xref: /dpdk/drivers/net/cxgbe/cxgbe_main.c (revision 3b8bcfcd96e64d199392550928be7c7665571bcb)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2018 Chelsio Communications.
3  * All rights reserved.
4  */
5 
6 #include <sys/queue.h>
7 #include <stdio.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <string.h>
11 #include <unistd.h>
12 #include <stdarg.h>
13 #include <inttypes.h>
14 #include <netinet/in.h>
15 
16 #include <rte_byteorder.h>
17 #include <rte_common.h>
18 #include <rte_cycles.h>
19 #include <rte_interrupts.h>
20 #include <rte_log.h>
21 #include <rte_debug.h>
22 #include <rte_pci.h>
23 #include <rte_atomic.h>
24 #include <rte_branch_prediction.h>
25 #include <rte_memory.h>
26 #include <rte_tailq.h>
27 #include <rte_eal.h>
28 #include <rte_alarm.h>
29 #include <rte_ether.h>
30 #include <rte_ethdev_driver.h>
31 #include <rte_ethdev_pci.h>
32 #include <rte_random.h>
33 #include <rte_dev.h>
34 #include <rte_kvargs.h>
35 
36 #include "common.h"
37 #include "t4_regs.h"
38 #include "t4_msg.h"
39 #include "cxgbe.h"
40 
41 /**
42  * Allocate a chunk of memory. The allocated memory is cleared.
43  */
44 void *t4_alloc_mem(size_t size)
45 {
46 	return rte_zmalloc(NULL, size, 0);
47 }
48 
49 /**
50  * Free memory allocated through t4_alloc_mem().
51  */
52 void t4_free_mem(void *addr)
53 {
54 	rte_free(addr);
55 }
56 
57 /*
58  * Response queue handler for the FW event queue.
59  */
60 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
61 			  __rte_unused const struct pkt_gl *gl)
62 {
63 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
64 
65 	rsp++;                                          /* skip RSS header */
66 
67 	/*
68 	 * FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
69 	 */
70 	if (unlikely(opcode == CPL_FW4_MSG &&
71 		     ((const struct cpl_fw4_msg *)rsp)->type ==
72 		      FW_TYPE_RSSCPL)) {
73 		rsp++;
74 		opcode = ((const struct rss_header *)rsp)->opcode;
75 		rsp++;
76 		if (opcode != CPL_SGE_EGR_UPDATE) {
77 			dev_err(q->adapter, "unexpected FW4/CPL %#x on FW event queue\n",
78 				opcode);
79 			goto out;
80 		}
81 	}
82 
83 	if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
84 		/* do nothing */
85 	} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
86 		const struct cpl_fw6_msg *msg = (const void *)rsp;
87 
88 		t4_handle_fw_rpl(q->adapter, msg->data);
89 	} else if (opcode == CPL_SET_TCB_RPL) {
90 		const struct cpl_set_tcb_rpl *p = (const void *)rsp;
91 
92 		filter_rpl(q->adapter, p);
93 	} else {
94 		dev_err(adapter, "unexpected CPL %#x on FW event queue\n",
95 			opcode);
96 	}
97 out:
98 	return 0;
99 }
100 
101 /**
102  * Setup sge control queues to pass control information.
103  */
104 int setup_sge_ctrl_txq(struct adapter *adapter)
105 {
106 	struct sge *s = &adapter->sge;
107 	int err = 0, i = 0;
108 
109 	for_each_port(adapter, i) {
110 		char name[RTE_ETH_NAME_MAX_LEN];
111 		struct sge_ctrl_txq *q = &s->ctrlq[i];
112 
113 		q->q.size = 1024;
114 		err = t4_sge_alloc_ctrl_txq(adapter, q,
115 					    adapter->eth_dev,  i,
116 					    s->fw_evtq.cntxt_id,
117 					    rte_socket_id());
118 		if (err) {
119 			dev_err(adapter, "Failed to alloc ctrl txq. Err: %d",
120 				err);
121 			goto out;
122 		}
123 		snprintf(name, sizeof(name), "cxgbe_ctrl_pool_%d", i);
124 		q->mb_pool = rte_pktmbuf_pool_create(name, s->ctrlq[i].q.size,
125 						     RTE_CACHE_LINE_SIZE,
126 						     RTE_MBUF_PRIV_ALIGN,
127 						     RTE_MBUF_DEFAULT_BUF_SIZE,
128 						     SOCKET_ID_ANY);
129 		if (!q->mb_pool) {
130 			dev_err(adapter, "Can't create ctrl pool for port: %d",
131 				i);
132 			err = -ENOMEM;
133 			goto out;
134 		}
135 	}
136 	return 0;
137 out:
138 	t4_free_sge_resources(adapter);
139 	return err;
140 }
141 
142 /**
143  * cxgbe_poll_for_completion: Poll rxq for completion
144  * @q: rxq to poll
145  * @us: microseconds to delay
146  * @cnt: number of times to poll
147  * @c: completion to check for 'done' status
148  *
149  * Polls the rxq for reples until completion is done or the count
150  * expires.
151  */
152 int cxgbe_poll_for_completion(struct sge_rspq *q, unsigned int us,
153 			      unsigned int cnt, struct t4_completion *c)
154 {
155 	unsigned int i;
156 	unsigned int work_done, budget = 4;
157 
158 	if (!c)
159 		return -EINVAL;
160 
161 	for (i = 0; i < cnt; i++) {
162 		cxgbe_poll(q, NULL, budget, &work_done);
163 		t4_os_lock(&c->lock);
164 		if (c->done) {
165 			t4_os_unlock(&c->lock);
166 			return 0;
167 		}
168 		t4_os_unlock(&c->lock);
169 		udelay(us);
170 	}
171 	return -ETIMEDOUT;
172 }
173 
174 int setup_sge_fwevtq(struct adapter *adapter)
175 {
176 	struct sge *s = &adapter->sge;
177 	int err = 0;
178 	int msi_idx = 0;
179 
180 	err = t4_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->eth_dev,
181 			       msi_idx, NULL, fwevtq_handler, -1, NULL, 0,
182 			       rte_socket_id());
183 	return err;
184 }
185 
186 static int closest_timer(const struct sge *s, int time)
187 {
188 	unsigned int i, match = 0;
189 	int delta, min_delta = INT_MAX;
190 
191 	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
192 		delta = time - s->timer_val[i];
193 		if (delta < 0)
194 			delta = -delta;
195 		if (delta < min_delta) {
196 			min_delta = delta;
197 			match = i;
198 		}
199 	}
200 	return match;
201 }
202 
203 static int closest_thres(const struct sge *s, int thres)
204 {
205 	unsigned int i, match = 0;
206 	int delta, min_delta = INT_MAX;
207 
208 	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
209 		delta = thres - s->counter_val[i];
210 		if (delta < 0)
211 			delta = -delta;
212 		if (delta < min_delta) {
213 			min_delta = delta;
214 			match = i;
215 		}
216 	}
217 	return match;
218 }
219 
220 /**
221  * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
222  * @q: the Rx queue
223  * @us: the hold-off time in us, or 0 to disable timer
224  * @cnt: the hold-off packet count, or 0 to disable counter
225  *
226  * Sets an Rx queue's interrupt hold-off time and packet count.  At least
227  * one of the two needs to be enabled for the queue to generate interrupts.
228  */
229 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, unsigned int us,
230 			       unsigned int cnt)
231 {
232 	struct adapter *adap = q->adapter;
233 	unsigned int timer_val;
234 
235 	if (cnt) {
236 		int err;
237 		u32 v, new_idx;
238 
239 		new_idx = closest_thres(&adap->sge, cnt);
240 		if (q->desc && q->pktcnt_idx != new_idx) {
241 			/* the queue has already been created, update it */
242 			v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
243 			    V_FW_PARAMS_PARAM_X(
244 			    FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
245 			    V_FW_PARAMS_PARAM_YZ(q->cntxt_id);
246 			err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
247 					    &v, &new_idx);
248 			if (err)
249 				return err;
250 		}
251 		q->pktcnt_idx = new_idx;
252 	}
253 
254 	timer_val = (us == 0) ? X_TIMERREG_RESTART_COUNTER :
255 				closest_timer(&adap->sge, us);
256 
257 	if ((us | cnt) == 0)
258 		q->intr_params = V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX);
259 	else
260 		q->intr_params = V_QINTR_TIMER_IDX(timer_val) |
261 				 V_QINTR_CNT_EN(cnt > 0);
262 	return 0;
263 }
264 
265 /**
266  * Free TID tables.
