1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2018 Chelsio Communications. 3 * All rights reserved. 4 */ 5 6 #include <ethdev_driver.h> 7 #include <rte_ether.h> 8 9 #include "common.h" 10 #include "t4_regs.h" 11 12 /** 13 * t4vf_wait_dev_ready - wait till to reads of registers work 14 * 15 * Wait for the device to become ready (signified by our "who am I" register 16 * returning a value other than all 1's). Return an error if it doesn't 17 * become ready ... 18 */ 19 static int t4vf_wait_dev_ready(struct adapter *adapter) 20 { 21 const u32 whoami = T4VF_PL_BASE_ADDR + A_PL_VF_WHOAMI; 22 const u32 notready1 = 0xffffffff; 23 const u32 notready2 = 0xeeeeeeee; 24 u32 val; 25 26 val = t4_read_reg(adapter, whoami); 27 if (val != notready1 && val != notready2) 28 return 0; 29 30 msleep(500); 31 val = t4_read_reg(adapter, whoami); 32 if (val != notready1 && val != notready2) 33 return 0; 34 35 dev_err(adapter, "Device didn't become ready for access, whoami = %#x\n", 36 val); 37 return -EIO; 38 } 39 40 /* 41 * Get the reply to a mailbox command and store it in @rpl in big-endian order. 42 */ 43 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit, 44 u32 mbox_addr) 45 { 46 for ( ; nflit; nflit--, mbox_addr += 8) 47 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr)); 48 } 49 50 /** 51 * t4vf_wr_mbox_core - send a command to FW through the mailbox 52 * @adapter: the adapter 53 * @cmd: the command to write 54 * @size: command length in bytes 55 * @rpl: where to optionally store the reply 56 * @sleep_ok: if true we may sleep while awaiting command completion 57 * 58 * Sends the given command to FW through the mailbox and waits for the 59 * FW to execute the command. If @rpl is not %NULL it is used to store 60 * the FW's reply to the command. The command and its optional reply 61 * are of the same length. FW can take up to 500 ms to respond. 62 * @sleep_ok determines whether we may sleep while awaiting the response. 63 * If sleeping is allowed we use progressive backoff otherwise we spin. 64 * 65 * The return value is 0 on success or a negative errno on failure. A 66 * failure can happen either because we are not able to execute the 67 * command or FW executes it but signals an error. In the latter case 68 * the return value is the error code indicated by FW (negated). 69 */ 70 int t4vf_wr_mbox_core(struct adapter *adapter, 71 const void __rte_may_alias *cmd, 72 int size, void *rpl, bool sleep_ok) 73 { 74 /* 75 * We delay in small increments at first in an effort to maintain 76 * responsiveness for simple, fast executing commands but then back 77 * off to larger delays to a maximum retry delay. 78 */ 79 static const int delay[] = { 80 1, 1, 3, 5, 10, 10, 20, 50, 100 81 }; 82 83 84 u32 mbox_ctl = T4VF_CIM_BASE_ADDR + A_CIM_VF_EXT_MAILBOX_CTRL; 85 __be64 cmd_rpl[MBOX_LEN / 8]; 86 struct mbox_entry *entry; 87 unsigned int delay_idx; 88 u32 v, mbox_data; 89 const __be64 *p; 90 int i, ret; 91 int ms; 92 93 /* In T6, mailbox size is changed to 128 bytes to avoid 94 * invalidating the entire prefetch buffer. 95 */ 96 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 97 mbox_data = T4VF_MBDATA_BASE_ADDR; 98 else 99 mbox_data = T6VF_MBDATA_BASE_ADDR; 100 101 /* 102 * Commands must be multiples of 16 bytes in length and may not be 103 * larger than the size of the Mailbox Data register array. 