xref: /dpdk/drivers/net/cxgbe/cxgbe_main.c (revision 97b914f4e715565d53d38ac6e04815b9be5e58a9)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2018 Chelsio Communications.
3  * All rights reserved.
4  */
5 
6 #include <sys/queue.h>
7 #include <stdio.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <string.h>
11 #include <unistd.h>
12 #include <stdarg.h>
13 #include <inttypes.h>
14 #include <netinet/in.h>
15 
16 #include <rte_byteorder.h>
17 #include <rte_common.h>
18 #include <rte_cycles.h>
19 #include <rte_interrupts.h>
20 #include <rte_log.h>
21 #include <rte_debug.h>
22 #include <rte_pci.h>
23 #include <rte_branch_prediction.h>
24 #include <rte_memory.h>
25 #include <rte_tailq.h>
26 #include <rte_eal.h>
27 #include <rte_alarm.h>
28 #include <rte_ether.h>
29 #include <ethdev_driver.h>
30 #include <ethdev_pci.h>
31 #include <rte_random.h>
32 #include <rte_dev.h>
33 #include <rte_kvargs.h>
34 
35 #include "base/common.h"
36 #include "base/t4_regs.h"
37 #include "base/t4_msg.h"
38 #include "cxgbe.h"
39 #include "cxgbe_pfvf.h"
40 #include "clip_tbl.h"
41 #include "l2t.h"
42 #include "smt.h"
43 #include "mps_tcam.h"
44 
45 static const u16 cxgbe_filter_mode_features[] = {
46 	(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE |
47 	 F_PROTOCOL | F_PORT),
48 	(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE |
49 	 F_PROTOCOL | F_FCOE),
50 	(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE | F_TOS |
51 	 F_PORT),
52 	(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE | F_TOS |
53 	 F_FCOE),
54 	(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE | F_PORT |
55 	 F_FCOE),
56 	(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_PROTOCOL | F_TOS |
57 	 F_PORT | F_FCOE),
58 	(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_PROTOCOL | F_VLAN |
59 	 F_FCOE),
60 	(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_PROTOCOL | F_VNIC_ID |
61 	 F_FCOE),
62 	(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_TOS | F_VLAN |
63 	 F_FCOE),
64 	(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_TOS | F_VNIC_ID |
65 	 F_FCOE),
66 	(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_VLAN | F_PORT |
67 	 F_FCOE),
68 	(F_FRAGMENTATION | F_MPSHITTYPE | F_MACMATCH | F_VNIC_ID | F_PORT |
69 	 F_FCOE),
70 	(F_FRAGMENTATION | F_MPSHITTYPE | F_ETHERTYPE | F_PROTOCOL | F_TOS |
71 	 F_PORT | F_FCOE),
72 	(F_FRAGMENTATION | F_MPSHITTYPE | F_ETHERTYPE | F_VLAN | F_PORT),
73 	(F_FRAGMENTATION | F_MPSHITTYPE | F_ETHERTYPE | F_VLAN | F_FCOE),
74 	(F_FRAGMENTATION | F_MPSHITTYPE | F_ETHERTYPE | F_VNIC_ID | F_PORT),
75 	(F_FRAGMENTATION | F_MPSHITTYPE | F_ETHERTYPE | F_VNIC_ID | F_FCOE),
76 	(F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VLAN | F_PORT),
77 	(F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VLAN | F_FCOE),
78 	(F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VNIC_ID |
79 	 F_PORT),
80 	(F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VNIC_ID |
81 	 F_FCOE),
82 	(F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_VLAN | F_PORT |
83 	 F_FCOE),
84 	(F_FRAGMENTATION | F_MPSHITTYPE | F_PROTOCOL | F_VNIC_ID | F_PORT |
85 	 F_FCOE),
86 	(F_FRAGMENTATION | F_MPSHITTYPE | F_TOS | F_VLAN | F_PORT | F_FCOE),
87 	(F_FRAGMENTATION | F_MPSHITTYPE | F_TOS | F_VNIC_ID | F_PORT | F_FCOE),
88 	(F_FRAGMENTATION | F_MPSHITTYPE | F_VLAN | F_VNIC_ID | F_FCOE),
89 	(F_FRAGMENTATION | F_MACMATCH | F_ETHERTYPE | F_PROTOCOL | F_PORT |
90 	 F_FCOE),
91 	(F_FRAGMENTATION | F_MACMATCH | F_ETHERTYPE | F_TOS | F_PORT | F_FCOE),
92 	(F_FRAGMENTATION | F_MACMATCH | F_PROTOCOL | F_VLAN | F_PORT | F_FCOE),
93 	(F_FRAGMENTATION | F_MACMATCH | F_PROTOCOL | F_VNIC_ID | F_PORT |
94 	 F_FCOE),
95 	(F_FRAGMENTATION | F_MACMATCH | F_TOS | F_VLAN | F_PORT | F_FCOE),
96 	(F_FRAGMENTATION | F_MACMATCH | F_TOS | F_VNIC_ID | F_PORT | F_FCOE),
97 	(F_FRAGMENTATION | F_ETHERTYPE | F_VLAN | F_PORT | F_FCOE),
98 	(F_FRAGMENTATION | F_ETHERTYPE | F_VNIC_ID | F_PORT | F_FCOE),
99 	(F_FRAGMENTATION | F_PROTOCOL | F_TOS | F_VLAN | F_FCOE),
100 	(F_FRAGMENTATION | F_PROTOCOL | F_TOS | F_VNIC_ID | F_FCOE),
101 	(F_FRAGMENTATION | F_VLAN | F_VNIC_ID | F_PORT | F_FCOE),
102 	(F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE | F_PROTOCOL | F_PORT |
103 	 F_FCOE),
104 	(F_MPSHITTYPE | F_MACMATCH | F_ETHERTYPE | F_TOS | F_PORT | F_FCOE),
105 	(F_MPSHITTYPE | F_MACMATCH | F_PROTOCOL | F_VLAN | F_PORT),
106 	(F_MPSHITTYPE | F_MACMATCH | F_PROTOCOL | F_VNIC_ID | F_PORT),
107 	(F_MPSHITTYPE | F_MACMATCH | F_TOS | F_VLAN | F_PORT),
108 	(F_MPSHITTYPE | F_MACMATCH | F_TOS | F_VNIC_ID | F_PORT),
109 	(F_MPSHITTYPE | F_ETHERTYPE | F_VLAN | F_PORT | F_FCOE),
110 	(F_MPSHITTYPE | F_ETHERTYPE | F_VNIC_ID | F_PORT | F_FCOE),
111 	(F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VLAN | F_PORT | F_FCOE),
112 	(F_MPSHITTYPE | F_PROTOCOL | F_TOS | F_VNIC_ID | F_PORT | F_FCOE),
113 	(F_MPSHITTYPE | F_VLAN | F_VNIC_ID | F_PORT),
114 };
115 
116 /**
117  * Allocate a chunk of memory. The allocated memory is cleared.
118  */
119 void *t4_alloc_mem(size_t size)
120 {
121 	return rte_zmalloc(NULL, size, 0);
122 }
123 
124 /**
125  * Free memory allocated through t4_alloc_mem().
126  */
127 void t4_free_mem(void *addr)
128 {
129 	rte_free(addr);
130 }
131 
132 /*
133  * Response queue handler for the FW event queue.
134  */
135 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
136 			  __rte_unused const struct pkt_gl *gl)
137 {
138 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
139 
140 	rsp++;                                          /* skip RSS header */
141 
142 	/*
143 	 * FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
144 	 */
145 	if (unlikely(opcode == CPL_FW4_MSG &&
146 		     ((const struct cpl_fw4_msg *)rsp)->type ==
147 		      FW_TYPE_RSSCPL)) {
148 		rsp++;
149 		opcode = ((const struct rss_header *)rsp)->opcode;
150 		rsp++;
151 		if (opcode != CPL_SGE_EGR_UPDATE) {
152 			dev_err(q->adapter, "unexpected FW4/CPL %#x on FW event queue\n",
153 				opcode);
154 			goto out;
155 		}
156 	}
157 
158 	if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
159 		/* do nothing */
160 	} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
161 		const struct cpl_fw6_msg *msg = (const void *)rsp;
162 
163 		t4_handle_fw_rpl(q->adapter, msg->data);
164 	} else if (opcode == CPL_ABORT_RPL_RSS) {
165 		const struct cpl_abort_rpl_rss *p = (const void *)rsp;
166 
167 		cxgbe_hash_del_filter_rpl(q->adapter, p);
168 	} else if (opcode == CPL_SET_TCB_RPL) {
169 		const struct cpl_set_tcb_rpl *p = (const void *)rsp;
170 
171 		cxgbe_filter_rpl(q->adapter, p);
172 	} else if (opcode == CPL_ACT_OPEN_RPL) {
173 		const struct cpl_act_open_rpl *p = (const void *)rsp;
174 
175 		cxgbe_hash_filter_rpl(q->adapter, p);
176 	} else if (opcode == CPL_L2T_WRITE_RPL) {
177 		const struct cpl_l2t_write_rpl *p = (const void *)rsp;
178 
179 		cxgbe_do_l2t_write_rpl(q->adapter, p);
180 	} else if (opcode == CPL_SMT_WRITE_RPL) {
181 		const struct cpl_smt_write_rpl *p = (const void *)rsp;
182 
183 		cxgbe_do_smt_write_rpl(q->adapter, p);
184 	} else {
185 		dev_err(adapter, "unexpected CPL %#x on FW event queue\n",
186 			opcode);
187 	}
188 out:
189 	return 0;
190 }
191 
192 /**
193  * Setup sge control queues to pass control information.
194  */
195 int cxgbe_setup_sge_ctrl_txq(struct adapter *adapter)
196 {
197 	struct sge *s = &adapter->sge;
198 	int err = 0, i = 0;
199 
200 	for_each_port(adapter, i) {
201 		struct port_info *pi = adap2pinfo(adapter, i);
202 		char name[RTE_ETH_NAME_MAX_LEN];
203 		struct sge_ctrl_txq *q = &s->ctrlq[i];
204 
205 		q->q.size = 1024;
206 		err = t4_sge_alloc_ctrl_txq(adapter, q,
207 					    adapter->eth_dev,  i,
208 					    s->fw_evtq.cntxt_id,
209 					    rte_socket_id());
210 		if (err) {
211 			dev_err(adapter, "Failed to alloc ctrl txq. Err: %d",
212 				err);
213 			goto out;
214 		}
215 		snprintf(name, sizeof(name), "%s_ctrl_pool_%d",
216 			 pi->eth_dev->device->driver->name,
217 			 pi->eth_dev->data->port_id);
218 		q->mb_pool = rte_pktmbuf_pool_create(name, s->ctrlq[i].q.size,
219 						     RTE_CACHE_LINE_SIZE,
220 						     RTE_MBUF_PRIV_ALIGN,
221 						     RTE_MBUF_DEFAULT_BUF_SIZE,
222 						     SOCKET_ID_ANY);
223 		if (!q->mb_pool) {
224 			err = -rte_errno;
225 			dev_err(adapter,
226 				"Can't create ctrl pool for port %d. Err: %d\n",
227 				pi->eth_dev->data->port_id, err);
228 			goto out;
229 		}
230 	}
231 	return 0;
232 out:
233 	t4_free_sge_resources(adapter);
234 	return err;
235 }
236 
237 /**
238  * cxgbe_poll_for_completion: Poll rxq for completion
239  * @q: rxq to poll
240  * @ms: milliseconds to delay
241  * @cnt: number of times to poll
242  * @c: completion to check for 'done' status
243  *
244  * Polls the rxq for reples until completion is done or the count
245  * expires.