267  */
268 static void tid_free(struct tid_info *t)
269 {
270 	if (t->tid_tab) {
271 		if (t->ftid_bmap)
272 			rte_bitmap_free(t->ftid_bmap);
273 
274 		if (t->ftid_bmap_array)
275 			t4_os_free(t->ftid_bmap_array);
276 
277 		t4_os_free(t->tid_tab);
278 	}
279 
280 	memset(t, 0, sizeof(struct tid_info));
281 }
282 
283 /**
284  * Allocate and initialize the TID tables.  Returns 0 on success.
285  */
286 static int tid_init(struct tid_info *t)
287 {
288 	size_t size;
289 	unsigned int ftid_bmap_size;
290 	unsigned int max_ftids = t->nftids;
291 
292 	ftid_bmap_size = rte_bitmap_get_memory_footprint(t->nftids);
293 	size = t->ntids * sizeof(*t->tid_tab) +
294 		max_ftids * sizeof(*t->ftid_tab);
295 
296 	t->tid_tab = t4_os_alloc(size);
297 	if (!t->tid_tab)
298 		return -ENOMEM;
299 
300 	t->ftid_tab = (struct filter_entry *)&t->tid_tab[t->ntids];
301 	t->ftid_bmap_array = t4_os_alloc(ftid_bmap_size);
302 	if (!t->ftid_bmap_array) {
303 		tid_free(t);
304 		return -ENOMEM;
305 	}
306 
307 	t4_os_lock_init(&t->ftid_lock);
308 	t->ftid_bmap = rte_bitmap_init(t->nftids, t->ftid_bmap_array,
309 				       ftid_bmap_size);
310 	if (!t->ftid_bmap) {
311 		tid_free(t);
312 		return -ENOMEM;
313 	}
314 
315 	return 0;
316 }
317 
318 static inline bool is_x_1g_port(const struct link_config *lc)
319 {
320 	return (lc->pcaps & FW_PORT_CAP32_SPEED_1G) != 0;
321 }
322 
323 static inline bool is_x_10g_port(const struct link_config *lc)
324 {
325 	unsigned int speeds, high_speeds;
326 
327 	speeds = V_FW_PORT_CAP32_SPEED(G_FW_PORT_CAP32_SPEED(lc->pcaps));
328 	high_speeds = speeds &
329 		      ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
330 
331 	return high_speeds != 0;
332 }
333 
334 inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
335 		      unsigned int us, unsigned int cnt,
336 		      unsigned int size, unsigned int iqe_size)
337 {
338 	q->adapter = adap;
339 	cxgb4_set_rspq_intr_params(q, us, cnt);
340 	q->iqe_len = iqe_size;
341 	q->size = size;
342 }
343 
344 int cfg_queue_count(struct rte_eth_dev *eth_dev)
345 {
346 	struct port_info *pi = (struct port_info *)(eth_dev->data->dev_private);
347 	struct adapter *adap = pi->adapter;
348 	struct sge *s = &adap->sge;
349 	unsigned int max_queues = s->max_ethqsets / adap->params.nports;
350 
351 	if ((eth_dev->data->nb_rx_queues < 1) ||
352 	    (eth_dev->data->nb_tx_queues < 1))
353 		return -EINVAL;
354 
355 	if ((eth_dev->data->nb_rx_queues > max_queues) ||
356 	    (eth_dev->data->nb_tx_queues > max_queues))
357 		return -EINVAL;
358 
359 	if (eth_dev->data->nb_rx_queues > pi->rss_size)
360 		return -EINVAL;
361 
362 	/* We must configure RSS, since config has changed*/
363 	pi->flags &= ~PORT_RSS_DONE;
364 
365 	pi->n_rx_qsets = eth_dev->data->nb_rx_queues;
366 	pi->n_tx_qsets = eth_dev->data->nb_tx_queues;
367 
368 	return 0;
369 }
370 
371 void cfg_queues(struct rte_eth_dev *eth_dev)
372 {
373 	struct rte_config *config = rte_eal_get_configuration();
374 	struct port_info *pi = (struct port_info *)(eth_dev->data->dev_private);
375 	struct adapter *adap = pi->adapter;
376 	struct sge *s = &adap->sge;
377 	unsigned int i, nb_ports = 0, qidx = 0;
378 	unsigned int q_per_port = 0;
379 
380 	if (!(adap->flags & CFG_QUEUES)) {
381 		for_each_port(adap, i) {
382 			struct port_info *tpi = adap2pinfo(adap, i);
383 
384 			nb_ports += (is_x_10g_port(&tpi->link_cfg)) ||
385 				     is_x_1g_port(&tpi->link_cfg) ? 1 : 0;
386 		}
387 
388 		/*
389 		 * We default up to # of cores queues per 1G/10G port.
390 		 */
391 		if (nb_ports)
392 			q_per_port = (MAX_ETH_QSETS -
393 				     (adap->params.nports - nb_ports)) /
394 				     nb_ports;
395 
396 		if (q_per_port > config->lcore_count)
397 			q_per_port = config->lcore_count;
398 
399 		for_each_port(adap, i) {
400 			struct port_info *pi = adap2pinfo(adap, i);
401 
402 			pi->first_qset = qidx;
403 
404 			/* Initially n_rx_qsets == n_tx_qsets */
405 			pi->n_rx_qsets = (is_x_10g_port(&pi->link_cfg) ||
406 					  is_x_1g_port(&pi->link_cfg)) ?
407 					  q_per_port : 1;
408 			pi->n_tx_qsets = pi->n_rx_qsets;
409 
410 			if (pi->n_rx_qsets > pi->rss_size)
411 				pi->n_rx_qsets = pi->rss_size;
412 
413 			qidx += pi->n_rx_qsets;
414 		}
415 
416 		s->max_ethqsets = qidx;
417 
418 		for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
419 			struct sge_eth_rxq *r = &s->ethrxq[i];
420 
421 			init_rspq(adap, &r->rspq, 5, 32, 1024, 64);
422 			r->usembufs = 1;
423 			r->fl.size = (r->usembufs ? 1024 : 72);
424 		}
425 
426 		for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
427 			s->ethtxq[i].q.size = 1024;
428 
429 		init_rspq(adap, &adap->sge.fw_evtq, 0, 0, 1024, 64);
430 		adap->flags |= CFG_QUEUES;
431 	}
432 }
433 
434 void cxgbe_stats_get(struct port_info *pi, struct port_stats *stats)
435 {
436 	t4_get_port_stats_offset(pi->adapter, pi->tx_chan, stats,
437 				 &pi->stats_base);
438 }
439 
440 void cxgbe_stats_reset(struct port_info *pi)
441 {
442 	t4_clr_port_stats(pi->adapter, pi->tx_chan);
443 }
444 
445 static void setup_memwin(struct adapter *adap)
446 {
447 	u32 mem_win0_base;
448 
449 	/* For T5, only relative offset inside the PCIe BAR is passed */
450 	mem_win0_base = MEMWIN0_BASE;
451 
452 	/*
453 	 * Set up memory window for accessing adapter memory ranges.  (Read
454 	 * back MA register to ensure that changes propagate before we attempt
455 	 * to use the new values.)
