xref: /dpdk/drivers/net/cxgbe/cxgbe_main.c (revision 4e30ead5e7ca886535e2b30632b2948d2aac1681)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2014-2016 Chelsio Communications.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Chelsio Communications nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/queue.h>
35 #include <stdio.h>
36 #include <errno.h>
37 #include <stdint.h>
38 #include <string.h>
39 #include <unistd.h>
40 #include <stdarg.h>
41 #include <inttypes.h>
42 #include <netinet/in.h>
43 
44 #include <rte_byteorder.h>
45 #include <rte_common.h>
46 #include <rte_cycles.h>
47 #include <rte_interrupts.h>
48 #include <rte_log.h>
49 #include <rte_debug.h>
50 #include <rte_pci.h>
51 #include <rte_atomic.h>
52 #include <rte_branch_prediction.h>
53 #include <rte_memory.h>
54 #include <rte_memzone.h>
55 #include <rte_tailq.h>
56 #include <rte_eal.h>
57 #include <rte_alarm.h>
58 #include <rte_ether.h>
59 #include <rte_ethdev.h>
60 #include <rte_ethdev_pci.h>
61 #include <rte_atomic.h>
62 #include <rte_malloc.h>
63 #include <rte_random.h>
64 #include <rte_dev.h>
65 
66 #include "common.h"
67 #include "t4_regs.h"
68 #include "t4_msg.h"
69 #include "cxgbe.h"
70 
71 /*
72  * Response queue handler for the FW event queue.
73  */
74 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
75 			  __rte_unused const struct pkt_gl *gl)
76 {
77 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
78 
79 	rsp++;                                          /* skip RSS header */
80 
81 	/*
82 	 * FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
83 	 */
84 	if (unlikely(opcode == CPL_FW4_MSG &&
85 		     ((const struct cpl_fw4_msg *)rsp)->type ==
86 		      FW_TYPE_RSSCPL)) {
87 		rsp++;
88 		opcode = ((const struct rss_header *)rsp)->opcode;
89 		rsp++;
90 		if (opcode != CPL_SGE_EGR_UPDATE) {
91 			dev_err(q->adapter, "unexpected FW4/CPL %#x on FW event queue\n",
92 				opcode);
93 			goto out;
94 		}
95 	}
96 
97 	if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
98 		/* do nothing */
99 	} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
100 		const struct cpl_fw6_msg *msg = (const void *)rsp;
101 
102 		t4_handle_fw_rpl(q->adapter, msg->data);
103 	} else {
104 		dev_err(adapter, "unexpected CPL %#x on FW event queue\n",
105 			opcode);
106 	}
107 out:
108 	return 0;
109 }
110 
111 int setup_sge_fwevtq(struct adapter *adapter)
112 {
113 	struct sge *s = &adapter->sge;
114 	int err = 0;
115 	int msi_idx = 0;
116 
117 	err = t4_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->eth_dev,
118 			       msi_idx, NULL, fwevtq_handler, -1, NULL, 0,
119 			       rte_socket_id());
120 	return err;
121 }
122 
123 static int closest_timer(const struct sge *s, int time)
124 {
125 	unsigned int i, match = 0;
126 	int delta, min_delta = INT_MAX;
127 
128 	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
129 		delta = time - s->timer_val[i];
130 		if (delta < 0)
131 			delta = -delta;
132 		if (delta < min_delta) {
133 			min_delta = delta;
134 			match = i;
135 		}
136 	}
137 	return match;
138 }
139 
140 static int closest_thres(const struct sge *s, int thres)
141 {
142 	unsigned int i, match = 0;
143 	int delta, min_delta = INT_MAX;
144 
145 	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
146 		delta = thres - s->counter_val[i];
147 		if (delta < 0)
148 			delta = -delta;
149 		if (delta < min_delta) {
150 			min_delta = delta;
151 			match = i;
152 		}
153 	}
154 	return match;
155 }
156 
157 /**
158  * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
159  * @q: the Rx queue
160  * @us: the hold-off time in us, or 0 to disable timer
161  * @cnt: the hold-off packet count, or 0 to disable counter
162  *
163  * Sets an Rx queue's interrupt hold-off time and packet count.  At least
164  * one of the two needs to be enabled for the queue to generate interrupts.