246  */
247 int cxgbe_poll_for_completion(struct sge_rspq *q, unsigned int ms,
248 			      unsigned int cnt, struct t4_completion *c)
249 {
250 	unsigned int i;
251 	unsigned int work_done, budget = 32;
252 
253 	if (!c)
254 		return -EINVAL;
255 
256 	for (i = 0; i < cnt; i++) {
257 		cxgbe_poll(q, NULL, budget, &work_done);
258 		t4_os_lock(&c->lock);
259 		if (c->done) {
260 			t4_os_unlock(&c->lock);
261 			return 0;
262 		}
263 		t4_os_unlock(&c->lock);
264 		rte_delay_ms(ms);
265 	}
266 	return -ETIMEDOUT;
267 }
268 
269 int cxgbe_setup_sge_fwevtq(struct adapter *adapter)
270 {
271 	struct sge *s = &adapter->sge;
272 	int err = 0;
273 	int msi_idx = 0;
274 
275 	err = t4_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->eth_dev,
276 			       msi_idx, NULL, fwevtq_handler, -1, NULL, 0,
277 			       rte_socket_id());
278 	return err;
279 }
280 
281 static int closest_timer(const struct sge *s, int time)
282 {
283 	unsigned int i, match = 0;
284 	int delta, min_delta = INT_MAX;
285 
286 	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
287 		delta = time - s->timer_val[i];
288 		if (delta < 0)
289 			delta = -delta;
290 		if (delta < min_delta) {
291 			min_delta = delta;
292 			match = i;
293 		}
294 	}
295 	return match;
296 }
297 
298 static int closest_thres(const struct sge *s, int thres)
299 {
300 	unsigned int i, match = 0;
301 	int delta, min_delta = INT_MAX;
302 
303 	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
304 		delta = thres - s->counter_val[i];
305 		if (delta < 0)
306 			delta = -delta;
307 		if (delta < min_delta) {
308 			min_delta = delta;
309 			match = i;
310 		}
311 	}
312 	return match;
313 }
314 
315 /**
316  * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
317  * @q: the Rx queue
318  * @us: the hold-off time in us, or 0 to disable timer
319  * @cnt: the hold-off packet count, or 0 to disable counter
320  *
321  * Sets an Rx queue's interrupt hold-off time and packet count.  At least
322  * one of the two needs to be enabled for the queue to generate interrupts.
323  */
324 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, unsigned int us,
325 			       unsigned int cnt)
326 {
327 	struct adapter *adap = q->adapter;
328 	unsigned int timer_val;
329 
330 	if (cnt) {
331 		int err;
332 		u32 v, new_idx;
333 
334 		new_idx = closest_thres(&adap->sge, cnt);
335 		if (q->desc && q->pktcnt_idx != new_idx) {
336 			/* the queue has already been created, update it */
337 			v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
338 			    V_FW_PARAMS_PARAM_X(
339 			    FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
340 			    V_FW_PARAMS_PARAM_YZ(q->cntxt_id);
341 			err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
342 					    &v, &new_idx);
343 			if (err)
344 				return err;
345 		}
346 		q->pktcnt_idx = new_idx;
347 	}
348 
349 	timer_val = (us == 0) ? X_TIMERREG_RESTART_COUNTER :
350 				closest_timer(&adap->sge, us);
351 
352 	if ((us | cnt) == 0)
353 		q->intr_params = V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX);
354 	else
355 		q->intr_params = V_QINTR_TIMER_IDX(timer_val) |
356 				 V_QINTR_CNT_EN(cnt > 0);
357 	return 0;
358 }
359 
360 /**
361  * Allocate an active-open TID and set it to the supplied value.
362  */
363 int cxgbe_alloc_atid(struct tid_info *t, void *data)
364 {
365 	int atid = -1;
366 
367 	t4_os_lock(&t->atid_lock);
368 	if (t->afree) {
369 		union aopen_entry *p = t->afree;
370 
371 		atid = p - t->atid_tab;
372 		t->afree = p->next;
373 		p->data = data;
374 		t->atids_in_use++;
375 	}
376 	t4_os_unlock(&t->atid_lock);
377 	return atid;
378 }
379 
380 /**
381  * Release an active-open TID.
382  */
383 void cxgbe_free_atid(struct tid_info *t, unsigned int atid)
384 {
385 	union aopen_entry *p = &t->atid_tab[atid];
386 
387 	t4_os_lock(&t->atid_lock);
388 	p->next = t->afree;
389 	t->afree = p;
390 	t->atids_in_use--;
391 	t4_os_unlock(&t->atid_lock);
392 }
393 
394 /**
395  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
396  */
397 static void mk_tid_release(struct rte_mbuf *mbuf, unsigned int tid)
398 {
399 	struct cpl_tid_release *req;
400 
401 	req = rte_pktmbuf_mtod(mbuf, struct cpl_tid_release *);
402 	INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid);
403 }
404 
405 /**
406  * Release a TID and inform HW.  If we are unable to allocate the release
407  * message we defer to a work queue.
408  */
409 void cxgbe_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
410 		      unsigned short family)
411 {
412 	struct rte_mbuf *mbuf;
413 	struct adapter *adap = container_of(t, struct adapter, tids);
414 
415 	WARN_ON(tid >= t->ntids);
416 
417 	if (t->tid_tab[tid]) {
418 		t->tid_tab[tid] = NULL;
419 		__atomic_sub_fetch(&t->conns_in_use, 1, __ATOMIC_RELAXED);
420 		if (t->hash_base && tid >= t->hash_base) {
421 			if (family == FILTER_TYPE_IPV4)
422 				__atomic_sub_fetch(&t->hash_tids_in_use, 1,
423 						   __ATOMIC_RELAXED);
424 		} else {
425 			if (family == FILTER_TYPE_IPV4)
426 				__atomic_sub_fetch(&t->tids_in_use, 1,
427 						   __ATOMIC_RELAXED);
428 		}
429 	}
430 
431 	mbuf = rte_pktmbuf_alloc((&adap->sge.ctrlq[chan])->mb_pool);
432 	if (mbuf) {
433 		mbuf->data_len = sizeof(struct cpl_tid_release);
434 		mbuf->pkt_len = mbuf->data_len;
435 		mk_tid_release(mbuf, tid);
436 		t4_mgmt_tx(&adap->sge.ctrlq[chan], mbuf);
437 	}
438 }
439 
440 /**
441  * Insert a TID.
442  */
443 void cxgbe_insert_tid(struct tid_info *t, void *data, unsigned int tid,
444 		      unsigned short family)
445 {
446 	t->tid_tab[tid] = data;
447 	if (t->hash_base && tid >= t->hash_base) {
448 		if (family == FILTER_TYPE_IPV4)
449 			__atomic_add_fetch(&t->hash_tids_in_use, 1,
450 					   __ATOMIC_RELAXED);
451 	} else {
452 		if (family == FILTER_TYPE_IPV4)
453 			__atomic_add_fetch(&t->tids_in_use, 1,
454 					   __ATOMIC_RELAXED);
455 	}
456 
457 	__atomic_add_fetch(&t->conns_in_use, 1, __ATOMIC_RELAXED);
458 }
459 
460 /**
461  * Free TID tables.
462  */
463 static void tid_free(struct tid_info *t)
464 {
465 	if (t->tid_tab) {
466 		rte_bitmap_free(t->ftid_bmap);
467 
468 		if (t->ftid_bmap_array)
469 			t4_os_free(t->ftid_bmap_array);
470 
471 		t4_os_free(t->tid_tab);
472 	}
473 
474 	memset(t, 0, sizeof(struct tid_info));
475 }
476 
477 /**
478  * Allocate and initialize the TID tables.  Returns 0 on success.
479  */
480 static int tid_init(struct tid_info *t)
481 {
482 	size_t size;
483 	unsigned int ftid_bmap_size;
484 	unsigned int natids = t->natids;
485 	unsigned int max_ftids = t->nftids;
486 
487 	ftid_bmap_size = rte_bitmap_get_memory_footprint(t->nftids);
488 	size = t->ntids * sizeof(*t->tid_tab) +
489 		max_ftids * sizeof(*t->ftid_tab) +
490 		natids * sizeof(*t->atid_tab);
491 
492 	t->tid_tab = t4_os_alloc(size);
493 	if (!t->tid_tab)
494 		return -ENOMEM;
495 
496 	t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
497 	t->ftid_tab = (struct filter_entry *)&t->atid_tab[t->natids];
498 	t->ftid_bmap_array = t4_os_alloc(ftid_bmap_size);
499 	if (!t->ftid_bmap_array) {
500 		tid_free(t);
501 		return -ENOMEM;
502 	}
503 
504 	t4_os_lock_init(&t->atid_lock);
505 	t4_os_lock_init(&t->ftid_lock);
506 
507 	t->afree = NULL;
508 	t->atids_in_use = 0;
509 	t->tids_in_use = 0;
510 	t->conns_in_use = 0;
511 
512 	/* Setup the free list for atid_tab and clear the stid bitmap. */
513 	if (natids) {
514 		while (--natids)
515 			t->atid_tab[natids - 1].next = &t->atid_tab[natids];
516 		t->afree = t->atid_tab;
517 	}
518 
519 	t->ftid_bmap = rte_bitmap_init(t->nftids, t->ftid_bmap_array,
520 				       ftid_bmap_size);
521 	if (!t->ftid_bmap) {
522 		tid_free(t);
523 		return -ENOMEM;
524 	}
525 
526 	return 0;
527 }
528 
529 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
530 		      unsigned int us, unsigned int cnt,
531 		      unsigned int size, unsigned int iqe_size)
532 {
533 	q->adapter = adap;
534 	cxgb4_set_rspq_intr_params(q, us, cnt);
535 	q->iqe_len = iqe_size;
536 	q->size = size;
537 }
538 
539 int cxgbe_cfg_queue_count(struct rte_eth_dev *eth_dev)
540 {
541 	struct port_info *temp_pi, *pi = eth_dev->data->dev_private;
542 	struct adapter *adap = pi->adapter;
543 	u16 first_txq = 0, first_rxq = 0;
544 	struct sge *s = &adap->sge;
545 	u16 i, max_rxqs, max_txqs;
546 
547 	max_rxqs = s->max_ethqsets;
548 	max_txqs = s->max_ethqsets;
549 	for_each_port(adap, i) {
550 		temp_pi = adap2pinfo(adap, i);
551 		if (i == pi->port_id)
552 			break;
553 
554 		if (max_rxqs <= temp_pi->n_rx_qsets ||
555 		    max_txqs <= temp_pi->n_tx_qsets)
556 			return -ENOMEM;
557 
558 		first_rxq += temp_pi->n_rx_qsets;
559 		first_txq += temp_pi->n_tx_qsets;
560 		max_rxqs -= temp_pi->n_rx_qsets;
561 		max_txqs -= temp_pi->n_tx_qsets;
562 	}
563 
564 	if ((eth_dev->data->nb_rx_queues < 1) ||
565 	    (eth_dev->data->nb_tx_queues < 1))
566 		return -EINVAL;
567 
568 	if (eth_dev->data->nb_rx_queues > max_rxqs ||
569 	    eth_dev->data->nb_tx_queues > max_txqs)
570 		return -EINVAL;
571 
572 	/* We must configure RSS, since config has changed*/
573 	pi->flags &= ~PORT_RSS_DONE;
574 
575 	pi->n_rx_qsets = eth_dev->data->nb_rx_queues;
576 	pi->n_tx_qsets = eth_dev->data->nb_tx_queues;
577 	pi->first_rxqset = first_rxq;
578 	pi->first_txqset = first_txq;
579 
580 	return 0;
581 }
582 
583 void cxgbe_cfg_queues_free(struct adapter *adap)
584 {
585 	if (adap->sge.ethtxq) {
586 		rte_free(adap->sge.ethtxq);
587 		adap->sge.ethtxq = NULL;
588 	}
589 
590 	if (adap->sge.ethrxq) {
591 		rte_free(adap->sge.ethrxq);
592 		adap->sge.ethrxq = NULL;
593 	}
594 
595 	adap->flags &= ~CFG_QUEUES;
596 }
597 
598 int cxgbe_cfg_queues(struct rte_eth_dev *eth_dev)
599 {
600 	struct port_info *pi = eth_dev->data->dev_private;
601 	struct adapter *adap = pi->adapter;
602 	struct sge *s = &adap->sge;
603 	u16 i;
604 
605 	if (!(adap->flags & CFG_QUEUES)) {
606 		s->ethrxq = rte_calloc_socket(NULL, s->max_ethqsets,
607 					      sizeof(struct sge_eth_rxq), 0,
608 					      rte_socket_id());
609 		if (!s->ethrxq)
610 			return -ENOMEM;
611 
612 		s->ethtxq = rte_calloc_socket(NULL, s->max_ethqsets,
613 					      sizeof(struct sge_eth_txq), 0,
614 					      rte_socket_id());
615 		if (!s->ethtxq) {
616 			rte_free(s->ethrxq);
617 			s->ethrxq = NULL;
618 			return -ENOMEM;
619 		}
620 
621 		for (i = 0; i < s->max_ethqsets; i++) {
622 			struct sge_eth_rxq *r = &s->ethrxq[i];
623 			struct sge_eth_txq *t = &s->ethtxq[i];
624 
625 			init_rspq(adap, &r->rspq, 5, 32, 1024, 64);
626 			r->fl.size = 1024;
627 
628 			t->q.size = 1024;
629 		}
630 
631 		init_rspq(adap, &adap->sge.fw_evtq, 0, 0, 1024, 64);
632 		adap->flags |= CFG_QUEUES;
633 	}
634 
635 	return 0;
636 }
637 
638 void cxgbe_stats_get(struct port_info *pi, struct port_stats *stats)
639 {
640 	t4_get_port_stats_offset(pi->adapter, pi->tx_chan, stats,
641 				 &pi->stats_base);
642 }
643 
644 void cxgbe_stats_reset(struct port_info *pi)
645 {
646 	t4_clr_port_stats(pi->adapter, pi->tx_chan);
647 }
648 
649 static void setup_memwin(struct adapter *adap)
650 {
651 	u32 mem_win0_base;
652 
653 	/* For T5, only relative offset inside the PCIe BAR is passed */
654 	mem_win0_base = MEMWIN0_BASE;
655 
656 	/*
657 	 * Set up memory window for accessing adapter memory ranges.  (Read
658 	 * back MA register to ensure that changes propagate before we attempt
659 	 * to use the new values.)