456 	 */
457 	t4_write_reg(adap,
458 		     PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
459 					 MEMWIN_NIC),
460 		     mem_win0_base | V_BIR(0) |
461 		     V_WINDOW(ilog2(MEMWIN0_APERTURE) - X_WINDOW_SHIFT));
462 	t4_read_reg(adap,
463 		    PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
464 					MEMWIN_NIC));
465 }
466 
467 int init_rss(struct adapter *adap)
468 {
469 	unsigned int i;
470 
471 	if (is_pf4(adap)) {
472 		int err;
473 
474 		err = t4_init_rss_mode(adap, adap->mbox);
475 		if (err)
476 			return err;
477 	}
478 
479 	for_each_port(adap, i) {
480 		struct port_info *pi = adap2pinfo(adap, i);
481 
482 		pi->rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0);
483 		if (!pi->rss)
484 			return -ENOMEM;
485 
486 		pi->rss_hf = CXGBE_RSS_HF_ALL;
487 	}
488 	return 0;
489 }
490 
491 /**
492  * Dump basic information about the adapter.
493  */
494 void print_adapter_info(struct adapter *adap)
495 {
496 	/**
497 	 * Hardware/Firmware/etc. Version/Revision IDs.
498 	 */
499 	t4_dump_version_info(adap);
500 }
501 
502 void print_port_info(struct adapter *adap)
503 {
504 	int i;
505 	char buf[80];
506 	struct rte_pci_addr *loc = &adap->pdev->addr;
507 
508 	for_each_port(adap, i) {
509 		const struct port_info *pi = adap2pinfo(adap, i);
510 		char *bufp = buf;
511 
512 		if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
513 			bufp += sprintf(bufp, "100M/");
514 		if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
515 			bufp += sprintf(bufp, "1G/");
516 		if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
517 			bufp += sprintf(bufp, "10G/");
518 		if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
519 			bufp += sprintf(bufp, "25G/");
520 		if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
521 			bufp += sprintf(bufp, "40G/");
522 		if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
523 			bufp += sprintf(bufp, "50G/");
524 		if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
525 			bufp += sprintf(bufp, "100G/");
526 		if (bufp != buf)
527 			--bufp;
528 		sprintf(bufp, "BASE-%s",
529 			t4_get_port_type_description(
530 					(enum fw_port_type)pi->port_type));
531 
532 		dev_info(adap,
533 			 " " PCI_PRI_FMT " Chelsio rev %d %s %s\n",
534 			 loc->domain, loc->bus, loc->devid, loc->function,
535 			 CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
536 			 (adap->flags & USING_MSIX) ? " MSI-X" :
537 			 (adap->flags & USING_MSI) ? " MSI" : "");
538 	}
539 }
540 
541 static int
542 check_devargs_handler(__rte_unused const char *key, const char *value,
543 		      __rte_unused void *opaque)
544 {
545 	if (strcmp(value, "1"))
546 		return -1;
547 
548 	return 0;
549 }
550 
551 int cxgbe_get_devargs(struct rte_devargs *devargs, const char *key)
552 {
553 	struct rte_kvargs *kvlist;
554 
555 	if (!devargs)
556 		return 0;
557 
558 	kvlist = rte_kvargs_parse(devargs->args, NULL);
559 	if (!kvlist)
560 		return 0;
561 
562 	if (!rte_kvargs_count(kvlist, key)) {
563 		rte_kvargs_free(kvlist);
564 		return 0;
565 	}
566 
567 	if (rte_kvargs_process(kvlist, key,
568 			       check_devargs_handler, NULL) < 0) {
569 		rte_kvargs_free(kvlist);
570 		return 0;
571 	}
572 	rte_kvargs_free(kvlist);
573 
574 	return 1;
575 }
576 
577 static void configure_vlan_types(struct adapter *adapter)
578 {
579 	struct rte_pci_device *pdev = adapter->pdev;
580 	int i;
581 
582 	for_each_port(adapter, i) {
583 		/* OVLAN Type 0x88a8 */
584 		t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN0),
585 				 V_OVLAN_MASK(M_OVLAN_MASK) |
586 				 V_OVLAN_ETYPE(M_OVLAN_ETYPE),
587 				 V_OVLAN_MASK(M_OVLAN_MASK) |
588 				 V_OVLAN_ETYPE(0x88a8));
589 		/* OVLAN Type 0x9100 */
590 		t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN1),
591 				 V_OVLAN_MASK(M_OVLAN_MASK) |
592 				 V_OVLAN_ETYPE(M_OVLAN_ETYPE),
593 				 V_OVLAN_MASK(M_OVLAN_MASK) |
594 				 V_OVLAN_ETYPE(0x9100));
595 		/* OVLAN Type 0x8100 */
596 		t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN2),
597 				 V_OVLAN_MASK(M_OVLAN_MASK) |
598 				 V_OVLAN_ETYPE(M_OVLAN_ETYPE),
599 				 V_OVLAN_MASK(M_OVLAN_MASK) |
600 				 V_OVLAN_ETYPE(0x8100));
601 
602 		/* IVLAN 0X8100 */
603 		t4_set_reg_field(adapter, MPS_PORT_RX_IVLAN(i),
604 				 V_IVLAN_ETYPE(M_IVLAN_ETYPE),
605 				 V_IVLAN_ETYPE(0x8100));
606 
607 		t4_set_reg_field(adapter, MPS_PORT_RX_CTL(i),
608 				 F_OVLAN_EN0 | F_OVLAN_EN1 |
609 				 F_OVLAN_EN2 | F_IVLAN_EN,
610 				 F_OVLAN_EN0 | F_OVLAN_EN1 |
611 				 F_OVLAN_EN2 | F_IVLAN_EN);
612 	}
613 
614 	if (cxgbe_get_devargs(pdev->device.devargs, CXGBE_DEVARG_KEEP_OVLAN))
615 		t4_tp_wr_bits_indirect(adapter, A_TP_INGRESS_CONFIG,
616 				       V_RM_OVLAN(1), V_RM_OVLAN(0));
617 }
618 
619 static void configure_pcie_ext_tag(struct adapter *adapter)
620 {
621 	u16 v;
622 	int pos = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
623 
624 	if (!pos)
625 		return;
626 
627 	if (pos > 0) {
628 		t4_os_pci_read_cfg2(adapter, pos + PCI_EXP_DEVCTL, &v);
629 		v |= PCI_EXP_DEVCTL_EXT_TAG;
630 		t4_os_pci_write_cfg2(adapter, pos + PCI_EXP_DEVCTL, v);
631 		if (is_t6(adapter->params.chip)) {
632 			t4_set_reg_field(adapter, A_PCIE_CFG2,
633 					 V_T6_TOTMAXTAG(M_T6_TOTMAXTAG),
634 					 V_T6_TOTMAXTAG(7));
635 			t4_set_reg_field(adapter, A_PCIE_CMD_CFG,
636 					 V_T6_MINTAG(M_T6_MINTAG),
637 					 V_T6_MINTAG(8));
638 		} else {
639 			t4_set_reg_field(adapter, A_PCIE_CFG2,
640 					 V_TOTMAXTAG(M_TOTMAXTAG),
641 					 V_TOTMAXTAG(3));
642 			t4_set_reg_field(adapter, A_PCIE_CMD_CFG,
643 					 V_MINTAG(M_MINTAG),
644 					 V_MINTAG(8));
645 		}
646 	}
647 }
648 
649 /*
650  * Tweak configuration based on system architecture, etc.  Most of these have
651  * defaults assigned to them by Firmware Configuration Files (if we're using
652  * them) but need to be explicitly set if we're using hard-coded
653  * initialization. So these are essentially common tweaks/settings for
654  * Configuration Files and hard-coded initialization ...
655  */
656 static int adap_init0_tweaks(struct adapter *adapter)
657 {
658 	u8 rx_dma_offset;
659 
660 	/*
661 	 * Fix up various Host-Dependent Parameters like Page Size, Cache
662 	 * Line Size, etc.  The firmware default is for a 4KB Page Size and
663 	 * 64B Cache Line Size ...