104 */ 105 if ((size % 16) != 0 || 106 size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4) 107 return -EINVAL; 108 109 entry = t4_os_alloc(sizeof(*entry)); 110 if (entry == NULL) 111 return -ENOMEM; 112 113 /* 114 * Queue ourselves onto the mailbox access list. When our entry is at 115 * the front of the list, we have rights to access the mailbox. So we 116 * wait [for a while] till we're at the front [or bail out with an 117 * EBUSY] ... 118 */ 119 t4_os_atomic_add_tail(entry, &adapter->mbox_list, &adapter->mbox_lock); 120 121 delay_idx = 0; 122 ms = delay[0]; 123 124 for (i = 0; ; i += ms) { 125 /* 126 * If we've waited too long, return a busy indication. This 127 * really ought to be based on our initial position in the 128 * mailbox access list but this is a start. We very rarely 129 * contend on access to the mailbox ... 130 */ 131 if (i > (2 * FW_CMD_MAX_TIMEOUT)) { 132 t4_os_atomic_list_del(entry, &adapter->mbox_list, 133 &adapter->mbox_lock); 134 ret = -EBUSY; 135 goto out_free; 136 } 137 138 /* 139 * If we're at the head, break out and start the mailbox 140 * protocol. 141 */ 142 if (t4_os_list_first_entry(&adapter->mbox_list) == entry) 143 break; 144 145 /* 146 * Delay for a bit before checking again ... 147 */ 148 if (sleep_ok) { 149 ms = delay[delay_idx]; /* last element may repeat */ 150 if (delay_idx < ARRAY_SIZE(delay) - 1) 151 delay_idx++; 152 msleep(ms); 153 } else { 154 rte_delay_ms(ms); 155 } 156 } 157 158 /* 159 * Loop trying to get ownership of the mailbox. Return an error 160 * if we can't gain ownership. 161 */ 162 v = G_MBOWNER(t4_read_reg(adapter, mbox_ctl)); 163 for (i = 0; v == X_MBOWNER_NONE && i < 3; i++) 164 v = G_MBOWNER(t4_read_reg(adapter, mbox_ctl)); 165 166 if (v != X_MBOWNER_PL) { 167 t4_os_atomic_list_del(entry, &adapter->mbox_list, 168 &adapter->mbox_lock); 169 ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT; 170 goto out_free; 171 } 172 173 /* 174 * Write the command array into the Mailbox Data register array and 175 * transfer ownership of the mailbox to the firmware. 176 */ 177 for (i = 0, p = cmd; i < size; i += 8) 178 t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++)); 179 180 t4_read_reg(adapter, mbox_data); /* flush write */ 181 t4_write_reg(adapter, mbox_ctl, 182 F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW)); 183 t4_read_reg(adapter, mbox_ctl); /* flush write */ 184 delay_idx = 0; 185 ms = delay[0]; 186 187 /* 188 * Spin waiting for firmware to acknowledge processing our command. 189 */ 190 for (i = 0; i < FW_CMD_MAX_TIMEOUT; i++) { 191 if (sleep_ok) { 192 ms = delay[delay_idx]; /* last element may repeat */ 193 if (delay_idx < ARRAY_SIZE(delay) - 1) 194 delay_idx++; 195 msleep(ms); 196 } else { 197 rte_delay_ms(ms); 198 } 199 200 /* 201 * If we're the owner, see if this is the reply we wanted. 202 */ 203 v = t4_read_reg(adapter, mbox_ctl); 204 if (G_MBOWNER(v) == X_MBOWNER_PL) { 205 /* 206 * If the Message Valid bit isn't on, revoke ownership 207 * of the mailbox and continue waiting for our reply. 