165  */
166 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, unsigned int us,
167 			       unsigned int cnt)
168 {
169 	struct adapter *adap = q->adapter;
170 	unsigned int timer_val;
171 
172 	if (cnt) {
173 		int err;
174 		u32 v, new_idx;
175 
176 		new_idx = closest_thres(&adap->sge, cnt);
177 		if (q->desc && q->pktcnt_idx != new_idx) {
178 			/* the queue has already been created, update it */
179 			v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
180 			    V_FW_PARAMS_PARAM_X(
181 			    FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
182 			    V_FW_PARAMS_PARAM_YZ(q->cntxt_id);
183 			err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
184 					    &v, &new_idx);
185 			if (err)
186 				return err;
187 		}
188 		q->pktcnt_idx = new_idx;
189 	}
190 
191 	timer_val = (us == 0) ? X_TIMERREG_RESTART_COUNTER :
192 				closest_timer(&adap->sge, us);
193 
194 	if ((us | cnt) == 0)
195 		q->intr_params = V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX);
196 	else
197 		q->intr_params = V_QINTR_TIMER_IDX(timer_val) |
198 				 V_QINTR_CNT_EN(cnt > 0);
199 	return 0;
200 }
201 
202 static inline bool is_x_1g_port(const struct link_config *lc)
203 {
204 	return (lc->supported & FW_PORT_CAP_SPEED_1G) != 0;
205 }
206 
207 static inline bool is_x_10g_port(const struct link_config *lc)
208 {
209 	return ((lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
210 		(lc->supported & FW_PORT_CAP_SPEED_40G) != 0 ||
211 		(lc->supported & FW_PORT_CAP_SPEED_100G) != 0);
212 }
213 
214 inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
215 		      unsigned int us, unsigned int cnt,
216 		      unsigned int size, unsigned int iqe_size)
217 {
218 	q->adapter = adap;
219 	cxgb4_set_rspq_intr_params(q, us, cnt);
220 	q->iqe_len = iqe_size;
221 	q->size = size;
222 }
223 
224 int cfg_queue_count(struct rte_eth_dev *eth_dev)
225 {
226 	struct port_info *pi = (struct port_info *)(eth_dev->data->dev_private);
227 	struct adapter *adap = pi->adapter;
228 	struct sge *s = &adap->sge;
229 	unsigned int max_queues = s->max_ethqsets / adap->params.nports;
230 
231 	if ((eth_dev->data->nb_rx_queues < 1) ||
232 	    (eth_dev->data->nb_tx_queues < 1))
233 		return -EINVAL;
234 
235 	if ((eth_dev->data->nb_rx_queues > max_queues) ||
236 	    (eth_dev->data->nb_tx_queues > max_queues))
237 		return -EINVAL;
238 
239 	if (eth_dev->data->nb_rx_queues > pi->rss_size)
240 		return -EINVAL;
241 
242 	/* We must configure RSS, since config has changed*/
243 	pi->flags &= ~PORT_RSS_DONE;
244 
245 	pi->n_rx_qsets = eth_dev->data->nb_rx_queues;
246 	pi->n_tx_qsets = eth_dev->data->nb_tx_queues;
247 
248 	return 0;
249 }
250 
251 void cfg_queues(struct rte_eth_dev *eth_dev)
252 {
253 	struct rte_config *config = rte_eal_get_configuration();
254 	struct port_info *pi = (struct port_info *)(eth_dev->data->dev_private);
255 	struct adapter *adap = pi->adapter;
256 	struct sge *s = &adap->sge;
257 	unsigned int i, nb_ports = 0, qidx = 0;
258 	unsigned int q_per_port = 0;
259 
260 	if (!(adap->flags & CFG_QUEUES)) {
261 		for_each_port(adap, i) {
262 			struct port_info *tpi = adap2pinfo(adap, i);
263 
264 			nb_ports += (is_x_10g_port(&tpi->link_cfg)) ||
265 				     is_x_1g_port(&tpi->link_cfg) ? 1 : 0;
266 		}
267 
268 		/*
269 		 * We default up to # of cores queues per 1G/10G port.
270 		 */
271 		if (nb_ports)
272 			q_per_port = (MAX_ETH_QSETS -
273 				     (adap->params.nports - nb_ports)) /
274 				     nb_ports;
275 
276 		if (q_per_port > config->lcore_count)
277 			q_per_port = config->lcore_count;
278 
279 		for_each_port(adap, i) {
280 			struct port_info *pi = adap2pinfo(adap, i);
281 
282 			pi->first_qset = qidx;
283 
284 			/* Initially n_rx_qsets == n_tx_qsets */
285 			pi->n_rx_qsets = (is_x_10g_port(&pi->link_cfg) ||
286 					  is_x_1g_port(&pi->link_cfg)) ?
287 					  q_per_port : 1;
288 			pi->n_tx_qsets = pi->n_rx_qsets;
289 
290 			if (pi->n_rx_qsets > pi->rss_size)
291 				pi->n_rx_qsets = pi->rss_size;
292 
293 			qidx += pi->n_rx_qsets;
294 		}
295 
296 		s->max_ethqsets = qidx;
297 
298 		for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
299 			struct sge_eth_rxq *r = &s->ethrxq[i];
300 
301 			init_rspq(adap, &r->rspq, 0, 0, 1024, 64);
302 			r->usembufs = 1;
303 			r->fl.size = (r->usembufs ? 1024 : 72);
304 		}
305 
306 		for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
307 			s->ethtxq[i].q.size = 1024;
308 
309 		init_rspq(adap, &adap->sge.fw_evtq, 0, 0, 1024, 64);
310 		adap->flags |= CFG_QUEUES;
311 	}
312 }
313 
314 void cxgbe_stats_get(struct port_info *pi, struct port_stats *stats)
315 {
316 	t4_get_port_stats_offset(pi->adapter, pi->tx_chan, stats,
317 				 &pi->stats_base);
318 }
319 
320 void cxgbe_stats_reset(struct port_info *pi)
321 {
322 	t4_clr_port_stats(pi->adapter, pi->tx_chan);
323 }
324 
325 static void setup_memwin(struct adapter *adap)
326 {
327 	u32 mem_win0_base;
328 
329 	/* For T5, only relative offset inside the PCIe BAR is passed */
330 	mem_win0_base = MEMWIN0_BASE;
331 
332 	/*
333 	 * Set up memory window for accessing adapter memory ranges.  (Read
334 	 * back MA register to ensure that changes propagate before we attempt
335 	 * to use the new values.)