664 	 */
665 	t4_fixup_host_params_compat(adapter, CXGBE_PAGE_SIZE, L1_CACHE_BYTES,
666 				    T5_LAST_REV);
667 
668 	/*
669 	 * Keep the chip default offset to deliver Ingress packets into our
670 	 * DMA buffers to zero
671 	 */
672 	rx_dma_offset = 0;
673 	t4_set_reg_field(adapter, A_SGE_CONTROL, V_PKTSHIFT(M_PKTSHIFT),
674 			 V_PKTSHIFT(rx_dma_offset));
675 
676 	t4_set_reg_field(adapter, A_SGE_FLM_CFG,
677 			 V_CREDITCNT(M_CREDITCNT) | M_CREDITCNTPACKING,
678 			 V_CREDITCNT(3) | V_CREDITCNTPACKING(1));
679 
680 	t4_set_reg_field(adapter, A_SGE_INGRESS_RX_THRESHOLD,
681 			 V_THRESHOLD_3(M_THRESHOLD_3), V_THRESHOLD_3(32U));
682 
683 	t4_set_reg_field(adapter, A_SGE_CONTROL2, V_IDMAARBROUNDROBIN(1U),
684 			 V_IDMAARBROUNDROBIN(1U));
685 
686 	/*
687 	 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
688 	 * adds the pseudo header itself.
689 	 */
690 	t4_tp_wr_bits_indirect(adapter, A_TP_INGRESS_CONFIG,
691 			       F_CSUM_HAS_PSEUDO_HDR, 0);
692 
693 	return 0;
694 }
695 
696 /*
697  * Attempt to initialize the adapter via a Firmware Configuration File.
698  */
699 static int adap_init0_config(struct adapter *adapter, int reset)
700 {
701 	struct fw_caps_config_cmd caps_cmd;
702 	unsigned long mtype = 0, maddr = 0;
703 	u32 finiver, finicsum, cfcsum;
704 	int ret;
705 	int config_issued = 0;
706 	int cfg_addr;
707 	char config_name[20];
708 
709 	/*
710 	 * Reset device if necessary.
711 	 */
712 	if (reset) {
713 		ret = t4_fw_reset(adapter, adapter->mbox,
714 				  F_PIORSTMODE | F_PIORST);
715 		if (ret < 0) {
716 			dev_warn(adapter, "Firmware reset failed, error %d\n",
717 				 -ret);
718 			goto bye;
719 		}
720 	}
721 
722 	cfg_addr = t4_flash_cfg_addr(adapter);
723 	if (cfg_addr < 0) {
724 		ret = cfg_addr;
725 		dev_warn(adapter, "Finding address for firmware config file in flash failed, error %d\n",
726 			 -ret);
727 		goto bye;
728 	}
729 
730 	strcpy(config_name, "On Flash");
731 	mtype = FW_MEMTYPE_CF_FLASH;
732 	maddr = cfg_addr;
733 
734 	/*
735 	 * Issue a Capability Configuration command to the firmware to get it
736 	 * to parse the Configuration File.  We don't use t4_fw_config_file()
737 	 * because we want the ability to modify various features after we've
738 	 * processed the configuration file ...
739 	 */
740 	memset(&caps_cmd, 0, sizeof(caps_cmd));
741 	caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
742 					   F_FW_CMD_REQUEST | F_FW_CMD_READ);
743 	caps_cmd.cfvalid_to_len16 =
744 		cpu_to_be32(F_FW_CAPS_CONFIG_CMD_CFVALID |
745 			    V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
746 			    V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
747 			    FW_LEN16(caps_cmd));
748 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
749 			 &caps_cmd);
750 	/*
751 	 * If the CAPS_CONFIG failed with an ENOENT (for a Firmware
752 	 * Configuration File in FLASH), our last gasp effort is to use the
753 	 * Firmware Configuration File which is embedded in the firmware.  A
754 	 * very few early versions of the firmware didn't have one embedded
755 	 * but we can ignore those.
756 	 */
757 	if (ret == -ENOENT) {
758 		dev_info(adapter, "%s: Going for embedded config in firmware..\n",
759 			 __func__);
760 
761 		memset(&caps_cmd, 0, sizeof(caps_cmd));
762 		caps_cmd.op_to_write =
763 			cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
764 				    F_FW_CMD_REQUEST | F_FW_CMD_READ);
765 		caps_cmd.cfvalid_to_len16 = cpu_to_be32(FW_LEN16(caps_cmd));
766 		ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
767 				 sizeof(caps_cmd), &caps_cmd);
768 		strcpy(config_name, "Firmware Default");
769 	}
770 
771 	config_issued = 1;
772 	if (ret < 0)
773 		goto bye;
774 
775 	finiver = be32_to_cpu(caps_cmd.finiver);
776 	finicsum = be32_to_cpu(caps_cmd.finicsum);
777 	cfcsum = be32_to_cpu(caps_cmd.cfcsum);
778 	if (finicsum != cfcsum)
779 		dev_warn(adapter, "Configuration File checksum mismatch: [fini] csum=%#x, computed csum=%#x\n",
780 			 finicsum, cfcsum);
781 
782 	/*
783 	 * If we're a pure NIC driver then disable all offloading facilities.
784 	 * This will allow the firmware to optimize aspects of the hardware
785 	 * configuration which will result in improved performance.
786 	 */
787 	caps_cmd.niccaps &= cpu_to_be16(~(FW_CAPS_CONFIG_NIC_HASHFILTER |
788 					  FW_CAPS_CONFIG_NIC_ETHOFLD));
789 	caps_cmd.toecaps = 0;
790 	caps_cmd.iscsicaps = 0;
791 	caps_cmd.rdmacaps = 0;
792 	caps_cmd.fcoecaps = 0;
793 
794 	/*
795 	 * And now tell the firmware to use the configuration we just loaded.
796 	 */
797 	caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
798 					   F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
799 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
800 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
801 			 NULL);
802 	if (ret < 0) {
803 		dev_warn(adapter, "Unable to finalize Firmware Capabilities %d\n",
804 			 -ret);
805 		goto bye;
806 	}
807 
808 	/*
809 	 * Tweak configuration based on system architecture, etc.
810 	 */
811 	ret = adap_init0_tweaks(adapter);
812 	if (ret < 0) {
813 		dev_warn(adapter, "Unable to do init0-tweaks %d\n", -ret);
814 		goto bye;
815 	}
816 
817 	/*
818 	 * And finally tell the firmware to initialize itself using the
819 	 * parameters from the Configuration File.
820 	 */
821 	ret = t4_fw_initialize(adapter, adapter->mbox);
822 	if (ret < 0) {
823 		dev_warn(adapter, "Initializing Firmware failed, error %d\n",
824 			 -ret);
825 		goto bye;
826 	}
827 
828 	/*
829 	 * Return successfully and note that we're operating with parameters
830 	 * not supplied by the driver, rather than from hard-wired
831 	 * initialization constants buried in the driver.
832 	 */
833 	dev_info(adapter,
834 		 "Successfully configured using Firmware Configuration File \"%s\", version %#x, computed checksum %#x\n",
835 		 config_name, finiver, cfcsum);
836 
837 	return 0;
838 
839 	/*
840 	 * Something bad happened.  Return the error ...  (If the "error"
841 	 * is that there's no Configuration File on the adapter we don't
842 	 * want to issue a warning since this is fairly common.)
843 	 */
844 bye:
845 	if (config_issued && ret != -ENOENT)
846 		dev_warn(adapter, "\"%s\" configuration file error %d\n",
847 			 config_name, -ret);
848 
849 	dev_debug(adapter, "%s: returning ret = %d ..\n", __func__, ret);
850 	return ret;
851 }
852 
853 static int adap_init0(struct adapter *adap)
854 {
855 	struct fw_caps_config_cmd caps_cmd;
856 	int ret = 0;
857 	u32 v, port_vec;
858 	enum dev_state state;
859 	u32 params[7], val[7];
860 	int reset = 1;
861 	int mbox = adap->mbox;
862 
863 	/*
864 	 * Contact FW, advertising Master capability.