208 */ 209 if ((v & F_MBMSGVALID) == 0) { 210 t4_write_reg(adapter, mbox_ctl, 211 V_MBOWNER(X_MBOWNER_NONE)); 212 continue; 213 } 214 215 /* 216 * We now have our reply. Extract the command return 217 * value, copy the reply back to our caller's buffer 218 * (if specified) and revoke ownership of the mailbox. 219 * We return the (negated) firmware command return 220 * code (this depends on FW_SUCCESS == 0). (Again we 221 * avoid clogging the log with FW_VI_STATS_CMD 222 * reply results.) 223 */ 224 225 /* 226 * Retrieve the command reply and release the mailbox. 227 */ 228 get_mbox_rpl(adapter, cmd_rpl, size / 8, mbox_data); 229 t4_write_reg(adapter, mbox_ctl, 230 V_MBOWNER(X_MBOWNER_NONE)); 231 t4_os_atomic_list_del(entry, &adapter->mbox_list, 232 &adapter->mbox_lock); 233 234 /* return value in high-order host-endian word */ 235 v = be64_to_cpu(cmd_rpl[0]); 236 237 if (rpl) { 238 /* request bit in high-order BE word */ 239 WARN_ON((be32_to_cpu(*(const u32 *)cmd) 240 & F_FW_CMD_REQUEST) == 0); 241 memcpy(rpl, cmd_rpl, size); 242 } 243 ret = -((int)G_FW_CMD_RETVAL(v)); 244 goto out_free; 245 } 246 } 247 248 /* 249 * We timed out. Return the error ... 250 */ 251 dev_err(adapter, "command %#x timed out\n", 252 *(const u8 *)cmd); 253 dev_err(adapter, " Control = %#x\n", t4_read_reg(adapter, mbox_ctl)); 254 t4_os_atomic_list_del(entry, &adapter->mbox_list, &adapter->mbox_lock); 255 ret = -ETIMEDOUT; 256 257 out_free: 258 t4_os_free(entry); 259 return ret; 260 } 261 262 /** 263 * t4vf_fw_reset - issue a reset to FW 264 * @adapter: the adapter 265 * 266 * Issues a reset command to FW. For a Physical Function this would 267 * result in the Firmware resetting all of its state. For a Virtual 268 * Function this just resets the state associated with the VF. 269 */ 270 int t4vf_fw_reset(struct adapter *adapter) 271 { 272 struct fw_reset_cmd cmd; 273 274 memset(&cmd, 0, sizeof(cmd)); 275 cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RESET_CMD) | 276 F_FW_CMD_WRITE); 277 cmd.retval_len16 = cpu_to_be32(V_FW_CMD_LEN16(FW_LEN16(cmd))); 278 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 279 } 280 281 /** 282 * t4vf_prep_adapter - prepare SW and HW for operation 283 * @adapter: the adapter 284 * 285 * Initialize adapter SW state for the various HW modules, set initial 286 * values for some adapter tunables, take PHYs out of reset, and 287 * initialize the MDIO interface. 288 */ 289 int t4vf_prep_adapter(struct adapter *adapter) 290 { 291 u32 pl_vf_rev; 292 int ret, ver; 293 294 ret = t4vf_wait_dev_ready(adapter); 295 if (ret < 0) 296 return ret; 297 298 /* 299 * Default port and clock for debugging in case we can't reach 300 * firmware. 301 */ 302 adapter->params.nports = 1; 303 adapter->params.vfres.pmask = 1; 304 adapter->params.vpd.cclk = 50000; 305 306 pl_vf_rev = G_REV(t4_read_reg(adapter, A_PL_VF_REV)); 307 adapter->params.pci.device_id = adapter->pdev->id.device_id; 308 adapter->params.pci.vendor_id = adapter->pdev->id.vendor_id; 309 310 /* 311 * WE DON'T NEED adapter->params.chip CODE ONCE PL_REV CONTAINS 312 * ADAPTER (VERSION << 4 | REVISION) 313 */ 314 ver = CHELSIO_PCI_ID_VER(adapter->params.pci.device_id); 315 adapter->params.chip = 0; 316 switch (ver) { 317 case CHELSIO_T5: 318 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, 319 pl_vf_rev); 320 adapter->params.arch.sge_fl_db = F_DBPRIO | F_DBTYPE; 321 adapter->params.arch.mps_tcam_size = 322 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 323 break; 324 case CHELSIO_T6: 325 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, 326 pl_vf_rev); 327 adapter->params.arch.sge_fl_db = 0; 328 adapter->params.arch.mps_tcam_size = 329 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 330 break; 331 default: 332 dev_err(adapter, "%s: Device %d is not supported\n", 333 __func__, adapter->params.pci.device_id); 334 return -EINVAL; 335 } 336 return 0; 337 } 338 339 /** 340 * t4vf_query_params - query FW or device parameters 341 * @adapter: the adapter 342 * @nparams: the number of parameters 343 * @params: the parameter names 344 * @vals: the parameter values 345 * 346 * Reads the values of firmware or device parameters. Up to 7 parameters 347 * can be queried at once. 348 */ 349 int t4vf_query_params(struct adapter *adapter, unsigned int nparams, 350 const u32 *params, u32 *vals) 351 { 352 struct fw_params_cmd cmd, rpl; 353 struct fw_params_param *p; 354 unsigned int i; 355 size_t len16; 356 int ret; 357 358 if (nparams > 7) 359 return -EINVAL; 360 361 memset(&cmd, 0, sizeof(cmd)); 362 cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) | 363 F_FW_CMD_REQUEST | 364 F_FW_CMD_READ); 365 len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd, 366 param[nparams]), 16); 367 cmd.retval_len16 = cpu_to_be32(V_FW_CMD_LEN16(len16)); 368 for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) 369 p->mnem = cpu_to_be32(*params++); 370 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 371 if (ret == 0) 372 for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++) 373 *vals++ = be32_to_cpu(p->val); 374 return ret; 375 } 376 377 /** 378 * t4vf_get_vpd_params - retrieve device VPD paremeters 379 * @adapter: the adapter 380 * 381 * Retrives various device Vital Product Data parameters. The parameters 382 * are stored in @adapter->params.vpd. 383 */ 384 int t4vf_get_vpd_params(struct adapter *adapter) 385 { 386 struct vpd_params *vpd_params = &adapter->params.vpd; 387 u32 params[7], vals[7]; 388 int v; 389 390 params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 391 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CCLK)); 392 v = t4vf_query_params(adapter, 1, params, vals); 393 if (v != FW_SUCCESS) 394 return v; 395 vpd_params->cclk = vals[0]; 396 dev_debug(adapter, "%s: vpd_params->cclk = %u\n", 397 __func__, vpd_params->cclk); 398 return 0; 399 } 400 401 /** 402 * t4vf_get_dev_params - retrieve device paremeters 403 * @adapter: the adapter 404 * 405 * Retrives fw and tp version. 406 */ 407 int t4vf_get_dev_params(struct adapter *adapter) 408 { 409 u32 params[7], vals[7]; 410 int v; 411 412 params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 413 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWREV)); 414 params[1] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 415 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_TPREV)); 416 v = t4vf_query_params(adapter, 2, params, vals); 417 if (v != FW_SUCCESS) 418 return v; 419 adapter->params.fw_vers = vals[0]; 420 adapter->params.tp_vers = vals[1]; 421 422 dev_info(adapter, "Firmware version: %u.%u.%u.