1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2018 Chelsio Communications. 3 * All rights reserved. 4 */ 5 6 #include <ethdev_driver.h> 7 #include <rte_ether.h> 8 9 #include "common.h" 10 #include "t4_regs.h" 11 12 /** 13 * t4vf_wait_dev_ready - wait till to reads of registers work 14 * 15 * Wait for the device to become ready (signified by our "who am I" register 16 * returning a value other than all 1's). Return an error if it doesn't 17 * become ready ... 18 */ 19 static int t4vf_wait_dev_ready(struct adapter *adapter) 20 { 21 const u32 whoami = T4VF_PL_BASE_ADDR + A_PL_VF_WHOAMI; 22 const u32 notready1 = 0xffffffff; 23 const u32 notready2 = 0xeeeeeeee; 24 u32 val; 25 26 val = t4_read_reg(adapter, whoami); 27 if (val != notready1 && val != notready2) 28 return 0; 29 30 msleep(500); 31 val = t4_read_reg(adapter, whoami); 32 if (val != notready1 && val != notready2) 33 return 0; 34 35 dev_err(adapter, "Device didn't become ready for access, whoami = %#x\n", 36 val); 37 return -EIO; 38 } 39 40 /* 41 * Get the reply to a mailbox command and store it in @rpl in big-endian order. 42 */ 43 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit, 44 u32 mbox_addr) 45 { 46 for ( ; nflit; nflit--, mbox_addr += 8) 47 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr)); 48 } 49 50 /** 51 * t4vf_wr_mbox_core - send a command to FW through the mailbox 52 * @adapter: the adapter 53 * @cmd: the command to write 54 * @size: command length in bytes 55 * @rpl: where to optionally store the reply 56 * @sleep_ok: if true we may sleep while awaiting command completion 57 * 58 * Sends the given command to FW through the mailbox and waits for the 59 * FW to execute the command. If @rpl is not %NULL it is used to store 60 * the FW's reply to the command. The command and its optional reply 61 * are of the same length. FW can take up to 500 ms to respond. 62 * @sleep_ok determines whether we may sleep while awaiting the response. 63 * If sleeping is allowed we use progressive backoff otherwise we spin. 64 * 65 * The return value is 0 on success or a negative errno on failure. A 66 * failure can happen either because we are not able to execute the 67 * command or FW executes it but signals an error. In the latter case 68 * the return value is the error code indicated by FW (negated). 69 */ 70 int t4vf_wr_mbox_core(struct adapter *adapter, 71 const void __attribute__((__may_alias__)) *cmd, 72 int size, void *rpl, bool sleep_ok) 73 { 74 /* 75 * We delay in small increments at first in an effort to maintain 76 * responsiveness for simple, fast executing commands but then back 77 * off to larger delays to a maximum retry delay. 78 */ 79 static const int delay[] = { 80 1, 1, 3, 5, 10, 10, 20, 50, 100 81 }; 82 83 84 u32 mbox_ctl = T4VF_CIM_BASE_ADDR + A_CIM_VF_EXT_MAILBOX_CTRL; 85 __be64 cmd_rpl[MBOX_LEN / 8]; 86 struct mbox_entry entry; 87 unsigned int delay_idx; 88 u32 v, mbox_data; 89 const __be64 *p; 90 int i, ret; 91 int ms; 92 93 /* In T6, mailbox size is changed to 128 bytes to avoid 94 * invalidating the entire prefetch buffer. 95 */ 96 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 97 mbox_data = T4VF_MBDATA_BASE_ADDR; 98 else 99 mbox_data = T6VF_MBDATA_BASE_ADDR; 100 101 /* 102 * Commands must be multiples of 16 bytes in length and may not be 103 * larger than the size of the Mailbox Data register array. 