336 	 */
337 	t4_write_reg(adap,
338 		     PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
339 					 MEMWIN_NIC),
340 		     mem_win0_base | V_BIR(0) |
341 		     V_WINDOW(ilog2(MEMWIN0_APERTURE) - X_WINDOW_SHIFT));
342 	t4_read_reg(adap,
343 		    PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
344 					MEMWIN_NIC));
345 }
346 
347 static int init_rss(struct adapter *adap)
348 {
349 	unsigned int i;
350 	int err;
351 
352 	err = t4_init_rss_mode(adap, adap->mbox);
353 	if (err)
354 		return err;
355 
356 	for_each_port(adap, i) {
357 		struct port_info *pi = adap2pinfo(adap, i);
358 
359 		pi->rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0);
360 		if (!pi->rss)
361 			return -ENOMEM;
362 	}
363 	return 0;
364 }
365 
366 static void print_port_info(struct adapter *adap)
367 {
368 	int i;
369 	char buf[80];
370 	struct rte_pci_addr *loc = &adap->pdev->addr;
371 
372 	for_each_port(adap, i) {
373 		const struct port_info *pi = &adap->port[i];
374 		char *bufp = buf;
375 
376 		if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
377 			bufp += sprintf(bufp, "100/");
378 		if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
379 			bufp += sprintf(bufp, "1000/");
380 		if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
381 			bufp += sprintf(bufp, "10G/");
382 		if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
383 			bufp += sprintf(bufp, "40G/");
384 		if (bufp != buf)
385 			--bufp;
386 		sprintf(bufp, "BASE-%s",
387 			t4_get_port_type_description(
388 					(enum fw_port_type)pi->port_type));
389 
390 		dev_info(adap,
391 			 " " PCI_PRI_FMT " Chelsio rev %d %s %s\n",
392 			 loc->domain, loc->bus, loc->devid, loc->function,
393 			 CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
394 			 (adap->flags & USING_MSIX) ? " MSI-X" :
395 			 (adap->flags & USING_MSI) ? " MSI" : "");
396 	}
397 }
398 
399 /*
400  * Tweak configuration based on system architecture, etc.  Most of these have
401  * defaults assigned to them by Firmware Configuration Files (if we're using
402  * them) but need to be explicitly set if we're using hard-coded
403  * initialization. So these are essentially common tweaks/settings for
404  * Configuration Files and hard-coded initialization ...
405  */
406 static int adap_init0_tweaks(struct adapter *adapter)
407 {
408 	u8 rx_dma_offset;
409 
410 	/*
411 	 * Fix up various Host-Dependent Parameters like Page Size, Cache
412 	 * Line Size, etc.  The firmware default is for a 4KB Page Size and
413 	 * 64B Cache Line Size ...
414 	 */
415 	t4_fixup_host_params_compat(adapter, CXGBE_PAGE_SIZE, L1_CACHE_BYTES,
416 				    T5_LAST_REV);
417 
418 	/*
419 	 * Keep the chip default offset to deliver Ingress packets into our
420 	 * DMA buffers to zero
421 	 */
422 	rx_dma_offset = 0;
423 	t4_set_reg_field(adapter, A_SGE_CONTROL, V_PKTSHIFT(M_PKTSHIFT),
424 			 V_PKTSHIFT(rx_dma_offset));
425 
426 	t4_set_reg_field(adapter, A_SGE_FLM_CFG,
427 			 V_CREDITCNT(M_CREDITCNT) | M_CREDITCNTPACKING,
428 			 V_CREDITCNT(3) | V_CREDITCNTPACKING(1));
429 
430 	t4_set_reg_field(adapter, A_SGE_CONTROL2, V_IDMAARBROUNDROBIN(1U),
431 			 V_IDMAARBROUNDROBIN(1U));
432 
433 	/*
434 	 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
435 	 * adds the pseudo header itself.
436 	 */
437 	t4_tp_wr_bits_indirect(adapter, A_TP_INGRESS_CONFIG,
438 			       F_CSUM_HAS_PSEUDO_HDR, 0);
439 
440 	return 0;
441 }
442 
443 /*
444  * Attempt to initialize the adapter via a Firmware Configuration File.
445  */
446 static int adap_init0_config(struct adapter *adapter, int reset)
447 {
448 	struct fw_caps_config_cmd caps_cmd;
449 	unsigned long mtype = 0, maddr = 0;
450 	u32 finiver, finicsum, cfcsum;
451 	int ret;
452 	int config_issued = 0;
453 	int cfg_addr;
454 	char config_name[20];
455 
456 	/*
457 	 * Reset device if necessary.
458 	 */
459 	if (reset) {
460 		ret = t4_fw_reset(adapter, adapter->mbox,
461 				  F_PIORSTMODE | F_PIORST);
462 		if (ret < 0) {
463 			dev_warn(adapter, "Firmware reset failed, error %d\n",
464 				 -ret);
465 			goto bye;
466 		}
467 	}
468 
469 	cfg_addr = t4_flash_cfg_addr(adapter);
470 	if (cfg_addr < 0) {
471 		ret = cfg_addr;
472 		dev_warn(adapter, "Finding address for firmware config file in flash failed, error %d\n",
473 			 -ret);
474 		goto bye;
475 	}
476 
477 	strcpy(config_name, "On Flash");
478 	mtype = FW_MEMTYPE_CF_FLASH;
479 	maddr = cfg_addr;
480 
481 	/*
482 	 * Issue a Capability Configuration command to the firmware to get it
483 	 * to parse the Configuration File.  We don't use t4_fw_config_file()
484 	 * because we want the ability to modify various features after we've
485 	 * processed the configuration file ...
486 	 */
487 	memset(&caps_cmd, 0, sizeof(caps_cmd));
488 	caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
489 					   F_FW_CMD_REQUEST | F_FW_CMD_READ);
490 	caps_cmd.cfvalid_to_len16 =
491 		cpu_to_be32(F_FW_CAPS_CONFIG_CMD_CFVALID |
492 			    V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
493 			    V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
494 			    FW_LEN16(caps_cmd));
495 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
496 			 &caps_cmd);
497 	/*
498 	 * If the CAPS_CONFIG failed with an ENOENT (for a Firmware
499 	 * Configuration File in FLASH), our last gasp effort is to use the
500 	 * Firmware Configuration File which is embedded in the firmware.  A
501 	 * very few early versions of the firmware didn't have one embedded
502 	 * but we can ignore those.