%u\n", 423 G_FW_HDR_FW_VER_MAJOR(adapter->params.fw_vers), 424 G_FW_HDR_FW_VER_MINOR(adapter->params.fw_vers), 425 G_FW_HDR_FW_VER_MICRO(adapter->params.fw_vers), 426 G_FW_HDR_FW_VER_BUILD(adapter->params.fw_vers)); 427 428 dev_info(adapter, "TP Microcode version: %u.%u.%u.%u\n", 429 G_FW_HDR_FW_VER_MAJOR(adapter->params.tp_vers), 430 G_FW_HDR_FW_VER_MINOR(adapter->params.tp_vers), 431 G_FW_HDR_FW_VER_MICRO(adapter->params.tp_vers), 432 G_FW_HDR_FW_VER_BUILD(adapter->params.tp_vers)); 433 return 0; 434 } 435 436 /** 437 * t4vf_set_params - sets FW or device parameters 438 * @adapter: the adapter 439 * @nparams: the number of parameters 440 * @params: the parameter names 441 * @vals: the parameter values 442 * 443 * Sets the values of firmware or device parameters. Up to 7 parameters 444 * can be specified at once. 445 */ 446 int t4vf_set_params(struct adapter *adapter, unsigned int nparams, 447 const u32 *params, const u32 *vals) 448 { 449 struct fw_params_param *p; 450 struct fw_params_cmd cmd; 451 unsigned int i; 452 size_t len16; 453 454 if (nparams > 7) 455 return -EINVAL; 456 457 memset(&cmd, 0, sizeof(cmd)); 458 cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) | 459 F_FW_CMD_REQUEST | 460 F_FW_CMD_WRITE); 461 len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd, 462 param[nparams]), 16); 463 cmd.retval_len16 = cpu_to_be32(V_FW_CMD_LEN16(len16)); 464 for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) { 465 p->mnem = cpu_to_be32(*params++); 466 p->val = cpu_to_be32(*vals++); 467 } 468 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); 469 } 470 471 unsigned int t4vf_get_pf_from_vf(struct adapter *adapter) 472 { 473 u32 whoami; 474 475 whoami = t4_read_reg(adapter, T4VF_PL_BASE_ADDR + A_PL_VF_WHOAMI); 476 return (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 477 G_SOURCEPF(whoami) : G_T6_SOURCEPF(whoami)); 478 } 479 480 /** 481 * t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration 482 * @adapter: the adapter 483 * 484 * Retrieves global RSS mode and parameters with which we have to live 485 * and stores them in the @adapter's RSS parameters. 486 */ 487 int t4vf_get_rss_glb_config(struct adapter *adapter) 488 { 489 struct rss_params *rss = &adapter->params.rss; 490 struct fw_rss_glb_config_cmd cmd, rpl; 491 int v; 492 493 /* 494 * Execute an RSS Global Configuration read command to retrieve 495 * our RSS configuration. 496 */ 497 memset(&cmd, 0, sizeof(cmd)); 498 cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) | 499 F_FW_CMD_REQUEST | 500 F_FW_CMD_READ); 501 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 502 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 503 if (v != FW_SUCCESS) 504 return v; 505 506 /* 507 * Translate the big-endian RSS Global Configuration into our 508 * cpu-endian format based on the RSS mode. We also do first level 509 * filtering at this point to weed out modes which don't support 510 * VF Drivers ... 