104 */ 105 if ((size % 16) != 0 || 106 size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4) 107 return -EINVAL; 108 109 /* 110 * Queue ourselves onto the mailbox access list. When our entry is at 111 * the front of the list, we have rights to access the mailbox. So we 112 * wait [for a while] till we're at the front [or bail out with an 113 * EBUSY] ... 114 */ 115 t4_os_atomic_add_tail(&entry, &adapter->mbox_list, &adapter->mbox_lock); 116 117 delay_idx = 0; 118 ms = delay[0]; 119 120 for (i = 0; ; i += ms) { 121 /* 122 * If we've waited too long, return a busy indication. This 123 * really ought to be based on our initial position in the 124 * mailbox access list but this is a start. We very rarely 125 * contend on access to the mailbox ... 126 */ 127 if (i > (2 * FW_CMD_MAX_TIMEOUT)) { 128 t4_os_atomic_list_del(&entry, &adapter->mbox_list, 129 &adapter->mbox_lock); 130 ret = -EBUSY; 131 return ret; 132 } 133 134 /* 135 * If we're at the head, break out and start the mailbox 136 * protocol. 137 */ 138 if (t4_os_list_first_entry(&adapter->mbox_list) == &entry) 139 break; 140 141 /* 142 * Delay for a bit before checking again ... 143 */ 144 if (sleep_ok) { 145 ms = delay[delay_idx]; /* last element may repeat */ 146 if (delay_idx < ARRAY_SIZE(delay) - 1) 147 delay_idx++; 148 msleep(ms); 149 } else { 150 rte_delay_ms(ms); 151 } 152 } 153 154 /* 155 * Loop trying to get ownership of the mailbox. Return an error 156 * if we can't gain ownership. 157 */ 158 v = G_MBOWNER(t4_read_reg(adapter, mbox_ctl)); 159 for (i = 0; v == X_MBOWNER_NONE && i < 3; i++) 160 v = G_MBOWNER(t4_read_reg(adapter, mbox_ctl)); 161 162 if (v != X_MBOWNER_PL) { 163 t4_os_atomic_list_del(&entry, &adapter->mbox_list, 164 &adapter->mbox_lock); 165 ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT; 166 return ret; 167 } 168 169 /* 170 * Write the command array into the Mailbox Data register array and 171 * transfer ownership of the mailbox to the firmware. 172 */ 173 for (i = 0, p = cmd; i < size; i += 8) 174 t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++)); 175 176 t4_read_reg(adapter, mbox_data); /* flush write */ 177 t4_write_reg(adapter, mbox_ctl, 178 F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW)); 179 t4_read_reg(adapter, mbox_ctl); /* flush write */ 180 delay_idx = 0; 181 ms = delay[0]; 182 183 /* 184 * Spin waiting for firmware to acknowledge processing our command. 185 */ 186 for (i = 0; i < FW_CMD_MAX_TIMEOUT; i++) { 187 if (sleep_ok) { 188 ms = delay[delay_idx]; /* last element may repeat */ 189 if (delay_idx < ARRAY_SIZE(delay) - 1) 190 delay_idx++; 191 msleep(ms); 192 } else { 193 rte_delay_ms(ms); 194 } 195 196 /* 197 * If we're the owner, see if this is the reply we wanted. 198 */ 199 v = t4_read_reg(adapter, mbox_ctl); 200 if (G_MBOWNER(v) == X_MBOWNER_PL) { 201 /* 202 * If the Message Valid bit isn't on, revoke ownership 203 * of the mailbox and continue waiting for our reply. 204 */ 205 if ((v & F_MBMSGVALID) == 0) { 206 t4_write_reg(adapter, mbox_ctl, 207 V_MBOWNER(X_MBOWNER_NONE)); 208 continue; 209 } 210 211 /* 212 * We now have our reply. Extract the command return 213 * value, copy the reply back to our caller's buffer 214 * (if specified) and revoke ownership of the mailbox. 215 * We return the (negated) firmware command return 216 * code (this depends on FW_SUCCESS == 0). (Again we 217 * avoid clogging the log with FW_VI_STATS_CMD 218 * reply results.) 