660 	 */
661 	t4_write_reg(adap,
662 		     PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
663 					 MEMWIN_NIC),
664 		     mem_win0_base | V_BIR(0) |
665 		     V_WINDOW(ilog2(MEMWIN0_APERTURE) - X_WINDOW_SHIFT));
666 	t4_read_reg(adap,
667 		    PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
668 					MEMWIN_NIC));
669 }
670 
671 int cxgbe_init_rss(struct adapter *adap)
672 {
673 	unsigned int i;
674 
675 	if (is_pf4(adap)) {
676 		int err;
677 
678 		err = t4_init_rss_mode(adap, adap->mbox);
679 		if (err)
680 			return err;
681 	}
682 
683 	for_each_port(adap, i) {
684 		struct port_info *pi = adap2pinfo(adap, i);
685 
686 		pi->rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0);
687 		if (!pi->rss)
688 			return -ENOMEM;
689 
690 		pi->rss_hf = CXGBE_RSS_HF_ALL;
691 	}
692 	return 0;
693 }
694 
695 /**
696  * Dump basic information about the adapter.
697  */
698 void cxgbe_print_adapter_info(struct adapter *adap)
699 {
700 	/**
701 	 * Hardware/Firmware/etc. Version/Revision IDs.
702 	 */
703 	t4_dump_version_info(adap);
704 }
705 
706 void cxgbe_print_port_info(struct adapter *adap)
707 {
708 	int i;
709 	char buf[80];
710 	struct rte_pci_addr *loc = &adap->pdev->addr;
711 
712 	for_each_port(adap, i) {
713 		const struct port_info *pi = adap2pinfo(adap, i);
714 		char *bufp = buf;
715 
716 		if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
717 			bufp += sprintf(bufp, "100M/");
718 		if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
719 			bufp += sprintf(bufp, "1G/");
720 		if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
721 			bufp += sprintf(bufp, "10G/");
722 		if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
723 			bufp += sprintf(bufp, "25G/");
724 		if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
725 			bufp += sprintf(bufp, "40G/");
726 		if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
727 			bufp += sprintf(bufp, "50G/");
728 		if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
729 			bufp += sprintf(bufp, "100G/");
730 		if (bufp != buf)
731 			--bufp;
732 		sprintf(bufp, "BASE-%s",
733 			t4_get_port_type_description(
734 				(enum fw_port_type)pi->link_cfg.port_type));
735 
736 		dev_info(adap,
737 			 " " PCI_PRI_FMT " Chelsio rev %d %s %s\n",
738 			 loc->domain, loc->bus, loc->devid, loc->function,
739 			 CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
740 			 (adap->flags & USING_MSIX) ? " MSI-X" :
741 			 (adap->flags & USING_MSI) ? " MSI" : "");
742 	}
743 }
744 
745 static int check_devargs_handler(const char *key, const char *value, void *p)
746 {
747 	if (!strncmp(key, CXGBE_DEVARG_CMN_KEEP_OVLAN, strlen(key)) ||
748 	    !strncmp(key, CXGBE_DEVARG_CMN_TX_MODE_LATENCY, strlen(key)) ||
749 	    !strncmp(key, CXGBE_DEVARG_VF_FORCE_LINK_UP, strlen(key))) {
750 		if (!strncmp(value, "1", 1)) {
751 			bool *dst_val = (bool *)p;
752 
753 			*dst_val = true;
754 		}
755 	}
756 
757 	if (!strncmp(key, CXGBE_DEVARG_PF_FILTER_MODE, strlen(key)) ||
758 	    !strncmp(key, CXGBE_DEVARG_PF_FILTER_MASK, strlen(key))) {
759 		u32 *dst_val = (u32 *)p;
760 		char *endptr = NULL;
761 		u32 arg_val;
762 
763 		arg_val = strtoul(value, &endptr, 16);
764 		if (errno || endptr == value)
765 			return -EINVAL;
766 
767 		*dst_val = arg_val;
768 	}
769 
770 	return 0;
771 }
772 
773 static int cxgbe_get_devargs(struct rte_devargs *devargs, const char *key,
774 			     void *p)
775 {
776 	struct rte_kvargs *kvlist;
777 	int ret = 0;
778 
779 	if (!devargs)
780 		return 0;
781 
782 	kvlist = rte_kvargs_parse(devargs->args, NULL);
783 	if (!kvlist)
784 		return 0;
785 
786 	if (!rte_kvargs_count(kvlist, key))
787 		goto out;
788 
789 	ret = rte_kvargs_process(kvlist, key, check_devargs_handler, p);
790 
791 out:
792 	rte_kvargs_free(kvlist);
793 
794 	return ret;
795 }
796 
797 static void cxgbe_get_devargs_int(struct adapter *adap, bool *dst,
798 				  const char *key, bool default_value)
799 {
800 	struct rte_pci_device *pdev = adap->pdev;
801 	int ret;
802 	bool devarg_value = default_value;
803 
804 	*dst = default_value;
805 	if (!pdev)
806 		return;
807 
808 	ret = cxgbe_get_devargs(pdev->device.devargs, key, &devarg_value);
809 	if (ret)
810 		return;
811 
812 	*dst = devarg_value;
813 }
814 
815 static void cxgbe_get_devargs_u32(struct adapter *adap, u32 *dst,
816 				  const char *key, u32 default_value)
817 {
818 	struct rte_pci_device *pdev = adap->pdev;
819 	u32 devarg_value = default_value;
820 	int ret;
821 
822 	*dst = default_value;
823 	if (!pdev)
824 		return;
825 
826 	ret = cxgbe_get_devargs(pdev->device.devargs, key, &devarg_value);
827 	if (ret)
828 		return;
829 
830 	*dst = devarg_value;
831 }
832 
833 void cxgbe_process_devargs(struct adapter *adap)
834 {
835 	cxgbe_get_devargs_int(adap, &adap->devargs.keep_ovlan,
836 			      CXGBE_DEVARG_CMN_KEEP_OVLAN, false);
837 	cxgbe_get_devargs_int(adap, &adap->devargs.tx_mode_latency,
838 			      CXGBE_DEVARG_CMN_TX_MODE_LATENCY, false);
839 	cxgbe_get_devargs_int(adap, &adap->devargs.force_link_up,
840 			      CXGBE_DEVARG_VF_FORCE_LINK_UP, false);
841 	cxgbe_get_devargs_u32(adap, &adap->devargs.filtermode,
842 			      CXGBE_DEVARG_PF_FILTER_MODE, 0);
843 	cxgbe_get_devargs_u32(adap, &adap->devargs.filtermask,
844 			      CXGBE_DEVARG_PF_FILTER_MASK, 0);
845 }
846 
847 static void configure_vlan_types(struct adapter *adapter)
848 {
849 	int i;
850 
851 	for_each_port(adapter, i) {
852 		/* OVLAN Type 0x88a8 */
853 		t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN0),
854 				 V_OVLAN_MASK(M_OVLAN_MASK) |
855 				 V_OVLAN_ETYPE(M_OVLAN_ETYPE),
856 				 V_OVLAN_MASK(M_OVLAN_MASK) |
857 				 V_OVLAN_ETYPE(0x88a8));
858 		/* OVLAN Type 0x9100 */
859 		t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN1),
860 				 V_OVLAN_MASK(M_OVLAN_MASK) |
861 				 V_OVLAN_ETYPE(M_OVLAN_ETYPE),
862 				 V_OVLAN_MASK(M_OVLAN_MASK) |
863 				 V_OVLAN_ETYPE(0x9100));
864 
865 		/* IVLAN 0X8100 */
866 		t4_set_reg_field(adapter, MPS_PORT_RX_IVLAN(i),
867 				 V_IVLAN_ETYPE(M_IVLAN_ETYPE),
868 				 V_IVLAN_ETYPE(0x8100));
869 
870 		t4_set_reg_field(adapter, MPS_PORT_RX_CTL(i),
871 				 F_OVLAN_EN0 | F_OVLAN_EN1 |
872 				 F_IVLAN_EN,
873 				 F_OVLAN_EN0 | F_OVLAN_EN1 |
874 				 F_IVLAN_EN);
875 	}
876 
877 	t4_tp_wr_bits_indirect(adapter, A_TP_INGRESS_CONFIG, V_RM_OVLAN(1),
878 			       V_RM_OVLAN(!adapter->devargs.keep_ovlan));
879 }
880 
881 static int cxgbe_get_filter_vnic_mode_from_devargs(u32 val)
882 {
883 	u32 vnic_mode;
884 
885 	vnic_mode = val & (CXGBE_DEVARGS_FILTER_MODE_PF_VF |
886 			   CXGBE_DEVARGS_FILTER_MODE_VLAN_OUTER);
887 	if (vnic_mode) {
888 		switch (vnic_mode) {
889 		case CXGBE_DEVARGS_FILTER_MODE_VLAN_OUTER:
890 			return CXGBE_FILTER_VNIC_MODE_OVLAN;
891 		case CXGBE_DEVARGS_FILTER_MODE_PF_VF:
892 			return CXGBE_FILTER_VNIC_MODE_PFVF;
893 		default:
894 			return -EINVAL;
895 		}
896 	}
897 
898 	return CXGBE_FILTER_VNIC_MODE_NONE;
899 }
900 
901 static int cxgbe_get_filter_mode_from_devargs(u32 val, bool closest_match)
902 {
903 	int vnic_mode, fmode = 0;
904 	bool found = false;
905 	u8 i;
906 
907 	if (val >= CXGBE_DEVARGS_FILTER_MODE_MAX) {
