1749 			pi = adap2pinfo(adapter, i);
1750 			if (pi->viid != 0)
1751 				t4_free_vi(adapter, adapter->mbox,
1752 					   adapter->pf, 0, pi->viid);
1753 			rte_eth_dev_release_port(pi->eth_dev);
1754 		}
1755 		adapter->flags &= ~FULL_INIT_DONE;
1756 	}
1757 
1758 	if (is_pf4(adapter) && (adapter->flags & FW_OK))
1759 		t4_fw_bye(adapter, adapter->mbox);
1760 }
1761 
1762 static void adap_smt_index(struct adapter *adapter, u32 *smt_start_idx,
1763 			   u32 *smt_size)
1764 {
1765 	u32 params[2], smt_val[2];
1766 	int ret;
1767 
1768 	params[0] = CXGBE_FW_PARAM_PFVF(GET_SMT_START);
1769 	params[1] = CXGBE_FW_PARAM_PFVF(GET_SMT_SIZE);
1770 
1771 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
1772 			      2, params, smt_val);
1773 
1774 	/* if FW doesn't recognize this command then set it to default setting
1775 	 * which is start index as 0 and size as 256.
1776 	 */
1777 	if (ret < 0) {
1778 		*smt_start_idx = 0;
1779 		*smt_size = SMT_SIZE;
1780 	} else {
1781 		*smt_start_idx = smt_val[0];
1782 		/* smt size can be zero, if nsmt is not yet configured in
1783 		 * the config file or set as zero, then configure all the
1784 		 * remaining entries to this PF itself.
1785 		 */
1786 		if (!smt_val[1])
1787 			*smt_size = SMT_SIZE - *smt_start_idx;
1788 		else
1789 			*smt_size = smt_val[1];
1790 	}
1791 }
1792 
1793 int cxgbe_probe(struct adapter *adapter)
1794 {
1795 	u32 smt_start_idx, smt_size;
1796 	struct port_info *pi;
1797 	int func, i;
1798 	int err = 0;
1799 	u32 whoami;
1800 	int chip;
1801 
1802 	whoami = t4_read_reg(adapter, A_PL_WHOAMI);
1803 	chip = t4_get_chip_type(adapter,
1804 			CHELSIO_PCI_ID_VER(adapter->pdev->id.device_id));
1805 	if (chip < 0)
1806 		return chip;
1807 
1808 	func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
1809 	       G_SOURCEPF(whoami) : G_T6_SOURCEPF(whoami);
1810 
1811 	adapter->mbox = func;
1812 	adapter->pf = func;
1813 
1814 	t4_os_lock_init(&adapter->mbox_lock);
1815 	TAILQ_INIT(&adapter->mbox_list);
1816 	t4_os_lock_init(&adapter->win0_lock);
1817 
1818 	err = t4_prep_adapter(adapter);
1819 	if (err)
1820 		return err;
1821 
1822 	setup_memwin(adapter);
1823 	err = adap_init0(adapter);
1824 	if (err) {
1825 		dev_err(adapter, "%s: Adapter initialization failed, error %d\n",
1826 			__func__, err);
1827 		goto out_free;
1828 	}
1829 
1830 	if (!is_t4(adapter->params.chip)) {
1831 		/*
1832 		 * The userspace doorbell BAR is split evenly into doorbell
1833 		 * regions, each associated with an egress queue.  If this
1834 		 * per-queue region is large enough (at least UDBS_SEG_SIZE)
1835 		 * then it can be used to submit a tx work request with an
1836 		 * implied doorbell.  Enable write combining on the BAR if
1837 		 * there is room for such work requests.
1838 		 */
1839 		int s_qpp, qpp, num_seg;
1840 
1841 		s_qpp = (S_QUEUESPERPAGEPF0 +
1842 			(S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) *
1843 			adapter->pf);
1844 		qpp = 1 << ((t4_read_reg(adapter,
1845 				A_SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp)
1846 				& M_QUEUESPERPAGEPF0);
1847 		num_seg = CXGBE_PAGE_SIZE / UDBS_SEG_SIZE;
1848 		if (qpp > num_seg)
1849 			dev_warn(adapter, "Incorrect SGE EGRESS QUEUES_PER_PAGE configuration, continuing in debug mode\n");
1850 
1851 		adapter->bar2 = (void *)adapter->pdev->mem_resource[2].addr;
1852 		if (!adapter->bar2) {
1853 			dev_err(adapter, "cannot map device bar2 region\n");
1854 			err = -ENOMEM;
1855 			goto out_free;
1856 		}
1857 		t4_write_reg(adapter, A_SGE_STAT_CFG, V_STATSOURCE_T5(7) |
1858 			     V_STATMODE(0));
1859 	}
1860 
1861 	for_each_port(adapter, i) {
1862 		const unsigned int numa_node = rte_socket_id();
1863 		char name[RTE_ETH_NAME_MAX_LEN];
1864 		struct rte_eth_dev *eth_dev;
1865 
1866 		snprintf(name, sizeof(name), "%s_%d",
1867 			 adapter->pdev->device.name, i);
1868 
1869 		if (i == 0) {
1870 			/* First port is already allocated by DPDK */
1871 			eth_dev = adapter->eth_dev;
1872 			goto allocate_mac;