219 */ 220 221 /* 222 * Retrieve the command reply and release the mailbox. 223 */ 224 get_mbox_rpl(adapter, cmd_rpl, size / 8, mbox_data); 225 t4_write_reg(adapter, mbox_ctl, 226 V_MBOWNER(X_MBOWNER_NONE)); 227 t4_os_atomic_list_del(&entry, &adapter->mbox_list, 228 &adapter->mbox_lock); 229 230 /* return value in high-order host-endian word */ 231 v = be64_to_cpu(cmd_rpl[0]); 232 233 if (rpl) { 234 /* request bit in high-order BE word */ 235 WARN_ON((be32_to_cpu(*(const u32 *)cmd) 236 & F_FW_CMD_REQUEST) == 0); 237 memcpy(rpl, cmd_rpl, size); 238 } 239 return -((int)G_FW_CMD_RETVAL(v)); 240 } 241 } 242 243 /* 244 * We timed out. Return the error ... 245 */ 246 dev_err(adapter, "command %#x timed out\n", 247 *(const u8 *)cmd); 248 dev_err(adapter, " Control = %#x\n", t4_read_reg(adapter, mbox_ctl)); 249 t4_os_atomic_list_del(&entry, &adapter->mbox_list, &adapter->mbox_lock); 250 ret = -ETIMEDOUT; 251 return ret; 252 } 253 254 /** 255 * t4vf_fw_reset - issue a reset to FW 256 * @adapter: the adapter 257 * 258 * Issues a reset command to FW. For a Physical Function this would 259 * result in the Firmware resetting all of its state. For a Virtual 260 * Function this just resets the state associated with the VF. 261 */ 262 int t4vf_fw_reset(struct adapter *adapter) 263 { 264 struct fw_reset_cmd cmd; 265 266 memset(&cmd, 0, sizeof(cmd)); 267 cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RESET_CMD) | 268 F_FW_CMD_WRITE); 269 cmd.retval_len16 = cpu_to_be32(V_FW_CMD_LEN16(FW_LEN16(cmd))); 270 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 271 } 272 273 /** 274 * t4vf_prep_adapter - prepare SW and HW for operation 275 * @adapter: the adapter 276 * 277 * Initialize adapter SW state for the various HW modules, set initial 278 * values for some adapter tunables, take PHYs out of reset, and 279 * initialize the MDIO interface. 280 */ 281 int t4vf_prep_adapter(struct adapter *adapter) 282 { 283 u32 pl_vf_rev; 284 int ret, ver; 285 286 ret = t4vf_wait_dev_ready(adapter); 287 if (ret < 0) 288 return ret; 289 290 /* 291 * Default port and clock for debugging in case we can't reach 292 * firmware. 293 */ 294 adapter->params.nports = 1; 295 adapter->params.vfres.pmask = 1; 296 adapter->params.vpd.cclk = 50000; 297 298 pl_vf_rev = G_REV(t4_read_reg(adapter, A_PL_VF_REV)); 299 adapter->params.pci.device_id = adapter->pdev->id.device_id; 300 adapter->params.pci.vendor_id = adapter->pdev->id.vendor_id; 301 302 /* 303 * WE DON'T NEED adapter->params.chip CODE ONCE PL_REV CONTAINS 304 * ADAPTER (VERSION << 4 | REVISION) 305 */ 306 ver = CHELSIO_PCI_ID_VER(adapter->params.pci.device_id); 307 adapter->params.chip = 0; 308 switch (ver) { 309 case CHELSIO_T5: 310 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, 311 pl_vf_rev); 312 adapter->params.arch.sge_fl_db = F_DBPRIO | F_DBTYPE; 313 adapter->params.arch.mps_tcam_size = 314 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 315 break; 316 case CHELSIO_T6: 317 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, 318 pl_vf_rev); 319 adapter->params.arch.sge_fl_db = 0; 320 adapter->params.arch.mps_tcam_size = 321 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 322 break; 323 default: 324 dev_err(adapter, "%s: Device %d is not supported\n", 325 __func__, adapter->params.pci.device_id); 326 return -EINVAL; 327 } 328 return 0; 329 } 330 331 /** 332 * t4vf_query_params - query FW or device parameters 333 * @adapter: the adapter 334 * @nparams: the number of parameters 335 * @params: the parameter names 336 * @vals: the parameter values 337 * 338 * Reads the values of firmware or device parameters. Up to 7 parameters 339 * can be queried at once. 340 */ 341 int t4vf_query_params(struct adapter *adapter, unsigned int nparams, 342 const u32 *params, u32 *vals) 343 { 344 struct fw_params_cmd cmd, rpl; 345 struct fw_params_param *p; 346 unsigned int i; 347 size_t len16; 348 int ret; 349 350 if (nparams > 7) 351 return -EINVAL; 352 353 memset(&cmd, 0, sizeof(cmd)); 354 cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) | 355 F_FW_CMD_REQUEST | 356 F_FW_CMD_READ); 357 len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd, 358 param[nparams]), 16); 359 cmd.retval_len16 = cpu_to_be32(V_FW_CMD_LEN16(len16)); 360 for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) 361 p->mnem = cpu_to_be32(*params++); 362 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 363 if (ret == 0) 364 for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++) 365 *vals++ = be32_to_cpu(p->val); 366 return ret; 367 } 368 369 /** 370 * t4vf_get_vpd_params - retrieve device VPD paremeters 371 * @adapter: the adapter 372 * 373 * Retrives various device Vital Product Data parameters. The parameters 374 * are stored in @adapter->params.vpd. 375 */ 376 int t4vf_get_vpd_params(struct adapter *adapter) 377 { 378 struct vpd_params *vpd_params = &adapter->params.vpd; 379 u32 params[7], vals[7]; 380 int v; 381 382 params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 383 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CCLK)); 384 v = t4vf_query_params(adapter, 1, params, vals); 385 if (v != FW_SUCCESS) 386 return v; 387 vpd_params->cclk = vals[0]; 388 dev_debug(adapter, "%s: vpd_params->cclk = %u\n", 389 __func__, vpd_params->cclk); 390 return 0; 391 } 392 393 /** 394 * t4vf_get_dev_params - retrieve device paremeters 395 * @adapter: the adapter 396 * 397 * Retrives fw and tp version. 398 */ 399 int t4vf_get_dev_params(struct adapter *adapter) 400 { 401 u32 params[7], vals[7]; 402 int v; 403 404 params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 405 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWREV)); 406 params[1] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 407 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_TPREV)); 408 v = t4vf_query_params(adapter, 2, params, vals); 409 if (v != FW_SUCCESS) 410 return v; 411 adapter->params.fw_vers = vals[0]; 412 adapter->params.tp_vers = vals[1]; 413 414 dev_info(adapter, "Firmware version: %u.%u.%u.%u\n", 415 G_FW_HDR_FW_VER_MAJOR(adapter->params.fw_vers), 416 G_FW_HDR_FW_VER_MINOR(adapter->params.fw_vers), 417 G_FW_HDR_FW_VER_MICRO(adapter->params.fw_vers), 418 G_FW_HDR_FW_VER_BUILD(adapter->params.fw_vers)); 419 420 dev_info(adapter, "TP Microcode version: %u.%u.%u.%u\n", 421 G_FW_HDR_FW_VER_MAJOR(adapter->params.tp_vers), 422 G_FW_HDR_FW_VER_MINOR(adapter->params.tp_vers), 423 G_FW_HDR_FW_VER_MICRO(adapter->params.tp_vers), 424 G_FW_HDR_FW_VER_BUILD(adapter->params.tp_vers)); 425 return 0; 426 } 427 428 /** 429 * t4vf_set_params - sets FW or device parameters 430 * @adapter: the adapter 431 * @nparams: the number of parameters 432 * @params: the parameter names 433 * @vals: the parameter values 434 * 435 * Sets the values of firmware or device parameters. Up to 7 parameters 436 * can be specified at once. 437 */ 438 int t4vf_set_params(struct