908 		pr_err("Unsupported flags set in filter mode. Must be < 0x%x\n",
909 		       CXGBE_DEVARGS_FILTER_MODE_MAX);
910 		return -ERANGE;
911 	}
912 
913 	vnic_mode = cxgbe_get_filter_vnic_mode_from_devargs(val);
914 	if (vnic_mode < 0) {
915 		pr_err("Unsupported Vnic-mode, more than 1 Vnic-mode selected\n");
916 		return vnic_mode;
917 	}
918 
919 	if (vnic_mode)
920 		fmode |= F_VNIC_ID;
921 	if (val & CXGBE_DEVARGS_FILTER_MODE_PHYSICAL_PORT)
922 		fmode |= F_PORT;
923 	if (val & CXGBE_DEVARGS_FILTER_MODE_ETHERNET_DSTMAC)
924 		fmode |= F_MACMATCH;
925 	if (val & CXGBE_DEVARGS_FILTER_MODE_ETHERNET_ETHTYPE)
926 		fmode |= F_ETHERTYPE;
927 	if (val & CXGBE_DEVARGS_FILTER_MODE_VLAN_INNER)
928 		fmode |= F_VLAN;
929 	if (val & CXGBE_DEVARGS_FILTER_MODE_IP_TOS)
930 		fmode |= F_TOS;
931 	if (val & CXGBE_DEVARGS_FILTER_MODE_IP_PROTOCOL)
932 		fmode |= F_PROTOCOL;
933 
934 	for (i = 0; i < ARRAY_SIZE(cxgbe_filter_mode_features); i++) {
935 		if ((cxgbe_filter_mode_features[i] & fmode) == fmode) {
936 			found = true;
937 			break;
938 		}
939 	}
940 
941 	if (!found)
942 		return -EINVAL;
943 
944 	return closest_match ? cxgbe_filter_mode_features[i] : fmode;
945 }
946 
947 static int configure_filter_mode_mask(struct adapter *adap)
948 {
949 	u32 params[2], val[2], nparams = 0;
950 	int ret;
951 
952 	if (!adap->devargs.filtermode && !adap->devargs.filtermask)
953 		return 0;
954 
955 	if (!adap->devargs.filtermode || !adap->devargs.filtermask) {
956 		pr_err("Unsupported, Provide both filtermode and filtermask devargs\n");
957 		return -EINVAL;
958 	}
959 
960 	if (adap->devargs.filtermask & ~adap->devargs.filtermode) {
961 		pr_err("Unsupported, filtermask (0x%x) must be subset of filtermode (0x%x)\n",
962 		       adap->devargs.filtermask, adap->devargs.filtermode);
963 
964 		return -EINVAL;
965 	}
966 
967 	params[0] = CXGBE_FW_PARAM_DEV(FILTER) |
968 		    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_MODE_MASK);
969 
970 	ret = cxgbe_get_filter_mode_from_devargs(adap->devargs.filtermode,
971 						 true);
972 	if (ret < 0) {
973 		pr_err("Unsupported filtermode devargs combination:0x%x\n",
974 		       adap->devargs.filtermode);
975 		return ret;
976 	}
977 
978 	val[0] = V_FW_PARAMS_PARAM_FILTER_MODE(ret);
979 
980 	ret = cxgbe_get_filter_mode_from_devargs(adap->devargs.filtermask,
981 						 false);
982 	if (ret < 0) {
983 		pr_err("Unsupported filtermask devargs combination:0x%x\n",
984 		       adap->devargs.filtermask);
985 		return ret;
986 	}
987 
988 	val[0] |= V_FW_PARAMS_PARAM_FILTER_MASK(ret);
989 
990 	nparams++;
991 
992 	ret = cxgbe_get_filter_vnic_mode_from_devargs(adap->devargs.filtermode);
993 	if (ret < 0)
994 		return ret;
995 
996 	if (ret) {
997 		params[1] = CXGBE_FW_PARAM_DEV(FILTER) |
998 			    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_VNIC_MODE);
999 
1000 		val[1] = ret - 1;
1001 
1002 		nparams++;
1003 	}
1004 
1005 	return t4_set_params(adap, adap->mbox, adap->pf, 0, nparams,
1006 			     params, val);
1007 }
1008 
1009 static void configure_pcie_ext_tag(struct adapter *adapter)
1010 {
1011 	u16 v;
1012 	int pos = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
1013 
1014 	if (!pos)
1015 		return;
1016 
1017 	if (pos > 0) {
1018 		t4_os_pci_read_cfg2(adapter, pos + PCI_EXP_DEVCTL, &v);
1019 		v |= PCI_EXP_DEVCTL_EXT_TAG;
1020 		t4_os_pci_write_cfg2(adapter, pos + PCI_EXP_DEVCTL, v);
1021 		if (is_t6(adapter->params.chip)) {
1022 			t4_set_reg_field(adapter, A_PCIE_CFG2,
1023 					 V_T6_TOTMAXTAG(M_T6_TOTMAXTAG),
1024 					 V_T6_TOTMAXTAG(7));
1025 			t4_set_reg_field(adapter, A_PCIE_CMD_CFG,
1026 					 V_T6_MINTAG(M_T6_MINTAG),
1027 					 V_T6_MINTAG(8));
1028 		} else {
1029 			t4_set_reg_field(adapter, A_PCIE_CFG2,
1030 					 V_TOTMAXTAG(M_TOTMAXTAG),
1031 					 V_TOTMAXTAG(3));
1032 			t4_set_reg_field(adapter, A_PCIE_CMD_CFG,
1033 					 V_MINTAG(M_MINTAG),
1034 					 V_MINTAG(8));
1035 		}
1036 	}
1037 }
1038 
1039 /* Figure out how many Queue Sets we can support */
1040 void cxgbe_configure_max_ethqsets(struct adapter *adapter)
1041 {
1042 	unsigned int ethqsets, reserved;
1043 
1044 	/* We need to reserve an Ingress Queue for the Asynchronous Firmware
1045 	 * Event Queue and 1 Control Queue per port.
1046 	 *
1047 	 * For each Queue Set, we'll need the ability to allocate two Egress
1048 	 * Contexts -- one for the Ingress Queue Free List and one for the TX
1049 	 * Ethernet Queue.
1050 	 */
1051 	reserved = max(adapter->params.nports, 1);
1052 	if (is_pf4(adapter)) {
1053 		struct pf_resources *pfres = &adapter->params.pfres;
1054 
1055 		ethqsets = min(pfres->niqflint, pfres->nethctrl);
1056 		if (ethqsets > (pfres->neq / 2))
1057 			ethqsets = pfres->neq / 2;
1058 	} else {
1059 		struct vf_resources *vfres = &adapter->params.vfres;
1060 
1061 		ethqsets = min(vfres->niqflint, vfres->nethctrl);
1062 		if (ethqsets > (vfres->neq / 2))
1063 			ethqsets = vfres->neq / 2;
1064 	}
1065 
1066 	ethqsets -= reserved;
1067 	adapter->sge.max_ethqsets = ethqsets;
1068 }
1069 
1070 /*
1071  * Tweak configuration based on system architecture, etc.  Most of these have
1072  * defaults assigned to them by Firmware Configuration Files (if we're using
1073  * them) but need to be explicitly set if we're using hard-coded
1074  * initialization. So these are essentially common tweaks/settings for
1075  * Configuration Files and hard-coded initialization ...
1076  */
1077 static int adap_init0_tweaks(struct adapter *adapter)
1078 {
1079 	u8 rx_dma_offset;
1080 
1081 	/*
1082 	 * Fix up various Host-Dependent Parameters like Page Size, Cache
1083 	 * Line Size, etc.  The firmware default is for a 4KB Page Size and
1084 	 * 64B Cache Line Size ...
1085 	 */
1086 	t4_fixup_host_params_compat(adapter, CXGBE_PAGE_SIZE, L1_CACHE_BYTES,
1087 				    T5_LAST_REV);
1088 
1089 	/*
1090 	 * Keep the chip default offset to deliver Ingress packets into our
1091 	 * DMA buffers to zero
1092 	 */
1093 	rx_dma_offset = 0;
1094 	t4_set_reg_field(adapter, A_SGE_CONTROL, V_PKTSHIFT(M_PKTSHIFT),
1095 			 V_PKTSHIFT(rx_dma_offset));
1096 
1097 	t4_set_reg_field(adapter, A_SGE_FLM_CFG,
1098 			 V_CREDITCNT(M_CREDITCNT) | M_CREDITCNTPACKING,
1099 			 V_CREDITCNT(3) | V_CREDITCNTPACKING(1));
1100 
1101 	t4_set_reg_field(adapter, A_SGE_INGRESS_RX_THRESHOLD,
1102 			 V_THRESHOLD_3(M_THRESHOLD_3), V_THRESHOLD_3(32U));
1103 
1104 	t4_set_reg_field(adapter, A_SGE_CONTROL2, V_IDMAARBROUNDROBIN(1U),
1105 			 V_IDMAARBROUNDROBIN(1U));
1106 
1107 	/*
1108 	 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
1109 	 * adds the pseudo header itself.
1110 	 */
1111 	t4_tp_wr_bits_indirect(adapter, A_TP_INGRESS_CONFIG,
1112 			       F_CSUM_HAS_PSEUDO_HDR, 0);
1113 
1114 	return 0;
1115 }
1116 
1117 /*
1118  * Attempt to initialize the adapter via a Firmware Configuration File.
1119  */
1120 static int adap_init0_config(struct adapter *adapter, int reset)
1121 {
1122 	u32 finiver, finicsum, cfcsum, param, val;
1123 	struct fw_caps_config_cmd caps_cmd;
1124 	unsigned long mtype = 0, maddr = 0;
1125 	u8 config_issued = 0;
1126 	char config_name[20];
1127 	int cfg_addr, ret;
1128 
1129 	/*
1130 	 * Reset device if necessary.