511 */ 512 rss->mode = G_FW_RSS_GLB_CONFIG_CMD_MODE 513 (be32_to_cpu(rpl.u.manual.mode_pkd)); 514 switch (rss->mode) { 515 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: { 516 u32 word = be32_to_cpu 517 (rpl.u.basicvirtual.synmapen_to_hashtoeplitz); 518 519 rss->u.basicvirtual.synmapen = 520 ((word & F_FW_RSS_GLB_CONFIG_CMD_SYNMAPEN) != 0); 521 rss->u.basicvirtual.syn4tupenipv6 = 522 ((word & F_FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6) != 0); 523 rss->u.basicvirtual.syn2tupenipv6 = 524 ((word & F_FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6) != 0); 525 rss->u.basicvirtual.syn4tupenipv4 = 526 ((word & F_FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4) != 0); 527 rss->u.basicvirtual.syn2tupenipv4 = 528 ((word & F_FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4) != 0); 529 rss->u.basicvirtual.ofdmapen = 530 ((word & F_FW_RSS_GLB_CONFIG_CMD_OFDMAPEN) != 0); 531 rss->u.basicvirtual.tnlmapen = 532 ((word & F_FW_RSS_GLB_CONFIG_CMD_TNLMAPEN) != 0); 533 rss->u.basicvirtual.tnlalllookup = 534 ((word & F_FW_RSS_GLB_CONFIG_CMD_TNLALLLKP) != 0); 535 rss->u.basicvirtual.hashtoeplitz = 536 ((word & F_FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ) != 0); 537 538 /* we need at least Tunnel Map Enable to be set */ 539 if (!rss->u.basicvirtual.tnlmapen) 540 return -EINVAL; 541 break; 542 } 543 544 default: 545 /* all unknown/unsupported RSS modes result in an error */ 546 return -EINVAL; 547 } 548 return 0; 549 } 550 551 /** 552 * t4vf_get_vfres - retrieve VF resource limits 553 * @adapter: the adapter 554 * 555 * Retrieves configured resource limits and capabilities for a virtual 556 * function. The results are stored in @adapter->vfres. 557 */ 558 int t4vf_get_vfres(struct adapter *adapter) 559 { 560 struct vf_resources *vfres = &adapter->params.vfres; 561 struct fw_pfvf_cmd cmd, rpl; 562 u32 word; 563 int v; 564 565 /* 566 * Execute PFVF Read command to get VF resource limits; bail out early 567 * with error on command failure. 568 */ 569 memset(&cmd, 0, sizeof(cmd)); 570 cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | 571 F_FW_CMD_REQUEST | 572 F_FW_CMD_READ); 573 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 574 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 575 if (v != FW_SUCCESS) 576 return v; 577 578 /* 579 * Extract VF resource limits and return success. 580 */ 581 word = be32_to_cpu(rpl.niqflint_niq); 582 vfres->niqflint = G_FW_PFVF_CMD_NIQFLINT(word); 583 vfres->niq = G_FW_PFVF_CMD_NIQ(word); 584 585 word = be32_to_cpu(rpl.type_to_neq); 586 vfres->neq = G_FW_PFVF_CMD_NEQ(word); 587 vfres->pmask = G_FW_PFVF_CMD_PMASK(word); 588 589 word = be32_to_cpu(rpl.tc_to_nexactf); 590 vfres->tc = G_FW_PFVF_CMD_TC(word); 591 vfres->nvi = G_FW_PFVF_CMD_NVI(word); 592 vfres->nexactf = G_FW_PFVF_CMD_NEXACTF(word); 593 594 word = be32_to_cpu(rpl.r_caps_to_nethctrl); 595 vfres->r_caps = G_FW_PFVF_CMD_R_CAPS(word); 596 vfres->wx_caps = G_FW_PFVF_CMD_WX_CAPS(word); 597 vfres->nethctrl = G_FW_PFVF_CMD_NETHCTRL(word); 598 return 0; 599 } 600 601 /** 602 * t4vf_get_port_stats_fw - collect "port" statistics via Firmware 603 * @adapter: the adapter 604 * @pidx: the port index 605 * @s: the stats structure to fill 606 * 607 * Collect statistics for the "port"'s Virtual Interface via Firmware 608 * commands. 