xref: /dpdk/drivers/net/cxgbe/cxgbe_main.c (revision 08aa6271c86a561b66c6dd91f9a54fa2f12bc859)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2018 Chelsio Communications.
3  * All rights reserved.
4  */
5 
6 #include <sys/queue.h>
7 #include <stdio.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <string.h>
11 #include <unistd.h>
12 #include <stdarg.h>
13 #include <inttypes.h>
14 #include <netinet/in.h>
15 
16 #include <rte_byteorder.h>
17 #include <rte_common.h>
18 #include <rte_cycles.h>
19 #include <rte_interrupts.h>
20 #include <rte_log.h>
21 #include <rte_debug.h>
22 #include <rte_pci.h>
23 #include <rte_atomic.h>
24 #include <rte_branch_prediction.h>
25 #include <rte_memory.h>
26 #include <rte_tailq.h>
27 #include <rte_eal.h>
28 #include <rte_alarm.h>
29 #include <rte_ether.h>
30 #include <rte_ethdev_driver.h>
31 #include <rte_ethdev_pci.h>
32 #include <rte_random.h>
33 #include <rte_dev.h>
34 #include <rte_kvargs.h>
35 
36 #include "common.h"
37 #include "t4_regs.h"
38 #include "t4_msg.h"
39 #include "cxgbe.h"
40 
41 #define CXGBE_DEVARG_KEEP_OVLAN "keep_ovlan"
42 
43 /*
44  * Response queue handler for the FW event queue.
45  */
46 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
47 			  __rte_unused const struct pkt_gl *gl)
48 {
49 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
50 
51 	rsp++;                                          /* skip RSS header */
52 
53 	/*
54 	 * FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
55 	 */
56 	if (unlikely(opcode == CPL_FW4_MSG &&
57 		     ((const struct cpl_fw4_msg *)rsp)->type ==
58 		      FW_TYPE_RSSCPL)) {
59 		rsp++;
60 		opcode = ((const struct rss_header *)rsp)->opcode;
61 		rsp++;
62 		if (opcode != CPL_SGE_EGR_UPDATE) {
63 			dev_err(q->adapter, "unexpected FW4/CPL %#x on FW event queue\n",
64 				opcode);
65 			goto out;
66 		}
67 	}
68 
69 	if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
70 		/* do nothing */
71 	} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
72 		const struct cpl_fw6_msg *msg = (const void *)rsp;
73 
74 		t4_handle_fw_rpl(q->adapter, msg->data);
75 	} else {
76 		dev_err(adapter, "unexpected CPL %#x on FW event queue\n",
77 			opcode);
78 	}
79 out:
80 	return 0;
81 }
82 
83 int setup_sge_fwevtq(struct adapter *adapter)
84 {
85 	struct sge *s = &adapter->sge;
86 	int err = 0;
87 	int msi_idx = 0;
88 
89 	err = t4_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->eth_dev,
90 			       msi_idx, NULL, fwevtq_handler, -1, NULL, 0,
91 			       rte_socket_id());
92 	return err;
93 }
94 
95 static int closest_timer(const struct sge *s, int time)
96 {
97 	unsigned int i, match = 0;
98 	int delta, min_delta = INT_MAX;
99 
100 	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
101 		delta = time - s->timer_val[i];
102 		if (delta < 0)
103 			delta = -delta;
104 		if (delta < min_delta) {
105 			min_delta = delta;
106 			match = i;
107 		}
108 	}
109 	return match;
110 }
111 
112 static int closest_thres(const struct sge *s, int thres)
113 {
114 	unsigned int i, match = 0;
115 	int delta, min_delta = INT_MAX;
116 
117 	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
118 		delta = thres - s->counter_val[i];
119 		if (delta < 0)
120 			delta = -delta;
121 		if (delta < min_delta) {
122 			min_delta = delta;
123 			match = i;
124 		}
125 	}
126 	return match;
127 }
128 
129 /**
130  * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
131  * @q: the Rx queue
132  * @us: the hold-off time in us, or 0 to disable timer
133  * @cnt: the hold-off packet count, or 0 to disable counter
134  *
135  * Sets an Rx queue's interrupt hold-off time and packet count.  At least
136  * one of the two needs to be enabled for the queue to generate interrupts.
137  */
138 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, unsigned int us,
139 			       unsigned int cnt)
140 {
141 	struct adapter *adap = q->adapter;
142 	unsigned int timer_val;
143 
144 	if (cnt) {
145 		int err;
146 		u32 v, new_idx;
147 
148 		new_idx = closest_thres(&adap->sge, cnt);
149 		if (q->desc && q->pktcnt_idx != new_idx) {
150 			/* the queue has already been created, update it */
151 			v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
152 			    V_FW_PARAMS_PARAM_X(
153 			    FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
154 			    V_FW_PARAMS_PARAM_YZ(q->cntxt_id);
155 			err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
156 					    &v, &new_idx);
157 			if (err)
158 				return err;
159 		}
160 		q->pktcnt_idx = new_idx;
161 	}
162 
163 	timer_val = (us == 0) ? X_TIMERREG_RESTART_COUNTER :
164 				closest_timer(&adap->sge, us);
165 
166 	if ((us | cnt) == 0)
167 		q->intr_params = V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX);
168 	else
169 		q->intr_params = V_QINTR_TIMER_IDX(timer_val) |
170 				 V_QINTR_CNT_EN(cnt > 0);
171 	return 0;
172 }
173 
174 static inline bool is_x_1g_port(const struct link_config *lc)
175 {
176 	return (lc->pcaps & FW_PORT_CAP32_SPEED_1G) != 0;
177 }
178 
179 static inline bool is_x_10g_port(const struct link_config *lc)
180 {
181 	unsigned int speeds, high_speeds;
182 
183 	speeds = V_FW_PORT_CAP32_SPEED(G_FW_PORT_CAP32_SPEED(lc->pcaps));
184 	high_speeds = speeds &
185 		      ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
186 
187 	return high_speeds != 0;
188 }
189 
190 inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
191 		      unsigned int us, unsigned int cnt,
192 		      unsigned int size, unsigned int iqe_size)
193 {
194 	q->adapter = adap;
195 	cxgb4_set_rspq_intr_params(q, us, cnt);
196 	q->iqe_len = iqe_size;
197 	q->size = size;
198 }
199 
200 int cfg_queue_count(struct rte_eth_dev *eth_dev)
201 {
202 	struct port_info *pi = (struct port_info *)(eth_dev->data->dev_private);
203 	struct adapter *adap = pi->adapter;
204 	struct sge *s = &adap->sge;
205 	unsigned int max_queues = s->max_ethqsets / adap->params.nports;
206 
207 	if ((eth_dev->data->nb_rx_queues < 1) ||
208 	    (eth_dev->data->nb_tx_queues < 1))
209 		return -EINVAL;
210 
211 	if ((eth_dev->data->nb_rx_queues > max_queues) ||
212 	    (eth_dev->data->nb_tx_queues > max_queues))
213 		return -EINVAL;
214 
215 	if (eth_dev->data->nb_rx_queues > pi->rss_size)
216 		return -EINVAL;
217 
218 	/* We must configure RSS, since config has changed*/
219 	pi->flags &= ~PORT_RSS_DONE;
220 
221 	pi->n_rx_qsets = eth_dev->data->nb_rx_queues;
222 	pi->n_tx_qsets = eth_dev->data->nb_tx_queues;
223 
224 	return 0;
225 }
226 
227 void cfg_queues(struct rte_eth_dev *eth_dev)
228 {
229 	struct rte_config *config = rte_eal_get_configuration();
230 	struct port_info *pi = (struct port_info *)(eth_dev->data->dev_private);
231 	struct adapter *adap = pi->adapter;
232 	struct sge *s = &adap->sge;
233 	unsigned int i, nb_ports = 0, qidx = 0;
234 	unsigned int q_per_port = 0;
235 
236 	if (!(adap->flags & CFG_QUEUES)) {
237 		for_each_port(adap, i) {
238 			struct port_info *tpi = adap2pinfo(adap, i);
239 
240 			nb_ports += (is_x_10g_port(&tpi->link_cfg)) ||
241 				     is_x_1g_port(&tpi->link_cfg) ? 1 : 0;
242 		}
243 
244 		/*
245 		 * We default up to # of cores queues per 1G/10G port.