865 	 */
866 	ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
867 	if (ret < 0) {
868 		dev_err(adap, "%s: could not connect to FW, error %d\n",
869 			__func__, -ret);
870 		goto bye;
871 	}
872 
873 	CXGBE_DEBUG_MBOX(adap, "%s: adap->mbox = %d; ret = %d\n", __func__,
874 			 adap->mbox, ret);
875 
876 	if (ret == mbox)
877 		adap->flags |= MASTER_PF;
878 
879 	if (state == DEV_STATE_INIT) {
880 		/*
881 		 * Force halt and reset FW because a previous instance may have
882 		 * exited abnormally without properly shutting down
883 		 */
884 		ret = t4_fw_halt(adap, adap->mbox, reset);
885 		if (ret < 0) {
886 			dev_err(adap, "Failed to halt. Exit.\n");
887 			goto bye;
888 		}
889 
890 		ret = t4_fw_restart(adap, adap->mbox, reset);
891 		if (ret < 0) {
892 			dev_err(adap, "Failed to restart. Exit.\n");
893 			goto bye;
894 		}
895 		state = (enum dev_state)((unsigned)state & ~DEV_STATE_INIT);
896 	}
897 
898 	t4_get_version_info(adap);
899 
900 	ret = t4_get_core_clock(adap, &adap->params.vpd);
901 	if (ret < 0) {
902 		dev_err(adap, "%s: could not get core clock, error %d\n",
903 			__func__, -ret);
904 		goto bye;
905 	}
906 
907 	/*
908 	 * If the firmware is initialized already (and we're not forcing a
909 	 * master initialization), note that we're living with existing
910 	 * adapter parameters.  Otherwise, it's time to try initializing the
911 	 * adapter ...
912 	 */
913 	if (state == DEV_STATE_INIT) {
914 		dev_info(adap, "Coming up as %s: Adapter already initialized\n",
915 			 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
916 	} else {
917 		dev_info(adap, "Coming up as MASTER: Initializing adapter\n");
918 
919 		ret = adap_init0_config(adap, reset);
920 		if (ret == -ENOENT) {
921 			dev_err(adap,
922 				"No Configuration File present on adapter. Using hard-wired configuration parameters.\n");
923 			goto bye;
924 		}
925 	}
926 	if (ret < 0) {
927 		dev_err(adap, "could not initialize adapter, error %d\n", -ret);
928 		goto bye;
929 	}
930 
931 	/* Find out what ports are available to us. */
932 	v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
933 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC);
934 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
935 	if (ret < 0) {
936 		dev_err(adap, "%s: failure in t4_query_params; error = %d\n",
937 			__func__, ret);
938 		goto bye;
939 	}
940 
941 	adap->params.nports = hweight32(port_vec);
942 	adap->params.portvec = port_vec;
943 
944 	dev_debug(adap, "%s: adap->params.nports = %u\n", __func__,
945 		  adap->params.nports);
946 
947 	/*
948 	 * Give the SGE code a chance to pull in anything that it needs ...
949 	 * Note that this must be called after we retrieve our VPD parameters
950 	 * in order to know how to convert core ticks to seconds, etc.
951 	 */
952 	ret = t4_sge_init(adap);
953 	if (ret < 0) {
954 		dev_err(adap, "t4_sge_init failed with error %d\n",
955 			-ret);
956 		goto bye;
957 	}
958 
959 	/*
960 	 * Grab some of our basic fundamental operating parameters.
961 	 */
962 #define FW_PARAM_DEV(param) \
963 	(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
964 	 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
965 
966 #define FW_PARAM_PFVF(param) \
967 	(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
968 	 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param) |  \
969 	 V_FW_PARAMS_PARAM_Y(0) | \
970 	 V_FW_PARAMS_PARAM_Z(0))
971 
972 	params[0] = FW_PARAM_PFVF(FILTER_START);
973 	params[1] = FW_PARAM_PFVF(FILTER_END);
974 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
975 	if (ret < 0)
976 		goto bye;
977 	adap->tids.ftid_base = val[0];
978 	adap->tids.nftids = val[1] - val[0] + 1;
979 
980 	/*
981 	 * Get device capabilities so we can determine what resources we need
982 	 * to manage.
983 	 */
984 	memset(&caps_cmd, 0, sizeof(caps_cmd));
985 	caps_cmd.op_to_write = htonl(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
986 				     F_FW_CMD_REQUEST | F_FW_CMD_READ);
987 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
988 	ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
989 			 &caps_cmd);
990 	if (ret < 0)
991 		goto bye;
992 
993 	/* query tid-related parameters */
994 	params[0] = FW_PARAM_DEV(NTID);
995 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
996 			      params, val);
997 	if (ret < 0)
998 		goto bye;
999 	adap->tids.ntids = val[0];
1000 
1001 	/* If we're running on newer firmware, let it know that we're
1002 	 * prepared to deal with encapsulated CPL messages.  Older
1003 	 * firmware won't understand this and we'll just get
1004 	 * unencapsulated messages ...
1005 	 */
1006 	params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
1007 	val[0] = 1;
1008 	(void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
1009 
1010 	/*
1011 	 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
1012 	 * capability.  Earlier versions of the firmware didn't have the
1013 	 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
1014 	 * permission to use ULPTX MEMWRITE DSGL.
1015 	 */
1016 	if (is_t4(adap->params.chip)) {
1017 		adap->params.ulptx_memwrite_dsgl = false;
1018 	} else {
1019 		params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
1020 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1021 				      1, params, val);
1022 		adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
1023 	}
1024 
1025 	/*
1026 	 * The MTU/MSS Table is initialized by now, so load their values.  If
1027 	 * we're initializing the adapter, then we'll make any modifications
1028 	 * we want to the MTU/MSS Table and also initialize the congestion
1029 	 * parameters.
1030 	 */
1031 	t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
1032 	if (state != DEV_STATE_INIT) {
1033 		int i;
1034 
1035 		/*
1036 		 * The default MTU Table contains values 1492 and 1500.
1037 		 * However, for TCP, it's better to have two values which are
1038 		 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
1039 		 * This allows us to have a TCP Data Payload which is a
1040 		 * multiple of 8 regardless of what combination of TCP Options
1041 		 * are in use (always a multiple of 4 bytes) which is
1042 		 * important for performance reasons.  For instance, if no
1043 		 * options are in use, then we have a 20-byte IP header and a
1044 		 * 20-byte TCP header.  In this case, a 1500-byte MSS would
1045 		 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
1046 		 * which is not a multiple of 8.  So using an MSS of 1488 in
1047 		 * this case results in a TCP Data Payload of 1448 bytes which
1048 		 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
1049 		 * Stamps have been negotiated, then an MTU of 1500 bytes
1050 		 * results in a TCP Data Payload of 1448 bytes which, as
1051 		 * above, is a multiple of 8 bytes ...
1052 		 */
1053 		for (i = 0; i < NMTUS; i++)
1054 			if (adap->params.mtus[i] == 1492) {
1055 				adap->params.mtus[i] = 1488;
1056 				break;
1057 			}
1058 
1059 		t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
1060 			     adap->params.b_wnd);
1061 	}
1062 	t4_init_sge_params(adap);
1063 	t4_init_tp_params(adap);
1064 	configure_pcie_ext_tag(adap);
1065 	configure_vlan_types(adap);
1066 
1067 	adap->params.drv_memwin = MEMWIN_NIC;
1068 	adap->flags |= FW_OK;
1069 	dev_debug(adap, "%s: returning zero..\n", __func__);
1070 	return 0;
1071 
1072 	/*
1073 	 * Something bad happened.  If a command timed out or failed with EIO
1074 	 * FW does not operate within its spec or something catastrophic
1075 	 * happened to HW/FW, stop issuing commands.
1076 	 */
1077 bye:
1078 	if (ret != -ETIMEDOUT && ret != -EIO)
1079 		t4_fw_bye(adap, adap->mbox);
1080 	return ret;
1081 }
1082 
1083 /**
1084  * t4_os_portmod_changed - handle port module changes
1085  * @adap: the adapter associated with the module change
1086  * @port_id: the port index whose module status has changed
1087  *
1088  * This is the OS-dependent handler for port module changes.  It is
1089  * invoked when a port module is removed or inserted for any OS-specific
1090  * processing.