adapter *adapter, unsigned int nparams, 439 const u32 *params, const u32 *vals) 440 { 441 struct fw_params_param *p; 442 struct fw_params_cmd cmd; 443 unsigned int i; 444 size_t len16; 445 446 if (nparams > 7) 447 return -EINVAL; 448 449 memset(&cmd, 0, sizeof(cmd)); 450 cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) | 451 F_FW_CMD_REQUEST | 452 F_FW_CMD_WRITE); 453 len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd, 454 param[nparams]), 16); 455 cmd.retval_len16 = cpu_to_be32(V_FW_CMD_LEN16(len16)); 456 for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) { 457 p->mnem = cpu_to_be32(*params++); 458 p->val = cpu_to_be32(*vals++); 459 } 460 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 461 } 462 463 /** 464 * t4vf_fl_pkt_align - return the fl packet alignment 465 * @adapter: the adapter 466 * 467 * T4 has a single field to specify the packing and padding boundary. 468 * T5 onwards has separate fields for this and hence the alignment for 469 * next packet offset is maximum of these two. 470 */ 471 int t4vf_fl_pkt_align(struct adapter *adapter, u32 sge_control, 472 u32 sge_control2) 473 { 474 unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift; 475 476 /* T4 uses a single control field to specify both the PCIe Padding and 477 * Packing Boundary. T5 introduced the ability to specify these 478 * separately. The actual Ingress Packet Data alignment boundary 479 * within Packed Buffer Mode is the maximum of these two 480 * specifications. 481 */ 482 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 483 ingpad_shift = X_INGPADBOUNDARY_SHIFT; 484 else 485 ingpad_shift = X_T6_INGPADBOUNDARY_SHIFT; 486 487 ingpadboundary = 1 << (G_INGPADBOUNDARY(sge_control) + ingpad_shift); 488 489 fl_align = ingpadboundary; 490 if (!is_t4(adapter->params.chip)) { 491 ingpackboundary = G_INGPACKBOUNDARY(sge_control2); 492 if (ingpackboundary == X_INGPACKBOUNDARY_16B) 493 ingpackboundary = 16; 494 else 495 ingpackboundary = 1 << (ingpackboundary + 496 X_INGPACKBOUNDARY_SHIFT); 497 498 fl_align = max(ingpadboundary, ingpackboundary); 499 } 500 return fl_align; 501 } 502 503 unsigned int t4vf_get_pf_from_vf(struct adapter *adapter) 504 { 505 u32 whoami; 506 507 whoami = t4_read_reg(adapter, T4VF_PL_BASE_ADDR + A_PL_VF_WHOAMI); 508 return (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 509 G_SOURCEPF(whoami) : G_T6_SOURCEPF(whoami)); 510 } 511 512 /** 513 * t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration 514 * @adapter: the adapter 515 * 516 * Retrieves global RSS mode and parameters with which we have to live 517 * and stores them in the @adapter's RSS parameters. 518 */ 519 int t4vf_get_rss_glb_config(struct adapter *adapter) 520 { 521 struct rss_params *rss = &adapter->params.rss; 522 struct fw_rss_glb_config_cmd cmd, rpl; 523 int v; 524 525 /* 526 * Execute an RSS Global Configuration read command to retrieve 527 * our RSS configuration. 528 */ 529 memset(&cmd, 0, sizeof(cmd)); 530 cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) | 531 F_FW_CMD_REQUEST | 532 F_FW_CMD_READ); 533 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 534 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 535 if (v != FW_SUCCESS) 536 return v; 537 538 /* 539 * Translate the big-endian RSS Global Configuration into our 540 * cpu-endian format based on the RSS mode. We also do first level 541 * filtering at this point to weed out modes which don't support 542 * VF Drivers ... 