246 		 */
247 		if (nb_ports)
248 			q_per_port = (MAX_ETH_QSETS -
249 				     (adap->params.nports - nb_ports)) /
250 				     nb_ports;
251 
252 		if (q_per_port > config->lcore_count)
253 			q_per_port = config->lcore_count;
254 
255 		for_each_port(adap, i) {
256 			struct port_info *pi = adap2pinfo(adap, i);
257 
258 			pi->first_qset = qidx;
259 
260 			/* Initially n_rx_qsets == n_tx_qsets */
261 			pi->n_rx_qsets = (is_x_10g_port(&pi->link_cfg) ||
262 					  is_x_1g_port(&pi->link_cfg)) ?
263 					  q_per_port : 1;
264 			pi->n_tx_qsets = pi->n_rx_qsets;
265 
266 			if (pi->n_rx_qsets > pi->rss_size)
267 				pi->n_rx_qsets = pi->rss_size;
268 
269 			qidx += pi->n_rx_qsets;
270 		}
271 
272 		s->max_ethqsets = qidx;
273 
274 		for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
275 			struct sge_eth_rxq *r = &s->ethrxq[i];
276 
277 			init_rspq(adap, &r->rspq, 5, 32, 1024, 64);
278 			r->usembufs = 1;
279 			r->fl.size = (r->usembufs ? 1024 : 72);
280 		}
281 
282 		for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
283 			s->ethtxq[i].q.size = 1024;
284 
285 		init_rspq(adap, &adap->sge.fw_evtq, 0, 0, 1024, 64);
286 		adap->flags |= CFG_QUEUES;
287 	}
288 }
289 
290 void cxgbe_stats_get(struct port_info *pi, struct port_stats *stats)
291 {
292 	t4_get_port_stats_offset(pi->adapter, pi->tx_chan, stats,
293 				 &pi->stats_base);
294 }
295 
296 void cxgbe_stats_reset(struct port_info *pi)
297 {
298 	t4_clr_port_stats(pi->adapter, pi->tx_chan);
299 }
300 
301 static void setup_memwin(struct adapter *adap)
302 {
303 	u32 mem_win0_base;
304 
305 	/* For T5, only relative offset inside the PCIe BAR is passed */
306 	mem_win0_base = MEMWIN0_BASE;
307 
308 	/*
309 	 * Set up memory window for accessing adapter memory ranges.  (Read
310 	 * back MA register to ensure that changes propagate before we attempt
311 	 * to use the new values.)
312 	 */
313 	t4_write_reg(adap,
314 		     PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
315 					 MEMWIN_NIC),
316 		     mem_win0_base | V_BIR(0) |
317 		     V_WINDOW(ilog2(MEMWIN0_APERTURE) - X_WINDOW_SHIFT));
318 	t4_read_reg(adap,
319 		    PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
320 					MEMWIN_NIC));
321 }
322 
323 int init_rss(struct adapter *adap)
324 {
325 	unsigned int i;
326 
327 	if (is_pf4(adap)) {
328 		int err;
329 
330 		err = t4_init_rss_mode(adap, adap->mbox);
331 		if (err)
332 			return err;
333 	}
334 
335 	for_each_port(adap, i) {
336 		struct port_info *pi = adap2pinfo(adap, i);
337 
338 		pi->rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0);
339 		if (!pi->rss)
340 			return -ENOMEM;
341 
342 		pi->rss_hf = CXGBE_RSS_HF_ALL;
343 	}
344 	return 0;
345 }
346 
347 /**
348  * Dump basic information about the adapter.
349  */
350 void print_adapter_info(struct adapter *adap)
351 {
352 	/**
353 	 * Hardware/Firmware/etc. Version/Revision IDs.
354 	 */
355 	t4_dump_version_info(adap);
356 }
357 
358 void print_port_info(struct adapter *adap)
359 {
360 	int i;
361 	char buf[80];
362 	struct rte_pci_addr *loc = &adap->pdev->addr;
363 
364 	for_each_port(adap, i) {
365 		const struct port_info *pi = adap2pinfo(adap, i);
366 		char *bufp = buf;
367 
368 		if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
369 			bufp += sprintf(bufp, "100M/");
370 		if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
371 			bufp += sprintf(bufp, "1G/");
372 		if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
373 			bufp += sprintf(bufp, "10G/");
374 		if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
375 			bufp += sprintf(bufp, "25G/");
376 		if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
377 			bufp += sprintf(bufp, "40G/");
378 		if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
379 			bufp += sprintf(bufp, "50G/");
380 		if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
381 			bufp += sprintf(bufp, "100G/");
382 		if (bufp != buf)
383 			--bufp;
384 		sprintf(bufp, "BASE-%s",
385 			t4_get_port_type_description(
386 					(enum fw_port_type)pi->port_type));
387 
388 		dev_info(adap,
389 			 " " PCI_PRI_FMT " Chelsio rev %d %s %s\n",
390 			 loc->domain, loc->bus, loc->devid, loc->function,
391 			 CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
392 			 (adap->flags & USING_MSIX) ? " MSI-X" :
393 			 (adap->flags & USING_MSI) ? " MSI" : "");
394 	}
395 }
396 
397 static int
398 check_devargs_handler(__rte_unused const char *key, const char *value,
399 		      __rte_unused void *opaque)
400 {
401 	if (strcmp(value, "1"))
402 		return -1;
403 
404 	return 0;
405 }
406 
407 static int cxgbe_get_devargs(struct rte_devargs *devargs, const char *key)
408 {
409 	struct rte_kvargs *kvlist;
410 
411 	if (!devargs)
412 		return 0;
413 
414 	kvlist = rte_kvargs_parse(devargs->args, NULL);