1131 	 */
1132 	if (reset) {
1133 		ret = t4_fw_reset(adapter, adapter->mbox,
1134 				  F_PIORSTMODE | F_PIORST);
1135 		if (ret < 0) {
1136 			dev_warn(adapter, "Firmware reset failed, error %d\n",
1137 				 -ret);
1138 			goto bye;
1139 		}
1140 	}
1141 
1142 	cfg_addr = t4_flash_cfg_addr(adapter);
1143 	if (cfg_addr < 0) {
1144 		ret = cfg_addr;
1145 		dev_warn(adapter, "Finding address for firmware config file in flash failed, error %d\n",
1146 			 -ret);
1147 		goto bye;
1148 	}
1149 
1150 	strcpy(config_name, "On Flash");
1151 	mtype = FW_MEMTYPE_CF_FLASH;
1152 	maddr = cfg_addr;
1153 
1154 	/* Enable HASH filter region when support is available. */
1155 	val = 1;
1156 	param = CXGBE_FW_PARAM_DEV(HASHFILTER_WITH_OFLD);
1157 	t4_set_params(adapter, adapter->mbox, adapter->pf, 0, 1,
1158 		      &param, &val);
1159 
1160 	/*
1161 	 * Issue a Capability Configuration command to the firmware to get it
1162 	 * to parse the Configuration File.  We don't use t4_fw_config_file()
1163 	 * because we want the ability to modify various features after we've
1164 	 * processed the configuration file ...
1165 	 */
1166 	memset(&caps_cmd, 0, sizeof(caps_cmd));
1167 	caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1168 					   F_FW_CMD_REQUEST | F_FW_CMD_READ);
1169 	caps_cmd.cfvalid_to_len16 =
1170 		cpu_to_be32(F_FW_CAPS_CONFIG_CMD_CFVALID |
1171 			    V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
1172 			    V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
1173 			    FW_LEN16(caps_cmd));
1174 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
1175 			 &caps_cmd);
1176 	/*
1177 	 * If the CAPS_CONFIG failed with an ENOENT (for a Firmware
1178 	 * Configuration File in FLASH), our last gasp effort is to use the
1179 	 * Firmware Configuration File which is embedded in the firmware.  A
1180 	 * very few early versions of the firmware didn't have one embedded
1181 	 * but we can ignore those.
1182 	 */
1183 	if (ret == -ENOENT) {
1184 		dev_info(adapter, "%s: Going for embedded config in firmware..\n",
1185 			 __func__);
1186 
1187 		memset(&caps_cmd, 0, sizeof(caps_cmd));
1188 		caps_cmd.op_to_write =
1189 			cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1190 				    F_FW_CMD_REQUEST | F_FW_CMD_READ);
1191 		caps_cmd.cfvalid_to_len16 = cpu_to_be32(FW_LEN16(caps_cmd));
1192 		ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
1193 				 sizeof(caps_cmd), &caps_cmd);
1194 		strcpy(config_name, "Firmware Default");
1195 	}
1196 
1197 	config_issued = 1;
1198 	if (ret < 0)
1199 		goto bye;
1200 
1201 	finiver = be32_to_cpu(caps_cmd.finiver);
1202 	finicsum = be32_to_cpu(caps_cmd.finicsum);
1203 	cfcsum = be32_to_cpu(caps_cmd.cfcsum);
1204 	if (finicsum != cfcsum)
1205 		dev_warn(adapter, "Configuration File checksum mismatch: [fini] csum=%#x, computed csum=%#x\n",
1206 			 finicsum, cfcsum);
1207 
1208 	/*
1209 	 * If we're a pure NIC driver then disable all offloading facilities.
1210 	 * This will allow the firmware to optimize aspects of the hardware
1211 	 * configuration which will result in improved performance.
1212 	 */
1213 	caps_cmd.niccaps &= cpu_to_be16(~FW_CAPS_CONFIG_NIC_ETHOFLD);
1214 	caps_cmd.toecaps = 0;
1215 	caps_cmd.iscsicaps = 0;
1216 	caps_cmd.rdmacaps = 0;
1217 	caps_cmd.fcoecaps = 0;
1218 	caps_cmd.cryptocaps = 0;
1219 
1220 	/*
1221 	 * And now tell the firmware to use the configuration we just loaded.
1222 	 */
1223 	caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1224 					   F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
1225 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
1226 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
1227 			 NULL);
1228 	if (ret < 0) {
1229 		dev_warn(adapter, "Unable to finalize Firmware Capabilities %d\n",
1230 			 -ret);
1231 		goto bye;
1232 	}
1233 
1234 	/*
1235 	 * Tweak configuration based on system architecture, etc.
1236 	 */
1237 	ret = adap_init0_tweaks(adapter);
1238 	if (ret < 0) {
1239 		dev_warn(adapter, "Unable to do init0-tweaks %d\n", -ret);
1240 		goto bye;
1241 	}
1242 
1243 	/*
1244 	 * And finally tell the firmware to initialize itself using the
1245 	 * parameters from the Configuration File.
1246 	 */
1247 	ret = t4_fw_initialize(adapter, adapter->mbox);
1248 	if (ret < 0) {
1249 		dev_warn(adapter, "Initializing Firmware failed, error %d\n",
1250 			 -ret);
1251 		goto bye;
1252 	}
1253 
1254 	/*
1255 	 * Return successfully and note that we're operating with parameters
1256 	 * not supplied by the driver, rather than from hard-wired
1257 	 * initialization constants buried in the driver.
1258 	 */
1259 	dev_info(adapter,
1260 		 "Successfully configured using Firmware Configuration File \"%s\", version %#x, computed checksum %#x\n",
1261 		 config_name, finiver, cfcsum);
1262 
1263 	return 0;
1264 
1265 	/*
1266 	 * Something bad happened.  Return the error ...  (If the "error"
1267 	 * is that there's no Configuration File on the adapter we don't
1268 	 * want to issue a warning since this is fairly common.)
1269 	 */
1270 bye:
1271 	if (config_issued && ret != -ENOENT)
1272 		dev_warn(adapter, "\"%s\" configuration file error %d\n",
1273 			 config_name, -ret);
1274 
1275 	dev_debug(adapter, "%s: returning ret = %d ..\n", __func__, ret);
1276 	return ret;
1277 }
1278 
1279 static int adap_init0(struct adapter *adap)
1280 {
1281 	struct fw_caps_config_cmd caps_cmd;
1282 	int ret = 0;
1283 	u32 v, port_vec;
1284 	enum dev_state state;
1285 	u32 params[7], val[7];
1286 	int reset = 1;
1287 	int mbox = adap->mbox;
1288 
1289 	/*
1290 	 * Contact FW, advertising Master capability.
1291 	 */
1292 	ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
1293 	if (ret < 0) {
1294 		dev_err(adap, "%s: could not connect to FW, error %d\n",
1295 			__func__, -ret);
1296 		goto bye;
1297 	}
1298 
1299 	CXGBE_DEBUG_MBOX(adap, "%s: adap->mbox = %d; ret = %d\n", __func__,
1300 			 adap->mbox, ret);
1301 
1302 	if (ret == mbox)
1303 		adap->flags |= MASTER_PF;
1304 
1305 	if (state == DEV_STATE_INIT) {
1306 		/*
1307 		 * Force halt and reset FW because a previous instance may have
1308 		 * exited abnormally without properly shutting down
1309 		 */
1310 		ret = t4_fw_halt(adap, adap->mbox, reset);
1311 		if (ret < 0) {
1312 			dev_err(adap, "Failed to halt. Exit.\n");
1313 			goto bye;
1314 		}
1315 
1316 		ret = t4_fw_restart(adap, adap->mbox, reset);
1317 		if (ret < 0) {
1318 			dev_err(adap, "Failed to restart. Exit.\n");
1319 			goto bye;
1320 		}
1321 		state = (enum dev_state)((unsigned)state & ~DEV_STATE_INIT);
1322 	}
1323 
1324 	t4_get_version_info(adap);
1325 
1326 	ret = t4_get_core_clock(adap, &adap->params.vpd);
1327 	if (ret < 0) {
1328 		dev_err(adap, "%s: could not get core clock, error %d\n",
1329 			__func__, -ret);
1330 		goto bye;
1331 	}
1332 
1333 	/*
1334 	 * If the firmware is initialized already (and we're not forcing a
1335 	 * master initialization), note that we're living with existing
1336 	 * adapter parameters.  Otherwise, it's time to try initializing the
1337 	 * adapter ...
1338 	 */
1339 	if (state == DEV_STATE_INIT) {
1340 		dev_info(adap, "Coming up as %s: Adapter already initialized\n",
1341 			 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
1342 	} else {
1343 		dev_info(adap, "Coming up as MASTER: Initializing adapter\n");
1344 
1345 		ret = adap_init0_config(adap, reset);
1346 		if (ret == -ENOENT) {
1347 			dev_err(adap,
1348 				"No Configuration File present on adapter. Using hard-wired configuration parameters.\n");
1349 			goto bye;
1350 		}
1351 	}
1352 	if (ret < 0) {
1353 		dev_err(adap, "could not initialize adapter, error %d\n", -ret);
1354 		goto bye;
1355 	}
1356 
1357 	/* Now that we've successfully configured and initialized the adapter
1358 	 * (or found it already initialized), we can ask the Firmware what
1359 	 * resources it has provisioned for us.
1360 	 */
1361 	ret = t4_get_pfres(adap);
1362 	if (ret) {
1363 		dev_err(adap->pdev_dev,
1364 			"Unable to retrieve resource provisioning info\n");
1365 		goto bye;
1366 	}
1367 
1368 	/* Find out what ports are available to us. */
1369 	v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
1370 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC);
1371 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
1372 	if (ret < 0) {
1373 		dev_err(adap, "%s: failure in t4_query_params; error = %d\n",
1374 			__func__, ret);
1375 		goto bye;
1376 	}
1377 
1378 	adap->params.nports = hweight32(port_vec);
1379 	adap->params.portvec = port_vec;
1380 
1381 	dev_debug(adap, "%s: adap->params.nports = %u\n", __func__,
1382 		  adap->params.nports);
1383 
1384 	/*
1385 	 * Give the SGE code a chance to pull in anything that it needs ...
1386 	 * Note that this must be called after we retrieve our VPD parameters
1387 	 * in order to know how to convert core ticks to seconds, etc.
1388 	 */
1389 	ret = t4_sge_init(adap);
1390 	if (ret < 0) {
1391 		dev_err(adap, "t4_sge_init failed with error %d\n",
1392 			-ret);
1393 		goto bye;
1394 	}
1395 
1396 	/*
1397 	 * Grab some of our basic fundamental operating parameters.
1398 	 */
1399 	params[0] = CXGBE_FW_PARAM_PFVF(L2T_START);
1400 	params[1] = CXGBE_FW_PARAM_PFVF(L2T_END);
1401 	params[2] = CXGBE_FW_PARAM_PFVF(FILTER_START);
1402 	params[3] = CXGBE_FW_PARAM_PFVF(FILTER_END);
1403 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4, params, val);
1404 	if (ret < 0)
1405 		goto bye;
1406 	adap->l2t_start = val[0];
1407 	adap->l2t_end = val[1];
1408 	adap->tids.ftid_base = val[2];
1409 	adap->tids.nftids = val[3] - val[2] + 1;
1410 
1411 	params[0] = CXGBE_FW_PARAM_PFVF(CLIP_START);
1412 	params[1] = CXGBE_FW_PARAM_PFVF(CLIP_END);
1413 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
1414 	if (ret < 0)
1415 		goto bye;
1416 	adap->clipt_start = val[0];
1417 	adap->clipt_end = val[1];
1418 
1419 	/*
1420 	 * Get device capabilities so we can determine what resources we need
1421 	 * to manage.