503 	 */
504 	if (ret == -ENOENT) {
505 		dev_info(adapter, "%s: Going for embedded config in firmware..\n",
506 			 __func__);
507 
508 		memset(&caps_cmd, 0, sizeof(caps_cmd));
509 		caps_cmd.op_to_write =
510 			cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
511 				    F_FW_CMD_REQUEST | F_FW_CMD_READ);
512 		caps_cmd.cfvalid_to_len16 = cpu_to_be32(FW_LEN16(caps_cmd));
513 		ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
514 				 sizeof(caps_cmd), &caps_cmd);
515 		strcpy(config_name, "Firmware Default");
516 	}
517 
518 	config_issued = 1;
519 	if (ret < 0)
520 		goto bye;
521 
522 	finiver = be32_to_cpu(caps_cmd.finiver);
523 	finicsum = be32_to_cpu(caps_cmd.finicsum);
524 	cfcsum = be32_to_cpu(caps_cmd.cfcsum);
525 	if (finicsum != cfcsum)
526 		dev_warn(adapter, "Configuration File checksum mismatch: [fini] csum=%#x, computed csum=%#x\n",
527 			 finicsum, cfcsum);
528 
529 	/*
530 	 * If we're a pure NIC driver then disable all offloading facilities.
531 	 * This will allow the firmware to optimize aspects of the hardware
532 	 * configuration which will result in improved performance.
533 	 */
534 	caps_cmd.niccaps &= cpu_to_be16(~(FW_CAPS_CONFIG_NIC_HASHFILTER |
535 					  FW_CAPS_CONFIG_NIC_ETHOFLD));
536 	caps_cmd.toecaps = 0;
537 	caps_cmd.iscsicaps = 0;
538 	caps_cmd.rdmacaps = 0;
539 	caps_cmd.fcoecaps = 0;
540 
541 	/*
542 	 * And now tell the firmware to use the configuration we just loaded.
543 	 */
544 	caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
545 					   F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
546 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
547 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
548 			 NULL);
549 	if (ret < 0) {
550 		dev_warn(adapter, "Unable to finalize Firmware Capabilities %d\n",
551 			 -ret);
552 		goto bye;
553 	}
554 
555 	/*
556 	 * Tweak configuration based on system architecture, etc.
557 	 */
558 	ret = adap_init0_tweaks(adapter);
559 	if (ret < 0) {
560 		dev_warn(adapter, "Unable to do init0-tweaks %d\n", -ret);
561 		goto bye;
562 	}
563 
564 	/*
565 	 * And finally tell the firmware to initialize itself using the
566 	 * parameters from the Configuration File.
567 	 */
568 	ret = t4_fw_initialize(adapter, adapter->mbox);
569 	if (ret < 0) {
570 		dev_warn(adapter, "Initializing Firmware failed, error %d\n",
571 			 -ret);
572 		goto bye;
573 	}
574 
575 	/*
576 	 * Return successfully and note that we're operating with parameters
577 	 * not supplied by the driver, rather than from hard-wired
578 	 * initialization constants burried in the driver.
579 	 */
580 	dev_info(adapter,
581 		 "Successfully configured using Firmware Configuration File \"%s\", version %#x, computed checksum %#x\n",
582 		 config_name, finiver, cfcsum);
583 
584 	return 0;
585 
586 	/*
587 	 * Something bad happened.  Return the error ...  (If the "error"
588 	 * is that there's no Configuration File on the adapter we don't
589 	 * want to issue a warning since this is fairly common.)
590 	 */
591 bye:
592 	if (config_issued && ret != -ENOENT)
593 		dev_warn(adapter, "\"%s\" configuration file error %d\n",
594 			 config_name, -ret);
595 
596 	dev_debug(adapter, "%s: returning ret = %d ..\n", __func__, ret);
597 	return ret;
598 }
599 
600 static int adap_init0(struct adapter *adap)
601 {
602 	int ret = 0;
603 	u32 v, port_vec;
604 	enum dev_state state;
605 	u32 params[7], val[7];
606 	int reset = 1;
607 	int mbox = adap->mbox;
608 
609 	/*
610 	 * Contact FW, advertising Master capability.