415 	if (!kvlist)
416 		return 0;
417 
418 	if (!rte_kvargs_count(kvlist, key)) {
419 		rte_kvargs_free(kvlist);
420 		return 0;
421 	}
422 
423 	if (rte_kvargs_process(kvlist, key,
424 			       check_devargs_handler, NULL) < 0) {
425 		rte_kvargs_free(kvlist);
426 		return 0;
427 	}
428 	rte_kvargs_free(kvlist);
429 
430 	return 1;
431 }
432 
433 static void configure_vlan_types(struct adapter *adapter)
434 {
435 	struct rte_pci_device *pdev = adapter->pdev;
436 	int i;
437 
438 	for_each_port(adapter, i) {
439 		/* OVLAN Type 0x88a8 */
440 		t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN0),
441 				 V_OVLAN_MASK(M_OVLAN_MASK) |
442 				 V_OVLAN_ETYPE(M_OVLAN_ETYPE),
443 				 V_OVLAN_MASK(M_OVLAN_MASK) |
444 				 V_OVLAN_ETYPE(0x88a8));
445 		/* OVLAN Type 0x9100 */
446 		t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN1),
447 				 V_OVLAN_MASK(M_OVLAN_MASK) |
448 				 V_OVLAN_ETYPE(M_OVLAN_ETYPE),
449 				 V_OVLAN_MASK(M_OVLAN_MASK) |
450 				 V_OVLAN_ETYPE(0x9100));
451 		/* OVLAN Type 0x8100 */
452 		t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN2),
453 				 V_OVLAN_MASK(M_OVLAN_MASK) |
454 				 V_OVLAN_ETYPE(M_OVLAN_ETYPE),
455 				 V_OVLAN_MASK(M_OVLAN_MASK) |
456 				 V_OVLAN_ETYPE(0x8100));
457 
458 		/* IVLAN 0X8100 */
459 		t4_set_reg_field(adapter, MPS_PORT_RX_IVLAN(i),
460 				 V_IVLAN_ETYPE(M_IVLAN_ETYPE),
461 				 V_IVLAN_ETYPE(0x8100));
462 
463 		t4_set_reg_field(adapter, MPS_PORT_RX_CTL(i),
464 				 F_OVLAN_EN0 | F_OVLAN_EN1 |
465 				 F_OVLAN_EN2 | F_IVLAN_EN,
466 				 F_OVLAN_EN0 | F_OVLAN_EN1 |
467 				 F_OVLAN_EN2 | F_IVLAN_EN);
468 	}
469 
470 	if (cxgbe_get_devargs(pdev->device.devargs, CXGBE_DEVARG_KEEP_OVLAN))
471 		t4_tp_wr_bits_indirect(adapter, A_TP_INGRESS_CONFIG,
472 				       V_RM_OVLAN(1), V_RM_OVLAN(0));
473 }
474 
475 static void configure_pcie_ext_tag(struct adapter *adapter)
476 {
477 	u16 v;
478 	int pos = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
479 
480 	if (!pos)
481 		return;
482 
483 	if (pos > 0) {
484 		t4_os_pci_read_cfg2(adapter, pos + PCI_EXP_DEVCTL, &v);
485 		v |= PCI_EXP_DEVCTL_EXT_TAG;
486 		t4_os_pci_write_cfg2(adapter, pos + PCI_EXP_DEVCTL, v);
487 		if (is_t6(adapter->params.chip)) {
488 			t4_set_reg_field(adapter, A_PCIE_CFG2,
489 					 V_T6_TOTMAXTAG(M_T6_TOTMAXTAG),
490 					 V_T6_TOTMAXTAG(7));
491 			t4_set_reg_field(adapter, A_PCIE_CMD_CFG,
492 					 V_T6_MINTAG(M_T6_MINTAG),
493 					 V_T6_MINTAG(8));
494 		} else {
495 			t4_set_reg_field(adapter, A_PCIE_CFG2,
496 					 V_TOTMAXTAG(M_TOTMAXTAG),
497 					 V_TOTMAXTAG(3));
498 			t4_set_reg_field(adapter, A_PCIE_CMD_CFG,
499 					 V_MINTAG(M_MINTAG),
500 					 V_MINTAG(8));
501 		}
502 	}
503 }
504 
505 /*
506  * Tweak configuration based on system architecture, etc.  Most of these have
507  * defaults assigned to them by Firmware Configuration Files (if we're using
508  * them) but need to be explicitly set if we're using hard-coded
509  * initialization. So these are essentially common tweaks/settings for
510  * Configuration Files and hard-coded initialization ...
511  */
512 static int adap_init0_tweaks(struct adapter *adapter)
513 {
514 	u8 rx_dma_offset;
515 
516 	/*
517 	 * Fix up various Host-Dependent Parameters like Page Size, Cache
518 	 * Line Size, etc.  The firmware default is for a 4KB Page Size and
519 	 * 64B Cache Line Size ...
520 	 */
521 	t4_fixup_host_params_compat(adapter, CXGBE_PAGE_SIZE, L1_CACHE_BYTES,
522 				    T5_LAST_REV);
523 
524 	/*
525 	 * Keep the chip default offset to deliver Ingress packets into our
526 	 * DMA buffers to zero
527 	 */
528 	rx_dma_offset = 0;
529 	t4_set_reg_field(adapter, A_SGE_CONTROL, V_PKTSHIFT(M_PKTSHIFT),
530 			 V_PKTSHIFT(rx_dma_offset));
531 
532 	t4_set_reg_field(adapter, A_SGE_FLM_CFG,
533 			 V_CREDITCNT(M_CREDITCNT) | M_CREDITCNTPACKING,
534 			 V_CREDITCNT(3) | V_CREDITCNTPACKING(1));
535 
536 	t4_set_reg_field(adapter, A_SGE_INGRESS_RX_THRESHOLD,
537 			 V_THRESHOLD_3(M_THRESHOLD_3), V_THRESHOLD_3(32U));
538 
539 	t4_set_reg_field(adapter, A_SGE_CONTROL2, V_IDMAARBROUNDROBIN(1U),
540 			 V_IDMAARBROUNDROBIN(1U));
541 
542 	/*
543 	 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
544 	 * adds the pseudo header itself.
545 	 */
546 	t4_tp_wr_bits_indirect(adapter, A_TP_INGRESS_CONFIG,
547 			       F_CSUM_HAS_PSEUDO_HDR, 0);
548 
549 	return 0;
550 }
551 
552 /*
553  * Attempt to initialize the adapter via a Firmware Configuration File.
554  */
555 static int adap_init0_config(struct adapter *adapter, int reset)
556 {
557 	struct fw_caps_config_cmd caps_cmd;
558 	unsigned long mtype = 0, maddr = 0;
559 	u32 finiver, finicsum, cfcsum;
560 	int ret;
561 	int config_issued = 0;
562 	int cfg_addr;
563 	char config_name[20];
564 
565 	/*
566 	 * Reset device if necessary.