1422 	 */
1423 	memset(&caps_cmd, 0, sizeof(caps_cmd));
1424 	caps_cmd.op_to_write = htonl(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1425 				     F_FW_CMD_REQUEST | F_FW_CMD_READ);
1426 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
1427 	ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
1428 			 &caps_cmd);
1429 	if (ret < 0)
1430 		goto bye;
1431 
1432 	if ((caps_cmd.niccaps & cpu_to_be16(FW_CAPS_CONFIG_NIC_HASHFILTER)) &&
1433 	    is_t6(adap->params.chip)) {
1434 		if (cxgbe_init_hash_filter(adap) < 0)
1435 			goto bye;
1436 	}
1437 
1438 	/* See if FW supports FW_FILTER2 work request */
1439 	if (is_t4(adap->params.chip)) {
1440 		adap->params.filter2_wr_support = 0;
1441 	} else {
1442 		params[0] = CXGBE_FW_PARAM_DEV(FILTER2_WR);
1443 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1444 				      1, params, val);
1445 		adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
1446 	}
1447 
1448 	/* Check if FW supports returning vin.
1449 	 * If this is not supported, driver will interpret
1450 	 * these values from viid.
1451 	 */
1452 	params[0] = CXGBE_FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
1453 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1454 			      1, params, val);
1455 	adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0);
1456 
1457 	/* query tid-related parameters */
1458 	params[0] = CXGBE_FW_PARAM_DEV(NTID);
1459 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
1460 			      params, val);
1461 	if (ret < 0)
1462 		goto bye;
1463 	adap->tids.ntids = val[0];
1464 	adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
1465 
1466 	/* If we're running on newer firmware, let it know that we're
1467 	 * prepared to deal with encapsulated CPL messages.  Older
1468 	 * firmware won't understand this and we'll just get
1469 	 * unencapsulated messages ...
1470 	 */
1471 	params[0] = CXGBE_FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
1472 	val[0] = 1;
1473 	(void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
1474 
1475 	/*
1476 	 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
1477 	 * capability.  Earlier versions of the firmware didn't have the
1478 	 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
1479 	 * permission to use ULPTX MEMWRITE DSGL.
1480 	 */
1481 	if (is_t4(adap->params.chip)) {
1482 		adap->params.ulptx_memwrite_dsgl = false;
1483 	} else {
1484 		params[0] = CXGBE_FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
1485 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1486 				      1, params, val);
1487 		adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
1488 	}
1489 
1490 	/* Query for max number of packets that can be coalesced for Tx */
1491 	params[0] = CXGBE_FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR);
1492 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
1493 	if (!ret && val[0] > 0)
1494 		adap->params.max_tx_coalesce_num = val[0];
1495 	else
1496 		adap->params.max_tx_coalesce_num = ETH_COALESCE_PKT_NUM;
1497 
1498 	params[0] = CXGBE_FW_PARAM_DEV(VI_ENABLE_INGRESS_AFTER_LINKUP);
1499 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
1500 	adap->params.vi_enable_rx = (ret == 0 && val[0] != 0);
1501 
1502 	/* Read the RAW MPS entries. In T6, the last 2 TCAM entries
1503 	 * are reserved for RAW MAC addresses (rawf = 2, one per port).
1504 	 */
1505 	if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
1506 		params[0] = CXGBE_FW_PARAM_PFVF(RAWF_START);
1507 		params[1] = CXGBE_FW_PARAM_PFVF(RAWF_END);
1508 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
1509 				      params, val);
1510 		if (ret == 0) {
1511 			adap->params.rawf_start = val[0];
1512 			adap->params.rawf_size = val[1] - val[0] + 1;
1513 		}
1514 	}
1515 
1516 	/*
1517 	 * The MTU/MSS Table is initialized by now, so load their values.  If
1518 	 * we're initializing the adapter, then we'll make any modifications
1519 	 * we want to the MTU/MSS Table and also initialize the congestion
1520 	 * parameters.
1521 	 */
1522 	t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
1523 	if (state != DEV_STATE_INIT) {
1524 		int i;
1525 
1526 		/*
1527 		 * The default MTU Table contains values 1492 and 1500.
1528 		 * However, for TCP, it's better to have two values which are
1529 		 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
1530 		 * This allows us to have a TCP Data Payload which is a
1531 		 * multiple of 8 regardless of what combination of TCP Options
1532 		 * are in use (always a multiple of 4 bytes) which is
1533 		 * important for performance reasons.  For instance, if no
1534 		 * options are in use, then we have a 20-byte IP header and a
1535 		 * 20-byte TCP header.  In this case, a 1500-byte MSS would
1536 		 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
1537 		 * which is not a multiple of 8.  So using an MSS of 1488 in
1538 		 * this case results in a TCP Data Payload of 1448 bytes which
1539 		 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
1540 		 * Stamps have been negotiated, then an MTU of 1500 bytes
1541 		 * results in a TCP Data Payload of 1448 bytes which, as
1542 		 * above, is a multiple of 8 bytes ...
1543 		 */
1544 		for (i = 0; i < NMTUS; i++)
1545 			if (adap->params.mtus[i] == 1492) {
1546 				adap->params.mtus[i] = 1488;
1547 				break;
1548 			}
1549 
1550 		t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
1551 			     adap->params.b_wnd);
1552 	}
1553 	t4_init_sge_params(adap);
1554 	ret = configure_filter_mode_mask(adap);
1555 	if (ret < 0)
1556 		goto bye;
1557 	t4_init_tp_params(adap);
1558 	configure_pcie_ext_tag(adap);
1559 	configure_vlan_types(adap);
1560 	cxgbe_configure_max_ethqsets(adap);
1561 
1562 	adap->params.drv_memwin = MEMWIN_NIC;
1563 	adap->flags |= FW_OK;
1564 	dev_debug(adap, "%s: returning zero..\n", __func__);
1565 	return 0;
1566 
1567 	/*
1568 	 * Something bad happened.  If a command timed out or failed with EIO
1569 	 * FW does not operate within its spec or something catastrophic
1570 	 * happened to HW/FW, stop issuing commands.
1571 	 */
1572 bye:
1573 	if (ret != -ETIMEDOUT && ret != -EIO)
1574 		t4_fw_bye(adap, adap->mbox);
1575 	return ret;
1576 }
1577 
1578 /**
1579  * t4_os_portmod_changed - handle port module changes
1580  * @adap: the adapter associated with the module change
1581  * @port_id: the port index whose module status has changed
1582  *
1583  * This is the OS-dependent handler for port module changes.  It is
1584  * invoked when a port module is removed or inserted for any OS-specific
1585  * processing.
1586  */
1587 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
1588 {
1589 	static const char * const mod_str[] = {
1590 		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
1591 	};
1592 
1593 	const struct port_info *pi = adap2pinfo(adap, port_id);
1594 
1595 	if (pi->link_cfg.mod_type == FW_PORT_MOD_TYPE_NONE)
1596 		dev_info(adap, "Port%d: port module unplugged\n", pi->port_id);
1597 	else if (pi->link_cfg.mod_type < ARRAY_SIZE(mod_str))
1598 		dev_info(adap, "Port%d: %s port module inserted\n", pi->port_id,
1599 			 mod_str[pi->link_cfg.mod_type]);
1600 	else if (pi->link_cfg.mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
1601 		dev_info(adap, "Port%d: unsupported port module inserted\n",
1602 			 pi->port_id);
1603 	else if (pi->link_cfg.mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
1604 		dev_info(adap, "Port%d: unknown port module inserted\n",
1605 			 pi->port_id);
1606 	else if (pi->link_cfg.mod_type == FW_PORT_MOD_TYPE_ERROR)
1607 		dev_info(adap, "Port%d: transceiver module error\n",
1608 			 pi->port_id);
1609 	else
1610 		dev_info(adap, "Port%d: unknown module type %d inserted\n",
1611 			 pi->port_id, pi->link_cfg.mod_type);
1612 }
1613 
1614 void t4_os_link_changed(struct adapter *adap, int port_id)
1615 {
1616 	struct port_info *pi = adap2pinfo(adap, port_id);
1617 
1618 	/* If link status has not changed or if firmware doesn't
1619 	 * support enabling/disabling VI's Rx path during runtime,
1620 	 * then return.
1621 	 */
1622 	if (adap->params.vi_enable_rx == 0 ||
1623 	    pi->vi_en_rx == pi->link_cfg.link_ok)
1624 		return;
1625 
1626 	/* Don't enable VI Rx path, if link has been administratively
1627 	 * turned off.
1628 	 */
1629 	if (pi->vi_en_tx == 0 && pi->vi_en_rx == 0)
1630 		return;
1631 
1632 	/* When link goes down, disable the port's Rx path to drop
1633 	 * Rx traffic closer to the wire, instead of processing it
1634 	 * further in the Rx pipeline. The Rx path will be re-enabled
1635 	 * once the link up message comes in firmware event queue.
1636 	 */
1637 	pi->vi_en_rx = pi->link_cfg.link_ok;
1638 	t4_enable_vi(adap, adap->mbox, pi->viid, pi->vi_en_rx, pi->vi_en_tx);
1639 }
1640 
1641 bool cxgbe_force_linkup(struct adapter *adap)
1642 {
1643 	if (is_pf4(adap))
1644 		return false;	/* force_linkup not required for pf driver */
1645 
1646 	return adap->devargs.force_link_up;
1647 }
1648 
1649 /**
1650  * link_start - enable a port
1651  * @dev: the port to enable
1652  *
1653  * Performs the MAC and PHY actions needed to enable a port.
1654  */
1655 int cxgbe_link_start(struct port_info *pi)
1656 {
1657 	struct adapter *adapter = pi->adapter;
1658 	u64 conf_offloads;
1659 	unsigned int mtu;
1660 	int ret;
1661 
1662 	mtu = pi->eth_dev->data->mtu;
1663 
1664 	conf_offloads = pi->eth_dev->data->dev_conf.rxmode.offloads;
1665 
1666 	/*
1667 	 * We do not set address filters and promiscuity here, the stack does
1668 	 * that step explicitly.
1669 	 */
1670 	ret = t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, -1, -1, -1,
1671 			    !!(conf_offloads & RTE_ETH_RX_OFFLOAD_VLAN_STRIP),
1672 			    true);
1673 	if (ret == 0) {
1674 		ret = cxgbe_mpstcam_modify(pi, (int)pi->xact_addr_filt,
1675 				(u8 *)&pi->eth_dev->data->mac_addrs[0]);
1676 		if (ret >= 0) {
1677 			pi->xact_addr_filt = ret;
1678 			ret = 0;
1679 		}
1680 	}
1681 	if (ret == 0 && is_pf4(adapter))
1682 		ret = t4_link_l1cfg(pi, pi->link_cfg.admin_caps);
1683 	if (ret == 0) {
1684 		/* Disable VI Rx until link up message is received in
1685 		 * firmware event queue, if firmware supports enabling/
1686 		 * disabling VI Rx at runtime.