543 */ 544 rss->mode = G_FW_RSS_GLB_CONFIG_CMD_MODE 545 (be32_to_cpu(rpl.u.manual.mode_pkd)); 546 switch (rss->mode) { 547 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: { 548 u32 word = be32_to_cpu 549 (rpl.u.basicvirtual.synmapen_to_hashtoeplitz); 550 551 rss->u.basicvirtual.synmapen = 552 ((word & F_FW_RSS_GLB_CONFIG_CMD_SYNMAPEN) != 0); 553 rss->u.basicvirtual.syn4tupenipv6 = 554 ((word & F_FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6) != 0); 555 rss->u.basicvirtual.syn2tupenipv6 = 556 ((word & F_FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6) != 0); 557 rss->u.basicvirtual.syn4tupenipv4 = 558 ((word & F_FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4) != 0); 559 rss->u.basicvirtual.syn2tupenipv4 = 560 ((word & F_FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4) != 0); 561 rss->u.basicvirtual.ofdmapen = 562 ((word & F_FW_RSS_GLB_CONFIG_CMD_OFDMAPEN) != 0); 563 rss->u.basicvirtual.tnlmapen = 564 ((word & F_FW_RSS_GLB_CONFIG_CMD_TNLMAPEN) != 0); 565 rss->u.basicvirtual.tnlalllookup = 566 ((word & F_FW_RSS_GLB_CONFIG_CMD_TNLALLLKP) != 0); 567 rss->u.basicvirtual.hashtoeplitz = 568 ((word & F_FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ) != 0); 569 570 /* we need at least Tunnel Map Enable to be set */ 571 if (!rss->u.basicvirtual.tnlmapen) 572 return -EINVAL; 573 break; 574 } 575 576 default: 577 /* all unknown/unsupported RSS modes result in an error */ 578 return -EINVAL; 579 } 580 return 0; 581 } 582 583 /** 584 * t4vf_get_vfres - retrieve VF resource limits 585 * @adapter: the adapter 586 * 587 * Retrieves configured resource limits and capabilities for a virtual 588 * function. The results are stored in @adapter->vfres. 589 */ 590 int t4vf_get_vfres(struct adapter *adapter) 591 { 592 struct vf_resources *vfres = &adapter->params.vfres; 593 struct fw_pfvf_cmd cmd, rpl; 594 u32 word; 595 int v; 596 597 /* 598 * Execute PFVF Read command to get VF resource limits; bail out early 599 * with error on command failure. 600 */ 601 memset(&cmd, 0, sizeof(cmd)); 602 cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | 603 F_FW_CMD_REQUEST | 604 F_FW_CMD_READ); 605 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 606 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 607 if (v != FW_SUCCESS) 608 return v; 609 610 /* 611 * Extract VF resource limits and return success. 612 */ 613 word = be32_to_cpu(rpl.niqflint_niq); 614 vfres->niqflint = G_FW_PFVF_CMD_NIQFLINT(word); 615 vfres->niq = G_FW_PFVF_CMD_NIQ(word); 616 617 word = be32_to_cpu(rpl.type_to_neq); 618 vfres->neq = G_FW_PFVF_CMD_NEQ(word); 619 vfres->pmask = G_FW_PFVF_CMD_PMASK(word); 620 621 word = be32_to_cpu(rpl.tc_to_nexactf); 622 vfres->tc = G_FW_PFVF_CMD_TC(word); 623 vfres->nvi = G_FW_PFVF_CMD_NVI(word); 624 vfres->nexactf = G_FW_PFVF_CMD_NEXACTF(word); 625 626 word = be32_to_cpu(rpl.r_caps_to_nethctrl); 627 vfres->r_caps = G_FW_PFVF_CMD_R_CAPS(word); 628 vfres->wx_caps = G_FW_PFVF_CMD_WX_CAPS(word); 629 vfres->nethctrl = G_FW_PFVF_CMD_NETHCTRL(word); 630 return 0; 631 } 632 633 /** 634 * t4vf_get_port_stats_fw - collect "port" statistics via Firmware 635 * @adapter: the adapter 636 * @pidx: the port index 637 * @s: the stats structure to fill 638 * 639 * Collect statistics for the "port"'s Virtual Interface via Firmware 640 * commands. 