1091  */
1092 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
1093 {
1094 	static const char * const mod_str[] = {
1095 		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
1096 	};
1097 
1098 	const struct port_info *pi = adap2pinfo(adap, port_id);
1099 
1100 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
1101 		dev_info(adap, "Port%d: port module unplugged\n", pi->port_id);
1102 	else if (pi->mod_type < ARRAY_SIZE(mod_str))
1103 		dev_info(adap, "Port%d: %s port module inserted\n", pi->port_id,
1104 			 mod_str[pi->mod_type]);
1105 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
1106 		dev_info(adap, "Port%d: unsupported port module inserted\n",
1107 			 pi->port_id);
1108 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
1109 		dev_info(adap, "Port%d: unknown port module inserted\n",
1110 			 pi->port_id);
1111 	else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
1112 		dev_info(adap, "Port%d: transceiver module error\n",
1113 			 pi->port_id);
1114 	else
1115 		dev_info(adap, "Port%d: unknown module type %d inserted\n",
1116 			 pi->port_id, pi->mod_type);
1117 }
1118 
1119 inline bool force_linkup(struct adapter *adap)
1120 {
1121 	struct rte_pci_device *pdev = adap->pdev;
1122 
1123 	if (is_pf4(adap))
1124 		return false;	/* force_linkup not required for pf driver*/
1125 	if (!cxgbe_get_devargs(pdev->device.devargs,
1126 			       CXGBE_DEVARG_FORCE_LINK_UP))
1127 		return false;
1128 	return true;
1129 }
1130 
1131 /**
1132  * link_start - enable a port
1133  * @dev: the port to enable
1134  *
1135  * Performs the MAC and PHY actions needed to enable a port.
1136  */
1137 int link_start(struct port_info *pi)
1138 {
1139 	struct adapter *adapter = pi->adapter;
1140 	int ret;
1141 	unsigned int mtu;
1142 
1143 	mtu = pi->eth_dev->data->dev_conf.rxmode.max_rx_pkt_len -
1144 	      (ETHER_HDR_LEN + ETHER_CRC_LEN);
1145 
1146 	/*
1147 	 * We do not set address filters and promiscuity here, the stack does
1148 	 * that step explicitly.
1149 	 */
1150 	ret = t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, -1, -1,
1151 			    -1, 1, true);
1152 	if (ret == 0) {
1153 		ret = t4_change_mac(adapter, adapter->mbox, pi->viid,
1154 				    pi->xact_addr_filt,
1155 				    (u8 *)&pi->eth_dev->data->mac_addrs[0],
1156 				    true, true);
1157 		if (ret >= 0) {
1158 			pi->xact_addr_filt = ret;
1159 			ret = 0;
1160 		}
1161 	}
1162 	if (ret == 0 && is_pf4(adapter))
1163 		ret = t4_link_l1cfg(adapter, adapter->mbox, pi->tx_chan,
1164 				    &pi->link_cfg);
1165 	if (ret == 0) {
1166 		/*
1167 		 * Enabling a Virtual Interface can result in an interrupt
1168 		 * during the processing of the VI Enable command and, in some
1169 		 * paths, result in an attempt to issue another command in the
1170 		 * interrupt context.  Thus, we disable interrupts during the
1171 		 * course of the VI Enable command ...
1172 		 */
1173 		ret = t4_enable_vi_params(adapter, adapter->mbox, pi->viid,
1174 					  true, true, false);
1175 	}
1176 
1177 	if (ret == 0 && force_linkup(adapter))
1178 		pi->eth_dev->data->dev_link.link_status = ETH_LINK_UP;
1179 	return ret;
1180 }
1181 
1182 /**
1183  * cxgbe_write_rss_conf - flash the RSS configuration for a given port
1184  * @pi: the port
1185  * @rss_hf: Hash configuration to apply
1186  */
1187 int cxgbe_write_rss_conf(const struct port_info *pi, uint64_t rss_hf)
1188 {
1189 	struct adapter *adapter = pi->adapter;
1190 	const struct sge_eth_rxq *rxq;
1191 	u64 flags = 0;
1192 	u16 rss;
1193 	int err;
1194 
1195 	/*  Should never be called before setting up sge eth rx queues */
1196 	if (!(adapter->flags & FULL_INIT_DONE)) {
1197 		dev_err(adap, "%s No RXQs available on port %d\n",
1198 			__func__, pi->port_id);
1199 		return -EINVAL;
1200 	}
1201 
1202 	/* Don't allow unsupported hash functions */
1203 	if (rss_hf & ~CXGBE_RSS_HF_ALL)
1204 		return -EINVAL;
1205 
1206 	if (rss_hf & ETH_RSS_IPV4)
1207 		flags |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
1208 
1209 	if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
1210 		flags |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
1211 
1212 	if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
1213 		flags |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
1214 			 F_FW_RSS_VI_CONFIG_CMD_UDPEN;
1215 
1216 	if (rss_hf & ETH_RSS_IPV6)
1217 		flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
1218 
1219 	if (rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
1220 		flags |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
1221 
1222 	if (rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
1223 		flags |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
1224 			 F_FW_RSS_VI_CONFIG_CMD_UDPEN;
1225 
1226 	rxq = &adapter->sge.ethrxq[pi->first_qset];
1227 	rss = rxq[0].rspq.abs_id;
1228 
1229 	/* If Tunnel All Lookup isn't specified in the global RSS
1230 	 * Configuration, then we need to specify a default Ingress
1231 	 * Queue for any ingress packets which aren't hashed.  We'll
1232 	 * use our first ingress queue ...
1233 	 */
1234 	err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
1235 			       flags, rss);
1236 	return err;
1237 }
1238 
1239 /**
1240  * cxgbe_write_rss - write the RSS table for a given port
1241  * @pi: the port
1242  * @queues: array of queue indices for RSS
1243  *
1244  * Sets up the portion of the HW RSS table for the port's VI to distribute
1245  * packets to the Rx queues in @queues.
1246  */
1247 int cxgbe_write_rss(const struct port_info *pi, const u16 *queues)
1248 {
1249 	u16 *rss;
1250 	int i, err;
1251 	struct adapter *adapter = pi->adapter;
1252 	const struct sge_eth_rxq *rxq;
1253 
1254 	/*  Should never be called before setting up sge eth rx queues */
1255 	BUG_ON(!(adapter->flags & FULL_INIT_DONE));
1256 
1257 	rxq = &adapter->sge.ethrxq[pi->first_qset];
1258 	rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0);
1259 	if (!rss)
1260 		return -ENOMEM;
1261 
1262 	/* map the queue indices to queue ids */
1263 	for (i = 0; i < pi->rss_size; i++, queues++)
1264 		rss[i] = rxq[*queues].rspq.abs_id;
1265 
1266 	err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
1267 				  pi->rss_size, rss, pi->rss_size);
1268 	rte_free(rss);
1269 	return err;
1270 }
1271 
1272 /**
1273  * setup_rss - configure RSS
1274  * @adapter: the adapter
1275  *
1276  * Sets up RSS to distribute packets to multiple receive queues.  We
1277  * configure the RSS CPU lookup table to distribute to the number of HW
1278  * receive queues, and the response queue lookup table to narrow that
1279  * down to the response queues actually configured for each port.
1280  * We always configure the RSS mapping for all ports since the mapping
1281  * table has plenty of entries.