1687 		 */
1688 		pi->vi_en_rx = adapter->params.vi_enable_rx ? 0 : 1;
1689 		pi->vi_en_tx = 1;
1690 		ret = t4_enable_vi_params(adapter, adapter->mbox, pi->viid,
1691 					  pi->vi_en_rx, pi->vi_en_tx, false);
1692 	}
1693 
1694 	if (ret == 0 && cxgbe_force_linkup(adapter))
1695 		pi->eth_dev->data->dev_link.link_status = RTE_ETH_LINK_UP;
1696 	return ret;
1697 }
1698 
1699 /**
1700  * cxgbe_write_rss_conf - flash the RSS configuration for a given port
1701  * @pi: the port
1702  * @rss_hf: Hash configuration to apply
1703  */
1704 int cxgbe_write_rss_conf(const struct port_info *pi, uint64_t rss_hf)
1705 {
1706 	struct adapter *adapter = pi->adapter;
1707 	const struct sge_eth_rxq *rxq;
1708 	u64 flags = 0;
1709 	u16 rss;
1710 	int err;
1711 
1712 	/*  Should never be called before setting up sge eth rx queues */
1713 	if (!(adapter->flags & FULL_INIT_DONE)) {
1714 		dev_err(adap, "%s No RXQs available on port %d\n",
1715 			__func__, pi->port_id);
1716 		return -EINVAL;
1717 	}
1718 
1719 	/* Don't allow unsupported hash functions */
1720 	if (rss_hf & ~CXGBE_RSS_HF_ALL)
1721 		return -EINVAL;
1722 
1723 	if (rss_hf & CXGBE_RSS_HF_IPV4_MASK)
1724 		flags |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
1725 
1726 	if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV4_TCP)
1727 		flags |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
1728 
1729 	if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV4_UDP)
1730 		flags |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
1731 			 F_FW_RSS_VI_CONFIG_CMD_UDPEN;
1732 
1733 	if (rss_hf & CXGBE_RSS_HF_IPV6_MASK)
1734 		flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
1735 
1736 	if (rss_hf & CXGBE_RSS_HF_TCP_IPV6_MASK)
1737 		flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
1738 			 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
1739 
1740 	if (rss_hf & CXGBE_RSS_HF_UDP_IPV6_MASK)
1741 		flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
1742 			 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
1743 			 F_FW_RSS_VI_CONFIG_CMD_UDPEN;
1744 
1745 	rxq = &adapter->sge.ethrxq[pi->first_rxqset];
1746 	rss = rxq[0].rspq.abs_id;
1747 
1748 	/* If Tunnel All Lookup isn't specified in the global RSS
1749 	 * Configuration, then we need to specify a default Ingress
1750 	 * Queue for any ingress packets which aren't hashed.  We'll
1751 	 * use our first ingress queue ...
1752 	 */
1753 	err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
1754 			       flags, rss);
1755 	return err;
1756 }
1757 
1758 /**
1759  * cxgbe_write_rss - write the RSS table for a given port
1760  * @pi: the port
1761  * @queues: array of queue indices for RSS
1762  *
1763  * Sets up the portion of the HW RSS table for the port's VI to distribute
1764  * packets to the Rx queues in @queues.
1765  */
1766 int cxgbe_write_rss(const struct port_info *pi, const u16 *queues)
1767 {
1768 	u16 *rss;
1769 	int i, err;
1770 	struct adapter *adapter = pi->adapter;
1771 	const struct sge_eth_rxq *rxq;
1772 
1773 	/*  Should never be called before setting up sge eth rx queues */
1774 	BUG_ON(!(adapter->flags & FULL_INIT_DONE));
1775 
1776 	rxq = &adapter->sge.ethrxq[pi->first_rxqset];
1777 	rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0);
1778 	if (!rss)
1779 		return -ENOMEM;
1780 
1781 	/* map the queue indices to queue ids */
1782 	for (i = 0; i < pi->rss_size; i++, queues++)
1783 		rss[i] = rxq[*queues].rspq.abs_id;
1784 
1785 	err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
1786 				  pi->rss_size, rss, pi->rss_size);
1787 	rte_free(rss);
1788 	return err;
1789 }
1790 
1791 /**
1792  * setup_rss - configure RSS
1793  * @adapter: the adapter
1794  *
1795  * Sets up RSS to distribute packets to multiple receive queues.  We
1796  * configure the RSS CPU lookup table to distribute to the number of HW
1797  * receive queues, and the response queue lookup table to narrow that
1798  * down to the response queues actually configured for each port.
1799  * We always configure the RSS mapping for all ports since the mapping
1800  * table has plenty of entries.
1801  */
1802 int cxgbe_setup_rss(struct port_info *pi)
1803 {
1804 	int j, err;
1805 	struct adapter *adapter = pi->adapter;
1806 
1807 	dev_debug(adapter, "%s:  pi->rss_size = %u; pi->n_rx_qsets = %u\n",
1808 		  __func__, pi->rss_size, pi->n_rx_qsets);
1809 
1810 	if (!(pi->flags & PORT_RSS_DONE)) {
1811 		if (adapter->flags & FULL_INIT_DONE) {
1812 			/* Fill default values with equal distribution */
1813 			for (j = 0; j < pi->rss_size; j++)
1814 				pi->rss[j] = j % pi->n_rx_qsets;
1815 
1816 			err = cxgbe_write_rss(pi, pi->rss);
1817 			if (err)
1818 				return err;
1819 
1820 			err = cxgbe_write_rss_conf(pi, pi->rss_hf);
1821 			if (err)
1822 				return err;
1823 			pi->flags |= PORT_RSS_DONE;
1824 		}
1825 	}
1826 	return 0;
1827 }
1828 
1829 /*
1830  * Enable NAPI scheduling and interrupt generation for all Rx queues.
1831  */
1832 static void enable_rx(struct adapter *adap, struct sge_rspq *q)
1833 {
1834 	/* 0-increment GTS to start the timer and enable interrupts */
1835 	t4_write_reg(adap, is_pf4(adap) ? MYPF_REG(A_SGE_PF_GTS) :
1836 					  T4VF_SGE_BASE_ADDR + A_SGE_VF_GTS,
1837 		     V_SEINTARM(q->intr_params) |
1838 		     V_INGRESSQID(q->cntxt_id));
1839 }
1840 
1841 void cxgbe_enable_rx_queues(struct port_info *pi)
1842 {
1843 	struct adapter *adap = pi->adapter;
1844 	struct sge *s = &adap->sge;
1845 	unsigned int i;
1846 
1847 	for (i = 0; i < pi->n_rx_qsets; i++)
1848 		enable_rx(adap, &s->ethrxq[pi->first_rxqset + i].rspq);
1849 }
1850 
1851 /**
1852  * fw_caps_to_speed_caps - translate Firmware Port Caps to Speed Caps.
1853  * @port_type: Firmware Port Type
1854  * @fw_caps: Firmware Port Capabilities
1855  * @speed_caps: Device Info Speed Capabilities
1856  *
1857  * Translate a Firmware Port Capabilities specification to Device Info
1858  * Speed Capabilities.
1859  */
1860 static void fw_caps_to_speed_caps(enum fw_port_type port_type,
1861 				  unsigned int fw_caps,
1862 				  u32 *speed_caps)
1863 {
1864 #define SET_SPEED(__speed_name) \
1865 	do { \
1866 		*speed_caps |= RTE_ETH_LINK_ ## __speed_name; \
1867 	} while (0)
1868 
1869 #define FW_CAPS_TO_SPEED(__fw_name) \
1870 	do { \
1871 		if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \
1872 			SET_SPEED(__fw_name); \
1873 	} while (0)
1874 
1875 	switch (port_type) {
1876 	case FW_PORT_TYPE_BT_SGMII:
1877 	case FW_PORT_TYPE_BT_XFI:
1878 	case FW_PORT_TYPE_BT_XAUI:
1879 		FW_CAPS_TO_SPEED(SPEED_100M);
1880 		FW_CAPS_TO_SPEED(SPEED_1G);
1881 		FW_CAPS_TO_SPEED(SPEED_10G);
1882 		break;
1883 
1884 	case FW_PORT_TYPE_KX4:
1885 	case FW_PORT_TYPE_KX:
1886 	case FW_PORT_TYPE_FIBER_XFI:
1887 	case FW_PORT_TYPE_FIBER_XAUI:
1888 	case FW_PORT_TYPE_SFP:
1889 	case FW_PORT_TYPE_QSFP_10G:
1890 	case FW_PORT_TYPE_QSA:
1891 		FW_CAPS_TO_SPEED(SPEED_1G);
1892 		FW_CAPS_TO_SPEED(SPEED_10G);
1893 		break;
1894 
1895 	case FW_PORT_TYPE_KR:
1896 		SET_SPEED(SPEED_10G);
1897 		break;
1898 
1899 	case FW_PORT_TYPE_BP_AP:
1900 	case FW_PORT_TYPE_BP4_AP:
1901 		SET_SPEED(SPEED_1G);
1902 		SET_SPEED(SPEED_10G);
1903 		break;
1904 
1905 	case FW_PORT_TYPE_BP40_BA:
1906 	case FW_PORT_TYPE_QSFP:
1907 		SET_SPEED(SPEED_40G);
1908 		break;
1909 
1910 	case FW_PORT_TYPE_CR_QSFP:
1911 	case FW_PORT_TYPE_SFP28:
1912 	case FW_PORT_TYPE_KR_SFP28:
1913 		FW_CAPS_TO_SPEED(SPEED_1G);
1914 		FW_CAPS_TO_SPEED(SPEED_10G);
1915 		FW_CAPS_TO_SPEED(SPEED_25G);
1916 		break;
1917 
1918 	case FW_PORT_TYPE_CR2_QSFP:
1919 		SET_SPEED(SPEED_50G);
1920 		break;
1921 
1922 	case FW_PORT_TYPE_KR4_100G:
1923 	case FW_PORT_TYPE_CR4_QSFP:
1924 		FW_CAPS_TO_SPEED(SPEED_25G);
1925 		FW_CAPS_TO_SPEED(SPEED_40G);
1926 		FW_CAPS_TO_SPEED(SPEED_50G);
1927 		FW_CAPS_TO_SPEED(SPEED_100G);
1928 		break;
1929 
1930 	default:
1931 		break;
1932 	}
1933 
1934 #undef FW_CAPS_TO_SPEED
1935 #undef SET_SPEED
1936 }
1937 
1938 /**
1939  * cxgbe_get_speed_caps - Fetch supported speed capabilities
1940  * @pi: Underlying port's info
1941  * @speed_caps: Device Info speed capabilities
1942  *
1943  * Fetch supported speed capabilities of the underlying port.
1944  */
1945 void cxgbe_get_speed_caps(struct port_info *pi, u32 *speed_caps)
1946 {
1947 	*speed_caps = 0;
1948 
1949 	fw_caps_to_speed_caps(pi->link_cfg.port_type, pi->link_cfg.pcaps,
1950 			      speed_caps);
1951 
1952 	if (!(pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG))
1953 		*speed_caps |= RTE_ETH_LINK_SPEED_FIXED;
1954 }
1955 
1956 /**
1957  * cxgbe_set_link_status - Set device link up or down.
1958  * @pi: Underlying port's info
1959  * @status: 0 - down, 1 - up
1960  *
1961  * Set the device link up or down.
1962  */
1963 int cxgbe_set_link_status(struct port_info *pi, bool status)
1964 {
1965 	struct adapter *adapter = pi->adapter;
1966 	int err = 0;
1967 
1968 	/* Wait for link up message from firmware to enable Rx path,
1969 	 * if firmware supports enabling/disabling VI Rx at runtime.
1970 	 */
1971 	pi->vi_en_rx = adapter->params.vi_enable_rx ? 0 : status;
1972 	pi->vi_en_tx = status;
1973 	err = t4_enable_vi(adapter, adapter->mbox, pi->viid, pi->vi_en_rx,
1974 			   pi->vi_en_tx);
1975 	if (err) {
1976 		dev_err(adapter, "%s: disable_vi failed: %d\n", __func__, err);
1977 		return err;
1978 	}
1979 
1980 	if (!status)
1981 		t4_reset_link_config(adapter, pi->pidx);
1982 
1983 	return 0;
1984 }
1985 
1986 /**
1987  * cxgb_up - enable the adapter
1988  * @adap: adapter being enabled
1989  *
1990  * Called when the first port is enabled, this function performs the
1991  * actions necessary to make an adapter operational, such as completing
1992  * the initialization of HW modules, and enabling interrupts.