567 	 */
568 	if (reset) {
569 		ret = t4_fw_reset(adapter, adapter->mbox,
570 				  F_PIORSTMODE | F_PIORST);
571 		if (ret < 0) {
572 			dev_warn(adapter, "Firmware reset failed, error %d\n",
573 				 -ret);
574 			goto bye;
575 		}
576 	}
577 
578 	cfg_addr = t4_flash_cfg_addr(adapter);
579 	if (cfg_addr < 0) {
580 		ret = cfg_addr;
581 		dev_warn(adapter, "Finding address for firmware config file in flash failed, error %d\n",
582 			 -ret);
583 		goto bye;
584 	}
585 
586 	strcpy(config_name, "On Flash");
587 	mtype = FW_MEMTYPE_CF_FLASH;
588 	maddr = cfg_addr;
589 
590 	/*
591 	 * Issue a Capability Configuration command to the firmware to get it
592 	 * to parse the Configuration File.  We don't use t4_fw_config_file()
593 	 * because we want the ability to modify various features after we've
594 	 * processed the configuration file ...
595 	 */
596 	memset(&caps_cmd, 0, sizeof(caps_cmd));
597 	caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
598 					   F_FW_CMD_REQUEST | F_FW_CMD_READ);
599 	caps_cmd.cfvalid_to_len16 =
600 		cpu_to_be32(F_FW_CAPS_CONFIG_CMD_CFVALID |
601 			    V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
602 			    V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
603 			    FW_LEN16(caps_cmd));
604 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
605 			 &caps_cmd);
606 	/*
607 	 * If the CAPS_CONFIG failed with an ENOENT (for a Firmware
608 	 * Configuration File in FLASH), our last gasp effort is to use the
609 	 * Firmware Configuration File which is embedded in the firmware.  A
610 	 * very few early versions of the firmware didn't have one embedded
611 	 * but we can ignore those.
612 	 */
613 	if (ret == -ENOENT) {
614 		dev_info(adapter, "%s: Going for embedded config in firmware..\n",
615 			 __func__);
616 
617 		memset(&caps_cmd, 0, sizeof(caps_cmd));
618 		caps_cmd.op_to_write =
619 			cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
620 				    F_FW_CMD_REQUEST | F_FW_CMD_READ);
621 		caps_cmd.cfvalid_to_len16 = cpu_to_be32(FW_LEN16(caps_cmd));
622 		ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
623 				 sizeof(caps_cmd), &caps_cmd);
624 		strcpy(config_name, "Firmware Default");
625 	}
626 
627 	config_issued = 1;
628 	if (ret < 0)
629 		goto bye;
630 
631 	finiver = be32_to_cpu(caps_cmd.finiver);
632 	finicsum = be32_to_cpu(caps_cmd.finicsum);
633 	cfcsum = be32_to_cpu(caps_cmd.cfcsum);
634 	if (finicsum != cfcsum)
635 		dev_warn(adapter, "Configuration File checksum mismatch: [fini] csum=%#x, computed csum=%#x\n",
636 			 finicsum, cfcsum);
637 
638 	/*
639 	 * If we're a pure NIC driver then disable all offloading facilities.
640 	 * This will allow the firmware to optimize aspects of the hardware
641 	 * configuration which will result in improved performance.
642 	 */
643 	caps_cmd.niccaps &= cpu_to_be16(~(FW_CAPS_CONFIG_NIC_HASHFILTER |
644 					  FW_CAPS_CONFIG_NIC_ETHOFLD));
645 	caps_cmd.toecaps = 0;
646 	caps_cmd.iscsicaps = 0;
647 	caps_cmd.rdmacaps = 0;
648 	caps_cmd.fcoecaps = 0;
649 
650 	/*
651 	 * And now tell the firmware to use the configuration we just loaded.
652 	 */
653 	caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
654 					   F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
655 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
656 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
657 			 NULL);
658 	if (ret < 0) {
659 		dev_warn(adapter, "Unable to finalize Firmware Capabilities %d\n",
660 			 -ret);
661 		goto bye;
662 	}
663 
664 	/*
665 	 * Tweak configuration based on system architecture, etc.
666 	 */
667 	ret = adap_init0_tweaks(adapter);
668 	if (ret < 0) {
669 		dev_warn(adapter, "Unable to do init0-tweaks %d\n", -ret);
670 		goto bye;
671 	}
672 
673 	/*
674 	 * And finally tell the firmware to initialize itself using the
675 	 * parameters from the Configuration File.
676 	 */
677 	ret = t4_fw_initialize(adapter, adapter->mbox);
678 	if (ret < 0) {
679 		dev_warn(adapter, "Initializing Firmware failed, error %d\n",
680 			 -ret);
681 		goto bye;
682 	}
683 
684 	/*
685 	 * Return successfully and note that we're operating with parameters
686 	 * not supplied by the driver, rather than from hard-wired
687 	 * initialization constants buried in the driver.
688 	 */
689 	dev_info(adapter,
690 		 "Successfully configured using Firmware Configuration File \"%s\", version %#x, computed checksum %#x\n",
691 		 config_name, finiver, cfcsum);
692 
693 	return 0;
694 
695 	/*
696 	 * Something bad happened.  Return the error ...  (If the "error"
697 	 * is that there's no Configuration File on the adapter we don't
698 	 * want to issue a warning since this is fairly common.)
699 	 */
700 bye:
701 	if (config_issued && ret != -ENOENT)
702 		dev_warn(adapter, "\"%s\" configuration file error %d\n",
703 			 config_name, -ret);
704 
705 	dev_debug(adapter, "%s: returning ret = %d ..\n", __func__, ret);
706 	return ret;
707 }
708 
709 static int adap_init0(struct adapter *adap)
710 {
711 	int ret = 0;
712 	u32 v, port_vec;
713 	enum dev_state state;
714 	u32 params[7], val[7];
715 	int reset = 1;
716 	int mbox = adap->mbox;
717 
718 	/*
719 	 * Contact FW, advertising Master capability.
720 	 */
721 	ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
722 	if (ret < 0) {
723 		dev_err(adap, "%s: could not connect to FW, error %d\n",
724 			__func__, -ret);
725 		goto bye;
726 	}
727 
728 	CXGBE_DEBUG_MBOX(adap, "%s: adap->mbox = %d; ret = %d\n", __func__,
729 			 adap->mbox, ret);
730 
731 	if (ret == mbox)
732 		adap->flags |= MASTER_PF;
733 
734 	if (state == DEV_STATE_INIT) {
735 		/*
736 		 * Force halt and reset FW because a previous instance may have
737 		 * exited abnormally without properly shutting down
738 		 */
739 		ret = t4_fw_halt(adap, adap->mbox, reset);
740 		if (ret < 0) {
741 			dev_err(adap, "Failed to halt. Exit.\n");
742 			goto bye;
743 		}
744 
745 		ret = t4_fw_restart(adap, adap->mbox, reset);
746 		if (ret < 0) {
747 			dev_err(adap, "Failed to restart. Exit.\n");
748 			goto bye;
749 		}
750 		state = (enum dev_state)((unsigned)state & ~DEV_STATE_INIT);
751 	}
752 
753 	t4_get_version_info(adap);
754 
755 	ret = t4_get_core_clock(adap, &adap->params.vpd);
756 	if (ret < 0) {
757 		dev_err(adap, "%s: could not get core clock, error %d\n",
758 			__func__, -ret);
759 		goto bye;
760 	}
761 
762 	/*
763 	 * If the firmware is initialized already (and we're not forcing a
764 	 * master initialization), note that we're living with existing
765 	 * adapter parameters.  Otherwise, it's time to try initializing the
766 	 * adapter ...