1282  */
1283 int setup_rss(struct port_info *pi)
1284 {
1285 	int j, err;
1286 	struct adapter *adapter = pi->adapter;
1287 
1288 	dev_debug(adapter, "%s:  pi->rss_size = %u; pi->n_rx_qsets = %u\n",
1289 		  __func__, pi->rss_size, pi->n_rx_qsets);
1290 
1291 	if (!(pi->flags & PORT_RSS_DONE)) {
1292 		if (adapter->flags & FULL_INIT_DONE) {
1293 			/* Fill default values with equal distribution */
1294 			for (j = 0; j < pi->rss_size; j++)
1295 				pi->rss[j] = j % pi->n_rx_qsets;
1296 
1297 			err = cxgbe_write_rss(pi, pi->rss);
1298 			if (err)
1299 				return err;
1300 
1301 			err = cxgbe_write_rss_conf(pi, pi->rss_hf);
1302 			if (err)
1303 				return err;
1304 			pi->flags |= PORT_RSS_DONE;
1305 		}
1306 	}
1307 	return 0;
1308 }
1309 
1310 /*
1311  * Enable NAPI scheduling and interrupt generation for all Rx queues.
1312  */
1313 static void enable_rx(struct adapter *adap, struct sge_rspq *q)
1314 {
1315 	/* 0-increment GTS to start the timer and enable interrupts */
1316 	t4_write_reg(adap, is_pf4(adap) ? MYPF_REG(A_SGE_PF_GTS) :
1317 					  T4VF_SGE_BASE_ADDR + A_SGE_VF_GTS,
1318 		     V_SEINTARM(q->intr_params) |
1319 		     V_INGRESSQID(q->cntxt_id));
1320 }
1321 
1322 void cxgbe_enable_rx_queues(struct port_info *pi)
1323 {
1324 	struct adapter *adap = pi->adapter;
1325 	struct sge *s = &adap->sge;
1326 	unsigned int i;
1327 
1328 	for (i = 0; i < pi->n_rx_qsets; i++)
1329 		enable_rx(adap, &s->ethrxq[pi->first_qset + i].rspq);
1330 }
1331 
1332 /**
1333  * fw_caps_to_speed_caps - translate Firmware Port Caps to Speed Caps.
1334  * @port_type: Firmware Port Type
1335  * @fw_caps: Firmware Port Capabilities
1336  * @speed_caps: Device Info Speed Capabilities
1337  *
1338  * Translate a Firmware Port Capabilities specification to Device Info
1339  * Speed Capabilities.
1340  */
1341 static void fw_caps_to_speed_caps(enum fw_port_type port_type,
1342 				  unsigned int fw_caps,
1343 				  u32 *speed_caps)
1344 {
1345 #define SET_SPEED(__speed_name) \
1346 	do { \
1347 		*speed_caps |= ETH_LINK_ ## __speed_name; \
1348 	} while (0)
1349 
1350 #define FW_CAPS_TO_SPEED(__fw_name) \
1351 	do { \
1352 		if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \
1353 			SET_SPEED(__fw_name); \
1354 	} while (0)
1355 
1356 	switch (port_type) {
1357 	case FW_PORT_TYPE_BT_SGMII:
1358 	case FW_PORT_TYPE_BT_XFI:
1359 	case FW_PORT_TYPE_BT_XAUI:
1360 		FW_CAPS_TO_SPEED(SPEED_100M);
1361 		FW_CAPS_TO_SPEED(SPEED_1G);
1362 		FW_CAPS_TO_SPEED(SPEED_10G);
1363 		break;
1364 
1365 	case FW_PORT_TYPE_KX4:
1366 	case FW_PORT_TYPE_KX:
1367 	case FW_PORT_TYPE_FIBER_XFI:
1368 	case FW_PORT_TYPE_FIBER_XAUI:
1369 	case FW_PORT_TYPE_SFP:
1370 	case FW_PORT_TYPE_QSFP_10G:
1371 	case FW_PORT_TYPE_QSA:
1372 		FW_CAPS_TO_SPEED(SPEED_1G);
1373 		FW_CAPS_TO_SPEED(SPEED_10G);
1374 		break;
1375 
1376 	case FW_PORT_TYPE_KR:
1377 		SET_SPEED(SPEED_10G);
1378 		break;
1379 
1380 	case FW_PORT_TYPE_BP_AP:
1381 	case FW_PORT_TYPE_BP4_AP:
1382 		SET_SPEED(SPEED_1G);
1383 		SET_SPEED(SPEED_10G);
1384 		break;
1385 
1386 	case FW_PORT_TYPE_BP40_BA:
1387 	case FW_PORT_TYPE_QSFP:
1388 		SET_SPEED(SPEED_40G);
1389 		break;
1390 
1391 	case FW_PORT_TYPE_CR_QSFP:
1392 	case FW_PORT_TYPE_SFP28:
1393 	case FW_PORT_TYPE_KR_SFP28:
1394 		FW_CAPS_TO_SPEED(SPEED_1G);
1395 		FW_CAPS_TO_SPEED(SPEED_10G);
1396 		FW_CAPS_TO_SPEED(SPEED_25G);
1397 		break;
1398 
1399 	case FW_PORT_TYPE_CR2_QSFP:
1400 		SET_SPEED(SPEED_50G);
1401 		break;
1402 
1403 	case FW_PORT_TYPE_KR4_100G:
1404 	case FW_PORT_TYPE_CR4_QSFP:
1405 		FW_CAPS_TO_SPEED(SPEED_25G);
1406 		FW_CAPS_TO_SPEED(SPEED_40G);
1407 		FW_CAPS_TO_SPEED(SPEED_50G);
1408 		FW_CAPS_TO_SPEED(SPEED_100G);
1409 		break;
1410 
1411 	default:
1412 		break;
1413 	}
1414 
1415 #undef FW_CAPS_TO_SPEED
1416 #undef SET_SPEED
1417 }
1418 
1419 /**
1420  * cxgbe_get_speed_caps - Fetch supported speed capabilities
1421  * @pi: Underlying port's info
1422  * @speed_caps: Device Info speed capabilities
1423  *
1424  * Fetch supported speed capabilities of the underlying port.
1425  */
1426 void cxgbe_get_speed_caps(struct port_info *pi, u32 *speed_caps)
1427 {
1428 	*speed_caps = 0;
1429 
1430 	fw_caps_to_speed_caps(pi->port_type, pi->link_cfg.pcaps,
1431 			      speed_caps);
1432 
1433 	if (!(pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG))
1434 		*speed_caps |= ETH_LINK_SPEED_FIXED;
1435 }
1436 
1437 /**
1438  * cxgb_up - enable the adapter
1439  * @adap: adapter being enabled
1440  *
1441  * Called when the first port is enabled, this function performs the
1442  * actions necessary to make an adapter operational, such as completing
1443  * the initialization of HW modules, and enabling interrupts.
1444  */
1445 int cxgbe_up(struct adapter *adap)
1446 {
1447 	enable_rx(adap, &adap->sge.fw_evtq);
1448 	t4_sge_tx_monitor_start(adap);
1449 	if (is_pf4(adap))
1450 		t4_intr_enable(adap);
1451 	adap->flags |= FULL_INIT_DONE;
1452 
1453 	/* TODO: deadman watchdog ?? */
1454 	return 0;
1455 }
1456 
1457 /*
1458  * Close the port
1459  */
1460 int cxgbe_down(struct port_info *pi)
1461 {
1462 	struct adapter *adapter = pi->adapter;
1463 	int err = 0;
1464 
1465 	err = t4_enable_vi(adapter, adapter->mbox, pi->viid, false, false);
1466 	if (err) {
1467 		dev_err(adapter, "%s: disable_vi failed: %d\n", __func__, err);
1468 		return err;
1469 	}
1470 
1471 	t4_reset_link_config(adapter, pi->pidx);
1472 	return 0;
1473 }
1474 
1475 /*
1476  * Release resources when all the ports have been stopped.