609 */ 610 static int t4vf_get_port_stats_fw(struct adapter *adapter, int pidx, 611 struct port_stats *p) 612 { 613 struct port_info *pi = adap2pinfo(adapter, pidx); 614 unsigned int rem = VI_VF_NUM_STATS; 615 struct fw_vi_stats_vf fwstats; 616 __be64 *fwsp = (__be64 *)&fwstats; 617 618 /* 619 * Grab the Virtual Interface statistics a chunk at a time via mailbox 620 * commands. We could use a Work Request and get all of them at once 621 * but that's an asynchronous interface which is awkward to use. 622 */ 623 while (rem) { 624 unsigned int ix = VI_VF_NUM_STATS - rem; 625 unsigned int nstats = min(6U, rem); 626 struct fw_vi_stats_cmd cmd, rpl; 627 size_t len = (offsetof(struct fw_vi_stats_cmd, u) + 628 sizeof(struct fw_vi_stats_ctl)); 629 size_t len16 = DIV_ROUND_UP(len, 16); 630 int ret; 631 632 memset(&cmd, 0, sizeof(cmd)); 633 cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_STATS_CMD) | 634 V_FW_VI_STATS_CMD_VIID(pi->viid) | 635 F_FW_CMD_REQUEST | 636 F_FW_CMD_READ); 637 cmd.retval_len16 = cpu_to_be32(V_FW_CMD_LEN16(len16)); 638 cmd.u.ctl.nstats_ix = 639 cpu_to_be16(V_FW_VI_STATS_CMD_IX(ix) | 640 V_FW_VI_STATS_CMD_NSTATS(nstats)); 641 ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl); 642 if (ret != FW_SUCCESS) 643 return ret; 644 645 memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats); 646 647 rem -= nstats; 648 fwsp += nstats; 649 } 650 651 /* 652 * Translate firmware statistics into host native statistics. 653 */ 654 p->tx_octets = be64_to_cpu(fwstats.tx_bcast_bytes) + 655 be64_to_cpu(fwstats.tx_mcast_bytes) + 656 be64_to_cpu(fwstats.tx_ucast_bytes); 657 p->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames); 658 p->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames); 659 p->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames); 660 p->tx_drop = be64_to_cpu(fwstats.tx_drop_frames); 661 662 p->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames); 663 p->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames); 664 p->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames); 665 p->rx_len_err = be64_to_cpu(fwstats.rx_err_frames); 666 667 return 0; 668 } 669 670 /** 671 * t4vf_get_port_stats - collect "port" statistics 672 * @adapter: the adapter 673 * @pidx: the port index 674 * @s: the stats structure to fill 675 * 676 * Collect statistics for the "port"'s Virtual Interface. 677 */ 678 void t4vf_get_port_stats(struct adapter *adapter, int pidx, 679 struct port_stats *p) 680 { 681 /* 682 * If this is not the first Virtual Interface for our Virtual 683 * Function, we need to use Firmware commands to retrieve its 684 * MPS statistics. 685 */ 686 if (pidx != 0) 687 t4vf_get_port_stats_fw(adapter, pidx, p); 688 689 /* 690 * But for the first VI, we can grab its statistics via the MPS 691 * register mapped into the VF register space. 692 */ 693 #define GET_STAT(name) \ 694 t4_read_reg64(adapter, \ 695 T4VF_MPS_BASE_ADDR + A_MPS_VF_STAT_##name##_L) 696 p->tx_octets = GET_STAT(TX_VF_BCAST_BYTES) + 697 GET_STAT(TX_VF_MCAST_BYTES) + 698 GET_STAT(TX_VF_UCAST_BYTES); 699 p->tx_bcast_frames = GET_STAT(TX_VF_BCAST_FRAMES); 700 p->tx_mcast_frames = GET_STAT(TX_VF_MCAST_FRAMES); 701 p->tx_ucast_frames = GET_STAT(TX_VF_UCAST_FRAMES); 702 p->tx_drop = GET_STAT(TX_VF_DROP_FRAMES); 703 704 p->rx_bcast_frames = GET_STAT(RX_VF_BCAST_FRAMES); 705 p->rx_mcast_frames = GET_STAT(RX_VF_MCAST_FRAMES); 706 p->rx_ucast_frames = GET_STAT(RX_VF_UCAST_FRAMES); 707 708 p->rx_len_err = GET_STAT(RX_VF_ERR_FRAMES); 709 #undef GET_STAT 710 } 711 712 static int t4vf_alloc_vi(struct adapter *adapter, int port_id) 713 { 714 struct fw_vi_cmd cmd, rpl; 715 