767 	 */
768 	if (state == DEV_STATE_INIT) {
769 		dev_info(adap, "Coming up as %s: Adapter already initialized\n",
770 			 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
771 	} else {
772 		dev_info(adap, "Coming up as MASTER: Initializing adapter\n");
773 
774 		ret = adap_init0_config(adap, reset);
775 		if (ret == -ENOENT) {
776 			dev_err(adap,
777 				"No Configuration File present on adapter. Using hard-wired configuration parameters.\n");
778 			goto bye;
779 		}
780 	}
781 	if (ret < 0) {
782 		dev_err(adap, "could not initialize adapter, error %d\n", -ret);
783 		goto bye;
784 	}
785 
786 	/* Find out what ports are available to us. */
787 	v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
788 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC);
789 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
790 	if (ret < 0) {
791 		dev_err(adap, "%s: failure in t4_query_params; error = %d\n",
792 			__func__, ret);
793 		goto bye;
794 	}
795 
796 	adap->params.nports = hweight32(port_vec);
797 	adap->params.portvec = port_vec;
798 
799 	dev_debug(adap, "%s: adap->params.nports = %u\n", __func__,
800 		  adap->params.nports);
801 
802 	/*
803 	 * Give the SGE code a chance to pull in anything that it needs ...
804 	 * Note that this must be called after we retrieve our VPD parameters
805 	 * in order to know how to convert core ticks to seconds, etc.
806 	 */
807 	ret = t4_sge_init(adap);
808 	if (ret < 0) {
809 		dev_err(adap, "t4_sge_init failed with error %d\n",
810 			-ret);
811 		goto bye;
812 	}
813 
814 	/*
815 	 * Grab some of our basic fundamental operating parameters.
816 	 */
817 #define FW_PARAM_DEV(param) \
818 	(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
819 	 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
820 
821 #define FW_PARAM_PFVF(param) \
822 	(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
823 	 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param) |  \
824 	 V_FW_PARAMS_PARAM_Y(0) | \
825 	 V_FW_PARAMS_PARAM_Z(0))
826 
827 	/* If we're running on newer firmware, let it know that we're
828 	 * prepared to deal with encapsulated CPL messages.  Older
829 	 * firmware won't understand this and we'll just get
830 	 * unencapsulated messages ...
831 	 */
832 	params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
833 	val[0] = 1;
834 	(void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
835 
836 	/*
837 	 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
838 	 * capability.  Earlier versions of the firmware didn't have the
839 	 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
840 	 * permission to use ULPTX MEMWRITE DSGL.
841 	 */
842 	if (is_t4(adap->params.chip)) {
843 		adap->params.ulptx_memwrite_dsgl = false;
844 	} else {
845 		params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
846 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
847 				      1, params, val);
848 		adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
849 	}
850 
851 	/*
852 	 * The MTU/MSS Table is initialized by now, so load their values.  If
853 	 * we're initializing the adapter, then we'll make any modifications
854 	 * we want to the MTU/MSS Table and also initialize the congestion
855 	 * parameters.
856 	 */
857 	t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
858 	if (state != DEV_STATE_INIT) {
859 		int i;
860 
861 		/*
862 		 * The default MTU Table contains values 1492 and 1500.
863 		 * However, for TCP, it's better to have two values which are
864 		 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
865 		 * This allows us to have a TCP Data Payload which is a
866 		 * multiple of 8 regardless of what combination of TCP Options
867 		 * are in use (always a multiple of 4 bytes) which is
868 		 * important for performance reasons.  For instance, if no
869 		 * options are in use, then we have a 20-byte IP header and a
870 		 * 20-byte TCP header.  In this case, a 1500-byte MSS would
871 		 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
872 		 * which is not a multiple of 8.  So using an MSS of 1488 in
873 		 * this case results in a TCP Data Payload of 1448 bytes which
874 		 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
875 		 * Stamps have been negotiated, then an MTU of 1500 bytes
876 		 * results in a TCP Data Payload of 1448 bytes which, as
877 		 * above, is a multiple of 8 bytes ...
878 		 */
879 		for (i = 0; i < NMTUS; i++)
880 			if (adap->params.mtus[i] == 1492) {
881 				adap->params.mtus[i] = 1488;
882 				break;
883 			}
884 
885 		t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
886 			     adap->params.b_wnd);
887 	}
888 	t4_init_sge_params(adap);
889 	t4_init_tp_params(adap);
890 	configure_pcie_ext_tag(adap);
891 	configure_vlan_types(adap);
892 
893 	adap->params.drv_memwin = MEMWIN_NIC;
894 	adap->flags |= FW_OK;
895 	dev_debug(adap, "%s: returning zero..\n", __func__);
896 	return 0;
897 
898 	/*
899 	 * Something bad happened.  If a command timed out or failed with EIO
900 	 * FW does not operate within its spec or something catastrophic
901 	 * happened to HW/FW, stop issuing commands.
902 	 */
903 bye:
904 	if (ret != -ETIMEDOUT && ret != -EIO)
905 		t4_fw_bye(adap, adap->mbox);
906 	return ret;
907 }
908 
909 /**
910  * t4_os_portmod_changed - handle port module changes
911  * @adap: the adapter associated with the module change
912  * @port_id: the port index whose module status has changed
913  *
914  * This is the OS-dependent handler for port module changes.  It is
915  * invoked when a port module is removed or inserted for any OS-specific
916  * processing.
917  */
918 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
919 {
920 	static const char * const mod_str[] = {
921 		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
922 	};
923 
924 	const struct port_info *pi = adap2pinfo(adap, port_id);
925 
926 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
927 		dev_info(adap, "Port%d: port module unplugged\n", pi->port_id);
928 	else if (pi->mod_type < ARRAY_SIZE(mod_str))
929 		dev_info(adap, "Port%d: %s port module inserted\n", pi->port_id,
930 			 mod_str[pi->mod_type]);
931 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
932 		dev_info(adap, "Port%d: unsupported port module inserted\n",
933 			 pi->port_id);
934 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
935 		dev_info(adap, "Port%d: unknown port module inserted\n",
936 			 pi->port_id);
937 	else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
938 		dev_info(adap, "Port%d: transceiver module error\n",
939 			 pi->port_id);
940 	else
941 		dev_info(adap, "Port%d: unknown module type %d inserted\n",
942 			 pi->port_id, pi->mod_type);
943 }
944 
945 /**
946  * link_start - enable a port
947  * @dev: the port to enable
948  *
949  * Performs the MAC and PHY actions needed to enable a port.
950  */
951 int link_start(struct port_info *pi)
952 {
953 	struct adapter *adapter = pi->adapter;
954 	int ret;
955 	unsigned int mtu;
956 
957 	mtu = pi->eth_dev->data->dev_conf.rxmode.max_rx_pkt_len -
958 	      (ETHER_HDR_LEN + ETHER_CRC_LEN);
959 
960 	/*
961 	 * We do not set address filters and promiscuity here, the stack does
962 	 * that step explicitly.