611 	 */
612 	ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
613 	if (ret < 0) {
614 		dev_err(adap, "%s: could not connect to FW, error %d\n",
615 			__func__, -ret);
616 		goto bye;
617 	}
618 
619 	CXGBE_DEBUG_MBOX(adap, "%s: adap->mbox = %d; ret = %d\n", __func__,
620 			 adap->mbox, ret);
621 
622 	if (ret == mbox)
623 		adap->flags |= MASTER_PF;
624 
625 	if (state == DEV_STATE_INIT) {
626 		/*
627 		 * Force halt and reset FW because a previous instance may have
628 		 * exited abnormally without properly shutting down
629 		 */
630 		ret = t4_fw_halt(adap, adap->mbox, reset);
631 		if (ret < 0) {
632 			dev_err(adap, "Failed to halt. Exit.\n");
633 			goto bye;
634 		}
635 
636 		ret = t4_fw_restart(adap, adap->mbox, reset);
637 		if (ret < 0) {
638 			dev_err(adap, "Failed to restart. Exit.\n");
639 			goto bye;
640 		}
641 		state = (enum dev_state)((unsigned)state & ~DEV_STATE_INIT);
642 	}
643 
644 	t4_get_fw_version(adap, &adap->params.fw_vers);
645 	t4_get_tp_version(adap, &adap->params.tp_vers);
646 
647 	dev_info(adap, "fw: %u.%u.%u.%u, TP: %u.%u.%u.%u\n",
648 		 G_FW_HDR_FW_VER_MAJOR(adap->params.fw_vers),
649 		 G_FW_HDR_FW_VER_MINOR(adap->params.fw_vers),
650 		 G_FW_HDR_FW_VER_MICRO(adap->params.fw_vers),
651 		 G_FW_HDR_FW_VER_BUILD(adap->params.fw_vers),
652 		 G_FW_HDR_FW_VER_MAJOR(adap->params.tp_vers),
653 		 G_FW_HDR_FW_VER_MINOR(adap->params.tp_vers),
654 		 G_FW_HDR_FW_VER_MICRO(adap->params.tp_vers),
655 		 G_FW_HDR_FW_VER_BUILD(adap->params.tp_vers));
656 
657 	ret = t4_get_core_clock(adap, &adap->params.vpd);
658 	if (ret < 0) {
659 		dev_err(adap, "%s: could not get core clock, error %d\n",
660 			__func__, -ret);
661 		goto bye;
662 	}
663 
664 	/*
665 	 * Find out what ports are available to us.  Note that we need to do
666 	 * this before calling adap_init0_no_config() since it needs nports
667 	 * and portvec ...
668 	 */
669 	v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
670 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC);
671 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
672 	if (ret < 0) {
673 		dev_err(adap, "%s: failure in t4_queury_params; error = %d\n",
674 			__func__, ret);
675 		goto bye;
676 	}
677 
678 	adap->params.nports = hweight32(port_vec);
679 	adap->params.portvec = port_vec;
680 
681 	dev_debug(adap, "%s: adap->params.nports = %u\n", __func__,
682 		  adap->params.nports);
683 
684 	/*
685 	 * If the firmware is initialized already (and we're not forcing a
686 	 * master initialization), note that we're living with existing
687 	 * adapter parameters.  Otherwise, it's time to try initializing the
688 	 * adapter ...
689 	 */
690 	if (state == DEV_STATE_INIT) {
691 		dev_info(adap, "Coming up as %s: Adapter already initialized\n",
692 			 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
693 	} else {
694 		dev_info(adap, "Coming up as MASTER: Initializing adapter\n");
695 
696 		ret = adap_init0_config(adap, reset);
697 		if (ret == -ENOENT) {
698 			dev_err(adap,
699 				"No Configuration File present on adapter. Using hard-wired configuration parameters.\n");
700 			goto bye;
701 		}
702 	}
703 	if (ret < 0) {
704 		dev_err(adap, "could not initialize adapter, error %d\n", -ret);
705 		goto bye;
706 	}
707 
708 	/*
709 	 * Give the SGE code a chance to pull in anything that it needs ...
710 	 * Note that this must be called after we retrieve our VPD parameters
711 	 * in order to know how to convert core ticks to seconds, etc.
712 	 */
713 	ret = t4_sge_init(adap);
714 	if (ret < 0) {
715 		dev_err(adap, "t4_sge_init failed with error %d\n",
716 			-ret);
717 		goto bye;
718 	}
719 
720 	/*
721 	 * Grab some of our basic fundamental operating parameters.
722 	 */
723 #define FW_PARAM_DEV(param) \
724 	(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
725 	 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
726 
727 #define FW_PARAM_PFVF(param) \
728 	(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
729 	 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param) |  \
730 	 V_FW_PARAMS_PARAM_Y(0) | \
731 	 V_FW_PARAMS_PARAM_Z(0))
732 
733 	/* If we're running on newer firmware, let it know that we're
734 	 * prepared to deal with encapsulated CPL messages.  Older
735 	 * firmware won't understand this and we'll just get
736 	 * unencapsulated messages ...
737 	 */
738 	params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
739 	val[0] = 1;
740 	(void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
741 
742 	/*
743 	 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
744 	 * capability.  Earlier versions of the firmware didn't have the
745 	 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
746 	 * permission to use ULPTX MEMWRITE DSGL.
747 	 */
748 	if (is_t4(adap->params.chip)) {
749 		adap->params.ulptx_memwrite_dsgl = false;
750 	} else {
751 		params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
752 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
753 				      1, params, val);
754 		adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
755 	}
756 
757 	/*
758 	 * The MTU/MSS Table is initialized by now, so load their values.  If
759 	 * we're initializing the adapter, then we'll make any modifications
760 	 * we want to the MTU/MSS Table and also initialize the congestion
761 	 * parameters.
762 	 */
763 	t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
764 	if (state != DEV_STATE_INIT) {
765 		int i;
766 
767 		/*
768 		 * The default MTU Table contains values 1492 and 1500.
769 		 * However, for TCP, it's better to have two values which are
770 		 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
771 		 * This allows us to have a TCP Data Payload which is a
772 		 * multiple of 8 regardless of what combination of TCP Options
773 		 * are in use (always a multiple of 4 bytes) which is
774 		 * important for performance reasons.  For instance, if no
775 		 * options are in use, then we have a 20-byte IP header and a
776 		 * 20-byte TCP header.  In this case, a 1500-byte MSS would
777 		 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
778 		 * which is not a multiple of 8.  So using an MSS of 1488 in
779 		 * this case results in a TCP Data Payload of 1448 bytes which
780 		 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
781 		 * Stamps have been negotiated, then an MTU of 1500 bytes
782 		 * results in a TCP Data Payload of 1448 bytes which, as
783 		 * above, is a multiple of 8 bytes ...