1993  */
1994 int cxgbe_up(struct adapter *adap)
1995 {
1996 	enable_rx(adap, &adap->sge.fw_evtq);
1997 	t4_sge_tx_monitor_start(adap);
1998 	if (is_pf4(adap))
1999 		t4_intr_enable(adap);
2000 	adap->flags |= FULL_INIT_DONE;
2001 
2002 	/* TODO: deadman watchdog ?? */
2003 	return 0;
2004 }
2005 
2006 /*
2007  * Close the port
2008  */
2009 int cxgbe_down(struct port_info *pi)
2010 {
2011 	return cxgbe_set_link_status(pi, false);
2012 }
2013 
2014 /*
2015  * Release resources when all the ports have been stopped.
2016  */
2017 void cxgbe_close(struct adapter *adapter)
2018 {
2019 	if (adapter->flags & FULL_INIT_DONE) {
2020 		tid_free(&adapter->tids);
2021 		t4_cleanup_mpstcam(adapter);
2022 		t4_cleanup_clip_tbl(adapter);
2023 		t4_cleanup_l2t(adapter);
2024 		t4_cleanup_smt(adapter);
2025 		if (is_pf4(adapter))
2026 			t4_intr_disable(adapter);
2027 		t4_sge_tx_monitor_stop(adapter);
2028 		t4_free_sge_resources(adapter);
2029 		adapter->flags &= ~FULL_INIT_DONE;
2030 	}
2031 
2032 	cxgbe_cfg_queues_free(adapter);
2033 
2034 	if (is_pf4(adapter) && (adapter->flags & FW_OK))
2035 		t4_fw_bye(adapter, adapter->mbox);
2036 }
2037 
2038 static void adap_smt_index(struct adapter *adapter, u32 *smt_start_idx,
2039 			   u32 *smt_size)
2040 {
2041 	u32 params[2], smt_val[2];
2042 	int ret;
2043 
2044 	params[0] = CXGBE_FW_PARAM_PFVF(GET_SMT_START);
2045 	params[1] = CXGBE_FW_PARAM_PFVF(GET_SMT_SIZE);
2046 
2047 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2048 			      2, params, smt_val);
2049 
2050 	/* if FW doesn't recognize this command then set it to default setting
2051 	 * which is start index as 0 and size as 256.
2052 	 */
2053 	if (ret < 0) {
2054 		*smt_start_idx = 0;
2055 		*smt_size = SMT_SIZE;
2056 	} else {
2057 		*smt_start_idx = smt_val[0];
2058 		/* smt size can be zero, if nsmt is not yet configured in
2059 		 * the config file or set as zero, then configure all the
2060 		 * remaining entries to this PF itself.
2061 		 */
2062 		if (!smt_val[1])
2063 			*smt_size = SMT_SIZE - *smt_start_idx;
2064 		else
2065 			*smt_size = smt_val[1];
2066 	}
2067 }
2068 
2069 int cxgbe_probe(struct adapter *adapter)
2070 {
2071 	u32 smt_start_idx, smt_size;
2072 	struct port_info *pi;
2073 	int func, i;
2074 	int err = 0;
2075 	u32 whoami;
2076 	int chip;
2077 
2078 	whoami = t4_read_reg(adapter, A_PL_WHOAMI);
2079 	chip = t4_get_chip_type(adapter,
2080 			CHELSIO_PCI_ID_VER(adapter->pdev->id.device_id));
2081 	if (chip < 0)
2082 		return chip;
2083 
2084 	func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
2085 	       G_SOURCEPF(whoami) : G_T6_SOURCEPF(whoami);
2086 
2087 	adapter->mbox = func;
2088 	adapter->pf = func;
2089 
2090 	t4_os_lock_init(&adapter->mbox_lock);
2091 	TAILQ_INIT(&adapter->mbox_list);
2092 	t4_os_lock_init(&adapter->win0_lock);
2093 
2094 	err = t4_prep_adapter(adapter);
2095 	if (err)
2096 		return err;
2097 
2098 	setup_memwin(adapter);
2099 	err = adap_init0(adapter);
2100 	if (err) {
2101 		dev_err(adapter, "%s: Adapter initialization failed, error %d\n",
2102 			__func__, err);
2103 		goto out_free;
2104 	}
2105 
2106 	if (!is_t4(adapter->params.chip)) {
2107 		/*
2108 		 * The userspace doorbell BAR is split evenly into doorbell
2109 		 * regions, each associated with an egress queue.  If this
2110 		 * per-queue region is large enough (at least UDBS_SEG_SIZE)
2111 		 * then it can be used to submit a tx work request with an
2112 		 * implied doorbell.  Enable write combining on the BAR if
2113 		 * there is room for such work requests.
2114 		 */
2115 		int s_qpp, qpp, num_seg;
2116 
2117 		s_qpp = (S_QUEUESPERPAGEPF0 +
2118 			(S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) *
2119 			adapter->pf);
2120 		qpp = 1 << ((t4_read_reg(adapter,
2121 				A_SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp)
2122 				& M_QUEUESPERPAGEPF0);
2123 		num_seg = CXGBE_PAGE_SIZE / UDBS_SEG_SIZE;
2124 		if (qpp > num_seg)
2125 			dev_warn(adapter, "Incorrect SGE EGRESS QUEUES_PER_PAGE configuration, continuing in debug mode\n");
2126 
2127 		adapter->bar2 = (void *)adapter->pdev->mem_resource[2].addr;
2128 		if (!adapter->bar2) {
2129 			dev_err(adapter, "cannot map device bar2 region\n");
2130 			err = -ENOMEM;
2131 			goto out_free;
2132 		}
2133 		t4_write_reg(adapter, A_SGE_STAT_CFG, V_STATSOURCE_T5(7) |
2134 			     V_STATMODE(0));
2135 	}
2136 
2137 	for_each_port(adapter, i) {
2138 		const unsigned int numa_node = rte_socket_id();
2139 		char name[RTE_ETH_NAME_MAX_LEN];
2140 		struct rte_eth_dev *eth_dev;
2141 
2142 		snprintf(name, sizeof(name), "%s_%d",
2143 			 adapter->pdev->device.name, i);
2144 
2145 		if (i == 0) {
2146 			/* First port is already allocated by DPDK */
2147 			eth_dev = adapter->eth_dev;
2148 			goto allocate_mac;
2149 		}
2150 
2151 		/*
2152 		 * now do all data allocation - for eth_dev structure,
2153 		 * and internal (private) data for the remaining ports
2154 		 */
2155 
2156 		/* reserve an ethdev entry */
2157 		eth_dev = rte_eth_dev_allocate(name);
2158 		if (!eth_dev)
2159 			goto out_free;
2160 
2161 		eth_dev->data->dev_private =
2162 			rte_zmalloc_socket(name, sizeof(struct port_info),
2163 					   RTE_CACHE_LINE_SIZE, numa_node);
2164 		if (!eth_dev->data->dev_private)
2165 			goto out_free;
2166 
2167 allocate_mac:
2168 		pi = eth_dev->data->dev_private;
2169 		adapter->port[i] = pi;
2170 		pi->eth_dev = eth_dev;
2171 		pi->adapter = adapter;
2172 		pi->xact_addr_filt = -1;
2173 		pi->port_id = i;
2174 		pi->pidx = i;
2175 
2176 		pi->eth_dev->device = &adapter->pdev->device;
2177 		pi->eth_dev->dev_ops = adapter->eth_dev->dev_ops;
2178 		pi->eth_dev->tx_pkt_burst = adapter->eth_dev->tx_pkt_burst;
2179 		pi->eth_dev->rx_pkt_burst = adapter->eth_dev->rx_pkt_burst;
2180 
2181 		rte_eth_copy_pci_info(pi->eth_dev, adapter->pdev);
2182 
2183 		pi->eth_dev->data->mac_addrs = rte_zmalloc(name,
2184 							RTE_ETHER_ADDR_LEN, 0);
2185 		if (!pi->eth_dev->data->mac_addrs) {
2186 			dev_err(adapter, "%s: Mem allocation failed for storing mac addr, aborting\n",
2187 				__func__);
2188 			err = -1;
2189 			goto out_free;
2190 		}
2191 
2192 		if (i > 0) {
2193 			/* First port will be notified by upper layer */
2194 			rte_eth_dev_probing_finish(eth_dev);
2195 		}
2196 	}
2197 
2198 	if (adapter->flags & FW_OK) {
2199 		err = t4_port_init(adapter, adapter->mbox, adapter->pf, 0);
2200 		if (err) {
2201 			dev_err(adapter, "%s: t4_port_init failed with err %d\n",
2202 				__func__, err);
2203 			goto out_free;
2204 		}
2205 	}
2206 
2207 	err = cxgbe_cfg_queues(adapter->eth_dev);
2208 	if (err)
2209 		goto out_free;
2210 
2211 	cxgbe_print_adapter_info(adapter);
2212 	cxgbe_print_port_info(adapter);
2213 
2214 	adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
2215 					  adapter->clipt_end);
2216 	if (!adapter->clipt) {
2217 		/* We tolerate a lack of clip_table, giving up some
2218 		 * functionality
2219 		 */
2220 		dev_warn(adapter, "could not allocate CLIP. Continuing\n");
2221 	}
2222 
2223 	adap_smt_index(adapter, &smt_start_idx, &smt_size);
2224 	adapter->smt = t4_init_smt(smt_start_idx, smt_size);
2225 	if (!adapter->smt)
2226 		dev_warn(adapter, "could not allocate SMT, continuing\n");
2227 
2228 	adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
2229 	if (!adapter->l2t) {
2230 		/* We tolerate a lack of L2T, giving up some functionality */
2231 		dev_warn(adapter, "could not allocate L2T. Continuing\n");
2232 	}
2233 
2234 	if (tid_init(&adapter->tids) < 0) {
2235 		/* Disable filtering support */
2236 		dev_warn(adapter, "could not allocate TID table, "
2237 			 "filter support disabled. Continuing\n");
2238 	}
2239 
2240 	t4_os_lock_init(&adapter->flow_lock);
2241 
2242 	adapter->mpstcam = t4_init_mpstcam(adapter);
2243 	if (!adapter->mpstcam)
2244 		dev_warn(adapter, "could not allocate mps tcam table."
2245 			 " Continuing\n");
2246 
2247 	if (is_hashfilter(adapter)) {
2248 		if (t4_read_reg(adapter, A_LE_DB_CONFIG) & F_HASHEN) {
2249 			u32 hash_base, hash_reg;
2250 
2251 			hash_reg = A_LE_DB_TID_HASHBASE;
2252 			hash_base = t4_read_reg(adapter, hash_reg);
2253 			adapter->tids.hash_base = hash_base / 4;
2254 		}
2255 	} else {
2256 		/* Disable hash filtering support */
2257 		dev_warn(adapter,
2258 			 "Maskless filter support disabled. Continuing\n");
2259 	}
2260 
2261 	err = cxgbe_init_rss(adapter);
2262 	if (err)
2263 		goto out_free;
2264 
2265 	return 0;
2266 
2267 out_free:
2268 	cxgbe_cfg_queues_free(adapter);
2269 
2270 	for_each_port(adapter, i) {
2271 		pi = adap2pinfo(adapter, i);
2272 		if (pi->viid != 0)
2273 			t4_free_vi(adapter, adapter->mbox, adapter->pf,
2274 				   0, pi->viid);
2275 		rte_eth_dev_release_port(pi->eth_dev);
2276 	}
2277 
2278 	if (adapter->flags & FW_OK)
2279 		t4_fw_bye(adapter, adapter->mbox);
2280 	return -err;
2281 }
2282