963 	 */
964 	ret = t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, -1, -1,
965 			    -1, 1, true);
966 	if (ret == 0) {
967 		ret = t4_change_mac(adapter, adapter->mbox, pi->viid,
968 				    pi->xact_addr_filt,
969 				    (u8 *)&pi->eth_dev->data->mac_addrs[0],
970 				    true, true);
971 		if (ret >= 0) {
972 			pi->xact_addr_filt = ret;
973 			ret = 0;
974 		}
975 	}
976 	if (ret == 0 && is_pf4(adapter))
977 		ret = t4_link_l1cfg(adapter, adapter->mbox, pi->tx_chan,
978 				    &pi->link_cfg);
979 	if (ret == 0) {
980 		/*
981 		 * Enabling a Virtual Interface can result in an interrupt
982 		 * during the processing of the VI Enable command and, in some
983 		 * paths, result in an attempt to issue another command in the
984 		 * interrupt context.  Thus, we disable interrupts during the
985 		 * course of the VI Enable command ...
986 		 */
987 		ret = t4_enable_vi_params(adapter, adapter->mbox, pi->viid,
988 					  true, true, false);
989 	}
990 	return ret;
991 }
992 
993 /**
994  * cxgbe_write_rss_conf - flash the RSS configuration for a given port
995  * @pi: the port
996  * @rss_hf: Hash configuration to apply
997  */
998 int cxgbe_write_rss_conf(const struct port_info *pi, uint64_t rss_hf)
999 {
1000 	struct adapter *adapter = pi->adapter;
1001 	const struct sge_eth_rxq *rxq;
1002 	u64 flags = 0;
1003 	u16 rss;
1004 	int err;
1005 
1006 	/*  Should never be called before setting up sge eth rx queues */
1007 	if (!(adapter->flags & FULL_INIT_DONE)) {
1008 		dev_err(adap, "%s No RXQs available on port %d\n",
1009 			__func__, pi->port_id);
1010 		return -EINVAL;
1011 	}
1012 
1013 	/* Don't allow unsupported hash functions */
1014 	if (rss_hf & ~CXGBE_RSS_HF_ALL)
1015 		return -EINVAL;
1016 
1017 	if (rss_hf & ETH_RSS_IPV4)
1018 		flags |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
1019 
1020 	if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
1021 		flags |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
1022 
1023 	if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
1024 		flags |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
1025 			 F_FW_RSS_VI_CONFIG_CMD_UDPEN;
1026 
1027 	if (rss_hf & ETH_RSS_IPV6)
1028 		flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
1029 
1030 	if (rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
1031 		flags |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
1032 
1033 	if (rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
1034 		flags |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
1035 			 F_FW_RSS_VI_CONFIG_CMD_UDPEN;
1036 
1037 	rxq = &adapter->sge.ethrxq[pi->first_qset];
1038 	rss = rxq[0].rspq.abs_id;
1039 
1040 	/* If Tunnel All Lookup isn't specified in the global RSS
1041 	 * Configuration, then we need to specify a default Ingress
1042 	 * Queue for any ingress packets which aren't hashed.  We'll
1043 	 * use our first ingress queue ...
1044 	 */
1045 	err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
1046 			       flags, rss);
1047 	return err;
1048 }
1049 
1050 /**
1051  * cxgbe_write_rss - write the RSS table for a given port
1052  * @pi: the port
1053  * @queues: array of queue indices for RSS
1054  *
1055  * Sets up the portion of the HW RSS table for the port's VI to distribute
1056  * packets to the Rx queues in @queues.
1057  */
1058 int cxgbe_write_rss(const struct port_info *pi, const u16 *queues)
1059 {
1060 	u16 *rss;
1061 	int i, err;
1062 	struct adapter *adapter = pi->adapter;
1063 	const struct sge_eth_rxq *rxq;
1064 
1065 	/*  Should never be called before setting up sge eth rx queues */
1066 	BUG_ON(!(adapter->flags & FULL_INIT_DONE));
1067 
1068 	rxq = &adapter->sge.ethrxq[pi->first_qset];
1069 	rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0);
1070 	if (!rss)
1071 		return -ENOMEM;
1072 
1073 	/* map the queue indices to queue ids */
1074 	for (i = 0; i < pi->rss_size; i++, queues++)
1075 		rss[i] = rxq[*queues].rspq.abs_id;
1076 
1077 	err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
1078 				  pi->rss_size, rss, pi->rss_size);
1079 	rte_free(rss);
1080 	return err;
1081 }
1082 
1083 /**
1084  * setup_rss - configure RSS
1085  * @adapter: the adapter
1086  *
1087  * Sets up RSS to distribute packets to multiple receive queues.  We
1088  * configure the RSS CPU lookup table to distribute to the number of HW
1089  * receive queues, and the response queue lookup table to narrow that
1090  * down to the response queues actually configured for each port.
1091  * We always configure the RSS mapping for all ports since the mapping
1092  * table has plenty of entries.
1093  */
1094 int setup_rss(struct port_info *pi)
1095 {
1096 	int j, err;
1097 	struct adapter *adapter = pi->adapter;
1098 
1099 	dev_debug(adapter, "%s:  pi->rss_size = %u; pi->n_rx_qsets = %u\n",
1100 		  __func__, pi->rss_size, pi->n_rx_qsets);
1101 
1102 	if (!(pi->flags & PORT_RSS_DONE)) {
1103 		if (adapter->flags & FULL_INIT_DONE) {
1104 			/* Fill default values with equal distribution */
1105 			for (j = 0; j < pi->rss_size; j++)
1106 				pi->rss[j] = j % pi->n_rx_qsets;
1107 
1108 			err = cxgbe_write_rss(pi, pi->rss);
1109 			if (err)
1110 				return err;
1111 
1112 			err = cxgbe_write_rss_conf(pi, pi->rss_hf);
1113 			if (err)
1114 				return err;
1115 			pi->flags |= PORT_RSS_DONE;
1116 		}
1117 	}
1118 	return 0;
1119 }
1120 
1121 /*
1122  * Enable NAPI scheduling and interrupt generation for all Rx queues.
1123  */
1124 static void enable_rx(struct adapter *adap, struct sge_rspq *q)
1125 {
1126 	/* 0-increment GTS to start the timer and enable interrupts */
1127 	t4_write_reg(adap, is_pf4(adap) ? MYPF_REG(A_SGE_PF_GTS) :
1128 					  T4VF_SGE_BASE_ADDR + A_SGE_VF_GTS,
1129 		     V_SEINTARM(q->intr_params) |
1130 		     V_INGRESSQID(q->cntxt_id));
1131 }
1132 
1133 void cxgbe_enable_rx_queues(struct port_info *pi)
1134 {
1135 	struct adapter *adap = pi->adapter;
1136 	struct sge *s = &adap->sge;
1137 	unsigned int i;
1138 
1139 	for (i = 0; i < pi->n_rx_qsets; i++)
1140 		enable_rx(adap, &s->ethrxq[pi->first_qset + i].rspq);
1141 }
1142 
1143 /**
1144  * fw_caps_to_speed_caps - translate Firmware Port Caps to Speed Caps.