1477  */
1478 void cxgbe_close(struct adapter *adapter)
1479 {
1480 	struct port_info *pi;
1481 	int i;
1482 
1483 	if (adapter->flags & FULL_INIT_DONE) {
1484 		if (is_pf4(adapter))
1485 			t4_intr_disable(adapter);
1486 		tid_free(&adapter->tids);
1487 		t4_sge_tx_monitor_stop(adapter);
1488 		t4_free_sge_resources(adapter);
1489 		for_each_port(adapter, i) {
1490 			pi = adap2pinfo(adapter, i);
1491 			if (pi->viid != 0)
1492 				t4_free_vi(adapter, adapter->mbox,
1493 					   adapter->pf, 0, pi->viid);
1494 			rte_free(pi->eth_dev->data->mac_addrs);
1495 			/* Skip first port since it'll be freed by DPDK stack */
1496 			if (i) {
1497 				rte_free(pi->eth_dev->data->dev_private);
1498 				rte_eth_dev_release_port(pi->eth_dev);
1499 			}
1500 		}
1501 		adapter->flags &= ~FULL_INIT_DONE;
1502 	}
1503 
1504 	if (is_pf4(adapter) && (adapter->flags & FW_OK))
1505 		t4_fw_bye(adapter, adapter->mbox);
1506 }
1507 
1508 int cxgbe_probe(struct adapter *adapter)
1509 {
1510 	struct port_info *pi;
1511 	int chip;
1512 	int func, i;
1513 	int err = 0;
1514 	u32 whoami;
1515 
1516 	whoami = t4_read_reg(adapter, A_PL_WHOAMI);
1517 	chip = t4_get_chip_type(adapter,
1518 			CHELSIO_PCI_ID_VER(adapter->pdev->id.device_id));
1519 	if (chip < 0)
1520 		return chip;
1521 
1522 	func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
1523 	       G_SOURCEPF(whoami) : G_T6_SOURCEPF(whoami);
1524 
1525 	adapter->mbox = func;
1526 	adapter->pf = func;
1527 
1528 	t4_os_lock_init(&adapter->mbox_lock);
1529 	TAILQ_INIT(&adapter->mbox_list);
1530 	t4_os_lock_init(&adapter->win0_lock);
1531 
1532 	err = t4_prep_adapter(adapter);
1533 	if (err)
1534 		return err;
1535 
1536 	setup_memwin(adapter);
1537 	err = adap_init0(adapter);
1538 	if (err) {
1539 		dev_err(adapter, "%s: Adapter initialization failed, error %d\n",
1540 			__func__, err);
1541 		goto out_free;
1542 	}
1543 
1544 	if (!is_t4(adapter->params.chip)) {
1545 		/*
1546 		 * The userspace doorbell BAR is split evenly into doorbell
1547 		 * regions, each associated with an egress queue.  If this
1548 		 * per-queue region is large enough (at least UDBS_SEG_SIZE)
1549 		 * then it can be used to submit a tx work request with an
1550 		 * implied doorbell.  Enable write combining on the BAR if
1551 		 * there is room for such work requests.
1552 		 */
1553 		int s_qpp, qpp, num_seg;
1554 
1555 		s_qpp = (S_QUEUESPERPAGEPF0 +
1556 			(S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) *
1557 			adapter->pf);
1558 		qpp = 1 << ((t4_read_reg(adapter,
1559 				A_SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp)
1560 				& M_QUEUESPERPAGEPF0);
1561 		num_seg = CXGBE_PAGE_SIZE / UDBS_SEG_SIZE;
1562 		if (qpp > num_seg)
1563 			dev_warn(adapter, "Incorrect SGE EGRESS QUEUES_PER_PAGE configuration, continuing in debug mode\n");
1564 
1565 		adapter->bar2 = (void *)adapter->pdev->mem_resource[2].addr;
1566 		if (!adapter->bar2) {
1567 			dev_err(adapter, "cannot map device bar2 region\n");
1568 			err = -ENOMEM;
1569 			goto out_free;
1570 		}
1571 		t4_write_reg(adapter, A_SGE_STAT_CFG, V_STATSOURCE_T5(7) |
1572 			     V_STATMODE(0));
1573 	}
1574 
1575 	for_each_port(adapter, i) {
1576 		const unsigned int numa_node = rte_socket_id();
1577 		char name[RTE_ETH_NAME_MAX_LEN];
1578 		struct rte_eth_dev *eth_dev;
1579 
1580 		snprintf(name, sizeof(name), "%s_%d",
1581 			 adapter->pdev->device.name, i);
1582 
1583 		if (i == 0) {
1584 			/* First port is already allocated by DPDK */
1585 			eth_dev = adapter->eth_dev;
1586 			goto allocate_mac;
1587 		}
1588 
1589 		/*
1590 		 * now do all data allocation - for eth_dev structure,
1591 		 * and internal (private) data for the remaining ports
1592 		 */
1593 
1594 		/* reserve an ethdev entry */
1595 		eth_dev = rte_eth_dev_allocate(name);
1596 		if (!eth_dev)
1597 			goto out_free;
1598 
1599 		eth_dev->data->dev_private =
1600 			rte_zmalloc_socket(name, sizeof(struct port_info),
1601 					   RTE_CACHE_LINE_SIZE, numa_node);
1602 		if (!eth_dev->data->dev_private)
1603 			goto out_free;
1604 
1605 allocate_mac:
1606 		pi = (struct port_info *)eth_dev->data->dev_private;
1607 		adapter->port[i] = pi;
1608 		pi->eth_dev = eth_dev;
1609 		pi->adapter = adapter;
1610 		pi->xact_addr_filt = -1;
1611 		pi->port_id = i;
1612 		pi->pidx = i;
1613 
1614 		pi->eth_dev->device = &adapter->pdev->device;
1615 		pi->eth_dev->dev_ops = adapter->eth_dev->dev_ops;
1616 		pi->eth_dev->tx_pkt_burst = adapter->eth_dev->tx_pkt_burst;
1617 		pi->eth_dev->rx_pkt_burst = adapter->eth_dev->rx_pkt_burst;
1618 
1619 		rte_eth_copy_pci_info(pi->eth_dev, adapter->pdev);
1620 
1621 		pi->eth_dev->data->mac_addrs = rte_zmalloc(name,
1622 							   ETHER_ADDR_LEN, 0);
1623 		if (!pi->eth_dev->data->mac_addrs) {
1624 			dev_err(adapter, "%s: Mem allocation failed for storing mac addr, aborting\n",
1625 				__func__);
1626 			err = -1;
1627 			goto out_free;
1628 		}
1629 
1630 		if (i > 0) {
1631 			/* First port will be notified by upper layer */
1632 			rte_eth_dev_probing_finish(eth_dev);
1633 		}
1634 	}
1635 
1636 	if (adapter->flags & FW_OK) {
1637 		err = t4_port_init(adapter, adapter->mbox, adapter->pf, 0);
1638 		if (err) {
1639 			dev_err(adapter, "%s: t4_port_init failed with err %d\n",
1640 				__func__, err);
1641 			goto out_free;
1642 		}
1643 	}
1644 
1645 	cfg_queues(adapter->eth_dev);
1646 
1647 	print_adapter_info(adapter);
1648 	print_port_info(adapter);
1649 
1650 	if (tid_init(&adapter->tids) < 0) {
1651 		/* Disable filtering support */
1652 		dev_warn(adapter, "could not allocate TID table, "
1653 			 "filter support disabled. Continuing\n");
1654 	}
1655 
1656 	err = init_rss(adapter);
1657 	if (err)
1658 		goto out_free;
1659 
1660 	return 0;
1661 
1662 out_free:
1663 	for_each_port(adapter, i) {
1664 		pi = adap2pinfo(adapter, i);
1665 		if (pi->viid != 0)
1666 			t4_free_vi(adapter, adapter->mbox, adapter->pf,
1667 				   0, pi->viid);
1668 		/* Skip first port since it'll be de-allocated by DPDK */
1669 		if (i == 0)
1670 			continue;
1671 		if (pi->eth_dev) {
1672 			if (pi->eth_dev->data->dev_private)
1673 				rte_free(pi->eth_dev->data->dev_private);
1674 			rte_eth_dev_release_port(pi->eth_dev);
1675 		}
1676 	}
1677 
1678 	if (adapter->flags & FW_OK)
1679 		t4_fw_bye(adapter, adapter->mbox);
1680 	return -err;
1681 }
1682