784 		 */
785 		for (i = 0; i < NMTUS; i++)
786 			if (adap->params.mtus[i] == 1492) {
787 				adap->params.mtus[i] = 1488;
788 				break;
789 			}
790 
791 		t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
792 			     adap->params.b_wnd);
793 	}
794 	t4_init_sge_params(adap);
795 	t4_init_tp_params(adap);
796 
797 	adap->params.drv_memwin = MEMWIN_NIC;
798 	adap->flags |= FW_OK;
799 	dev_debug(adap, "%s: returning zero..\n", __func__);
800 	return 0;
801 
802 	/*
803 	 * Something bad happened.  If a command timed out or failed with EIO
804 	 * FW does not operate within its spec or something catastrophic
805 	 * happened to HW/FW, stop issuing commands.
806 	 */
807 bye:
808 	if (ret != -ETIMEDOUT && ret != -EIO)
809 		t4_fw_bye(adap, adap->mbox);
810 	return ret;
811 }
812 
813 /**
814  * t4_os_portmod_changed - handle port module changes
815  * @adap: the adapter associated with the module change
816  * @port_id: the port index whose module status has changed
817  *
818  * This is the OS-dependent handler for port module changes.  It is
819  * invoked when a port module is removed or inserted for any OS-specific
820  * processing.
821  */
822 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
823 {
824 	static const char * const mod_str[] = {
825 		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
826 	};
827 
828 	const struct port_info *pi = &adap->port[port_id];
829 
830 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
831 		dev_info(adap, "Port%d: port module unplugged\n", pi->port_id);
832 	else if (pi->mod_type < ARRAY_SIZE(mod_str))
833 		dev_info(adap, "Port%d: %s port module inserted\n", pi->port_id,
834 			 mod_str[pi->mod_type]);
835 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
836 		dev_info(adap, "Port%d: unsupported optical port module inserted\n",
837 			 pi->port_id);
838 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
839 		dev_info(adap, "Port%d: unknown port module inserted, forcing TWINAX\n",
840 			 pi->port_id);
841 	else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
842 		dev_info(adap, "Port%d: transceiver module error\n",
843 			 pi->port_id);
844 	else
845 		dev_info(adap, "Port%d: unknown module type %d inserted\n",
846 			 pi->port_id, pi->mod_type);
847 }
848 
849 /**
850  * link_start - enable a port
851  * @dev: the port to enable
852  *
853  * Performs the MAC and PHY actions needed to enable a port.
854  */
855 int link_start(struct port_info *pi)
856 {
857 	struct adapter *adapter = pi->adapter;
858 	int ret;
859 	unsigned int mtu;
860 
861 	mtu = pi->eth_dev->data->dev_conf.rxmode.max_rx_pkt_len -
862 	      (ETHER_HDR_LEN + ETHER_CRC_LEN);
863 
864 	/*
865 	 * We do not set address filters and promiscuity here, the stack does
866 	 * that step explicitly.
867 	 */
868 	ret = t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, -1, -1,
869 			    -1, 1, true);
870 	if (ret == 0) {
871 		ret = t4_change_mac(adapter, adapter->mbox, pi->viid,
872 				    pi->xact_addr_filt,
873 				    (u8 *)&pi->eth_dev->data->mac_addrs[0],
874 				    true, true);
875 		if (ret >= 0) {
876 			pi->xact_addr_filt = ret;
877 			ret = 0;
878 		}
879 	}
880 	if (ret == 0)
881 		ret = t4_link_l1cfg(adapter, adapter->mbox, pi->tx_chan,
882 				    &pi->link_cfg);
883 	if (ret == 0) {
884 		/*
885 		 * Enabling a Virtual Interface can result in an interrupt
886 		 * during the processing of the VI Enable command and, in some
887 		 * paths, result in an attempt to issue another command in the
888 		 * interrupt context.  Thus, we disable interrupts during the
889 		 * course of the VI Enable command ...
890 		 */
891 		ret = t4_enable_vi_params(adapter, adapter->mbox, pi->viid,
892 					  true, true, false);
893 	}
894 	return ret;
895 }
896 
897 /**
898  * cxgb4_write_rss - write the RSS table for a given port
899  * @pi: the port
900  * @queues: array of queue indices for RSS
901  *
902  * Sets up the portion of the HW RSS table for the port's VI to distribute
903  * packets to the Rx queues in @queues.
904  */
905 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
906 {
907 	u16 *rss;
908 	int i, err;
909 	struct adapter *adapter = pi->adapter;
910 	const struct sge_eth_rxq *rxq;
911 
912 	/*  Should never be called before setting up sge eth rx queues */
913 	BUG_ON(!(adapter->flags & FULL_INIT_DONE));
914 
915 	rxq = &adapter->sge.ethrxq[pi->first_qset];
916 	rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0);
917 	if (!rss)
918 		return -ENOMEM;
919 
920 	/* map the queue indices to queue ids */
921 	for (i = 0; i < pi->rss_size; i++, queues++)
922 		rss[i] = rxq[*queues].rspq.abs_id;
923 
924 	err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
925 				  pi->rss_size, rss, pi->rss_size);
926 	/*
927 	 * If Tunnel All Lookup isn't specified in the global RSS
928 	 * Configuration, then we need to specify a default Ingress
929 	 * Queue for any ingress packets which aren't hashed.  We'll
930 	 * use our first ingress queue ...