641 */ 642 static int t4vf_get_port_stats_fw(struct adapter *adapter, int pidx, 643 struct port_stats *p) 644 { 645 struct port_info *pi = adap2pinfo(adapter, pidx); 646 unsigned int rem = VI_VF_NUM_STATS; 647 struct fw_vi_stats_vf fwstats; 648 __be64 *fwsp = (__be64 *)&fwstats; 649 650 /* 651 * Grab the Virtual Interface statistics a chunk at a time via mailbox 652 * commands. We could use a Work Request and get all of them at once 653 * but that's an asynchronous interface which is awkward to use. 654 */ 655 while (rem) { 656 unsigned int ix = VI_VF_NUM_STATS - rem; 657 unsigned int nstats = min(6U, rem); 658 struct fw_vi_stats_cmd cmd, rpl; 659 size_t len = (offsetof(struct fw_vi_stats_cmd, u) + 660 sizeof(struct fw_vi_stats_ctl)); 661 size_t len16 = DIV_ROUND_UP(len, 16); 662 int ret; 663 664 memset(&cmd, 0, sizeof(cmd)); 665 cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_STATS_CMD) | 666 V_FW_VI_STATS_CMD_VIID(pi->viid) | 667 F_FW_CMD_REQUEST | 668 F_FW_CMD_READ); 669 cmd.retval_len16 = cpu_to_be32(V_FW_CMD_LEN16(len16)); 670 cmd.u.ctl.nstats_ix = 671 cpu_to_be16(V_FW_VI_STATS_CMD_IX(ix) | 672 V_FW_VI_STATS_CMD_NSTATS(nstats)); 673 ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl); 674 if (ret != FW_SUCCESS) 675 return ret; 676 677 memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats); 678 679 rem -= nstats; 680 fwsp += nstats; 681 } 682 683 /* 684 * Translate firmware statistics into host native statistics. 685 */ 686 p->tx_octets = be64_to_cpu(fwstats.tx_bcast_bytes) + 687 be64_to_cpu(fwstats.tx_mcast_bytes) + 688 be64_to_cpu(fwstats.tx_ucast_bytes); 689 p->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames); 690 p->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames); 691 p->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames); 692 p->tx_drop = be64_to_cpu(fwstats.tx_drop_frames); 693 694 p->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames); 695 p->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames); 696 p->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames); 697 p->rx_len_err = be64_to_cpu(fwstats.rx_err_frames); 698 699 return 0; 700 } 701 702 /** 703 * t4vf_get_port_stats - collect "port" statistics 704 * @adapter: the adapter 705 * @pidx: the port index 706 * @s: the stats structure to fill 707 * 708 * Collect statistics for the "port"'s Virtual Interface. 709 */ 710 void t4vf_get_port_stats(struct adapter *adapter, int pidx, 711 struct port_stats *p) 712 { 713 /* 714 * If this is not the first Virtual Interface for our Virtual 715 * Function, we need to use Firmware commands to retrieve its 716 * MPS statistics. 717 */ 718 if (pidx != 0) 719 t4vf_get_port_stats_fw(adapter, pidx, p); 720 721 /* 722 * But for the first VI, we can grab its statistics via the MPS 723 * register mapped into the VF register space. 724 */ 725 #define GET_STAT(name) \ 726 t4_read_reg64(adapter, \ 727 T4VF_MPS_BASE_ADDR + A_MPS_VF_STAT_##name##_L) 728 p->tx_octets = GET_STAT(TX_VF_BCAST_BYTES) + 729 GET_STAT(TX_VF_MCAST_BYTES) + 730 GET_STAT(TX_VF_UCAST_BYTES); 731 p->tx_bcast_frames = GET_STAT(TX_VF_BCAST_FRAMES); 732 p->tx_mcast_frames = GET_STAT(TX_VF_MCAST_FRAMES); 733 p->tx_ucast_frames = GET_STAT(TX_VF_UCAST_FRAMES); 734 p->tx_drop = GET_STAT(TX_VF_DROP_FRAMES); 735 736 p->rx_bcast_frames = GET_STAT(RX_VF_BCAST_FRAMES); 737 p->rx_mcast_frames = GET_STAT(RX_VF_MCAST_FRAMES); 738 p->rx_ucast_frames = GET_STAT(RX_VF_UCAST_FRAMES); 739 740 p->rx_len_err = GET_STAT(RX_VF_ERR_FRAMES); 741 #undef GET_STAT 742 } 743 744 static int t4vf_alloc_vi(struct adapter *adapter, int port_id) 745 { 746 struct fw_vi_cmd cmd, rpl; 747 int v; 748 749 /* 750 * Execute a VI command to allocate Virtual Interface and return its 751 * VIID. 752 */ 753 memset(&cmd, 0, sizeof(cmd)); 754 cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | 755 F_FW_CMD_REQUEST | 756 F_FW_CMD_WRITE | 757 F_FW_CMD_EXEC); 758 cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) | 759 F_FW_VI_CMD_ALLOC); 760 cmd.portid_pkd = V_FW_VI_CMD_PORTID(port_id); 761 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 762 if (v != FW_SUCCESS) 763 return v; 764 return G_FW_VI_CMD_VIID(be16_to_cpu(rpl.type_to_viid)); 765 } 766 767 int t4vf_port_init(struct adapter *adapter) 768 { 769 struct fw_port_cmd port_cmd, port_rpl, rpl; 770 struct fw_vi_cmd vi_cmd, vi_rpl; 771 u32 param, val, pcaps, acaps; 772 enum fw_port_type port_type; 773 int mdio_addr; 774 int ret, i; 775 776 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | 777 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_PORT_CAPS32)); 778 val = 1; 779 ret = t4vf_set_params(adapter, 1, ¶m, &val); 780 if (ret < 0) 781 return ret; 782 783 for_each_port(adapter, i) { 784 struct port_info *p = adap2pinfo(adapter, i); 785 u32 lstatus32; 786 787 ret = t4vf_alloc_vi(adapter, p->port_id); 788 if (ret < 0) { 789 dev_err(&pdev->dev, "cannot allocate VI for port %d:" 790 " err=%d\n", p->port_id, ret); 791 return ret; 792 } 793 p->viid = ret; 794 795 /* 796 * Execute a VI Read command to get our Virtual Interface 797 * information like MAC address, etc. 798 */ 799 memset(&vi_cmd, 0, sizeof(vi_cmd)); 800 vi_cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | 801 F_FW_CMD_REQUEST | 802 F_FW_CMD_READ); 803 vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd)); 804 vi_cmd.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(p->viid)); 805 ret = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl); 806 if (ret != FW_SUCCESS) 807 return ret; 808 809 p->rss_size = G_FW_VI_CMD_RSSSIZE 810 (be16_to_cpu(vi_rpl.norss_rsssize)); 811 t4_os_set_hw_addr(adapter, i, vi_rpl.mac); 812 813 /* 814 * If we don't have read access to our port information, we're 815 * done now. Else, execute a PORT Read command to get it ... 816 */ 817 if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT)) 818 return 0; 819 820 memset(&port_cmd, 0, sizeof(port_cmd)); 821 port_cmd.op_to_portid = 822 cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) | 823 F_FW_CMD_REQUEST | F_FW_CMD_READ | 824 V_FW_PORT_CMD_PORTID(p->port_id)); 825 val = FW_PORT_ACTION_GET_PORT_INFO32; 826 port_cmd.action_to_len16 = 827 cpu_to_be32(V_FW_PORT_CMD_ACTION(val) | 828 FW_LEN16(port_cmd)); 829 ret = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), 830 &port_rpl); 831 if (ret != FW_SUCCESS) 832 return ret; 833 834 /* 835 * Extract the various fields from the Port Information message. 836 */ 837 rpl = port_rpl; 838 lstatus32 = be32_to_cpu(rpl.u.info32.lstatus32_to_cbllen32); 839 840 port_type = G_FW_PORT_CMD_PORTTYPE32(lstatus32); 841 mdio_addr = (lstatus32 & F_FW_PORT_CMD_MDIOCAP32) ? 842 (int)G_FW_PORT_CMD_MDIOADDR32(lstatus32) : -1; 843 pcaps = be32_to_cpu(port_rpl.u.info32.pcaps32); 844 acaps = be32_to_cpu(port_rpl.u.info32.acaps32); 845 846 t4_init_link_config(p, pcaps, acaps, mdio_addr, port_type, 847 FW_PORT_MOD_TYPE_NA); 848 } 849 return 0; 850 } 851