1145  * @port_type: Firmware Port Type
1146  * @fw_caps: Firmware Port Capabilities
1147  * @speed_caps: Device Info Speed Capabilities
1148  *
1149  * Translate a Firmware Port Capabilities specification to Device Info
1150  * Speed Capabilities.
1151  */
1152 static void fw_caps_to_speed_caps(enum fw_port_type port_type,
1153 				  unsigned int fw_caps,
1154 				  u32 *speed_caps)
1155 {
1156 #define SET_SPEED(__speed_name) \
1157 	do { \
1158 		*speed_caps |= ETH_LINK_ ## __speed_name; \
1159 	} while (0)
1160 
1161 #define FW_CAPS_TO_SPEED(__fw_name) \
1162 	do { \
1163 		if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \
1164 			SET_SPEED(__fw_name); \
1165 	} while (0)
1166 
1167 	switch (port_type) {
1168 	case FW_PORT_TYPE_BT_SGMII:
1169 	case FW_PORT_TYPE_BT_XFI:
1170 	case FW_PORT_TYPE_BT_XAUI:
1171 		FW_CAPS_TO_SPEED(SPEED_100M);
1172 		FW_CAPS_TO_SPEED(SPEED_1G);
1173 		FW_CAPS_TO_SPEED(SPEED_10G);
1174 		break;
1175 
1176 	case FW_PORT_TYPE_KX4:
1177 	case FW_PORT_TYPE_KX:
1178 	case FW_PORT_TYPE_FIBER_XFI:
1179 	case FW_PORT_TYPE_FIBER_XAUI:
1180 	case FW_PORT_TYPE_SFP:
1181 	case FW_PORT_TYPE_QSFP_10G:
1182 	case FW_PORT_TYPE_QSA:
1183 		FW_CAPS_TO_SPEED(SPEED_1G);
1184 		FW_CAPS_TO_SPEED(SPEED_10G);
1185 		break;
1186 
1187 	case FW_PORT_TYPE_KR:
1188 		SET_SPEED(SPEED_10G);
1189 		break;
1190 
1191 	case FW_PORT_TYPE_BP_AP:
1192 	case FW_PORT_TYPE_BP4_AP:
1193 		SET_SPEED(SPEED_1G);
1194 		SET_SPEED(SPEED_10G);
1195 		break;
1196 
1197 	case FW_PORT_TYPE_BP40_BA:
1198 	case FW_PORT_TYPE_QSFP:
1199 		SET_SPEED(SPEED_40G);
1200 		break;
1201 
1202 	case FW_PORT_TYPE_CR_QSFP:
1203 	case FW_PORT_TYPE_SFP28:
1204 	case FW_PORT_TYPE_KR_SFP28:
1205 		FW_CAPS_TO_SPEED(SPEED_1G);
1206 		FW_CAPS_TO_SPEED(SPEED_10G);
1207 		FW_CAPS_TO_SPEED(SPEED_25G);
1208 		break;
1209 
1210 	case FW_PORT_TYPE_CR2_QSFP:
1211 		SET_SPEED(SPEED_50G);
1212 		break;
1213 
1214 	case FW_PORT_TYPE_KR4_100G:
1215 	case FW_PORT_TYPE_CR4_QSFP:
1216 		FW_CAPS_TO_SPEED(SPEED_25G);
1217 		FW_CAPS_TO_SPEED(SPEED_40G);
1218 		FW_CAPS_TO_SPEED(SPEED_50G);
1219 		FW_CAPS_TO_SPEED(SPEED_100G);
1220 		break;
1221 
1222 	default:
1223 		break;
1224 	}
1225 
1226 #undef FW_CAPS_TO_SPEED
1227 #undef SET_SPEED
1228 }
1229 
1230 /**
1231  * cxgbe_get_speed_caps - Fetch supported speed capabilities
1232  * @pi: Underlying port's info
1233  * @speed_caps: Device Info speed capabilities
1234  *
1235  * Fetch supported speed capabilities of the underlying port.
1236  */
1237 void cxgbe_get_speed_caps(struct port_info *pi, u32 *speed_caps)
1238 {
1239 	*speed_caps = 0;
1240 
1241 	fw_caps_to_speed_caps(pi->port_type, pi->link_cfg.pcaps,
1242 			      speed_caps);
1243 
1244 	if (!(pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG))
1245 		*speed_caps |= ETH_LINK_SPEED_FIXED;
1246 }
1247 
1248 /**
1249  * cxgb_up - enable the adapter
1250  * @adap: adapter being enabled
1251  *
1252  * Called when the first port is enabled, this function performs the
1253  * actions necessary to make an adapter operational, such as completing
1254  * the initialization of HW modules, and enabling interrupts.
1255  */
1256 int cxgbe_up(struct adapter *adap)
1257 {
1258 	enable_rx(adap, &adap->sge.fw_evtq);
1259 	t4_sge_tx_monitor_start(adap);
1260 	if (is_pf4(adap))
1261 		t4_intr_enable(adap);
1262 	adap->flags |= FULL_INIT_DONE;
1263 
1264 	/* TODO: deadman watchdog ?? */
1265 	return 0;
1266 }
1267 
1268 /*
1269  * Close the port
1270  */
1271 int cxgbe_down(struct port_info *pi)
1272 {
1273 	struct adapter *adapter = pi->adapter;
1274 	int err = 0;
1275 
1276 	err = t4_enable_vi(adapter, adapter->mbox, pi->viid, false, false);
1277 	if (err) {
1278 		dev_err(adapter, "%s: disable_vi failed: %d\n", __func__, err);
1279 		return err;
1280 	}
1281 
1282 	t4_reset_link_config(adapter, pi->pidx);
1283 	return 0;
1284 }
1285 
1286 /*
1287  * Release resources when all the ports have been stopped.