931 	 */
932 	if (!err)
933 		err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
934 				       F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
935 				       F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
936 				       F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
937 				       F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN |
938 				       F_FW_RSS_VI_CONFIG_CMD_UDPEN,
939 				       rss[0]);
940 	rte_free(rss);
941 	return err;
942 }
943 
944 /**
945  * setup_rss - configure RSS
946  * @adapter: the adapter
947  *
948  * Sets up RSS to distribute packets to multiple receive queues.  We
949  * configure the RSS CPU lookup table to distribute to the number of HW
950  * receive queues, and the response queue lookup table to narrow that
951  * down to the response queues actually configured for each port.
952  * We always configure the RSS mapping for all ports since the mapping
953  * table has plenty of entries.
954  */
955 int setup_rss(struct port_info *pi)
956 {
957 	int j, err;
958 	struct adapter *adapter = pi->adapter;
959 
960 	dev_debug(adapter, "%s:  pi->rss_size = %u; pi->n_rx_qsets = %u\n",
961 		  __func__, pi->rss_size, pi->n_rx_qsets);
962 
963 	if (!(pi->flags & PORT_RSS_DONE)) {
964 		if (adapter->flags & FULL_INIT_DONE) {
965 			/* Fill default values with equal distribution */
966 			for (j = 0; j < pi->rss_size; j++)
967 				pi->rss[j] = j % pi->n_rx_qsets;
968 
969 			err = cxgb4_write_rss(pi, pi->rss);
970 			if (err)
971 				return err;
972 			pi->flags |= PORT_RSS_DONE;
973 		}
974 	}
975 	return 0;
976 }
977 
978 /*
979  * Enable NAPI scheduling and interrupt generation for all Rx queues.
980  */
981 static void enable_rx(struct adapter *adap)
982 {
983 	struct sge *s = &adap->sge;
984 	struct sge_rspq *q = &s->fw_evtq;
985 	int i, j;
986 
987 	/* 0-increment GTS to start the timer and enable interrupts */
988 	t4_write_reg(adap, MYPF_REG(A_SGE_PF_GTS),
989 		     V_SEINTARM(q->intr_params) |
990 		     V_INGRESSQID(q->cntxt_id));
991 
992 	for_each_port(adap, i) {
993 		const struct port_info *pi = &adap->port[i];
994 		struct rte_eth_dev *eth_dev = pi->eth_dev;
995 
996 		for (j = 0; j < eth_dev->data->nb_rx_queues; j++) {
997 			q = eth_dev->data->rx_queues[j];
998 
999 			/*
1000 			 * 0-increment GTS to start the timer and enable
1001 			 * interrupts
1002 			 */
1003 			t4_write_reg(adap, MYPF_REG(A_SGE_PF_GTS),
1004 				     V_SEINTARM(q->intr_params) |
1005 				     V_INGRESSQID(q->cntxt_id));
1006 		}
1007 	}
1008 }
1009 
1010 /**
1011  * cxgb_up - enable the adapter
1012  * @adap: adapter being enabled
1013  *
1014  * Called when the first port is enabled, this function performs the
1015  * actions necessary to make an adapter operational, such as completing
1016  * the initialization of HW modules, and enabling interrupts.
1017  */
1018 int cxgbe_up(struct adapter *adap)
1019 {
1020 	enable_rx(adap);
1021 	t4_sge_tx_monitor_start(adap);
1022 	t4_intr_enable(adap);
1023 	adap->flags |= FULL_INIT_DONE;
1024 
1025 	/* TODO: deadman watchdog ?? */
1026 	return 0;
1027 }
1028 
1029 /*
1030  * Close the port
1031  */
1032 int cxgbe_down(struct port_info *pi)
1033 {
1034 	struct adapter *adapter = pi->adapter;
1035 	int err = 0;
1036 
1037 	err = t4_enable_vi(adapter, adapter->mbox, pi->viid, false, false);
1038 	if (err) {
1039 		dev_err(adapter, "%s: disable_vi failed: %d\n", __func__, err);
1040 		return err;
1041 	}
1042 
1043 	t4_reset_link_config(adapter, pi->port_id);
1044 	return 0;
1045 }
1046 
1047 /*
1048  * Release resources when all the ports have been stopped.
1049  */
1050 void cxgbe_close(struct adapter *adapter)
1051 {
1052 	struct port_info *pi;
1053 	int i;
1054 
1055 	if (adapter->flags & FULL_INIT_DONE) {
1056 		t4_intr_disable(adapter);
1057 		t4_sge_tx_monitor_stop(adapter);
1058 		t4_free_sge_resources(adapter);
1059 		for_each_port(adapter, i) {
1060 			pi = adap2pinfo(adapter, i);
1061 			if (pi->viid != 0)
1062 				t4_free_vi(adapter, adapter->mbox,
1063 					   adapter->pf, 0, pi->viid);
1064 			rte_free(pi->eth_dev->data->mac_addrs);
1065 		}
1066 		adapter->flags &= ~FULL_INIT_DONE;
1067 	}
1068 
1069 	if (adapter->flags & FW_OK)
1070 		t4_fw_bye(adapter, adapter->mbox);
1071 }
1072 
1073 int cxgbe_probe(struct adapter *adapter)
1074 {
1075 	struct port_info *pi;
1076 	int func, i;
1077 	int err = 0;
1078 
1079 	func = G_SOURCEPF(t4_read_reg(adapter, A_PL_WHOAMI));
1080 	adapter->mbox = func;
1081 	adapter->pf = func;
1082 
1083 	t4_os_lock_init(&adapter->mbox_lock);
1084 	TAILQ_INIT(&adapter->mbox_list);
1085 
1086 	err = t4_prep_adapter(adapter);
1087 	if (err)
1088 		return err;
1089 
1090 	setup_memwin(adapter);
1091 	err = adap_init0(adapter);
1092 	if (err) {
1093 		dev_err(adapter, "%s: Adapter initialization failed, error %d\n",
1094 			__func__, err);
1095 		goto out_free;
1096 	}
1097 
1098 	if (!is_t4(adapter->params.chip)) {
1099 		/*
1100 		 * The userspace doorbell BAR is split evenly into doorbell
1101 		 * regions, each associated with an egress queue.  If this
1102 		 * per-queue region is large enough (at least UDBS_SEG_SIZE)
1103 		 * then it can be used to submit a tx work request with an
1104 		 * implied doorbell.  Enable write combining on the BAR if
1105 		 * there is room for such work requests.