1873 		}
1874 
1875 		/*
1876 		 * now do all data allocation - for eth_dev structure,
1877 		 * and internal (private) data for the remaining ports
1878 		 */
1879 
1880 		/* reserve an ethdev entry */
1881 		eth_dev = rte_eth_dev_allocate(name);
1882 		if (!eth_dev)
1883 			goto out_free;
1884 
1885 		eth_dev->data->dev_private =
1886 			rte_zmalloc_socket(name, sizeof(struct port_info),
1887 					   RTE_CACHE_LINE_SIZE, numa_node);
1888 		if (!eth_dev->data->dev_private)
1889 			goto out_free;
1890 
1891 allocate_mac:
1892 		pi = eth_dev->data->dev_private;
1893 		adapter->port[i] = pi;
1894 		pi->eth_dev = eth_dev;
1895 		pi->adapter = adapter;
1896 		pi->xact_addr_filt = -1;
1897 		pi->port_id = i;
1898 		pi->pidx = i;
1899 
1900 		pi->eth_dev->device = &adapter->pdev->device;
1901 		pi->eth_dev->dev_ops = adapter->eth_dev->dev_ops;
1902 		pi->eth_dev->tx_pkt_burst = adapter->eth_dev->tx_pkt_burst;
1903 		pi->eth_dev->rx_pkt_burst = adapter->eth_dev->rx_pkt_burst;
1904 
1905 		rte_eth_copy_pci_info(pi->eth_dev, adapter->pdev);
1906 
1907 		pi->eth_dev->data->mac_addrs = rte_zmalloc(name,
1908 							RTE_ETHER_ADDR_LEN, 0);
1909 		if (!pi->eth_dev->data->mac_addrs) {
1910 			dev_err(adapter, "%s: Mem allocation failed for storing mac addr, aborting\n",
1911 				__func__);
1912 			err = -1;
1913 			goto out_free;
1914 		}
1915 
1916 		if (i > 0) {
1917 			/* First port will be notified by upper layer */
1918 			rte_eth_dev_probing_finish(eth_dev);
1919 		}
1920 	}
1921 
1922 	if (adapter->flags & FW_OK) {
1923 		err = t4_port_init(adapter, adapter->mbox, adapter->pf, 0);
1924 		if (err) {
1925 			dev_err(adapter, "%s: t4_port_init failed with err %d\n",
1926 				__func__, err);
1927 			goto out_free;
1928 		}
1929 	}
1930 
1931 	cxgbe_cfg_queues(adapter->eth_dev);
1932 
1933 	cxgbe_print_adapter_info(adapter);
1934 	cxgbe_print_port_info(adapter);
1935 
1936 	adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
1937 					  adapter->clipt_end);
1938 	if (!adapter->clipt) {
1939 		/* We tolerate a lack of clip_table, giving up some
1940 		 * functionality
1941 		 */
1942 		dev_warn(adapter, "could not allocate CLIP. Continuing\n");
1943 	}
1944 
1945 	adap_smt_index(adapter, &smt_start_idx, &smt_size);
1946 	adapter->smt = t4_init_smt(smt_start_idx, smt_size);
1947 	if (!adapter->smt)
1948 		dev_warn(adapter, "could not allocate SMT, continuing\n");
1949 
1950 	adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
1951 	if (!adapter->l2t) {
1952 		/* We tolerate a lack of L2T, giving up some functionality */
1953 		dev_warn(adapter, "could not allocate L2T. Continuing\n");
1954 	}
1955 
1956 	if (tid_init(&adapter->tids) < 0) {
1957 		/* Disable filtering support */
1958 		dev_warn(adapter, "could not allocate TID table, "
1959 			 "filter support disabled. Continuing\n");
1960 	}
1961 
1962 	t4_os_lock_init(&adapter->flow_lock);
1963 
1964 	adapter->mpstcam = t4_init_mpstcam(adapter);
1965 	if (!adapter->mpstcam)
1966 		dev_warn(adapter, "could not allocate mps tcam table."
1967 			 " Continuing\n");
1968 
1969 	if (is_hashfilter(adapter)) {
1970 		if (t4_read_reg(adapter, A_LE_DB_CONFIG) & F_HASHEN) {
1971 			u32 hash_base, hash_reg;
1972 
1973 			hash_reg = A_LE_DB_TID_HASHBASE;
1974 			hash_base = t4_read_reg(adapter, hash_reg);
1975 			adapter->tids.hash_base = hash_base / 4;
1976 		}
1977 	} else {
1978 		/* Disable hash filtering support */
1979 		dev_warn(adapter,
1980 			 "Maskless filter support disabled. Continuing\n");
1981 	}
1982 
1983 	err = cxgbe_init_rss(adapter);
1984 	if (err)
1985 		goto out_free;
1986 
1987 	return 0;
1988 
1989 out_free:
1990 	for_each_port(adapter, i) {
1991 		pi = adap2pinfo(adapter, i);
1992 		if (pi->viid != 0)
1993 			t4_free_vi(adapter, adapter->mbox, adapter->pf,
1994 				   0, pi->viid);
1995 		rte_eth_dev_release_port(pi->eth_dev);
1996 	}
1997 
1998 	if (adapter->flags & FW_OK)
1999 		t4_fw_bye(adapter, adapter->mbox);
2000 	return -err;
2001 }
2002