1288  */
1289 void cxgbe_close(struct adapter *adapter)
1290 {
1291 	struct port_info *pi;
1292 	int i;
1293 
1294 	if (adapter->flags & FULL_INIT_DONE) {
1295 		if (is_pf4(adapter))
1296 			t4_intr_disable(adapter);
1297 		t4_sge_tx_monitor_stop(adapter);
1298 		t4_free_sge_resources(adapter);
1299 		for_each_port(adapter, i) {
1300 			pi = adap2pinfo(adapter, i);
1301 			if (pi->viid != 0)
1302 				t4_free_vi(adapter, adapter->mbox,
1303 					   adapter->pf, 0, pi->viid);
1304 			rte_free(pi->eth_dev->data->mac_addrs);
1305 			/* Skip first port since it'll be freed by DPDK stack */
1306 			if (i) {
1307 				rte_free(pi->eth_dev->data->dev_private);
1308 				rte_eth_dev_release_port(pi->eth_dev);
1309 			}
1310 		}
1311 		adapter->flags &= ~FULL_INIT_DONE;
1312 	}
1313 
1314 	if (is_pf4(adapter) && (adapter->flags & FW_OK))
1315 		t4_fw_bye(adapter, adapter->mbox);
1316 }
1317 
1318 int cxgbe_probe(struct adapter *adapter)
1319 {
1320 	struct port_info *pi;
1321 	int chip;
1322 	int func, i;
1323 	int err = 0;
1324 	u32 whoami;
1325 
1326 	whoami = t4_read_reg(adapter, A_PL_WHOAMI);
1327 	chip = t4_get_chip_type(adapter,
1328 			CHELSIO_PCI_ID_VER(adapter->pdev->id.device_id));
1329 	if (chip < 0)
1330 		return chip;
1331 
1332 	func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
1333 	       G_SOURCEPF(whoami) : G_T6_SOURCEPF(whoami);
1334 
1335 	adapter->mbox = func;
1336 	adapter->pf = func;
1337 
1338 	t4_os_lock_init(&adapter->mbox_lock);
1339 	TAILQ_INIT(&adapter->mbox_list);
1340 
1341 	err = t4_prep_adapter(adapter);
1342 	if (err)
1343 		return err;
1344 
1345 	setup_memwin(adapter);
1346 	err = adap_init0(adapter);
1347 	if (err) {
1348 		dev_err(adapter, "%s: Adapter initialization failed, error %d\n",
1349 			__func__, err);
1350 		goto out_free;
1351 	}
1352 
1353 	if (!is_t4(adapter->params.chip)) {
1354 		/*
1355 		 * The userspace doorbell BAR is split evenly into doorbell
1356 		 * regions, each associated with an egress queue.  If this
1357 		 * per-queue region is large enough (at least UDBS_SEG_SIZE)
1358 		 * then it can be used to submit a tx work request with an
1359 		 * implied doorbell.  Enable write combining on the BAR if
1360 		 * there is room for such work requests.
1361 		 */
1362 		int s_qpp, qpp, num_seg;
1363 
1364 		s_qpp = (S_QUEUESPERPAGEPF0 +
1365 			(S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) *
1366 			adapter->pf);
1367 		qpp = 1 << ((t4_read_reg(adapter,
1368 				A_SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp)
1369 				& M_QUEUESPERPAGEPF0);
1370 		num_seg = CXGBE_PAGE_SIZE / UDBS_SEG_SIZE;
1371 		if (qpp > num_seg)
1372 			dev_warn(adapter, "Incorrect SGE EGRESS QUEUES_PER_PAGE configuration, continuing in debug mode\n");
1373 
1374 		adapter->bar2 = (void *)adapter->pdev->mem_resource[2].addr;
1375 		if (!adapter->bar2) {
1376 			dev_err(adapter, "cannot map device bar2 region\n");
1377 			err = -ENOMEM;
1378 			goto out_free;
1379 		}
1380 		t4_write_reg(adapter, A_SGE_STAT_CFG, V_STATSOURCE_T5(7) |
1381 			     V_STATMODE(0));
1382 	}
1383 
1384 	for_each_port(adapter, i) {
1385 		const unsigned int numa_node = rte_socket_id();
1386 		char name[RTE_ETH_NAME_MAX_LEN];
1387 		struct rte_eth_dev *eth_dev;
1388 
1389 		snprintf(name, sizeof(name), "%s_%d",
1390 			 adapter->pdev->device.name, i);
1391 
1392 		if (i == 0) {
1393 			/* First port is already allocated by DPDK */
1394 			eth_dev = adapter->eth_dev;
1395 			goto allocate_mac;
1396 		}
1397 
1398 		/*
1399 		 * now do all data allocation - for eth_dev structure,
1400 		 * and internal (private) data for the remaining ports
1401 		 */
1402 
1403 		/* reserve an ethdev entry */
1404 		eth_dev = rte_eth_dev_allocate(name);
1405 		if (!eth_dev)
1406 			goto out_free;
1407 
1408 		eth_dev->data->dev_private =
1409 			rte_zmalloc_socket(name, sizeof(struct port_info),
1410 					   RTE_CACHE_LINE_SIZE, numa_node);
1411 		if (!eth_dev->data->dev_private)
1412 			goto out_free;
1413 
1414 allocate_mac:
1415 		pi = (struct port_info *)eth_dev->data->dev_private;
1416 		adapter->port[i] = pi;
1417 		pi->eth_dev = eth_dev;
1418 		pi->adapter = adapter;
1419 		pi->xact_addr_filt = -1;
1420 		pi->port_id = i;
1421 		pi->pidx = i;
1422 
1423 		pi->eth_dev->device = &adapter->pdev->device;
1424 		pi->eth_dev->dev_ops = adapter->eth_dev->dev_ops;
1425 		pi->eth_dev->tx_pkt_burst = adapter->eth_dev->tx_pkt_burst;
1426 		pi->eth_dev->rx_pkt_burst = adapter->eth_dev->rx_pkt_burst;
1427 
1428 		rte_eth_copy_pci_info(pi->eth_dev, adapter->pdev);
1429 
1430 		pi->eth_dev->data->mac_addrs = rte_zmalloc(name,
1431 							   ETHER_ADDR_LEN, 0);
1432 		if (!pi->eth_dev->data->mac_addrs) {
1433 			dev_err(adapter, "%s: Mem allocation failed for storing mac addr, aborting\n",
1434 				__func__);
1435 			err = -1;
1436 			goto out_free;
1437 		}
1438 
1439 		if (i > 0) {
1440 			/* First port will be notified by upper layer */
1441 			rte_eth_dev_probing_finish(eth_dev);
1442 		}
1443 	}
1444 
1445 	if (adapter->flags & FW_OK) {
1446 		err = t4_port_init(adapter, adapter->mbox, adapter->pf, 0);
1447 		if (err) {
1448 			dev_err(adapter, "%s: t4_port_init failed with err %d\n",
1449 				__func__, err);
1450 			goto out_free;
1451 		}
1452 	}
1453 
1454 	cfg_queues(adapter->eth_dev);
1455 
1456 	print_adapter_info(adapter);
1457 	print_port_info(adapter);
1458 
1459 	err = init_rss(adapter);
1460 	if (err)
1461 		goto out_free;
1462 
1463 	return 0;
1464 
1465 out_free:
1466 	for_each_port(adapter, i) {
1467 		pi = adap2pinfo(adapter, i);
1468 		if (pi->viid != 0)
1469 			t4_free_vi(adapter, adapter->mbox, adapter->pf,
1470 				   0, pi->viid);
1471 		/* Skip first port since it'll be de-allocated by DPDK */
1472 		if (i == 0)
1473 			continue;
1474 		if (pi->eth_dev) {
1475 			if (pi->eth_dev->data->dev_private)
1476 				rte_free(pi->eth_dev->data->dev_private);
1477 			rte_eth_dev_release_port(pi->eth_dev);
1478 		}
1479 	}
1480 
1481 	if (adapter->flags & FW_OK)
1482 		t4_fw_bye(adapter, adapter->mbox);
1483 	return -err;
1484 }
1485