1106 		 */
1107 		int s_qpp, qpp, num_seg;
1108 
1109 		s_qpp = (S_QUEUESPERPAGEPF0 +
1110 			(S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) *
1111 			adapter->pf);
1112 		qpp = 1 << ((t4_read_reg(adapter,
1113 				A_SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp)
1114 				& M_QUEUESPERPAGEPF0);
1115 		num_seg = CXGBE_PAGE_SIZE / UDBS_SEG_SIZE;
1116 		if (qpp > num_seg)
1117 			dev_warn(adapter, "Incorrect SGE EGRESS QUEUES_PER_PAGE configuration, continuing in debug mode\n");
1118 
1119 		adapter->bar2 = (void *)adapter->pdev->mem_resource[2].addr;
1120 		if (!adapter->bar2) {
1121 			dev_err(adapter, "cannot map device bar2 region\n");
1122 			err = -ENOMEM;
1123 			goto out_free;
1124 		}
1125 		t4_write_reg(adapter, A_SGE_STAT_CFG, V_STATSOURCE_T5(7) |
1126 			     V_STATMODE(0));
1127 	}
1128 
1129 	for_each_port(adapter, i) {
1130 		char name[RTE_ETH_NAME_MAX_LEN];
1131 		struct rte_eth_dev_data *data = NULL;
1132 		const unsigned int numa_node = rte_socket_id();
1133 
1134 		pi = &adapter->port[i];
1135 		pi->adapter = adapter;
1136 		pi->xact_addr_filt = -1;
1137 		pi->port_id = i;
1138 
1139 		snprintf(name, sizeof(name), "cxgbe%d",
1140 			 adapter->eth_dev->data->port_id + i);
1141 
1142 		if (i == 0) {
1143 			/* First port is already allocated by DPDK */
1144 			pi->eth_dev = adapter->eth_dev;
1145 			goto allocate_mac;
1146 		}
1147 
1148 		/*
1149 		 * now do all data allocation - for eth_dev structure,
1150 		 * and internal (private) data for the remaining ports
1151 		 */
1152 
1153 		/* reserve an ethdev entry */
1154 		pi->eth_dev = rte_eth_dev_allocate(name);
1155 		if (!pi->eth_dev)
1156 			goto out_free;
1157 
1158 		data = rte_zmalloc_socket(name, sizeof(*data), 0, numa_node);
1159 		if (!data)
1160 			goto out_free;
1161 
1162 		data->port_id = adapter->eth_dev->data->port_id + i;
1163 
1164 		pi->eth_dev->data = data;
1165 
1166 allocate_mac:
1167 		pi->eth_dev->device = &adapter->pdev->device;
1168 		pi->eth_dev->data->dev_private = pi;
1169 		pi->eth_dev->dev_ops = adapter->eth_dev->dev_ops;
1170 		pi->eth_dev->tx_pkt_burst = adapter->eth_dev->tx_pkt_burst;
1171 		pi->eth_dev->rx_pkt_burst = adapter->eth_dev->rx_pkt_burst;
1172 
1173 		rte_eth_copy_pci_info(pi->eth_dev, adapter->pdev);
1174 
1175 		pi->eth_dev->data->mac_addrs = rte_zmalloc(name,
1176 							   ETHER_ADDR_LEN, 0);
1177 		if (!pi->eth_dev->data->mac_addrs) {
1178 			dev_err(adapter, "%s: Mem allocation failed for storing mac addr, aborting\n",
1179 				__func__);
1180 			err = -1;
1181 			goto out_free;
1182 		}
1183 	}
1184 
1185 	if (adapter->flags & FW_OK) {
1186 		err = t4_port_init(adapter, adapter->mbox, adapter->pf, 0);
1187 		if (err) {
1188 			dev_err(adapter, "%s: t4_port_init failed with err %d\n",
1189 				__func__, err);
1190 			goto out_free;
1191 		}
1192 	}
1193 
1194 	cfg_queues(adapter->eth_dev);
1195 
1196 	print_port_info(adapter);
1197 
1198 	err = init_rss(adapter);
1199 	if (err)
1200 		goto out_free;
1201 
1202 	return 0;
1203 
1204 out_free:
1205 	for_each_port(adapter, i) {
1206 		pi = adap2pinfo(adapter, i);
1207 		if (pi->viid != 0)
1208 			t4_free_vi(adapter, adapter->mbox, adapter->pf,
1209 				   0, pi->viid);
1210 		/* Skip first port since it'll be de-allocated by DPDK */
1211 		if (i == 0)
1212 			continue;
1213 		if (pi->eth_dev->data)
1214 			rte_free(pi->eth_dev->data);
1215 	}
1216 
1217 	if (adapter->flags & FW_OK)
1218 		t4_fw_bye(adapter, adapter->mbox);
1219 	return -err;
1220 }
1221