int v; 716 717 /* 718 * Execute a VI command to allocate Virtual Interface and return its 719 * VIID. 720 */ 721 memset(&cmd, 0, sizeof(cmd)); 722 cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | 723 F_FW_CMD_REQUEST | 724 F_FW_CMD_WRITE | 725 F_FW_CMD_EXEC); 726 cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) | 727 F_FW_VI_CMD_ALLOC); 728 cmd.portid_pkd = V_FW_VI_CMD_PORTID(port_id); 729 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 730 if (v != FW_SUCCESS) 731 return v; 732 return G_FW_VI_CMD_VIID(be16_to_cpu(rpl.type_to_viid)); 733 } 734 735 int t4vf_port_init(struct adapter *adapter) 736 { 737 struct fw_port_cmd port_cmd, port_rpl, rpl; 738 struct fw_vi_cmd vi_cmd, vi_rpl; 739 u32 param, val, pcaps, acaps; 740 enum fw_port_type port_type; 741 int mdio_addr; 742 int ret, i; 743 744 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | 745 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_PORT_CAPS32)); 746 val = 1; 747 ret = t4vf_set_params(adapter, 1, ¶m, &val); 748 if (ret < 0) 749 return ret; 750 751 for_each_port(adapter, i) { 752 struct port_info *p = adap2pinfo(adapter, i); 753 u32 lstatus32; 754 755 ret = t4vf_alloc_vi(adapter, p->port_id); 756 if (ret < 0) { 757 dev_err(&pdev->dev, "cannot allocate VI for port %d:" 758 " err=%d\n", p->port_id, ret); 759 return ret; 760 } 761 p->viid = ret; 762 763 /* 764 * Execute a VI Read command to get our Virtual Interface 765 * information like MAC address, etc. 766 */ 767 memset(&vi_cmd, 0, sizeof(vi_cmd)); 768 vi_cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | 769 F_FW_CMD_REQUEST | 770 F_FW_CMD_READ); 771 vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd)); 772 vi_cmd.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(p->viid)); 773 ret = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl); 774 if (ret != FW_SUCCESS) 775 return ret; 776 777 p->rss_size = G_FW_VI_CMD_RSSSIZE 778 (be16_to_cpu(vi_rpl.norss_rsssize)); 779 t4_os_set_hw_addr(adapter, i, vi_rpl.mac); 780 781 /* 782 * If we don't have read access to our port information, we're 783 * done now. Else, execute a PORT Read command to get it ... 784 */ 785 if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT)) 786 return 0; 787 788 memset(&port_cmd, 0, sizeof(port_cmd)); 789 port_cmd.op_to_portid = 790 cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) | 791 F_FW_CMD_REQUEST | F_FW_CMD_READ | 792 V_FW_PORT_CMD_PORTID(p->port_id)); 793 val = FW_PORT_ACTION_GET_PORT_INFO32; 794 port_cmd.action_to_len16 = 795 cpu_to_be32(V_FW_PORT_CMD_ACTION(val) | 796 FW_LEN16(port_cmd)); 797 ret = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), 798 &port_rpl); 799 if (ret != FW_SUCCESS) 800 return ret; 801 802 /* 803 * Extract the various fields from the Port Information message. 804 */ 805 rpl = port_rpl; 806 lstatus32 = be32_to_cpu(rpl.u.info32.lstatus32_to_cbllen32); 807 808 port_type = G_FW_PORT_CMD_PORTTYPE32(lstatus32); 809 mdio_addr = (lstatus32 & F_FW_PORT_CMD_MDIOCAP32) ? 810 (int)G_FW_PORT_CMD_MDIOADDR32(lstatus32) : -1; 811 pcaps = be32_to_cpu(port_rpl.u.info32.pcaps32); 812 acaps = be32_to_cpu(port_rpl.u.info32.acaps32); 813 814 t4_init_link_config(p, pcaps, acaps, mdio_addr, port_type, 815 FW_PORT_MOD_TYPE_NA); 816 } 817 return 0; 818 } 819